WO2024022208A1 - 一种可分步二次展开的大面积柔性太阳电池翼 - Google Patents

一种可分步二次展开的大面积柔性太阳电池翼 Download PDF

Info

Publication number
WO2024022208A1
WO2024022208A1 PCT/CN2023/108326 CN2023108326W WO2024022208A1 WO 2024022208 A1 WO2024022208 A1 WO 2024022208A1 CN 2023108326 W CN2023108326 W CN 2023108326W WO 2024022208 A1 WO2024022208 A1 WO 2024022208A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible solar
solar cell
assembly
deployment
locking
Prior art date
Application number
PCT/CN2023/108326
Other languages
English (en)
French (fr)
Inventor
王治易
咸奎成
崔琦峰
程雷
倪啸枫
霍杰
施飞舟
彭志龙
许文彬
罗海军
张雷
殷爱平
王威
蒋秋香
汤亮
宋佳
袁伟
郑宗勇
姬鸣
鞠雪梅
Original Assignee
上海宇航系统工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宇航系统工程研究所 filed Critical 上海宇航系统工程研究所
Publication of WO2024022208A1 publication Critical patent/WO2024022208A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/443Photovoltaic cell arrays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of spacecraft, and in particular relates to a large-area flexible solar cell wing that can be deployed twice in a step-by-step manner.
  • the large-area flexible solar cell wing has a large expansion area, a relatively low fundamental frequency, and is difficult to control, which brings great difficulties to the spacecraft in orbit attitude adjustment, orbit change, docking, etc.; at the same time, the large area has a large mass inertia, Bear greater load.
  • the technical problem of the present invention is to overcome the shortcomings of the existing technology and provide a large-area flexible solar cell wing that can be deployed twice in a step-by-step manner.
  • Two retracted flexible solar cell arrays in a folded state are arranged on both sides of the extension mechanism. It has the advantages of small folding envelope, step-by-step deployment, large deployment area, and stable deployment configuration. It is suitable for high-power spacecraft platforms with high load requirements or high control requirements.
  • the present invention discloses a large-area flexible solar cell wing that can be deployed twice in a step-by-step manner, including: a lifting mechanism, an extension mechanism, a secondary deployment flexible solar cell array, a compression release device and a box expansion Locking mechanism; wherein, the secondary deployment flexible solar array includes: the secondary deployment flexible solar array A and the secondary deployment flexible solar array B;
  • the secondary deployment flexible solar array A and the secondary deployment flexible solar array B are respectively arranged at the top two ends of the extension mechanism, and the secondary deployment flexible solar array A and the secondary deployment flexible solar array B are connected to the extension mechanism.
  • the box expansion locking mechanism is provided at each position; the top of the lifting mechanism is connected to the bottom of the extension mechanism; multiple compression points are provided on the extension mechanism and the secondary deployment flexible solar array, and each compression release device is provided separately At the corresponding compression point position, by applying a compression force at the compression point, the extension mechanism and the secondary deployment flexible solar cell array are compressed, thereby achieving the compression resistance of the flexible solar cell wing in the launch section against overload. ;
  • the secondary deployment flexible solar array A and the secondary deployment flexible solar array B are collapsed on both sides of the extension mechanism, and the extension mechanism, the secondary deployment flexible solar array A and the secondary deployment flexible solar array B on the same side of the unfolded baseline;
  • the secondary expansion flexible solar array is expanded twice step by step under the action of the stretching mechanism and the box expansion locking mechanism.
  • the lifting mechanism includes: fixed joints, rotating joints, lifting mechanism driving components and locking components;
  • the fixed joint and the rotating joint are coaxially designed and connected by bearings to form a rotating pair;
  • the driving component of the lifting mechanism is connected to the rotating joint, and the rotating joint is connected to the bottom of the collection tube of the extension mechanism;
  • the lifting mechanism drive component outputs torque when working, driving the rotating joint to rotate relative to the fixed joint, thereby driving the overall rotation of the large-area flexible solar cell wing, and displacing the large-area flexible solar cell wing from the initial state to a state perpendicular to the cabin;
  • the locking component is connected to the rotating joint.
  • the locking component includes: a locking pin, a slideway and a locking hole; the locking pin It is located in the slideway and can slide in the slideway; when the large-area flexible solar cell wing is displaced to a state perpendicular to the cabin, the locking pin is inserted into the locking hole to lock the rotating joint.
  • the extension mechanism includes: an extension arm, a collection tube and an extension mechanism driving assembly;
  • the extension arm In the initial folded state, the extension arm is folded in the storage tube;
  • the extension mechanism drive assembly outputs positive torque, driving the extension arm to expand and lock in one dimension from the collection tube.
  • the structures of the twice-deployed flexible solar array A and the twice-deployed flexible solar array B are the same, including: a lower storage box, an upper storage box, and a constraint release Mechanism, upper battery plate, lower battery plate, isolation plate, tensioning mechanism and guide mechanism;
  • the upper storage box, upper battery panel, lower battery panel and lower storage box are arranged in sequence from top to bottom;
  • An isolation plate is provided between the upper battery panel and the lower battery panel; wherein, the isolation plate is used to realize the step-by-step secondary deployment of the secondary deployment flexible solar cell array during the deployment process;
  • One end of the constraint release mechanism is connected to the upper storage box, and the other end is connected to the lower storage box; in the folded state, the constraint release mechanism is locked, and the upper battery panel and the lower battery panel are collected between the upper storage box and the lower storage box; once During expansion, the constraint release mechanism releases the constraints between the upper battery panel and the isolation plate; during secondary expansion, the restraint between the isolation panel and the lower battery panel is released after the upper battery panel is fully deployed;
  • the guide mechanism is set on the lower storage box and is used to provide guidance for the step-by-step secondary deployment of the secondary deployment flexible solar array during the deployment process, and assist the orderly deployment of the secondary deployment flexible solar array;
  • the tensioning mechanism is set on the upper storage box and is used to apply tension to the upper and lower panels after the secondary deployment of the flexible solar array is fully deployed to ensure the on-orbit stiffness of the secondary deployment of the flexible solar array.
  • the upper and lower panels have the same structure, including: several flexible substrates, battery circuits and flexible cables;
  • the constraint release mechanism includes: a motor drive component, a four-bar linkage mechanism, and an end component; among which, the motor drive component is connected to the four-bar linkage mechanism, and the four-bar linkage
  • the end of the mechanism is provided with an end assembly; the end assembly includes: a primary lock hook, a secondary lock hook, a blocking block, a hinge ring, a secondary unlocking rope assembly and a secondary unlocking spring assembly;
  • the primary lock hook, the secondary lock hook and the blocking block are fixed on the lower storage box; the secondary unlocking spring assembly is fixed on the isolation plate; one end of the hinge ring is fixed on the upper storage box;
  • the tensioning mechanism includes: tensioning mechanism coil spring assembly, tensioning mechanism winding wheel and tensioning rope;
  • the coil spring assembly of the tensioning mechanism is installed on the outside of the upper storage box of the secondary deployment flexible solar array, and is coaxially arranged with the tensioning mechanism winding wheel;
  • the tensioning rope is coplanar with the flexible substrate assembly; one end of the tensioning rope is connected to the flexible substrate assembly, and the other end is fixed on the tensioning mechanism winding wheel.
  • the guide mechanism includes: the guide mechanism coil spring assembly, the guide mechanism winding wheel and the guide rope;
  • the guide mechanism coil spring assembly is installed on the outside of the lower storage box of the secondary deployment flexible solar array, and is coaxially arranged with the guide mechanism winding wheel;
  • the guide rope is arranged on the back of the flexible substrate assembly; one end of the guide rope is connected to the upper storage box of the secondary deployment flexible solar cell array, and the other end is fixed on the guide mechanism winding wheel.
  • the box deployment locking mechanism includes: an upper box deployment locking mechanism and a lower box deployment locking mechanism; wherein the upper box deployment locking mechanism is connected and extended respectively.
  • the shaft is coaxially arranged with the corresponding rotation axis of the upper box unfolding locking mechanism.
  • the upper box unfolds and locks the mechanism, including: a male hinge, a female hinge, a rotating shaft and a locking rod; among them, the male hinge and the female hinge form a rotating pair through the rotating shaft, which has the function of rotating and unfolding; the male hinge is connected to the upper box.
  • the female hinge is connected to the extension arm; after it is deployed in place, the locking lever is locked;
  • the lower box unfolds the locking mechanism, including: a fixed end, a rotating end, a driving transmission assembly and a locking mechanism; among which, the driving transmission assembly provides a driving torque to make the rotating end rotate around the fixed end; the locking mechanism rotates at the rotating end to the setting After the position is reached, the rotating end is locked.
