WO2024023916A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2024023916A1
WO2024023916A1 PCT/JP2022/028739 JP2022028739W WO2024023916A1 WO 2024023916 A1 WO2024023916 A1 WO 2024023916A1 JP 2022028739 W JP2022028739 W JP 2022028739W WO 2024023916 A1 WO2024023916 A1 WO 2024023916A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
indoor
heat exchanger
temperature
air conditioner
Prior art date
Application number
PCT/JP2022/028739
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 永田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/028739 priority Critical patent/WO2024023916A1/en
Publication of WO2024023916A1 publication Critical patent/WO2024023916A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight

Definitions

  • the present invention relates to an air conditioner that dehumidifies a room that is an air-conditioned space.
  • Patent Document 1 discloses a technique for lowering the air volume in order to lower the evaporator temperature.
  • one example of conventional technology is to reduce the air volume in order to lower the evaporation temperature.
  • the lower limits of the rotational speed and air volume of an indoor blower are limited by deterioration in controllability due to short cycles and increased inverter loss in motor control. Therefore, when the air conditioning load is small, it is difficult to lower the evaporation temperature by lowering the rotation speed of the indoor blower. It is more difficult to reduce the air volume than when the rotational speed of the indoor blower is at its minimum value. In this case, by increasing the frequency of the compressor, the pressure difference between the high-pressure refrigerant and the low-pressure refrigerant increases, so the evaporation temperature can be lowered. However, since the air conditioning capacity becomes excessive, energy consumption increases.
  • the present invention has been made to solve the above-mentioned problems, and even when the air conditioning load is small and the rotational speed of the indoor fan is at its minimum value, by lowering the air volume, the evaporation temperature can be lowered and dehumidified.
  • the aim is to obtain an air conditioner that can.
  • the air conditioner according to the present invention includes a heat exchanger that exchanges heat with air by evaporating or condensing a refrigerant, an inlet that sucks air, and an outlet that blows out the air that has been heat exchanged into the room.
  • a heat exchanger that exchanges heat with air by evaporating or condensing a refrigerant
  • an inlet that sucks air
  • an outlet that blows out the air that has been heat exchanged into the room.
  • FIG. 2 is a sectional view of the indoor unit of the present invention. It is a psychrometric diagram showing the relationship between dry bulb temperature, wet bulb temperature, dew point temperature, relative humidity, and absolute humidity.
  • 5 is a flowchart of a dehumidifying operation mode of the air conditioner in Embodiment 1.
  • FIG. 7 is a flowchart of a dehumidifying operation mode of the air conditioner in Embodiment 2.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner 50 according to the present embodiment.
  • FIG. 2 is a sectional view of the indoor unit 20 according to this embodiment.
  • the outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor blower 14, an expansion valve 15, an outdoor control device 16, and a calculation device 17. , a discharge temperature sensor 40 , and an outdoor heat exchanger temperature sensor 41 .
  • the indoor unit 20 includes an indoor heat exchanger 22, an indoor blower 23, an indoor control device 24, a suction temperature sensor 42, a suction humidity sensor 43, and an indoor heat exchanger temperature sensor 44.
  • the outdoor unit 10 and the indoor unit 20 are connected by a gas extension pipe 30 and a liquid extension pipe 31. Further, the indoor unit 20 is attached with a remote controller 32 (hereinafter referred to as remote controller 32).
  • the indoor blower 23 is shown as an axial propeller fan, but it may be a once-through cross-flow fan.
  • the compressor 11 is a device that compresses and discharges the sucked refrigerant, and is composed of, for example, a rotary compressor or a scroll compressor.
  • the compressor 11 compresses a low-temperature, low-pressure refrigerant to convert it into a high-temperature, high-pressure refrigerant.
  • the compressor 11 then flows out the high temperature and high pressure refrigerant to the four-way valve 12 .
  • a discharge temperature sensor 40 is arranged in the flow path between the compressor 11 and the four-way valve 12.
  • the discharge temperature sensor 40 measures the temperature of the refrigerant discharged from the compressor 11. Note that in this embodiment, the discharge temperature sensor 40 is provided in the flow path between the compressor 11 and the four-way valve 12, but it may also be provided above the container of the compressor 11.
  • the four-way valve 12 is configured to switch the flow of refrigerant. Specifically, the four-way valve 12 is configured to switch the flow of refrigerant to the outdoor heat exchanger 13 or the indoor heat exchanger 22 depending on cooling operation, defrosting operation, and heating operation. There is.
  • the outdoor heat exchanger 13 condenses or evaporates the inflowing refrigerant to exchange heat with the air and cool or heat the air.
  • the outdoor heat exchanger 13 serves as a condenser that condenses the refrigerant compressed by the compressor 11 during cooling operation.
  • the outdoor heat exchanger 13 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the expansion valve 15 during heating operation.
  • the outdoor heat exchanger 13 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
  • the outdoor blower 14 includes an outdoor blower fan and a fan motor that rotates the outdoor blower fan.
  • the outdoor blower 14 blows the air heat-exchanged by the outdoor heat exchanger 13 to the outside at the rotation speed of the outdoor blower fan.
  • the expansion valve 15 expands the refrigerant that has flowed in. At this time, the refrigerant undergoes isenthalpic expansion and changes to a low-pressure refrigerant.
  • the expansion valve 15 allows the low-pressure refrigerant to flow out to the indoor heat exchanger 22 via the liquid extension pipe 31 .
  • the outdoor control device 16 is provided in the outdoor unit 10.
  • the outdoor control device 16 detects and controls the rotational speed of the outdoor blower 14, the frequency of the compressor 11, and the like. Furthermore, the four-way valve 12 is switched between cooling operation and heating operation.
  • the computing device 17 is provided in the outdoor unit 10.
  • the arithmetic unit 17 compares the data detected by the sensor and the data set by the remote controller 32 in terms of magnitude.
  • the calculation device 17 performs calculations related to the operation of the indoor unit 20, the calculation results are transmitted to the indoor control device 24.
  • the computing device 17 is provided only in the outdoor unit 10, but may be provided in the indoor unit 20.
  • a calculation device is provided in each of the outdoor unit 10 and the indoor unit 20
  • calculations related to the operation of the outdoor unit 10 are performed by the calculation device provided on the outdoor unit 10 side, and calculations related to the operation of the indoor unit 20 are performed by the indoor unit. This is performed by a calculation device provided on the 20 side.
  • the air conditioner 50 includes a remote control 32.
  • the remote control 32 sends a signal including instructions, settings, etc. input by the user to the indoor control device 24.
  • a suction humidity sensor 43 In the cross-sectional view of the indoor unit 20 shown in FIG. , a suction humidity sensor 43, an indoor heat exchanger temperature sensor 44, a first filter 45, a flap 46, and a louver 47.
  • the housing 21 has its longitudinal direction in the Y-axis direction, and has a suction port 21a formed above the housing 21 for sucking air, and has an indoor heat exchanger 22 below the housing 21 for heat exchange.
  • An air outlet 21b is formed to blow out the air.
  • the indoor heat exchanger 22 has a multi-stage bent structure and is provided so as to surround the indoor blower 23 from the front to the back.
  • the indoor heat exchanger 22 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the expansion valve 15 during cooling operation.
  • the indoor heat exchanger 22 serves as a condenser that condenses the refrigerant compressed by the compressor 11 during heating operation.
  • the indoor heat exchanger 22 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
  • the indoor blower 23 By rotating, the indoor blower 23 generates a series of airflows in which air is sucked in from the suction port 21a and air that has been heat exchanged by the indoor heat exchanger 22 is blown out from the blowout port 21b.
  • the indoor control device 24 is provided in the indoor unit 20.
  • the rotation speed of the indoor blower 23, the angle of the flap 46 and the louver 47, and the operation of the variable air path resistance mechanism 48 are detected and controlled. Furthermore, the indoor control device 24 receives the results calculated by the arithmetic device 17 and reflects them in the operation of the indoor unit 20.
  • the first filter 45 is provided on the windward side of the indoor heat exchanger 22. This first filter 45 removes dust and dirt contained in the air sucked in through the suction port 21a, thereby preventing the indoor heat exchanger 22 from becoming dirty.
  • the air outlet 21b located on the leeward side of the indoor heat exchanger 22 is provided with an air flow path variable mechanism, which includes a flap 46 that changes the vertical direction and a louver 47 that changes the horizontal direction. There is.
  • the suction temperature sensor 42 is arranged on the upstream side of the air passing through the indoor heat exchanger 22 so as to be in contact with the air sucked in from the suction port 21a.
  • the suction temperature sensor 42 is, for example, a thermistor.
  • the suction humidity sensor 43 is placed a predetermined distance away from the indoor heat exchanger 22 so as to be less susceptible to the influence of heat exchange performed by the indoor heat exchanger 22.
  • the air conditioner 50 of this embodiment is switched between cooling operation and heating operation by switching the circulation direction of the refrigerant in the refrigerant circuit using the four-way valve 12.
  • the refrigerant circulates in the order of the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the expansion valve 15, the liquid extension pipe 31, the indoor heat exchanger 22, and the gas extension pipe 30.
  • the outdoor heat exchanger 13 functions as a condenser
  • the indoor heat exchanger 22 functions as an evaporator.
  • the refrigerant circulates through the compressor 11 , the four-way valve 12 , the gas extension pipe 30 , the indoor heat exchanger 22 , the liquid extension pipe 31 , the expansion valve 15 , and the outdoor heat exchanger 13 in this order.
  • the indoor heat exchanger 22 functions as a condenser
  • the outdoor heat exchanger 13 functions as an evaporator.
  • Gas refrigerant or two-phase refrigerant flows through the gas extension pipe 30 during cooling operation, and gas refrigerant flows during heating operation. Furthermore, a two-phase refrigerant flows through the liquid extension pipe 31 during cooling operation, and a liquid refrigerant flows during heating operation.
  • the dehumidifying operation of the air conditioner 50 in this embodiment will be described.
  • the same refrigeration cycle as in the cooling operation is operated.
  • the refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the four-way valve 12.
  • the outdoor heat exchanger 13 acts as a condenser.
  • the refrigerant undergoes adiabatic expansion at the expansion valve 15, becomes a gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 22.
  • the indoor heat exchanger 22 acts as an evaporator, and the gas-liquid two-phase refrigerant that has flowed therein becomes a gas refrigerant (or a gas-liquid two-phase refrigerant with a dryness of 0.95 or more) and is sucked into the compressor 11.
