WO2024023906A1 - 外界センサの更新装置及び外界センサの更新方法 - Google Patents

外界センサの更新装置及び外界センサの更新方法 Download PDF

Info

Publication number
WO2024023906A1
WO2024023906A1 PCT/JP2022/028712 JP2022028712W WO2024023906A1 WO 2024023906 A1 WO2024023906 A1 WO 2024023906A1 JP 2022028712 W JP2022028712 W JP 2022028712W WO 2024023906 A1 WO2024023906 A1 WO 2024023906A1
Authority
WO
WIPO (PCT)
Prior art keywords
update
information
vehicle
parameters
sensor
Prior art date
Application number
PCT/JP2022/028712
Other languages
English (en)
French (fr)
Inventor
隆良 千代田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/028712 priority Critical patent/WO2024023906A1/ja
Publication of WO2024023906A1 publication Critical patent/WO2024023906A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • the present invention relates to an outside world sensor updating device and an outside world sensor updating method that update parameters of an outside world sensor mounted on a moving object.
  • ADAS advanced driver assistance systems
  • AD automated driving
  • the adjustment target is a parameter that is reflected in a control program for the camera.
  • the exposure amount (brightness gain) of the camera is set to a smaller value than in areas where it does not snow.
  • Patent Document 1 discloses a determining means for determining a predetermined vehicle state and surrounding environment based on user vehicle data indicating the vehicle state and surrounding environment when the user is using the vehicle; discloses a processing device having a calculation means for calculating the degree of similarity between the vehicle state and the surrounding environment shown in a scenario of a vehicle driving test, and an output means for calculating and outputting the calculation result by the calculation means.
  • Patent Document 1 has a mechanism of creating and calculating a combination of external sensor parameters based on the calculation result of similarity, but there is no way to reflect it on the vehicle that caused the sensor failure. .
  • the technology described in Patent Document 1 is useful at the development and confirmation stage, it is desirable to apply and reflect the parameters on vehicles used in real environments. Simply reflecting the parameters at the development and confirmation stage on the actual vehicle may not be suitable for the vehicle's usage environment.
  • an external world sensor updating device includes a receiving unit that receives from a vehicle failure information of an external world sensor mounted on a vehicle and environmental information at a point where the failure occurs; an update parameter determination unit that determines an update parameter to be used for updating parameters of an external sensor according to information and environmental information; an update timing adjustment unit that determines an update timing for updating parameters in a vehicle according to failure information; and a transmitter that transmits the updated parameters to the vehicle based on the update timing determined by the timing adjuster.
  • parameters depending on the environment in which a failure occurs in the external sensor can be reflected in the external sensor of the actual vehicle at a determined appropriate update timing.
  • FIG. 2 is a block diagram showing an example of the configuration of a control system of the external sensor updating device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an overview of scene determination processing by a scene determination unit according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an overview of update parameter determination processing by an update parameter determination unit according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an overview of update timing adjustment processing by an update timing adjustment section according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration example of an update parameter determining unit according to a second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an overview of update parameter determination processing by an update parameter determination unit according to a second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration example of an entire system including a vehicle and an external sensor updating device according to the first and second embodiments, as a third embodiment of the present invention.
  • FIG. 7 is a diagram illustrating another example of the configuration of the entire system including a vehicle and the external sensor updating device according to the first and second embodiments, as the third embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of an external sensor update device, an instrument panel, and an electronic control device according to first to third embodiments of the present invention.
  • the outline of the present invention is as follows.
  • the present invention determines update parameters (for example, camera exposure information) suitable for the situation (time, region, driving environment, etc.) at the time of occurrence of the malfunction, based on data on a malfunction occurring in a sensor mounted on a vehicle. Then, in the present invention, it is determined whether or not the sensor control program can be updated for a running vehicle based on the determined update parameters, and the sensor control program is updated for the vehicle equipped with the corresponding sensor according to the determination result.
  • the external sensor is a sensor installed in a moving object such as a vehicle to detect information around the moving object, and is, for example, a camera that photographs the surroundings of the moving object.
  • FIG. 1 is a block diagram showing a configuration example of a control system of an external sensor updating device according to a first embodiment.
  • the external world sensor updating device 1 shown in FIG. 1 is installed in a moving object such as a vehicle, and updates the parameters of the external sensor based on failure information (hereinafter referred to as "sensor failure information") of the external sensor (not shown). It is something.
  • the external world sensor updating device 1 includes a data receiving section 10, a scene determining section 20, an updating parameter determining section 30, an updating timing adjusting section 40, and a data transmitting section 50.
  • the data receiving unit 10 (an example of a receiving unit) has a function of receiving failure information transmitted from an external sensor and environmental information S1 at the point where the failure has occurred, and transmitting it to the scene determination unit 20 and the update timing adjustment unit 40.
  • the environmental information S1 is information that contributes to reproducing the environment in which the external sensor has failed.
  • the information that can be included in the environmental information S1 includes the vehicle type, current sensor parameters, date and time of sensor failure, season (month), failure cause information, weather information (weather, temperature, humidity), current position of the vehicle (e.g. These include GPS (Global Positioning System) location), surrounding environmental objects (signs, tunnels, white lines, vehicles, pedestrians, obstacles), etc.
  • a sensor malfunction HALT is also handled in the same way as a sensor failure.
  • the date and time of sensor failure can be obtained from an in-vehicle ECU (Electronic Control Unit) or an external server (including a satellite positioning system) via a communication network.
  • Failure factor information includes backlighting, dirt, rain, snowfall, high temperature, etc.
  • Meteorological information (particularly weather) at the driving point can be obtained from outside the vehicle via a communication network.
  • the surrounding environmental objects are obtained from map information prepared in advance in the vehicle or an external server (not shown) based on the output of an external sensor (for example, a camera) or the position information of the vehicle.
  • the environment in which the environmental information S1 is received by the data receiving unit 10 may be a wired connection environment or a wireless connection environment to a communication network.
  • the number of vehicles is not limited to one, as long as it has the functions of this embodiment.
  • the scene determination unit 20 has a function of generating environment information and tag information S2 (see FIG. 2 described later) based on the environment information S1 received from the data reception unit 10, and transmitting the generated environment information and tag information S2 to the update parameter determination unit 30.
  • the "environmental information" included in the environmental information and tag information S2 is the same as the environmental information S1 received from the data receiving unit 10.
  • the update parameter determination unit 30 selects update parameters S4 in accordance with the environment information from a database that stores parameters internally. and has a function of transmitting it to the update timing adjustment section 40.
  • the update parameters are parameters that enable the external sensor to appropriately recognize the external world in an actual usage environment.
  • the update timing adjustment unit 40 (an example of an update parameter adjustment unit) adjusts the pre-update parameters and update parameters based on the environment information S1 received from the data reception unit 10 and the update parameters S4 received from the update parameter determination unit 30. It has a function to calculate the difference (parameter change amount) with Further, the update timing adjustment unit 40 determines whether the parameter can be updated immediately or whether update permission from the user is required based on the parameter change amount, and if it is determined that the parameter can be updated immediately, the update timing adjustment unit 40 transmits the update parameter S4 to the data transmission unit 50. It has the ability to send to.
  • the data transmitting unit 50 (an example of a transmitting unit) transmits the update parameter S4 received from the update timing adjustment unit 40 to a vehicle connected via the network, and causes the parameter of the external sensor attached to the vehicle to be rewritten. Has a function.
  • the scene determination unit 20, update parameter determination unit 30, and update timing adjustment unit 40 will be specifically described below.
  • a camera monocular, stereo, visible light, near-infrared, mid-infrared, far-infrared camera
  • FIG. 2 is a diagram showing an overview of scene determination processing by the scene determination unit 20.
  • the data receiving unit 10 receives failure information of the external sensor from the vehicle (here, camera function stop information) and the Receives environmental information S1 at the time.
  • the environmental information S1 includes information such as stop factors (corresponding to failure factor information), point information, date and time, weather, temperature, humidity, wind speed, number of surrounding vehicles, white line conditions, guardrail positions, and presence/absence of traffic lights. included.
  • the scene determination section 20 receives the failure information and the environment information S1 from the data reception section 10. Based on the failure information (camera function stoppage information) and the failure cause information (stoppage factor) included in the environment information S1, the scene determination unit 20 uses a database (not shown) in which past various failure information is stored. (omitted) to confirm whether a similar scene in which the camera function stopped occurred in the past (S201).
  • a scene here means a scene, a situation, or a condition, and corresponds to, for example, a combination of failure information (for example, camera function stoppage) and failure cause information (for example, stoppage factor).
  • a database of past failure information is provided in the external sensor update device 1. If a similar scene does not exist in the past for the failure information (NO determination in S201), the scene determination unit 20 tags the failure information with a scene based on the environmental information S1. (S202), and the scene determination in step S201 is performed again.
  • the scene determination unit 20 adds tag information to the environment information S1 based on the scene registered in the database.
  • the added environment information and tag information S2 are sent to the update parameter determination unit 30.
  • the "environmental information" of the "environmental information and tag information S2" is the same as the environmental information S1.
  • the tag information is information representing the attributes and characteristics of the failure information, and its contents are almost the same as the contents of the failure cause information (for example, backlight, dirt, etc.). Therefore, failure cause information may be used as is as tag information.
  • FIG. 3 is a diagram showing an overview of update parameter determination processing by the update parameter determination unit 30.
  • the update parameter determining unit 30 uses the environment information and tag information S2 received from the scene determining unit 20 to refer to the parameter database 301 in which past parameters are managed for each tag information (S301). In the figure, the database is written as "DB". Then, the update parameter determining unit 30 selects, for example, a parameter suitable for the current location, season (month), etc. as the update parameter S4 for camera adjustment from the parameter database 301 (S302). The update parameter determination unit 30 also adds the latest environment information (that is, after tagging is performed in step S202) and tag information S2 to the parameter database 301.