  • the compression release device includes: a pyrotechnic device, a compression rod assembly and a separation component; wherein, the pyrotechnic device, compression rod assembly and separation component are in sequence Connection; in the launch section, the extension mechanism and the secondary deployment flexible solar array are pressed against the side wall of the cabin through the pre-tightening force exerted on the compression rod assembly; after entering the orbit, the pyrotechnic device is unlocked and pressed The rod assembly is pulled out under the action of the separation assembly to realize the unlocking and separation of the large-area flexible solar cell wing and the cabin.
  • the present invention provides a large-area flexible solar cell wing that can be deployed twice in a step-by-step manner.
  • the solar cell arrays in the folded state are arranged on both sides of the extension mechanism, and the folded size is small; through the design of the secondary deployment device, splitting can be achieved unfold step by step, unfold Open some panels to meet load-carrying or control requirements; after secondary expansion (i.e., full expansion), the high-rigidity extension mechanism supports the bilateral solar arrays, with a stable configuration and high fundamental frequency
  • the present invention provides a large-area flexible solar cell wing that can be deployed twice in a step-by-step manner, which has the advantages of small folding envelope, step-by-step deployment, large deployment-to-fold ratio, large power-to-weight ratio, and stable deployment configuration. .
  • Figure 1 is a schematic structural diagram of a large-area flexible solar cell wing that can be deployed twice in an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a lifting mechanism in an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a locking assembly in an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of an extension mechanism in an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a flexible solar cell wing in a deployed state in an embodiment of the present invention
  • Figure 6 is a schematic diagram of a flexible solar cell wing in an unlocked state in an embodiment of the present invention.
  • Figure 7 is a schematic diagram of the unfolding process of a stretching mechanism with a solar array in an embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of a restraint release mechanism in an embodiment of the present invention.
  • Figure 9 is a schematic diagram of a flexible solar cell wing in an unlocked state in an embodiment of the present invention.
  • Figure 10 is a schematic diagram of the secondary unlocking state of a flexible solar cell wing in an embodiment of the present invention.
  • Figure 11 is a schematic structural diagram of a tensioning mechanism in an embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of a guide mechanism in an embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of an upper box expansion locking mechanism in an embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of a lower box expansion locking mechanism in an embodiment of the present invention.
  • Figure 15 is a schematic structural diagram of a compression release device in an embodiment of the present invention.
  • Figure 16 is a schematic diagram of the lifting and deployment process of a flexible solar cell wing in an embodiment of the present invention.
  • Figure 17 is a schematic diagram of the unfolding process of the upper and lower box expansion locking mechanisms of a flexible solar cell wing in an embodiment of the present invention.
  • the flexible solar cell wing is composed of multiple functional units. Its system configuration, expansion mode, and expansion area can be designed according to the requirements of the spacecraft platform.
  • the system configuration is the basis for the design of the flexible solar cell wing system.
  • Reasonable configuration design can It can better adapt to the requirements of the cabin, and at the same time, it can optimize the solar cell wing deployment method and improve the reliability of solar cell wing deployment.
  • the invention discloses a large-area flexible solar cell wing that can be deployed twice in a step-by-step manner.
  • the battery wing can be opened in a step-by-step secondary deployment manner to reduce the difficulty of control or the risk of overload.
  • the flexible solar cell wing deploys some panels to meet the power demand of the platform while maintaining a high frequency to avoid coupling with the control system; it will be used for orbit changes, docking, etc. that require higher control requirements or may generate larger on-orbit loads.
  • the flexible solar cell wings are deployed a second time (that is, fully deployed) to achieve the maximum power generation state, which can meet the power demand of various equipment loads of the spacecraft.
  • the large-area flexible solar cell wing that can be deployed twice in steps according to the present invention is more flexible and widely used.
  • the design that can be deployed twice in steps further increases the designability of the flexible wing, so that the large-area flexible solar cell wing can Suitable for a wider range of platform needs.
  • the large-area flexible solar cell wing that can be deployed twice in steps includes: a lifting mechanism 1, an extension mechanism 2, a secondary deployment flexible solar cell array, a compression release device 5 and a box
  • the body unfolds the locking mechanism.
  • the secondary deployment flexible solar array includes: the secondary deployment flexible solar array A3 and the secondary deployment flexible solar array B4; the secondary deployment flexible solar array A3 and the secondary deployment flexible solar array B4 have the same structure.
  • the specific connection relationships between each part are as follows:
  • the secondary deployment flexible solar cell array A3 and the secondary deployment flexible solar cell array B4 are respectively arranged at the top two ends of the stretching mechanism 2, and the secondary deployment flexible solar cell array A3 and the secondary deployment flexible solar cell array B4 are in contact with the stretching mechanism 2
  • the connection positions of the box are respectively provided with box expansion locking mechanisms for connection; the top of the lifting mechanism 1 is connected to the bottom of the extension mechanism 2; multiple pressing points are provided on the extension mechanism 2 and the secondary deployment flexible solar array, and each pressing point is
  • the tight release devices 5 are respectively arranged at corresponding pressing point positions.
  • the secondary deployment flexible solar array A3 and the secondary deployment flexible solar array B4 are collapsed on both sides of the extension mechanism 2, and the extension mechanism 2, the secondary deployment flexible solar array A3 and the secondary deployment flexible solar cell Array B4 is located on the same side of the deployed baseline.
  • the secondary deployment flexible solar array is deployed twice step by step under the action of the extension mechanism 2 and the box deployment locking mechanism.
  • the lifting mechanism 1 includes a set of rotating pairs and is driven by an active motor or a passive spring.
  • the lifting mechanism 1 has locking and stiffness maintenance functions after deployment.
  • the lifting mechanism 1 may specifically include: a fixed joint 11 , a rotating joint 12 , a lifting mechanism driving component 13 and a locking component 14 .
  • the fixed joint 11 and the rotating joint 12 are coaxially designed and connected by bearings to form a rotating pair; the lifting mechanism drive assembly 13 is connected to the rotating joint 12, and the rotating joint 12 is connected to the bottom of the storage tube 22 of the extension mechanism 2; the lifting mechanism driving assembly 13 works When the torque is output, the rotating joint 12 is driven to rotate relative to the fixed joint 11, thereby driving the overall rotation of the large-area flexible solar cell wing, and displacing the large-area flexible solar cell wing from the initial state to a state perpendicular to the cabin.
  • the locking component 14 is connected to the rotating joint 12, and when the large-area flexible solar cell wing is displaced to a state perpendicular to the cabin, the rotating joint 12 is locked.
  • the locking assembly 14 may specifically include: a locking pin 141, a slideway 142 and a locking hole 143; the locking pin 141 is located in the slideway 142 and can slide in the slideway 142; when a large-area flexible solar cell wing When displaced to a state perpendicular to the cabin, the locking pin 141 is inserted into the locking hole 143 to lock the rotating joint 12 .
  • the extension mechanism 2 has one-dimensional expansion and contraction capabilities, high stiffness and high strength characteristics, and can support the expansion of the tensioning mechanism, so that the flexible array has a certain stiffness; the extension mechanism can adopt an articulated extension mechanism, a coiled Type extension mechanism, FASTmast configuration extension mechanism, sleeve-type extension mechanism, etc. realize the expansion and support of flexible solar arrays.
  • the extension mechanism 2 may specifically include: an extension arm 21 , a collection tube 22 and an extension mechanism driving assembly 23 . In the initial folding state, the extension arm 21 is folded in the storage tube 22; during the expansion process, the extension mechanism drive assembly 23 works to output a positive torque, driving the extension arm 21 to unfold and lock in one dimension from the storage tube 22.
  • the extension mechanism 2 has high stiffness and strength in the folded state.
  • the extension mechanism 2 is fixed to the cabin through the pressing point on the storage tube 22 and can withstand the load of the launch section; the extension mechanism 2 has the ability to partially expand and lock, and has a certain ability in the partially deployed state.
  • the stiffness and strength of the extension mechanism 2 can support the secondary expansion of the flexible solar array in the expanded state; the extension mechanism 2 has a certain stiffness and strength in the fully expanded state, and can support the secondary expansion of the flexible solar array in the fully expanded state.
  • the structures of the twice-deployed flexible solar array A3 and the twice-deployed flexible solar array B4 are the same, and they are mirror symmetrical with respect to the extension mechanism 2. Specifically, they may include: a lower storage box 41 , upper storage box 42, restraint release mechanism 43, upper battery panel 44, lower battery panel 45, isolation plate 46, tensioning mechanism 47 and guide mechanism 48.
  • the upper battery panel 44, the lower battery panel 45 and the lower storage box 41 are arranged in sequence from top to bottom; an isolation plate 46 is provided between the upper battery plate 44 and the lower battery plate 45; the isolation plate 46 is used for unfolding During the process, the step-by-step secondary deployment of the flexible solar array is achieved; one end of the constraint release mechanism 43 is connected to the upper storage box 42, and the other end is connected to the lower storage box 41; in the folded state, the constraint release mechanism 43 is locked.