  • the refrigerant temperature of the indoor heat exchanger 22 (evaporator) is higher than the dew point temperature of the air supplied to the indoor heat exchanger 22.
  • Air is supplied to the indoor unit 20 by the indoor blower 23.
  • the air supplied to the indoor unit 20 undergoes heat exchange with the refrigerant in the indoor heat exchanger 22, and the dry bulb temperature and wet bulb temperature of the air decrease.
  • the refrigerant temperature is higher than the dew point temperature of the heat-exchanged air, the moisture in the air remains retained in the air. Therefore, since only the dry bulb temperature will decrease, the air will not be dehumidified.
  • FIG. 3 is a psychrometric diagram showing the relationship between dry bulb temperature, wet bulb temperature, dew point temperature, relative humidity, and absolute humidity.
  • the dry bulb temperature is 24 degrees to 27 degrees and the relative humidity is 40% to 60%, as shown in the shaded area in FIG. 3, the air is considered comfortable.
  • Dehumidification is required to maintain comfortable air when the dry bulb temperature is 24 degrees to 27 degrees, the relative humidity is 60% or more, and the dew point temperature is 18.6 degrees.
  • the dew point temperature of 18.6 degrees is used as a threshold value, and the refrigerant temperature of the evaporator is compared with the dew point temperature of 18.6 degrees. Decide on controlled operation.
  • the air volume of the indoor unit 20 is reduced.
  • the rotation speed of the indoor blower 23 is reduced.
  • a pressure loss body appears at any point from the suction port 21a to the blowout port 21b, so that the indoor blower 23 The air volume of the indoor unit 20 is lowered than the air volume when the rotation speed of the indoor unit 20 is at the minimum value.
  • the flap 46 and the louver 47 are used as the first pressure loss body.
  • step S1 First, the main power of the air conditioner 50 is turned on via the remote control 32, and the air conditioner 50 is put into an operation ready state. Subsequently, a driving mode is selected using the remote control 32, and the desired driving mode is set. Typical operation modes include a cooling operation mode, a heating operation mode, and a dehumidification operation mode. Thereby, the air conditioner 50 starts operating in the desired operation mode. If the cooling operation mode or the dehumidification operation mode is selected and the dehumidification operation is started, the process advances to step S2.
  • the indoor target temperature setting T and the indoor target humidity setting ⁇ are set via the remote controller 32.
  • step S2 At the start of the dehumidifying operation, the suction temperature Tai is detected using the suction temperature sensor 42.
  • the arithmetic unit 17 compares the data of the target setting temperature T instructed to the remote controller 32 and the data of the suction temperature Tai detected by the suction temperature sensor 42 in terms of magnitude. As a result of the comparison, if T>Tai, the process advances to step S3. On the other hand, if T ⁇ Tai, the process advances to step S2.
  • the suction humidity sensor 43 is used to detect the suction humidity ⁇ ai.
  • the arithmetic unit 17 compares the data of the target setting humidity ⁇ instructed to the remote controller 32 and the data of the suction humidity ⁇ ai detected by the suction humidity sensor 43 in terms of magnitude. As a result of the comparison, if ⁇ ai, the process advances to step S4. On the other hand, if ⁇ ai, the process advances to step S2.
  • the indoor heat exchanger temperature sensor 44 is used to detect the refrigerant temperature.
  • the arithmetic unit 17 compares the refrigerant temperature detected by the indoor heat exchanger temperature sensor 44 with the dew point temperature of 18.6 degrees. As a result of the comparison, if the refrigerant temperature>dew point temperature is 18.6 degrees, the process proceeds to step S5. On the other hand, if the refrigerant temperature ⁇ dew point temperature is 18.6 degrees, the process proceeds to step S2.
  • step S5 The indoor control device 24 controls the rotation speed of the indoor blower 23.
  • step S4 when the calculation device 17 detects that the refrigerant temperature is higher than the dew point temperature of 18.6 degrees, the indoor control device 24 reduces the rotation speed of the indoor blower 23.
  • the indoor control device 24 detects the rotation speed of the indoor blower 23 and controls it. As a result of the detection, if the rotation speed of the indoor blower 23 is the minimum value, the process advances to step S8. On the other hand, if the rotation speed of the indoor blower 23 is not the minimum value, the process advances to step S7.
  • step S4 if the rotation speed of the indoor blower 23 is not the minimum value, the indoor control device 24 lowers the rotation speed of the indoor blower 23, and then the process proceeds to step S2.
  • the indoor control device 24 When the indoor control device 24 detects that the rotation speed of the indoor blower 23 is at the minimum value, it starts a controlled operation of the first pressure loss body so that the air volume of the indoor unit 20 is reduced. Specifically, the angle of the flap 46 is adjusted so that it is fully closed with respect to the direction in which the maximum air volume is generated, and the angle of the louver 47 is adjusted to face either the left or right direction rather than the front, thereby reducing the wind path resistance. Put on.
  • the indoor control device 24 detects the air volume when the control operation of the first pressure loss body is in operation. If the indoor control device 24 activates the control operation of the first pressure loss body and detects that the air volume is at the minimum value, the process proceeds to step S10. On the other hand, if the air volume is not the minimum value, the process advances to step S8.
  • step S10 The effect of increasing the frequency of the compressor 11 in step S10 will be explained. Since the frequency of the compressor 11 is increased to increase the flow rate of refrigerant in the refrigerant circuit, the evaporation temperature decreases and the refrigerant temperature becomes the dew point temperature of 18.6 degrees or less. Therefore, dehumidification operation becomes possible again.
  • step S10 when the indoor control device 24 detects that the frequency of the compressor 11 has increased, it stops the controlled operation of the first pressure loss body.
  • step S11 the outdoor control device 16 increases the frequency of the compressor 11, but the frequency has an upper limit value in consideration of safety.
  • the outdoor control device 16 detects that the frequency of the compressor 11 has reached the upper limit value, the dehumidification operation ends. On the other hand, if the frequency of the compressor 11 has not reached the upper limit value, the process advances to step S2.
  • the air conditioner according to Embodiment 1 of the present invention drives the first pressure loss body when it is detected that the refrigerant temperature is >18.6 degrees and the rotation speed of the indoor fan is the minimum value.
  • dehumidifying operation can be performed without increasing the frequency of the compressor, which is also effective in reducing energy consumption.
  • the frequency of the compressor is increased and the refrigerant temperature in the evaporator is lowered to finally achieve ⁇ ai. be able to.
  • Embodiment 2 The air conditioner according to the present embodiment will be described with a focus on the points that are different from the configuration and operation of the air conditioner 50 according to the first embodiment.
  • a suction humidity sensor 43 In the cross-sectional view of the indoor unit 20 shown in FIG. , a suction humidity sensor 43 , an indoor heat exchanger temperature sensor 44 , a first filter 45 , a flap 46 , a louver 47 , and an air path resistance variable mechanism 48 .
  • variable air path resistance mechanism 48 is provided to cover the entire first filter 45 or a portion of the upstream or downstream side.
  • the variable air path mechanism 48 may be a second filter that is finer than the roughness of the first filter 45, or a drivable plate material.
  • an air path resistance variable mechanism 48 is used as the second pressure loss body.
  • a pressure loss body storage mechanism is provided that can store the second pressure loss body. When the second pressure loss body is used, it is made to emerge from the pressure loss body storage mechanism, and when the second pressure loss body is not used, it is stored in the pressure loss body storage mechanism.
  • a pressure loss body storage mechanism is provided, but it is not necessarily necessary to provide it. For example, the user may provide the second pressure loss body in accordance with the amount of decrease in air volume.
  • FIG. 5 is a flowchart of a method of operating the air conditioner 50 during dehumidification operation according to the second embodiment of the present invention.
  • the dehumidifying operation of the air conditioner 50 according to the present embodiment will be described along the flowchart shown in FIG. 5.
  • differences from the dehumidifying operation of the air conditioner 50 according to the first embodiment shown in FIG. 4 will be mainly explained.
  • steps S1 to S7 are similar to the dehumidification operation according to the first embodiment shown in FIG.
  • the indoor control device 24 When the indoor control device 24 detects that the rotation speed of the indoor blower 23 is at the minimum value, it starts controlling the second pressure loss body so that the air volume of the indoor unit 20 decreases.
  • the second filter is stacked on the first filter 45, or a portion of the upstream or downstream side of the first filter 45 is covered with a plate material.
  • the indoor control device 24 detects the air volume when the second pressure loss body is being controlled. If the indoor control device 24 detects that the air volume is at the minimum value even if the second pressure loss body is controlled, the process proceeds to step S10. On the other hand, if the air volume is not the minimum value, the process advances to step S8.
  • step S10 when the indoor control device 24 detects that the frequency of the compressor 11 has increased, it stops the controlled operation of the second pressure loss body.
  • step S11 the outdoor control device 16 increases the frequency of the compressor 11, but the frequency has an upper limit value in consideration of safety.
  • the outdoor control device 16 detects that the frequency of the compressor 11 has reached the upper limit value, the dehumidification operation ends. On the other hand, if the frequency of the compressor 11 has not reached the upper limit value, the process advances to step S2.
  • variable air path resistance mechanism 48 is used as the second pressure loss body, and the flap 46 and the louver 47 are used as the variable air path mechanism. , may be combined as appropriate. Specifically, the flap 46, the louver 47, and the variable air path resistance mechanism 48 may be used as the pressure loss body.
  • the air conditioner according to the second embodiment of the present invention drives the second pressure loss body when it is detected that the refrigerant temperature is >18.6 degrees and the rotation speed of the indoor fan is the minimum value.
  • dehumidifying operation can be performed without increasing the frequency of the compressor, which is also effective in reducing energy consumption.
  • the flap 46 and the louver 47 can be used only as a variable air path mechanism, it is also possible to perform dehumidification operation and set the air direction according to the user.
  • the area that the second pressure loss body covers the first filter 45 can be adjusted in stages according to the amount of decrease in air volume.
  • the frequency of the compressor is increased and the refrigerant temperature in the evaporator is lowered to finally achieve ⁇ ai. be able to.
  • the air conditioner of the present disclosure can be used in spaces that require air conditioning.

