WO2024022527A1 - 内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质 - Google Patents

内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质 Download PDF

Info

Publication number
WO2024022527A1
WO2024022527A1 PCT/CN2023/110124 CN2023110124W WO2024022527A1 WO 2024022527 A1 WO2024022527 A1 WO 2024022527A1 CN 2023110124 W CN2023110124 W CN 2023110124W WO 2024022527 A1 WO2024022527 A1 WO 2024022527A1
Authority
WO
WIPO (PCT)
Prior art keywords
information collection
collection component
information
distance
component
Prior art date
Application number
PCT/CN2023/110124
Other languages
English (en)
French (fr)
Inventor
杨武
林晋生
盛元一
Original Assignee
常州联影智融医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州联影智融医疗科技有限公司 filed Critical 常州联影智融医疗科技有限公司
Publication of WO2024022527A1 publication Critical patent/WO2024022527A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00098Deflecting means for inserted tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements

Definitions

  • This specification relates to the field of medical devices, and in particular to endoscope systems and control methods thereof, endoscope control systems, control devices and computer-readable storage media.
  • an endoscope system and its control method an endoscope control system, a control device and a computer-readable storage medium are provided.
  • the system includes: an information collection component that can move within a pre-examination site of a detection object and a channel corresponding to the pre-inspection site; and a sensor.
  • a unit installed on the information collection component, the information collection component is used to obtain the relative position information of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site; and a controller, and
  • the sensor unit is electrically connected to the information collection component, and the controller is used to determine the traveling parameters of the information collection component based on the relative position information, and to control the movement trajectory of the information collection component based on the travel parameters.
  • the relative position information is collected by the sensor unit in the information collection component, and the relative position information includes distance information relative to the pre-inspection site or relative to a channel corresponding to the pre-inspection site. distance information.
  • the controller is used to determine the traveling parameters of the information collection component based on the relative position information.
  • the controller determines the location of the information collection component and the information collection component based on the distance information.
  • the deviation state of the component wherein the deviation state represents whether the information collection component deviates from the center line of the pre-inspection site, or whether it deviates from the center line of the channel corresponding to the pre-inspection site;
  • the controller is also used to determine the traveling parameters of the information collection component according to the location of the information collection component and the deviation state of the information collection component.
  • the endoscope system further includes: a camera unit installed on the information collection component; the relative position information also includes image information of the pre-examination site collected by the camera unit or related to The image information of the channel corresponding to the pre-inspection part; the controller is also used to determine the information collection component according to the position of the information collection component, the deviation state of the information collection component and the image information travel parameters.
  • the traveling parameters include any one or more of the traveling direction, shape, softness and hardness of the information collection component, and the posture of the front end of the information collection component.
  • the distance information includes: the first distance information of the front end of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site, and the side of the information collection component.
  • determining the traveling parameters of the information collection component based on the relative position information, and controlling the motion trajectory of the information collection component based on the travel parameters includes: if the controller is based on the first If the first distance information and the second distance information determine that the information collection component is at the target position, then the information collection component is controlled to continue moving forward; if the controller determines based on the first distance information and the second distance information If it is determined that the information collection component is not at the target position, and it is determined that the information collection component is in a deviation state according to the second distance information, then control the information collection component to bend to the other side opposite to its deviation direction; if The controller determines that the information collection component is not in the target position based on the first distance information and the second distance information, and determines that the information collection component is not in a deviation state based on the second distance information, Then the information collection component is controlled to continue moving forward along its own axis.
  • the sensor unit includes a first sensor and a second sensor; the first sensor is installed on the front end of the information collection component, and the first sensor is used to obtain the information of the front end of the information collection component. A plurality of first distance information at different positions of the end face; the second sensor is installed on the side end of the information collection component, and the second sensor is used to obtain the side end of the information collection component along its own Multiple second distance information at different positions in the circumferential direction; if all the first distance information is greater than the first preset value, and all the second distance information is greater than the second preset value, then the The controller determines that the information collection component is at the target position.
  • the controller is further configured to obtain the second distance information corresponding to the first end and the second end of the information collection component; if the second distance information corresponding to the first end If the difference between the second distance information corresponding to the second end and the second distance information corresponding to the second end is greater than the third preset value, it is determined that the information collection component is in a deviation state; if the second distance information corresponding to the first end and If the difference between the second distance information corresponding to the second end is less than the third preset value, it is determined that the information collection component is not in a deviation state.
  • the sensor unit further includes a third sensor.
  • the third sensor is installed on the information collection component and electrically connected to the controller.
  • the third sensor is used to obtain the information collection component.
  • the information collection component includes a body and an electromagnetic component surrounding the periphery of the body; the electromagnetic component includes at least two electromagnetic units spaced apart along the axial direction of the information collection component, and for Elastic members connected to two adjacent electromagnetic units in the axial direction; the controller is used to control the relative movement of the two adjacent electromagnetic units in the axial direction, so that through the elastic The elastic deformation of the component changes the softness and hardness of the information collection component.
  • the controller determines that the movement distance is within a preset range, it controls two adjacent electromagnetic units to move away until the distance between two adjacent electromagnetic units is greater than The fourth preset value; if the controller determines that the movement distance is outside the preset range, it controls two adjacent electromagnetic units to move closer until the distance between the two adjacent electromagnetic units Less than the fifth preset value.
  • the electromagnetic component further includes an electromagnetic on-off unit, which is electrically connected to the electromagnetic unit and used to control the magnetism of the electromagnetic unit so that two adjacent electromagnetic units Produce magnetic attraction or magnetic repulsion.
  • the controller determines that the information collection component is at the target position based on the first distance information and the second distance information, it controls two adjacent electromagnetic units to move closer. , until the distance between two adjacent electromagnetic units is less than the sixth preset value; if the controller determines that the information collection component is not in the If the target position is reached, the two adjacent electromagnetic units are controlled to move away from each other until the distance between the two adjacent electromagnetic units is greater than the seventh preset value.
  • One embodiment of the present specification provides a method for controlling an endoscope system.
  • the method includes: obtaining relative position information of an information collection component relative to a pre-inspection site or a channel corresponding to the pre-inspection site, and based on the relative position information
  • the position information determines the traveling parameters of the information collection component; and controls the movement trajectory of the information collection component based on the traveling parameters.
  • the relative position information also includes image information of the pre-inspection site collected by the camera unit of the information collection component or image information of a channel corresponding to the pre-inspection site. Determining the travel parameters of the information collection component based on the relative position information includes: determining the travel parameters of the information collection component based on the location of the information collection component, the deviation state of the information collection component, and the image information.
  • the traveling parameters include any one or more of the traveling direction, shape, softness and hardness of the information collection component, and the posture of the front end of the information collection component.
  • the distance information includes: the first distance information of the front end of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site, and the side of the information collection component.
  • determining the traveling parameters of the information collection component based on the relative position information, and controlling the motion trajectory of the information collection component based on the travel parameters includes: if based on the first distance information and The second distance information determines If the information collection component is at the target position, control the information collection component to continue moving forward; if it is determined that the information collection component is not at the target position according to the first distance information and the second distance information, and according to If the second distance information determines that the information collection component is in a deviation state, the information collection component is controlled to bend to the other side opposite to the deviation direction; if it is determined based on the first distance information and the second distance information If the information collection component is not at the target position, and it is determined according to the second distance information that the information collection component is not in a deviation state, the information collection component is controlled to continue moving forward along its own axis.
  • the front end of the information collection component is provided with the first sensor, and the first sensor is used to obtain a plurality of the first distances at different positions of the end surface of the front end of the information collection component.
  • Information the side end of the information collection component is provided with the second sensor, and the second sensor is used to acquire a plurality of the second sensors at different positions along the circumferential direction of the side end of the information collection component.
  • Distance information if all the first distance information is greater than the first preset value, and all the second distance information is greater than the second preset value, then the information collection component is at the target position.
  • the second distance information corresponding to the first end and the second end of the information collection component is obtained; if the second distance information corresponding to the first end corresponds to the second end The difference between the second distance information is greater than the third preset value, then the information collection component is in a deviation state; if the second distance information corresponding to the first end and all the information corresponding to the second end If the difference between the second distance information is less than the third preset value, the information collection component is not in a deviation state.
  • the third sensor is installed on the information collection component, and the third sensor is used to detect when the information collection component enters the pre-inspection part of the detection object or is in contact with the detection object.
  • the information collection component includes a body and an electromagnetic component surrounding the periphery of the body; the electromagnetic component includes at least two electromagnetic units spaced apart along the axial direction of the information collection component, and for Elastic members connecting two adjacent electromagnetic units in the axial direction; controlling the relative movement of the two adjacent electromagnetic units in the axial direction so that the elastic deformation of the elastic members changes.
  • the softness and hardness of the information collection component is not limited to, but not limited to, but not limited to the electromagnetics, the electromagnetic component, and for Elastic members connecting two adjacent electromagnetic units in the axial direction; controlling the relative movement of the two adjacent electromagnetic units in the axial direction so that the elastic deformation of the elastic members changes.
  • two adjacent electromagnetic units are controlled to move away until the distance between the two adjacent electromagnetic units is greater than a fourth preset value. ; If the moving distance is outside the preset range, control the two adjacent electromagnetic units to move closer until the distance between the two adjacent electromagnetic units is less than the fifth preset value.
  • the electromagnetic component further includes an electromagnetic on-off unit, which is electrically connected to the electromagnetic unit and used to control the magnetism of the electromagnetic unit so that two adjacent electromagnetic units Produce magnetic attraction or magnetic repulsion.
  • two adjacent electromagnetic units are controlled to move closer until the adjacent The distance between the two electromagnetic units is less than the sixth preset value; if it is determined according to the first distance information and the second distance information that the information collection component is not at the target position, control two adjacent Each of the electromagnetic units moves away from each other until the distance between two adjacent electromagnetic units is greater than a seventh preset value.
  • One embodiment of the present specification provides an endoscope control system, including: an acquisition module configured to acquire relative position information of an information collection component relative to a pre-examination site or to a channel corresponding to the pre-examination site; a processing module , configured to determine the traveling parameters of the information collection component based on the relative position information; and a control module configured to control the movement trajectory of the information collection component based on the travel parameters.
  • the endoscope control system is configured to perform any of the above-described control methods for the endoscope system.
  • One embodiment of this specification provides an endoscope control device, including at least one storage medium and at least one processor. At least one storage medium is used to store computer instructions; at least one processor is used to execute computer instructions to implement the above-mentioned endoscope. Mirror system control method.
  • One embodiment of the present specification provides a computer-readable storage medium, wherein the storage medium stores computer instructions. After the computer reads the computer instructions in the storage medium, the computer executes the control method of the endoscope system.
  • Figure 1 is a schematic system structure diagram of an endoscope system according to some embodiments of this specification.
  • Figure 2 is a schematic structural diagram of the information collection component, the first sensor and the second sensor of the endoscope system according to some embodiments of this specification;
  • Figure 3 is a top view of the information collection component, the first sensor and the second sensor of the endoscope system according to some embodiments of this specification;
  • Figure 4 is an exemplary illustration of an endoscope moving to different positions within a subject's body according to some embodiments of the present disclosure. intention;
  • Figure 5 is an exemplary schematic diagram of an endoscope moving to different positions in the body of a detection subject according to other embodiments of this specification;
  • Figure 6 is an exemplary schematic diagram of an endoscope moving to different deviation states at different positions within the body of a detection subject according to some embodiments of this specification;
  • Figure 7 is an exemplary schematic diagram of an endoscope moving to different deviation states at different positions within the body of a detection subject according to other embodiments of this specification;
  • Figure 8 is a cross-sectional view of an information collection component, a first sensor and a second sensor of an endoscope system according to some embodiments of this specification;
  • Figure 9 is an exemplary schematic diagram of an electromagnetic assembly of an endoscope system according to some embodiments of the present specification.
  • Figure 10 is an exemplary schematic diagram of different locations within the body of a detection subject according to some embodiments of this specification.
  • Figure 11 is an exemplary flow chart of a control method of an endoscope system according to some embodiments of this specification.
  • Figure 12 is an exemplary flowchart of determining travel parameters of an information collection component according to some embodiments of this specification.
  • Figure 13 is an exemplary schematic diagram of the movement trajectory of the control information collection component shown according to some embodiments of this specification.
  • Figure 14 is an exemplary block diagram of an endoscope control device according to some embodiments of the present specification.
  • Figure 15 is an exemplary block diagram of an endoscope control system according to some embodiments of the present specification.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • the endoscope system may include an information collection component 100, a sensor unit (not shown), and a controller (not shown).
  • the information collection component 100 refers to a component that can be used to move and collect information in the pre-inspection part of the detection object or in the channel corresponding to the pre-inspection part.
  • the information collection component 100 may include a camera unit.
  • the camera unit can be installed at the front end of the information collection component 100 to obtain real-time image information of the pre-inspection part of the detection object or the channel corresponding to the pre-inspection part, so that the operator can better observe and operate.
  • the structural shape of the information collection component 100 is not limited.
  • the cross-sectional shape of the information collection component 100 may be circular, elliptical, or any other shape.
  • the information collection component 100 can move within the pre-inspection site of the detection object or in the channel corresponding to the pre-inspection site.
  • the pre-examination site refers to the body part of the test subject (eg, patient) that needs to undergo endoscopy.
  • the pre-examination site may be an organ or tissue of the detection object, such as stomach, lung, bladder, etc.
  • the channel corresponding to the pre-examination site refers to the path or channel that the information collection component 100 of the endoscope system passes through when entering the pre-examination site. For example, when the pre-examination site is the stomach, the information collection component 100 needs to enter the stomach through the esophagus.
  • the esophagus is the passage corresponding to the pre-examination site.
  • the pre-examination site is the lung
  • the information collection component 100 needs to enter the lung through the trachea.
  • the trachea is the passage corresponding to the pre-examination site.
  • the pre-examination site is the bladder
  • the information collection component 100 needs to enter the bladder through the urethra.
  • the urethra is the channel corresponding to the pre-examination site.
  • the sensor unit refers to a unit that can detect the relative position information of the information collection component 100 relative to the pre-check site, or can detect the relative position information of the information collection component 100 relative to the channel corresponding to the pre-check site.
  • the sensor unit may include one or more sensors, such as 2, 3, 4, etc.
  • the sensor unit may be installed on the information collection assembly 100 .
  • the embodiment of the present application does not place too many restrictions on the installation position of the sensor unit on the information collection assembly 100.
  • one or more sensors of the sensor unit may be installed at the front end of the information collection assembly 100 or at the side end of the information collection assembly 100 .
  • multiple sensors of the sensor unit can be installed on the front end and the side end of the information collection assembly 100 respectively.
  • the camera unit or sensor unit of the information collection component 100 can be used to obtain the relative position information of the information collection component 100 relative to the pre-inspection site, and the relative position information of the information collection component 100 relative to the channel corresponding to the pre-inspection site. .
  • the relative position information may include at least distance information.
  • the relative position information may be the distance information of the information collection component 100 relative to the channel corresponding to the pre-inspection site.
  • the relative position information may be the distance information of the information collection component 100 relative to the pre-inspection site.
  • the distance information may include the first distance information of the front end of the information collection component 100 relative to the pre-check site or relative to the channel corresponding to the pre-check site, and the side end of the information collection component 100 relative to the pre-check site or relative to the pre-check site.
  • the first distance information refers to the distance between the front end of the information collection component 100 and the pre-inspection site or the channel corresponding to the pre-inspection site.
  • the second distance information refers to the distance between the side end of the information collection component 100 relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site.
  • the relative position information may also include the pre-inspection site collected by the information collection component 100 and the image information of the channel corresponding to the pre-inspection site. For example, based on the image information of the pre-examination site (eg, stomach) and the channel corresponding to the pre-examination site (eg, esophagus) collected by the imaging unit of the information collection component 100 .
  • the pre-examination site eg, stomach
  • the channel corresponding to the pre-examination site eg, esophagus
  • a controller refers to an element that can be used to acquire data, process data, and control other components of the endoscopic system.
  • the controller may be electrically connected to the information collection component 100 or the sensor unit to obtain data collected by the information collection component 100 or the sensor unit.
  • the controller can directly obtain the image information of the pre-inspection site collected by the information collection component 100 and the channel corresponding to the pre-inspection site.
  • the controller may include an acquisition module, a processing module and a control module, and the three may be connected through wired or wireless communication.
  • the acquisition module is used to acquire data collected by the sensor unit, image information collected by the camera unit of the information collection component 100, etc.
  • the acquisition module may obtain relative position information of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site.
  • the processing module is used to process the data obtained by the data module. For example, the processing module may determine travel parameters of the information collection component based on the relative position information.
  • the control module can be used to control the motion trajectory of the information collection component based on the traveling parameters.
  • the control module may also control elements of the acquisition module, processing module, and other components of the endoscopic system based on computer instructions. It should be noted that the acquisition module, processing module and control module can be independent modules or integrated together.
  • the endoscope system may further include a display to display image information collected by the camera unit of the information collection component.
  • Electrical connection refers to a connection method in which various components in a circuit are connected based on wires so that current can flow and functions such as data transmission and control can be realized.
  • the controller may be used to determine the traveling parameters of the information collection component 100 based on the relative position information, and control the motion trajectory of the information collection component 100 based on the traveling parameters.
  • Travel parameters refer to relevant parameters of the information collection component 100 during travel.
  • the traveling parameters may include any one or more of the traveling direction, shape, softness and hardness of the information collection assembly 100, the attitude of the front end of the information collection assembly 100, and the traveling speed.
  • the softness and hardness of the information collection component 100 refers to the overall softness and hardness of the information collection component 100 . It can be understood that when the information collection component 100 passes through the bend of the channel corresponding to the pre-inspection site, if the information collection component 100 is relatively soft, it will be easier to pass through the bend, and it can effectively prevent the information collection component 100 from being damaged by the surrounding side
  • the tube wall collides hard with the tissue or organ of the test object, thereby improving the comfort of the test object during endoscopy.
  • the posture of the front end of the information collection component 100 refers to the orientation of the front end of the information collection component 100, especially the orientation of the camera unit, so as to determine the location of the information collection component 100 based on the image information.
  • the imaging unit faces the area to be detected in the pre-inspection part, the image information of the area to be detected in the pre-inspection part can be obtained more accurately.
  • the controller determines the traveling parameters of the information collection component 100 based on the relative position information, which can be implemented based on a variety of methods. For example, based on the relative position information, the controller may determine travel parameters of the information collection component 100 based on historical data.
  • the relative position information may include distance information of the information collection component 100 relative to the pre-inspection site or distance information relative to the channel corresponding to the pre-inspection site. Further, the controller may determine the location of the information collection component 100 based on the distance information. The position and deviation state of the information collection component 100 are at. Furthermore, the controller determines the traveling parameters of the information collection component 100 based on the position of the information collection component 100 and the deviation state of the information collection component 100 .
  • the deviation state can be used to characterize whether the information collection component 100 deviates from the center line of the pre-inspection site, or whether it deviates from the center line of the channel corresponding to the pre-inspection site.
  • the deviation state can be used to characterize whether the information collection component 100 deviates from the center line of the pre-inspection site, or whether it deviates from the center line of the channel corresponding to the pre-inspection site.
  • the controller can determine the location of the information collection component 100 based on the distance information (including the first distance information and the second distance information) and through data analysis, algorithm models, etc. For example, the controller can process the distance information through an algorithm model (such as a machine learning model, etc.) to determine the location of the information collection component 100 .
  • algorithm model such as a machine learning model, etc.
  • the controller can control the softness and hardness of the information collection component 100 to make the information collection component 100 softer, so that the information collection component 100 can more smoothly pass through the bends of the pre-inspection part or the bends of the channel corresponding to the pre-inspection part. fold. This prevents the information collection component 100 from causing damage to the pre-inspection part or the channel corresponding to the pre-inspection part.
  • the controller may determine the traveling direction of the information collection component 100 (for example, the side opposite to the deviation direction).
  • the information collection component 100 is at the bend of the pre-inspection part or the bend of the channel corresponding to the pre-inspection part, and the information collection component 100 is in a deviation state.
  • the controller can control the shape of the information collection component 100 (such as the bending angle, etc.) so that the shape matches the bend, so as to more smoothly pass through the bend of the pre-inspection part or the channel corresponding to the pre-inspection part. The bend.
  • the controller can also control the posture of the front end of the information collection component 100 so that the information collection component 100 can obtain clearer image information of the pre-inspection part or the channel corresponding to the pre-inspection part with a wider field of view.
  • the controller can determine the information collection component 100 based on the location of the information collection component 100, the deviation state of the information collection component 100, and the image information of the pre-inspection site or the image information of the channel corresponding to the pre-inspection site. travel parameters.
  • the controller can determine the distance information of the information collection component relative to the pre-inspection site or the distance information relative to the channel corresponding to the pre-inspection site through the image information.
  • the controller determines the traveling parameters of the information collection assembly 100 based on the distance information, the position of the information collection assembly 100 and the deviation state of the information collection assembly 100, thereby further improving the accuracy of the endoscope system during travel.
  • the image information can also be fed back to the operator in real time, and the operator can also control the information collection component 100 based on the image information to meet the operational needs of different operators.
  • the controller can accurately The current status of the information collection component 100 is determined.
  • the traveling parameters of the information collection component 100 can be determined more accurately to better control the movement trajectory of the information collection component 100 .
  • the controller can also directly determine the traveling parameters of the information collection component 100 based on the image information of the pre-check site or the channel corresponding to the pre-check site collected by the information collection component 100 .
  • the motion trajectory refers to the traveling path or trajectory of the information collection component 100 .
  • the motion trajectory may at least include a motion direction.
  • the controller determines that the information collection component 100 is at the target position based on the first distance information and the second distance information, the controller controls the information collection component 100 to continue moving forward. As shown in Figures 4 and 5, when the controller is based on the first distance information of the front end of the information collection component 100 relative to the pre-check location or relative to the channel corresponding to the pre-check location, and the side end of the information collection component 100 relative to the pre-check location Or relative to the second distance information of the channel corresponding to the pre-inspection site, it is determined that the information collection component 100 is at the target position 410 at this time.
  • the distance between the front and the sides of the information collection component 100 relative to the pre-inspection site or the distance from the cavity wall of the channel corresponding to the pre-inspection site is relatively large, and the information collection assembly 100 is not likely to collide with the pre-inspection site or with the pre-inspection site. corresponding to the cavity wall of the channel. At this time, it is sufficient to control the information collection component 100 to continue moving along its own movement trajectory, and there is no need to change the movement direction of the information collection component 100 .