  • the upper battery panel 44 and the lower battery panel 45 are folded between the upper storage box 42 and the lower storage box 41; during the first deployment, the constraint release mechanism 43 releases the constraint between the upper battery panel 44 and the isolation plate 46; during the second deployment, After the upper battery panel 44 is fully deployed, the constraint between the isolation plate 46 and the lower battery panel 45 is released; the guide mechanism 48 is provided on the lower storage box 41 for step-by-step deployment of the flexible solar array during the deployment process.
  • the secondary deployment provides a guide to assist the orderly deployment of the secondary deployment flexible solar array; the tensioning mechanism 47 is provided on the upper storage box 42 to align the upper panel 44 after the secondary deployment flexible solar array is fully deployed. and the lower panel 45 to exert a tensioning force to ensure the on-orbit stiffness of the secondary deployed flexible solar array.
  • the secondary deployment of the flexible solar cell array compresses the lower storage box 41 and the upper storage box 42 through the constraint release mechanism 43, and the pressing force is exerted on the panel through the buffer foam, and the secondary deployment of the flexible solar cell array
  • the array forms a whole with certain rigidity and strength, and the secondary unfolded flexible solar cell array is fixed to the cabin through pressing points provided on the lower storage box 41 and the upper storage box 42 .
  • the secondary expansion of the flexible solar array is unlocked, and the upper storage box 42 is expanded driven by the extension mechanism 2.
  • the upper storage box 42 expands and finally tightens the battery panels through the tensioning mechanism 47, and guides The mechanism 48 expands the flexible solar array along with the secondary expansion and keeps the solar panel expansion stable.
  • the guide mechanism 48 is arranged on the upper storage box 42 so that the flexible solar array can exert a tensioning force on the solar array during primary expansion and secondary expansion (i.e., full expansion) to maintain array rigidity.
  • the isolation plate 46 has a certain stiffness and can be composed of an upper isolation plate and a lower isolation plate: when deployed once, the upper isolation plate expands along with the upper battery plate, and the lower isolation plate and the lower storage box release the constraint release mechanism to the unexpanded lower battery. After the constraint release mechanism is unlocked for the second time, the constraints of the lower isolation plate are released, and the flexible solar cell wings are expanded with the unexpanded lower panel driven by the extension mechanism until the flexible solar cell wings are expanded for the second time (that is, fully expanded).
  • the upper battery board 44 and the lower battery board 45 have the same structure, specifically including: several flexible substrates 441 , battery circuits 442 and flexible cables 443 .
  • several (10 to 100) flexible substrates 441 are engaged in series through hinges to form a flexible substrate assembly; two adjacent flexible substrates 441 rotate with the hinges as the central axis to realize the expansion and expansion of the flexible substrate assembly.
  • the battery circuit 442 and the flexible cable 443 are pasted on the surface of the flexible substrate assembly.
  • the constraint release mechanism 43 has a secondary unlocking function.
  • the restraint release mechanism 43 may specifically include: a motor drive assembly 431, a four-bar linkage mechanism 432 and an end assembly.
  • the motor driving component 431 is connected to a four-bar linkage mechanism 432, and an end assembly is provided at the end of the four-bar linkage mechanism 432.
  • the end assembly may specifically include: a primary lock hook 433, a secondary lock hook 434, a blocking block 435, a hinge ring 436, a secondary unlocking rope assembly 437, and a secondary unlocking spring assembly 438.
  • the primary lock hook 433, the secondary lock hook 434 and the blocking block 435 are fixed on the lower storage box 41; the secondary unlocking spring assembly 438 is fixed on the isolation plate 46; one end of the hinge ring 436 is fixed on the upper storage box 42; it is fully folded In this state, the other end of the hinge ring 436 is locked with the primary lock hook 433; one end of the secondary unlocking rope assembly 437 is connected to the secondary unlocking spring assembly 438, and the other end is constrained between the secondary lock hook 434 and the blocking block 435.
  • the upper battery panel 44 is deployed; at this time, the other end of the secondary unlocking rope assembly 437 continues to be constrained between the secondary lock hook 434 and the blocking block 435, and continues to maintain the locked state to constrain the unexpanded lower battery panel 45;
  • the restraint release mechanism 43 is unlocked in place for the second time under the action of the motor drive assembly 431 and the four-bar linkage mechanism 432: the relative movement of the secondary lock hook 434 and the blocking block 435 creates a gap, and the other end of the secondary unlocking rope assembly 437 is formed by the gap. It comes out and is retracted under the action of the secondary unlocking spring assembly 438 to release the constraints on the lower battery plate 45 and unfold the lower battery plate 45.
  • the tensioning mechanism 47 may specifically include: a tensioning mechanism coil spring assembly 471 , a tensioning mechanism winding wheel 472 and a tensioning rope 473 .
  • the tensioning mechanism coil spring assembly 471 is installed on the outside of the upper storage box of the secondary expansion flexible solar array, and is arranged coaxially with the tensioning mechanism winding wheel 472; the tensioning rope 473 is coplanar with the flexible substrate assembly; tensioning One end of the rope 473 is connected to the flexible substrate assembly, and the other end is fixed on the tensioning mechanism reel 472 .
  • the guide mechanism 48 may specifically include: a guide mechanism coil spring assembly 481 , a guide mechanism reel 482 and a guide rope 483 .
  • the guide mechanism coil spring assembly 481 is installed outside the lower storage box of the secondary deployment flexible solar array, and is coaxially arranged with the guide mechanism winding wheel 482; the guide rope 483 is arranged on the back of the flexible substrate assembly; the guide rope 483 One end is connected to the upper storage box of the secondary deployment flexible solar cell array, and the other end is fixed on the guide mechanism winding wheel 482.
  • the box expansion locking mechanism may specifically include: an upper box expansion locking mechanism 6 and a lower box expansion locking mechanism 7.
  • the upper box expansion locking mechanism 6 is respectively connected to the extension arm 21 of the extension mechanism 2 and the upper storage box of the secondary expansion flexible solar array;
  • the lower box expansion locking mechanism 7 is respectively connected to the storage tube 22 of the expansion mechanism 2 and the secondary expansion flexible solar array.
  • the lower storage box of the solar cell array; the rotation axis of the box deployment locking mechanism 7 is coaxially arranged with the rotation axis of the corresponding upper box deployment locking mechanism 6.
  • the upper box unfolding and locking mechanism 6 can adopt spring drive or passive follow-up mode, as shown in Figure 13.
  • the upper box unfolding and locking mechanism 6 can specifically include: a male hinge 61, a female hinge 62, a rotating shaft 63 and a locking lever. 64.
  • the male hinge 61 and the female hinge 62 form a rotating pair through the rotating shaft 63, which has the function of rotating and retracting; the male hinge 61 is connected to the upper box 31, and the female hinge 62 is connected to the extension arm 21; after being deployed in place, the locking lever 64 locking.
  • 1 to 3 sets of the upper box expansion locking mechanism 6 can be arranged.
  • the lower box unfolding locking mechanism 7 may specifically include: a fixed end 71, a rotating end 72, a driving transmission assembly 73 and a locking mechanism 74.
  • the drive transmission assembly 73 provides a driving torque to cause the rotating end 72 to rotate around the fixed end 71; the locking mechanism 74 locks the rotating end 72 after the rotating end 72 rotates to a set position.
  • the drive transmission assembly 73 may be spring driven or motor driven.
  • the compression release device 5 may specifically include: a pyrotechnic device 51 , a compression rod assembly 52 and a separation assembly 53 .
  • the pyrotechnic device 51, the compression rod assembly 52 and the separation assembly 53 are connected in sequence; in the launch section, the extension mechanism 2 and the secondary expansion flexible solar cell array are pressed by the pre-tightening force exerted on the compression rod assembly 52. Tightly attached to the side wall of the cabin; after entering the orbit, the pyrotechnic device 51 is unlocked, and the compression rod assembly 52 is pulled out under the action of the separation assembly 53 to realize the unlocking and separation of the large-area flexible solar cell wing and the cabin.
  • the compression release device 5 can use 20kN ⁇ 100kN preload pyrotechnics to compress the large-area flexible solar cell wings that can be deployed twice in a step; wherein, the extension mechanism 2 can be provided with 3 ⁇ 9 compression devices. Tightening points: 3 to 6 pressing points can be set on the secondary expansion flexible solar array.
  • the compression release device 5 is mainly used for large-area flexible devices that can be deployed twice in steps.
  • the launch section of the solar cell wing is compressed to resist overload;
  • the lifting mechanism 1 is mainly used to displace the entire large-area flexible solar cell wing that can be deployed twice stepwise from the initial state to a state perpendicular to the cabin;
  • the extension mechanism 2 is mainly used for control The expansion and retraction of the secondary expansion flexible solar array;
  • the box expansion locking mechanism is mainly used to expand the secondary expansion flexible solar array to both sides and lock it in place.