Abstract

Provided is an air conditioner which, when the refrigerant temperature in an evaporator is higher than the indoor dew point and the rotation speed of an indoor blower is at the minimum value during a dehumidification operation of the air conditioner, is capable of lowering the refrigerant temperature in the evaporator by reducing airflow via the introduction of a pressure reduction body between the inlet and the outlet of the air conditioner. The air conditioner comprises: a heat exchanger which functions as an evaporator; a housing 21 in which are formed an inlet 21a that is for drawing in air and an outlet 21b that is for blowing indoors air having been subjected to heat exchange by the heat exchange; an indoor blower 23 which draws in the air from the inlet 21a and discharges, from the outlet 21b, the air having been subjected to heat exchange by the heat exchanger; and a pressure reduction body which reduces the airflow blown from the outlet 21b to be lower than the airflow at the minimum rotation speed of the indoor blower 23.

Description

空気調和機air conditioner
 この発明は、空調対象空間である部屋を除湿する空気調和機に関するものである。 The present invention relates to an air conditioner that dehumidifies a room that is an air-conditioned space.
 近年では住宅の高気密度高断熱化が進んでおり、空気調和機に求められる機能も幅広くなってきている。たとえば、空調能力を見ても、空気調和機を始動する際は空調負荷が大きいので定格能力を充分に発揮できることが求められ、負荷安定時では低能力運転ができることも求められている。また、この高機能住宅では、一度負荷を処理してしまえば、その住宅の特性上、処理すべき空調負荷、特に顕熱負荷は小さくなる。一方、潜熱負荷は住宅内での人の活動によって発生するため、低能力運転時には、顕熱能力を小さく、かつ潜熱能力を大きくする、低顕熱比(低SHF)運転できることが必要となる。 In recent years, homes have become more airtight and highly insulated, and the functions required of air conditioners are also becoming broader. For example, when looking at air conditioning capacity, when starting an air conditioner, the air conditioning load is large, so it is required to be able to fully utilize its rated capacity, and it is also required to be able to operate at a low capacity when the load is stable. Furthermore, in this highly functional house, once the load has been treated, the air conditioning load to be treated, especially the sensible heat load, becomes smaller due to the characteristics of the house. On the other hand, since the latent heat load is generated by human activities in the house, during low-capacity operation, it is necessary to be able to operate at a low sensible heat ratio (low SHF), which reduces the sensible heat capacity and increases the latent heat capacity.
 しかし、近年の空気調和機(特に、ルームエアコン)の室内機の熱交換器は、高性能化および高密度実装が進んでいることから、低能力運転時などの蒸発器温度は住宅内空気の露点温度より高く、顕熱負荷のみしか処理できない課題がある。上記課題を解決すべく、特許文献1には、蒸発器温度を下げるために風量を下げる技術が開示されている。 However, in recent years, the heat exchangers of indoor units in air conditioners (especially room air conditioners) have become more sophisticated and have been implemented with higher density, so the evaporator temperature during low-capacity operation is lower than that of the indoor air. The problem is that it is higher than the dew point temperature and can only handle sensible heat loads. In order to solve the above problem, Patent Document 1 discloses a technique for lowering the air volume in order to lower the evaporator temperature.
特開2003-322385JP2003-322385
 従来の空気調和機において、蒸発温度を下げるために風量を下げる技術が従来技術として挙げられる。室内送風機の回転数と風量の下限値は、ショートサイクルやモータ制御のインバータロス増加による制御性悪化によって制限される。そのため、空調負荷が小さい場合、室内送風機の回転数を下げて蒸発温度を下げることは困難である。室内送風機の回転数が最小値であるときよりも、風量を低下させることは困難である。この場合、圧縮機の周波数を増速させることにより、高圧冷媒と低圧冷媒との圧力差が大きくなるので、蒸発温度を下げることができる。しかし、空調能力は過大となるため、エネルギー消費が増大する。 In conventional air conditioners, one example of conventional technology is to reduce the air volume in order to lower the evaporation temperature. The lower limits of the rotational speed and air volume of an indoor blower are limited by deterioration in controllability due to short cycles and increased inverter loss in motor control. Therefore, when the air conditioning load is small, it is difficult to lower the evaporation temperature by lowering the rotation speed of the indoor blower. It is more difficult to reduce the air volume than when the rotational speed of the indoor blower is at its minimum value. In this case, by increasing the frequency of the compressor, the pressure difference between the high-pressure refrigerant and the low-pressure refrigerant increases, so the evaporation temperature can be lowered. However, since the air conditioning capacity becomes excessive, energy consumption increases.
 本発明は、前述のような課題を解決するためになされたものであり、空調負荷が小さく室内送風機の回転数が最小値である場合においても、風量を低下させることで、蒸発温度を下げ除湿することができる空気調和機を得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and even when the air conditioning load is small and the rotational speed of the indoor fan is at its minimum value, by lowering the air volume, the evaporation temperature can be lowered and dehumidified. The aim is to obtain an air conditioner that can.
 本発明に係る空気調和機は、冷媒を蒸発または凝縮することによって空気と熱交換を行う熱交換器と、空気を吸い込む吸込口と、熱交換によって熱交換された空気を室内に吹き出す吹出口と、熱交換器によって熱交換された空気を室内に供給する室内送風機と、吹出口に風量を低下させる圧損体とを備え、蒸発器の冷媒温度が室内の露点温度よりも高く、かつ室内送風機の回転数が最小値である場合に、圧損体の運転を制御することによって、風量を低下させるものである。 The air conditioner according to the present invention includes a heat exchanger that exchanges heat with air by evaporating or condensing a refrigerant, an inlet that sucks air, and an outlet that blows out the air that has been heat exchanged into the room. , is equipped with an indoor blower that supplies the air heat exchanged by the heat exchanger into the room, and a pressure loss body that reduces the air volume at the outlet, and the refrigerant temperature of the evaporator is higher than the indoor dew point temperature, and the indoor blower is When the rotation speed is at a minimum value, the air volume is reduced by controlling the operation of the pressure loss body.
 本開示によれば、室内送風機の回転数が最小値である場合においても、風量を低下させ、空調対象空間である部屋を除湿することが可能となる。 According to the present disclosure, even when the rotation speed of the indoor blower is at the minimum value, it is possible to reduce the air volume and dehumidify a room that is an air-conditioned space.
本発明の空気調和機の冷媒回路図である。It is a refrigerant circuit diagram of an air conditioner of the present invention. 本発明の室内機の断面図である。FIG. 2 is a sectional view of the indoor unit of the present invention. 乾球温度と、湿球温度と、露点温度と、相対湿度と、絶対湿度との関係を示した湿り空気線図である。It is a psychrometric diagram showing the relationship between dry bulb temperature, wet bulb temperature, dew point temperature, relative humidity, and absolute humidity. 実施の形態1における空気調和機の除湿運転モードのフローチャートである。5 is a flowchart of a dehumidifying operation mode of the air conditioner in Embodiment 1. FIG. 実施の形態2における空気調和機の除湿運転モードのフローチャートである。7 is a flowchart of a dehumidifying operation mode of the air conditioner in Embodiment 2. FIG.
実施の形態1.
 図1は本実施の形態に係る空気調和機50の冷媒回路図である。図2は本実施の形態に係る室内機20の断面図である。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram of an air conditioner 50 according to the present embodiment. FIG. 2 is a sectional view of the indoor unit 20 according to this embodiment.
 図1に示す冷媒回路図では、室外機10は、圧縮機11と、四方弁12と、室外熱交換器13と、室外送風機14と、膨張弁15と、室外制御装置16と、演算装置17と、吐出温度センサ40と、室外熱交換器温度センサ41とを備えている。室内機20は、室内熱交換器22と、室内送風機23と、室内制御装置24と、吸込温度センサ42と、吸込湿度センサ43と、室内熱交換器温度センサ44とを備えている。室外機10と室内機20とは、ガス延長配管30と、液延長配管31とで接続されている。また、室内機20には、リモートコントローラー32(以下、リモコン32)が付属している。図1において、室内送風機23は軸流式のプロペラファンとして記載しているが、貫流式のクロスフローファンでもよい。 In the refrigerant circuit diagram shown in FIG. 1, the outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor blower 14, an expansion valve 15, an outdoor control device 16, and a calculation device 17. , a discharge temperature sensor 40 , and an outdoor heat exchanger temperature sensor 41 . The indoor unit 20 includes an indoor heat exchanger 22, an indoor blower 23, an indoor control device 24, a suction temperature sensor 42, a suction humidity sensor 43, and an indoor heat exchanger temperature sensor 44. The outdoor unit 10 and the indoor unit 20 are connected by a gas extension pipe 30 and a liquid extension pipe 31. Further, the indoor unit 20 is attached with a remote controller 32 (hereinafter referred to as remote controller 32). In FIG. 1, the indoor blower 23 is shown as an axial propeller fan, but it may be a once-through cross-flow fan.
 圧縮機11は、吸入された冷媒を圧縮して吐出する機器であり、たとえば、ロータリー圧縮機、スクロール圧縮機から構成されている。圧縮機11は、低温低圧の冷媒を圧縮することにより、高温高圧の冷媒に変化させる。そして、圧縮機11は、高温高圧の冷媒を、四方弁12に流出する。圧縮機11と、四方弁12との間の流路には、吐出温度センサ40が配置されている。吐出温度センサ40は、圧縮機11から吐出された冷媒温度を計測する。なお、本実施の形態では、吐出温度センサ40は、圧縮機11と四方弁12との間の流路に設けられているが、圧縮機11の容器の上に配置されていてもよい。 The compressor 11 is a device that compresses and discharges the sucked refrigerant, and is composed of, for example, a rotary compressor or a scroll compressor. The compressor 11 compresses a low-temperature, low-pressure refrigerant to convert it into a high-temperature, high-pressure refrigerant. The compressor 11 then flows out the high temperature and high pressure refrigerant to the four-way valve 12 . A discharge temperature sensor 40 is arranged in the flow path between the compressor 11 and the four-way valve 12. The discharge temperature sensor 40 measures the temperature of the refrigerant discharged from the compressor 11. Note that in this embodiment, the discharge temperature sensor 40 is provided in the flow path between the compressor 11 and the four-way valve 12, but it may also be provided above the container of the compressor 11.
 四方弁12は、冷媒の流れを切り替えるように構成されている。具体的には、四方弁12は、冷房運転時と、除霜運転時と、暖房運転時とによって、室外熱交換器13または室内熱交換器22への冷媒の流れを切り替えるように構成されている。 The four-way valve 12 is configured to switch the flow of refrigerant. Specifically, the four-way valve 12 is configured to switch the flow of refrigerant to the outdoor heat exchanger 13 or the indoor heat exchanger 22 depending on cooling operation, defrosting operation, and heating operation. There is.
 室外熱交換器13は、流入した冷媒を凝縮または蒸発することにより、空気と熱交換し、空気を冷却または加熱する。室外熱交換器13は、冷房運転時、圧縮機11により圧縮された冷媒を凝縮する凝縮器となる。また、室外熱交換器13は、暖房運転時、膨張弁15により減圧された冷媒を蒸発させる蒸発器となる。室外熱交換器13は、たとえば、冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。 The outdoor heat exchanger 13 condenses or evaporates the inflowing refrigerant to exchange heat with the air and cool or heat the air. The outdoor heat exchanger 13 serves as a condenser that condenses the refrigerant compressed by the compressor 11 during cooling operation. Furthermore, the outdoor heat exchanger 13 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the expansion valve 15 during heating operation. The outdoor heat exchanger 13 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
