WO2024022081A1 - 可穿戴设备、信号处理方法和穿戴系统 - Google Patents

可穿戴设备、信号处理方法和穿戴系统 Download PDF

Info

Publication number
WO2024022081A1
WO2024022081A1 PCT/CN2023/106290 CN2023106290W WO2024022081A1 WO 2024022081 A1 WO2024022081 A1 WO 2024022081A1 CN 2023106290 W CN2023106290 W CN 2023106290W WO 2024022081 A1 WO2024022081 A1 WO 2024022081A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
wearable device
user
gain
excitation signal
Prior art date
Application number
PCT/CN2023/106290
Other languages
English (en)
French (fr)
Inventor
散华杰
王琳
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2024022081A1 publication Critical patent/WO2024022081A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements

Definitions

  • the invention relates to the field of AR/VR (augmented reality/virtual reality), and specifically to a wearable device, a signal processing method and a wearable system.
  • AR/VR augmented reality/virtual reality
  • EMG Electro-Magnetic Gun, electromyography
  • touch and selection functions are realized, such as clicking or menu selection. These are all performed by collecting human excitation signals through electrodes that contact the human body for motion analysis. . Since the skin resistance of the human body will change with physical conditions or environmental changes, such as dryness, sweating and moisture, the skin resistance changes, and the excitation signals collected from the skin will change. If not processed, it will This causes differences in the recognition results, and the success rate of recognition decreases.
  • the main purpose of the present invention is to provide a wearable device, a signal processing method and a wearable system, aiming to improve the success rate of recognition results.
  • one embodiment of the present invention provides a wearable device, the wearable device includes:
  • Receiving electrodes when the wearable device is worn to the user, the receiving electrodes can contact the user's skin and receive the excitation signal sent by the transmitting wearable device through the user's skin;
  • a wearable device control circuit electrically connected to the receiving electrode to receive the excitation signal via the receiving electrode;
  • the wearable device control circuit is used to obtain the user's current skin impedance through the receiving electrode, and obtain the functional relationship between the user's skin impedance and the gain of the excitation signal, so as to obtain the user's current skin impedance according to the user's current skin impedance and the user's skin impedance. a functional relationship with the gain of the excitation signal, adjusting the gain of the excitation signal; and,
  • the excitation signal When the excitation signal is received, the excitation signal is amplified according to the adjusted gain to determine the user's current click position.
  • One embodiment of the present invention also provides a signal processing method, which is applied to the above-mentioned wearable device.
  • the wearable device includes receiving electrodes; the signal processing method includes:
  • the excitation signal When the excitation signal is received, the excitation signal is amplified according to the adjusted gain to determine the user's current click position.
  • One embodiment of the present invention also provides a wearable system, which includes:
  • the wearable device is electrically or wirelessly connected to the host; the wearable device control circuit of the wearable device outputs a corresponding click position signal to the host according to the click position, so that the The host generates corresponding images and/or audio according to the click position signal.
  • the present invention detects the user's current skin impedance through a wearable device control circuit, and determines the actual change in the user's skin impedance based on the user's current skin impedance and initial skin impedance. According to the actual change of the user's skin impedance, the gain of the wearable device control circuit for the received excitation signal is adjusted accordingly, and the excitation signal is amplified according to the adjusted gain, so that the amplitude of the excitation signal output by the wearable device is consistent with that of normal skin. The difference in amplitude of the excitation signal output in the state does not exceed the preset amplitude range, so as to avoid misidentification caused by the amplitude of the output excitation signal being too large or too small, and improve the accuracy of click position identification.
  • Figure 1 is a schematic structural diagram of an embodiment of a wearable device according to the present invention.
  • Figure 2 is a waveform diagram of the excitation signal when clicking A, B, and C under normal skin conditions of the present invention and a waveform diagram for extracting the characteristic value of the excitation signal;
  • Figure 3 is a waveform diagram of the excitation signal when A, B, and C are clicked when the skin is wet according to the present invention, and a waveform diagram for extracting the characteristic value of the excitation signal;
  • Figure 4 is a schematic structural diagram of an embodiment of the wearable device of the present invention.
  • Figure 5 is a schematic structural diagram of an embodiment of a wearable device control circuit of the present invention.
  • Figure 6 is a schematic structural diagram of an embodiment of the impedance detection circuit of the present invention.
  • Figure 7 is a schematic structural diagram of an embodiment of the switch circuit of the present invention.
  • Figure 8 is a schematic flow chart of an embodiment of the signal processing method of the present invention.
  • Figure 9 is a schematic flow chart of an embodiment of the signal processing method of the present invention.