  • a secondary unlocking device is arranged on the twice-deployed flexible solar cell array, which can be used for the distributed deployment of flexible solar cell wings; battery circuits and cables are arranged on the twice-deployed flexible solar cell array, which is used for on-orbit power generation and power transmission of the flexible solar cell wings. .
  • the large-area flexible solar cell wing that can be deployed twice can be deployed in seven steps:
  • the pressing release device 5 is unlocked, and the space between the flexible solar cell wing and the cabin is unlocked.
  • the lifting mechanism 1 works, and the flexible solar cell wings are displaced to a state perpendicular to the cabin.
  • the lower box expansion and locking mechanisms 7 on both sides work, driving the secondary expansion flexible solar arrays on both sides to expand and lock, and at the same time, the upper box expansion and locking mechanisms 6 follow suit to expand and lock.
  • the constraint release mechanism on the secondary deployment flexible solar array A3 and the secondary deployment flexible solar array B4 works to release the constraints between the upper and lower storage boxes.
  • the extension mechanism 2 works.
  • the extension mechanism 2 extends straightly along the radial direction of the cabin to drive the secondary deployment of the flexible solar array to be deployed simultaneously.
  • the guide mechanism works to limit the out-of-plane movement of the secondary deployment of the flexible solar array until The flexible solar cell array is deployed once and twice, and the tensioning mechanism is tightened to a certain distance and a pre-tightening force is applied.
  • the constraint release mechanism continues to work to release the constraint between the lower isolation plate and the lower storage box.
  • the stretching mechanism continues to expand and the guiding mechanism continues to work until the secondary expansion of the flexible solar array is fully expanded.
  • the tensioning mechanism tightens a certain distance and applies pre-tightening force.
  • the above process is the unfolding process of a large-area flexible solar cell wing that can be deployed twice in steps.
  • the folding process is the reverse process of the unfolding process.
  • the large-area flexible solar cell wing that can be unfolded twice in a step can be folded in seven steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种可分步二次展开的大面积柔性太阳电池翼,包括:抬升机构、伸展机构、二次展开柔性太阳电池阵、压紧释放装置和箱体展开锁定机构;两个二次展开柔性太阳电池阵分别设置在伸展机构的顶部两端,二次展开柔性太阳电池阵与伸展机构的连接位置处设置有箱体展开锁定机构连接;抬升机构的顶部与伸展机构的底部连接;伸展机构和二次展开柔性太阳电池阵上分别设置有多个压紧点,各压紧释放装置分别设置在相应的压紧点位置处,通过在压紧点处施加压紧力,实现对伸展机构和二次展开柔性太阳电池阵的压紧。本发明的柔性太阳电池翼具有收拢包络小、可分步展开、展开面积大、展开构型稳定的优点,适用载荷要求高或控制要求高的大功率航天器平台。

Description

一种可分步二次展开的大面积柔性太阳电池翼 技术领域
本发明属于航天器技术领域,尤其涉及一种可分步二次展开的大面积柔性太阳电池翼。
背景技术
随着航天技术发展,航天器对功率需求日益剧增。目前航天器采用的一般是刚性、半刚性太阳电池翼,存在收拢尺寸大、展开面积受限,无法满足大功率航天器的需求等问题。柔性太阳电池翼具有收拢包络小、展开收拢比大、功率重量比大、展开构型稳定等技术优势,是适用于大功率航天器平台的太阳电池翼发展趋势。
然而,大面积柔性太阳电池翼展开面积大,基频相对较低,控制难度较大,给航天器在轨调姿、变轨、对接等带来较大的难度;同时面积大质量惯量大,承受载荷更大。
发明内容
本发明的技术解决问题:克服现有技术的不足,提供一种可分步二次展开的大面积柔性太阳电池翼,两个收拢状态的二次展开柔性太阳电池阵布置在伸展机构两侧,具有收拢包络小、可分步展开、展开面积大、展开构型稳定的优点,适用于载荷要求高或控制要求高的大功率航天器平台。
为了解决上述技术问题,本发明公开了一种可分步二次展开的大面积柔性太阳电池翼,包括:抬升机构、伸展机构、二次展开柔性太阳电池阵、压紧释放装置和箱体展开锁定机构;其中,二次展开柔性太阳电池阵,包括:二次展开柔性太阳电池阵A和二次展开柔性太阳电池阵B;
二次展开柔性太阳电池阵A和二次展开柔性太阳电池阵B分别设置在伸展机构的顶部两端,且二次展开柔性太阳电池阵A和二次展开柔性太阳电池阵B与伸展机构的连接位置处分别设置有箱体展开锁定机构连接;抬升机构的顶部与伸展机构的底部连接;伸展机构和二次展开柔性太阳电池阵上分别设置有多个压紧点,各压紧释放装置分别设置在相应的压紧点位置处,通过在压紧点处施加压紧力,实现对伸展机构和二次展开柔性太阳电池阵的压紧,进而实现柔性太阳电池翼在发射段的压紧抗过载;
初始收拢状态下,二次展开柔性太阳电池阵A和二次展开柔性太阳电池阵B收拢在伸展机构两侧,且伸展机构、二次展开柔性太阳电池阵A和二次展开柔性太阳电池阵B位于展开基线的同一侧;
展开过程,二次展开柔性太阳电池阵在伸展机构和箱体展开锁定机构的作用下,分步二次展开。
在上述可分步二次展开的大面积柔性太阳电池翼中,抬升机构,包括:固定关节、转动关节、抬升机构驱动组件和锁定组件;
固定关节与转动关节同轴设计,采用轴承连接,构成转动副;
抬升机构驱动组件与转动关节连接,转动关节与伸展机构的收藏筒底部连接;其 中,抬升机构驱动组件工作时输出力矩,驱动转动关节相对固定关节转动,进而带动大面积柔性太阳电池翼的整体转动,将大面积柔性太阳电池翼由初始状态变位至与舱体垂直状态;
锁定组件与转动关节连接,当大面积柔性太阳电池翼变位至与舱体垂直状态时,实现对转动关节的锁止;其中,锁定组件,包括:锁定销、滑道和锁定孔;锁定销位于滑道内,可在滑道内滑动;当大面积柔性太阳电池翼变位至与舱体垂直状态时,锁定销插入锁定孔内,实现对转动关节的锁止。
在上述可分步二次展开的大面积柔性太阳电池翼中,伸展机构,包括:伸展臂、收藏筒和伸展机构驱动组件;
初始收拢状态下,伸展臂收拢在收藏筒内;
展开过程,伸展机构驱动组件工作输出正向力矩,驱动伸展臂从收藏筒中一维有序展开并锁定。