 室外送風機14は、室外送風ファンと、室外送風ファンを回転するファンモータとを有している。室外送風機14は、室外送風ファンの回転数により、室外熱交換器13によって熱交換された空気を、室外に送風する。 The outdoor blower 14 includes an outdoor blower fan and a fan motor that rotates the outdoor blower fan. The outdoor blower 14 blows the air heat-exchanged by the outdoor heat exchanger 13 to the outside at the rotation speed of the outdoor blower fan.
 膨張弁15は、流入した冷媒を膨張させる。このとき、冷媒は、等エンタルピ膨張し、低圧の冷媒に変化する。膨張弁15は、低圧の冷媒を液延長配管31を介して室内熱交換器22へ流出する。 The expansion valve 15 expands the refrigerant that has flowed in. At this time, the refrigerant undergoes isenthalpic expansion and changes to a low-pressure refrigerant. The expansion valve 15 allows the low-pressure refrigerant to flow out to the indoor heat exchanger 22 via the liquid extension pipe 31 .
 室外制御装置16は、室外機10に設けられている。室外制御装置16は、室外送風機14の回転数や、圧縮機11の周波数などを検出し制御する。さらに、冷房運転時と暖房運転時とで、四方弁12を切り替える。 The outdoor control device 16 is provided in the outdoor unit 10. The outdoor control device 16 detects and controls the rotational speed of the outdoor blower 14, the frequency of the compressor 11, and the like. Furthermore, the four-way valve 12 is switched between cooling operation and heating operation.
 演算装置17は、室外機10に設けられている。演算装置17は、センサで検出したデータと、リモコン32により設定されたデータの大小関係の比較を行う。演算装置17で室内機20の運転に関わる演算を行った場合、演算結果を室内制御装置24へ送信する。本発明の実施の形態に係る空気調和機50では、演算装置17は、室外機10のみに設けられているが、室内機20に設けられていてもよい。演算装置を室外機10と室内機20とにそれぞれ設けた場合、室外機10の運転に関わる演算は室外機10側に設けられた演算装置で行い、室内機20の運転に関わる演算は室内機20側に設けられた演算装置で行う。 The computing device 17 is provided in the outdoor unit 10. The arithmetic unit 17 compares the data detected by the sensor and the data set by the remote controller 32 in terms of magnitude. When the calculation device 17 performs calculations related to the operation of the indoor unit 20, the calculation results are transmitted to the indoor control device 24. In the air conditioner 50 according to the embodiment of the present invention, the computing device 17 is provided only in the outdoor unit 10, but may be provided in the indoor unit 20. When a calculation device is provided in each of the outdoor unit 10 and the indoor unit 20, calculations related to the operation of the outdoor unit 10 are performed by the calculation device provided on the outdoor unit 10 side, and calculations related to the operation of the indoor unit 20 are performed by the indoor unit. This is performed by a calculation device provided on the 20 side.
 本実施の形態に係る空気調和機50は、リモコン32を有している。リモコン32は、ユーザーにより入力された指示、設定などを含む信号を室内制御装置24へ送る。 The air conditioner 50 according to this embodiment includes a remote control 32. The remote control 32 sends a signal including instructions, settings, etc. input by the user to the indoor control device 24.
 図2に示す室内機20の断面図では、筐体21と、吸込口21aと、吹出口21bと、室内熱交換器22と、室内送風機23と、室内制御装置24と、吸込温度センサ42と、吸込湿度センサ43と、室内熱交換器温度センサ44と、第一フィルタ45と、フラップ46と、ルーバー47とを備えている。 In the cross-sectional view of the indoor unit 20 shown in FIG. , a suction humidity sensor 43, an indoor heat exchanger temperature sensor 44, a first filter 45, a flap 46, and a louver 47.
 筐体21は、Y軸方向を長手方向とするもので、筐体21の上方には空気を吸い込む吸込口21aが形成され、筐体21の下方には、室内熱交換器22によって熱交換された空気を吹き出す吹出口21bが形成されている。 The housing 21 has its longitudinal direction in the Y-axis direction, and has a suction port 21a formed above the housing 21 for sucking air, and has an indoor heat exchanger 22 below the housing 21 for heat exchange. An air outlet 21b is formed to blow out the air.
 室内熱交換器22は、多段曲げ構造となっており、前面から背面にかけて室内送風機23を囲むように設けている。室内熱交換器22は、冷房運転時、膨張弁15により減圧された冷媒を蒸発させる蒸発器となる。また、室内熱交換器22は、暖房運転時、圧縮機11により圧縮された冷媒を凝縮する凝縮器となる。室内熱交換器22は、たとえば、冷媒が内側を流れるパイプ(伝熱管)と、パイプの外側に取り付けられたフィンとを備えている。 The indoor heat exchanger 22 has a multi-stage bent structure and is provided so as to surround the indoor blower 23 from the front to the back. The indoor heat exchanger 22 serves as an evaporator that evaporates the refrigerant whose pressure has been reduced by the expansion valve 15 during cooling operation. Moreover, the indoor heat exchanger 22 serves as a condenser that condenses the refrigerant compressed by the compressor 11 during heating operation. The indoor heat exchanger 22 includes, for example, a pipe (heat transfer tube) through which a refrigerant flows, and fins attached to the outside of the pipe.
 室内送風機23は、回転することで、吸込口21aから空気を吸い込み、室内熱交換器22によって熱交換された空気を吹出口21bから吹き出すという一連の気流を発生させる。 By rotating, the indoor blower 23 generates a series of airflows in which air is sucked in from the suction port 21a and air that has been heat exchanged by the indoor heat exchanger 22 is blown out from the blowout port 21b.
 室内制御装置24は、室内機20に設けられている。室内送風機23の回転数、フラップ46およびルーバー47の角度、風路抵抗可変機構48の動作を検出し制御する。さらに、室内制御装置24は、演算装置17で算出された結果を受信し、室内機20の運転に反映させる。 The indoor control device 24 is provided in the indoor unit 20. The rotation speed of the indoor blower 23, the angle of the flap 46 and the louver 47, and the operation of the variable air path resistance mechanism 48 are detected and controlled. Furthermore, the indoor control device 24 receives the results calculated by the arithmetic device 17 and reflects them in the operation of the indoor unit 20.
 第一フィルタ45は、室内熱交換器22の風上側に設けられている。この第一フィルタ45によって、吸込口21aから吸込まれた空気中に含まれている塵や埃を取り除き、室内熱交換器22が汚れるのを防止している。 The first filter 45 is provided on the windward side of the indoor heat exchanger 22. This first filter 45 removes dust and dirt contained in the air sucked in through the suction port 21a, thereby preventing the indoor heat exchanger 22 from becoming dirty.
 室内熱交換器22の風下側に位置する吹出口21bには、空気の風路可変機構が設けられており、鉛直方向を可変するフラップ46と、水平方向を可変するルーバー47とによって構成されている。 The air outlet 21b located on the leeward side of the indoor heat exchanger 22 is provided with an air flow path variable mechanism, which includes a flap 46 that changes the vertical direction and a louver 47 that changes the horizontal direction. There is.
 吸込温度センサ42は、たとえば、図2を参照するとわかるように、吸込口21aから吸込まれた空気に触れるように、室内熱交換器22を通過する空気の上流側に配置されている。吸込温度センサ42は、たとえばサーミスタである。また、吸込湿度センサ43は、室内熱交換器22が行う熱交換の影響を受けにくいように、室内熱交換器22から、所定の距離だけ離間して配置される。 As can be seen from, for example, FIG. 2, the suction temperature sensor 42 is arranged on the upstream side of the air passing through the indoor heat exchanger 22 so as to be in contact with the air sucked in from the suction port 21a. The suction temperature sensor 42 is, for example, a thermistor. Further, the suction humidity sensor 43 is placed a predetermined distance away from the indoor heat exchanger 22 so as to be less susceptible to the influence of heat exchange performed by the indoor heat exchanger 22.
 次に、図1を参照して、本実施の形態における空気調和機50の動作について説明する。図中実線矢印により冷房運転時の冷媒の流れが示され、図中破線矢印により暖房運転時の冷媒の流れが示されている。本実施の形態の空気調和機50は、四方弁12によって冷媒回路内の冷媒の循環方向が切り換えられることにより、冷房運転と暖房運転とが切り換えられる。冷房運転では、冷媒が、圧縮機11、四方弁12、室外熱交換器13、膨張弁15、液延長配管31、室内熱交換器22、ガス延長配管30の順に循環する。冷房運転においては、室外熱交換器13は凝縮器として機能し、室内熱交換器22は蒸発器として機能する。暖房運転では、冷媒が、圧縮機11、四方弁12、ガス延長配管30、室内熱交換器22、液延長配管31、膨張弁15、室外熱交換器13の順に循環する。暖房運転においては、室内熱交換器22は凝縮器として機能し、室外熱交換器13は蒸発器として機能する。ガス延長配管30は、冷房運転時にはガス冷媒または二相冷媒が流れ、暖房運転時にはガス冷媒が流れる。また、液延長配管31は、冷房運転時には二相冷媒が流れ、暖房運転時には液冷媒が流れる。 Next, with reference to FIG. 1, the operation of the air conditioner 50 in this embodiment will be described. Solid arrows in the figure indicate the flow of refrigerant during cooling operation, and dashed arrows in the figure indicate the flow of refrigerant during heating operation. The air conditioner 50 of this embodiment is switched between cooling operation and heating operation by switching the circulation direction of the refrigerant in the refrigerant circuit using the four-way valve 12. In the cooling operation, the refrigerant circulates in the order of the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the expansion valve 15, the liquid extension pipe 31, the indoor heat exchanger 22, and the gas extension pipe 30. In cooling operation, the outdoor heat exchanger 13 functions as a condenser, and the indoor heat exchanger 22 functions as an evaporator. In the heating operation, the refrigerant circulates through the compressor 11 , the four-way valve 12 , the gas extension pipe 30 , the indoor heat exchanger 22 , the liquid extension pipe 31 , the expansion valve 15 , and the outdoor heat exchanger 13 in this order. In heating operation, the indoor heat exchanger 22 functions as a condenser, and the outdoor heat exchanger 13 functions as an evaporator. Gas refrigerant or two-phase refrigerant flows through the gas extension pipe 30 during cooling operation, and gas refrigerant flows during heating operation. Furthermore, a two-phase refrigerant flows through the liquid extension pipe 31 during cooling operation, and a liquid refrigerant flows during heating operation.
 再び図1を参照して、本実施の形態における空気調和機50での除湿運転の動作について説明する。本実施の形態における空気調和機50での除湿運転は、冷房運転時と同じ冷凍サイクルを動作させる。圧縮機11から吐出された冷媒は、四方弁12を介して、室外熱交換器13とへ流入する。このとき、室外熱交換器13は凝縮器として作用する。冷媒は、膨張弁15にて断熱膨張し、気液二相冷媒となり、室内熱交換器22へ流入する。室内熱交換器22は蒸発器として作用し、流入した気液二相冷媒は、ガス冷媒(もしくは、乾き度0.95以上の気液二相冷媒)となり、圧縮機11へ吸入される。 Referring again to FIG. 1, the dehumidifying operation of the air conditioner 50 in this embodiment will be described. In the dehumidifying operation of the air conditioner 50 in this embodiment, the same refrigeration cycle as in the cooling operation is operated. The refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the four-way valve 12. At this time, the outdoor heat exchanger 13 acts as a condenser. The refrigerant undergoes adiabatic expansion at the expansion valve 15, becomes a gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 22. The indoor heat exchanger 22 acts as an evaporator, and the gas-liquid two-phase refrigerant that has flowed therein becomes a gas refrigerant (or a gas-liquid two-phase refrigerant with a dryness of 0.95 or more) and is sucked into the compressor 11.
 次に、本実施の形態における除湿運転時の蒸発器の空気側の動作について説明する。
 まず、室内熱交換器22(蒸発器)の冷媒温度が、室内熱交換器22へ供給される空気の露点温度に比べて低い場合について述べる。室内送風機23によって室内機20へ空気が供給される。室内機20へ供給された空気は、室内熱交換器22で冷媒と熱交換が行われ、空気の乾球温度および湿球温度が低下する。ここで、冷媒温度が、熱交換された空気の露点温度よりも低い場合、蒸発温度に対応する飽和水蒸気量以上の水分が水滴として発生する。したがって、空気の乾球温度および湿球温度が低下するため、空気が除湿される。
Next, the operation of the air side of the evaporator during dehumidification operation in this embodiment will be described.