  • Figure 10 is a schematic structural diagram of an embodiment of the wearable system of the present invention.
  • the human body is a conductor, and the resistance of the human body is mainly skin resistance. Its value depends on the contact voltage, contact area, contact pressure, skin surface conditions (dryness and wetness, whether there is tissue damage, whether there is sweating, whether there is conductive dust, and the thickness of the skin surface cuticle). ) and other factors. Under normal circumstances, the human body resistance can be considered as 1000 ⁇ 2000 ⁇ . EMG (electromyography) technology mainly collects electrical signals on the surface of human skin for action recognition. Changes in human body resistance will definitely bring about changes in electrical signals, which in turn affects signal recognition.
  • the wearable device includes:
  • the receiving electrode 10 is capable of contacting the user's skin when the wearable device is worn by the user, and receiving the excitation signal sent by the transmitting wearable device through the user's skin;
  • the wearable device control circuit 20 is electrically connected to the receiving electrode 10 to receive the excitation signal via the receiving electrode 10; wherein,
  • the wearable device control circuit 20 is used to obtain the user's current skin impedance through the receiving electrode 10 and obtain the functional relationship between the user's skin impedance and the gain of the excitation signal, so as to obtain the user's current skin impedance and the gain of the user's skin impedance and the excitation signal.
  • the functional relationship between adjust the gain of the excitation signal; and,
  • the excitation signal When receiving the excitation signal, the excitation signal is amplified according to the adjusted gain to determine the user's current click position.
  • the transmitting wearable device has a transmitting electrode that contacts the user's skin when the transmitting wearable device is worn by the user.
  • the excitation signal is loaded onto the skin surface through the transmitting electrode and is conducted to the receiving electrode 10 of the wearable device through the human skin.
  • the receiving electrode 10 receives the excitation signal on the skin surface, and through the amplification, analog-to-digital conversion and other processing of the wearable device control circuit 20, the analog excitation signal is converted into a digital signal that can be recognized by the machine, and is passed to the upper device to convert the
  • the voltage value of the final digital signal is compared and matched with multiple position standard feature values representing different click positions, and based on the matching results, it is determined that the position corresponding to the position standard feature value that best matches the excitation signal collected by the receiving electrode 10 is the user's current position. Click on location.
  • the part of the human body wearing the transmitting wearable device performs a clicking action on the part of the human body wearing the wearable device.
  • the waveform changes of the excitation signals collected by the receiving electrode 10 are basically the same at different positions, and they all show click actions. Therefore, it is difficult to distinguish different click positions by relying on action recognition alone.
  • the electrical current between the receiving electrode 10 and the transmitting wearable device With different resistance sizes, the amplitude of the excitation signal waveform collected at the receiving end is different, and the amplitude of the excitation signal output to the upper layer device after amplification, analog-to-digital conversion and other processing by the wearable device control circuit 20 is also different.
  • the current click position can be determined by comparing and matching the amplitude of the excitation signal output by the wearable device with multiple position standard feature values that characterize different click positions.
  • the transmitting wearable device and/or the wearable device may be a watch, a bracelet, a ring, etc., which are not limited here. This embodiment uses a watch as an example for explanation.
  • a selection menu appears on a certain part of the hand wearing the wearable device (here, take the palm of the left hand as an example), and the right hand wearing the transmitting wearable device can click and select on the menu.
  • the palm of the left hand can be divided into click areas representing different functional modules.
  • three areas (A, B and C) are defined, as shown in Figure 1a.
  • the resistance between transmitting electrode-A and receiving electrode 10 is defined as RA1
  • the resistance between transmitting electrode-B and receiving electrode 10 is defined as RB1
  • the resistance between transmitting electrode-C and receiving electrode 10 is defined as RC1
  • RA1 ⁇ RB1 ⁇ RC1 the corresponding collected excitation signal amplitude VA1>VB1>VC1
  • the waveform is shown in Figure 2.
  • Figure 2 shows the amplitude waveform of the excitation signal collected by clicking on the three positions A, B, and C respectively under normal skin conditions at room temperature under the condition that the excitation voltage, excitation frequency, and skin resistance remain unchanged. At this time, the user is obtained through the receiving electrode 10 Current skin impedance is 3.2M ⁇ .
  • human skin resistance changes with changes in the skin surface. For example, if the skin surface sweats and the skin becomes moist, the skin resistance will become smaller. As the skin resistance changes, the excitation signal amplitudes VA1, VB1, and VC1 collected by the receiving electrode 10 will also change.