  • the controller determines that the information collection component 100 is not in the target position 410 based on the first distance information and the second distance information, and determines that the information collection component 100 is in a deviation state based on the second distance information, the control information
  • the collection assembly 100 is bent toward the other side opposite to its deviation direction.
  • the distance between the side of the information collection component 100 and the pre-check site or the side cavity wall of the channel corresponding to the pre-check site is small at this time, and the distance tends to further decrease because the information collection component 100 is in a deviated state.
  • the information collection component 100 continues to move forward along its own motion trajectory, it is easy to collide with the pre-inspection site or the side cavity wall of the channel corresponding to the pre-inspection site.
  • the information collection component 100 is controlled to bend to the other side opposite to its deviation direction, so that the information collection component 100 can It can return to normal from the deviation state, thereby reducing the possibility of collision with the pre-inspection site or the side cavity wall of the channel corresponding to the pre-inspection site.
  • the controller determines that the information collection component 100 is in the right direction based on the second distance information of the side end of the information collection component 100 relative to the pre-check site and the channel corresponding to the pre-check site.
  • the state of deviation At this time, the information collection component 100 can be controlled to deviate to the left to prevent the information collection component 100 from colliding with the pre-inspection site and the right cavity wall of the channel corresponding to the pre-inspection site, thereby causing secondary damage to the detection object 400 .
  • the controller determines that the information collection component 100 is in the left direction based on the second distance information of the side end of the information collection component 100 relative to the pre-check site or the channel corresponding to the pre-check site.
  • the state of deviation At this time, the information collection component 100 can be controlled to deviate to the right to prevent the information collection component 100 from colliding with the pre-inspection site or the left cavity wall of the channel corresponding to the pre-inspection site, thereby causing secondary damage to the detection object 400 .
  • the controller determines that the information collection component 100 is not in the target position 410 based on the first distance information and the second distance information, and determines that the information collection component 100 is not in a deviation state based on the second distance information.
  • the information collection component 100 can be controlled to continue moving forward along its own axis. As shown in Figure 4, when the information collection component 100 is in the lower position in Figure 4, the controller collects information based on the first distance information of the front end of the information collection component 100 relative to the pre-check site or to the channel corresponding to the pre-check site.
  • the second distance information of the side end of the component 100 relative to the pre-check site or the channel corresponding to the pre-check site determines that the information collection component 100 is not at the target position 410 at this time.
  • the controller determines that the information collection component 100 is not in a deviation state at this time based on the second distance information of the side end of the information collection component 100 relative to the pre-inspection location or relative to the channel corresponding to the pre-inspection location. It means that the information collection component 100 is at the straight line 430 at this time. Therefore, the information collection component 100 is not likely to collide with the pre-inspection site or the front and side cavity walls of the channel corresponding to the pre-inspection site.
  • the information collection assembly 100 continues to move along the Just keep moving forward in its axial direction.
  • the information collection component 100 moves in the pre-inspection part of the detection object or in the channel corresponding to the pre-inspection part
  • the information collection component 100 and the sensor unit can detect the relative position information of the information collection component 100 relative to the pre-inspection part in real time. Or the relative position information of the channel corresponding to the relative pre-inspection position. Therefore, the controller can control the movement trajectory of the information collection component 100 based on the relative position information obtained in real time, thereby achieving the effect of intelligently adjusting the movement trajectory of the information collection component 100 when the endoscope is inserted.
  • the distance information relative to the pre-inspection part or the distance information relative to the channel corresponding to the pre-inspection part is obtained through the information collection component and the sensor unit, and the position of the information collection component and the deviation state of the information collection component are determined. And according to the position of the information collection component and the deviation state of the information collection component, the movement trajectory of the information collection component is controlled.
  • the movement trajectory of the information collection component can be accurately grasped without relying on the operator's experience level.
  • the endoscope system provided in this manual can not only effectively reduce the pain caused to the test object during the use of the endoscope system, but also reduce the risk of secondary damage to the test object and improve the use experience of the test object. .
  • Figure 2 is a schematic structural diagram of the information collection component, the first sensor and the second sensor of the endoscope system according to some embodiments of this specification
  • Figure 3 is the information of the endoscope system according to some embodiments of this specification.
  • Figure 4 is an exemplary schematic diagram of the endoscope moving to different positions in the body of the detection subject according to some embodiments of this specification
  • Figure 5 is an exemplary schematic diagram of some embodiments of the endoscope according to this specification
  • the embodiment shows an exemplary schematic diagram of the endoscope moving to different positions in the body of the detection subject.
  • the sensor unit may include a first sensor 200 and a second sensor 300 .
  • the first sensor 200 is installed on the front end of the information collection assembly 100 and is used to acquire a plurality of first distance information at different positions on the end surface of the front end of the information collection assembly 100 .
  • the number of the first sensors 200 may be one or more, such as 2, 3, 4 or any other number. As shown in FIGS. 2 and 3 , the number of the first sensors 200 may be four, which are respectively installed on the upper, lower, left and right sides of the end surface of the front end of the information collection component 100 .
  • the controller obtains the first distance information at four positions on the end surface of the front end of the information collection component 100 through the four first sensors 200 .
  • the second sensor 300 is installed on the side end of the information collection assembly 100 for acquiring a plurality of second distance information at different positions of the side end of the information collection assembly 100 along its own circumference.
  • the number of the second sensors 300 may be one or more, such as 2, 3, 4 or any other number. As shown in FIGS. 2 and 3 , the number of the second sensors 300 may be four, which are respectively installed on the side ends of the information collection assembly 100 and arranged at intervals along the circumferential direction of the information collection assembly 100 .
  • the controller uses four second sensors 300 to obtain second distance information at four positions of the side end of the information collection assembly 100 along its own circumference.
  • the number of the first sensor 200 and the second sensor 300 is not limited, and the number of the first sensor 200 and the second sensor 300 may be equal or unequal.
  • the number of the first sensor 200 and the second sensor 300 can be adaptively increased or decreased according to the size or detection accuracy requirements of the information collection component 100 . For example, when the size (e.g., diameter) of the information collection component 100 When the sensor is larger or the detection accuracy is required to be higher, the number of the first sensor 200 and the second sensor 300 can be increased accordingly.
  • the controller determines that the information collection component 100 is at the target position 410 .
  • the first preset value and the second preset value may be preset values, or may be determined based on the shape of the pre-inspection site or the channel corresponding to the pre-inspection site and the size of the information collection component 100 .
  • the first sensor 200 is installed at the front end of the information collection component 100 , and the controller uses the first sensor 200 to obtain the first distance information at different positions on the end surface of the front end of the information collection component 100 . Since the paths of the collection signals emitted by the first sensors 200 at different positions are different, for example, when the number of the first sensors 200 is 2, the paths of the collection signals emitted by the first sensors 200 at two different positions are respectively: 411 and 412 in Figure 4. Therefore, through the first sensor 200 at different positions, it is possible to obtain distance information relative to the pre-inspection site in front of it or distance information relative to the cavity wall of the channel corresponding to the pre-inspection site, that is, first distance information.
  • the first preset value that is, the length of any 411 and 412 is greater than the first preset value. This means that at this time, any part in front of the information collection component 100 (or the channel corresponding to the part) is relatively far away from the cavity wall of the pre-check part (or the channel corresponding to the pre-check part).
  • the second sensor 300 is installed on the side end of the information collection assembly 100, and the controller uses the second sensor 300 to obtain the second distance information at different positions of the side end of the information collection assembly 100 along its circumferential direction.
  • the second distance information is greater than the second preset value, that is, any second distance information is greater than the second preset value. This means that at this time, any part on the side of the information collection component 100 (or the channel corresponding to the part) is relatively far away from the side cavity wall of the pre-check part (or the channel corresponding to the pre-check part).
  • the information collection component 100 When all the first distance information is greater than the first preset value, and all the second distance information is greater than the second preset value, that is to say, any part in front and side of the information collection component 100 (or corresponding to the part channel), when the distance to the cavity wall relative to the pre-check site (or the channel corresponding to the pre-check site) is large. It means that at this time, the information collection component 100 is neither easy to collide with the cavity wall in front of the pre-inspection site (or the channel corresponding to the pre-inspection site), nor is it easy to collide with the pre-inspection site (or the channel corresponding to the pre-inspection site). The side chamber walls collide. Therefore, the information collection component 100 is in a relatively safe state at this time.
  • the controller can determine that the information collection component 100 is at the target position 410. That is to say, the target position 410 is a position where the information collection component 100 is in a safe area relative to both the front and the side of the pre-inspection site (or the channel corresponding to the pre-inspection site).
  • the types of the first sensor 200 and the second sensor 300 are not limited.
  • the first sensor 200 and the second sensor 300 may be any one or more of an ultrasonic sensor, an infrared sensor, a piezoelectric sensor, a sensor with a camera module, etc.
  • target location 410 may be at a tapering location.
  • the gradually expanding position refers to a position where the space of the pre-inspection part gradually increases along the movement direction of the information collection component 100, or where the distance between the cavity walls of the channel corresponding to the pre-inspection part gradually increases.
  • the controller may determine whether the target position 410 is at the gradually expanding position according to the first distance information and the second distance information.
  • each The group of second sensors 300 includes a plurality of second sensors 300 and is arranged at equal intervals along the circumferential direction of the information collection assembly 100 .
  • a group of second sensors 300 close to the end surface of the front end of the information collection assembly 100 is the first group of second sensors 300
  • a group of second sensors 300 is located away from the front end of the information collection assembly 100 .
  • the set of second sensors 300 on the end surface is the second set of second sensors 300 .
  • the controller determines that the target position 410 is the gradually expanding position.
  • the information collection component 100 is in the gradually expanding position, the information collection component 100 is in a relatively safe state at this time. No matter what posture the information collection component 100 moves in, it can avoid contact with the pre-inspection part (or the part corresponding to the pre-inspection part). Channel) cavity walls collide. Therefore, at this time, the controller can control the information collection component 100 to continue moving forward, and the movement trajectory of the information collection component 100 may not be changed.
  • the target position 410 may also be a tapering position.
  • the tapering position refers to a position where the space of the pre-inspection part gradually decreases along the movement direction of the information collection component 100, or where the distance between the cavity walls of the channel corresponding to the pre-inspection part gradually decreases.
  • the controller may determine whether the target position 410 is at the tapering position based on the first distance information and the second distance information.
  • the second distance information of the first group of second sensors 300 is The distance information is smaller than the second distance information of the second group of second sensors 300 .
  • the controller determines that the target position 410 is the tapered position.
  • the controller can control the traveling direction of the information collection component 100 or adjust the information collection
  • the softness and hardness of the component 100 are used to avoid or reduce damage to the patient's human tissues or organs.
  • multiple first sensors and second sensors are respectively provided, and multiple first distance information and second distance information are respectively obtained based on the multiple first sensors and second sensors. Then based on comparing the plurality of first distance information and the second distance information with the first preset value and the second preset value respectively, the controller can more accurately determine whether the information collection component is at the target position, so as to more accurately determine whether the information collection component is at the target position. Control the movement trajectory of the information collection component.
  • Figure 6 is an exemplary schematic diagram of an endoscope moving to different deviation states at different positions within the body of a detection subject according to some embodiments of this specification
  • Figure 7 is an illustration of the movement of an endoscope according to other embodiments of this specification.
  • the controller may also be used to obtain second distance information corresponding to the first end and the second end of the information collection component 100 . If the difference between the second distance information corresponding to the first end and the second distance information corresponding to the second end is greater than the third preset value, the controller determines that the information collection component 100 is in the deviation state as shown in Figures 6-7. If the difference between the second distance information corresponding to the first end and the second distance information corresponding to the second end is less than the third preset value, the controller determines that the information collection component 100 is not in a deviation state.
  • the third preset value may be a preset value, or may be determined based on the shape of the pre-inspection site or the channel corresponding to the pre-inspection site, and the size of the information collection component 100 .
  • the difference between the second distance information corresponding to the first end and the second distance information corresponding to the second end is the difference between the second distance information corresponding to the first end and the second distance information corresponding to the second end.
  • the absolute value of the distance difference is the absolute value of the distance difference.
  • a group of second sensors 300 that are symmetrical along the center of the information collection assembly 100 is formed, and the position of one of the second sensors 300 in the group is the first end of the information collection assembly 100, and the other one is the first end of the information collection assembly 100.
  • a second sensor 300 is located at the second end of the information collection component 100 .
  • the cross-section of the information collection component 100 is a circle
  • the first end and the second end of the information collection component 100 are respectively located on both sides of a diameter of the circle, that is, the two second sensors 300 of a set are respectively Set on both sides of the diameter.
  • the number of second sensors 300 may be an even number, and the even number of second sensors 300 are arranged at equal intervals along the circumferential direction of the information collection assembly 100 .
  • the second sensors 300 arranged symmetrically along the center of the information collection assembly 100 form a group, and the position of one of the second sensors 300 in the group is the first end of the information collection assembly 100, and the other second sensor 300 is located at the first end of the information collection assembly 100.
  • the position is the second end of the information collection component 100 .
  • the number of the second sensors 300 is four.
  • the four second sensors 300 are arranged at 90° intervals from each other along the circumferential direction of the information collection assembly 100 and are symmetrically arranged along the center of the information collection assembly 100 .
  • two second sensors 300 spaced 180° from each other in the circumferential direction form a group, and one of the second sensors 300 in the group is located at the first end of the information collection assembly 100, and the other second sensor 300 is located at the first end of the information collection assembly 100.
  • the position of the sensor 300 is the second end of the information collection component 100 .
  • the number of the second sensors 300 is six, and the six second sensors 300 are arranged at intervals of 60° from each other along the circumferential direction of the information collection assembly 100 .
  • the number of second sensors 300 may also be an odd number, and the odd number of second sensors 300 are arranged at equal intervals along the circumferential direction of the information collection assembly 100 .
  • the second sensor 300 can also be an integrated sensor arranged around the circumference of the information collection assembly 100 to obtain distance information at various positions in the circumference of the information collection assembly 100 to further improve the travel of the information collection assembly 100 Control precision.
  • adjacent adjacent ones are arranged at equal intervals along the circumferential direction of the information collection component 100.
  • the distance between the two second sensors 300 can be adaptively adjusted based on the type of endoscope, the size of the information collection component, and the shape of the pre-inspection site or the channel corresponding to the pre-inspection site.
  • the controller may also be configured to determine the deviation direction of the information collection component 100 based on the second distance information corresponding to the first end and the second distance information corresponding to the second end. For example, when the cross-section of the information collection component 100 is a circle, if the left side of a diameter of the circle is defined as the first end, the right side of the diameter is the second end. When the distance difference between the second distance information corresponding to the first end of the information collection component 100 and the second distance information corresponding to the second end is greater than the third preset value, the information collection component 100 deviates to the right. When the distance difference between the second distance information corresponding to the second end of the information collection component 100 and the second distance information corresponding to the first end is greater than the third preset value, the information collection component 100 deviates to the left.
  • the controller may control the information collection component 100 to bend along the other side opposite to the deviation direction based on the deviation direction of the information collection component 100.
  • the information collection assembly 100 may include a traction assembly and several snake bone structures.
  • the traction assembly may include multiple traction ropes, such as 2, 4, etc.
  • the plurality of traction ropes extend along the axial direction of the information collection assembly 100, and the plurality of traction ropes are spaced apart along the circumferential direction of the information collection assembly 100 to control the traveling direction of the information collection assembly 100.
  • one end of the traction component is connected to the snake bone structure, and the other end of the traction component is electrically connected to the controller.
  • the controller can control the traction ropes at different positions in the traction component and the degree of contraction of the traction rope so that the traction component pulls the snake bone mechanism, thereby adjusting the information
  • the direction of travel of the assembly 100 is collected.
  • the controller can, based on the deviation direction of the information collection assembly 100, control the traction rope and the contraction degree of the traction rope at different positions of the traction assembly to pull the traction assembly.
  • the snake bone structure is bent along the other side opposite to its deviation direction, thereby realizing the adjustment of the deviation direction of the information collection assembly 100 .
  • the information collection assembly 100 utilizes preprogrammed mechanical properties of concentric elastic tubes to achieve front-end steering or bending.
  • the controller obtains the second distance information corresponding to the first end and the second distance information corresponding to the second end of the information collection component, and based on the second distance information corresponding to the first end and the second distance information corresponding to the second end, The second distance information is used to determine whether the information collection component is in a deviation state and the deviation direction of the information collection component. Based on this, the information collection component in the deviated state can be adjusted and corrected in time to effectively avoid collision with the human tissue or organ of the detection object and reduce the risk of secondary damage to the detection object.
  • the sensor unit may further include a third sensor.
  • the third sensor is installed on the information collection component 100 and is electrically connected to the controller. The third sensor is used to obtain the moving distance of the information collection component 100 after entering the pre-inspection part of the detection object 400 or the channel corresponding to the pre-inspection part.
  • the type of the third sensor is not limited and may include but is not limited to an ultrasonic sensor, an infrared sensor, a piezoelectric sensor or a sensor with a camera module, etc.
  • the third sensor can also be used to control the softness and hardness of the information collection component 100 according to the above-mentioned movement distance.
  • the third sensor can also be used to control the softness and hardness of the information collection component 100 according to the above-mentioned movement distance.
  • the third sensor is used to obtain the moving distance of the information collection component after entering the pre-inspection part of the detection object or the moving distance after the passage corresponding to the pre-inspection part, so that based on the empirical information of this moving distance, Make sure that the information collection component is at the specific part of the detection object at this time.
  • the controller is then used to control the softness and hardness of the information collection component, so that the softness and hardness of the information collection component can be adaptively adjusted according to the position of the pre-inspection part entering the detection object or the channel corresponding to the pre-inspection part.
  • the data collected by the third sensor is beneficial to reducing the pain of the detection object, making the design of the endoscope system more humane.
  • Figure 8 is a cross-sectional view of an information collection component, a first sensor and a second sensor of an endoscope system according to some embodiments of this specification
  • Figure 9 is an electromagnetic component of an endoscope system according to some embodiments of this specification.
  • Figure 10 is an exemplary schematic diagram of different locations within the body of a detection subject according to some embodiments of this specification.
  • the information collection component 100 may include a body 130 and an electromagnetic component 110 surrounding the body 130 .
  • the electromagnetic assembly 110 may include at least two electromagnetic units 111 spaced apart along the axial direction of the information collection assembly 100, and an elastic member 112 for connecting two adjacent electromagnetic units 111 in the axial direction.
  • the electromagnetic unit 111 refers to an element that has magnetism after being energized.
  • the electromagnetic unit 111 can be designed in a variety of structural shapes, including but not limited to cylindrical shape, rectangular parallelepiped shape, etc.
  • the size of the electromagnetic unit 111 is not limited, and it can be designed based on the type of endoscope.
  • the structure of the electromagnetic unit 111 may be a cylinder.
  • the diameter of the electromagnetic unit 111 may be 1.5 mm and the length may be 8 mm.
  • the diameter of the electromagnetic unit 111 may be 3 mm and the length may be 8 mm.
  • the number of electromagnetic units 111 is not limited and can be determined based on the size of the information collection component 100 . For example, when the length of the information collection assembly 100 is longer, the number of electromagnetic units 111 can be increased adaptively.
  • the elastic member 112 refers to an elastic element.
  • the material of the elastic member 112 is not limited.
  • the elastic member 112 may include but is not limited to fluorine rubber and the like.
  • the structural shape of the elastic member 112 may be the same as or different from the electromagnetic unit 111 .
  • the size of the elastic member 112 is not limited and may be determined based on the size of the electromagnetic unit 111 . For example, the difference between the size of the elastic member 112 and the size of the electromagnetic unit 111 is a constant value, etc.
  • the number of elastic members 112 may also be determined based on the number of electromagnetic units 111 , for example, the number of elastic members 112 may be set to be less than the number of electromagnetic units 111 . For example, when the number of electromagnetic units 111 is N, the number of elastic members 112 is N-1, where N is an integer greater than 1.
  • At least two electromagnetic units 111 spaced apart along the axial direction of the information collection assembly 100 may be connected to the elastic member 112 between two adjacent electromagnetic units 111 in the axial direction through threaded connections.
  • the electromagnetic component 110 can be formed by bonding, socketing or any other feasible connection method.
  • the controller can be used to control the relative movement of two adjacent electromagnetic units 111 in the axial direction, so that the softness and hardness of the information collection assembly 100 is changed through the elastic deformation of the elastic member 112 . It can be understood that the greater the distance between two adjacent electromagnetic units 111 in the axial direction, the softer the information collection assembly 100 will be. On the contrary, the smaller the distance between two adjacent electromagnetic units 111 in the axial direction, the harder the information collection assembly 100 is.
  • the magnetic field intensity of the electromagnetic unit 111 changes. Because the magnetic poles on opposite sides of two adjacent electromagnetic units 111 are opposite. When the current increases, the magnetic field intensity of the electromagnetic unit 111 increases, and the magnetic attraction between two adjacent electromagnetic units 111 increases. The two adjacent electromagnetic units 111 move closer, causing the elastic member 112 to be compressed. At this time, the distance between two adjacent electromagnetic units 111 becomes smaller, thereby making the information collection assembly 100 harder. When the current decreases, the magnetic field intensity of the electromagnetic unit 111 decreases, and the magnetic attraction force between two adjacent electromagnetic units 111 weakens. The two adjacent electromagnetic units 111 move away from each other, causing the elastic member 112 to be stretched. At this time, the distance between two adjacent electromagnetic units 111 becomes larger, thereby making the information collection component 100 softer.
  • the relative movement of the two electromagnetic units 111 adjacent in the axial direction can be controlled by the controller, so that the two electromagnetic units 111 adjacent in the axial direction can The elastic member 112 between 111 is compressed or stretched, thereby changing the softness and hardness of the information collection component 100 .
  • the two adjacent electromagnetic units 111 are controlled to move closer, thereby making the information collection component 100 harder and easier to enter the lens.
  • two adjacent electromagnetic units 111 are controlled to move away from each other, thereby making the hardness of the information collection component 100 softer. In this way, the intelligent bending adjustment function of the information collection component 100 is realized, making the detection object 400 more comfortable during the detection process, and improving the detection satisfaction of the detection object.
  • the controller determines that the movement distance is within the preset range, it controls two adjacent electromagnetic units 111 to move away until the distance between the two adjacent electromagnetic units 111 is greater than the fourth preset value. If the controller determines that the moving distance is outside the preset range, it controls two adjacent electromagnetic units 111 to move closer until the distance between the two adjacent electromagnetic units 111 is less than the fifth preset value.
  • the fourth preset value and the fifth preset value may be preset values, or may be determined based on the required softness and hardness of the information collection component 100 within the preset range. For example, when the required hardness of the information collection component 100 is small within the preset range, the fourth preset value and the fifth preset value can be increased accordingly.
  • the controller by determining whether the movement distance is within a preset range by the controller, the current position of the information collection component 100 in the pre-inspection part or in the channel corresponding to the pre-inspection part can be clarified, so that the information can be determined through this position.
  • the softness and hardness of the component 100 are collected. For example, when the controller determines that the movement distance is within a preset range, it controls two adjacent electromagnetic units 111 to move away until the distance between them is greater than the fourth preset value, at which time the information collection component 100 Able to soften. When the controller determines that the moving distance is outside the preset range, it controls the two adjacent electromagnetic units 111 to move closer until the distance between them is less than the fifth preset value. At this time, the information collection component 100 can harden.
  • FIG. 10 is a schematic diagram of the intestine of the detection object 400 .
  • the endoscope system provided by some embodiments of this specification enters the intestinal tract of the detection subject 400 to perform a colonoscopy, its movement trajectory may be A-B-C-D-E-F in Figure 10 in sequence. Among them, positions B, C, D and E are moving bends 420 .
  • the information collection component 100 of the endoscope system moves here, the information collection component 100 needs to be softened to reduce the strong collision with the pre-inspection part of the detection object 400 or the cavity wall of the channel corresponding to the pre-inspection part. This makes the detection object 400 more comfortable. Since the distances between each person's segments AB, BC, CD, DE and EF are roughly the same, the location information at B, C, D and E can be set so that the movement distance is within the preset range. location information within.
  • the moving distance of the information collection component 100 after entering the pre-inspection part of the detection object 400 or the channel corresponding to the pre-inspection part is obtained through the third sensor.
  • the controller determines that the moving distance is within the preset range.
