WO2024022416A1 - 测量设备、方法及存储介质 - Google Patents

测量设备、方法及存储介质 Download PDF

Info

Publication number
WO2024022416A1
WO2024022416A1 PCT/CN2023/109470 CN2023109470W WO2024022416A1 WO 2024022416 A1 WO2024022416 A1 WO 2024022416A1 CN 2023109470 W CN2023109470 W CN 2023109470W WO 2024022416 A1 WO2024022416 A1 WO 2024022416A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
ecg
blood pressure
value
preset parameter
Prior art date
Application number
PCT/CN2023/109470
Other languages
English (en)
French (fr)
Inventor
钱晓仑
马传龙
朱双双
潘庆希
范志强
Original Assignee
北京超思电子技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京超思电子技术有限责任公司 filed Critical 北京超思电子技术有限责任公司
Publication of WO2024022416A1 publication Critical patent/WO2024022416A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor

Definitions

  • Embodiments of the present disclosure relate to the technical field of medical equipment, and specifically relate to a measurement device, a method and a storage medium.
  • ECG and blood oxygen measurement requires ECG measurement equipment and blood oxygen measurement equipment to be detected separately, which not only consumes too much measurement time of the user, but also the above two measurement equipment are large in size, making it inconvenient for users to record heart rate anytime and anywhere. Electrical and blood oxygen data. Especially when medical staff are required to intervene in the user's diagnosis and treatment process, two measuring devices are required to alternately detect, and ECG and blood oxygen data cannot be obtained at the same time, making it impossible to provide accurate physiological reference data for medical staff.
  • the purpose of embodiments of the present disclosure is to provide a leakage compensation circuit, a chip and an electronic device that can sample the leakage current of an output stage and input the sampled current back to the output stage, thereby compensating for the leakage current in the output stage.
  • the purpose of the embodiments of the present disclosure is to provide a measurement device, method and storage medium.
  • a blood oxygen measurement device By integrating a blood oxygen measurement device into an ECG measurement device, simultaneous measurement of ECG and blood oxygen is achieved, and the volume of the measurement device is reduced. .
  • a first aspect of the embodiment of the present disclosure provides a measuring device, including: an upper housing, a lower housing, a blood oxygen collection device embedded in a groove of the upper housing, and an ECG collection device. device and display screen lens, as well as a power supply device, a circuit mainboard and a button disposed between the upper case and the lower case, wherein the ECG collection device includes a first electrode piece and a second Electrode pads, and two electrode pads are respectively embedded in the grooves at both ends of the upper housing; a hollow is provided at the center of any one of the electrode pads, and the blood oxygen collection device is arranged in the hollow.
  • through holes are provided on the upper housing and the circuit mainboard, and pins are provided on both the first electrode sheet and the second electrode sheet, and the two pins pass through the upper housing.
  • the through holes and the through holes on the circuit main board connect the two electrode sheets with the circuit main board.
  • the circuit mainboard includes a blood oxygen sensor, a display screen, and a data processing module.
  • the blood oxygen sensor includes a luminescent tube and a receiving tube.
  • the luminous tube is used to emit red light and infrared light;
  • the receiving tube Tube used to receive multi-channel optical signals after the red light and infrared light are reflected or transmitted by human tissue, convert the multi-channel optical signals into digital signals and send them to the data processing module.
  • the data signals Including red light PPG (Photoplethysmography, photoplethysmography) waveform data and infrared light PPG waveform data;
  • the data processing module is used to receive the digital signal and ECG data, and convert the digital signal into blood oxygen data , obtain the blood pressure value by processing the infrared PPG waveform data and the ECG data;
  • the display screen is used to display the blood oxygen data through the display screen lens in the groove of the upper housing; The ECG data and the blood pressure value.
  • a first light hole, a baffle and a second light hole are arranged side by side in the groove of the upper housing directly below the hollow, wherein the first light hole is used for The red light and infrared light emitted by the luminous tube are transmitted to the blood oxygen collection device; the second light hole is used to transmit the multi-channel optical signals to the receiving tube; the baffle A board is used to isolate the light emitted by the light emitting tube from the multiple optical signals received by the receiving tube.
  • the blood oxygen collection device includes a luminous lens, a reflective lens and a light-shielding pad.
  • the light-shielding pad is provided with a third light hole and a fourth light hole, and the third light hole is provided on the first Above the light hole, the fourth light hole is disposed above the second light hole, wherein the luminescent lens is disposed above the third light hole for transmitting the luminescent tube to emit red light.
  • the reflective lens is disposed above the fourth light hole, used to transmit the multiple optical signals, and filter out the Other optical signals besides multi-channel optical signals;
  • the light-shielding pad is used to block the influence of external light on the transmission of the red light, infrared light and multi-channel optical signals.
  • the material of the two electrode sheets is gold-plated copper or nickel-plated copper.
  • the button is used to start acquiring the user's ECG data and blood oxygen data or to stop acquiring the user's ECG data and blood oxygen data after being pressed once.
  • the measuring device further includes a through hole, which is provided on any side of the measuring device and is used for hanging the measuring device.
  • the power supply device includes a wireless charging receiving module and a power supply module, wherein the wireless charging receiving module is used to receive electric energy and charge the power supply module; the power supply module is used to charge the blood oxygen The sensor, the display screen, and the data processing module provide electrical energy.
  • the data processing module includes an AFE (Analog Front End) chip, a first MCU (Microprogrammed Control Unit, microprocessor), a serial interface, a second MCU, a data storage module, a clock module and a communication module.
  • AFE Analog Front End
  • MCU Microprogrammed Control Unit, microprocessor
  • serial interface a serial interface
  • second MCU a data storage module
  • clock module a communication module.
  • the AFE chip is used to simultaneously collect the digital signal and ECG data, and convert the digital signal into blood oxygen data;
  • the first MCU is used to process the infrared PPG waveform data and The ECG data obtains a blood pressure value;
  • the serial interface is used to transfer the blood oxygen data, the ECG data and the blood pressure value from the first MCU to the second MCU;
  • a second MCU configured to receive the blood oxygen data, the ECG data and the blood pressure value, and send the blood oxygen data, the ECG data and the blood pressure value to the data storage module;
  • the data storage module is used to store the blood oxygen data, the ECG data and the blood pressure value;
  • the communication module is used to store the blood oxygen data, The ECG data and the blood pressure value are transmitted to the communication terminal;
  • the clock module is used to provide time.
  • the processing of the infrared light PPG waveform data and the electrocardiogram data to obtain the blood pressure value includes: after the waveform of the electrocardiogram data is stabilized, each time an electrocardiogram peak value is obtained, the infrared light PPG waveform data is Obtain the pulse wave peak value after the ECG peak value, and determine the ECG peak value and the pulse wave peak value as an ECG and pulse wave peak group; the ECG wave in the ECG and pulse wave peak group Between the time corresponding to the peak value and the time corresponding to the pulse wave peak value, select the specified time value in the infrared light PPG waveform data; according to the first preset parameter, the second preset parameter and the specified time value, we obtain Each of the ECG and pulse wave peak groups corresponds to blood pressure value.
  • the specified time value is the maximum value in the infrared PPG waveform data between the time corresponding to the ECG peak in the ECG and pulse wave peak group and the time corresponding to the pulse wave peak.
  • the first-order derivative is the maximum value of the difference between two adjacent data in the infrared PPG waveform data
  • the second-order derivative is the maximum value of the difference between the two adjacent differences. the maximum value.
  • the blood pressure value includes diastolic blood pressure and systolic blood pressure
  • the first preset parameter includes a first preset parameter of diastolic blood pressure and a first preset parameter of systolic blood pressure
  • the second preset parameter includes a second preset parameter of diastolic blood pressure. The preset parameter and the second preset parameter of systolic blood pressure.