  • Vemg (V excitation voltage/Z)*R receiving circuit*Gain,
  • Vemg is the amplitude of the excitation signal output by the wearable device, namely VA1, VA2, VA3;
  • V excitation voltage is the excitation voltage loaded by the transmitting wearable device, which is a fixed value
  • Z is the skin impedance between the transmitting electrode and the receiving electrode 10, namely RA1, RB1, RC1;
  • R receiving circuit is the resistance value of the receiving circuit part of the wearable device, which can be regarded as a fixed value
  • Gain is the gain of the wearable device control circuit 20 to the excitation signal.
  • the change in the amplitude Vemg of the excitation signal output by the wearable device and the change in the skin impedance Z are inversely linear.
  • the relationship is that the smaller the skin impedance, the greater the amplitude of the excitation signal output by the wearable device; the greater the skin impedance, the smaller the amplitude of the excitation signal output by the wearable device to the upper device.
  • Figure 3 shows the amplitude waveform of the excitation signal collected by clicking three positions A, B, and C respectively when the skin surface is moist with the excitation voltage and gain unchanged.
  • the user's current skin impedance is obtained through the receiving electrode 10 to be 2.2M ⁇ . Comparing Figure 2 and Figure 3, it can be seen that the skin impedance becomes smaller, and the corresponding amplitude of the collected excitation signal becomes larger.
  • the excitation signal transmitted to the upper device is compared with multiple position standard signals representing different click positions, the matching is performed. , it may match the position standard signal indicating that the click position is different from the user's actual click position, which may lead to misjudgment.
  • the present invention measures the user's current skin impedance through the wearable device control circuit 20 to obtain the changing relationship of skin impedance.
  • the gain of the excitation signal is adjusted according to the change pattern of skin impedance and the functional relationship between the user's skin impedance and the gain of the excitation signal, so that the amplitude of the excitation signal output by the wearable device to the upper device follows changes in human skin impedance.
  • the number of receiving electrodes 10 is at least two, and the wearable device control circuit 20 measures the human skin impedance between the two receiving electrodes 10 to obtain the user's current skin impedance.
  • the human body is a conductor, and a small patch of skin changes in the same way as the entire human body. Therefore, the impedance change pattern of this small section of skin can represent the impedance change pattern of the entire arm skin.
  • the skin impedance Z between the transmitting electrode and the receiving electrode 10 has an inverse linear relationship with the gain Gain of the wearable device control circuit 20 for the excitation signal.
  • the gain Gain of the wearable device control circuit 20 for the excitation signal needs to be reduced accordingly; when the skin impedance Z becomes smaller, the gain Gain of the wearable device control circuit 20 for the excitation signal needs to be increased accordingly.
  • the target gain can be determined as:
  • G1 G0*Z1/Z0; among them, G1 is the target gain, G0 is the initial gain, Z1 is the current skin impedance, and Z0 is the initial skin impedance.
  • the wearable device control circuit 20 adjusts the gain of the received excitation signal to the target gain, so as to adjust the excitation signal output to the upper device following the change in skin impedance, so that the excitation signal output to the upper device changes after the skin impedance changes.
  • the difference between the excitation signal and the excitation signal output to the upper device under normal skin conditions is within the preset amplitude range, ensuring that the upper device can correctly identify the user's current click position.
  • This embodiment is applied in the AR/VR field and can replace the handle to free both hands and achieve true bare-hand interaction.
  • the menu selection function in the bare-hand interaction determines the clicked position by using different resistances on the loop composed of the transmitting electrode, human skin and the receiving electrode 10 when clicking on different positions, thereby selecting the corresponding menu function.
  • This embodiment implements the function of clicking location recognition on the basis of click action recognition, making its function more complete.
  • the initial skin impedance may be set before leaving the factory.
  • the user's skin impedance when wearing it for the first time can also be collected as the initial skin impedance. Because everyone's skin condition is different, different users set the initial skin impedance and position standard characteristic values according to the user's own skin condition when wearing it. The initial value collection is performed when the user wears it for the first time. If the user does not change, there is no need to collect the initial value again. If the user is changed, the initial value collection needs to be performed again.
  • the present invention detects the user's current skin impedance through a wearable device control circuit, and determines the actual change in the user's skin impedance based on the user's current skin impedance and initial skin impedance. According to the actual change of the user's skin impedance, the gain of the wearable device control circuit for the received excitation signal is adjusted accordingly, and the excitation signal is amplified according to the adjusted gain, so that the amplitude of the excitation signal output by the wearable device is consistent with that of normal skin. The difference in amplitude of the excitation signal output in the state does not exceed the preset amplitude range, so as to avoid misidentification caused by the amplitude of the output excitation signal being too large or too small, and improve the accuracy of click position identification.