在上述可分步二次展开的大面积柔性太阳电池翼中,二次展开柔性太阳电池阵A和二次展开柔性太阳电池阵B的结构相同,包括:下收藏箱、上收藏箱、约束释放机构、上电池板、下电池板、隔离板、张紧机构和导向机构;
上收藏箱、上电池板、下电池板和下收藏箱由上至下依次设置;
上电池板和下电池板之间设置有隔离板;其中,隔离板,用于在展开过程中,实现二次展开柔性太阳电池阵的分步二次展开;
约束释放机构一端与上收藏箱连接,另一端与下收藏箱连接;其中,收拢状态时,约束释放机构锁紧,上电池板和下电池板收拢在上收藏箱和下收藏箱之间;一次展开时,约束释放机构解除上电池板与隔离板之间的约束;二次展开时,在上电池板完全展开后解除隔离板与下电池板之间的约束;
导向机构设置在下收藏箱上,用于在展开过程中,为二次展开柔性太阳电池阵的分步二次展开提供导向,辅助二次展开柔性太阳电池阵的有序展开;
张紧机构设置在上收藏箱上,用于在二次展开柔性太阳电池阵完全展开后,对上电池板和下电池板施加张紧力,确保二次展开柔性太阳电池阵的在轨刚度。
在上述可分步二次展开的大面积柔性太阳电池翼中,上电池板和下电池板的结构相同,包括:若干个柔性基板、电池电路和柔性电缆;
若干个柔性基板通过琴铰依次串联啮合,形成柔性基板组件;其中,相邻两个柔性基板性基板以琴铰为中心轴旋转,可实现柔性基板组件的展开和收拢;
柔性基板组件的表面粘贴有电池电路和柔性电缆。
在上述可分步二次展开的大面积柔性太阳电池翼中,约束释放机构,包括:电机驱动组件、四连杆机构和末端组件;其中,电机驱动组件与四连杆机构连接,四连杆机构末端设置有末端组件;末端组件,包括:一次锁钩、二次锁钩、阻挡块、铰链琐环、二次解锁绳索组件和二次解锁弹簧组件;
一次锁钩、二次锁钩和阻挡块固定在下收藏箱上;二次解锁弹簧组件固定在隔离板上;铰链琐环的一端固定在上收藏箱上;
完全收拢状态下,铰链琐环的另一端与一次锁钩配合锁定;二次解锁绳索组件的一端与二次解锁弹簧组件连接,另一端约束在二次锁钩与阻挡块之间;
当约束释放机构在电机驱动组件和四连杆机构的作用下一次解锁到位后:一次锁钩与铰链琐环的另一端约束解除,释放对上电池板的约束,上电池板展开;此时,二次解锁绳索组件的另一端继续约束在二次锁钩与阻挡块之间,继续保持锁紧状态,约束未展开的下电池板;
当约束释放机构在电机驱动组件和四连杆机构的作用下二次解锁到位后:二次锁钩和阻挡块相对运动产生间隙,二次解锁绳索组件的另一端由间隙中脱出,并在二次解锁弹簧组件作用下收回,释放对下电池板的约束,下电池板展开。
在上述可分步二次展开的大面积柔性太阳电池翼中,张紧机构,包括:张紧机构卷簧组件、张紧机构绕线轮和张紧绳;
张紧机构卷簧组件安装在二次展开柔性太阳电池阵的上收藏箱外侧,并与张紧机构绕线轮同轴布置;
张紧绳与柔性基板组件共面;其中,张紧绳的一端与柔性基板组件连接,另一端固定在张紧机构绕线轮上。
在上述可分步二次展开的大面积柔性太阳电池翼中,导向机构,包括:导向机构卷簧组件、导向机构绕线轮和导向绳;
导向机构卷簧组件安装在二次展开柔性太阳电池阵的下收藏箱外侧,并与导向机构绕线轮同轴布置;
导向绳布置在柔性基板组件的背面;其中,导向绳的一端与二次展开柔性太阳电池阵的上收藏箱连接,另一端固定在导向机构绕线轮上。
在上述可分步二次展开的大面积柔性太阳电池翼中,箱体展开锁定机构,包括:上箱体展开锁定机构和下箱体展开锁定机构;其中,上箱体展开锁定机构分别连接伸展机构的伸展臂和二次展开柔性太阳电池阵的上收藏箱;下箱体展开锁定机构分别连接伸展机构的收藏筒和二次展开柔性太阳电池阵的下收藏箱;箱体展开锁定机构的旋转轴与对应的上箱体展开锁定机构的旋转轴同轴设置,在下箱体展开锁定机构展开时,上箱体展开锁定机构跟随展开进而锁定;
上箱体展开锁定机构,包括:公铰链、母铰链、转动轴和锁定杆;其中,公铰链和母铰链通过转动轴形成转动副,具有转动展收的功能;公铰链与上箱体连接,母铰链与伸展臂连接;展开到位后,锁定杆锁定;
下箱体展开锁定机构,包括:固定端、转动端、驱动传动组件和锁定机构;其中,驱动传动组件提供驱动力矩,使转动端绕固定端旋转运动;锁定机构在转动端旋转运动至设定位置后,实现对转动端的锁止。
在上述可分步二次展开的大面积柔性太阳电池翼中,压紧释放装置,包括:火工装置、压紧杆组件和分离组件;其中,火工装置、压紧杆组件和分离组件依次连接;在发射段,通过施加在压紧杆组件上的预紧力,将伸展机构和二次展开柔性太阳电池阵压紧在舱体侧壁上;入轨后,火工装置解锁,压紧杆组件在分离组件作用下抽出,实现大面积柔性太阳电池翼与舱体的解锁分离。
本发明具有以下优点:
(1)本发明提供了一种可分步二次展开的大面积柔性太阳电池翼,收拢状态的太阳电池阵布置在伸展机构两侧,收拢尺寸小;通过二次展开装置设计,可实现分步展开,展 开部分电池板,满足承载或者控制的要求;二次展开(即完全展开)后由高刚度伸展机构支撑双边太阳电池阵,构型稳定基频高
(2)本发明提供了一种可分步二次展开的大面积柔性太阳电池翼,具有收拢包络小、可分步展开、展开收拢比大、功率重量比大、展开构型稳定的优点。
附图说明
图1是本发明实施例中一种可分步二次展开的大面积柔性太阳电池翼的结构示意图;
图2是本发明实施例中一种抬升机构的结构示意图;
图3是本发明实施例中一种锁定组件的结构示意图;
图4是本发明实施例中一种伸展机构的结构示意图;
图5是本发明实施例中一种柔性太阳电池翼一次展开状态示意图;
图6是本发明实施例中一种柔性太阳电池翼一次解锁状态示意图;
图7是本发明实施例中一种伸展机构带太阳电池阵展开过程示意图;
图8是本发明实施例中一种约束释放机构的结构示意图;
图9是本发明实施例中一种柔性太阳电池翼一次解锁状态示意图;
图10是本发明实施例中一种柔性太阳电池翼二次解锁状态示意图;
图11是本发明实施例中一种张紧机构的结构示意图;
图12是本发明实施例中一种导向机构的结构示意图;
图13是本发明实施例中一种上箱体展开锁定机构的结构示意图;
图14是本发明实施例中一种下箱体展开锁定机构的结构示意图;
图15是本发明实施例中一种压紧释放装置的结构示意图;
图16是本发明实施例中一种柔性太阳电池翼抬升展开过程示意图;
图17是本发明实施例中一种柔性太阳电池翼上、下箱体展开锁定机构展开过程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明公开的实施方式作进一步详细描述。
柔性太阳电池翼由多个功能单机组成,其系统构型、展开方式、展开面积可按照航天器平台要求进行设计,其中系统构型是柔性太阳电池翼系统设计的基础,合理的构型设计可以更好适应舱体要求,同时可以优化太阳电池翼展开方式,提高太阳电池翼展开可靠性。本发明公开了一种可分步二次展开的大面积柔性太阳电池翼,可以通过分步二次展开的方式电池翼的打开,降低控制的难度或过载的风险。柔性太阳电池翼发射初期展开部分电池板,满足平台用电需求,同时保持较高的频率,避免与控制系统产生耦合;待变轨、对接等控制要求较高或可能产生较大在轨载荷的工况完成后,柔性太阳电池翼二次展开(即完全展开),实现最大发电功率状态,可以满足航天器各种设备载荷的用电需求。本发明所述的可分步二次展开的大面积柔性太阳电池翼应用更加灵活、广泛,可分步二次展开设计更加增大了柔性翼的可设计性,使得大面积柔性太阳电池翼可以适用于更广泛的平台需求。
如图1,在本实施例中,该可分步二次展开的大面积柔性太阳电池翼,包括:抬升机构1、伸展机构2、二次展开柔性太阳电池阵、压紧释放装置5和箱体展开锁定机构。其中,二次展开柔性太阳电池阵包括:二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4;二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4结构相同。各部分之间的具体连接关系如下:
二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4分别设置在伸展机构2的顶部两端,且二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4与伸展机构2的连接位置处分别设置有箱体展开锁定机构连接;抬升机构1的顶部与伸展机构2的底部连接;伸展机构2和二次展开柔性太阳电池阵上分别设置有多个压紧点,各压紧释放装置5分别设置在相应的压紧点位置处,通过在压紧点处施加压紧力,实现对伸展机构2和二次展开柔性太阳电池阵的压紧,进而实现柔性太阳电池翼在发射段的压紧抗过载。初始收拢状态下,二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4收拢在伸展机构2两侧,且伸展机构2、二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4位于展开基线的同一侧。展开过程,二次展开柔性太阳电池阵在伸展机构2和箱体展开锁定机构的作用下,分步二次展开。
在本实施例中,抬升机构1包含一套转动副,采用有源电机或无源弹簧驱动,抬升机构1展开后具有锁定和刚度保持功能。如图2,抬升机构1具体可以包括:固定关节11、转动关节12、抬升机构驱动组件13和锁定组件14。固定关节11与转动关节12同轴设计,采用轴承连接,构成转动副;抬升机构驱动组件13与转动关节12连接,转动关节12与伸展机构2的收藏筒22底部连接;抬升机构驱动组件13工作时输出力矩,驱动转动关节12相对固定关节11转动,进而带动大面积柔性太阳电池翼的整体转动,将大面积柔性太阳电池翼由初始状态变位至与舱体垂直状态。锁定组件14与转动关节12连接,当大面积柔性太阳电池翼变位至与舱体垂直状态时,实现对转动关节12的锁止。