First, a case where the refrigerant temperature of the indoor heat exchanger 22 (evaporator) is lower than the dew point temperature of the air supplied to the indoor heat exchanger 22 will be described. Air is supplied to the indoor unit 20 by the indoor blower 23. The air supplied to the indoor unit 20 undergoes heat exchange with the refrigerant in the indoor heat exchanger 22, and the dry bulb temperature and wet bulb temperature of the air decrease. Here, when the refrigerant temperature is lower than the dew point temperature of the heat-exchanged air, moisture in an amount equal to or higher than the saturated water vapor amount corresponding to the evaporation temperature is generated as water droplets. Therefore, the dry bulb temperature and wet bulb temperature of the air decrease, so that the air is dehumidified.
 一方、室内熱交換器22(蒸発器)の冷媒温度が、室内熱交換器22へ供給される空気の露点温度に比べて高い場合について述べる。室内送風機23によって室内機20へ空気が供給される。室内機20へ供給された空気は、室内熱交換器22で冷媒と熱交換が行われ、空気の乾球温度および湿球温度が低下する。ここで、冷媒温度が、熱交換された空気の露点温度よりも高い場合、空気中の水分は、空気に保有されたままとなる。したがって、乾球温度のみ低下することとなるため、空気は除湿されない。 On the other hand, a case will be described in which the refrigerant temperature of the indoor heat exchanger 22 (evaporator) is higher than the dew point temperature of the air supplied to the indoor heat exchanger 22. Air is supplied to the indoor unit 20 by the indoor blower 23. The air supplied to the indoor unit 20 undergoes heat exchange with the refrigerant in the indoor heat exchanger 22, and the dry bulb temperature and wet bulb temperature of the air decrease. Here, if the refrigerant temperature is higher than the dew point temperature of the heat-exchanged air, the moisture in the air remains retained in the air. Therefore, since only the dry bulb temperature will decrease, the air will not be dehumidified.
 図3は、乾球温度と、湿球温度と、露点温度と、相対湿度と、絶対湿度との関係を示した湿り空気線図である。図3中の斜線区間に示されている、乾球温度が24度~27度、相対湿度が40%~60%であるとき、快適空気とされている。快適空気を維持するために除湿が必要とされているのは、乾球温度が24度~27度、相対湿度が60%以上、露点温度が18.6度の場合である。本発明の実施の形態に係る空気調和機50において、露点温度18.6度を閾値とし、蒸発器の冷媒温度と露点温度18.6度とを比較し、室内送風機の回転数と圧損体の制御運転を決定する。 FIG. 3 is a psychrometric diagram showing the relationship between dry bulb temperature, wet bulb temperature, dew point temperature, relative humidity, and absolute humidity. When the dry bulb temperature is 24 degrees to 27 degrees and the relative humidity is 40% to 60%, as shown in the shaded area in FIG. 3, the air is considered comfortable. Dehumidification is required to maintain comfortable air when the dry bulb temperature is 24 degrees to 27 degrees, the relative humidity is 60% or more, and the dew point temperature is 18.6 degrees. In the air conditioner 50 according to the embodiment of the present invention, the dew point temperature of 18.6 degrees is used as a threshold value, and the refrigerant temperature of the evaporator is compared with the dew point temperature of 18.6 degrees. Decide on controlled operation.
 室内熱交換器22(蒸発器)の冷媒温度が、室内熱交換器22へ供給される空気の露点温度に比べて高い場合に除湿する際は、室内機20の風量を低下させる。一般的には、室内送風機23の回転数を低下させる。本実施の形態に係る室内機20では、室内送風機23の回転数が最小値であった場合、吸込口21aから吹出口21bにかけて、いずれかの箇所で圧損体を出現させることで、室内送風機23の回転数が最小値の場合の風量よりも、室内機20の風量を低下させる。本発明の実施の形態1では、第一圧損体として、フラップ46およびルーバー47を用いる。 When dehumidifying when the refrigerant temperature of the indoor heat exchanger 22 (evaporator) is higher than the dew point temperature of the air supplied to the indoor heat exchanger 22, the air volume of the indoor unit 20 is reduced. Generally, the rotation speed of the indoor blower 23 is reduced. In the indoor unit 20 according to the present embodiment, when the rotation speed of the indoor blower 23 is the minimum value, a pressure loss body appears at any point from the suction port 21a to the blowout port 21b, so that the indoor blower 23 The air volume of the indoor unit 20 is lowered than the air volume when the rotation speed of the indoor unit 20 is at the minimum value. In the first embodiment of the present invention, the flap 46 and the louver 47 are used as the first pressure loss body.
 図4に示されるフローチャートに沿って、本実施の形態に係る空気調和機50における除湿運転動作について説明する。 The dehumidifying operation of the air conditioner 50 according to the present embodiment will be described along the flowchart shown in FIG. 4.
 (S1)
 まず、リモコン32を介して、空気調和機50のメイン電源を投入し、運転準備状態にする。続いて、リモコン32を用いて運転モードが選択され、所望の運転モードに設定される。代表的な運転モードとしては、冷房運転モード、暖房運転モード、除湿運転モードなどがある。これにより、空気調和機50は所望の運転モードで運転が開始される。冷房運転モードまたは除湿運転モードが選択され、除湿運転が開始した場合、ステップS2へ進む。ここで、ユーザーが冷房運転モードまたは除湿運転モードを選択した場合、リモコン32を介して、室内の目標設定温度Tと室内の目標設定湿度φを設定する。
(S1)
First, the main power of the air conditioner 50 is turned on via the remote control 32, and the air conditioner 50 is put into an operation ready state. Subsequently, a driving mode is selected using the remote control 32, and the desired driving mode is set. Typical operation modes include a cooling operation mode, a heating operation mode, and a dehumidification operation mode. Thereby, the air conditioner 50 starts operating in the desired operation mode. If the cooling operation mode or the dehumidification operation mode is selected and the dehumidification operation is started, the process advances to step S2. Here, when the user selects the cooling operation mode or the dehumidification operation mode, the indoor target temperature setting T and the indoor target humidity setting φ are set via the remote controller 32.
 (S2)
 除湿運転の開始時に、吸込温度センサ42を用いて、吸込温度Taiを検出する。演算装置17によって、リモコン32に指示した目標設定温度Tのデータと、吸込温度センサ42で検出した吸込温度Taiのデータとの大小関係を比較する。その比較の結果、T>Taiとなる場合、ステップS3へ進む。一方、T≦Taiとなる場合、ステップS2へ進む。
(S2)
At the start of the dehumidifying operation, the suction temperature Tai is detected using the suction temperature sensor 42. The arithmetic unit 17 compares the data of the target setting temperature T instructed to the remote controller 32 and the data of the suction temperature Tai detected by the suction temperature sensor 42 in terms of magnitude. As a result of the comparison, if T>Tai, the process advances to step S3. On the other hand, if T≦Tai, the process advances to step S2.
 (S3)
 除湿運転の開始時に、吸込湿度センサ43を用いて、吸込湿度φaiを検出する。演算装置17によって、リモコン32に指示した目標設定湿度φのデータと、吸込湿度センサ43で検出した吸込湿度φaiのデータとの大小関係を比較する。その比較の結果、φ<φaiとなる場合、ステップS4へ進む。一方、φ≧φaiとなる場合、ステップS2へ進む。
(S3)
At the start of the dehumidifying operation, the suction humidity sensor 43 is used to detect the suction humidity φai. The arithmetic unit 17 compares the data of the target setting humidity φ instructed to the remote controller 32 and the data of the suction humidity φai detected by the suction humidity sensor 43 in terms of magnitude. As a result of the comparison, if φ<φai, the process advances to step S4. On the other hand, if φ≧φai, the process advances to step S2.
 (S4)
 室内熱交換器温度センサ44を用いて、冷媒温度を検出する。演算装置17によって、室内熱交換器温度センサ44で検出した冷媒温度と、露点温度18.6度との大小関係を比較する。その比較の結果、冷媒温度>露点温度18.6度となる場合、ステップS5へ進む。一方、冷媒温度≦露点温度18.6度となる場合、ステップS2へ進む。
(S4)
The indoor heat exchanger temperature sensor 44 is used to detect the refrigerant temperature. The arithmetic unit 17 compares the refrigerant temperature detected by the indoor heat exchanger temperature sensor 44 with the dew point temperature of 18.6 degrees. As a result of the comparison, if the refrigerant temperature>dew point temperature is 18.6 degrees, the process proceeds to step S5. On the other hand, if the refrigerant temperature≦dew point temperature is 18.6 degrees, the process proceeds to step S2.
 (S5)
 室内制御装置24は、室内送風機23の回転数を制御する。ステップS4において、演算装置17が冷媒温度>露点温度18.6度を検出した場合、室内制御装置24は、室内送風機23の回転数を低下させる。
(S5)
The indoor control device 24 controls the rotation speed of the indoor blower 23. In step S4, when the calculation device 17 detects that the refrigerant temperature is higher than the dew point temperature of 18.6 degrees, the indoor control device 24 reduces the rotation speed of the indoor blower 23.
 (S6)
 室内制御装置24は、室内送風機23の回転数を検出し、制御する。検出の結果、室内送風機23の回転数が最小値であった場合、ステップS8へ進む。一方、室内送風機23の回転数が最小値ではなかった場合、ステップS7へ進む。
(S6)
The indoor control device 24 detects the rotation speed of the indoor blower 23 and controls it. As a result of the detection, if the rotation speed of the indoor blower 23 is the minimum value, the process advances to step S8. On the other hand, if the rotation speed of the indoor blower 23 is not the minimum value, the process advances to step S7.
 (S7)
 ステップS4において、室内送風機23の回転数が最小値ではなかった場合、室内制御装置24によって室内送風機23の回転数を低下させた後、ステップS2へ進む。
(S7)
In step S4, if the rotation speed of the indoor blower 23 is not the minimum value, the indoor control device 24 lowers the rotation speed of the indoor blower 23, and then the process proceeds to step S2.
 (S8)
 室内制御装置24は、室内送風機23の回転数が最小値であることを検出すると、室内機20の風量が低下するように、第一圧損体の制御運転を開始する。具体的には、フラップ46は、最も風量が出る風向に対して全閉になる方向に角度を調整し、ルーバー47は、正面ではなく左右いずれかの方向に角度を調整し、風路抵抗をつける。
(S8)
When the indoor control device 24 detects that the rotation speed of the indoor blower 23 is at the minimum value, it starts a controlled operation of the first pressure loss body so that the air volume of the indoor unit 20 is reduced. Specifically, the angle of the flap 46 is adjusted so that it is fully closed with respect to the direction in which the maximum air volume is generated, and the angle of the louver 47 is adjusted to face either the left or right direction rather than the front, thereby reducing the wind path resistance. Put on.
 (S9)
 室内制御装置24は、第一圧損体の制御運転が稼働している場合の風量を検出する。室内制御装置24が、第一圧損体の制御運転を稼働させて風量が最小値であること検出した場合、ステップS10へ進む。一方、風量が最小値でなかった場合、ステップS8へ進む。
(S9)
The indoor control device 24 detects the air volume when the control operation of the first pressure loss body is in operation. If the indoor control device 24 activates the control operation of the first pressure loss body and detects that the air volume is at the minimum value, the process proceeds to step S10. On the other hand, if the air volume is not the minimum value, the process advances to step S8.
 (S10)
 室内制御装置24は、風量が最小値であり、かつ第一圧損体の制御運転を稼働させても、冷媒温度>露点温度18.6度であることを検出すると、室外制御装置16に圧縮機11の周波数を増速させるよう信号を送信する。
(S10)
When the indoor control device 24 detects that the refrigerant temperature is higher than the dew point temperature of 18.6 degrees even if the air volume is at the minimum value and the control operation of the first pressure loss body is activated, the indoor control device 24 causes the outdoor control device 16 to switch the compressor A signal is sent to increase the frequency of 11.
 ステップS10において、圧縮機11の周波数を増速させる作用効果について説明する。圧縮機11の周波数を増速させて冷媒回路中の冷媒流量が増加するため、蒸発温度が下がり、冷媒温度が露点温度18.6度以下となる。このため、再び除湿運転が可能となる。 The effect of increasing the frequency of the compressor 11 in step S10 will be explained. Since the frequency of the compressor 11 is increased to increase the flow rate of refrigerant in the refrigerant circuit, the evaporation temperature decreases and the refrigerant temperature becomes the dew point temperature of 18.6 degrees or less. Therefore, dehumidification operation becomes possible again.
 (S11)