  • a second aspect of the embodiment of the present disclosure provides a measurement method according to the measurement device as described above, including: simultaneously acquiring infrared light PPG waveform data, blood oxygen data, and ECG data; After the waveform is stabilized, each time an electrocardiogram peak value is obtained, the pulse wave peak value after the electrocardiogram peak value is obtained from the infrared light PPG waveform data, and the electrocardiogram peak value and the pulse wave peak value are determined as the electrocardiogram and pulse wave peak values.
  • Pulse wave peak group between the time corresponding to the ECG peak in the ECG and pulse wave peak group and the time corresponding to the pulse wave peak, select the specified time value in the infrared PPG waveform data; according to The first preset parameter, the second preset parameter and the specified time value are used to obtain the blood pressure value corresponding to each of the ECG and pulse wave peak groups.
  • the specified time value is between the time corresponding to the ECG peak in the ECG and pulse wave peak group and the time corresponding to the pulse wave peak, and the infrared PPG wave The time corresponding to the maximum value, minimum value, first derivative, second derivative or cut point value in the shape data.
  • the first-order derivative is the maximum value of the difference between two adjacent data in the infrared PPG waveform data
  • the second-order derivative is the maximum value of the difference between the two adjacent differences. the maximum value.
  • the blood pressure value includes diastolic blood pressure and systolic blood pressure
  • the first preset parameter includes a first preset parameter of diastolic blood pressure and a first preset parameter of systolic blood pressure
  • the second preset parameter includes a second preset parameter of diastolic blood pressure. The preset parameter and the second preset parameter of systolic blood pressure.
  • a third aspect of the embodiments of the present disclosure provides a machine-readable storage medium having instructions stored on the machine-readable storage medium, the instructions being used to cause a machine to perform the measurement method as described above.
  • the blood oxygen measurement equipment and the ECG measurement equipment are integrated together, which reduces the size of the measurement equipment and is convenient for users to carry.
  • the blood oxygen data and ECG data at the same time can be collected at the same time through one measurement. , reducing the number of user measurements and improving user measurement efficiency.
  • Figure 1 is a schematic structural diagram of a measuring device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic top view of a measurement device provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the electrode sheet pin installation provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of the circuit mainboard 17 provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a data processing module provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of the blood oxygen collection device 13, the upper housing 11 and the blood oxygen sensor 171 provided by the embodiment of the present disclosure;
  • Figure 7 is a schematic diagram of the application architecture of the measurement equipment provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a measurement method according to the measurement device as described above provided by an embodiment of the present disclosure.
  • Figure 1 is a schematic structural diagram of a measuring device provided by an embodiment of the present disclosure.
  • the measurement equipment 100 includes an upper housing 11, a lower housing 12, a blood oxygen collection device 13, an ECG collection device 14 and a display screen embedded in the groove of the upper housing 11.
  • the lens 15 as well as the power supply device 16 , the circuit motherboard 17 and the buttons 18 are disposed between the upper housing 11 and the lower housing 12 .
  • the ECG collection device 14 includes a first electrode sheet 141 and a second electrode sheet 142, And the two electrode pieces are respectively embedded in the grooves at both ends of the upper housing.
  • a hollow 143 is provided at the center of any electrode sheet, and the blood oxygen collection device 13 is arranged in the hollow 143 .
  • the blood oxygen collection device 13 is disposed at the center of the first electrode sheet 141 .
  • the user's left and right hands touch the first electrode pad 141 and the second electrode pad 142 respectively, they will inevitably come into contact with the blood oxygen collection device 13, so that the user's blood oxygen data and ECG data can be collected simultaneously.
  • Combining two measuring devices into one reduces the size of the measuring device and is convenient for users to carry.
  • two types of data can be obtained at the same time in one measurement, which reduces the number of user measurements and improves the user's measurement efficiency.
  • the upper case 11 is provided with a through hole 10
  • the circuit mainboard 17 is provided with another through hole 170
  • the first electrode sheet 141 and the second electrode sheet are 142 are each provided with pins 31, and the two pins 31 connect the two electrode sheets 141, 142 to the circuit mainboard 17 through the through hole 10 of the upper housing 11 and the through hole 170 on the circuit mainboard 17. , so that the circuit mainboard can obtain the ECG data collected by the two electrode pads.
  • the material of the two electrode sheets is gold-plated copper or nickel-plated copper.
  • the circuit mainboard 17 includes a blood oxygen sensor 171 , a display screen 172 and a data processing module 173 .
  • the blood oxygen sensor 171 includes a luminescent tube 41 and a receiving tube 42 .
  • the luminescent tube 41 is used to emit red light and infrared light.
  • the receiving tube 42 is used to receive multiple optical signals after the red light and infrared light are reflected or transmitted by human tissue, and convert the multiple optical signals into digital signals and send them to the data processing module 173 .
  • the data signal includes red light PPG waveform data and infrared light PPG waveform data.
  • the data processing module 173 is configured to receive the digital signal and the ECG data, convert the digital signal into blood oxygen data, and obtain the blood pressure value by processing the infrared PPG waveform data and the ECG data.
  • the display screen 172 is used to display the blood oxygen data, the ECG data and the blood pressure value through the display screen lens in the groove of the upper housing.
  • the size of the display screen can be determined according to the size of the measuring device, and is preferably 0.49 inches in the embodiment of the present disclosure.
  • the data processing module 173 includes an AFE chip 51, a first MCU 52, a serial interface 53, a second MCU 54, a data storage module 55, a clock module 56 and a communication module 57.
  • the AFE chip 51 is used to simultaneously collect the digital signal and ECG data, and convert the digital signal into blood oxygen data; the first MCU 52 is used to process the infrared PPG waveform data. and the ECG data to obtain a blood pressure value; the serial interface 53 is used to transfer the blood oxygen data, the ECG data and the blood pressure value from the first MCU to the second MCU; The second MCU 54 is used to receive the blood oxygen data, the ECG data and the blood pressure value, and send the blood oxygen data, the ECG data and the blood pressure value to the data
  • the blood oxygen data, the ECG data and the blood pressure value are transmitted to the communication terminal; the clock module 56 is used to provide time.
  • the specific implementation method of processing the infrared PPG waveform data and the ECG data to obtain the blood pressure value is as follows:
  • the pulse wave peak after the ECG peak is obtained in the infrared PPG waveform data, and the ECG peak is compared with the pulse
  • the peak value of the wave is determined as the group of ECG and pulse wave peaks. That is to say, when the waveform of the ECG data is stable, the first ECG peak value is obtained, and the first pulse wave peak value that appears after the first ECG peak value is obtained in the infrared light PPG waveform data, and the first pulse wave peak value is obtained.
  • the first electrocardiogram peak and the first pulse wave peak are determined as the first electrocardiogram and pulse wave peak group.
  • the second ECG peak obtains the second ECG peak, and then obtain the second pulse wave peak that appears after the second ECG peak in the infrared light PPG waveform data. Similarly, compare the second ECG peak with the second ECG peak. Each pulse wave peak is determined as the second ECG and pulse wave peak group, and the subsequent ECG and pulse wave peak groups are deduced in the same way, thereby obtaining multiple ECG and pulse wave peak groups. Afterwards, a specified time value in the infrared light PPG waveform data is selected between the time corresponding to the electrocardiogram peak in the electrocardiogram and pulse wave peak group and the time corresponding to the pulse wave peak.
  • the specified time value is the time corresponding to the ECG peak value in the ECG and pulse wave peak group and the pulse wave peak value.
  • the times corresponding to the maximum value, minimum value, first-order derivative, second-order derivative or cut-point value in the infrared light PPG waveform data are the times corresponding to the values.