优选的,如图3,锁定组件14具体可以包括:锁定销141、滑道142和锁定孔143;锁定销141位于滑道142内,可在滑道142内滑动;当大面积柔性太阳电池翼变位至与舱体垂直状态时,锁定销141插入锁定孔143内,实现对转动关节12的锁止。
在本实施例中,伸展机构2具有一维展开和收拢能力,具有高刚度和高强度特性,可以支撑张紧机构展开,使得柔性阵面具有一定刚度;伸展机构可采用铰接式伸展机构、盘绕式伸展机构、FASTmast构型伸展机构、套筒式伸展机构等实现对柔性太阳电池阵的展收和支撑。如图4,伸展机构2具体可以包括:伸展臂21、收藏筒22和伸展机构驱动组件23。初始收拢状态下,伸展臂21收拢在收藏筒22内;展开过程,伸展机构驱动组件23工作输出正向力矩,驱动伸展臂21从收藏筒22中一维有序展开并锁定。伸展机构2收拢状态具有高刚度和高强度,伸展机构2通过收藏筒22上压紧点与舱体固定,可以承受发射段载荷;伸展机构2具有部分展开锁定的能力,部分展开状态下具有一定的刚度和强度,可以支撑展开状态的二次展开柔性太阳电池阵;伸展机构2完全展开状态具有一定的刚度和强度,可以支撑完全展开状态的二次展开柔性太阳电池阵。
在本实施例中,如图5~7,二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4的结构相同,两者关于伸展机构2镜像对称,具体可以包括:下收藏箱41、上收藏箱42、约束释放机构43、上电池板44、下电池板45、隔离板46、张紧机构47和导向机构48。其中,上 收藏箱42、上电池板44、下电池板45和下收藏箱41由上至下依次设置;上电池板44和下电池板45之间设置有隔离板46;隔离板46,用于在展开过程中,实现二次展开柔性太阳电池阵的分步二次展开;约束释放机构43一端与上收藏箱42连接,另一端与下收藏箱41连接;收拢状态时,约束释放机构43锁紧,上电池板44和下电池板45收拢在上收藏箱42和下收藏箱41之间;一次展开时,约束释放机构43解除上电池板44与隔离板46之间的约束;二次展开时,在上电池板44完全展开后解除隔离板46与下电池板45之间的约束;导向机构48设置在下收藏箱41上,用于在展开过程中,为二次展开柔性太阳电池阵的分步二次展开提供导向,辅助二次展开柔性太阳电池阵的有序展开;张紧机构47设置在上收藏箱42上,用于在二次展开柔性太阳电池阵完全展开后,对上电池板44和下电池板45施加张紧力,确保二次展开柔性太阳电池阵的在轨刚度。
优选的,收拢状态下,二次展开柔性太阳电池阵通过约束释放机构43将下收藏箱41与上收藏箱42压紧,压紧力通过缓冲泡沫施加在电池板上,二次展开柔性太阳电池阵形成一个具有一定刚度和强度的整体,二次展开柔性太阳电池阵阵通过设置在下收藏箱41和上收藏箱42上的压紧点与舱体固定。
优选的,约束释放机构43工作后,二次展开柔性太阳电池阵解锁,上收藏箱42在伸展机构2带动下展开,上收藏箱42通过张紧机构47将电池板展开并最终张紧,导向机构48随二次展开柔性太阳电池阵展开并保持电池板展开平稳。
优选的,导向机构48布置在上收藏箱42上,二次展开柔性太阳电池阵一次展开时和二次展开(即完全展开)时均可对太阳电池阵施加张紧力,保持阵面刚度。
优选的,隔离板46具有一定刚度,可由上隔离板和下隔离板构成:一次展开时,上隔离板随上电池板展开,下隔离板与下收藏箱通过约束释放机构对未展开的下电池板进行约束;约束释放机构二次解锁后,下隔离板约束解除,在伸展机构带动下随未展开的下电池板展开,直至柔性太阳电池翼二次展开(即完全展开)。
进一步的,如图5~7,上电池板44和下电池板45的结构相同,具体包括:若干个柔性基板441、电池电路442和柔性电缆443。其中,若干个(10~100个)柔性基板441通过琴铰依次串联啮合,形成柔性基板组件;相邻两个柔性基板性基板441以琴铰为中心轴旋转,可实现柔性基板组件的展开和收拢;柔性基板组件的表面粘贴有电池电路442和柔性电缆443。
进一步的,约束释放机构43具有二次解锁功能,二次展开柔性太阳电池阵一次展开时可将未展开的下电池板约束在收藏箱上,待收到二次解锁指令后,可以继续二次展开,释放对剩余的下电池板的约束。如图8,约束释放机构43具体可以包括:电机驱动组件431、四连杆机构432和末端组件。其中,电机驱动组件431与四连杆机构432连接,四连杆机构432末端设置有末端组件。如图9~10,末端组件具体可以包括:一次锁钩433、二次锁钩434、阻挡块435、铰链琐环436、二次解锁绳索组件437和二次解锁弹簧组件438。一次锁钩433、二次锁钩434和阻挡块435固定在下收藏箱41上;二次解锁弹簧组件438固定在隔离板46上;铰链琐环436的一端固定在上收藏箱42上;完全收拢状态下,铰链琐环436的另一端与一次锁钩433配合锁定;二次解锁绳索组件437的一端与二次解锁弹簧组件438连接,另一端约束在二次锁钩434与阻挡块435之间;当约束释放机构43在电机驱动组件431和四连杆机构432的作用下一次解锁到位后:一次锁钩433与铰链琐环436的另一端约束解除,释放对上电池板的 约束,上电池板44展开;此时,二次解锁绳索组件437的另一端继续约束在二次锁钩434与阻挡块435之间,继续保持锁紧状态,约束未展开的下电池板45;当约束释放机构43在电机驱动组件431和四连杆机构432的作用下二次解锁到位后:二次锁钩434和阻挡块435相对运动产生间隙,二次解锁绳索组件437的另一端由间隙中脱出,并在二次解锁弹簧组件438作用下收回,释放对下电池板45的约束,下电池板45展开。
进一步的,如图11,张紧机构47具体可以包括:张紧机构卷簧组件471、张紧机构绕线轮472和张紧绳473。其中,张紧机构卷簧组件471安装在二次展开柔性太阳电池阵的上收藏箱外侧,并与张紧机构绕线轮472同轴布置;张紧绳473与柔性基板组件共面;张紧绳473的一端与柔性基板组件连接,另一端固定在张紧机构绕线轮472上。
进一步的,如图12,导向机构48具体可以包括:导向机构卷簧组件481、导向机构绕线轮482和导向绳483。其中,导向机构卷簧组件481安装在二次展开柔性太阳电池阵的下收藏箱外侧,并与导向机构绕线轮482同轴布置;导向绳483布置在柔性基板组件的背面;导向绳483的一端与二次展开柔性太阳电池阵的上收藏箱连接,另一端固定在导向机构绕线轮482上。
在本实施例中,箱体展开锁定机构一端与二次展开柔性太阳电池阵的上收藏箱连接,另一端与伸展机构2的伸展臂21连接,机构包含一套转动副,具有转动展开锁定的功能。如图1,箱体展开锁定机构具体可以包括:上箱体展开锁定机构6和下箱体展开锁定机构7。上箱体展开锁定机构6分别连接伸展机构2的伸展臂21和二次展开柔性太阳电池阵的上收藏箱;下箱体展开锁定机构7分别连接伸展机构2的收藏筒22和二次展开柔性太阳电池阵的下收藏箱;箱体展开锁定机构7的旋转轴与对应的上箱体展开锁定机构6的旋转轴同轴设置,在下箱体展开锁定机构7展开时,上箱体展开锁定机构6跟随展开进而锁定。
优选的,上箱体展开锁定机构6可采用弹簧驱动或者无源随动方式,如图13,上箱体展开锁定机构6具体可以包括:公铰链61、母铰链62、转动轴63和锁定杆64。其中,公铰链61和母铰链62通过转动轴63形成转动副,具有转动展收的功能;公铰链61与上箱体31连接,母铰链62与伸展臂21连接;展开到位后,锁定杆64锁定。其中,刚度和稳定性要求高时,上箱体展开锁定机构6可布置1~3套。
如图14,下箱体展开锁定机构7具体可以包括:固定端71、转动端72、驱动传动组件73和锁定机构74。其中,驱动传动组件73提供驱动力矩,使转动端72绕固定端71旋转运动;锁定机构74在转动端72旋转运动至设定位置后,实现对转动端72的锁止。驱动传动组件73可采用弹簧驱动或者电机有源驱动。
在本实施例中,如图15,压紧释放装置5具体可以包括:火工装置51、压紧杆组件52和分离组件53。其中,火工装置51、压紧杆组件52和分离组件53依次连接;在发射段,通过施加在压紧杆组件52上的预紧力,将伸展机构2和二次展开柔性太阳电池阵压紧在舱体侧壁上;入轨后,火工装置51解锁,压紧杆组件52在分离组件53作用下抽出,实现大面积柔性太阳电池翼与舱体的解锁分离。
优选的,压紧释放装置5可采用20kN~100kN预紧力火工品对可分步二次展开的大面积柔性太阳电池翼进行压紧;其中,伸展机构2上可设置3~9个压紧点,二次展开柔性太阳电池阵上可设置有3~6个压紧点。
由上可知,在本实施例中,压紧释放装置5主要用于可分步二次展开的大面积柔性 太阳电池翼发射段压紧抗过载;抬升机构1主要用于将可分步二次展开的大面积柔性太阳电池翼整体由初始状态变位至与舱体垂直状态;伸展机构2主要用于控制二次展开柔性太阳电池阵的展开和收拢;箱体展开锁定机构主要用于将二次展开柔性太阳电池阵向两侧展开到位并锁定。二次展开柔性太阳电池阵上布置二次解锁装置,可用于柔性太阳电池翼的分布展开;二次展开柔性太阳电池阵上布置电池电路和电缆,用于柔性太阳电池翼在轨发电和电传输。
在上述实施例的基础上,下面对该可分步二次展开的大面积柔性太阳电池翼的具体展开过程进行详细说明。
在本实施例中,如图16~17,该可分步二次展开的大面积柔性太阳电池翼可分为七步展开:
第一步,压紧释放装置5解锁,柔性太阳电池翼与舱体之间解锁。
第二步,抬升机构1工作,柔性太阳电池翼变位至与舱体垂直状态。
第三步,两侧的下箱体展开锁定机构7工作,带动两侧二次展开柔性太阳电池阵展开并锁定,同时上箱体展开锁定机构6随动展开并锁定。
第四步,二次展开柔性太阳电池阵A3和二次展开柔性太阳电池阵B4上的约束释放机构工作,解除上、下收藏箱之间的约束。