  • the update parameter determining unit 30 selects a parameter whose situation is closest among the parameters registered in the parameter database 301, or , select a parameter with a preset default value.
  • An example of a case where there is no parameter matching the current situation in the parameter database 301 is a case where it is determined in step S201 that there is no scene in which similar failure information has occurred in the past.
  • the update parameter determination unit extracts the parameters of the external sensor from the parameter database (parameter database 301) in which parameters of the external sensor are stored in association with failure information and environmental information (environmental information S1).
  • a parameter suitable for the environmental information at the point where the error occurred is selected as an update parameter (update parameter S4).
  • parameters associated with failure information and environmental information can be prepared in advance, and parameters can be selected according to the failure situation, compared to when performing complex simulations. You can simplify the configuration by
  • the update parameter determination section 30 transmits the selected update parameter S4 to the update timing adjustment section 40.
  • the information included in the update parameter S4 includes, for example, the shutter adjustment time of the camera, the exposure gain adjustment value, and their learned values.
  • the learned value is, for example, a value such as a shutter adjustment time or an exposure gain adjustment value that is inferred by a learning model that receives environmental information and tag information S2 as input and learns to output appropriate parameters for each external sensor.
  • the learning model can be configured using a machine learning model.
  • parameters that have changed from their initial values due to aging can be fine-tuned to match the current environment.
  • adjustments include cutting out the upper region of the output image of the left camera, adjusting the focal length, etc. when the angle of view of the left camera of the stereo camera shifts downward. Note that adjustment of the cutout area can be handled by software processing.
  • FIG. 4 is a diagram showing an overview of update timing adjustment processing by the update timing adjustment section 40.
  • the update timing adjustment unit 40 compares the current sensor parameters included in the environmental information S1 received from the data reception unit 10 and the update parameters S4 received from the update parameter determination unit 30, and determines whether reprogramming is possible (S401).
  • the update timing adjustment unit 40 assumes that these differences are minute and will not greatly affect the behavior of the vehicle. , and transmits the update parameter S4 to the data transmitter 50. Updating parameters used in a program is also a type of reprogramming.
  • the update timing adjustment unit 40 determines whether permission for the update timing has been obtained (S402).
  • step S402 the update is not performed automatically and is not updated unless the driver gives permission for the update timing (NO determination in S402). If the determination is NO in step S402, the update timing adjustment unit 40 repeats this determination process until permission for the update timing is obtained from the driver.
  • the update timing adjustment unit 40 transmits the update parameter S4 to the data transmission unit 50 as soon as permission for the update timing is obtained from the driver (YES determination in S402).
  • update permission by the driver can also be granted using the operation panel on the vehicle (for example, using the instrument panel) or a mobile terminal that can be connected to the vehicle.
  • the data transmitting unit 50 When the data transmitting unit 50 receives the update parameter S4 from the update timing adjustment unit 40, it transmits the update parameter S4 (camera parameter) to the vehicle that has issued the failure information (in this example, camera function stop information), Prompts rewriting of sensor parameters on the vehicle side.
  • the update parameter S4 camera parameter
  • the failure information in this example, camera function stop information
  • the external world sensor update device (external world sensor update device 1) according to the first embodiment provides failure information of the outside world sensor (for example, a camera) mounted on a vehicle and environmental information at the point where the failure occurs. (environmental information S1) from the vehicle; and an update parameter determination unit (update parameter determination unit) that determines update parameters to be used for updating the parameters of the external sensor according to the failure information and environment information. 30), an update timing adjustment section (update parameter adjustment section 40) that determines the update timing for updating parameters in the vehicle according to the failure information, and an update timing adjustment section (update parameter adjustment section 40) that determines the update timing for updating parameters in the vehicle based on the update timing determined by the update timing adjustment section.
  • the data transmitter includes a transmitter (data transmitter 50) that transmits data to the vehicle.
  • parameters corresponding to the environment in which a failure occurs in the external sensor are reflected to the external sensor of the actual vehicle at the determined appropriate update timing.
  • the environment in which the target vehicle was traveling is different from the one in which it was previously traveling, such as when the vehicle moves for reasons other than self-propulsion, and the external sensor stops functioning
  • the environment after the change is Since the parameters used in the software are changed based on this, the number of times the external sensor stops functioning (HALT) can be reduced. This allows the driver to drive the vehicle without unnecessary anxiety about errors displayed on the instrument panel or the like.
  • the external world sensor updating device is different from the external world sensor updating device 1 (see FIG. 1) according to the first embodiment in that the update parameter determination unit includes a simulator for verifying the function of the external world sensor.
  • This method is equipped with a method function for calculating optimal parameters depending on the situation when a sensor fails.
  • the second embodiment will be described below, focusing on the differences from the first embodiment.
  • FIG. 5 is a block diagram illustrating a configuration example of an update parameter determining unit according to the second embodiment.
  • the update parameter determination section 30A shown in FIG. 5 includes a specification range determination section 510, a scenario generation section 520, a result acquisition section 530, a parameter determination section 540, and a parameter DB 310 (not shown) (see FIG. 3). be done.
  • the specification range determination unit 510 determines whether the environment information and tag information S2 received from the scene determination unit 20 are within the specification range of the external sensor, and outputs the determination result to the scenario generation unit 520 or the parameter determination unit 540.
  • the scenario generation unit 520 generates different test scenarios based on the test conditions selected according to the failure information and the environment information S1. As will be described later, the scenario generation unit 20 generates a verification scene scenario for verifying the situation when a failure occurs and an expected value scene scenario expected of the external sensor.
  • the tag information S2 (for example, the cause of failure of the external sensor) can be used as the test condition. In this way, by using failure causes as test conditions, scenarios can be generated, executed, and compared for each failure cause, and update parameters can be determined.
  • the expected value is not necessarily an ideal value expected from the external sensor, but may be a compromise value (an expected value tailored to the current scene). For example, this can be said to be the case when you want the output image of a camera anyway, even if you sacrifice some image quality.
  • the result acquisition unit 530 simulates the behavior of the external sensor according to each test scenario generated by the scenario generation unit 520, and acquires the execution results of the simulation.
  • the simulation execution result is the recognition result by the external sensor when the test scenario is executed.
  • the parameter determination unit 540 determines the update parameter S4 by a method according to the determination result of the specification range determination unit 510.
  • the parameter determination unit 450 determines the update parameter S4 by comparing the results obtained by the result acquisition unit 530 executing the verification scene scenario and the expected value scene scenario.
  • FIG. 6 is a diagram showing an overview of update parameter determination processing by the update parameter determination unit 30A.
  • the update parameter determination unit 30A uses a simulator that verifies the function of the external sensor.
  • the update parameter determination process of this embodiment is roughly divided into parameter database reference (S301), parameter selection (S302), specification range determination (S601), verification scene scenario generation (S602), and expected value scene scenario generation. (S603), scenario execution (S604, S605), and execution result comparison (S606).
  • the specification range determining unit 510 receives the environmental information and tag information S2 from the scene determining unit 20 when a failure occurs in the external sensor. Then, the specification range determination unit 510 determines whether the contents of the received environmental information and tag information S2 indicate that the cause and situation of the current camera failure in the camera installed in the vehicle are within the range of the original camera specifications. It is confirmed whether there is one (S601). If the cause or situation that caused this camera failure is not within the range of the original camera specifications (NO determination in S601), the parameters cannot be adjusted, so the parameter determination unit 540 Approximate parameter values are selected from the parameter database 301 (S302). Here, the value of the parameter associated with the environmental information within the camera specification range that is closest to the environmental information S1 where the camera failure occurred is selected.
  • step S601 if it is determined in step S601 that the cause and situation of the current camera failure are within the range of the original camera specifications (YES determination in S601), processing is performed to find the optimal solution for the parameters. That is, the scenario generation unit 520 generates a verification scene scenario for reproducing the environment where the camera failure occurred based on the environment information and tag information S2 (S602). The scenario generation unit 520 generates a verification scene scenario based on the environmental information S1 at the time of failure occurrence (for example, current sensor parameters, failure causes, various situations, etc.).
  • the scenario generation unit 520 generates an expected value scene scenario by changing only one parameter to the specification limit value (upper limit value or lower limit value) based on the environment information and tag information S2 as a comparison target ( S603). For example, if 30% of the information around the vehicle could originally be recognized, but due to heavy snowfall the camera function stops (HALT) at 25% of the information, first set the parameters so that the camera can recognize 25% of the information. , and parameters are set so that the amount of information that can be recognized gradually decreases from there (for example, 24%, 23%, etc.).
  • the result acquisition unit 530 performs a reproduction test according to each of the verification scene scenario and the expected value scene scenario, and simulates (calculates) the recognition result of the external world by the camera in each reproduction test (S604, S605).
  • the parameter determination unit 540 compares the execution results of both scenarios obtained by the result acquisition unit 530, that is, the camera recognition results (S606).
  • the parameter determination unit 540 moves to step S603 and relaxes the camera function (relaxes the specification value data).
  • the updated scene information S3 is transmitted to the scenario generation unit 520.
  • the scenario generation unit 520 generates a new expected value scene scenario to explore the specification limit based on the updated scene information S3 (S603), and the result acquisition unit 530 executes the new expected value scene scenario and obtains the execution result. Acquire (S605).