 ステップS10において、室内制御装置24は、圧縮機11の周波数が増速したことを検出すると、第一圧損体の制御運転を停止させる。
(S11)
In step S10, when the indoor control device 24 detects that the frequency of the compressor 11 has increased, it stops the controlled operation of the first pressure loss body.
 (S12)
 ステップS11において、室外制御装置16は圧縮機11の周波数を増速させるが、安全性を考慮して周波数には上限値がある。室外制御装置16が、圧縮機11の周波数が上限値に達したことを検出した場合、除湿運転が終了する。一方、圧縮機11の周波数が上限値に達していない場合、ステップS2へ進む。
(S12)
In step S11, the outdoor control device 16 increases the frequency of the compressor 11, but the frequency has an upper limit value in consideration of safety. When the outdoor control device 16 detects that the frequency of the compressor 11 has reached the upper limit value, the dehumidification operation ends. On the other hand, if the frequency of the compressor 11 has not reached the upper limit value, the process advances to step S2.
 以上のように本発明の実施の形態1に係る空気調和機は、冷媒温度>18.6度、かつ室内送風機の回転数が最小値であることを検出した場合、第一圧損体を駆動し、風量を低下させることで、圧縮機の周波数を増速させることなく除湿運転が可能となるため、エネルギー消費の低減にも効果がある。 As described above, the air conditioner according to Embodiment 1 of the present invention drives the first pressure loss body when it is detected that the refrigerant temperature is >18.6 degrees and the rotation speed of the indoor fan is the minimum value. By reducing the air volume, dehumidifying operation can be performed without increasing the frequency of the compressor, which is also effective in reducing energy consumption.
 さらに、フラップ46とルーバー47を風路可変機構としてだけではなく第一圧損体として用いることで、圧損体のための構成部品を追加する必要がないため、製品作製の費用を抑制することが可能となる。 Furthermore, by using the flap 46 and the louver 47 not only as an air path variable mechanism but also as the first pressure loss body, there is no need to add any components for the pressure loss body, so it is possible to reduce product manufacturing costs. becomes.
 また、第一圧損体を駆動しても目標設定湿度φに達しない場合は、圧縮機の周波数を増速し、蒸発器の冷媒温度が低下させることで、最終的にφ≧φaiを達成することができる。 In addition, if the target set humidity φ is not reached even after driving the first pressure loss body, the frequency of the compressor is increased and the refrigerant temperature in the evaporator is lowered to finally achieve φ≧φai. be able to.
 実施の形態2
 本実施の形態に係る空気調和機について、実施の形態1に係る空気調和機50の構成および動作と相違する点を中心に説明する。
Embodiment 2
The air conditioner according to the present embodiment will be described with a focus on the points that are different from the configuration and operation of the air conditioner 50 according to the first embodiment.
 図2に示す室内機20の断面図では、室内機20には、吸込口21aと、吹出口21bと、室内熱交換器22と、室内送風機23と、室内制御装置24と、吸込温度センサ42と、吸込湿度センサ43と、室内熱交換器温度センサ44と、第一フィルタ45と、フラップ46と、ルーバー47と、風路抵抗可変機構48とを備えている。 In the cross-sectional view of the indoor unit 20 shown in FIG. , a suction humidity sensor 43 , an indoor heat exchanger temperature sensor 44 , a first filter 45 , a flap 46 , a louver 47 , and an air path resistance variable mechanism 48 .
 風路抵抗可変機構48は、第一フィルタ45の全体、上流もしくは下流の一部分を覆うように設けられている。たとえば、風路可変機構48は、第一フィルタ45の粗さに比べ細目の第二フィルタ、または、駆動可能な板材でもよい。本発明の実施の形態2では、第二圧損体として、風路抵抗可変機構48を用いる。 The variable air path resistance mechanism 48 is provided to cover the entire first filter 45 or a portion of the upstream or downstream side. For example, the variable air path mechanism 48 may be a second filter that is finer than the roughness of the first filter 45, or a drivable plate material. In Embodiment 2 of the present invention, an air path resistance variable mechanism 48 is used as the second pressure loss body.
 第二圧損体を収納することできる圧損体収納機構を設けている。第二圧損体を使用する場合は、圧損体収納機構から出現させ、第二圧損体を使用しない場合は、圧損体収納機構に収納する。本発明の実施の形態2では、圧損体収納機構を設けているが、必ずしも設ける必要はない。たとえば、ユーザーが風量の低下量に合わせて、第二圧損体を設けてもよい。 A pressure loss body storage mechanism is provided that can store the second pressure loss body. When the second pressure loss body is used, it is made to emerge from the pressure loss body storage mechanism, and when the second pressure loss body is not used, it is stored in the pressure loss body storage mechanism. In the second embodiment of the present invention, a pressure loss body storage mechanism is provided, but it is not necessarily necessary to provide it. For example, the user may provide the second pressure loss body in accordance with the amount of decrease in air volume.
(S1~S7)
 図5は、本発明の実施の形態2における空気調和機50の除湿運転時の動作方法のフローチャートである。以下、図5に示されるフローチャートに沿って、本実施の形態に係る空気調和機50における除湿運転動作について説明する。ここでは、図4に示される実施の形態1に係る空気調和機50の除湿運転と相違する点を中心に説明する。
(S1-S7)
FIG. 5 is a flowchart of a method of operating the air conditioner 50 during dehumidification operation according to the second embodiment of the present invention. Hereinafter, the dehumidifying operation of the air conditioner 50 according to the present embodiment will be described along the flowchart shown in FIG. 5. Here, differences from the dehumidifying operation of the air conditioner 50 according to the first embodiment shown in FIG. 4 will be mainly explained.
 図5において、ステップS1~ステップS7は、図4で示される実施の形態1に係る除湿運転と同様である。 In FIG. 5, steps S1 to S7 are similar to the dehumidification operation according to the first embodiment shown in FIG.
 (S8)
 室内制御装置24は、室内送風機23の回転数が最小値であることを検出すると、室内機20の風量が低下するように、第二圧損体の制御運転を開始する。具体的には、第二フィルタを第一フィルタ45に重ねたり、板材によって第一フィルタ45の上流もしくは下流の一部分を覆う。
(S8)
When the indoor control device 24 detects that the rotation speed of the indoor blower 23 is at the minimum value, it starts controlling the second pressure loss body so that the air volume of the indoor unit 20 decreases. Specifically, the second filter is stacked on the first filter 45, or a portion of the upstream or downstream side of the first filter 45 is covered with a plate material.
 (S9)
 室内制御装置24は、第二圧損体の制御運転が稼働している場合の風量を検出する。室内制御装置24が、第二圧損体の制御運転を稼働させても風量が最小値であること検出した場合、ステップS10へ進む。一方、風量が最小値でなかった場合、ステップS8へ進む。
(S9)
The indoor control device 24 detects the air volume when the second pressure loss body is being controlled. If the indoor control device 24 detects that the air volume is at the minimum value even if the second pressure loss body is controlled, the process proceeds to step S10. On the other hand, if the air volume is not the minimum value, the process advances to step S8.
 (S10)
 室内制御装置24は、室内送風機23の回転数が最小値であり、かつ第二圧損体の制御運転を稼働させても風量が低下しないことを検出すると、室外制御装置16に圧縮機11の周波数を増速させるよう信号を送信する。
(S10)
When the indoor control device 24 detects that the rotation speed of the indoor blower 23 is at the minimum value and that the air volume does not decrease even if the control operation of the second pressure loss body is activated, the indoor control device 24 transmits the frequency of the compressor 11 to the outdoor control device 16. sends a signal to increase speed.
 (S11)
 ステップS10において、室内制御装置24は、圧縮機11の周波数が増速したことを検出すると、第二圧損体の制御運転を停止させる。
(S11)
In step S10, when the indoor control device 24 detects that the frequency of the compressor 11 has increased, it stops the controlled operation of the second pressure loss body.
 (S12)
 ステップS11において、室外制御装置16は圧縮機11の周波数を増速させるが、安全性を考慮して周波数には上限値がある。室外制御装置16が、圧縮機11の周波数が上限値に達したことを検出した場合、除湿運転が終了する。一方、圧縮機11の周波数が上限値に達していない場合、ステップS2へ進む。
(S12)
In step S11, the outdoor control device 16 increases the frequency of the compressor 11, but the frequency has an upper limit value in consideration of safety. When the outdoor control device 16 detects that the frequency of the compressor 11 has reached the upper limit value, the dehumidification operation ends. On the other hand, if the frequency of the compressor 11 has not reached the upper limit value, the process advances to step S2.
 本発明の実施の形態に係る空気調和機50では、風路抵抗可変機構48のみを第二圧損体として用い、フラップ46とルーバー47は風路可変機構として用いているが、各実施の形態を、適宜、組み合わせてもよい。具体的には、フラップ46とルーバー47と風路抵抗可変機構48とを圧損体として用いてもよい。 In the air conditioner 50 according to the embodiment of the present invention, only the variable air path resistance mechanism 48 is used as the second pressure loss body, and the flap 46 and the louver 47 are used as the variable air path mechanism. , may be combined as appropriate. Specifically, the flap 46, the louver 47, and the variable air path resistance mechanism 48 may be used as the pressure loss body.
 以上のように本発明の実施の形態2に係る空気調和機は、冷媒温度>18.6度、かつ室内送風機の回転数が最小値であることを検出した場合、第二圧損体を駆動し、風量を低下させることで、圧縮機の周波数を増速させることなく除湿運転が可能となるため、エネルギー消費の低減にも効果がある。 As described above, the air conditioner according to the second embodiment of the present invention drives the second pressure loss body when it is detected that the refrigerant temperature is >18.6 degrees and the rotation speed of the indoor fan is the minimum value. By reducing the air volume, dehumidifying operation can be performed without increasing the frequency of the compressor, which is also effective in reducing energy consumption.
 さらに、フラップ46とルーバー47を風路可変機構としてのみに用いることができるため、除湿運転を実施しつ、ユーザーに合わせた風向を設定することも可能となる。 Further, since the flap 46 and the louver 47 can be used only as a variable air path mechanism, it is also possible to perform dehumidification operation and set the air direction according to the user.
 圧損体収納機構を設けることで、風量の低下量に合わせて、第二圧損体が第一フィルタ45を覆う面積を段階的に調整することができる。 By providing the pressure loss body storage mechanism, the area that the second pressure loss body covers the first filter 45 can be adjusted in stages according to the amount of decrease in air volume.
 また、第二圧損体を駆動しても目標設定湿度φに達しない場合は、圧縮機の周波数を増速し、蒸発器の冷媒温度が低下させることで、最終的にφ≧φaiを達成することができる。 In addition, if the target set humidity φ is not reached even after driving the second pressure loss body, the frequency of the compressor is increased and the refrigerant temperature in the evaporator is lowered to finally achieve φ≧φai. be able to.
 本開示の空気調和機は、空調を行う必要がある空間において使用できる。 The air conditioner of the present disclosure can be used in spaces that require air conditioning.
 10 室外機、 11 圧縮機、 12 四方弁、 13 室外熱交換器、 14 室外送風機、 15 膨張弁、 16 室外制御装置、 17 演算装置、 20 室内機、 21 筐体、 21a 吸込口、 21b 吹出口、 22 室内熱交換器、 23 室内送風機、 24 室内制御装置、 30 ガス延長配管、 31 液延長配管、 32 リモコン、 40 吐出温度センサ、 41 室外熱交換器温度センサ、 42 吸込温度センサ、 43 吸込湿度センサ、 44 室内熱交換器温度センサ、 45 第一フィルタ、 46 フラップ、 47 ルーバー、 48 風路抵抗可変機構、 50 空気調和機 10 Outdoor unit, 11 Compressor, 12 Four-way valve, 13 Outdoor heat exchanger, 14 Outdoor blower, 15 Expansion valve, 16 Outdoor control device, 17 Computing device, 20 Indoor unit, 21 Housing, 2 1a Suction port, 21b Air outlet , 22 Indoor heat exchanger, 23 Indoor blower, 24 Indoor control device, 30 Gas extension piping, 31 Liquid extension piping, 32 Remote control, 40 Discharge temperature sensor, 41 Outdoor heat exchanger temperature sensor, 42 Suction temperature sensor, 43 Suction humidity Sensor, 44 Indoor heat exchanger temperature sensor, 45 First filter, 46 Flap, 47 Louver, 48 Variable air resistance mechanism, 50 Air conditioner