第五步,伸展机构2工作,伸展机构2沿舱体径向方向直线伸展,带动二次展开柔性太阳电池阵同步展开,同时导向机构工作,限制二次展开柔性太阳电池阵面外运动,直至二次展开柔性太阳电池阵一次展开,并且将张紧机构张紧一定距离,施加预紧力。
第六步,约束释放机构继续工作,解除下隔离板与下收藏箱之间的约束。
第七步,伸展机构继续展开,导向机构继续工作,直至二次展开柔性太阳电池阵完全展开,张紧机构张紧一定距离,施加预紧力。
上述过程是可分步二次展开的大面积柔性太阳电池翼的展开过程,收拢过程是展开过程的逆过程,可分步二次展开的大面积柔性太阳电池翼可按照七步动作完成收拢。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

  1. 一种可分步二次展开的大面积柔性太阳电池翼,其特征在于,包括:抬升机构(1)、伸展机构(2)、二次展开柔性太阳电池阵、压紧释放装置(5)和箱体展开锁定机构;其中,二次展开柔性太阳电池阵,包括:二次展开柔性太阳电池阵A(3)和二次展开柔性太阳电池阵B(4);
    二次展开柔性太阳电池阵A(3)和二次展开柔性太阳电池阵B(4)分别设置在伸展机构(2)的顶部两端,且二次展开柔性太阳电池阵A(3)和二次展开柔性太阳电池阵B(4)与伸展机构(2)的连接位置处分别设置有箱体展开锁定机构连接;抬升机构(1)的顶部与伸展机构(2)的底部连接;伸展机构(2)和二次展开柔性太阳电池阵上分别设置有多个压紧点,各压紧释放装置(5)分别设置在相应的压紧点位置处,通过在压紧点处施加压紧力,实现对伸展机构(2)和二次展开柔性太阳电池阵的压紧,进而实现柔性太阳电池翼在发射段的压紧抗过载;
    初始收拢状态下,二次展开柔性太阳电池阵A(3)和二次展开柔性太阳电池阵B(4)收拢在伸展机构(2)两侧,且伸展机构(2)、二次展开柔性太阳电池阵A(3)和二次展开柔性太阳电池阵B(4)位于展开基线的同一侧;
    展开过程,二次展开柔性太阳电池阵在伸展机构(2)和箱体展开锁定机构的作用下,分步二次展开。
  2. 根据权利要求1所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,抬升机构(1),包括:固定关节(11)、转动关节(12)、抬升机构驱动组件(13)和锁定组件(14);
    固定关节(11)与转动关节(12)同轴设计,采用轴承连接,构成转动副;
    抬升机构驱动组件(13)与转动关节(12)连接,转动关节(12)与伸展机构(2)的收藏筒(22)底部连接;其中,抬升机构驱动组件(13)工作时输出力矩,驱动转动关节(12)相对固定关节(11)转动,进而带动大面积柔性太阳电池翼的整体转动,将大面积柔性太阳电池翼由初始状态变位至与舱体垂直状态;
    锁定组件(14)与转动关节(12)连接,当大面积柔性太阳电池翼变位至与舱体垂直状态时,实现对转动关节(12)的锁止;其中,锁定组件(14),包括:锁定销(141)、滑道(142)和锁定孔(143);锁定销(141)位于滑道(142)内,可在滑道(142)内滑动;当大面积柔性太阳电池翼变位至与舱体垂直状态时,锁定销(141)插入锁定孔(143)内,实现对转动关节(12)的锁止。
  3. 根据权利要求1所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,伸展机构(2),包括:伸展臂(21)、收藏筒(22)和伸展机构驱动组件(23);
    初始收拢状态下,伸展臂(21)收拢在收藏筒(22)内;
    展开过程,伸展机构驱动组件(23)工作输出正向力矩,驱动伸展臂(21)从收藏筒(22)中一维有序展开并锁定。
  4. 根据权利要求3所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,二次展开柔性太阳电池阵A(3)和二次展开柔性太阳电池阵B(4)的结构相同,包括:下收藏箱(41)、上收藏箱(42)、约束释放机构(43)、上电池板(44)、下电池板(45)、隔离板(46)、张紧机构(47)和导向机构(48);
    上收藏箱(42)、上电池板(44)、下电池板(45)和下收藏箱(41)由上至下依次设置;
    上电池板(44)和下电池板(45)之间设置有隔离板(46);其中,隔离板(46),用于在展开 过程中,实现二次展开柔性太阳电池阵的分步二次展开;
    约束释放机构(43)一端与上收藏箱(42)连接,另一端与下收藏箱(41)连接;其中,收拢状态时,约束释放机构(43)锁紧,上电池板(44)和下电池板(45)收拢在上收藏箱(42)和下收藏箱(41)之间;一次展开时,约束释放机构(43)解除上电池板(44)与隔离板(46)之间的约束;二次展开时,在上电池板(44)完全展开后解除隔离板(46)与下电池板(45)之间的约束;
    导向机构(48)设置在下收藏箱(41)上,用于在展开过程中,为二次展开柔性太阳电池阵的分步二次展开提供导向,辅助二次展开柔性太阳电池阵的有序展开;
    张紧机构(47)设置在上收藏箱(42)上,用于在二次展开柔性太阳电池阵完全展开后,对上电池板(44)和下电池板(45)施加张紧力,确保二次展开柔性太阳电池阵的在轨刚度。
  5. 根据权利要求4所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,上电池板(44)和下电池板(45)的结构相同,包括:若干个柔性基板(441)、电池电路(442)和柔性电缆(443);
    若干个柔性基板(441)通过琴铰依次串联啮合,形成柔性基板组件;其中,相邻两个柔性基板性基板(441)以琴铰为中心轴旋转,可实现柔性基板组件的展开和收拢;
    柔性基板组件的表面粘贴有电池电路(442)和柔性电缆(443)。
  6. 根据权利要求4所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,约束释放机构(43),包括:电机驱动组件(431)、四连杆机构(432)和末端组件;其中,电机驱动组件(431)与四连杆机构(432)连接,四连杆机构(432)末端设置有末端组件;末端组件,包括:一次锁钩(433)、二次锁钩(434)、阻挡块(435)、铰链琐环(436)、二次解锁绳索组件(437)和二次解锁弹簧组件(438);
    一次锁钩(433)、二次锁钩(434)和阻挡块(435)固定在下收藏箱(41)上;二次解锁弹簧组件(438)固定在隔离板(46)上;铰链琐环(436)的一端固定在上收藏箱(42)上;
    完全收拢状态下,铰链琐环(436)的另一端与一次锁钩(433)配合锁定;二次解锁绳索组件(437)的一端与二次解锁弹簧组件(438)连接,另一端约束在二次锁钩(434)与阻挡块(435)之间;
    当约束释放机构(43)在电机驱动组件(431)和四连杆机构(432)的作用下一次解锁到位后:一次锁钩(433)与铰链琐环(436)的另一端约束解除,释放对上电池板的约束,上电池板(44)展开;此时,二次解锁绳索组件(437)的另一端继续约束在二次锁钩(434)与阻挡块(435)之间,继续保持锁紧状态,约束未展开的下电池板(45);
    当约束释放机构(43)在电机驱动组件(431)和四连杆机构(432)的作用下二次解锁到位后:二次锁钩(434)和阻挡块(435)相对运动产生间隙,二次解锁绳索组件(437)的另一端由间隙中脱出,并在二次解锁弹簧组件(438)作用下收回,释放对下电池板(45)的约束,下电池板(45)展开。
  7. 根据权利要求5所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,张紧机构(47),包括:张紧机构卷簧组件(471)、张紧机构绕线轮(472)和张紧绳(473);
    张紧机构卷簧组件(471)安装在二次展开柔性太阳电池阵的上收藏箱外侧,并与张紧机构绕线轮(472)同轴布置;
    张紧绳(473)与柔性基板组件共面;其中,张紧绳(473)的一端与柔性基板组件连接,另 一端固定在张紧机构绕线轮(472)上。
  8. 根据权利要求5所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,导向机构(48),包括:导向机构卷簧组件(481)、导向机构绕线轮(482)和导向绳(483);
    导向机构卷簧组件(481)安装在二次展开柔性太阳电池阵的下收藏箱外侧,并与导向机构绕线轮(482)同轴布置;
    导向绳(483)布置在柔性基板组件的背面;其中,导向绳(483)的一端与二次展开柔性太阳电池阵的上收藏箱连接,另一端固定在导向机构绕线轮(482)上。
  9. 根据权利要求5所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,箱体展开锁定机构,包括:上箱体展开锁定机构(6)和下箱体展开锁定机构(7);其中,上箱体展开锁定机构(6)分别连接伸展机构(2)的伸展臂(21)和二次展开柔性太阳电池阵的上收藏箱;下箱体展开锁定机构(7)分别连接伸展机构(2)的收藏筒(22)和二次展开柔性太阳电池阵的下收藏箱;箱体展开锁定机构(7)的旋转轴与对应的上箱体展开锁定机构(6)的旋转轴同轴设置,在下箱体展开锁定机构(7)展开时,上箱体展开锁定机构(6)跟随展开进而锁定;
    上箱体展开锁定机构(6),包括:公铰链(61)、母铰链(62)、转动轴(63)和锁定杆(64);其中,公铰链(61)和母铰链(62)通过转动轴(63)形成转动副,具有转动展收的功能;公铰链(61)与上箱体(31)连接,母铰链(62)与伸展臂(21)连接;展开到位后,锁定杆(64)锁定;