  • the parameter determining unit 540 again compares the execution results of the verification scene scenario and the new expected value scene scenario (S606).
  • the parameter determination unit 540 verifies the camera function until the execution results of both scenarios match, and when the execution results of both scenarios match (YES determination in S606), the parameter determination unit 540 verifies the camera parameters in the generated environment information and tag information S2. The optimum value is determined and the parameter database 301 is updated (S301).
  • the camera parameters determined here are provisional parameters because they have not yet been selected in step S302.
  • the parameter determining unit 540 selects a parameter that matches the environment information and tag information S2 received from the scene determining unit 20 from the updated parameter database 301 as the updated parameter S4 for camera adjustment (S302).
  • step S603 a method has been described in which the parameters are changed in a direction in which the function of the external sensor is relaxed from the specification limit value, but the method is not limited to this example.
  • a method may be adopted in which a camera function verification scene and an approximate value are first set, and then the approximate value is brought closer to the specification limit value using the updated scene information S3.
  • the specification limit value of the camera function is 20%
  • the parameter is gradually increased from 0% to the usage limit value of 20%, and the parameters are changed so that the amount of information that the camera can recognize increases.
  • the update parameter determination unit updates the failure information and the environment information (environment information S1).
  • a scenario generation unit (scenario generation unit 520) that generates different test scenarios (verification scene scenario, expected value scene scenario) based on test conditions (for example, failure factors) selected accordingly, and an external sensor according to each test scenario.
  • a result acquisition unit (result acquisition unit 530) that acquires an execution result of simulating the behavior of the test scenario, and determines an update parameter (update parameter S4) by comparing the execution results of each test scenario.
  • test scenarios are generated according to the failure information and environment information (environment information S1), and the execution results of simulating the behavior of the external sensor according to each test scenario are compared. Appropriate update parameters can be determined accordingly.
  • the update parameter determination unit (update parameter determination unit 30A) can be configured as follows.
  • the update parameter determination unit uses the scenario generation unit (scenario generation unit 520) to generate a verification scene scenario for verifying the situation at the time of failure occurrence as the test scenario, and an external sensor as the test scenario.
  • An expected expected value scene scenario is generated, and a result obtaining unit (result obtaining unit 530) obtains a result of executing the verification scene scenario and a result of executing the expected value scene scenario.
  • the update parameter determination unit determines the update parameters by comparing the result of executing the verification scene scenario with the result of executing the expected value scene scenario by the parameter update unit (parameter update unit 540).
  • the method for finding the optimal parameters is not limited to the example of this embodiment.
  • the external sensor update device 1 acquires similar information (failure information, environmental information) regarding failures in other actual vehicles directly or via a server (not shown), and updates optimal parameters (update parameters). You can also use it as
  • FIG. 7 is a diagram showing an example of the configuration of the entire system including the external sensor updating device 1 and the vehicle 700 according to the first and second embodiments described above.
  • a vehicle 700 shown in FIG. 7 is equipped with a driving control device 730 that controls the driving of the own vehicle.
  • the operation control device 730 includes an arithmetic processing device 731 and a network interface 732.
  • a microcontroller such as an electronic control unit (ECU) is used as the operation control device 730.
  • ECU electronice control unit
  • the arithmetic processing unit 731 performs driving control while the vehicle 700 is running based on data acquired from sensors 710 including external sensors, other ECUs (not shown), and the like.
  • the arithmetic processing unit 731 then acquires necessary programs and parameters from the external sensor update device 1 on the cloud 750 via OTA (Over The Air).
  • the external sensor update device 1 can also be said to be a type of program server.
  • a vehicle is provided with a plurality of ECUs, such as an engine control ECU (not shown) and an advanced driving support system ECU (ADASECU).
  • the driving control device 730 controls the driving (driving) of the vehicle 100 by controlling a plurality of ECUs provided in the vehicle 100 in an integrated manner.
  • ECUs involved in controlling a vehicle are also collectively referred to as a "vehicle control device.”
  • the network interface 732 is configured to be able to communicate with the external sensor update device 1 on the cloud 750 via a wide area network N such as the Internet. Further, the network interface 732 is configured to be able to communicate with other ECUs or other devices (not shown) via an in-vehicle network (not shown) in the vehicle 700.
  • the instrument panel 740 includes instruments such as a speedometer, a malfunction indicator lamp (MIL), and the like.
  • the instrument panel 740 has an input function for accepting input operations from the driver in addition to a display output function, and is an example of a driver interface. Note that the output function may be audio output.
  • the external sensor update device 1 receives external sensor failure information, environmental information S1 (FIG. 1), and the current position of the vehicle from the vehicle 700 via the wide area network N, and updates weather information and map information on the cloud 750. and receive various information such as Further, the external sensor updating device 1 uses the wide area network N to communicate with the arithmetic processing device 731 of the operation control device 730 via the network interface 732. Then, when the external world sensor update device 1 transmits the update parameter S4 to the arithmetic processing unit 731, the update parameter S4 is transmitted from the arithmetic processing unit 731 to the external world sensor in the sensors 710, and the parameter of the external world sensor is updated. .
  • FIG. 8 is a diagram showing another configuration example of the entire system including the external sensor updating device 1 and the vehicle 700 according to the first and second embodiments described above.
  • FIG. 7 shows an example in which the external world sensor updating device 1 is provided inside a vehicle 700 in which the external world sensor is mounted.
  • the external sensor update device 1 is configured to be able to communicate with the arithmetic processing unit 731 of the driving control device 730 via a network interface 732 using a wired in-vehicle network such as a CAN (Controller Area Network). Wireless may be used as part of the in-vehicle network.
  • a wired in-vehicle network such as a CAN (Controller Area Network). Wireless may be used as part of the in-vehicle network.
  • the external sensor update device 1 receives external sensor failure information, environmental information S1 (FIG. 1), and the current position of the vehicle from the vehicle 700 via the in-vehicle network, and receives weather information, map information, etc. from the cloud 750. Receive various information.
  • the external world sensor updating device 1 transmits the update parameter S4 to the arithmetic processing unit 731, the update parameter S4 is transmitted from the arithmetic processing unit 731 to the external world sensor in the sensors 710, and the parameter of the external world sensor is updated.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the external sensor updating device 1, the instrument panel, and the electronic control unit according to the first to third embodiments of the present invention.
  • the computer 900 is an example of hardware used as a computer that can operate as the external sensor update device 1, an instrument panel, and an electronic control unit.
  • the computer 900 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, a display section 905, and an operation section 906, each connected to a bus.
  • the computer 900 includes a nonvolatile storage 907 and a network interface 908.
  • Each block may be selected according to the function and purpose of use of each device.
  • the computer 900 may have a form in which the display unit 905 and the operation unit 906 are not connected.
  • the CPU 901 reads software program codes that implement each function according to the embodiments described above from the ROM 902, expands them to the RAM 903, and executes them. Alternatively, the CPU 901 may directly read the program code from the ROM 902 and execute it as is. Note that the computer 900 may include a processing device such as an MPU (Micro-Processing Unit) instead of the CPU 901. Variables, parameters, etc. generated during arithmetic processing by the CPU 901 are temporarily written into the RAM 903 .
  • MPU Micro-Processing Unit
  • non-volatile storage 907 for example, an HDD (Hard Disk Drive), SSD, flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, non-volatile memory card, etc. can be used.
  • this non-volatile storage 907 in addition to the OS (Operating System) and various parameters, programs for operating the computer 900 and the like are recorded.
  • a program related to the external world sensor updating process of the external world sensor updating device 1 is stored in the nonvolatile storage 907.
  • Each function of the external sensor update device 1, the instrument panel, and the electronic control unit is realized by the CPU 901 executing a program corresponding to each function stored in the ROM 902 or nonvolatile storage 907.
  • the program is stored in the form of a computer-readable program code, and the CPU 901 sequentially executes operations according to the program code. That is, the ROM 902 or the nonvolatile storage 907 is used as an example of a computer-readable non-transitory recording medium that stores a program executed by a computer.
  • the network interface 908 is composed of a communication device and the like that controls communication with other devices such as a server and an ECU.
  • Network interface 732 is implemented by network interface 908.
  • the external sensor may be a millimeter wave radar, LiDAR (Light Detection And Ranging), sonar, TOF (Time Of Flight) sensor, or a combination thereof.
  • LiDAR Light Detection And Ranging
  • sonar Sonar
  • TOF Time Of Flight
  • the present invention is suitable for application to vehicle control, for example, an in-vehicle ECU for advanced driver assistance systems (ADAS) and autonomous driving (AD).
  • vehicle control for example, an in-vehicle ECU for advanced driver assistance systems (ADAS) and autonomous driving (AD).
  • ADAS advanced driver assistance systems
  • AD autonomous driving
  • the present invention is not limited to in-vehicle ECUs for ADAS and AD.
  • the present invention is not limited to the embodiments described above, and it goes without saying that various other applications and modifications can be made without departing from the gist of the present invention as set forth in the claims.
  • the configurations thereof are explained in detail and specifically in order to explain the present invention in an easy-to-understand manner, and the embodiments are not necessarily limited to those having all the explained components.
  • each of the above-mentioned configurations, functions, processing units, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • a broadly defined processor device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used.
  • processing steps describing chronological processing are not only processes that are performed chronologically in the described order, but also processes that are not necessarily performed chronologically, but may be performed in parallel or It also includes processes that are executed individually (for example, processes by objects). Furthermore, the processing order of processing steps that describe time-series processing may be changed within a range that does not affect the processing results.
  • SYMBOLS 10 Data reception part, 20... Scene judgment part, 30... Update parameter determination part, 40... Update timing adjustment part, 50... Data transmission part, 100... Vehicle, 310... Parameter database, 510... Specification range judgment part, 520... Scenario generation unit, 530...Result acquisition unit, 540...Parameter determination unit, S1...Environmental information, S2...Environment information and tag information, S3...Updated scene information, S4...Updated parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明の一態様における外界センサの更新装置は、車両に搭載された外界センサの故障情報及び故障が発生した地点の環境情報を車両から受信する受信部と、故障情報及び環境情報に応じて、外界センサのパラメータの更新に用いる更新パラメータを決定する更新パラメータ決定部と、故障情報に応じて車両においてパラメータを更新する更新タイミングを決定する更新タイミング調整部と、更新タイミング調整部が決定した更新タイミングに基づいて、更新パラメータを車両に送信する送信部と、を備える。