  • the two adjacent electromagnetic units 111 are controlled to move away from each other until the distance between the two adjacent electromagnetic units 111 is greater than the fourth preset value. In this way, the hardness of the entire information collection assembly 100 is softened, making it easier to move and carry out lens entry operations at positions B, C, D and E.
  • the controller determines that the moving distance is outside the preset range, and then controls the two adjacent electromagnetic units 111 to move closer until the distance between the two adjacent electromagnetic units 111 is less than the fifth preset value. This makes the entire information collection component 100 harder, so that when the information collection component 100 moves in the AB segment, BC segment, CD segment, DE segment or EF segment, it moves faster and is easier to move and perform camera entry operations.
  • the electromagnetic assembly 110 may further include an electromagnetic switching unit 113 .
  • the electromagnetic switching unit 113 refers to an element for controlling the magnetism of the electromagnetic unit 111 .
  • the electromagnetic switching unit 113 can be electrically connected to the electromagnetic unit 111 and used to control the magnetism of the electromagnetic unit 111 so that two adjacent electromagnetic units 111 generate magnetic attraction or magnetic repulsion.
  • the magnetism of the electromagnetic unit 111 is controlled by the electromagnetic on-off unit 113 so that two adjacent electromagnetic units 111 generate magnetic attraction or magnetic repulsion, which can cause the two adjacent electromagnetic units 111 to move closer or farther away, thereby realizing information Adjustment of the softness and hardness of the acquisition component 100.
  • the controller can adjust the softness and hardness of the information collection component 100 by controlling the on and off power of the electromagnetic on and off unit 113 .
  • the electromagnetic switching unit 113 when the electromagnetic switching unit 113 is powered on, a magnetic attraction force can be generated between two adjacent electromagnetic units 111. At this time, the hardness of the information collection component 100 is relatively hard.
  • the electromagnetic switching unit 113 is powered off, no magnetic attraction force is generated between the two adjacent electromagnetic units 111. At this time, the hardness of the information collection component 100 is relatively soft.
  • the controller can also change the magnitude of the magnetic attraction generated between two adjacent electromagnetic units 111 by controlling the magnitude of the current flowing into the electromagnetic on-off unit 113.
  • the hardness of the information collection component 100 can realize a gradual adjustment process, so that the hardness of the information collection component 100 can have multiple adjustment states.
  • the magnitude of the current flowing into the electromagnetic switching unit 113 is related to the moving distance of the information collection component 100 acquired by the third sensor after entering the pre-inspection site of the detection object 400 or the channel corresponding to the pre-inspection site, and The softness and hardness of the information collection component 100 have a linear corresponding relationship.
  • the controller controls the magnitude of the current flowing into the electromagnetic switching unit 113 based on the above movement distance. This allows the endoscope system to very accurately control the softness and hardness of the entire information collection component 100 when entering the pre-inspection part of the detection object 400 or the channel corresponding to the pre-inspection part.
  • the controller determines that the information collection component 100 is at the target position 410 based on the first distance information and the second distance information, it controls the two adjacent electromagnetic units 111 to move closer until the two adjacent electromagnetic units 111 The distance between them is less than the sixth preset value. If the controller determines that the information collection component 100 is not at the target position 410 based on the first distance information and the second distance information, it controls the two adjacent electromagnetic units 111 to move away until the distance between the two adjacent electromagnetic units 111 is greater than Seventh default value.
  • the controller can control two adjacent electromagnetic units 111 to move closer until the distance between the two adjacent electromagnetic units 111 is less than the sixth preset value.
  • the hardness of the entire information collection assembly 100 becomes harder, and the entire information collection assembly 100 can move faster, and is less likely to collide with the pre-inspection site or the cavity wall of the channel corresponding to the pre-inspection site due to its softness.
  • the controller can control the two adjacent electromagnetic units 111 to move away until the distance between the two adjacent electromagnetic units 111 is greater than the third Seven presets. In this way, the hardness of the entire information collection component 100 is softened, thereby preventing the information collection component 100 from being too hard and abutting or colliding with the cavity wall of the pre-inspection part or the channel corresponding to the pre-inspection part, causing damage to the pre-inspection part or the cavity wall.
  • the cavity wall of the channel corresponding to the pre-inspection part causes a large collision force to reduce secondary damage to the detection object 400.
  • the sixth preset value and the fourth preset value may be the same or different, and the seventh preset value and the fifth preset value may also be the same or different.
  • the numerical values of the sixth preset value and the seventh preset value can be determined based on the required softness and hardness of the information collection component 100 within the preset range. For example, when the required hardness of the information collection component 100 within the preset range is relatively hard, the sixth preset value and the seventh preset value can be adjusted accordingly.
  • the information collection assembly 100 may also include a hose 120 .
  • the material of the hose 120 is not limited, and may include but is not limited to silicone, silicone rubber, etc.
  • the hose 120 is sleeved on the outer periphery of the electromagnetic component 110 to protect the electromagnetic component 110.
  • the hose 120 itself can deform synchronously to match the softness and hardness of the information collection component 100.
  • the electromagnetic components 110 collectively bend or straighten.
  • endoscope system provided in some embodiments of this specification can be applied to gastroscopy, colonoscopy, or any other endoscope that requires changes in softness and hardness.
  • FIG. 11 is an exemplary flowchart of a control method of an endoscope system according to some embodiments of this specification. As shown in Figure 11, process 1100 may include the following steps. In some embodiments, process 1100 may be performed by a controller.
  • Step 1110 Obtain the relative position information of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site.
  • the information collection component refers to a component that can be used to move and collect information in the pre-inspection part of the detection object or in the channel corresponding to the pre-inspection part.
  • the information collection component may also include a camera unit.
  • the pre-examination site refers to the body part of the test subject (eg, patient) that requires endoscopy.
  • the pre-examination site may be an organ or tissue of the detection object, such as stomach, lung, bladder, etc.
  • the channel corresponding to the pre-examination site refers to the path or channel that the information collection component of the endoscope system passes through when entering the pre-examination site.
  • the pre-examination site is the stomach, the information collection component needs to enter the stomach through the esophagus. At this time, the esophagus is the channel corresponding to the pre-examination site.
  • the relative position information may at least include distance information of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site.
  • the distance information may include the first distance information of the front end of the information collection component relative to the pre-check site or the channel corresponding to the pre-check site, and the side end of the information collection component relative to the pre-check site or corresponding to the pre-check site.
  • the second distance information of the channel For the definitions of the first distance information and the second distance information, please refer to Figure 1 and its related description.
  • the relative position information may also include image information of the pre-inspection site collected by the information collection component or image information of the channel corresponding to the pre-inspection site. For example, based on the image information of the pre-examination site (eg, stomach) collected by the camera unit of the information collection component. Another example is based on the image information of the channel (eg, esophagus) corresponding to the pre-examination site collected by the camera unit of the information collection component.
  • the relative position information between the information collection component and the pre-check site or the channel corresponding to the pre-check site can be used. Acquisition is performed using the sensor unit. For more information about the sensor unit, see Figure 1 and its associated description.
  • the relative position information of the information collection component relative to the pre-check site or the channel corresponding to the pre-check site can also be obtained based on any other feasible method.
  • the controller may process the image information of the pre-inspection part collected by the information collection component or the image information of the channel corresponding to the pre-inspection part. To obtain the relative position information of the information collection component relative to the pre-inspection part or the channel corresponding to the pre-inspection part, etc.
  • Step 1120 Determine the traveling parameters of the information collection component based on the relative position information.
  • Travel parameters refer to relevant parameters of the information collection component during travel.
  • the traveling parameters may include any one or more of the traveling direction, shape, softness and hardness of the information collection component, as well as the posture and travel speed of the front end of the information collection component.
  • the softness and hardness of the information collection component refers to the overall softness and hardness of the information collection component. It can be understood that when the information collection component passes through the bend of the channel corresponding to the pre-inspection site, if the information collection component is softer, it will be easier to pass through the bend. This can effectively avoid hard collision between the information collection component and the tissue or organ of the detection object, thereby improving the comfort of the detection object.
  • the posture of the front end of the information collection component refers to the orientation of the front end of the information collection component, especially the orientation of the camera unit, in order to determine the location of the information collection component based on the image information.
  • the imaging unit facing the area to be detected in the pre-inspection part can more accurately obtain the image information of the area to be detected in the pre-inspection part.
  • the controller determines the traveling parameters of the information collection component based on the relative position information, which can be implemented based on a variety of methods. For example, based on the relative position information, the controller can determine the travel parameters of the information collection component based on historical data.
  • the controller can determine the location of the information collection component and the deviation state of the information collection component based on the distance information, and determine the traveling parameters of the information collection component.
  • the deviation state can be used to characterize whether the information collection component deviates from the center line of the pre-inspection part, or whether it deviates from the center line of the channel corresponding to the pre-inspection part. For details on how to determine whether the information collection component is in a deviation state, see Figure 6, Figure 7, and Figure 12 and their related descriptions.
  • the controller determines the location of the information collection component based on distance information (including first distance information and second distance information) and through data analysis, algorithm models, etc. For example, the controller can process the distance information through an algorithm model (such as a machine learning model, etc.) to determine the location of the information collection component.
  • algorithm model such as a machine learning model, etc.
  • the controller can control the softness and hardness of the information collection component to make it softer, so that the information collection component can more smoothly pass through the bends of the pre-inspection part or the bends of the channel corresponding to the pre-inspection part.
  • the controller can determine the traveling parameters of the information collection component based on the location of the information collection component, the deviation state of the information collection component, and the image information of the pre-check site or the channel corresponding to the pre-check site. In this way, the control method of the endoscope system provided by the embodiments of this specification can more accurately determine the current status of the information collection component, and further can more accurately determine the traveling parameters of the information collection component to better control the movement of the information collection component. trajectory.
  • the controller can also directly determine the traveling parameters of the information collection component based on the image information of the pre-inspection site collected by the information collection component or the image information of the channel corresponding to the pre-inspection site.
  • Step 1130 Control the motion trajectory of the information collection component based on the traveling parameters.
  • the motion trajectory refers to the traveling path or trajectory of the information collection component 100 .
  • the controller can control the motion trajectory of the information collection component in multiple ways. Specifically, based on the traveling parameters (traveling direction, shape, softness and hardness, and the posture of the front end of the information collection component), the controller can control the movement trajectory of the information collection component in combination with the location of the information collection component.
  • process 1100 is only for example and explanation, and does not limit the scope of application of this specification.
  • various modifications and changes can be made to the process 1100 under the guidance of this description. However, such modifications and changes remain within the scope of this specification.
  • Figure 12 is an exemplary flowchart of determining traveling parameters of an information collection component based on relative position information, according to some embodiments of this specification.
  • the distance information of the information collection component relative to the pre-checking site or the distance information relative to the channel corresponding to the pre-checking site can be collected by a sensor element whose relative position information can include the information collection component.
  • step 1120, determining the traveling parameters of the information collection component based on the relative position information may include the following steps:
  • Step 1121 Determine the location of the information collection component and the deviation state of the information collection component based on the distance information.
  • the distance information may include the first distance information of the front end of the information collection component relative to the pre-check site or relative to the channel corresponding to the pre-check site, and the side end of the information collection component relative to the pre-check site or relative to the pre-check site.
  • the first distance information refers to the distance between the front end of the information collection component and the pre-inspection part or the channel corresponding to the pre-inspection part.
  • the second distance information refers to the distance between the side end of the information collection component and the pre-inspection part or the channel corresponding to the pre-inspection part. Leave.
  • the position of the information collection component in the pre-inspection part or in the channel corresponding to the pre-inspection part can be determined through the above-mentioned first distance information and second distance information.
  • the deviation state can be used to characterize whether the information collection component deviates from the center line of the pre-inspection part, or whether it deviates from the center line of the channel corresponding to the pre-inspection part.
  • the second distance information may include obtaining the second distance information of the first end of the information collection component and the second distance information corresponding to the second end.
  • Step 1122 Determine the traveling parameters of the information collection component based on the location of the information collection component and the deviation state of the information collection component.
  • the controller can determine whether the information collection component is at the target position based on the first distance information and the second distance information. For how to determine whether the information collection component is at the target position, refer to the description in Figure 13 and related places. Further, the controller determines the traveling parameters of the information collection component according to the position of the information collection component and the deviation state of the information collection component. For example, if the information collection component is at the target position and the information collection component is not in a deviation state, the traveling parameters of the information collection component remain unchanged at this time. For another example, if the information collection component is not at the target position and the information collection component is in a deviation state, the controller determines that the traveling direction of the information collection component is opposite to the deviation direction.
  • traveling direction is only used as an example of traveling parameters for explanation here.
  • the traveling parameters can also include the shape, softness and hardness of the information collection component, front-end posture, traveling speed, etc.
  • front-end posture for explanation here.
  • traveling speed etc.
  • FIG. 13 is an exemplary schematic diagram of the motion trajectory of the control information collection component according to some embodiments of this specification. As shown in Figure 13, the controller determines the traveling parameters of the information collection component based on the relative position information, and controls the movement trajectory of the information collection component based on the travel parameters, which may include the following steps:
  • Step 1210 Enter the first distance information and the second distance information.
  • Step 1220 determine whether the information collection component is at the target position.
  • determining whether the information collection component is at the target location may include: if all the first distance information is greater than the first preset value, and all the second distance information is greater than the second preset value, then the information collection component is at the target position. target location. On the contrary, the information collection component is not in the target position.
  • the first preset value and the second preset value may be preset values, or may be determined based on the shape of the pre-inspection site or the channel corresponding to the pre-inspection site and the size of the information collection component.
  • step 1230 is executed to control the information collection component to continue moving forward.
  • step 1240 is executed.
  • Step 1240 Based on the second distance information, determine whether the information collection component is in a deviation state.
  • the third preset value may be a preset value, or may be determined based on the shape of the pre-inspection site or the channel corresponding to the pre-inspection site, and the size of the information collection component 100 . It can be understood that the difference between the second distance information corresponding to the first end and the second distance information corresponding to the second end is the distance between the second distance information corresponding to the first end and the second distance information corresponding to the second end. The absolute value of the difference. For specific instructions on how to obtain the second distance information corresponding to the first end and the second end of the information collection component, please refer to Figures 6-7 and their related descriptions.
  • step 1250 is executed to control the information collection component to bend toward the other side opposite to its deviation direction.
  • step 1260 is executed to control the information collection component to continue moving along its own axis.
  • the target position can be understood as the position where the information collection component is in a safe area relative to the front and side of the pre-inspection site or the channel corresponding to the pre-inspection site.
  • the target position may include a tapering position and a tapering position.
  • a third sensor is provided on the information collection component.
  • the third sensor may be used to obtain the moving distance of the information collection component after entering the pre-inspection part of the detection object or the channel corresponding to the pre-inspection part.
  • the type of the third sensor is not limited and may include but is not limited to an ultrasonic sensor, an infrared sensor, a piezoelectric sensor or a sensor with a camera module, etc. exist
  • the third sensor can control the softness and hardness of the information collection component according to the above-mentioned movement distance. For details on controlling the softness and hardness of the information collection component, please refer to the content elsewhere in this manual.
  • the information collection component may include a body and an electromagnetic component surrounding the body.
  • the electromagnetic assembly may include at least two electromagnetic units spaced apart along the axial direction of the information collection assembly and an elastic member for connecting two adjacent electromagnetic units in the axial direction.
  • An electromagnetic unit refers to a component that becomes magnetic when energized.
  • Elastic parts refer to elastic elements. For more information about the electromagnetic unit and the elastic member, please refer to Figures 8-9 and their related descriptions.
  • the controller can control the relative movement of two adjacent electromagnetic units in the axial direction, so that the softness and hardness of the information collection component is changed through the elastic deformation of the elastic member. It can be understood that the larger the distance between two adjacent electromagnetic units in the axial direction, the softer the information collection component; the smaller the distance between two adjacent electromagnetic units in the axial direction, the harder the information collection component is. For more explanation on the above content, please refer to Figures 8-9 and their related descriptions.
  • the controller determines that the movement distance is within the preset range, it controls two adjacent electromagnetic units to move away until the distance between the two adjacent electromagnetic units is greater than the fourth preset value. If the controller determines that the moving distance is outside the preset range, it controls two adjacent electromagnetic units to move closer until the distance between the two adjacent electromagnetic units is less than the fifth preset value.
  • the fourth preset value and the fifth preset value may be preset values, or may be determined based on the required softness and hardness of the information collection component within the preset range. For more explanation on the above content, please refer to Figures 8-10 and their related descriptions.
  • the electromagnetic component may further include an electromagnetic switching unit.
  • the electromagnetic on-off unit refers to the component used to control the magnetism of the electromagnetic unit.
  • the electromagnetic switching unit can be electrically connected to the electromagnetic unit and used to control the magnetism of the electromagnetic unit so that two adjacent electromagnetic units generate magnetic attraction or magnetic repulsion.
  • the magnetism of the electromagnetic unit is controlled by the electromagnetic on-off unit, so that two adjacent electromagnetic units generate magnetic attraction or magnetic repulsion. Two adjacent electromagnetic units can be moved closer or farther away, thereby adjusting the softness and hardness of the information collection component.
  • the controller can adjust the softness and hardness of the information collection component by controlling the on/off power of the electromagnetic on/off unit. In some embodiments, the controller can also change the magnitude of the magnetic attraction generated between two adjacent electromagnetic units by controlling the magnitude of the current flowing into the electromagnetic on-off unit. In turn, the hardness of the information collection component can realize a gradual adjustment process, so that the hardness of the information collection component can have multiple adjustment states.
  • the size of the current flowing into the electromagnetic switching unit is related to the moving distance of the information collection component acquired by the third sensor after entering the pre-inspection part of the detection object or the channel corresponding to the pre-inspection part, and the information collection There is a linear correspondence between the softness and hardness of components. Based on the above movement distance, the controller controls the magnitude of the current flowing into the electromagnetic switching unit. This allows the information collection component to very accurately control the softness and hardness of the entire information collection component when it enters the pre-inspection part of the detection object or the channel corresponding to the pre-inspection part.
  • the controller determines that the information collection component is at the target position based on the first distance information and the second distance information, it controls two adjacent electromagnetic units to move closer until the distance between the two adjacent electromagnetic units is less than the sixth preset value. If the controller determines that the information collection component is not at the target position based on the first distance information and the second distance information, it controls the two adjacent electromagnetic units to move away until the distance between the two adjacent electromagnetic units is greater than the seventh preset value.
  • any part in front and side of the information collection component or a channel corresponding to the part is described at this time.
  • the distance between the information acquisition component and the cavity wall of the pre-inspection site or the channel corresponding to the pre-inspection site is relatively large.
  • the square cavity walls collide.
  • the controller can control two adjacent electromagnetic units to move closer until the distance between the two adjacent electromagnetic units is less than the sixth preset value. In this way, the hardness of the entire information collection component becomes harder, and the entire information collection component can move faster, and is less likely to collide with the pre-inspection site or the cavity wall of the channel corresponding to the pre-inspection site due to its softness.
  • the controller can control two adjacent electromagnetic units to move away until the distance between the two adjacent electromagnetic units is greater than the seventh preset value. .
  • the hardness of the information collection component is relatively soft, it abuts or collides with the cavity wall of the pre-inspection part or the channel corresponding to the pre-inspection part, and the collision force caused to the pre-inspection part or the cavity wall of the channel corresponding to the pre-inspection part is relatively large. Small to reduce secondary damage to the detection object.
  • the sixth preset value and the fourth preset value may be the same or different, and the seventh preset value and the fifth preset value may also be the same or different. It should be noted that the sixth preset value and the seventh preset value may be preset values, or may be determined based on the required softness and hardness of the information collection component within the preset range.
  • Embodiments of this specification also provide an endoscope control device, including at least one storage medium and at least one processor. At least one storage medium is used to store computer instructions. At least one processor is used to execute computer instructions to implement the above endoscope system. control method.
  • FIG 14 is an exemplary block diagram of an endoscope control device provided in accordance with some embodiments of the present description.
  • endoscope control The control device 1400 may include a sensor unit 1410, a processor 1430, and a memory 1440 (also referred to as a storage medium).
  • the sensor unit 1410 is used to collect relative position information of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site.
  • the sensor unit 1410 may include a plurality of first sensors 1411 and second sensors 1412.
  • the plurality of first sensors 1411 are used to obtain a plurality of first distance information at different positions of the end surface of the front end of the information collection component.
  • the plurality of second sensors 1412 are used to obtain a plurality of second distance information at different positions along the circumferential direction of the side end of the information collection component.
  • the processor 1430 is configured to obtain and process the relative position information (eg, first distance information and second distance information) collected by the sensor unit 1410, and determine travel parameters of the information collection component based on the relative position information. Further, the processor 1430 can also control motion artifacts of the information collection component based on the traveling parameters. In some embodiments, processor 1430 may also be used to control elements of the endoscope control device. For example, the processor 1430 controls the first sensor 1411 and the second sensor 1412 to obtain the first distance information and the second distance information based on computer instructions of the memory 1440 . It should be noted that the processor 1430 here is the same as the controller mentioned above. For more details about the processor 1430, please refer to the description of the controller in this specification and will not be repeated here.
  • the sensor unit 1410 may also include a third sensor 1413, which is used to obtain the movement distance of the information collection component after entering the pre-inspection site of the detection object or a channel corresponding to the pre-inspection site. Further, the processor 1430 can control the softness and hardness of the information collection component according to the movement distance.
  • the endoscope control device 1400 may also include a camera unit 1420.
  • the camera unit 1420 may acquire image information in a pre-examination site of the detection object or a channel corresponding to the pre-inspection site in real time.
  • the endoscope control device 1400 may also include a display 1450, which may be used to display the image information collected by the camera unit 1420, so that the operator can better observe and operate.
  • FIG 15 is an exemplary block diagram of a processor provided in accordance with some embodiments of the present specification.
  • the processor 1430 may include an acquisition module 1431, a processing module 1432, and a control module 1433, and the three may be connected through wired or wireless communication.
  • the acquisition module 1431 is used to acquire data collected by the sensor unit, image information collected by the camera unit of the information collection component, etc.
  • the acquisition module 1431 can obtain the relative position information of the information collection component relative to the pre-inspection site or relative to the channel corresponding to the pre-inspection site.
  • the processing module 1432 is used to process the data obtained by the data module.
  • processing module 1432 may determine travel parameters of the information collection component based on the relative position information.
  • the control module 1433 may be used to control the motion trajectory of the information collection component based on the traveling parameters.
  • the control module 1433 may also control elements of the acquisition module 1431, the processing module 1432, and other components of the endoscopic system based on computer instructions. It should be noted that the acquisition module 1431, the processing module 1432 and the control module 1433 can be independent modules or integrated together.
  • the processor 1430 here can execute the above-mentioned control method of the endoscope system. For details, please refer to the relevant content of Figures 1 to 12, which will not be described again here.
  • Embodiments of this specification also provide a computer-readable storage medium, wherein the storage medium stores computer instructions. After the computer reads the computer instructions in the storage medium, the computer runs the control method of the endoscope system.
  • Computer storage media may contain a propagated data signal embodying the computer program code, such as at baseband or as part of a carrier wave.
  • the propagated signal may have multiple manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • Computer storage media may be any computer-readable media other than computer-readable storage media that enables communication, propagation, or transfer of a program for use in connection with an instruction execution system, apparatus, or device.
  • Program code located on a computer storage medium may be transmitted via any suitable medium, including radio, electrical cable, fiber optic cable, RF, or similar media, or a combination of any of the foregoing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