  • the first-order derivative is the maximum value of the difference between two adjacent data in the infrared PPG waveform data.
  • the second-order derivative is the maximum value among the differences between two adjacent differences, that is, after calculating the first-order derivative, it is obtained by taking the difference between two adjacent differences among all the differences obtained.
  • the maximum value is the second derivative.
  • the blood pressure value corresponding to each of the ECG and pulse wave peak groups is obtained.
  • the embodiment of the present disclosure may use any one of the following three formulas:
  • PAT is the specified time value
  • a is the first preset parameter
  • b is the second preset parameter.
  • the blood pressure value includes diastolic blood pressure and systolic blood pressure. Therefore, the corresponding first preset parameter and the second preset parameter are also set respectively for diastolic blood pressure and systolic blood pressure, that is, the first preset parameter includes the diastolic blood pressure.
  • a preset parameter and a first preset parameter of systolic blood pressure the second preset parameter includes a second preset parameter of diastolic blood pressure and a second preset parameter of systolic blood pressure.
  • the first-order derivative is optimally selected for the specified time value
  • formula (3) is optimally selected for the formula for calculating the blood pressure value.
  • the obtained ECG data, blood oxygen data and blood pressure values can also be transmitted to the communication terminal through the communication module, such as Bluetooth communication, and transmitted to the user's mobile phone in real time for display. .
  • a first light hole 111 , a baffle 112 and a second light hole 113 are arranged side by side in the groove of the upper housing 11 directly below the hollow 143 .
  • the first pass The light hole 111 is used to transmit the red light and infrared light emitted by the luminescent tube 41 to the blood oxygen collection device 13;
  • the second light hole 113 is used to transmit the multiple optical signals.
  • the baffle 112 is used to isolate the light emitted by the light emitting tube 41 from the multiple optical signals received by the receiving tube 42.
  • the blood oxygen collection device 13 includes a luminous lens 131, a reflective lens 132 and a light-shielding pad 133.
  • the light-shielding pad 133 is provided with a third light hole 61 and a fourth light hole 62.
  • the third light hole 61 is disposed above the first light hole 111
  • the fourth light hole 62 is disposed above the second light hole 113 .
  • the luminescent lens 131 is disposed above the third light hole 61 for transmitting the luminous tube 41 to emit red light and infrared light, and filtering out other light except the red light and infrared light.
  • the reflective lens 132 is disposed above the fourth light hole 62 for transmitting the multiple optical signals and filtering other optical signals except the multiple optical signals.
  • the light-shielding pad 133 is used to block the influence of external light on the red light, infrared light and multi-channel optical signal transmission.
  • the luminescent lens and the reflective lens are lenses with uniformly convex surfaces, thereby further increasing the amount of finger blood oxygen signal collection.
  • the button 18 is used to start or stop acquiring the user's ECG data and blood oxygen data after being controlled by one press. Get it. That is to say, when the measuring device is in a closed state, pressing the button 18 turns on the measuring device; if the measuring device is in an on state, pressing the button 18 turns off the measuring device.
  • the power supply device 16 includes a wireless charging receiving module 161 and a power supply module 162 .
  • the wireless charging receiving module 161 is used to receive electric energy and charge the power module;
  • the power module 162 is used to provide electric energy to the blood oxygen sensor, the display screen, and the data processing module.
  • the battery in the power module can be a polymer lithium battery, which is small in size and has long power supply time.
  • the charging interface corresponding to the wireless charging receiving module is an anti-reverse connection design interface.
  • the switch circuit 174 in the circuit mainboard 17 controls the power module 162 to the desired state.
  • the blood oxygen sensor 171, the display screen 172, and the data processing module 173 Electric energy is provided, so that the data processing module 173 receives the digital signals and ECG data collected by the blood oxygen sensor 171 and the ECG acquisition device 14, and converts the digital signals into blood oxygen data, and processes the infrared light PPG waveform.
  • the data is combined with the ECG data to obtain the blood pressure value.
  • the measuring device may further include a through hole (not shown in the figure), which is provided on any side of the measuring device for fastening the measuring device.
  • a through hole (not shown in the figure), which is provided on any side of the measuring device for fastening the measuring device.
  • it can be used to tie a key chain, which is easy to carry and measure at any time.
  • the blood oxygen measurement device and the ECG measurement device are integrated together, and the blood oxygen data and the ECG data at the same time can be collected simultaneously through one measurement, so that the blood oxygen data and the ECG data can be collected simultaneously. Get the blood pressure value.
  • FIG. 8 is a schematic flowchart of a measurement method according to the measurement equipment as described above provided by an embodiment of the present disclosure. As shown in Figure 8, the method includes the following steps:
  • Step 801 obtain infrared light PPG waveform data, blood oxygen data and ECG data at the same time;
  • Step 802 After the waveform of the ECG data is stabilized, each time an ECG peak value is obtained, the pulse wave peak value after the ECG peak value is obtained from the infrared light PPG waveform data, and the ECG peak value is compared with the ECG peak value.
  • the pulse wave peak is determined as a group of ECG and pulse wave peaks;
  • Step 803 Select a specified time value in the infrared PPG waveform data between the time corresponding to the ECG peak in the ECG and pulse wave peak group and the time corresponding to the pulse wave peak;
  • Step 804 Obtain the blood pressure value corresponding to each of the ECG and pulse wave peak groups based on the first preset parameter, the second preset parameter and the specified time value.
  • infrared light PPG waveform data, blood oxygen data, and ECG data can be acquired simultaneously.
  • the specified time value is the maximum value in the infrared PPG waveform data between the time corresponding to the ECG peak value and the time corresponding to the pulse wave peak value in the ECG and pulse wave peak group. , the time corresponding to the minimum value, first derivative, second derivative or cut point value.
  • the first-order derivative is the difference between two adjacent data in the infrared PPG waveform data. the maximum value.
  • the second-order derivative is the maximum value among the differences between two adjacent differences, that is, after calculating the first-order derivative, it is obtained by taking the difference between two adjacent differences among all the differences obtained. The maximum value is the second derivative.
  • PAT is the designated time value
  • a is the first preset parameter
  • b is the second preset parameter.
  • the blood pressure value includes diastolic blood pressure and systolic blood pressure. Therefore, the corresponding first preset parameter and the second preset parameter are also set respectively for diastolic blood pressure and systolic blood pressure, that is, the first preset parameter includes the diastolic blood pressure.
  • a preset parameter and a first preset parameter of systolic blood pressure the second preset parameter includes a second preset parameter of diastolic blood pressure and a second preset parameter of systolic blood pressure.
  • the first-order derivative is optimally selected for the specified time value
  • formula (3) is optimally selected for the formula for calculating the blood pressure value.
  • the blood pressure value can be obtained after obtaining the ECG data and the infrared PPG waveform data.
  • the embodiments of the present disclosure are more convenient, that is, the number of measuring devices is reduced. , and reduces the number of user measurements.
  • the traditional blood pressure measurement method which can only obtain one set of blood pressure values (including diastolic blood pressure and systolic blood pressure)
  • multiple sets of blood pressure values can be obtained. blood pressure value, and can realize uninterrupted blood pressure value monitoring.
  • Another aspect of the embodiments of the present disclosure also provides a machine-readable storage medium.
  • the machine-readable storage medium stores instructions. The instructions are used to cause the machine to perform the measurement method described in the above embodiments.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-volatile memory in computer-readable media, random access memory (RAM), and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种测量设备、方法及存储介质,属于医疗设备技术领域。测量设备(100)包括:上壳体(11)、下壳体(12)、嵌设于上壳体(11)的凹槽中的血氧采集装置(13)、心电采集装置(14)、以及设置于上壳体(11)与下壳体(12)之间的电源装置(16)与电路主板(17),其中,心电采集装置(14)包括第一电极片(141)与第二电极片(142),且两个电极片分别嵌设于所述上壳体两端的凹槽中;在任意一个电极片上设置有镂空处(143),将血氧采集装置(13)设置于镂空处(143)。