Description

外界センサの更新装置及び外界センサの更新方法
 本発明は、移動体に搭載した外界センサのパラメータの更新を行う外界センサの更新装置及び外界センサの更新方法に関する。
 近年、安全かつ快適な車社会の実現のために高度運転支援システム(ADAS)や自動運転(AD)システムの研究が盛んである。これらのシステムに必要な外界センサは複数あるが、そのシステムは走行車線の方向や速度単位レベルでのみ調整されていることが多く、地域ごとで最適なシステム適用が求められている。例えば、外界センサとしてカメラが用いられた場合、調整対象は、当該カメラの制御プログラムに反映されるパラメータである。例えば、雪国では、カメラの露光量(明るさゲイン)は、雪が降らない地域よりも小さい値に設定される。
 特許文献1には、ユーザが車両を利用しているときの車両状態及び周辺環境を示すユーザ車両データに基づき所定の車両状態及び周辺環境を決定する決定手段と、所定の車両状態及び周辺環境と、車両走行テストのシナリオで示される車両状態及び周辺環境との類似度を算出する算出手段と、算出手段による算出結果を算出する出力する出力手段を有する処理装置が開示されている。
国際公開第2021/186673号
 ところで、特許文献1に記載の技術は、類似度の算出結果を基に、外界センサのパラメータの組み合わせを作成し計算する仕組みとなっているが、センサ故障を引き起こした車両への反映方法がない。特許文献1に記載の技術は、開発や確認の段階では有用であるが、実環境で使用されている車両へパラメータを適用、反映することが望ましい。単に開発や確認の段階でのパラメータを実車に反映したたけでは、車両の使用環境に適さない場合がある。
 上記の状況から、外界センサに故障が発生した環境に応じたパラメータを、実車の外界センサへ反映させる手法が要望されていた。
 上記課題を解決するために、本発明の一態様の外界センサの更新装置は、車両に搭載された外界センサの故障情報及び故障が発生した地点の環境情報を車両から受信する受信部と、故障情報及び環境情報に応じて、外界センサのパラメータの更新に用いる更新パラメータを決定する更新パラメータ決定部と、故障情報に応じて車両においてパラメータを更新する更新タイミングを決定する更新タイミング調整部と、更新タイミング調整部が決定した更新タイミングに基づいて、更新パラメータを車両に送信する送信部と、を備える。
 本発明の少なくとも一態様によれば、外界センサに故障が発生した環境に応じたパラメータを、決定された適切な更新タイミングで実車の外界センサへ反映させることができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態に係る外界センサの更新装置の制御系の構成例を示すブロック図である。 本発明の第1の実施形態に係るシーン判定部によるシーン判定処理の概要を示す図である。 本発明の第1の実施形態に係る更新パラメータ決定部による更新パラメータ決定処理の概要を示す図である。 本発明の第1の実施形態に係る更新タイミング調整部による更新タイミング調整処理の概要を示す図である。 本発明の第2の実施形態に係る更新パラメータ決定部の構成例を示すブロック図である。 本発明の第2の実施形態に係る更新パラメータ決定部による更新パラメータ決定処理の概要を示す図である。 本発明の第3の実施形態として、第1及び第2の実施形態に係る外界センサの更新装置と車両とを含むシステム全体の構成例を示す図である。 本発明の第3の実施形態として、第1及び第2の実施形態に係る外界センサの更新装置と車両とを含むシステム全体の他の構成例を示す図である。 本発明の第1~第3の実施形態に係る外界センサの更新装置、計器パネル、及び電子制御装置のハードウェア構成例を示すブロック図である。
 本発明の概要は次のとおりである。本発明は、車両に搭載したセンサに発生した不具合データを基に、不具合発生時の状況(時期や地域、走行環境など)に適した更新パラメータ(例えば、カメラ露光情報)を決定する。そして、本発明では、決定した更新パラメータを基に、走行している車両に対してセンサ制御プログラムの更新可否を判断し、判断結果に従って、該当センサを搭載している車両へセンサ制御プログラムの更新を実施する。
 以下、本発明を実施するための形態(以下、「実施形態」と称する)の例について、添付図面を参照して説明する。本明細書及び添付図面において、同一の構成要素又は実質的に同一の機能を有する構成要素には同一の符号を付して重複する説明を省略する。
<第1の実施形態>
 まず、本発明の第1の実施形態に係る外界センサの更新装置の構成について、図1を参照して説明する。外界センサは、車両等の移動体に設置されて移動体周辺の情報を検知するセンサであり、例えば移動体周辺を撮影するカメラである。
[外界センサの更新装置の制御系]
 図1は、第1の実施形態に係る外界センサの更新装置の制御系の構成例を示すブロック図である。図1に示す外界センサの更新装置1は、車両等の移動体に設けられて、外界センサ(図示略)の故障情報(以下「センサ故障情報」)を基に、外界センサのパラメータを更新するものである。外界センサの更新装置1は、データ受信部10と、シーン判定部20と、更新パラメータ決定部30と、更新タイミング調整部40と、データ送信部50とを含んで構成される。
 データ受信部10(受信部の一例)は、外界センサから送信された故障情報、及び故障が発生した地点の環境情報S1を受信し、シーン判定部20と更新タイミング調整部40に送信する機能を有する。
 環境情報S1は、外界センサが故障した環境の再現に資する情報である。例えば、環境情報S1に含まれうる情報は、車種、現行センサパラメータ、センサ故障時の日時、季節(月)、故障要因情報、気象情報(天気、気温、湿度)、車両の現在位置(例えば、GPS(Global Positioning System)位置)、周辺環境物(標識、トンネル、白線、車両、歩行者、障害物)などである。本実施形態では、センサ機能停止(HALT)もセンサ故障と同様に扱う。
 例えば、センサ故障時の日時は、車載ECU(Electronic Control Unit)、又は通信ネットワークを介して外部サーバ(衛星測位システムを含む)から得ることができる。故障要因情報は、逆光、汚れ、降雨、降雪、高温などである。走行地点の気象情報(特に天気)は、通信ネットワークにより車両外から取得可能である。周辺環境物は、外界センサ(例えば、カメラ)の出力、又は車両の位置情報に基づいて予め車両や不図示の外部サーバに用意された地図情報から得られる。また、データ受信部10による環境情報S1の受信環境は、有線接続している環境でもよいし、通信ネットワークに無線接続している環境でもよい、また、外界を認識し故障情報を収集する車両は1台に限定しておらず、本実施形態の機能を有する車両であればよい。
 シーン判定部20は、データ受信部10から受信した環境情報S1を基に、環境情報及びタグ情報S2(後述する図2参照)を生成し、更新パラメータ決定部30に送信する機能を有する。なお、環境情報及びタグ情報S2に含まれる“環境情報”は、データ受信部10から受信した環境情報S1と同じものである。
 更新パラメータ決定部30(更新パラメータ決定部の一例)は、シーン判定部20から受信した環境情報及びタグ情報S2を基に、内部にパラメータを蓄積したデータベースから環境情報に則した更新パラメータS4を選定し、更新タイミング調整部40に送信する機能を有する。更新パラメータは、実使用環境で外界センサが外界を適切に認識できるためのパラメータである。
 更新タイミング調整部40(更新パラメータ調整部の一例)は、データ受信部10から受信した環境情報S1と、更新パラメータ決定部30から受信した更新パラメータS4とを基に、更新前のパラメータと更新パラメータとの差分(パラメータ変更量)を算出する機能を有する。また、更新タイミング調整部40は、パラメータ変更量を基に、パラメータを即時更新可能か、ユーザによる更新許可が必要かを判定し、即時更新可能と判定した場合、更新パラメータS4をデータ送信部50に送信する機能を有する。
 データ送信部50(送信部の一例)は、更新タイミング調整部40から受信した更新パラメータS4を、ネットワークを介して接続した車両に送信し、その車両に取り付けられた外界センサのパラメータを書き替えさせる機能を有する。
 以下に、シーン判定部20と、更新パラメータ決定部30と、更新タイミング調整部40について具体的に説明する。以下の説明では、雪が降らない地域の車を豪雪地帯に輸送してきた場合であって、外界センサとしてカメラ(単眼、ステレオ、可視光、近赤外、中赤外、遠赤外カメラ)を使用した環境を想定して記載する。
[シーン判定処理]
 次に、外界センサの更新装置1が備えるシーン判定部20によるシーン判定処理について、図2を参照して説明する。
 図2は、シーン判定部20によるシーン判定処理の概要を示す図である。車両が豪雪地帯を走行中にフロントガラスに雪が付着し外界センサのカメラ機能が停止した場合、データ受信部10は、車両から外界センサの故障情報(ここでは、カメラ機能の停止情報)と、そのときの環境情報S1を受け取る。例えば、環境情報S1には、停止要因(故障要因情報に相当)、地点情報、日時、天気、気温、湿度、風速、周辺車両の数、白線状況、ガードレールの位置、信号機の有無などの情報が含まれる。