一种内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质,内窥镜系统包括:信息采集组件(100),信息采集组件(100)能够在检测对象的预检部位和与预检部位对应的通道内移动;传感器单元,安装于信息采集组件(100),信息采集组件(100)用于获取信息采集组件(100)相对预检部位或相对与预检部位对应的通道的相对位置信息;以及控制器,与传感器单元和信息采集组件(100)电连接,控制器用于根据相对位置信息确定信息采集组件(100)的行进参数,并基于行进参数控制信息采集组件(100)的运动轨迹。

Description

内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质
交叉引用
本申请要求于2022年7月29日提交的申请号为202210908365.9的中国申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及医疗器械领域,特别涉及内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质。
背景技术
在医学诊断和治疗过程中,通过将内窥镜插入到检测对象的内部直视病灶进而来确定病因,已经被广泛地使用。然而现有技术中,当内窥镜的信息采集组件在检测对象的预检部位移动过程中,其运动轨迹大多通过操作者的经验水平来进行控制。因而当初学者进行操作时,则会由于经验不足而难以对信息采集组件的运动轨迹进行准确把控。进而给检测对象带来较大痛苦,甚至对检测对象造成二次伤害。
基于此,有必要针对内窥镜的信息采集组件在检测对象的预检部位移动过程中,信息采集组件的运动轨迹难以准确把控,进而给检测对象带来较大痛苦,甚至对检测对象造成二次伤害的技术问题,提供一种内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质。
发明内容
本说明书实施例之一提供一种内窥镜系统,所述系统包括:信息采集组件,所述信息采集组件能够在检测对象的预检部位和与所述预检部位对应的通道内移动;传感器单元,安装于所述信息采集组件,所述信息采集组件用于获取所述信息采集组件相对所述预检部位或相对与所述预检部位对应的通道的相对位置信息;以及控制器,与所述传感器单元和所述信息采集组件电连接,所述控制器用于根据所述相对位置信息确定所述信息采集组件的行进参数,并基于所述行进参数控制所述信息采集组件的运动轨迹。
在一些实施例中,所述相对位置信息由所述信息采集组件中所述传感器单元采集,所述相对位置信息包括相对所述预检部位的距离信息或相对与所述预检部位对应的通道的距离信息,所述控制器用于根据所述相对位置信息确定所述信息采集组件的行进参数包括:所述控制器根据所述距离信息确定所述信息采集组件所处的位置和所述信息采集组件的偏离状态,其中,所述偏离状态表征所述信息采集组件是否偏离所述预检部位的中心线的状态,或是否偏离与所述预检部位对应的通道的中心线的状态;所述控制器还用于根据所述信息采集组件所处的位置,以及所述信息采集组件的偏离状态确定所述信息采集组件的行进参数。
在一些实施例中,所述内窥镜系统还包括:摄像单元,安装于所述信息采集组件;所述相对位置信息还包括由所述摄像单元采集的所述预检部位的影像信息或与所述预检部位对应的通道的影像信息;所述控制器还用于根据所述信息采集组件所处的位置、所述信息采集组件的偏离状态以及所述影像信息,确定所述信息采集组件的行进参数。
在一些实施例中,所述行进参数包括所述信息采集组件的行进方向、形态、软硬度和所述信息采集组件前端的姿态中的任意一种或多种。
在一些实施例中,所述距离信息包括:所述信息采集组件的前端相对所述预检部位或相对与所述预检部位对应的通道的第一距离信息,以及所述信息采集组件的侧端相对所述预检部位或相对与所述预检部位对应的通道的第二距离信息。
在一些实施例中,所述根据所述相对位置信息确定所述信息采集组件的行进参数,并基于所述行进参数控制所述信息采集组件的运动轨迹包括:若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件处于目标位置,则控制所述信息采集组件继续前行;若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件未处于所述目标位置,且根据所述第二距离信息确定所述信息采集组件处于偏离状态,则控制所述信息采集组件向其偏离方向相反的另一侧弯曲;若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件未处于所述目标位置,且根据所述第二距离信息确定所述信息采集组件未处于偏离状态,则控制所述信息采集组件沿其自身轴向继续前行。
在一些实施例中,所述传感器单元包括第一传感器和第二传感器;所述第一传感器安装于所述信息采集组件的前端,所述第一传感器用于获取所述信息采集组件的前端的端面的不同位置处的多个所述第一距离信息;所述第二传感器安装于所述信息采集组件的侧端,所述第二传感器用于获取所述信息采集组件的侧端沿其自身周向上的不同位置处的多个所述第二距离信息;若所有所述第一距离信息均大于第一预设值,且所有所述第二距离信息均大于第二预设值,则所述控制器确定所述信息采集组件处于所述目标位置。
在一些实施例中,所述控制器还用于获取所述信息采集组件的第一端和第二端对应的所述第二距离信息;若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值大于第三预设值,则确定所述信息采集组件处于偏离状态;若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值小于所述第三预设值,则确定所述信息采集组件未处于偏离状态。
在一些实施例中,所述传感器单元还包括第三传感器,所述第三传感器安装于所述信息采集组件上并与所述控制器电连接,所述第三传感器用于获取所述信息采集组件在进入所述检测对象的预检部位内或与所述预检部位对应的通道之后的移动距离;所述行进参数包括所述信息采集组件的软硬度,所述根据所述相对位置信息确定所述信息采集组件的行进参数包括:所述控制器用于根据所述移动距离控制所述信息采集组件的软硬度。
在一些实施例中,所述信息采集组件包括本体和围设于所述本体外周的电磁组件;所述电磁组件包括至少两个沿所述信息采集组件轴向间隔设置的电磁单元、以及用于连接在所述轴向上相邻的两个所述电磁单元的弹性件;所述控制器用于控制所述轴向上相邻的两个所述电磁单元的相对运动,以使得通过所述弹性件的弹性形变改变所述信息采集组件的软硬度。
在一些实施例中,若所述控制器确定所述移动距离处于预设范围内,则控制相邻两个所述电磁单元做远离运动,直至相邻两个所述电磁单元之间的距离大于第四预设值;若所述控制器确定所述移动距离处于预设范围之外,则控制相邻两个所述电磁单元做靠近运动,直至相邻两个所述电磁单元之间的距离小于第五预设值。
在一些实施例中,所述电磁组件还包括电磁通断单元,所述电磁通断单元与所述电磁单元电连接并用于控制所述电磁单元的磁性,以使相邻两个所述电磁单元产生磁吸力或磁斥力。
在一些实施例中,若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件处于所述目标位置,则控制相邻两个所述电磁单元做靠近运动,直至相邻两个所述电磁单元之间的距离小于第六预设值;若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件未处于所述目标位置,则控制相邻两个所述电磁单元做远离运动,直至相邻两个所述电磁单元之间的距离大于第七预设值。
本说明书实施例之一提供一种内窥镜系统的控制方法,所述方法包括:获取信息采集组件相对预检部位或相对与所述预检部位对应的通道的相对位置信息,基于所述相对位置信息确定所述信息采集组件的行进参数;以及基于所述行进参数控制所述信息采集组件的运动轨迹。
在一些实施例中,所述相对位置信息包括所述信息采集组件的传感器单元采集的,所述信息采集组件相对所述预检部位的距离信息或与所述预检部位对应的通道的距离信息,所述根据所述相对位置信息确定所述信息采集组件的行进参数包括:根据所述距离信息确定所述信息采集组件所处的位置和所述信息采集组件的偏离状态,其中,所述偏离状态表征所述信息采集组件是否偏离所述预检部位的中心线的状态,或是否偏离与所述预检部位对应的通道的中心线的状态;根据所述信息采集组件所处的位置,以及所述信息采集组件的偏离状态确定所述信息采集组件的行进参数。
在一些实施例中,所述相对位置信息还包括所述信息采集组件的摄像单元采集的所述预检部位的影像信息或与所述预检部位对应的通道的影像信息,所述根据所述相对位置信息确定所述信息采集组件的行进参数包括:根据所述信息采集组件所处的位置、所述信息采集组件的偏离状态以及所述影像信息,确定所述信息采集组件的行进参数。
在一些实施例中,所述行进参数包括所述信息采集组件的行进方向、形态、软硬度和所述信息采集组件前端的姿态中的任意一种或多种。
在一些实施例中,所述距离信息包括:所述信息采集组件的前端相对所述预检部位或相对与所述预检部位对应的通道的第一距离信息,以及所述信息采集组件的侧端相对所述预检部位或相对与所述预检部位对应的通道的第二距离信息。
在一些实施例中,所述根据所述相对位置信息确定所述信息采集组件的行进参数,并基于所述行进参数控制所述信息采集组件的运动轨迹包括:若根据所述第一距离信息和所述第二距离信息确定 所述信息采集组件处于目标位置,则控制所述信息采集组件继续前行;若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件未处于所述目标位置,且根据所述第二距离信息确定所述信息采集组件处于偏离状态,则控制所述信息采集组件向其偏离方向相反的另一侧弯曲;若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件未处于所述目标位置,且根据所述第二距离信息确定所述信息采集组件未处于偏离状态,则控制所述信息采集组件沿其自身轴向继续前行。
在一些实施例中,所述信息采集组件的前端设置有所述第一传感器,所述第一传感器用于获取所述信息采集组件的前端的端面的不同位置处的多个所述第一距离信息;所述信息采集组件的侧端设置有所述第二传感器,所述第二传感器用于获取所述信息采集组件的侧端沿其自身周向上的不同位置处的多个所述第二距离信息;若所有所述第一距离信息均大于第一预设值,且所有所述第二距离信息均大于第二预设值,则所述信息采集组件处于所述目标位置。
在一些实施例中,获取所述信息采集组件的第一端和第二端对应的所述第二距离信息;若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值大于第三预设值,则所述信息采集组件处于偏离状态;若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值小于所述第三预设值,则所述信息采集组件未处于偏离状态。
在一些实施例中,安装于所述信息采集组件上设置有所述第三传感器,所述第三传感器用于获取所述信息采集组件在进入所述检测对象的预检部位内或与所述预检部位对应的通道之后的移动距离;所述行进参数包括所述信息采集组件的软硬度,所述根据所述相对位置信息确定所述信息采集组件的行进参数包括:根据所述移动距离控制所述信息采集组件的软硬度。
在一些实施例中,所述信息采集组件包括本体和围设于所述本体外周的电磁组件;所述电磁组件包括至少两个沿所述信息采集组件轴向间隔设置的电磁单元、以及用于连接在所述轴向上相邻的两个所述电磁单元的弹性件;控制所述轴向上相邻的两个所述电磁单元的相对运动,以使得通过所述弹性件的弹性形变改变所述信息采集组件的软硬度。
在一些实施例中,若所述移动距离处于预设范围内,则控制相邻两个所述电磁单元做远离运动,直至相邻两个所述电磁单元之间的距离大于第四预设值;若所述移动距离处于预设范围之外,则控制相邻两个所述电磁单元做靠近运动,直至相邻两个所述电磁单元之间的距离小于第五预设值。
在一些实施例中,所述电磁组件还包括电磁通断单元,所述电磁通断单元与所述电磁单元电连接并用于控制所述电磁单元的磁性,以使相邻两个所述电磁单元产生磁吸力或磁斥力。
在一些实施例中,若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件处于所述目标位置,则控制相邻两个所述电磁单元做靠近运动,直至相邻两个所述电磁单元之间的距离小于第六预设值;若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件未处于所述目标位置,则控制相邻两个所述电磁单元做远离运动,直至相邻两个所述电磁单元之间的距离大于第七预设值。
本说明书实施例之一提供还一种内窥镜控制系统,包括:获取模块,被配置为获取信息采集组件相对预检部位或相对与所述预检部位对应的通道的相对位置信息;处理模块,被配置为基于所述相对位置信息确定所述信息采集组件的行进参数;以及控制模块,被配置为基于所述行进参数控制所述信息采集组件的运动轨迹。
在一些实施例中,内窥镜控制系统,被配置为执行上述任一所述的内窥镜系统的控制方法。
本说明书实施例之一提供还一种内窥镜控制装置,包括至少一个存储介质和至少一个处理器,至少一个存储介质用于存储计算机指令;至少一个处理器用于执行计算机指令以实现上述内窥镜系统的控制方法。
本说明书实施例之一提供还一种计算机可读存储介质,其中,存储介质存储计算机指令,当计算机读取存储介质中的计算机指令后,计算机运行上述内窥镜系统的控制方法。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的内窥镜系统的系统结构示意图;
图2是根据本说明书一些实施例所示的内窥镜系统的信息采集组件、第一传感器和第二传感器的结构示意图;
图3是根据本说明书一些实施例所示的内窥镜系统的信息采集组件、第一传感器和第二传感器的俯视图;
图4是根据本说明书一些实施例所示的内窥镜移动至检测对象体内的不同位置处的示例性示 意图;
图5是根据本说明书另一些实施例所示的内窥镜移动至检测对象体内的不同位置处的示例性示意图;
图6是根据本说明书一些实施例所示的内窥镜移动至检测对象体内的不同位置处的不同偏离状态的示例性示意图;
图7是根据本说明书另一些实施例所示的内窥镜移动至检测对象体内的不同位置处的不同偏离状态的示例性示意图;
图8是根据本说明书一些实施例所示的内窥镜系统的信息采集组件、第一传感器和第二传感器的剖视图;
图9是根据本说明书一些实施例所示的内窥镜系统的电磁组件的示例性示意图;
图10是根据本说明书一些实施例所示的检测对象体内的不同位置的示例性示意图;
图11是根据本说明书一些实施例所示的内窥镜系统的控制方法的示例性流程图;
图12是根据本说明书一些实施例所示的确定信息采集组件行进参数的示例性流程图;
图13是根据本说明书一些实施例所示的控制信息采集组件的运动轨迹的示例性示意图;
图14是根据本说明书一些实施例所示的内窥镜控制装置的示例性框图;
图15是根据本说明书一些实施例所示的内窥镜控制系统的示例性框图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
如图1所示,本说明书一些实施例提供的内窥镜系统可以包括信息采集组件100、传感器单元(未示出)和控制器(未示出)。
信息采集组件100是指能够用于在检测对象的预检部位或与预检部位对应的通道内移动并进行信息采集的组件。在一些实施例中,信息采集组件100可以包括摄像单元。摄像单元可以安装于信息采集组件100的前端,以用于实时获取检测对象的预检部位或与预检部位对应的通道内的影像信息,便于操作者能够更好地进行观察与操作。
在一些实施例中,信息采集组件100的结构形状不限。例如,信息采集组件100的横截面的形状可以是圆形、椭圆形或其他任意形状。
在一些实施例中,信息采集组件100能够在检测对象的预检部位或与预检部位对应的通道内移动。其中,预检部位是指检测对象(如,患者)需要进行内窥镜检查的身体部位。在一些实施例中,预检部位可以是检测对象的器官或组织,如胃、肺、膀胱等。与预检部位对应的通道是指内窥镜系统的信息采集组件100进入预检部位时所经过的路径或通道。例如,当预检部位为胃时,信息采集组件100需经过食道进入胃,此时食道即为与预检部位对应的通道。又例如,当预检部位为肺时,信息采集组件100需经过气管进入肺,此时气管即为与预检部位对应的通道。再例如,当预检部位为膀胱时,信息采集组件100需经过尿道进入膀胱,此时尿道即为与预检部位对应的通道。
关于信息采集组件的更多内容,可以参见图2-图10及其相关描述。
传感器单元是指能够检测信息采集组件100相对预检部位的相对位置信息,或者能够检测信息采集组件100相对与预检部位对应的通道的相对位置信息的单元。在一些实施例中,传感器单元可以包括一个或多个传感器,如2个、3个、4个等。
在一些实施例中,传感器单元可以安装于信息采集组件100上。其中,本申请实施例不对传感器单元在信息采集组件100上的安装位置做过多限定。例如,传感器单元的一个或多个传感器可以安装于信息采集组件100的前端,也可以安装于信息采集组件100的侧端。又例如,传感器单元的多个传感器可以分别安装于信息采集组件100的前端与侧端。
在一些实施例中,信息采集组件100的摄像单元或传感器单元可以用于获取信息采集组件100相对预检部位的相对位置信息,以及信息采集组件100相对与预检部位对应的通道的相对位置信息。
在一些实施例中,相对位置信息至少可以包括距离信息。例如,相对位置信息可以是信息采集组件100相对与预检部位对应的通道的距离信息。又例如,相对位置信息可以是信息采集组件100相对预检部位的距离信息。
在一些实施例中,距离信息可以包括信息采集组件100的前端相对预检部位或相对与预检部位对应的通道的第一距离信息,以及信息采集组件100的侧端相对预检部位或相对与预检部位对应的通道的第二距离信息。