Claims (7)

  1.  蒸発器として機能する熱交換器と、
     空気を吸い込む吸込口と、前記熱交換によって熱交換された空気を室内に吹き出す吹出口とが形成された筐体と、
     前記吸込口から空気を吸い込み、前記熱交換器によって熱交換された空気を前記吹出口から排出する室内送風機と、
     前記吹出口から吹き出される風量を、前記室内送風機が最小回転数の場合の風量よりも低下させる圧損体とを有する空気調和機。
    a heat exchanger functioning as an evaporator;
    a casing formed with an inlet for sucking air and an outlet for blowing out the air heat-exchanged by the heat exchange into the room;
    an indoor blower that sucks air from the suction port and discharges air that has been heat exchanged by the heat exchanger from the blowout port;
    An air conditioner comprising: a pressure loss body that reduces the amount of air blown out from the outlet than the amount of air when the indoor blower is at a minimum rotation speed.
  2.  前記圧損体は、前記熱交換器によって熱交換された空気を室内に吹き出す風向を調整するフラップとルーバーを有する風向可変機構であり、
     前記フラップまたは前記ルーバーを駆動して、風量を、前記室内送風機が最小回転数の場合の風量よりも低下させる前記圧損体の制御運転を実行する、請求項1の空気調和機。
    The pressure loss body is a variable wind direction mechanism having a flap and a louver that adjusts the direction of blowing the air heat exchanged by the heat exchanger into the room,
    2. The air conditioner according to claim 1, wherein the flap or the louver is driven to perform a controlled operation of the pressure loss body to lower the air volume than the air volume when the indoor blower is at a minimum rotation speed.
  3.  前記吸込口には、空気中に含まれている塵埃を取り除き、前記熱交換器が汚れることを防ぐ第一フィルタが設けられており、
     前記圧損体は、前記第一フィルタよりも目が細かく、さらに前記第一フィルタを覆うことができる駆動可能な第二フィルタ、または駆動可能な板材であり、
     前記第二フィルタまたは前記板材を駆動して、前記吹出口から吹き出す空気の風量を、前記室内送風機が最小回転数の場合の風量よりもさらに低下させる前記圧損体の制御運転を実行する、請求項1あるいは2の空気調和機。
    The suction port is provided with a first filter that removes dust contained in the air and prevents the heat exchanger from becoming dirty;
    The pressure loss body is a drivable second filter that has finer mesh than the first filter and can further cover the first filter, or a drivable plate material,
    A controlled operation of the pressure loss body is performed by driving the second filter or the plate material to further reduce the volume of air blown out from the outlet than the volume when the indoor blower is at a minimum rotation speed. 1 or 2 air conditioners.
  4.  前記第二フィルタまたは前記板材を使用しない場合は、前記第二フィルタまたは前記板材を収納できる収納機構を有する、請求項3の空気調和機。 The air conditioner according to claim 3, further comprising a storage mechanism that can store the second filter or the plate material when the second filter or the plate material is not used.
  5.  前記熱交換器は、冷媒配管を介して圧縮機と接続されており、
     吸込温度を検出する吸込温度センサと、
     吸込湿度を検出する吸込湿度センサと、
     前記熱交換器の冷媒温度を検出する熱交換器温度センサと、
     前記室内送風機の回転数と、前記圧縮機の周波数と、前記圧損体の動作を検出し制御を行う制御装置と、
     設定された室内設定温度と前記吸込温度との比較、設定された室内設定湿度と前記吸込湿度との比較、または前記冷媒温度と閾値との比較を行う演算装置とをさらに備える、請求項1~請求項3の空気調和機。
    The heat exchanger is connected to a compressor via refrigerant piping,
    a suction temperature sensor that detects suction temperature;
    a suction humidity sensor that detects suction humidity;
    a heat exchanger temperature sensor that detects the refrigerant temperature of the heat exchanger;
    a control device that detects and controls the rotation speed of the indoor blower, the frequency of the compressor, and the operation of the pressure loss body;
    2. The refrigerant temperature according to claim 1, further comprising: a calculation device that compares a set indoor temperature with the suction temperature, compares a set indoor humidity with the suction humidity, or compares the refrigerant temperature with a threshold value. The air conditioner according to claim 3.
  6.  前記制御装置が前記室内送風の回転数が最小値であることを検出し、前記吸込温度は室内設定温度よりも低く、前記吸込湿度が室内設定湿度よりも高く、さらに、前記冷媒温度が閾値よりも高いことを前記演算装置が検出した場合に、
     前記圧損体の制御運転を実行する、請求項1~請求項5の空気調和機。
    The control device detects that the indoor ventilation rotation speed is a minimum value, the suction temperature is lower than the indoor set temperature, the suction humidity is higher than the indoor set humidity, and the refrigerant temperature is lower than a threshold value. If the arithmetic device detects that the
    The air conditioner according to any one of claims 1 to 5, wherein the air conditioner executes a controlled operation of the pressure loss body.
  7.  前記空気調和機は、前記冷媒温度が閾値よりも低いことを前記制御装置が検出し、かつ、前記圧損体の制御運転を実行しても前記風量が低下しない場合、前記圧縮機の周波数を増速させ、前記圧損体の制御運転を停止する、請求項1~請求項6の空気調和機。 The air conditioner increases the frequency of the compressor when the control device detects that the refrigerant temperature is lower than a threshold and the air volume does not decrease even after performing the control operation of the pressure loss body. The air conditioner according to any one of claims 1 to 6, wherein the control operation of the pressure loss body is stopped.
PCT/JP2022/028739 2022-07-26 2022-07-26 Air conditioner WO2024023916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028739 WO2024023916A1 (en) 2022-07-26 2022-07-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028739 WO2024023916A1 (en) 2022-07-26 2022-07-26 Air conditioner