 そして、シーン判定部20が、データ受信部10から故障情報と環境情報S1を受け取る。そして、シーン判定部20は、故障情報(カメラ機能の停止情報)と、環境情報S1に含まれる故障要因情報(停止要因)とを基に、過去の種々の故障情報が保存されたデータベース(図示略)を参照して、過去に同様のカメラ機能が停止するシーンが発生していたかを確認する(S201)。ここでのシーンは、場面、状況、又は条件といった意味であり、例えば、故障情報(例えば、カメラ機能の停止)と故障要因情報(例えば、停止要因)との組み合わせに相当する。過去の故障情報のデータベースは、外界センサの更新装置1に設けられる。もし、上記故障情報に対して過去に同様のシーンが存在しない場合には(S201のNO判定)、シーン判定部20は、環境情報S1を基に、故障情報に対してシーンのタグ付けを実施し(S202)、再度ステップS201のシーン判定を実施する。
 一方、上記故障情報に対して過去に同様のシーンが存在する場合は(S201のYES判定)、シーン判定部20は、上記データベースに登録されているシーンを基に、環境情報S1にタグ情報を加えた、環境情報及びタグ情報S2を更新パラメータ決定部30に送信する。“環境情報及びタグ情報S2”の“環境情報”は、環境情報S1と同じである。タグ情報は、故障情報の属性や特徴を表す情報であり、その内容は、故障要因情報の内容(例えば、逆光、汚れ等)とほぼ同じである。そのため、タグ情報として、故障要因情報をそのまま利用してもよい。
[更新パラメータ決定処理]
 次に、外界センサの更新装置1が備える更新パラメータ決定部30による更新パラメータ決定処理について、図3を参照して説明する。
 図3は、更新パラメータ決定部30による更新パラメータ決定処理の概要を示す図である。更新パラメータ決定部30は、シーン判定部20から受信した環境情報及びタグ情報S2により、過去のパラメータがタグ情報毎に管理されているパラメータデータベース301を参照する(S301)。図中、データベースを「DB」と記載している。そして、更新パラメータ決定部30は、パラメータデータベース301から、例えば現在の地点、季節(月)等にあったパラメータをカメラ調整用の更新パラメータS4として選出する(S302)。また、更新パラメータ決定部30は、パラメータデータベース301に最新の(すなわちステップS202でタグ付けが行われた後の)環境情報及びタグ情報S2を追加する。
 なお、更新パラメータ決定部30は、パラメータデータベース301に上記現在の状況と一致するパラメータがない場合には、パラメータデータベース301に登録済みのパラメータの中で状況が一番近いパラメータを選出するか、又は、予め設定したデフォルト値のパラメータを選出する。パラメータデータベース301に上記現在の状況と一致するパラメータがない場合とは、一例として、ステップS201で過去に同様の故障情報が発生したシーンがないと判定された場合である。
 上記のとおり、更新パラメータ決定部(更新パラメータ決定部30)は、外界センサのパラメータが故障情報及び環境情報(環境情報S1)と対応づけて保存されているパラメータデータベース(パラメータデータベース301)から、故障が発生した地点の環境情報に適したパラメータを更新パラメータ(更新パラメータS4)として選出する。データベースからパラメータを選択する構成の場合、故障情報及び環境情報と対応づけたパラメータを予め用意しておき、故障発生の状況に応じてパラメータを選出すればよいため、複雑なシミュレーションを行う場合と比較して構成を簡素化できる。
 このような更新パラメータ決定処理とすることで、例えば、豪雪地帯でもカメラ停止を起こさないカメラ調整用の更新パラメータを選出することが可能となる。更新パラメータ決定部30は、選出した更新パラメータS4を更新タイミング調整部40に送信する。更新パラメータS4に含まれる情報は、例えば、カメラのシャッタ調整時間、露光ゲイン調整値、これらの学習値などである。学習値は、例えば、環境情報及びタグ情報S2を入力として、外界センサごとに適切なパラメータを出力するように学習した学習モデルにより推論した、シャッタ調整時間、露光ゲイン調整値などの値である。一例として、学習モデルは、機械学習モデルを用いて構成することができる。
 学習を取り入れることで、例えば、当初の値から経年劣化により変化したパラメータを、現在の環境に合わせて微調整できる。調整の例としては、ステレオカメラの左カメラの画角が下方向にずれた場合に、左カメラの出力画像の上側領域を切り出したり、焦点距離を調整したりする等が挙げられる。なお、切り出し領域の調整は、ソフトウェア処理で対応可能である。
[更新タイミング調整処理]
 次に、外界センサの更新装置1が備える更新タイミング調整部40による更新タイミング調整処理について、図4を参照して説明する。
 図4は、更新タイミング調整部40による更新タイミング調整処理の概要を示す図である。更新タイミング調整部40は、データ受信部10から受信する環境情報S1に含まれる現行センサパラメータと、更新パラメータ決定部30から受信する更新パラメータS4を比較し、リプログラミング可否を判定する(S401)。
 現行センサパラメータと更新パラメータS4の差分が予め設定した閾値未満である場合(S401のYES判定)、これらの差分は微細であるため車両の挙動に大きく影響を与えないとして、更新タイミング調整部40は、更新パラメータS4をデータ送信部50へ送信する。プログラムで使用するパラメータを更新することも、リプログラミングの一種である。
 一方、現行センサパラメータと更新パラメータS4の差分が閾値以上である場合(S401のNO判定)、更新タイミング調整部40は更新タイミングの許可が得られたかどうかを判定する(S402)。
 例えば、同じ雪国でも雪が積もりにくい地域を走行していた車両が、豪雪地帯に移動した場合は、運転者の手動による更新許可を得る条件が成立する。雪が積もりにくい環境から豪雪地帯への移動となる場合、外界センサに適したパラメータ(例えば、カメラパラメータ)が大きく変わるため、車両に取り付けたカメラの動きが大きく変化することとなる。この場合、ステップS402において、自動での更新ではなく運転者による更新タイミングの許可がなければ更新しないものとする(S402のNO判定)。ステップS402でNO判定の場合、更新タイミング調整部40は、運転者による更新タイミングの許可が得られるまで本判定処理を繰り返す。
 そして、更新タイミング調整部40は、運転者による更新タイミングの許可が得られ次第(S402のYES判定)、更新パラメータS4をデータ送信部50へ送信する。なお、運転者による更新許可は車両上での操作パネル(例えば、計器パネルを利用)、車両と接続可能な携帯端末でも可能とする。
 データ送信部50では、更新タイミング調整部40から更新パラメータS4を受信すると、故障情報(本例では、カメラ機能の停止情報)を発した車両に対して更新パラメータS4(カメラパラメータ)を送信し、車両側でのセンサパラメータの書き換えを促す。
 以上のとおり、第1の実施形態に係る外界センサの更新装置(外界センサの更新装置1)は、車両に搭載された外界センサ(例えば、カメラ)の故障情報及び故障が発生した地点の環境情報(環境情報S1)を車両から受信する受信部(データ受信部10)と、故障情報及び環境情報に応じて、外界センサのパラメータの更新に用いる更新パラメータを決定する更新パラメータ決定部(更新パラメータ決定部30)と、故障情報に応じて車両においてパラメータを更新する更新タイミングを決定する更新タイミング調整部(更新パラメータ調整部40)と、更新タイミング調整部が決定した更新タイミングに基づいて、更新パラメータを車両に送信する送信部(データ送信部50)と、を備えて構成される。
 上記のように構成された本実施形態によれば、外界センサに故障が発生した環境(故障情報及び環境情報S1)に応じたパラメータを、決定された適切な更新タイミングで実車の外界センサへ反映させることができる。例えば、自走以外の理由で車両が移動した場合など、対象車両が以前走行していた環境と異なる場合であって外界センサの機能停止が発生した場合、本実施形態では、変更後の環境に基づいてソフトウェアで用いられるパラメータを変更するため、外界センサが機能停止(HALT)する回数を減少させることができる。それにより、運転者が計器パネル等に表示されるエラーに対して不要な不安を持つことなく、車両を運転することが可能となる。
<第2の実施形態>
 第2の実施形態に係る外界センサの更新装置は、第1の実施形態に係る外界センサの更新装置1(図1参照)に対して、更新パラメータ決定部に外界センサの機能を検証するシミュレータを適用し、センサ故障時の状況に応じて最適なパラメータを算出する方法機能を設けたものである。以下、第2の実施形態について第1の実施形態と異なる部分を中心に説明する。
[更新パラメータ決定部]
 はじめに、本発明の第2の実施形態に係る外界センサの更新装置1が備える更新パラメータ決定部の構成について、図5を参照して説明する。
 図5は、第2の実施形態に係る更新パラメータ決定部の構成例を示すブロック図である。図5に示す更新パラメータ決定部30Aは、仕様範囲判定部510と、シナリオ生成部520と、結果取得部530と、パラメータ決定部540と、図示しないパラメータDB310(図3参照)とを含んで構成される。