第一距离信息是指信息采集组件100的前端相对预检部位或相对与预检部位对应的通道之间的距离。第二距离信息是指信息采集组件100的侧端相对预检部位或相对与预检部位对应的通道之间的距离。
在一些实施例中,相对位置信息还可以包括信息采集组件100采集的预检部位和与预检部位对应的通道的影像信息。例如,基于信息采集组件100的摄像单元所采集的预检部位(如,胃)和与预检部位对应的通道(如,食道)的影像信息。
关于传感器单元的更多内容,可以参见图2-图7及其相关描述。
控制器是指能够用于获取数据、处理数据以及控制内窥镜系统的其他部件的元件。在一些实施例中,控制器可以与信息采集组件100、传感器单元电连接,以获取信息采集组件100或传感器单元所采集的数据。例如,控制器可以直接获取信息采集组件100所采集的预检部位和与预检部位对应的通道的影像信息。在一些实施例中,控制器可以包括获取模块、处理模块和控制模块,三者可以通过有线或无线的方式通信连接。其中,获取模块用于获取传感器单元采集的数据、信息采集组件100的摄像单元采集的影像信息等。例如,获取模块可以获取信息采集组件相对预检部位或相对与预检部位对应的通道的相对位置信息。处理模块用于处理数据模块所获取的数据。例如,处理模块可以基于相对位置信息确定信息采集组件的行进参数。控制模块可以用于基于行进参数控制信息采集组件的运动轨迹。控制模块还可以基于计算机指令控制获取模块、处理模块以及内窥镜系统的其他部件的元件。需要注意的是,获取模块、处理模块和控制模块可以是相互独立的模块,也可以集成在一起。在一些实施例中,内窥镜系统还可以包括显示器,用以显示信息采集组件的摄像单元采集的影像信息。
电连接是指将电路中的各个元件基于导线进行连接,以使电流得以流动并能实现数据传输、控制等功能的连接方式。
在一些实施例中,控制器可以用于根据相对位置信息确定信息采集组件100的行进参数,并基于该行进参数控制信息采集组件100的运动轨迹。
行进参数是指信息采集组件100在行进过程中的相关参数。在一些实施例中,行进参数可以包括信息采集组件100的行进方向、形态、软硬度、信息采集组件100的前端的姿态和行进速度中的任意一种或多种。
信息采集组件100的软硬度是指信息采集组件100的整体软硬程度。可以理解地,当信息采集组件100经过与预检部位对应的通道的弯折处时,若信息采集组件100较为柔软,则更易于通过此弯折处,且可以有效避免信息采集组件100周侧的管壁与检测对象的组织或器官发生强硬碰撞,从而提高检测对象在进行内窥镜检查时的舒适度。
信息采集组件100的前端的姿态是指信息采集组件100的前端朝向,尤其是摄像单元的朝向,以便基于影像信息判断信息采集组件100所处的位置。另外,摄像单元朝向预检部位的待检测区域时,可以更准确地获取预检部位的待检测区域的影像信息。
关于信息采集组件的软硬度的更多内容,可以参见图6-图10及其相关描述。
在一些实施例中,控制器根据相对位置信息确定信息采集组件100的行进参数可以基于多种方法实现。例如,根据相对位置信息,控制器可以基于历史数据确定信息采集组件100的行进参数。
在一些实施例中,相对位置信息可以包括信息采集组件100相对预检部位的距离信息或相对与预检部位对应的通道的距离信息,进一步地,控制器可以根据距离信息确定信息采集组件100所处的位置和信息采集组件100的偏离状态。更进一步地,控制器根据信息采集组件100所处的位置以及信息采集组件100的偏离状态,确定信息采集组件100的行进参数。
偏离状态可以用于表征信息采集组件100是否偏离预检部位的中心线的状态,或是否偏离与预检部位对应的通道的中心线的状态。关于如何判断信息采集组件是否处于偏离状态的具体内容,可以参见图6-图7及其相关描述。
在一些实施例中,控制器可以根据距离信息(包括第一距离信息和第二距离信息),并通过数据分析、算法模型等方式确定信息采集组件100所处的位置。例如,控制器可以通过算法模型(如,机器学习模型等)对距离信息进行处理,确定信息采集组件100所处的位置。
此处结合具体示例进行说明,当信息采集组件100处于预检部位的弯折处或与预检部位对应的通道(如,食道)的弯折处,且信息采集组件100处于未偏离状态时。控制器可以控制信息采集组件100的软硬度,使信息采集组件100变软,以使信息采集组件100能够更为顺利地通过预检部位的弯折处或与预检部位对应的通道的弯折处。从而避免信息采集组件100对预检部位或与预检部位对应的通道造成损伤。当信息采集组件100处于偏离状态,且信息采集组件100未处于目标位置时,控制器可以确定信息采集组件100的行进方向(比如,与偏离方向相反的一侧)。当信息采集组件100处于预检部位的弯折处或与预检部位对应的通道的弯折处,且信息采集组件100处于偏离状态时。控制器可以控制信息采集组件100的形态(如,弯曲角度等),使其形态与弯折处相适配,以更加顺利地通过预检部位的弯折处或与预检部位对应的通道的弯折处。当信息采集组件100处于目标位置,且信息采集组件100未处于偏离状态时。控制器还可以通过控制信息采集组件100的前端的姿态,使信息采集组件100能够以更宽广的视野,获得更加清晰的预检部位或与预检部位对应的通道的影像信息。
在一些实施例中,控制器可以根据信息采集组件100所处的位置、信息采集组件100的偏离状态以及预检部位的影像信息或与预检部位对应的通道的影像信息,确定信息采集组件100的行进参数。仅作为具体示例进行说明,控制器可以通过影像信息确定信息采集组件相对预检部位的距离信息或相对与预检部位对应的通道的距离信息。控制器根据该距离信息、信息采集组件100所处的位置和信息采集组件100的偏离状态,确定信息采集组件100的行进参数,从而进一步提高内窥镜系统在行进过程中的精准度。此外,该影像信息也可以实时地反馈至操作人员,操作人员也可以根据该影像信息对信息采集组件100进行控制,以满足不同操作人员的操作需求。
可以理解地,控制器根据信息采集组件100所处的位置和信息采集组件100的偏离状态,结合信息采集组件100所采集的预检部位和与预检部位对应的通道的影像信息,可以准确地确定信息采集组件100的当前状态。进而可以更加精准地确定信息采集组件100的行进参数,以更好地控制信息采集组件100的运动轨迹。
在一些实施例中,控制器还可以直接根据信息采集组件100所采集的预检部位或与预检部位对应的通道的影像信息,确定信息采集组件100的行进参数。
运动轨迹是指信息采集组件100的行进路径或轨迹。在一些实施例中,运动轨迹至少可以包括运动方向。
在一些实施例中,若控制器根据第一距离信息和第二距离信息确定信息采集组件100处于目标位置,则控制信息采集组件100继续前行。如图4-图5所示,当控制器根据信息采集组件100的前端相对预检部位或相对与预检部位对应的通道的第一距离信息,和信息采集组件100的侧端相对预检部位或相对与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100处于目标位置410时。说明此时信息采集组件100的前方和侧方相对预检部位的距离或相对与预检部位对应的通道的腔壁的距离较大,信息采集组件100不易碰撞到预检部位或与预检部位对应的通道的腔壁。此时则控制信息采集组件100继续沿其自身的运动轨迹前行即可,不需要改变信息采集组件100的运动方向。
关于目标位置以及如何判断信息采集组件是否处于目标位置的具体内容,可以参见图2-图5及其相关描述。
在一些实施例中,若控制器根据第一距离信息和第二距离信息确定信息采集组件100未处于所述目标位置410,且根据第二距离信息确定信息采集组件100处于偏离状态,则控制信息采集组件100向其偏离方向相反的另一侧弯曲。如图6-图7所示,当控制器根据信息采集组件100的前端相对预检部位或与相对预检部位对应的通道的第一距离信息,和信息采集组件100的侧端相对预检部位或相对与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100未处于目标位置410。且根据信息采集组件100的侧端相对预检部位或与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100处于偏离状态时。说明此时信息采集组件100的侧方相对预检部位或相对与预检部位对应的通道的侧腔壁的距离较小,且该距离因为信息采集组件100处于偏离状态而有进一步减少的趋势。当信息采集组件100继续沿其自身的运动轨迹前行时,则易于碰撞到预检部位或与预检部位对应的通道的侧腔壁。此时则控制信息采集组件100向其偏离方向相反的另一侧弯曲,以使得信息采集组件100能 够从偏离状态回正,从而减少与预检部位或与预检部位对应的通道的侧腔壁碰撞的可能性。
示例性地,如图6所示,当控制器根据信息采集组件100的侧端相对预检部位和与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100处于向右偏离的状态。此时可以控制信息采集组件100向左进行偏离,以避免信息采集组件100与预检部位和与预检部位对应的通道的右侧腔壁相碰,进而对检测对象400造成二次伤害。
示例性地,如图7所示,当控制器根据信息采集组件100的侧端相对预检部位或与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100处于向左偏离的状态。此时可以控制信息采集组件100向右进行偏离,以避免信息采集组件100与预检部位或与预检部位对应的通道的左侧腔壁相碰,进而对检测对象400造成二次伤害。
在一些实施例中,若控制器根据第一距离信息和第二距离信息确定信息采集组件100未处于目标位置410,且根据第二距离信息确定信息采集组件100未处于偏离状态。此时可以控制信息采集组件100沿其自身轴向继续前行。如图4所示,当信息采集组件100处于图4中的下方位置,控制器根据信息采集组件100的前端相对预检部位或相对与预检部位对应的通道的第一距离信息,和信息采集组件100的侧端相对预检部位或与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100未处于目标位置410。此时控制器根据信息采集组件100的侧端相对预检部位或相对与预检部位对应的通道的第二距离信息,确定此时的信息采集组件100未处于偏离状态时。则说明此时信息采集组件100处于直行处430,因而此时信息采集组件100不易与预检部位或与预检部位对应的通道的前方和侧方的腔壁相碰撞,信息采集组件100继续沿其轴向继续前行即可。
需要说明的是,信息采集组件100在检测对象的预检部位或与预检部位对应的通道内运动时,信息采集组件100和传感器单元能够实时检测信息采集组件100相对预检部位的相对位置信息或与相对预检部位对应的通道的相对位置信息。因而控制器能够根据实时获取到的相对位置信息,来控制信息采集组件100的运动轨迹,进而能够实现在内窥镜进镜时,智能调整信息采集组件100的运动轨迹的效果。
关于控制器的更多内容,可以参见图2-图10及其相关描述。
本说明书一些实施例,通过信息采集组件和传感器单元获取相对预检部位的距离信息或相对与预检部位对应的通道的距离信息,判断信息采集组件所处的位置和信息采集组件的偏离状态。并根据信息采集组件所处的位置以及信息采集组件的偏离状态,来控制信息采集组件的运动轨迹。可以使信息采集组件的运动轨迹能够被准确把握,而不需要依托于操作者的经验水平。此外,本说明书提供的内窥镜系统不仅能够有效减少内窥镜系统在使用过程中对检测对象带来的痛苦,同时也能降低对检测对象造成二次伤害的风险,提升检测对象的使用体验。
图2是根据本说明书一些实施例所示的内窥镜系统的信息采集组件、第一传感器和第二传感器的结构示意图;图3是根据本说明书一些实施例所示的内窥镜系统的信息采集组件、第一传感器和第二传感器的俯视图;图4是根据本说明书一些实施例所示的内窥镜移动至检测对象体内的不同位置处的示例性示意图;图5是根据本说明书另一些实施例所示的内窥镜移动至检测对象体内的不同位置处的示例性示意图。
如图2-图3所示,传感器单元可以包括第一传感器200和第二传感器300。
在一些实施例中,第一传感器200安装于信息采集组件100的前端,用于获取信息采集组件100的前端的端面的不同位置处的多个第一距离信息。
第一传感器200的数量可以是一个或多个,如2个、3个、4个或其他任意数量。如图2-图3所示,第一传感器200的数量可以为4个,分别安装于信息采集组件100的前端的端面的上下左右四处。控制器通过四个第一传感器200,来获取信息采集组件100的前端的端面的四个位置处的第一距离信息。
在一些实施例中,第二传感器300安装于信息采集组件100的侧端,用于获取信息采集组件100的侧端沿其自身周向上的不同位置处的多个第二距离信息。
第二传感器300的数量可以是一个或多个,如2个、3个、4个或其他任意数量。如图2-图3所示,第二传感器300的数量可以为4个,分别安装于信息采集组件100的侧端,并沿信息采集组件100的周向间隔设置。控制器通过四个第二传感器300,来获取信息采集组件100的侧端沿其自身周向上的四个位置处的第二距离信息。
需要说明的是,第一传感器200和第二传感器300的数量不限,且第一传感器200与第二传感器300的数量可以相等或不相等。第一传感器200和第二传感器300的数量,可以根据信息采集组件100的尺寸大小或检测精度要求适应性地增加或减少。例如,当信息采集组件100的尺寸(如,直径) 较大或检测精度要求较高时,可以相应地增加第一传感器200和第二传感器300的数量。
在一些实施例中,若所有第一距离信息均大于第一预设值,且所有第二距离信息均大于第二预设值,则控制器确定信息采集组件100处于目标位置410。其中,第一预设值、第二预设值可以是预先设定的数值,也可以基于预检部位或与预检部位对应的通道的形态以及信息采集组件100的尺寸大小而定。
示例性地,如图4所示,第一传感器200安装于信息采集组件100的前端,控制器通过第一传感器200来获取信息采集组件100的前端的端面的不同位置处的第一距离信息。由于不同位置处的第一传感器200发射出的采集信号的路径不同,例如当第一传感器200的数量为2个时,两个不同位置处的第一传感器200发射出的采集信号的路径分别为图4中的411与412。因此通过不同位置处的第一传感器200,均能获取一个其自身相对于其前方的预检部位的距离信息或相对与预检部位对应的通道的腔壁的距离信息,即第一距离信息。当所有的第一距离信息均大于第一预设值,即任意411的长度与412的长度均大于第一预设值时。则说明此时信息采集组件100的前方的任何部位(或与该部位对应的通道),相对于预检部位(或与预检部位对应的通道)的腔壁的距离均较大。类似地,第二传感器300安装于信息采集组件100的侧端,控制器通过第二传感器300来获取信息采集组件100的侧端沿其自身周向上的不同位置处的第二距离信息。当所有的第二距离信息均大于第二预设值,即任意第二距离信息均大于第二预设值时。则说明此时信息采集组件100的侧方的任何部位(或与该部位对应的通道),相对于预检部位(或与预检部位对应的通道)的侧腔壁的距离均较大。
当所有第一距离信息均大于第一预设值,且所有第二距离信息均大于第二预设值时,也就是说信息采集组件100的前方和侧方的任何部位(或与该部位对应的通道),相对于预检部位(或与预检部位对应的通道)的腔壁的距离均较大时。说明此时信息采集组件100既不容易与预检部位(或与预检部位对应的通道)的前方的腔壁发生碰撞,也不容易与预检部位(或与预检部位对应的通道)的侧方的腔壁发生碰撞。因而此时信息采集组件100处于较为安全的状态,信息采集组件100无论以何种姿态移动,均能够避免与预检部位(或与预检部位对应的通道)的腔壁发生碰撞。此时控制器可以确定信息采集组件100处于目标位置410。也就是说,目标位置410为信息采集组件100相对于预检部位(或与预检部位对应的通道)的前方和侧方均处于安全区域的位置。
需要说明的是,第一传感器200和第二传感器300的类型不限。例如,第一传感器200和第二传感器300可以是超声传感器、红外传感器、压电传感器和带有摄像模组的传感器等中的任意一种或几种。
在一些实施例中,目标位置410可以为渐扩位置处。渐扩位置处是指沿信息采集组件100的运动方向,预检部位空间逐渐增大的位置,或与预检部位对应的通道的腔壁间的距离逐渐增大的位置。在一些实施例中,控制器可以根据第一距离信息和第二距离信息,判断目标位置410是否处于渐扩位置处。
仅作为示例性进行说明,如图5所示的信息采集组件100中,沿信息采集组件100的轴向上设置有2组第二传感器300,再结合图2所示的信息采集组件100,每组第二传感器300包括多个第二传感器300,且沿信息采集组件100的周向等间隔设置。继续参照图5,其中,在两组第二传感器300中,以靠近信息采集组件100的前端的端面的一组第二传感器300为第一组第二传感器300,以远离信息采集组件100的前端的端面的一组第二传感器300为第二组第二传感器300。当所有第一距离信息均大于第一预设值,且所有第二距离信息均大于第二预设值,同时第一组第二传感器300的第二距离信息,均大于第二组第二传感器300的第二距离信息。此时控制器确定此目标位置410为渐扩位置。当信息采集组件100处于渐扩位置处时,此时信息采集组件100处于较为安全的状态,信息采集组件100无论以何种姿态移动,均能够避免与预检部位(或与预检部位对应的通道)的腔壁发生碰撞。因而此时控制器可以控制信息采集组件100继续前行,可以不对信息采集组件100的运动轨迹进行改变。
在一些实施例中,目标位置410也可以为渐缩位置处。渐缩位置处是指沿信息采集组件100的运动方向,预检部位空间逐渐减小的位置,或与预检部位对应的通道的腔壁间的距离逐渐减小的位置。在一些实施例中,控制器可以根据第一距离信息和第二距离信息,判断目标位置410是否处于渐缩位置处。
结合图5所示的信息采集组件100,当所有第一距离信息均大于第一预设值,且所有第二距离信息均大于第二预设值,同时第一组第二传感器300的第二距离信息,均小于第二组第二传感器300的第二距离信息。此时控制器确定此目标位置410为渐缩位置。