  • the wearable device control circuit 20 includes:
  • Impedance detection circuit 21 the detection end of the impedance detection circuit 21 is electrically connected to the receiving electrode 10; the impedance detection circuit 21 is used to detect the current skin impedance of the user;
  • a processing circuit which is electrically connected to the impedance detection circuit 21; the processing circuit is used to calculate the current skin impedance and the initial skin impedance detected by the impedance detection circuit 21 to obtain the change proportion coefficient, and obtain the change proportion coefficient according to Varying the scaling factor adjusts the gain to the excitation signal.
  • the number of receiving electrodes 10 is at least two.
  • the two receiving electrodes 10 , the impedance detection circuit 21 and the human skin form a loop to detect the impedance of the human skin between the two receiving electrodes 10 .
  • the transmitting electrode, the receiving electrode 10 the impedance detection circuit 21 and the human skin form a loop to detect the connection between the transmitting electrode and the receiving electrode 10. Impedance detection of human skin. Further, the impedance detection of human skin can be automatically triggered by the wearable device control circuit 20.
  • the wearable device control circuit 20 performs human skin impedance detection once every 1 second, and combines two adjacent ones. In each detection, the previously detected skin impedance is used as the initial skin impedance, and the last detected skin impedance is the current skin impedance; alternatively, the impedance detection of human skin can be actively triggered by the user, for example, the user clicks on the corresponding functional area , triggering human skin impedance detection.
  • the impedance detection circuit 21 can be implemented using the AD5940 chip, and the processing circuit 23 can be implemented using the AD8233 chip.
  • the processing circuit 23 calculates the ratio of the current human body impedance detected by the impedance detection circuit 21 and the initial human body impedance, and obtains the change proportion coefficient ⁇ of the skin impedance. Calculate the change proportion coefficient ⁇ and the initial gain to obtain the target gain, and adjust the gain of the excitation signal to the target gain, so that the gain of the excitation signal always follows the skin impedance change, ensuring that the excitation signal output by the wearable device control circuit 20 can be correctly identified.
  • This embodiment detects the user's current skin impedance through the impedance detection circuit 21, calculates the current skin impedance and the initial skin impedance through the processing circuit 23 to obtain the change proportion coefficient of the skin impedance, and calculates the change proportion coefficient and the initial gain to obtain the target gain to amplify the signal.
  • the gain of the excitation signal of the circuit is adjusted to the target gain, so that the gain of the signal amplification circuit of the excitation signal always follows the skin impedance change, ensuring that the excitation signal output by the wearable device control circuit 20 can be correctly identified.
  • processing circuit 23 includes:
  • the main control circuit is electrically connected to the impedance detection circuit 21; the main control circuit is used to calculate the current skin impedance and the initial skin impedance detected by the impedance detection circuit 21 to obtain the change proportion coefficient;
  • a signal amplifying circuit the input end of which is electrically connected to the receiving electrode 10, and the signal amplifying circuit is used to amplify and output the received excitation signal;
  • Gain adjustment circuit 21a the input end of gain adjustment circuit 21a is connected to the main control circuit, and the output end of gain adjustment circuit 21a is connected to the controlled end of the signal amplification circuit;
  • the main control circuit is also used to control the gain adjustment circuit 21a to adjust the signal amplification circuit according to the changing proportion coefficient. path gain.
  • the wearable device control circuit 20 further includes an analog-to-digital conversion circuit.
  • the input end of the analog-to-digital conversion circuit is connected to the output end of the signal amplifier circuit.
  • the analog-to-digital conversion circuit is used to convert the excitation signal output by the signal amplifier circuit into a digital signal and output it so that the upper layer device can process and identify it.
  • the main control circuit calculates the ratio of the current human body impedance detected by the impedance detection circuit 21 and the initial human body impedance, obtains the change proportion coefficient ⁇ of the skin impedance, and calculates the change proportion coefficient ⁇ and the initial gain to obtain the target gain, and controls
  • the gain adjustment circuit 21a adjusts the gain of the signal amplification circuit to the target gain, so that the gain of the signal amplification circuit for the excitation signal always follows the skin impedance change, ensuring that the excitation signal output by the wearable device control circuit 20 can be correctly identified.
  • the gain adjustment circuit 21a includes:
  • variable resistor R14 the input end of the variable resistor R14 is connected to the input end of the signal amplifier circuit, the output end of the variable resistor R14 is connected to the output end of the signal amplifier circuit, and the controlled end of the variable resistor R14 is connected to the main control circuit connect;
  • the main control circuit is used to adjust the resistance of the variable resistor R14 according to the change proportion coefficient.