 仕様範囲判定部510は、シーン判定部20から受信した環境情報及びタグ情報S2が外界センサの仕様の範囲内かどうかを判定し、判定結果をシナリオ生成部520又はパラメータ決定部540へ出力する。
 シナリオ生成部520は、故障情報及び環境情報S1に応じて選択されたテスト条件に基づいて、異なるテストシナリオを生成する。シナリオ生成部20は、後述するように、故障発生時の状況を検証するための検証シーンシナリオと、外界センサに期待する期待値シーンシナリオを生成する。テスト条件として、タグ情報S2(例えば、外界センサの故障の要因)を用いることができる。このように、テスト条件に故障の要因を用いることで、故障の要因ごとにシナリオの生成、実行、及び比較を行い、更新パラメータを決定することができる。なお、期待値は、必ずしも外界センサに期待する理想的な値とは限らず、妥協値(現状のシーンに合わせた期待値)のこともある。例えば、ある程度画質を犠牲にしても、とにかくカメラの出力画像が欲しい場合などが該当すると言える。
 結果取得部530は、シナリオ生成部520で生成された各テストシナリオに従って外界センサの挙動をシミュレートし、そのシミュレートの実行結果を取得する。つまり、シミュレートの実行結果は、テストシナリオを実行した場合の外界センサによる認識結果である。
 パラメータ決定部540は、仕様範囲判定部510の判定結果に応じた方法によって更新パラメータS4を決定する。一例として、パラメータ決定部450は、結果取得部530が検証シーンシナリオと期待値シーンシナリオをそれぞれ実行した結果を比較して、更新パラメータS4を決定する。
[更新パラメータ決定処理]
 次に、外界センサの更新装置1が備える更新パラメータ決定部30Aによる更新パラメータ決定処理の詳細について、図6を参照して説明する。
 図6は、更新パラメータ決定部30Aによる更新パラメータ決定処理の概要を示す図である。更新パラメータ決定部30Aには、外界センサの機能を検証するシミュレータを用いている。本実施形態の更新パラメータ決定処理は、大きく分けて、パラメータデータベース参照(S301)と、パラメータ選出(S302)に加え、仕様範囲判定(S601)、検証シーンシナリオ生成(S602)、期待値シーンシナリオ生成(S603)、シナリオ実行(S604、S605)、実行結果比較(S606)から構成される。
 更新パラメータ決定部30Aにおいて、仕様範囲判定部510は、外界センサに故障が発生した際に、シーン判定部20から環境情報及びタグ情報S2を受信する。そして、仕様範囲判定部510は、受信した環境情報及びタグ情報S2の内容が、搭載している車両のカメラにおいて今回のカメラ故障が起きた要因、状況が元々のカメラ仕様の範囲内に収まっているかを確認する(S601)。もし、今回のカメラ故障が起きた要因、状況が元々のカメラ仕様の範囲内に収まっていない場合は(S601のNO判定)、パラメータの調整が不可能なため、パラメータ決定部540は、一番近似するパラメータの値をパラメータデータベース301から選出する(S302)。ここでは、カメラ故障が起きた環境情報S1に一番近い、カメラ仕様範囲内の環境情報に紐づけられたパラメータの値を選出する。
 一方、ステップS601において今回のカメラ故障が起きた要因、状況が元々のカメラ仕様の範囲内であると判定された場合は(S601のYES判定)、パラメータの最適解を求める処理が行われる。すなわち、シナリオ生成部520は、環境情報及びタグ情報S2を基にカメラ故障が発生した環境の再現を行うための、検証シーンシナリオを生成する(S602)。シナリオ生成部520は、故障発生時の環境情報S1(例えば、現行センサパラメータ、故障要因、各種状況等)に基づく検証シーンシナリオを生成する。
 また、シナリオ生成部520は、比較対象として、環境情報及びタグ情報S2を基に、1個のパラメータだけを仕様限界値(上限値又は下限値)まで変更して期待値シーンシナリオを生成する(S603)。例えば、車両周辺の情報のうち本来30%の情報を認識できたものが、豪雪により25%の情報でカメラ機能が停止(HALT)した場合、はじめにカメラが25%の情報を認識できるようにパラメータの値を設定し、そこから徐々に認識できる情報量(例えば、24%、23%・・・)が低下するようにパラメータを設定する。
 なお、外界センサに対して複数のパラメータが存在する場合、複数のパラメータを同時に変更すると、後述するステップS606におけるシナリオ実行後の実行結果比較において的確な比較ができず、それらのパラメータの調整が難しい。そこで、複数のパラメータがある場合は、1つずつパラメータの値を変えて更新パラメータを求めていく。
 次いで、結果取得部530は、検証シーンシナリオと期待値シーンシナリオのそれぞれに従って再現試験を行い、それぞれの再現試験においてカメラによる外界の認識結果をミュレーション(計算)する(S604、S605)。
 次いで、パラメータ決定部540は、結果取得部530で得られた両シナリオの実行結果、すなわちカメラの認識結果を比較する(S606)。
 ここで、パラメータ決定部540は、検証シーンシナリオと期待値シーンシナリオとで実行結果が異なる場合(S606のNO判定)、ステップS603に移行してカメラ機能の緩和(仕様値データの緩和)を行う更新シーン情報S3をシナリオ生成部520に送信する。シナリオ生成部520は、更新シーン情報S3を基に仕様限界値を探る新たな期待値シーンシナリオを生成し(S603)、結果取得部530は、新たな期待値シーンシナリオを実行して実行結果を取得する(S605)。そして、パラメータ決定部540は、再度、検証シーンシナリオと新たな期待値シーンシナリオの実行結果を比較する(S606)。
 パラメータ決定部540は、両シナリオの実行結果が一致するまでカメラ機能の検証を行い、両シナリオの実行結果が一致したとき(S606のYES判定)、発生した環境情報及びタグ情報S2におけるカメラパラメータの最適値を求め、パラメータデータベース301を更新する(S301)。ここで求められたカメラパラメータは、ステップS302でのパラメータ選出前であるため、暫定パラメータである。
 次に、パラメータ決定部540は、更新後のパラメータデータベース301から、シーン判定部20から受信した環境情報及びタグ情報S2にあったパラメータをカメラ調整用の更新パラメータS4として選出する(S302)。
 なお、ステップS603の期待値シーンシナリオ生成では、外界センサの機能が仕様限界値から緩和する方向にパラメータを変更していく方法を説明したが、この例に限らない。例えば、はじめにカメラ機能の検証シーンと近似値とを設定し、更新シーン情報S3により近似値から仕様限界値に近づける方法でも構わない。具体例を挙げると、カメラ機能の仕様限界値が20%のとき、0%から使用限界値の20%へ徐々に上げ、カメラが認識できる情報量が増加するようにパラメータを変化させる。
 このように、第2の実施形態に係る外界センサの更新装置(外界センサの更新装置1)は、更新パラメータ決定部(更新パラメータ決定部30A)は、故障情報及び環境情報(環境情報S1)に応じて選択されたテスト条件(例えば、故障要因)に基づいて、異なるテストシナリオ(検証シーンシナリオ、期待値シーンシナリオ)を生成するシナリオ生成部(シナリオ生成部520)と、各テストシナリオに従って外界センサの挙動をシミュレートした実行結果を取得する結果取得部(結果取得部530)と、を有し、各テストシナリオの実行結果を比較して、更新パラメータ(更新パラメータS4)を決定する。
 上記構成の本実施形態では、故障情報及び環境情報(環境情報S1)に応じて、異なるテストシナリオを生成し、各テストシナリオに従って外界センサの挙動をシミュレートした実行結果を比較することで、環境に応じて適切な更新パラメータを決定することができる。
 上記更新パラメータ決定部(更新パラメータ決定部30A)は、具体的には次のように構成できる。更新パラメータ決定部(更新パラメータ決定部30A)は、シナリオ生成部(シナリオ生成部520)により、上記テストシナリオとして故障発生時の状況を検証するための検証シーンシナリオと、上記テストシナリオとして外界センサに期待する期待値シーンシナリオとを生成し、結果取得部(結果取得部530)により、検証シーンシナリオを実行した結果と、期待値シーンシナリオを実行した結果とを取得する。そして、更新パラメータ決定部は、パラメータ更新部(パラメータ更新部540)により、検証シーンシナリオを実行した結果と、期待値シーンシナリオを実行した結果とを比較して、上記更新パラメータを決定する。
 ただし、最適なパラメータを求める方法はこの実施形態の例に限らない。例えば、外界センサの更新装置1は、他の実車における故障に関する類似の情報(故障情報、環境情報)を、当該他の実車から直接又は図示しないサーバを介して取得し、最適パラメータ(更新パラメータ)としてもよい。
<第3の実施形態>
 次に、本発明の第3の実施形態として、外界センサの更新装置と車両とを含むシステム全体の構成について図7を参照して説明する。
 図7は、上述した第1及び第2の実施形態に係る外界センサの更新装置1と車両700とを含むシステム全体の構成例を示す図である。図7に示す車両700には、自車の運転を制御する運転制御装置730が搭載されている。運転制御装置730は、演算処理装置731と、ネットワークインターフェース732を備える。運転制御装置730には、例えば、電子制御ユニット(ECU:Electronic Control Unit)等のマイクロコントローラが用いられる。