Description

测量设备、方法及存储介质
本申请要求申请日为2022年07月27日、申请号为202210892732.0、发明名称为“测量设备、方法及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例涉及医疗设备技术领域,具体地涉及一种测量设备、方法及存储介质。
背景技术
现有的心电与血氧测量需要心电测量设备与血氧测量设备分别进行检测,不仅过于消耗用户的测量时间,而且上述两个测量设备的体积均较大,不便于用户随时随地记录心电与血氧数据。尤其当需要医护人员介入用户的诊疗过程中时,需要两个测量设备交替检测,不能同时得到心电与血氧数据,无法为医护人员提供准确的生理参考数据。
发明内容
本公开的实施例的目的是提供一种漏电补偿电路、芯片及电子设备,对输出级的漏电流进行采样,并将采样得到的电流输入回输出级,从而补偿了输出级中的泄露电流。
本公开的实施例的目的是提供一种测量设备、方法及存储介质,通过将血氧测量装置集成在心电测量装置中,实现了心电与血氧的同时测量,减小了测量设备的体积。
为了实现上述目的,本公开实施例的第一方面提供一种测量设备,包括:上壳体、下壳体、嵌设于所述上壳体的凹槽中的血氧采集装置、心电采集装置与显示屏镜片、以及设置于所述上壳体与所述下壳体之间的电源装置、电路主板与按键,其中,所述心电采集装置包括第一电极片与第二 电极片,且两个电极片分别嵌设于所述上壳体两端的凹槽中;在任意一个电极片的中心位置设置有镂空处,将所述血氧采集装置设置于所述镂空处。
进一步地,在所述上壳体以及所述电路主板上均设置有通孔,所述第一电极片与所述第二电极片均设有引脚,两个引脚通过所述上壳体的通孔以及所述电路主板上的通孔将所述两个电极片与所述电路主板连接。
进一步地,所述电路主板包括血氧传感器、显示屏以及数据处理模块,其中,所述血氧传感器包括发光管和接收管,所述发光管,用于发出红光和红外光;所述接收管,用于接收所述红光和红外光经过人体组织反射或透射后的多路光信号,并将所述多路光信号转换成数字信号后发送给所述数据处理模块,所述数据信号包括红光PPG(Photoplethysmography,光电容积脉搏波)波形数据和红外光PPG波形数据;所述数据处理模块,用于接收所述数字信号以及心电数据,并将所述数字信号转换为血氧数据,通过处理所述红外光PPG波形数据与所述心电数据得到血压值;所述显示屏,用于通过所述上壳体的凹槽中的所述显示屏镜片显示所述血氧数据、所述心电数据以及所述血压值。
进一步地,在所述镂空处正下方的所述上壳体的凹槽中并排设置有第一通光孔、挡板以及第二通光孔,其中,所述第一通光孔,用于将所述发光管发出的所述红光和红外光传输至所述血氧采集装置;所述第二通光孔,用于将所述多路光信号传输至所述接收管;所述挡板,用于隔离所述发光管发出的光与所述接收管接收的所述多路光信号。
进一步地,所述血氧采集装置包括发光镜片、反射镜片以及遮光垫,所述遮光垫上设置有第三通光孔与第四通光孔,所述第三通光孔设置于所述第一通光孔上方,所述第四通光孔设置于所述第二通光孔上方,其中,所述发光镜片设置于所述第三通光孔上方,用于透射所述发光管发出红光和红外光,并滤除所述红光和红外光之外的其他光;所述反射镜片设置于所述第四通光孔上方,用于透射所述多路光信号,并滤除所述多路光信号之外的其他光信号;所述遮光垫,用于阻挡外界光线对所述红光、红外光以及多路光信号传输的影响。
进一步地,所述两个电极片的材质为铜镀金或铜镀镍。
进一步地,所述按键,用于在受控于一次按压后启动对用户的心电数据与血氧数据进行获取或停止对用户的心电数据与血氧数据进行获取。
进一步地,所述测量设备还包括通孔,设置在所述测量设备的任意一个侧面,用于拴挂所述测量设备。
进一步地,所述电源装置包括无线充电接收模块和电源模块,其中,所述无线充电接收模块,用于接收电能,并给所述电源模块充电;所述电源模块,用于向所述血氧传感器、所述显示屏、所述数据处理模块提供电能。
进一步地,所述数据处理模块包括AFE(Analog Front End,模拟前端)芯片、第一MCU(Microprogrammed Control Unit,微处理器)、串行接口、第二MCU、数据存储模块、时钟模块以及通信模块,其中,所述AFE芯片,用于同时采集所述数字信号以及心电数据,并将所述数字信号转换为血氧数据;所述第一MCU,用于处理所述红外光PPG波形数据与所述心电数据得到血压值;所述串行接口,用于将所述血氧数据、所述心电数据以及所述血压值从所述第一MCU传递至所述第二MCU;所述第二MCU,用于接收所述血氧数据、所述心电数据以及所述血压值,并将所述血氧数据、所述心电数据以及所述血压值发送至所述数据存储模块、所述显示屏、所述通信模块;所述数据存储模块,用于存储所述血氧数据、所述心电数据以及所述血压值;所述通信模块,用于将所述血氧数据、所述心电数据以及所述血压值传输至通信终端;所述时钟模块,用于提供时间。
进一步地,所述处理所述红外光PPG波形数据与所述心电数据得到血压值包括:在所述心电数据的波形稳定后,每获取一个心电波峰值,在所述红外光PPG波形数据中获取所述心电波峰值之后的脉搏波峰值,并将所述心电波峰值与所述脉搏波峰值确定为心电与脉搏波峰组;在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,选取所述红外光PPG波形数据中的指定时间值;根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应 的血压值。
进一步地,所述指定时间值为在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,所述红外光PPG波形数据中的最大值、最小值、一阶导数、二阶导数或切点值对应的时间。
进一步地,所述一阶导数是所述红外光PPG波形数据中相邻的两个数据之间的差值中的最大值,所述二阶导数是相邻两个所述差值之差中的最大值。
进一步地,所述根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值包括:根据或BP=a·ln(PAT)+b,得到所述血压值BP,其中,PAT为所述指定时间值,a为所述第一预设参数,b为所述第二预设参数。
进一步地,所述血压值包括舒张压和收缩压,所述第一预设参数包括舒张压第一预设参数和收缩压第一预设参数,所述第二预设参数包括舒张压第二预设参数和收缩压第二预设参数。
相应地,本公开实施例的第二方面提供一种根据如上所述的测量设备的测量方法,包括:同时获取红外光PPG波形数据、血氧数据以及心电数据;在所述心电数据的波形稳定后,每获取一个心电波峰值,在所述红外光PPG波形数据中获取所述心电波峰值之后的脉搏波峰值,并将所述心电波峰值与所述脉搏波峰值确定为心电与脉搏波峰组;在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,选取所述红外光PPG波形数据中的指定时间值;根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值。
进一步地,所述指定时间值为在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,所述红外光PPG波 形数据中的最大值、最小值、一阶导数、二阶导数或切点值对应的时间。