    下箱体展开锁定机构(7),包括:固定端(71)、转动端(72)、驱动传动组件(73)和锁定机构(74);其中,驱动传动组件(73)提供驱动力矩,使转动端(72)绕固定端(71)旋转运动;锁定机构(74)在转动端(72)旋转运动至设定位置后,实现对转动端(72)的锁止。
  10. 根据权利要求1所述的可分步二次展开的大面积柔性太阳电池翼,其特征在于,压紧释放装置(5),包括:火工装置(51)、压紧杆组件(52)和分离组件(53);其中,火工装置(51)、压紧杆组件(52)和分离组件(53)依次连接;在发射段,通过施加在压紧杆组件(52)上的预紧力,将伸展机构(2)和二次展开柔性太阳电池阵压紧在舱体侧壁上;入轨后,火工装置(51)解锁,压紧杆组件(52)在分离组件(53)作用下抽出,实现大面积柔性太阳电池翼与舱体的解锁分离。
PCT/CN2023/108326 2022-07-29 2023-07-20 一种可分步二次展开的大面积柔性太阳电池翼 WO2024022208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210907623.1A CN115196049A (zh) 2022-07-29 2022-07-29 一种可分步二次展开的大面积柔性太阳电池翼
CN202210907623.1 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024022208A1 true WO2024022208A1 (zh) 2024-02-01

Family

ID=83586757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108326 WO2024022208A1 (zh) 2022-07-29 2023-07-20 一种可分步二次展开的大面积柔性太阳电池翼

Country Status (2)

Country Link
CN (1) CN115196049A (zh)
WO (1) WO2024022208A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115196049A (zh) * 2022-07-29 2022-10-18 上海宇航系统工程研究所 一种可分步二次展开的大面积柔性太阳电池翼
CN118004451B (zh) * 2024-04-02 2024-06-04 北京航空航天大学 一种基于盘绕式伸展臂二次展开的多太阳翼同步展开装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833176A (en) * 1996-11-14 1998-11-10 Hughes Electronics Corporation Bowed solar array
US9120583B1 (en) * 2012-03-01 2015-09-01 Deployable Space Systems, Inc. Space solar array architecture for ultra-high power applications
CN105501468A (zh) * 2015-12-15 2016-04-20 浙江理工大学 一种空间站柔性太阳翼展开机构
CN111152939A (zh) * 2020-01-21 2020-05-15 上海宇航系统工程研究所 一种柔性太阳电池阵
CN111262517A (zh) * 2020-01-21 2020-06-09 上海宇航系统工程研究所 一种伸展机构支撑双边阵的大面积柔性太阳电池翼
CN111824462A (zh) * 2020-06-04 2020-10-27 上海宇航系统工程研究所 一种用于柔性太阳电池阵分步展开的二次解锁装置及方法
CN111824461A (zh) * 2020-06-04 2020-10-27 上海宇航系统工程研究所 一种分步展开的柔性太阳电池阵
CN113772128A (zh) * 2021-07-23 2021-12-10 北京空间飞行器总体设计部 一种分离式双轴空间太阳电池阵
CN115196049A (zh) * 2022-07-29 2022-10-18 上海宇航系统工程研究所 一种可分步二次展开的大面积柔性太阳电池翼
CN116788523A (zh) * 2023-05-31 2023-09-22 上海宇航系统工程研究所 二次展开的柔性太阳电池翼入轨自主分步展开控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833176A (en) * 1996-11-14 1998-11-10 Hughes Electronics Corporation Bowed solar array
US9120583B1 (en) * 2012-03-01 2015-09-01 Deployable Space Systems, Inc. Space solar array architecture for ultra-high power applications
CN105501468A (zh) * 2015-12-15 2016-04-20 浙江理工大学 一种空间站柔性太阳翼展开机构
CN111152939A (zh) * 2020-01-21 2020-05-15 上海宇航系统工程研究所 一种柔性太阳电池阵
CN111262517A (zh) * 2020-01-21 2020-06-09 上海宇航系统工程研究所 一种伸展机构支撑双边阵的大面积柔性太阳电池翼
CN111824462A (zh) * 2020-06-04 2020-10-27 上海宇航系统工程研究所 一种用于柔性太阳电池阵分步展开的二次解锁装置及方法
CN111824461A (zh) * 2020-06-04 2020-10-27 上海宇航系统工程研究所 一种分步展开的柔性太阳电池阵
CN113772128A (zh) * 2021-07-23 2021-12-10 北京空间飞行器总体设计部 一种分离式双轴空间太阳电池阵
CN115196049A (zh) * 2022-07-29 2022-10-18 上海宇航系统工程研究所 一种可分步二次展开的大面积柔性太阳电池翼
CN116788523A (zh) * 2023-05-31 2023-09-22 上海宇航系统工程研究所 二次展开的柔性太阳电池翼入轨自主分步展开控制方法

Also Published As

Publication number Publication date
CN115196049A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2024022208A1 (zh) 一种可分步二次展开的大面积柔性太阳电池翼
US9676501B1 (en) Space solar array architecture for ultra-high power applications
CN112298618A (zh) 一种二维二次展开太阳翼
CN111824461B (zh) 一种分步展开的柔性太阳电池阵
CN111262517B (zh) 一种伸展机构支撑双边阵的大面积柔性太阳电池翼
CN112298610B (zh) 一种太阳翼及其分段式二次展开铰链
US11724828B2 (en) Deployable system with flexible membrane
Gdoutos et al. Ultralight deployable space structure prototype
CN113772128B (zh) 一种分离式双轴空间太阳电池阵
CN114030657A (zh) 一种可重复收拢展开的太阳翼装置及使用方法
CN111152939A (zh) 一种柔性太阳电池阵
CN111824462B (zh) 一种用于柔性太阳电池阵分步展开的二次解锁装置及方法
CN113173268B (zh) 太阳翼构型及其展开方法
CN113675574B (zh) 一种双向平板折展单元及双向平板折展天线机构
CN112407333B (zh) 一种大折展比可展开舱段机构
US4587526A (en) Latching mechanism for deployable/re-stowable columns useful in satellite construction
CN116605422A (zh) 用于卫星太阳翼的抬升装置和卫星
CN111114838B (zh) 一种柔性太阳电池阵解锁组合装置
CN113060304B (zh) 一种应用于微小卫星的t构型太阳电池阵
JP3168213B2 (ja) 展開トラスおよびその伸縮装置
CN220263080U (zh) 一种连接杆式二次展开的双轴驱动太阳翼装置
CN112027118A (zh) 一种太阳电池阵结构及展开方法
CN218022252U (zh) 一种层叠式双向展开的太阳翼
CN118004451B (zh) 一种基于盘绕式伸展臂二次展开的多太阳翼同步展开装置
CN112009723A (zh) 一种利用卫星自旋在轨展开二维平面可展机构的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845419

Country of ref document: EP

Kind code of ref document: A1