 演算処理装置731は、車両700の走行中に、外界センサを含むセンサ類710、図示しない他のECU等から取得したデータに基づいて、運転制御を行う。そして、演算処理装置731は、クラウド750上の外界センサの更新装置1から必要なプログラムやパラメータを、OTA(Over The Air)により取得する。外界センサの更新装置1は、プログラムサーバの一種であるとも言える。
 一般的に、車両には、図示しないエンジン制御用のECUや、先進運転支援システム用のECU(ADASECU)など、複数のECUが設けられている。運転制御装置730は、車両100に設けられた複数のECUを統括的に制御することで、車両100の運転(走行)を制御する。本明細書では、車両の制御に係わるECUを総称して「車両制御装置」とも表記する。
 ネットワークインターフェース732は、インターネット等の広域ネットワークNを介してクラウド750上の外界センサの更新装置1と通信できるように構成されている。また、ネットワークインターフェース732は、車両700内の車載ネットワーク(図示略)を介して、図示しない他のECU又は他の装置と通信可能に構成されている。
 計器パネル740には、速度メータなどの計器類や故障警告灯(Malfunction Indicator Lamp:MIL)などが配置されている。計器パネル740は、表示による出力機能の他に、運転者の入力操作を受け付ける入力機能を有しており、運転者インターフェースの一例である。なお、出力機能は、音声による出力でもよい。
 外界センサの更新装置1は、広域ネットワークNを介して車両700から、外界センサの故障情報や環境情報S1(図1)、車両の現在位置を受信したり、クラウド750上において気象情報や地図情報などの各種情報を受信したりする。また、外界センサの更新装置1は、広域ネットワークNを利用して、ネットワークインターフェース732を介して運転制御装置730の演算処理装置731と通信を行う。そして、外界センサの更新装置1が演算処理装置731に更新パラメータS4を送信すると、演算処理装置731からセンサ類710の中の外界センサに更新パラメータS4が送信され、外界センサのパラメータが更新される。
[第3の実施形態の変形例]
 次に、本発明の第3の実施形態の変形例として、外界センサの更新装置と車両とを含むシステム全体の他の構成について図8を参照して説明する。
 図8は、上述した第1及び第2の実施形態に係る外界センサの更新装置1と車両700とを含むシステム全体の他の構成例を示す図である。図7では、外界センサの更新装置1が、外界センサが搭載された車両700の内部に設けられた例が示されている。
 外界センサの更新装置1は、CAN(Controller Area Network)などの有線の車載ネットワークを利用して、ネットワークインターフェース732を介して運転制御装置730の演算処理装置731と通信できるように構成されている。車載ネットワークの一部に無線が用いられていてもよい。
 外界センサの更新装置1は、車載ネットワークを介して車両700から、外界センサの故障情報や環境情報S1(図1)、車両の現在位置を受信したり、クラウド750から気象情報や地図情報などの各種情報を受信したりする。外界センサの更新装置1が演算処理装置731に更新パラメータS4を送信すると、演算処理装置731からセンサ類710の中の外界センサに更新パラメータS4が送信され、外界センサのパラメータが更新される。
<各装置のハードウェア構成>
 次に、上述した第1乃至第3の実施形態に係る外界センサの更新装置1、計器パネル、及び電子制御ユニットのハードウェア構成について、図9を参照して説明する。
 図9は、本発明の第1~第3の実施形態に係る外界センサの更新装置1、計器パネル、及び電子制御ユニットのハードウェア構成例を示すブロック図である。計算機900は、外界センサの更新装置1、計器パネル、及び電子制御ユニットとして動作可能なコンピューターとして用いられるハードウェアの一例である。計算機900は、バスにそれぞれ接続されたCPU(Central Processing Unit)901、ROM(Read Only Memory)902、及びRAM(Random Access Memory)903、表示部905、及び操作部906を備える。さらに、計算機900は、不揮発性ストレージ907及びネットワークインターフェース908を備える。
 各装置の機能や使用目的に合わせて各ブロックは取捨選択されてもよい。例えば、外界センサの更新装置1や電子制御ユニットにおいて、計算機900は、表示部905や操作部906が接続されていない形態でもよい。
 CPU901は、上述した実施形態に係る各機能を実現するソフトウェアのプログラムコードをROM902から読み出してRAM903に展開して実行する。もしくは、CPU901は、プログラムコードをROM902から直接読み出してそのまま実行する場合もある。なお、計算機900は、CPU901の代わりに、MPU(Micro-Processing Unit)等の処理装置を備えてもよい。RAM903には、CPU901による演算処理の途中に発生した変数やパラメータ等が一時的に書き込まれる。
 不揮発性ストレージ907としては、例えば、HDD(Hard Disk Drive)、SSD、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、不揮発性のメモリカード等を用いることができる。この不揮発性ストレージ907には、OS(Operating System)、各種のパラメータの他に、計算機900を機能させるためのプログラム等が記録される。外界センサの更新装置1の外界センサ更新処理にかかるプログラムは、不揮発性ストレージ907に保存される。
 外界センサの更新装置1、計器パネル、及び電子制御ユニットの各機能は、CPU901がROM902又は不揮発性ストレージ907に格納された各機能に対応するプログラムを実行することにより実現される。プログラムは、コンピューターが読取り可能なプログラムコードの形態で格納され、CPU901は、当該プログラムコードに従った動作を逐次実行する。つまり、ROM902又は不揮発性ストレージ907は、コンピューターによって実行されるプログラムを格納した、コンピューター読取可能な非一過性の記録媒体の一例として用いられる。
 ネットワークインターフェース908は、サーバやECUなどの他の装置との間で行われる通信の制御を行う通信デバイス等により構成される。ネットワークインターフェース732は、ネットワークインターフェース908により実現される。
<変形例>
 上述した実施形態では、外界センサにカメラを用いた例を説明したが、この例に限られない。外界センサは、ミリ波レーダ、LiDAR(Light Detection And Ranging)、ソナー、TOF(Time Of Flight)センサ、又はそれらを組み合わせたセンサなどでもよい。
 また、上記の実施形態では、本発明を車両制御、例えば、先進運転支援システム(Advanced Driver Assistance System:ADAS)や自動運転(Autonomous Driving:AD)向けの車載ECUに適用して好適である。ただし、本発明は、ADAS、AD向けの車載ECUに限定されるものではない。
 さらに、本発明は上述した実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。例えば、上述した実施形態は本発明を分かりやすく説明するためにその構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成要素を備えるものに限定されない。また、ある実施形態の構成の一部を他の実施形態の構成要素に置き換えることが可能である。また、ある実施形態の構成に他の実施形態の構成要素を加えることも可能である。また、各実施形態の構成の一部について、他の構成要素の追加又は置換、削除をすることも可能である。
 また、上記の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。ハードウェアとして、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの広義のプロセッサデバイスを用いてもよい。
 また、本明細書において、時系列的な処理を記述する処理ステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的、あるいは個別に実行される処理(例えば、オブジェクトによる処理)をも含むものである。また、時系列的な処理を記述する処理ステップについては、処理結果に影響を及ぼさない範囲で、処理順序を変更してもよい。
 10…データ受信部、20…シーン判定部、30…更新パラメータ決定部、40…更新タイミング調整部、50…データ送信部、100…車両、310…パラメータデータベース、510…仕様範囲判定部、520…シナリオ生成部、530…結果取得部、540…パラメータ決定部、S1…環境情報、S2…環境情報及びタグ情報、S3…更新シーン情報、S4…更新パラメータ