进一步地,所述一阶导数是所述红外光PPG波形数据中相邻的两个数据之间的差值中的最大值,所述二阶导数是相邻两个所述差值之差中的最大值。
进一步地,所述根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值包括:根据或BP=a·ln(PAT)+b,得到所述血压值BP,其中,PAT为所述指定时间值,a为所述第一预设参数,b为所述第二预设参数。
进一步地,所述血压值包括舒张压和收缩压,所述第一预设参数包括舒张压第一预设参数和收缩压第一预设参数,所述第二预设参数包括舒张压第二预设参数和收缩压第二预设参数。
相应地,本公开实施例的第三方面提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行如上所述的测量方法。
通过上述技术方案,将血氧测量设备与心电测量设备集成在一起,减小了测量设备的体积,方便用户携带,另外通过一次测量即可同时采集到同一时刻的血氧数据和心电数据,减少了用户测量次数,提高用户的测量效率。
本公开的实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开的实施例,但并不构成对本公开的实施例的限制。在附图中:
图1是本公开实施例提供的一种测量设备的结构示意图;
图2是本公开实施例提供的测量设备的俯视示意图;
图3是本公开实施例提供的电极片引脚安装示意图;
图4是本公开实施例提供的电路主板17的结构示意图;
图5是本公开实施例提供的数据处理模块的结构示意图;
图6是本公开实施例提供的血氧采集装置13、上壳体11与血氧传感器171的结构示意图;
图7是本公开实施例提供的测量设备的应用架构示意图;
图8是本公开实施例提供的根据如上所述的测量设备的测量方法的流程示意图。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。
除非另外定义,否则在此使用的所有术语(包括技术和科学术语)具有与本公开主题所属领域的技术人员所通常理解的相同含义。进一步将理解的是,诸如在通常使用的词典中定义的那些的术语应解释为具有与说明书上下文和相关技术中它们的含义一致的含义,并且将不以理想化或过于正式的形式来解释,除非在此另外明确定义。
图1是本公开实施例提供的一种测量设备的结构示意图。如图1所示,所述测量设备100包括上壳体11,下壳体12,嵌设于所述上壳体11的凹槽中的血氧采集装置13、心电采集装置14与显示屏镜片15,以及设置于所述上壳体11与所述下壳体12之间的电源装置16、电路主板17与按键18。
其中,所述心电采集装置14包括第一电极片141与第二电极片142, 且两个电极片分别嵌设于所述上壳体两端的凹槽中。另外,在任意一个电极片的中心位置设置有镂空处143,将所述血氧采集装置13设置于所述镂空处143。
以所述镂空处143设置于第一电极片141为例,如图2所示,血氧采集装置13设置于第一电极片141中心位置。当用户左右手分别接触第一电极片141以及第二电极片142时,必然会接触血氧采集装置13,从而可以实现同时采集用户的血氧数据以及心电数据。将两种测量设备合二为一,减小了测量设备的体积,方便用户携带,另外一次测量可同时获取两种数据,减少了用户测量次数,提高用户的测量效率。
其中,如图3所示,在所述上壳体11上设置有通孔10,在所述电路主板17上设置有另一通孔170,所述第一电极片141与所述第二电极片142均设有引脚31,两个引脚31通过所述上壳体11的通孔10以及所述电路主板17上的通孔170将所述两个电极片141,142与所述电路主板17连接,以便所述电路主板获取两个电极片所采集的心电数据。另外,所述两个电极片的材质为铜镀金或铜镀镍。
另外,如图4所示,所述电路主板17包括血氧传感器171、显示屏172以及数据处理模块173。
其中,所述血氧传感器171包括发光管41和接收管42。所述发光管41,用于发出红光和红外光。所述接收管42,用于接收所述红光和红外光经过人体组织反射或透射后的多路光信号,并将所述多路光信号转换成数字信号后发送给所述数据处理模块173。其中,所述数据信号包括红光PPG波形数据和红外光PPG波形数据。
所述数据处理模块173,用于接收所述数字信号以及心电数据,并将所述数字信号转换为血氧数据,通过处理所述红外光PPG波形数据与所述心电数据得到血压值。
所述显示屏172,用于通过所述上壳体的凹槽中的所述显示屏镜片显示所述血氧数据、所述心电数据以及所述血压值。其中,所述显示屏尺寸可根据测量设备大小决定,在本公开实施例中优选为0.49寸。
其中,如图5所示,所述数据处理模块173包括AFE芯片51、第一MCU 52、串行接口53、第二MCU 54、数据存储模块55、时钟模块56以及通信模块57。
其中,所述AFE芯片51,用于同时采集所述数字信号以及心电数据,并将所述数字信号转换为血氧数据;所述第一MCU 52,用于处理所述红外光PPG波形数据与所述心电数据得到血压值;所述串行接口53,用于将所述血氧数据、所述心电数据以及所述血压值从所述第一MCU传递至所述第二MCU;所述第二MCU 54,用于接收所述血氧数据、所述心电数据以及所述血压值,并将所述血氧数据、所述心电数据以及所述血压值发送至所述数据存储模块、所述显示屏、所述通信模块;所述数据存储模块55,用于存储所述血氧数据、所述心电数据以及所述血压值;所述通信模块57,用于将所述血氧数据、所述心电数据以及所述血压值传输至通信终端;所述时钟模块56,用于提供时间。
其中,在处理所述红外光PPG波形数据与所述心电数据得到血压值的具体实施方式如下:
在所述心电数据的波形稳定后,每获取一个心电波峰值,在所述红外光PPG波形数据中获取所述心电波峰值之后的脉搏波峰值,并将所述心电波峰值与所述脉搏波峰值确定为心电与脉搏波峰组。也就是说,当所述心电数据的波形稳定后,获取第一个心电波峰值,在所述红外光PPG波形数据中获取第一个心电波峰值之后出现的第一个脉搏波峰值,将第一个心电波峰值与第一个脉搏波峰值确定为第一组心电与脉搏波峰组。之后,获取第二个心电波峰值,然后在所述红外光PPG波形数据中获取第二个心电波峰值之后出现的第二个脉搏波峰值,同样的,将第二个心电波峰值与第二个脉搏波峰值确定为第二组心电与脉搏波峰组,之后的心电与脉搏波峰组以此类推,从而得到多组心电与脉搏波峰组。之后,在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,选取所述红外光PPG波形数据中的指定时间值。其中,所述指定时间值为在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰 值对应的时间之间,所述红外光PPG波形数据中的最大值、最小值、一阶导数、二阶导数或切点值对应的时间。另外,所述一阶导数是所述红外光PPG波形数据中相邻的两个数据之间的差值中的最大值。所述二阶导数是相邻两个所述差值之差中的最大值,也就是在计算一阶导数之后,将所得到的所有差值中的相邻两个差值再作差得到的最大值为二阶导数。
然后,根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值。
在计算所述血压值BP的过程中,本公开实施例可采用如下三种公式中的任意一种:

BP=a·ln(PAT)+b                公式(3)
其中,PAT为所述指定时间值,a为所述第一预设参数,b为所述第二预设参数。
另外,所述血压值包括舒张压和收缩压,因此,对应的第一预设参数与第二预设参数也针对舒张压和收缩压分别设置,即所述第一预设参数包括舒张压第一预设参数和收缩压第一预设参数,所述第二预设参数包括舒张压第二预设参数和收缩压第二预设参数。在本公开实施例中,所述指定时间值最优选择一阶导数,计算血压值的公式最优选择公式(3)。
其中,对于得到的心电数据、血氧数据以及血压值除了可在所述测量设备的显示屏上显示之前,还可以通过通信模块传输至通信终端,例如蓝牙通信方式实时传输至用户手机端显示。
如图6所示,在所述镂空处143正下方的所述上壳体11的凹槽中并排设置有第一通光孔111、挡板112以及第二通光孔113。其中,所述第一通 光孔111,用于将所述发光管41发出的所述红光和红外光传输至所述血氧采集装置13;所述第二通光孔113,用于将所述多路光信号传输至所述接收管42;所述挡板112,用于隔离所述发光管41发出的光与所述接收管42接收的所述多路光信号。另外,如图6所示,所述血氧采集装置13包括发光镜片131、反射镜片132以及遮光垫133,所述遮光垫133上设置有第三通光孔61与第四通光孔62,所述第三通光孔61设置于所述第一通光孔111上方,所述第四通光孔62设置于所述第二通光孔113上方。其中,所述发光镜片131设置于所述第三通光孔61上方,用于透射所述发光管41发出红光和红外光,并滤除所述红光和红外光之外的其他光。所述反射镜片132设置于所述第四通光孔62上方,用于透射所述多路光信号,并滤除所述多路光信号之外的其他光信号。所述遮光垫133,用于阻挡外界光线对所述红光、红外光以及多路光信号传输的影响。
另外,为了进一步增大手指与镜片的接触面积,所述发光镜片与反射镜片为表面均匀凸起的镜片,从而进一步增加手指血氧信号的采集量。
另外,图1所示的测量设备中,所述按键18,用于在受控于一次按压后启动对用户的心电数据与血氧数据进行获取或停止对用户的心电数据与血氧数据进行获取。也就是说,当所述测量设备处于关闭状态时,按下按键18则开启所述测量设备;若是所述测量设备处于开启状态,按下按键18则关闭所述测量设备。
如图1所示,所述电源装置16包括无线充电接收模块161和电源模块162。其中,所述无线充电接收模块161,用于接收电能,并给所述电源模块充电;所述电源模块162,用于向所述血氧传感器、所述显示屏、所述数据处理模块提供电能。其中,所述电源模块中的电池可采用聚合物锂电池,体积小,供电时间长。另外,所述无线充电接收模块对应的充电接口为防反接设计接口。
如图7所示,当所述测量设备处于关闭状态时,若按下按键18,则所述电路主板17中的开关机电路174,在接收到开启信号后,控制所述电源模块162向所述血氧传感器171、所述显示屏172、所述数据处理模块173 提供电能,从而所述数据处理模块173接收通过血氧传感器171以及心电采集装置14采集得到的数字信号以及心电数据,并将所述数字信号转换为血氧数据,通过处理红外光PPG波形数据与所述心电数据得到血压值。
为了便于携带所述测量设备,所述测量设备还可包括通孔(图中未示),设置在所述测量设备的任意一个侧面,用于拴挂所述测量设备。例如,用于拴钥匙链,便于携带,随时测量。
通过本公开实施例,将血氧测量设备与心电测量设备集成在一起,通过一次测量即可同时采集到同一时刻的血氧数据和心电数据,从而可以实现通过血氧数据与心电数据得到血压值。
结合上述图1-图7的测量设备,图8是本公开实施例提供的根据如上所述的测量设备的测量方法的流程示意图。如图8所示,所述方法包括如下步骤:
步骤801,同时获取红外光PPG波形数据、血氧数据以及心电数据;
步骤802,在所述心电数据的波形稳定后,每获取一个心电波峰值,在所述红外光PPG波形数据中获取所述心电波峰值之后的脉搏波峰值,并将所述心电波峰值与所述脉搏波峰值确定为心电与脉搏波峰组;
步骤803,在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,选取所述红外光PPG波形数据中的指定时间值;
步骤804,根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值。
其中,当用户左右手指分别同时按住图2所示的测量设备上的第一电极片与第二电极片时,即可同时获取红外光PPG波形数据、血氧数据以及心电数据。
其中,所述指定时间值为在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,所述红外光PPG波形数据中的最大值、最小值、一阶导数、二阶导数或切点值对应的时间。另外,所述一阶导数是所述红外光PPG波形数据中相邻的两个数据之间的差值中 的最大值。所述二阶导数是相邻两个所述差值之差中的最大值,也就是在计算一阶导数之后,将所得到的所有差值中的相邻两个差值再作差得到的最大值为二阶导数。
然后,根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值。在计算所述血压值BP的过程中,本公开实施例可采用如下三种公式中的任意一种:


BP=a=ln(PAT)+b               公式(3)
其中,PAT为所述指定时间值,a为所述第一预设参数,b为所述第二预设参数。
另外,所述血压值包括舒张压和收缩压,因此,对应的第一预设参数与第二预设参数也针对舒张压和收缩压分别设置,即所述第一预设参数包括舒张压第一预设参数和收缩压第一预设参数,所述第二预设参数包括舒张压第二预设参数和收缩压第二预设参数。在本公开实施例中,所述指定时间值最优选择一阶导数,计算血压值的公式最优选择公式(3)。
通过本公开实施例,在获取到心电数据与红外光PPG波形数据之后,即可得到血压值,相比于传统血压测量的方式,本公开实施例更加方便,即减少了测量设备的个数,又减少了用户的测量次数。同时,相比于传统血压测量方式,仅能得到一组血压值(包括舒张压和收缩压),在本公开实施例实时获取心电数据与红外光PPG波形数据的前提下,可得到多组血压值,且可实现不间断的血压值监控。
此外,本公开实施例的另一方面还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述实施例所述的测量方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (21)

  1. 一种测量设备,包括上壳体、下壳体、嵌设于所述上壳体的凹槽中的血氧采集装置、心电采集装置、以及设置于所述上壳体与所述下壳体之间的电源装置与电路主板,其特征在于,
    其中,所述心电采集装置包括第一电极片与第二电极片,且两个电极片分别嵌设于所述上壳体两端的凹槽中;
    在任意一个电极片上设置有镂空处,将所述血氧采集装置设置于所述镂空处。
  2. 根据权利要求1所述的测量设备,其特征在于,在所述上壳体以及所述电路主板上均设置有通孔,所述第一电极片与所述第二电极片均设有引脚,两个引脚通过所述上壳体的通孔以及所述电路主板上的通孔将所述两个电极片与所述电路主板连接。
  3. 根据权利要求1所述的测量设备,其特征在于,所述电路主板包括血氧传感器、显示屏以及数据处理模块,
    其中,所述血氧传感器包括发光管和接收管,
    所述发光管,用于发出红光和红外光;
    所述接收管,用于接收所述红光和红外光经过人体组织反射或透射后的多路光信号,并将所述多路光信号转换成数字信号后发送给所述数据处理模块,所述数据信号包括红光光电容积脉搏波PPG波形数据和红外光PPG波形数据;
    所述数据处理模块,用于接收所述数字信号以及心电数据,并将所述数字信号转换为血氧数据,通过处理所述红外光PPG波形数据与所述心电数据得到血压值;
    所述显示屏,用于通过嵌设于所述上壳体的凹槽中的显示屏镜片显示所述血氧数据、所述心电数据以及所述血压值。
  4. 根据权利要求3所述的测量设备,其特征在于,在所述镂空处正下方的所述上壳体的凹槽中并排设置有第一通光孔、挡板以及第二通光孔,
    其中,所述第一通光孔,用于将所述发光管发出的所述红光和红外光 传输至所述血氧采集装置;
    所述第二通光孔,用于将所述多路光信号传输至所述接收管;
    所述挡板,用于隔离所述发光管发出的光与所述接收管接收的所述多路光信号。
  5. 根据权利要求4所述的测量设备,其特征在于,所述血氧采集装置包括发光镜片、反射镜片以及遮光垫,所述遮光垫上设置有第三通光孔与第四通光孔,所述第三通光孔设置于所述第一通光孔上方,所述第四通光孔设置于所述第二通光孔上方,
    其中,所述发光镜片设置于所述第三通光孔上方,用于透射所述发光管发出红光和红外光,并滤除所述红光和红外光之外的其他光;
    所述反射镜片设置于所述第四通光孔上方,用于透射所述多路光信号,并滤除所述多路光信号之外的其他光信号;
    所述遮光垫,用于阻挡外界光线对所述红光、红外光以及多路光信号传输的影响。
  6. 根据权利要求1所述的测量设备,其特征在于,所述两个电极片的材质为铜镀金或铜镀镍。
  7. 根据权利要求1所述的测量设备,其特征在于,所述上壳体与所述下壳体之间还设置有按键,所述按键,用于在受控于一次按压后启动对用户的心电数据与血氧数据进行获取或停止对用户的心电数据与血氧数据进行获取。
  8. 根据权利要求1所述的测量设备,其特征在于,所述测量设备还包括通孔,设置在所述测量设备的任意一个侧面,用于拴挂所述测量设备。
  9. 根据权利要求3所述的测量设备,其特征在于,所述电源装置包括无线充电接收模块和电源模块,
    其中,所述无线充电接收模块,用于接收电能,并给所述电源模块充电;
    所述电源模块,用于向所述血氧传感器、所述显示屏、所述数据处理模块提供电能。
  10. 根据权利要求3所述的测量设备,其特征在于,所述数据处理模块包括模拟前端AFE芯片、第一微处理器MCU、串行接口、第二MCU、数据存储模块、时钟模块以及通信模块,
    其中,所述AFE芯片,用于同时采集所述数字信号以及心电数据,并将所述数字信号转换为血氧数据;
    所述第一MCU,用于处理所述红外光PPG波形数据与所述心电数据得到血压值;
    所述串行接口,用于将所述血氧数据、所述心电数据以及所述血压值从所述第一MCU传递至所述第二MCU;
    所述第二MCU,用于接收所述血氧数据、所述心电数据以及所述血压值,并将所述血氧数据、所述心电数据以及所述血压值发送至所述数据存储模块、所述显示屏、所述通信模块;
    所述数据存储模块,用于存储所述血氧数据、所述心电数据以及所述血压值;
    所述通信模块,用于将所述血氧数据、所述心电数据以及所述血压值传输至通信终端;
    所述时钟模块,用于提供时间。
  11. 根据权利要求10所述的测量设备,其特征在于,所述处理所述红外光PPG波形数据与所述心电数据得到血压值包括:
    在所述心电数据的波形稳定后,每获取一个心电波峰值,在所述红外光PPG波形数据中获取所述心电波峰值之后的脉搏波峰值,并将所述心电波峰值与所述脉搏波峰值确定为心电与脉搏波峰组;
    在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,选取所述红外光PPG波形数据中的指定时间值;
    根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值。
  12. 根据权利要求11所述的测量设备,其特征在于,所述指定时间值为在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波 峰值对应的时间之间,所述红外光PPG波形数据中的最大值、最小值、一阶导数、二阶导数或切点值对应的时间。
  13. 根据权利要求12所述的测量设备,其特征在于,所述一阶导数是所述红外光PPG波形数据中相邻的两个数据之间的差值中的最大值,所述二阶导数是相邻两个所述差值之差中的最大值。
  14. 根据权利要求11所述的测量设备,其特征在于,所述根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值包括:
    根据
    或BP=a·ln(PAT)+b,
    得到所述血压值BP,其中,PAT为所述指定时间值,a为所述第一预设参数,b为所述第二预设参数。
  15. 根据权利要求14所述的测量设备,其特征在于,所述血压值包括舒张压和收缩压,所述第一预设参数包括舒张压第一预设参数和收缩压第一预设参数,所述第二预设参数包括舒张压第二预设参数和收缩压第二预设参数。
  16. 一种根据权利要求1-15中任一项所述的测量设备的测量方法,其特征在于,包括:
    同时获取红外光光电容积脉搏波PPG波形数据、血氧数据以及心电数据;
    在所述心电数据的波形稳定后,每获取一个心电波峰值,在所述红外光PPG波形数据中获取所述心电波峰值之后的脉搏波峰值,并将所述心电波峰值与所述脉搏波峰值确定为心电与脉搏波峰组;
    在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏 波峰值对应的时间之间,选取所述红外光PPG波形数据中的指定时间值;
    根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值。
  17. 根据权利要求16所述的测量方法,其特征在于,所述指定时间值为在所述心电与脉搏波峰组中的所述心电波峰值对应的时间与所述脉搏波峰值对应的时间之间,所述红外光PPG波形数据中的最大值、最小值、一阶导数、二阶导数或切点值对应的时间。
  18. 根据权利要求17所述的测量方法,其特征在于,所述一阶导数是所述红外光PPG波形数据中相邻的两个数据之间的差值中的最大值,所述二阶导数是相邻两个所述差值之差中的最大值。
  19. 根据权利要求16所述的测量方法,其特征在于,所述根据第一预设参数、第二预设参数以及所述指定时间值,得到每个所述心电与脉搏波峰组对应的血压值包括:
    根据
    或BP=a·ln(PAT)十b,
    得到所述血压值BP,其中,PAT为所述指定时间值,a为所述第一预设参数,b为所述第二预设参数。
  20. 根据权利要求19所述的测量方法,其特征在于,所述血压值包括舒张压和收缩压,所述第一预设参数包括舒张压第一预设参数和收缩压第一预设参数,所述第二预设参数包括舒张压第二预设参数和收缩压第二预设参数。
  21. 一种机器可读存储介质,其特征在于,该机器可读存储介质上存储有指令,该指令用于使得机器执行权利要求16-20中任意一项所述的测量方法。
PCT/CN2023/109470 2022-07-27 2023-07-27 测量设备、方法及存储介质 WO2024022416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210892732.0A CN115211851A (zh) 2022-07-27 2022-07-27 测量设备、方法及存储介质
CN202210892732.0 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024022416A1 true WO2024022416A1 (zh) 2024-02-01