当信息采集组件100处于渐缩位置处时,信息采集组件100容易与预检部位(或与预检部位对应的通道的腔壁)发生碰撞。此时,控制器可以通过控制信息采集组件100的行进方向或调整信息采集 组件100的软硬度,来避免或降低对患者的人体组织或器官的伤害。
本说明书一些实施例,通过分别设置多个第一传感器、第二传感器,并基于多个第一传感器、第二传感器分别获取多个第一距离信息、第二距离信息。再基于多个第一距离信息、第二距离信息分别与第一预设值、第二预设值进行对比,可以使控制器能够更加准确地判断信息采集组件是否处于目标位置,以更精确地控制信息采集组件的运动轨迹。
图6是根据本说明书一些实施例所示的内窥镜移动至检测对象体内的不同位置处的不同偏离状态的示例性示意图;图7是根据本说明书另一些实施例所示的内窥镜移动至检测对象体内的不同位置处的不同偏离状态的示例性示意图。
在一些实施例中,控制器还可以用于获取信息采集组件100的第一端和第二端对应的第二距离信息。若第一端对应的第二距离信息和第二端对应的第二距离信息的差值大于第三预设值,控制器确定信息采集组件100处于如图6-图7所示的偏离状态。若第一端对应的第二距离信息和第二端对应的第二距离信息的差值小于第三预设值,控制器确定信息采集组件100未处于偏离状态。其中,第三预设值可以是预设的数值,也可以基于预检部位或与预检部位对应的通道的形态,以及信息采集组件100的尺寸大小进行确定。
可以理解地,此处第一端对应的第二距离信息和第二端对应的第二距离信息的差值,为第一端对应的第二距离信息和第二端对应的第二距离信息的距离差的绝对值。
在一些实施例中,以沿信息采集组件100的中心对称的第二传感器300为一组,而该组中的其中一个第二传感器300的位置即为信息采集组件100的第一端,其中另一个第二传感器300的位置为信息采集组件100的第二端。示例性地,当信息采集组件100的横截面为圆时,信息采集组件100的第一端和第二端分别位于该圆的一条直径的两侧,即将一组的两个第二传感器300分别设置于该条直径的两侧。
在一些实施例中,第二传感器300的数量可以为偶数个,且偶数个的第二传感器300沿信息采集组件100的周向等间隔设置。且沿信息采集组件100的中心对称设置的第二传感器300为一组,而该组中的其中一个第二传感器300的位置为信息采集组件100的第一端,其中另一个第二传感器300的位置为信息采集组件100的第二端。例如,第二传感器300的数量为4个,四个第二传感器300沿信息采集组件100的周向彼此间隔90°设置,且沿信息采集组件100中心对称设置。也就是说,沿周向彼此间隔180°的两个第二传感器300为一组,而该组中的其中一个第二传感器300的位置为信息采集组件100的第一端,其中另一个第二传感器300的位置为信息采集组件100的第二端。又例如,第二传感器300的数量为6个,六个第二传感器300沿信息采集组件100的周向彼此间隔60°设置。
在一些实施例中,第二传感器300的数量也可以为奇数个,且奇数个的第二传感器300沿信息采集组件100的周向等间隔设置。在一些实施例中,第二传感器300也可以是沿信息采集组件100的周向环绕设置的一个集成传感器,以获取信息采集组件100周向各个位置的距离信息,进一步提高信息采集组件100的行进控制的精准度。
需要说明的是,为了更为精准地获取信息采集组件100的第一端对应的第二距离信息和第二端对应的第二距离信息,沿信息采集组件100的周向等间隔设置的相邻两个第二传感器300之间的间距,可以基于内窥镜的类型、信息采集组件的尺寸大小以及预检部位或与预检部位对应的通道的形态进行适应性调整。
在一些实施例中,控制器还可以用于根据第一端对应的第二距离信息和第二端对应的第二距离信息,确定信息采集组件100的偏离方向。示例性地,当信息采集组件100的横截面为圆时,若定义该圆的一条直径的左侧为第一端,该条直径的右侧为第二端。当信息采集组件100的第一端对应的第二距离信息和第二端对应的第二距离信息的距离差大于第三预设值时,信息采集组件100向右偏离。当信息采集组件100的第二端对应的第二距离信息和第一端对应的第二距离信息的距离差大于第三预设值时,信息采集组件100向左偏离。
在一些实施例中,当控制器确定信息采集组件100的偏离方向后,控制器可以基于信息采集组件100的偏离方向,控制信息采集组件100沿其偏离方向相反的另一侧弯曲。
在一些实施例中,信息采集组件100可以包括牵引组件和若干蛇骨结构。
在一些实施例中,牵引组件可以包括多根牵引绳,例如,2根、4根等。多根牵引绳均沿信息采集组件100的轴向方向延伸,并且多根牵引绳沿信息采集组件100的周向方向间隔分布,以便对信息采集组件100的行进方向进行控制。
在一些实施例中,牵引组件的一端与蛇骨结构相连接,其另一端与控制器电连接。控制器可以通过控制牵引组件中不同位置的牵引绳和牵引绳的收缩程度使牵引组件牵拉蛇骨机构,进而调整信息 采集组件100的行进方向。
示例性地,当控制器确定信息采集组件100的偏离方向后,控制器可以基于信息采集组件100的偏离方向,通过控制牵引组件不同位置的牵引绳和牵引绳的收缩程度,使牵引组件牵拉蛇骨结构沿其偏离方向相反的另一侧弯曲,从而实现信息采集组件100的偏离方向的调整。
在一些实施例中,还可以采用其他方式实现信息采集组件100的偏离方向的调整。例如,信息采集组件100利用同心弹性管的预编程机械特性,实现前端转向或弯曲等。
本说明书一些实施例,控制器通过获取信息采集组件的第一端对应的第二距离信息和第二端对应的第二距离信息,并基于第一端对应的第二距离信息和第二端对应的第二距离信息,判断信息采集组件是否处于偏离状态,以及信息采集组件的偏离方向。基于此可以及时对处于偏离状态的信息采集组件进行调整与修正,以有效避免与检测对象的人体组织或器官发生碰撞,降低造成检测对象二次损伤的风险。
在一些实施例中,传感器单元还可以包括第三传感器。在一些实施例中,第三传感器安装于信息采集组件100上并与控制器电连接。第三传感器用于获取信息采集组件100在进入检测对象400的预检部位内或与预检部位对应的通道之后的移动距离。
第三传感器的类型不限,可以包括但不限于超声传感器、红外传感器、压电传感器或带有摄像模组的传感器等。
在一些实施例中,第三传感器还可以用于根据上述移动距离控制信息采集组件100的软硬度。关于如何控制信息采集组件的软硬度的更多内容,可以参见图8-图10及其相关描述。
本说明书一些实施例,通过第三传感器获取信息采集组件在进入检测对象的预检部位内之后的移动距离或与预检部位对应的通道之后的移动距离,从而能够根据此移动距离的经验信息,确定此时信息采集组件处于检测对象的具体部位。再通过控制器来控制信息采集组件的软硬度,进而使得信息采集组件的软硬度,可以根据进入检测对象的预检部位或与预检部位对应的通道的位置进行适应性调整。本说明书实施例中通过第三传感器采集的有利于减少检测对象的疼痛,使内窥镜系统的设计更加人性化。
图8是根据本说明书一些实施例所示的内窥镜系统的信息采集组件、第一传感器和第二传感器的剖视图;图9是根据本说明书一些实施例所示的内窥镜系统的电磁组件的示例性示意图;图10是根据本说明书一些实施例所示的检测对象体内的不同位置的示例性示意图。
如图8-图9所示,信息采集组件100可以包括本体130和围设于本体130外周的电磁组件110。在一些实施例中,电磁组件110可以包括至少两个沿信息采集组件100的轴向间隔设置的电磁单元111,以及用于连接在轴向上相邻的两个电磁单元111的弹性件112。
电磁单元111是指通电后具有磁性的元件。电磁单元111可以设计为多种结构形状,包括但不限于圆柱体形、长方体形等。
在一些实施例中,电磁单元111的尺寸大小不限,其可以基于内窥镜的类型进行设计。例如,电磁单元111的结构可以为圆柱体。当内窥镜为胃镜时,电磁单元111的直径可以为1.5mm,长度可以为8mm。又例如,当内窥镜为肠镜时,电磁单元111的直径可以为3mm,长度可以为8mm。
在一些实施例中,电磁单元111的数量不限,其可以基于信息采集组件100的尺寸大小进行确定。例如,信息采集组件100的长度较长时,电磁单元111的数量可以适应性地增多。
弹性件112是指具有弹性的元件。弹性件112的材质不限。例如,弹性件112可以包括但不限于氟橡胶等。在一些实施例中,弹性件112的结构形状可以与电磁单元111相同或不相同。在一些实施例中,弹性件112的尺寸大小不限,其可以基于电磁单元111的尺寸大小而定。例如,弹性件112的尺寸大小与电磁单元111的尺寸大小的差值为一个定值等。
在一些实施例中,弹性件112的数量也可以基于电磁单元111的数量进行确定,如可以设定为弹性件112少于电磁单元111的数量。例如,当电磁单元111的数量为N个时,弹性件112的数量则为N-1个,其中,N为大于1的整数。
在一些实施例中,至少两个沿信息采集组件100的轴向间隔设置的电磁单元111,可以与连接在轴向上相邻的两个电磁单元111之间的弹性件112,通过螺纹连接、粘接、套接等其他任意可行的连接方式进行连接,以构成电磁组件110。
在一些实施例中,控制器可以用于控制轴向上相邻的两个电磁单元111的相对运动,以使得通过弹性件112的弹性形变改变信息采集组件100的软硬度。可以理解地,轴向上相邻的两个电磁单元111之间的距离越大,信息采集组件100越软。反之,轴向上相邻的两个电磁单元111之间的距离越小,信息采集组件100越硬。
示例性地,当控制器控制电路中电流大小时,电磁单元111的磁场强度发生变化。由于相邻的两个电磁单元111相对的一侧磁极相反。当电流增大时,电磁单元111的磁场强度提高,相邻的两个电磁单元111之间的磁吸力增强,相邻的两个电磁单元111做靠近运动,使弹性件112被压缩。此时相邻的两个电磁单元111之间的距离变小,进而使信息采集组件100变硬。当电流减小时,电磁单元111的磁场强度降低,相邻的两个电磁单元111之间的磁吸力减弱,相邻的两个电磁单元111做远离运动,使弹性件112被拉伸。此时相邻的两个电磁单元111之间的距离变大,进而使信息采集组件100变软。
在一些实施例中,当需要改变信息采集组件100的软硬度时,通过控制器控制轴向上相邻的两个电磁单元111的相对运动,可以使得轴向上相邻的两个电磁单元111之间的弹性件112发生压缩或拉伸,进而改变信息采集组件100的软硬度。例如,当信息采集组件100进行直行插入时,则控制相邻的两个电磁单元111做靠近运动,进而使得信息采集组件100的硬度较硬,更容易进镜。又例如,当信息采集组件100进行弯曲插入时,则控制相邻的两个电磁单元111做远离运动,进而使得信息采集组件100的硬度较软。如此实现信息采集组件100的智能弯曲调节功能,使检测对象400在检测过程中更加舒适,提高检测对象的检测满意度。
在一些实施例中,若控制器确定移动距离处于预设范围内,则控制相邻两个电磁单元111做远离运动,直至相邻两个电磁单元111之间的距离大于第四预设值。若控制器确定移动距离处于预设范围之外,则控制相邻两个电磁单元111做靠近运动,直至相邻两个电磁单元111之间的距离小于第五预设值。
需要说明的是,第四预设值、第五预设值可以是预先设定的数值,也可以基于预设范围内信息采集组件100所需的软硬度大小进行确定。例如,当预设范围内信息采集组件100所需的硬度较小时,第四预设值和第五预设值可以相应地调大。
在一些实施例中,通过控制器判断移动距离是否处于预设范围内,能够明确目前信息采集组件100在预检部位内或与预检部位对应的通道移动的位置,从而通过此位置可以确定信息采集组件100的软硬度。示例性地,当控制器确定移动距离处于预设范围内时,则控制相邻两个电磁单元111做远离运动,直至二者之间的距离大于第四预设值,此时信息采集组件100能够变软。而当控制器确定移动距离处于预设范围之外时,则控制相邻的两个电磁单元111做靠近运动,直至二者之间的距离小于第五预设值,此时信息采集组件100能够变硬。
如图10所示,图10为检测对象400的肠道的示意图。当本说明书一些实施例提供的内窥镜系统进入到检测对象400的肠道内进行肠镜检查时,其移动轨迹可以依次为图10中的A-B-C-D-E-F。其中,B处、C处、D处和E处为移动弯折处420。当内窥镜系统的信息采集组件100移动至此处时,则需要使得信息采集组件100变软,以减少与检测对象400的预检部位或与预检部位对应的通道的腔壁的强硬碰撞,从而使得检测对象400较为舒适。而由于每个人的AB段、BC段、CD段、DE段和EF段的距离大致相同,因而可以将B处、C处、D处和E处的位置信息设定为移动距离处于预设范围内的位置信息。
通过第三传感器来获取信息采集组件100在进入检测对象400的预检部位内或与预检部位对应的通道之后的移动距离。当信息采集组件100移动至B处、C处、D处或E处时,此时控制器则确定上述移动距离处于预设范围内。则控制相邻两个电磁单元111做远离运动,直至相邻两个电磁单元111之间的距离大于第四预设值。如此使得整个信息采集组件100的硬度变软,使信息采集组件100在B处、C处、D处和E处更易于移动和进行进镜操作。而当信息采集组件100移动至AB段、BC段、CD段、DE段或EF段,也就是不在B处、C处、D处或E处时。此时控制器确定上述移动距离处于预设范围之外,则控制相邻两个电磁单元111做靠近运动,直至相邻两个电磁单元111之间的距离小于第五预设值。如此使得整个信息采集组件100的硬度变硬,使得信息采集组件100在AB段、BC段、CD段、DE段或EF段移动时,移动的速度较快,更易移动且进行进镜操作。
在一些实施例中,电磁组件110还可以包括电磁通断单元113。电磁通断单元113是指用于控制电磁单元111的磁性的元件。在一些实施例中,电磁通断单元113可以与电磁单元111电连接,并用于控制电磁单元111的磁性,以使相邻两个电磁单元111产生磁吸力或磁斥力。通过电磁通断单元113来控制电磁单元111的磁性,以使相邻两个电磁单元111产生磁吸力或磁斥力,可以使得相邻两个电磁单元111做靠近运动或远离运动,从而可以实现信息采集组件100的软硬度的调节。
在一些实施例中,控制器可以通过控制电磁通断单元113的通断电,来实现信息采集组件100的软硬度的调节。示例性地,当电磁通断单元113通电时,相邻的两个电磁单元111之间能够产生磁吸力,此时信息采集组件100的硬度较硬。当电磁通断单元113断电时,则相邻的两个电磁单元111之间不产生磁吸力,此时信息采集组件100的硬度较软。
在一些实施例中,控制器还可以通过控制电磁通断单元113流入的电流的大小,来改变相邻的两个电磁单元111之间产生的磁吸力大小。进而使得信息采集组件100的硬度能够实现渐变的调节过程,使得信息采集组件100的硬度能够有多种调节状态。
在一些实施例中,电磁通断单元113流入的电流的大小,与第三传感器获取的信息采集组件100在进入检测对象400的预检部位内或与预检部位对应的通道之后的移动距离以及信息采集组件100的软硬度,呈线性对应关系。控制器基于上述移动距离,通过控制电磁通断单元113流入的电流的大小。可以使内窥镜系统在进入到检测对象400的预检部位或与预检部位对应的通道时,能够非常精准地控制整个信息采集组件100的软硬度。
在一些实施例中,若控制器根据第一距离信息和第二距离信息确定信息采集组件100处于目标位置410,则控制相邻两个电磁单元111做靠近运动,直至相邻两个电磁单元111之间的距离小于第六预设值。若控制器根据第一距离信息和第二距离信息确定信息采集组件100未处于目标位置410,则控制相邻两个电磁单元111做远离运动,直至相邻两个电磁单元111之间的距离大于第七预设值。
在一些实施例中,当信息采集组件100处于目标位置410时,此时说明信息采集组件100的前方和侧方的任何部位或与该部位对应的通道,相对于预检部位或与预检部位对应的通道的腔壁的距离均较大。此时信息采集组件100不易与预检部位或与预检部位对应的通道的前方腔壁和侧方腔壁发生碰撞。在此状态下,控制器可以通过控制相邻两个电磁单元111做靠近运动,直至相邻两个电磁单元111之间的距离小于第六预设值。如此使得整个信息采集组件100的硬度变硬,整个信息采集组件100的移动速度能够较快,且不易因其自身较软而碰撞至预检部位或与预检部位对应的通道的腔壁。
在一些实施例中,当信息采集组件100未处于目标位置410时,此时控制器可以通过控制相邻两个电磁单元111做远离运动,直至相邻两个电磁单元111之间的距离大于第七预设值。如此使得整个信息采集组件100的硬度变软,避免由于信息采集组件100自身过硬,而与预检部位或与预检部位对应的通道的腔壁抵接或发生碰撞时,对预检部位或与预检部位对应的通道的腔壁造成较大的碰撞力,以减少对检测对象400的二次伤害。
在一些实施例中,第六预设值与第四预设值可以相同或不相同,第七预设值与第五预设值也可以相同或不相同。需要说明的是,第六预设值、第七预设值的数值大小,可以基于预设范围内的信息采集组件100所需的软硬度大小进行确定。例如,预设范围内的信息采集组件100所需的硬度较硬时,第六预设值、第七预设值可以相应地调小。
如图8所示,信息采集组件100还可以包括软管120。软管120的材质不限,可以包括但不限于硅胶、硅橡胶等。在一些实施例中,软管120套设于电磁组件110的外周,用于保护电磁组件110,且当信息采集组件100的软硬度发生变化时,软管120自身能够同步发生形变,以与电磁组件110共同弯曲或伸直。
需要说明的是,本说明书一些实施例所提供的内窥镜系统,可以适用于胃镜、肠镜或其他任意一种需要软硬度变化的内窥镜。
图11是根据本说明书一些实施例所示的内窥镜系统的控制方法的示例性流程图。如图11所示,流程1100可以包括下述步骤。在一些实施例中,流程1100可以由控制器执行。
步骤1110,获取信息采集组件相对预检部位或相对与预检部位对应的通道的相对位置信息。
信息采集组件是指能够用于在检测对象的预检部位或与预检部位对应的通道内移动并进行信息采集的组件。在一些实施例中,信息采集组件还可以包括摄像单元。