Publications (1)

Publication Number Publication Date
WO2024023916A1 true WO2024023916A1 (en) 2024-02-01

Family

ID=89705848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028739 WO2024023916A1 (en) 2022-07-26 2022-07-26 Air conditioner

Country Status (1)

Country Link
WO (1) WO2024023916A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179916A (en) * 1998-12-14 2000-06-30 Matsushita Electric Ind Co Ltd Method for controllilng wind direction of air conditioner
JP2007132646A (en) * 2005-10-11 2007-05-31 Fujitsu General Ltd Air conditioner
JP2009074704A (en) * 2007-09-19 2009-04-09 Sharp Corp Air conditioner
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner
WO2019003511A1 (en) * 2017-06-30 2019-01-03 パナソニックIpマネジメント株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179916A (en) * 1998-12-14 2000-06-30 Matsushita Electric Ind Co Ltd Method for controllilng wind direction of air conditioner
JP2007132646A (en) * 2005-10-11 2007-05-31 Fujitsu General Ltd Air conditioner
JP2009074704A (en) * 2007-09-19 2009-04-09 Sharp Corp Air conditioner
JP2014153008A (en) * 2013-02-12 2014-08-25 Sharp Corp Air conditioner
WO2019003511A1 (en) * 2017-06-30 2019-01-03 パナソニックIpマネジメント株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US10852010B2 (en) Air conditioner and control method thereof
EP3183509B1 (en) Air conditioner and control method thereof
KR100512281B1 (en) Method for dehumidification of air conditioner
JP4468682B2 (en) Power-saving dehumidifying operation method of air conditioner
JP3835453B2 (en) Air conditioner
JP2003172525A (en) Dehumidifier
EP1806542A1 (en) Air conditioner
JP5359170B2 (en) Air conditioner
WO2021214930A1 (en) Air-conditioning system and control method
JP2004020085A (en) Hot water supply/air conditioner
WO2024023916A1 (en) Air conditioner
KR101153421B1 (en) Condensation volume control method for air conditioner
JP2003139436A (en) Air conditioner
JP5435161B2 (en) Air conditioner
KR20170138703A (en) Air conditioner system and its control method
JP3488763B2 (en) Air conditioner
JP6745895B2 (en) Air conditioning system
JPH06337176A (en) Air-conditioner
JP2007192436A (en) Air conditioner
WO2022234860A1 (en) Air-conditioning device
JP7189472B2 (en) air conditioning system
JPH10103791A (en) Refrigeration cycle device and air conditioner
JP2018025337A (en) air conditioner
JP2023019957A (en) air conditioner
KR100512146B1 (en) Air conditioner for dehumidification and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953014

Country of ref document: EP

Kind code of ref document: A1