Family

ID=83612959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109470 WO2024022416A1 (zh) 2022-07-27 2023-07-27 测量设备、方法及存储介质

Country Status (2)

Country Link
CN (1) CN115211851A (zh)
WO (1) WO2024022416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115211851A (zh) * 2022-07-27 2022-10-21 北京超思电子技术有限责任公司 测量设备、方法及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470885B1 (en) * 2000-01-13 2002-10-29 Brent Blue Method and apparatus for providing and controlling oxygen supply
CN102293640A (zh) * 2011-07-25 2011-12-28 秦皇岛市康泰医学系统有限公司 血氧、血压和心电测量一体机
US20140031646A1 (en) * 2012-03-29 2014-01-30 Sergey Yakirevich Blood pressure estimation using a hand-held device
CN107438402A (zh) * 2015-04-17 2017-12-05 诺基亚技术有限公司 用于用户可穿戴装置的电极
CN210383886U (zh) * 2019-01-18 2020-04-24 深圳碳云智能数字生命健康管理有限公司 心电心率检测设备、装置及系统
CN115211851A (zh) * 2022-07-27 2022-10-21 北京超思电子技术有限责任公司 测量设备、方法及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470885B1 (en) * 2000-01-13 2002-10-29 Brent Blue Method and apparatus for providing and controlling oxygen supply
CN102293640A (zh) * 2011-07-25 2011-12-28 秦皇岛市康泰医学系统有限公司 血氧、血压和心电测量一体机
US20140031646A1 (en) * 2012-03-29 2014-01-30 Sergey Yakirevich Blood pressure estimation using a hand-held device
CN107438402A (zh) * 2015-04-17 2017-12-05 诺基亚技术有限公司 用于用户可穿戴装置的电极
CN210383886U (zh) * 2019-01-18 2020-04-24 深圳碳云智能数字生命健康管理有限公司 心电心率检测设备、装置及系统
CN115211851A (zh) * 2022-07-27 2022-10-21 北京超思电子技术有限责任公司 测量设备、方法及存储介质

Also Published As

Publication number Publication date
CN115211851A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
KR20190065102A (ko) 심전도 측정 장치
WO2024022416A1 (zh) 测量设备、方法及存储介质
CN108814566A (zh) 智能便携式人体体征传感器
CN105662373A (zh) 一种智能心率心律心电血压计
WO2016188048A1 (zh) 一种血压计
CN210520958U (zh) 可穿戴式人体体温、血氧、心率监测终端
CN210673328U (zh) 人体特征采集装置、设备、设备保护壳、系统
CN203841689U (zh) 一种电子血压计
CN207136844U (zh) 一种动态心电记录仪
CN103251393A (zh) 便携式测量血氧、血糖和脉搏的系统及其制造方法
CN105310698A (zh) 一种耳道表贴血氧饱和度监测仪及其系统
CN215687809U (zh) 手握式心率检测仪
CN207837561U (zh) 健康参数检测设备
CN212231537U (zh) 带有红外测温与心率血氧监测及蓝牙传输功能的手机壳
CN217244418U (zh) 无线网络生理参数采集心电图贴
CN104887213A (zh) 一种与手机建立连接的低功耗心率检测装置和方法
CN210071106U (zh) 一种智能电子秤
CN205072850U (zh) 一种与手机建立连接的低功耗心率检测装置
CN211583139U (zh) 一种基于智能手机的心电图仪
CN203369902U (zh) 一种基于智能终端通信的心电监测系统
CN208973840U (zh) 一种具有生理检测功能的移动充电装置
WO2020147559A1 (zh) 心电心率检测设备、装置及系统
CN218636002U (zh) 基于ppg和ecg信号的动态心电、血氧监测装置
CN104970783A (zh) 一种电子血压计
CN207477500U (zh) 无创采集血糖数据的腕表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845624

Country of ref document: EP

Kind code of ref document: A1