预检部位是指检测对象(如,患者)需要进行内窥镜检查的身体部位。在一些实施例中,预检部位可以是检测对象的器官或组织,如胃、肺、膀胱等。与预检部位对应的通道是指内窥镜系统的信息采集组件进入预检部位时所经过的路径或通道。例如,当预检部位为胃时,信息采集组件需经过食道进入胃,此时食道即为与预检部位对应的通道。
在一些实施例中,相对位置信息至少可以包括信息采集组件相对预检部位或相对与预检部位对应的通道的距离信息。在一些实施例中,距离信息可以包括信息采集组件的前端相对预检部位或与预检部位对应的通道的第一距离信息,以及信息采集组件的侧端相对预检部位或与预检部位对应的通道的第二距离信息。关于第一距离信息、第二距离信息的定义,可以参见图1及其相关描述。
在一些实施例中,相对位置信息还可以包括信息采集组件采集的预检部位的影像信息或与预检部位对应的通道的影像信息。例如,基于信息采集组件的摄像单元所采集的预检部位(如,胃)的影像信息。又例如,基于信息采集组件的摄像单元所采集的与预检部位对应的通道(如,食道)的影像信息。
在一些实施例中,信息采集组件与预检部位或与预检部位对应的通道的相对位置信息可以利 用传感器单元进行获取。关于传感器单元的更多内容,可以参见图1及其相关描述。
在一些实施例中,信息采集组件相对预检部位或与预检部位对应的通道的相对位置信息还可以基于其他任意可行的方式进行获取。例如,控制器可以通过对信息采集组件所采集的预检部位的影像信息或与预检部位对应的通道的影像信息进行处理。以获取信息采集组件相对与预检部位或相对与预检部位对应的通道的相对位置信息等。
步骤1120,基于相对位置信息确定信息采集组件的行进参数。
行进参数是指信息采集组件在行进过程中的相关参数。在一些实施例中,行进参数可以包括信息采集组件的行进方向、形态、软硬度以及信息采集组件的前端的姿态和行进速度中的任意一种或多种。
信息采集组件的软硬度是指信息采集组件的整体软硬程度。可以理解地,当信息采集组件经过与预检部位对应的通道的弯折处时,若信息采集组件较为柔软,则更易于通过此弯折处。如此可以有效避免信息采集组件与检测对象的组织或器官发生强硬碰撞,从而提高检测对象的舒适度。
信息采集组件的前端的姿态是指信息采集组件的前端朝向,尤其是摄像单元的朝向,以便基于影像信息判断信息采集组件所处的位置。另外,摄像单元朝向预检部位的待检测区域可以更准确地获取预检部位的待检测区域的影像信息。
在一些实施例中,控制器根据相对位置信息确定信息采集组件的行进参数可以基于多种方法实现。例如,根据相对位置信息,控制器可以基于历史数据确定信息采集组件的行进参数。
在一些实施例中,控制器可以根据距离信息确定信息采集组件所处的位置和信息采集组件的偏离状态,确定信息采集组件的行进参数。
偏离状态可以用于表征信息采集组件是否偏离预检部位的中心线的状态,或是否偏离与预检部位对应的通道的中心线的状态。关于如何判断信息采集组件是否处于偏离状态的具体内容,可以参见图6、图7以及图12及其相关描述。
在一些实施例中,控制器根据距离信息(包括第一距离信息和第二距离信息),并通过数据分析、算法模型等方式确定信息采集组件所处的位置。例如,控制器可以通过算法模型(如,机器学习模型等)对距离信息进行处理,确定信息采集组件所处的位置。
在一些实施例中,当信息采集组件处于预检部位的弯折处或与预检部位对应的通道(如,食道)的弯折处,且信息采集组件处于未偏离状态时。控制器可以控制信息采集组件的软硬度,使其变软,以使信息采集组件能够更为顺利地通过预检部位的弯折处或与预检部位对应的通道的弯折处。
在一些实施例中,控制器可以根据信息采集组件所处的位置、信息采集组件的偏离状态以及预检部位或与预检部位对应的通道的影像信息,确定信息采集组件的行进参数。如此,本说明书实施例提供的内窥镜系统的控制方法可以更加准确地确定信息采集组件的当前状态,进而可以更加精准地确定信息采集组件的行进参数,以更好地控制信息采集组件的运动轨迹。
在一些实施例中,控制器还可以直接根据信息采集组件所采集的预检部位的影像信息或与预检部位对应的通道的影像信息,确定信息采集组件的行进参数。
步骤1130,基于所述行进参数控制信息采集组件的运动轨迹。
运动轨迹是指信息采集组件100的行进路径或轨迹。在一些实施例中,基于行进参数,控制器可以有多种方式控制信息采集组件的运动轨迹。具体地,基于行进参数(行进方向、形态、软硬度以及信息采集组件的前端的姿态),控制器可以结合信息采集组件所处的位置来控制信息采集组件的运动轨迹。
关于控制器如何控制信息采集组件的运动轨迹的更多内容,可以参见图12及其相关描述。
应当注意的是,上述有关流程1100的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对流程1100进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。
图12是根据本说明书一些实施例所示的基于相对位置信息确定信息采集组件的行进参数示例性流程图。在一些实施例中,信息采集组件相对所述预检部位的距离信息或相对与预检部位对应的通道的距离信息,该距离信息可以由相对位置信息可以包括信息采集组件的传感器元件采集。如图12所示,步骤1120,基于相对位置信息确定信息采集组件的行进参数可以包括以下步骤:
步骤1121,根据距离信息确定信息采集组件所处的位置和信息采集组件的偏离状态。
在一些实施例中,距离信息可以包括信息采集组件的前端相对预检部位或相对与预检部位对应的通道的第一距离信息,以及信息采集组件的侧端相对预检部位或相对与预检部位对应的通道的第二距离信息。第一距离信息是指信息采集组件的前端相对预检部位或相对与预检部位对应的通道之间的距离。第二距离信息是指信息采集组件的侧端相对预检部位或相对与预检部位对应的通道之间的距 离。通过上述第一距离信息和第二距离信息可以确定信息采集组件在预检部位或与预检部位对应的通道中所处的位置。
偏离状态可以用于表征信息采集组件是否偏离预检部位的中心线的状态,或是否偏离与预检部位对应的通道的中心线的状态。在一些实施例中,第二距离信息可以包括获取信息采集组件的第一端的第二距离信息和第二端对应的第二距离信息。关于如何判断信息采集组件的偏离状态可以参考图6、图7以及图13及其相关内容,在此不做赘述。
步骤1122,根据信息采集组件所处的位置,以及信息采集组件的偏离状态确定信息采集组件的行进参数。
在一些实施例中,控制器可以根据第一距离信息和第二距离信息判断信息采集组件是否处于目标位置,关于如何判断信息采集组件是否处于目标位置可以参考图13及其相关地方的描述。进一步地,控制器根据信息采集组件所处的位置和信息采集组件的偏离状态确定信息采集组件的行进参数。例如,如果信息采集组件处在目标位置,且信息采集组件未处于偏离状态,此时信息采集组件的行进参数不变。又例如,如果信息采集组件未处在目标位置,且信息采集组件处于偏离状态,此时控制器确定信息采集组件的行进方向与偏离方向相反。需要说明的是,这里仅以行进方向作为行进参数的一个示例进行说明,行进参数还可以包括信息采集组件的形态、软硬度、前端姿态、行进速度等,关于上述具体参数的内容可以参考本说明书其它地方的描述。
图13是根据本说明书一些实施例所示的控制信息采集组件的运动轨迹的示例性示意图。如图13所示,控制器根据相对位置信息确定信息采集组件的行进参数,并基于行进参数控制信息采集组件的运动轨迹可以包括以下步骤:
步骤1210,输入第一距离信息和第二距离信息。
步骤1220,判断信息采集组件是否处于目标位置。
在一些实施例中,判断信息采集组件是否处于目标位置可以包括:若所有第一距离信息均大于第一预设值,且所有第二距离信息均大于第二预设值,则信息采集组件处于目标位置。反之,信息采集组件未处于目标位置。其中,第一预设值、第二预设值可以是预先设定的数值,也可以基于预检部位或与预检部位对应的通道的形态以及信息采集组件的尺寸大小而定。
若根据第一距离信息和第二距离信息确定信息采集组件处于目标位置,则执行步骤1230,控制信息采集组件继续前行。
若根据第一距离信息和第二距离信息确定信息采集组件未处于目标位置,则执行步骤1240。
步骤1240,基于第二距离信息,判断信息采集组件是否处于偏离状态。
在一些实施例中,第二距离信息可以包括信息采集组件的第一端对应的第二距离信息和第二端对应的第二距离信息。判断信息采集组件是否处于偏离状态包括判断第一端对应的第二距离信息和第二端对应的第二距离信息的差值是否大于第三预设值。若第一端对应的第二距离信息和第二端对应的第二距离信息的差值大于第三预设值,则信息采集组件100处于偏离状态。若第一端对应的第二距离信息和第二端对应的第二距离信息的差值小于第三预设值,则信息采集组件100未处于偏离状态。其中,第三预设值可以是预设的数值,也可以基于预检部位或与预检部位对应的通道的形态,以及信息采集组件100的尺寸大小进行确定。可以理解地,此处第一端对应的第二距离信息和第二端对应的第二距离信息的差值为第一端对应的第二距离信息和第二端对应的第二距离信息的距离差的绝对值。关于如何获取信息采集组件的第一端和第二端对应的第二距离信息的具体说明,可以参见图6-图7及其相关描述。
若根据第一距离信息和第二距离信息确定信息采集组件未处于目标位置,且根据第二距离信息确定信息采集组件处于偏离状态。则执行步骤1250,控制信息采集组件向其偏离方向相反的另一侧弯曲。
若根据第一距离信息和第二距离信息确定信息采集组件未处于目标位置,且根据第二距离信息确定信息采集组件未处于偏离状态。则执行步骤1260,控制信息采集组件沿其自身轴向继续前行。
目标位置可以理解为信息采集组件相对于预检部位或与预检部位对应的通道的前方和侧方均处于安全区域的位置。在一些实施例中,目标位置可以包括渐扩位置处和渐缩位置处。关于如何确定目标位置以及如何确定目标位置为渐扩位置处或渐缩位置处的具体说明,可以参见图2-图5及其相关描述。
在一些实施例中,信息采集组件上设置有第三传感器。在一些实施例中,第三传感器可以用于获取信息采集组件在进入检测对象的预检部位或与预检部位对应的通道之后的移动距离。第三传感器的类型不限,可以包括但不限于超声传感器、红外传感器、压电传感器或带有摄像模组的传感器等。在 一些实施例中,第三传感器可以根据上述移动距离控制信息采集组件的软硬度。关于控制信息采集组件的软硬度的详细内容可以参考本说明书其他地方的内容。
在一些实施例中,信息采集组件可以包括本体和围设于本体外周的电磁组件。在一些实施例中,电磁组件可以包括至少两个沿信息采集组件的轴向间隔设置的电磁单元以及用于连接在轴向上相邻的两个电磁单元的弹性件。电磁单元是指通电后具有磁性的元件。弹性件是指具有弹性的元件。关于电磁单元和弹性件的更多内容,可以参见图8-图9及其相关描述。
在一些实施例中,控制器可以控制轴向上相邻的两个电磁单元的相对运动,以使得通过弹性件的弹性形变改变信息采集组件的软硬度。可以理解地,轴向上相邻的两个电磁单元之间的距离越大,信息采集组件越软;轴向上相邻的两个电磁单元之间的距离越小,信息采集组件越硬。关于上述内容的更多说明,可以参见图8-图9及其相关描述。
在一些实施例中,若控制器确定移动距离处于预设范围内,则控制相邻两个电磁单元做远离运动,直至相邻两个电磁单元之间的距离大于第四预设值。若控制器确定移动距离处于预设范围之外,则控制相邻两个电磁单元做靠近运动,直至相邻两个电磁单元之间的距离小于第五预设值。其中,第四预设值、第五预设值可以是预先设定的数值,也可以基于预设范围内信息采集组件所需的软硬度大小进行确定。关于上述内容的更多说明,可以参见图8-图10及其相关描述。
在一些实施例中,电磁组件还可以包括电磁通断单元。电磁通断单元是指用于控制电磁单元的磁性的元件。在一些实施例中,电磁通断单元可以与电磁单元电连接,并用于控制电磁单元的磁性,以使相邻两个电磁单元产生磁吸力或磁斥力。通过电磁通断单元来控制电磁单元的磁性,以使相邻两个电磁单元产生磁吸力或磁斥力。可以使得相邻两个电磁单元做靠近运动或远离运动,从而可以实现信息采集组件的软硬度的调节。
在一些实施例中,控制器可以通过控制电磁通断单元的通断电,来实现信息采集组件的软硬度的调节。在一些实施例中,控制器还可以通过控制电磁通断单元流入的电流的大小,来改变相邻的两个电磁单元之间产生的磁吸力大小。进而使得信息采集组件的硬度能够实现渐变的调节过程,使得信息采集组件的硬度能够有多种调节状态。
在一些实施例中,电磁通断单元流入的电流的大小,与第三传感器获取的信息采集组件在进入检测对象的预检部位内或与预检部位对应的通道之后的移动距离、以及信息采集组件的软硬度,呈线性对应关系。控制器基于上述移动距离,通过控制电磁通断单元流入的电流的大小。进而可以使信息采集组件在进入到检测对象的预检部位或与预检部位对应的通道时,能够非常精准地控制整个信息采集组件的软硬度。
在一些实施例中,若控制器根据第一距离信息和第二距离信息确定信息采集组件处于目标位置,则控制相邻两个电磁单元做靠近运动,直至相邻两个电磁单元之间的距离小于第六预设值。若控制器根据第一距离信息和第二距离信息确定信息采集组件未处于目标位置,则控制相邻两个电磁单元做远离运动,直至相邻两个电磁单元之间的距离大于第七预设值。
在一些实施例中,当信息采集组件处于目标位置时,此时说明信息采集组件的前方和侧方的任何部位或与该部位对应的通道。此时信息采集组件相对于预检部位或与预检部位对应的通道的腔壁的距离均较大,信息采集组件不易与预检部位或与预检部位对应的通道的前方的腔壁和侧方的腔壁发生碰撞。在此状态下,控制器可以通过控制相邻两个电磁单元做靠近运动,直至相邻两个电磁单元之间的距离小于第六预设值。如此使得整个信息采集组件的硬度变硬,整个信息采集组件的移动速度能够较快,且不易因其自身较软而碰撞至预检部位或与预检部位对应的通道的腔壁。
在一些实施例中,当信息采集组件未处于目标位置时,此时控制器可以通过控制相邻两个电磁单元做远离运动,直至相邻两个电磁单元之间的距离大于第七预设值。如此使得整个信息采集组件的硬度变软,避免由于信息采集组件自身过硬。信息采集组件的硬度较软时,与预检部位或与预检部位对应的通道的腔壁抵接或发生碰撞,对预检部位或与预检部位对应的通道的腔壁造成的碰撞力较小,以减少对检测对象的二次伤害。
在一些实施例中,第六预设值与第四预设值可以相同或不相同,第七预设值与第五预设值也可以相同或不相同。需要说明的是,第六预设值、第七预设值可以是预先设定的数值,也可以基于预设范围内的信息采集组件所需的软硬度大小进行确定。
本说明书实施例还提供一种内窥镜控制装置,包括至少一个存储介质和至少一个处理器,至少一个存储介质用于存储计算机指令,至少一个处理器用于执行计算机指令以实现上述内窥镜系统的控制方法。
图14是根据本说明一些实施例提供的内窥镜控制装置的示例性框图。如图14所示,内窥镜控 制装置1400可以包括传感器单元1410、处理器1430和存储器1440(也被称为存储介质)。
传感器单元1410用于采集信息采集组件相对预检部位或相对与预检部位对应的通道的相对位置信息。在一些实施例中,传感器单元1410可以包括多个第一传感器1411和第二传感器1412。多个第一传感器1411用于获取信息采集组件的前端的端面的不同位置处的多个第一距离信息。多个第二传感器1412用于获取信息采集组件的侧端沿其自身周向上的不同位置处的多个第二距离信息。处理器1430用于获取并处理传感器单元1410采集的相对位置信息(例如,第一距离信息和第二距离信息),并基于相对位置信息确定信息采集组件的行进参数。进一步地,处理器1430还可以基于行进参数控制信息采集组件的运动伪迹。在一些实施例中,处理器1430还可以用于控制内窥镜控制装置的元件。例如,处理器1430基于存储器1440的计算机指令控制第一传感器1411和第二传感器1412获取第一距离信息和第二距离信息。需要说明的是,这里的处理器1430与前文中的控制器相同,关于处理器1430的更多详细内容可以参考本说明书关于控制器的描述,在此不做赘述。
在一些实施例中,传感器单元1410还可以包括第三传感器1413,第三传感器1413用于获取信息采集组件在进入检测对象的预检部位内或与预检部位对应的通道之后的移动距离。进一步地,处理器1430可以根据移动距离控制信息采集组件的软硬度。
在一些实施例中,内窥镜控制装置1400还可以包括摄像单元1420,摄像单元1420可以实时获取检测对象的预检部位或与预检部位对应的通道内的影像信息。进一步地,内窥镜控制装置1400还可以包括显示器1450,显示器1450可以用于显示摄像单元1420所采集的影像信息,以便操作者能够更好地进行观察与操作。
图15是根据本说明书一些实施例提供的处理器的示例性框图。如图15所示,在一些实施例中,处理器1430可以包括获取模块1431、处理模块1432和控制模块1433,三者可以通过有线或无线的方式通信连接。其中,获取模块1431用于获取传感器单元采集的数据、信息采集组件的摄像单元采集的影像信息等。例如,获取模块1431可以获取信息采集组件相对预检部位或相对与预检部位对应的通道的相对位置信息。处理模块1432用于处理数据模块所获取的数据。例如,处理模块1432可以基于相对位置信息确定信息采集组件的行进参数。控制模块1433可以用于基于行进参数控制信息采集组件的运动轨迹。控制模块1433还可以基于计算机指令控制获取模块1431、处理模块1432以及内窥镜系统的其他部件的元件。需要注意的是,获取模块1431、处理模块1432和控制模块1433可以是相互独立的模块,也可以集成在一起。这里的处理器1430可以执行上述内窥镜系统的控制方法,具体可以参考图1-图12的相关内容,在此不做赘述。
本说明书实施例还提供一种计算机可读存储介质,其中,存储介质存储计算机指令,当计算机读取存储介质中的计算机指令后,计算机运行上述内窥镜系统的控制方法。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述。然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。