Claims (7)

  1.  車両に搭載された外界センサの故障情報及び故障が発生した地点の環境情報を前記車両から受信する受信部と、
     前記故障情報及び前記環境情報に応じて、前記外界センサのパラメータの更新に用いる更新パラメータを決定する更新パラメータ決定部と、
     前記故障情報に応じて前記車両において前記パラメータを更新する更新タイミングを決定する更新タイミング調整部と、
     前記更新タイミング調整部が決定した更新タイミングに基づいて、前記更新パラメータを前記車両に送信する送信部と、を備える
     外界センサの更新装置。
  2.  前記更新パラメータ決定部は、
     前記故障情報及び前記環境情報に応じて選択されたテスト条件に基づいて、異なるテストシナリオを生成するシナリオ生成部と、
     各テストシナリオに従って前記外界センサの挙動をシミュレートした実行結果を取得する結果取得部と、を有し、
     各テストシナリオの実行結果を比較して、前記更新パラメータを決定する、
     請求項1に記載の外界センサの更新装置。
  3.  前記更新パラメータ決定部は、
     前記シナリオ生成部により、前記テストシナリオとして故障発生時の状況を検証するための検証シーンシナリオと、前記テストシナリオとして前記外界センサに期待する期待値シーンシナリオとを生成し、
     前記結果取得部により、前記検証シーンシナリオを実行した結果と、前記期待値シーンシナリオを実行した結果とを取得し、
     前記検証シーンシナリオを実行した結果と、前記期待値シーンシナリオを実行した結果とを比較して、前記更新パラメータを決定する、
     請求項2に記載の外界センサの更新装置。
  4.  前記テスト条件として、前記外界センサの故障の要因が用いられる
     請求項2に記載の外界センサの更新装置。
  5.  前記更新パラメータ決定部は、前記外界センサのパラメータが前記故障情報及び前記環境情報と対応づけて保存されているパラメータデータベースから、前記故障が発生した地点の環境情報に適したパラメータを前記更新パラメータとして選出する
     請求項1に記載の外界センサの更新装置。
  6.  前記外界センサは、前記車両の周辺を撮像するカメラである
     請求項1に記載の外界センサの更新装置。
  7.  外界センサの更新装置による外界センサの更新方法であって、
     車両に搭載された外界センサの故障情報及び故障が発生した地点の環境情報を前記車両から受信する処理と、
     前記故障情報及び前記環境情報に応じて、前記外界センサのパラメータの更新に用いる更新パラメータを決定する処理と、
     前記故障情報に応じて前記車両において前記パラメータを更新する更新タイミングを決定する処理と、
     前記更新タイミングに基づいて、前記更新パラメータを前記車両に送信する処理と、を含む
     を含む外界センサの更新方法。
PCT/JP2022/028712 2022-07-26 2022-07-26 外界センサの更新装置及び外界センサの更新方法 WO2024023906A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028712 WO2024023906A1 (ja) 2022-07-26 2022-07-26 外界センサの更新装置及び外界センサの更新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028712 WO2024023906A1 (ja) 2022-07-26 2022-07-26 外界センサの更新装置及び外界センサの更新方法

Publications (1)

Publication Number Publication Date
WO2024023906A1 true WO2024023906A1 (ja) 2024-02-01

Family

ID=89705769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028712 WO2024023906A1 (ja) 2022-07-26 2022-07-26 外界センサの更新装置及び外界センサの更新方法

Country Status (1)

Country Link
WO (1) WO2024023906A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039687A (ja) * 2019-09-05 2021-03-11 株式会社日立製作所 映像処理装置、映像処理システムおよび映像処理方法
JP2021078046A (ja) * 2019-11-12 2021-05-20 キヤノン株式会社 撮像装置及びその制御方法とプログラム
JP2022014743A (ja) * 2020-07-07 2022-01-20 株式会社東芝 撮影装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039687A (ja) * 2019-09-05 2021-03-11 株式会社日立製作所 映像処理装置、映像処理システムおよび映像処理方法
JP2021078046A (ja) * 2019-11-12 2021-05-20 キヤノン株式会社 撮像装置及びその制御方法とプログラム
JP2022014743A (ja) * 2020-07-07 2022-01-20 株式会社東芝 撮影装置

Similar Documents

Publication Publication Date Title
CN109421731B (zh) 可信度检验模块、驾驶辅助系统和校准传感器的方法
Holstein et al. Ethical and social aspects of self-driving cars
CN111240312B (zh) 用于自动驾驶车辆的基于学习的动态建模方法
EP3757587B1 (en) Flexible test board to improve sensor i/o coverage for autonomous driving platform
US11536569B2 (en) IMU data offset compensation for an autonomous vehicle
US20200125354A1 (en) Software update system, software update method, and software update server
US20200139989A1 (en) Vehicle Control Method, Apparatus, and Device
KR20190121275A (ko) 실내 측위 시스템, 장치 및 방법
WO2020079698A1 (en) Adas systems functionality testing
JP6973351B2 (ja) センサ校正方法、及びセンサ校正装置
US11198444B2 (en) Automated factory testflow of processing unit with sensor integration for driving platform
US11117591B2 (en) System and method for recalibration of an uncalibrated sensor
WO2014054288A1 (ja) 車両用ナビゲーションシステム
US11403949B2 (en) System for predicting vehicle behavior
WO2020029580A1 (zh) 训练用于生成自动驾驶策略的控制策略模型的方法和装置
KR20190114496A (ko) 차량 시뮬레이션 방법 및 장치
CN110869865B (zh) 用于运行较高程度自动化的车辆(haf)、尤其高度自动化车辆的方法
WO2024023906A1 (ja) 外界センサの更新装置及び外界センサの更新方法
EP3896490B1 (en) Systems and methods to enhance early detection of performance induced risks for an autonomous driving vehicle
WO2021189373A1 (en) Time determination of an inertial navigation system in autonomous driving systems
US20200327234A1 (en) Boot failure recovery scheme for hardware-based system of autonomous driving vehicles
EP3618013A1 (en) System for generating vehicle sensor data
KR101601074B1 (ko) Ecu 업데이트 장치, ecu 업데이트 방법 및 이를 이용한 ecu 업데이트 네트워크
CN112965917A (zh) 用于自动驾驶的测试方法、装置、设备和存储介质
US20230276133A1 (en) Exposure time control using map data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953004

Country of ref document: EP

Kind code of ref document: A1