Claims (29)

  1. 一种内窥镜系统,其中,所述内窥镜系统包括:
    信息采集组件(100),所述信息采集组件(100)能够在检测对象(400)的预检部位和与所述预检部位对应的通道内移动;
    传感器单元,安装于所述信息采集组件(100);所述信息采集组件(100)用于获取所述信息采集组件(100)相对所述预检部位或相对与所述预检部位对应的通道的相对位置信息;以及
    控制器,与所述传感器单元和所述信息采集组件(100)电连接,所述控制器用于根据所述相对位置信息确定所述信息采集组件(100)的行进参数,并基于所述行进参数控制所述信息采集组件(100)的运动轨迹。
  2. 根据权利要求1所述的内窥镜系统,其中,所述相对位置信息由所述信息采集组件(100)中的所述传感器单元采集,所述相对位置信息包括所述信息采集组件(100)相对所述预检部位的距离信息或相对与所述预检部位对应的通道的距离信息;
    所述控制器用于根据所述相对位置信息确定所述信息采集组件(100)的行进参数包括:
    所述控制器根据所述距离信息确定所述信息采集组件(100)所处的位置和所述信息采集组件(100)的偏离状态,其中,所述偏离状态表征所述信息采集组件(100)是否偏离所述预检部位的中心线的状态,或是否偏离与所述预检部位对应的通道的中心线的状态;
    所述控制器还用于根据所述信息采集组件(100)所处的位置,以及所述信息采集组件(100)的偏离状态确定所述信息采集组件(100)的所述行进参数。
  3. 根据权利要求2所述的内窥镜系统,其中,所述内窥镜系统还包括:
    摄像单元,安装于所述信息采集组件(100);所述相对位置信息还包括由所述摄像单元采集的所述预检部位的影像信息或与所述预检部位对应的通道的影像信息;
    所述控制器还用于根据所述信息采集组件(100)所处的位置,以及所述信息采集组件(100)的偏离状态确定所述信息采集组件(100)的所述行进参数,包括:
    所述控制器根据所述信息采集组件(100)所处的位置、所述信息采集组件(100)的偏离状态以及所述影像信息,确定所述信息采集组件(100)的所述行进参数。
  4. 根据权利要求1-3任一项所述的内窥镜系统,其中,所述行进参数包括所述信息采集组件(100)的行进方向、形态、软硬度和所述信息采集组件(100)前端的姿态中的任意一种或多种。
  5. 根据权利要求2-4任一项所述的内窥镜系统,其中,所述距离信息包括:所述信息采集组件(100)的前端相对所述预检部位或相对与所述预检部位对应的通道的第一距离信息,以及所述信息采集组件(100)的侧端相对所述预检部位或相对与所述预检部位对应的通道的第二距离信息。
  6. 根据权利要求5所述的内窥镜系统,其中,所述根据所述相对位置信息确定所述信息采集组件(100)的行进参数,并基于所述行进参数控制所述信息采集组件(100)的运动轨迹包括:
    若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)处于目标位置(410),则控制所述信息采集组件(100)继续前行;
    若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)未处于所述目标位置(410),且根据所述第二距离信息判定所述信息采集组件(100)处于偏离状态,则控制所述信息采集组件(100)向其偏离方向相反的另一侧弯曲;
    若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)未处于所述目标位置(410),且根据所述第二距离信息确定所述信息采集组件(100)未处于偏离状态,则控制 所述信息采集组件(100)沿其自身轴向继续前行。
  7. 根据权利要求6所述的内窥镜系统,其中,所述传感器单元包括第一传感器(200)和第二传感器(300);
    所述第一传感器(200)安装于所述信息采集组件(100)的前端,所述第一传感器(200)用于获取所述信息采集组件(100)的前端的端面的不同位置处的多个所述第一距离信息;
    所述第二传感器(300)安装于所述信息采集组件(100)的侧端,所述第二传感器(300)用于获取所述信息采集组件(100)的侧端沿其自身周向上的不同位置处的多个所述第二距离信息;
    若所有所述第一距离信息均大于第一预设值,且所有所述第二距离信息均大于第二预设值,则所述控制器确定所述信息采集组件(100)处于所述目标位置(410)。
  8. 根据权利要求6或7所述的内窥镜系统,其中,所述控制器还用于获取所述信息采集组件(100)的第一端和第二端对应的所述第二距离信息;
    若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值大于第三预设值,则确定所述信息采集组件(100)处于偏离状态;
    若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值小于所述第三预设值,则确定所述信息采集组件(100)未处于偏离状态。
  9. 根据权利要求1-7任一项所述的内窥镜系统,其中,所述传感器单元还包括第三传感器,所述第三传感器安装于所述信息采集组件(100)上并与所述控制器电连接,所述第三传感器用于获取所述信息采集组件(100)在进入所述检测对象(400)的预检部位内或与所述预检部位对应的通道之后的移动距离;
    所述行进参数包括所述信息采集组件(100)的软硬度;
    所述根据所述相对位置信息确定所述信息采集组件(100)的行进参数包括:
    所述控制器用于根据所述移动距离控制所述信息采集组件(100)的软硬度。
  10. 根据权利要求1-9任一项所述的内窥镜系统,其中,所述信息采集组件(100)包括本体(130)和围设于所述本体(130)外周的电磁组件(110);所述电磁组件(110)包括至少两个沿所述信息采集组件(100)轴向间隔设置的电磁单元(111)、以及用于连接在所述轴向上相邻的两个所述电磁单元(111)的弹性件(112);
    所述控制器用于控制所述轴向上相邻的两个所述电磁单元(111)的相对运动,以使得通过所述弹性件(112)的弹性形变改变所述信息采集组件(100)的软硬度。
  11. 根据权利要求10所述的内窥镜系统,其中,若所述控制器确定所述移动距离处于预设范围内,则控制相邻两个所述电磁单元(111)做远离运动,直至相邻两个所述电磁单元(111)之间的距离大于第四预设值;
    若所述控制器确定所述移动距离处于预设范围之外,则控制相邻两个所述电磁单元(111)做靠近运动,直至相邻两个所述电磁单元(111)之间的距离小于第五预设值。
  12. 根据权利要求10或11所述的内窥镜系统,其中,所述电磁组件(110)还包括电磁通断单元(113),所述电磁通断单元(113)与所述电磁单元(111)电连接并用于控制所述电磁单元(111)的磁性,以使相邻两个所述电磁单元(111)产生磁吸力或磁斥力。
  13. 根据权利要求10-12任一项所述的内窥镜系统,其中,若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)处于所述目标位置(410),则控制相邻两个所述电 磁单元(111)做靠近运动,直至相邻两个所述电磁单元(111)之间的距离小于第六预设值;
    若所述控制器根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)未处于所述目标位置(410),则控制相邻两个所述电磁单元(111)做远离运动,直至相邻两个所述电磁单元(111)之间的距离大于第七预设值。
  14. 一种内窥镜系统的控制方法,其中,所述控制方法包括:
    获取信息采集组件(100)相对预检部位或相对与所述预检部位对应的通道的相对位置信息;
    基于所述相对位置信息确定所述信息采集组件(100)的行进参数;以及
    基于所述行进参数控制所述信息采集组件(100)的运动轨迹。
  15. 根据权利要求14所述的控制方法,其中,所述相对位置信息包括所述信息采集组件(100)的传感器元件采集的,所述信息采集组件(100)相对所述预检部位的距离信息或相对与所述预检部位对应的通道的距离信息;
    所述根据所述相对位置信息确定所述信息采集组件(100)的行进参数包括:
    根据所述距离信息确定所述信息采集组件(100)所处的位置和所述信息采集组件(100)的偏离状态,其中,所述偏离状态表征所述信息采集组件(100)是否偏离所述预检部位的中心线的状态,或是否偏离与所述预检部位对应的通道的中心线的状态;
    根据所述信息采集组件(100)所处的位置,以及所述信息采集组件(100)的偏离状态确定所述信息采集组件(100)的所述行进参数。
  16. 根据权利要求15所述的控制方法,其中,所述相对位置信息还包括所述信息采集组件(100)的摄像单元采集的所述预检部位的影像信息或与所述预检部位对应的通道的影像信息;
    所述根据所述相对位置信息确定所述信息采集组件(100)的行进参数包括:
    根据所述信息采集组件(100)所处的位置、所述信息采集组件(100)的偏离状态和所述影像信息,确定所述信息采集组件(100)的所述行进参数。
  17. 根据权利要求14-16任一项所述的控制方法,其中,所述行进参数包括所述信息采集组件(100)的行进方向、形态、软硬度和所述信息采集组件(100)前端的姿态中的任意一种或多种。
  18. 根据权利要求14-17任一项所述的控制方法,其中,所述距离信息包括:所述信息采集组件(100)的前端相对所述预检部位或相对与所述预检部位对应的通道的第一距离信息,以及所述信息采集组件(100)的侧端相对所述预检部位或相对与所述预检部位对应的通道的第二距离信息。
  19. 根据权利要求18所述的控制方法,其中,所述根据所述相对位置信息确定所述信息采集组件(100)的行进参数,并基于所述行进参数控制所述信息采集组件(100)的运动轨迹包括:
    若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)处于目标位置(410),则控制所述信息采集组件(100)继续前行;
    若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)未处于所述目标位置(410),且根据所述第二距离信息判定所述信息采集组件(100)处于偏离状态,则控制所述信息采集组件(100)向其偏离方向相反的另一侧弯曲;
    若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)未处于所述目标位置(410),且根据所述第二距离信息确定所述信息采集组件(100)未处于偏离状态,则控制所述信息采集组件(100)沿其自身轴向继续前行。
  20. 根据权利要求19所述的控制方法,其中,所述信息采集组件(100)的前端设置有所述第一 传感器(200),所述第一传感器(200)用于获取所述信息采集组件(100)的前端的端面的不同位置处的多个所述第一距离信息;
    所述信息采集组件(100)的侧端设置有所述第二传感器(300),所述第二传感器(300)用于获取所述信息采集组件(100)的侧端沿其自身周向上的不同位置处的多个所述第二距离信息;
    若所有所述第一距离信息均大于第一预设值,且所有所述第二距离信息均大于第二预设值,则所述信息采集组件(100)处于所述目标位置(410)。
  21. 根据权利要求19或20所述的控制方法,其中,获取所述信息采集组件(100)的第一端和第二端对应的所述第二距离信息;
    若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值大于第三预设值,则所述信息采集组件(100)处于偏离状态;
    若所述第一端对应的所述第二距离信息和所述第二端对应的所述第二距离信息的差值小于所述第三预设值,则所述信息采集组件(100)未处于偏离状态。
  22. 根据权利要求14-20任一项所述的控制方法,其中,所述信息采集组件(100)上设置有所述第三传感器,所述第三传感器用于获取所述信息采集组件(100)在进入所述检测对象(400)的预检部位内或与所述预检部位对应的通道之后的移动距离;
    所述行进参数包括所述信息采集组件(100)的软硬度;
    所述根据所述相对位置信息确定所述信息采集组件(100)的行进参数包括:
    根据所述移动距离控制所述信息采集组件(100)的软硬度。
  23. 根据权利要求14-22任一项所述的控制方法,其中,所述信息采集组件(100)包括本体(130)和围设于所述本体(130)外周的电磁组件(110);所述电磁组件(110)包括至少两个沿所述信息采集组件(100)轴向间隔设置的电磁单元(111)、以及用于连接在所述轴向上相邻的两个所述电磁单元(111)的弹性件(112);
    控制所述轴向上相邻的两个所述电磁单元(111)的相对运动,以使得通过所述弹性件(112)的弹性形变改变所述信息采集组件(100)的软硬度。
  24. 根据权利要求23所述的控制方法,其中,若所述移动距离处于预设范围内,则控制相邻两个所述电磁单元(111)做远离运动,直至相邻两个所述电磁单元(111)之间的距离大于第四预设值;
    若所述移动距离处于预设范围之外,则控制相邻两个所述电磁单元(111)做靠近运动,直至相邻两个所述电磁单元(111)之间的距离小于第五预设值。
  25. 根据权利要求23或24所述的控制方法,其中,所述电磁组件(110)还包括电磁通断单元(113),所述电磁通断单元(113)与所述电磁单元(111)电连接并用于控制所述电磁单元(111)的磁性,以使相邻两个所述电磁单元(111)产生磁吸力或磁斥力。
  26. 根据权利要求23-25任一项所述的控制方法,其中,若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)处于所述目标位置(410),则控制相邻两个所述电磁单元(111)做靠近运动,直至相邻两个所述电磁单元(111)之间的距离小于第六预设值;
    若根据所述第一距离信息和所述第二距离信息确定所述信息采集组件(100)未处于所述目标位置(410),则控制相邻两个所述电磁单元(111)做远离运动,直至相邻两个所述电磁单元(111)之间的距离大于第七预设值。
  27. 一种内窥镜控制系统,被配置为执行如权利要求14至26任一项所述内窥镜系统的控制方 法,所述内窥镜控制系统包括:
    获取模块,被配置为获取信息采集组件(100)相对预检部位或相对与所述预检部位对应的通道的相对位置信息;
    处理模块,被配置为基于所述相对位置信息确定所述信息采集组件(100)的行进参数;以及
    控制模块,被配置为基于所述行进参数控制所述信息采集组件(100)的运动轨迹。
  28. 一种内窥镜控制装置,包括至少一个存储介质和至少一个处理器,所述至少一个存储介质用于存储计算机指令;所述至少一个处理器用于执行所述计算机指令以实现如权利要求14至26任一项所述内窥镜系统的控制方法。
  29. 一种计算机可读存储介质,其中,所述存储介质存储计算机指令,当计算机读取存储介质中的计算机指令后,计算机运行如权利要求14至26中任一项所述内窥镜系统的控制方法。
PCT/CN2023/110124 2022-07-29 2023-07-31 内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质 WO2024022527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210908365.9 2022-07-29
CN202210908365.9A CN117503013A (zh) 2022-07-29 2022-07-29 内窥镜系统

Publications (1)

Publication Number Publication Date
WO2024022527A1 true WO2024022527A1 (zh) 2024-02-01

Family

ID=89705551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110124 WO2024022527A1 (zh) 2022-07-29 2023-07-31 内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117503013A (zh)
WO (1) WO2024022527A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140243596A1 (en) * 2013-02-28 2014-08-28 Samsung Electronics Co., Ltd. Endoscope system and control method thereof
CN105902253A (zh) * 2016-04-28 2016-08-31 深圳市鹏瑞智能图像有限公司 一种内窥镜插入控制方法及系统
CN111973134A (zh) * 2020-08-06 2020-11-24 江苏势通生物科技有限公司 基于视觉的测试体对准待测通道的方法、导航方法及系统
CN114022547A (zh) * 2021-09-15 2022-02-08 苏州中科华影健康科技有限公司 一种内窥镜图像检测方法、装置、设备及存储介质
CN114521860A (zh) * 2022-03-23 2022-05-24 于海晶 胶囊内窥镜控制方法、装置、介质及内窥镜
CN114532948A (zh) * 2022-02-24 2022-05-27 武汉联影智融医疗科技有限公司 内窥镜插入管和内窥镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140243596A1 (en) * 2013-02-28 2014-08-28 Samsung Electronics Co., Ltd. Endoscope system and control method thereof
CN105902253A (zh) * 2016-04-28 2016-08-31 深圳市鹏瑞智能图像有限公司 一种内窥镜插入控制方法及系统
CN111973134A (zh) * 2020-08-06 2020-11-24 江苏势通生物科技有限公司 基于视觉的测试体对准待测通道的方法、导航方法及系统
CN114022547A (zh) * 2021-09-15 2022-02-08 苏州中科华影健康科技有限公司 一种内窥镜图像检测方法、装置、设备及存储介质
CN114532948A (zh) * 2022-02-24 2022-05-27 武汉联影智融医疗科技有限公司 内窥镜插入管和内窥镜
CN114521860A (zh) * 2022-03-23 2022-05-24 于海晶 胶囊内窥镜控制方法、装置、介质及内窥镜

Also Published As

Publication number Publication date
CN117503013A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
JP4796275B2 (ja) 生体内の装置を制御するためのシステムおよび方法
US20160100772A1 (en) Medical instrument
EP2508117B1 (en) Insertion aid, and endoscope device
US11006820B2 (en) Flexible tube insertion apparatus
EP1726250A1 (en) Double-balloon endoscope system
US20090253959A1 (en) Medical manipulator system
US20220160212A1 (en) Endoscope Module and Modular Endoscopic Device Including the Same
US20170319048A1 (en) Flexible tube insertion apparatus
WO2010114920A1 (en) Automatically adjustable endoscopes
CN104968252A (zh) 自动辅助手术系统及其控制方法
US10485410B2 (en) Flexible tube insertion apparatus
JP6450859B2 (ja) 可撓管挿入装置
JP3752328B2 (ja) 内視鏡装置
WO2017014308A1 (ja) マニピュレータ及び医療システム
CN115348831A (zh) 模块化内窥镜的系统和方法
WO2018216142A1 (ja) 可撓管挿入装置及び挿入制御装置
WO2019239545A1 (ja) 内視鏡システムおよび挿入部の推進方法
US8795157B1 (en) Method and system for navigating within a colon
US10694926B2 (en) Flexible tube insertion apparatus having vibration actuator for reducing insertion force of endoscope insertion member
WO2024022527A1 (zh) 内窥镜系统及其控制方法、内窥镜控制系统、控制装置以及计算机可读存储介质
US10517461B2 (en) Flexible tube insertion apparatus
US11950868B2 (en) Systems and methods for self-alignment and adjustment of robotic endoscope
US10736488B2 (en) Flexible tube insertion apparatus comprising variable stiffness insertion section to be inserted into subject
WO2012043178A1 (ja) 内視鏡挿入補助システム
JP3963857B2 (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845731

Country of ref document: EP

Kind code of ref document: A1