  • the input terminal of the signal amplifier circuit includes a non-inverting input terminal and an inverting input terminal.
  • the forward input end of the signal amplifying circuit is used to connect to the reference voltage, and the inverting input end of the signal amplifying circuit is connected to the receiving electrode 10 .
  • the input end of the variable resistor R14 is connected to the inverting input end of the signal amplifier circuit, and the output end of the variable resistor R14 is connected to the output end of the signal amplifier circuit to amplify the received excitation signal.
  • the main control circuit adjusts the resistance of the variable resistor R14 according to the change proportion coefficient, thereby adjusting the gain of the signal amplifier circuit for the excitation signal.
  • the gain adjustment circuit 21a further includes a fourth resistor R13.
  • the input end of the fourth resistor 13 is used to connect to the reference voltage, and the output end of the fourth resistor 13 is connected to the input end of the signal amplifier circuit.
  • the controlled end of the variable resistor R14 is connected to the processing circuit 23 .
  • the processing circuit 23 determines the target resistance value of R14 according to the change proportion coefficient, and adjusts the resistance value of R14 to the target resistance value through the GAIN_S pin, thereby adjusting the gain of the signal amplification circuit.
  • the fourth resistor R13 has a fixed resistance value of 124Kohm
  • the resistance value of the variable resistor R14 can be adjusted between 0 and 1Mohm
  • the gain range of the signal amplifier circuit can also vary between 1V/V and 9V/V.
  • the main control circuit After the main control circuit detects and calculates the target gain, it can quickly adjust the resistance of the variable resistor R14 according to the target gain, thereby adjusting the gain of the signal amplifier circuit for the excitation signal.
  • the target gain is greater than the initial gain, increase the resistance of the variable resistor R14, thereby increasing the effect of the signal amplifier circuit on the excitation signal.
  • Gain when the target gain is less than the initial gain, reduce the resistance of the variable resistor R14, thereby reducing the gain of the signal amplifier circuit to the excitation signal.
  • the gain of the signal amplifier circuit for the excitation signal is adjusted by adjusting the resistance of the variable resistor R14, and the gain adjustment is simple and fast.
  • the signal amplification circuit includes:
  • the input terminal of the first amplifying circuit is the input terminal of the signal amplifying circuit; the first amplifying circuit is used to perform one-stage amplification on the received excitation signal;
  • a second amplifying circuit the input end of the second amplifying circuit is connected to the output end of the first amplifying circuit, the output end of the second amplifying circuit is the output end of the signal amplifying circuit, and the controlled end of the second amplifying circuit is connected to the processing circuit 23 Connection;
  • the second amplifier circuit is used to perform two-level amplification of the excitation signal output by the first amplifier circuit;
  • the processing circuit 23 is used to adjust the gain of the second amplification circuit according to the changing proportion coefficient.
  • the first amplifier circuit includes a first amplifier Q1, and the first amplifier Q1 may be an instrumentation amplifier or a power amplifier.
  • the second amplifier circuit includes a second amplifier Q2, and the second amplifier Q2 can be an instrumentation amplifier or a power amplifier.
  • the gain of the first amplifying circuit is fixed, and the gain of the second amplifying circuit is adjustable.
  • the first amplifier circuit has a fixed gain of 100V/V
  • the second amplifier circuit has an adjustable gain between 1V/V and 9V/V
  • the signal amplifier circuit has an adjustable gain range between 100V/V and 900V/V. .
  • the received excitation signal is amplified in two stages through the first amplification circuit and the second amplification circuit to increase the gain of the excitation signal.
  • the number of receiving electrodes 10 is at least two; the impedance detection circuit 21 is also used to measure the skin impedance between the two receiving electrodes 10 to obtain the user's current skin impedance.
  • the impedance detection circuit 21 can detect the impedance of human skin by forming a loop with the two receiving electrodes 10 and human skin. There is no need to launch a wearable device to participate, making detection more convenient and faster. Moreover, the receiving electrode 10 is set on the wearable device. The distance between the two receiving electrodes 10 is fixed and will not cause displacement to affect the impedance detection result, thus ensuring the calculation of the change ratio between the current skin impedance and the initial skin impedance. coefficients are more accurate.
  • the receiving wearable device control circuit 20 further includes:
  • Switch circuit 24 the controlled end of the switch circuit 24 is connected to the processing circuit 23, the input end of the switch circuit 24 is electrically connected to the receiving electrode 10, and the first output end of the switch circuit 24 is connected to the impedance detection circuit 21.
  • the detection terminal is connected, and the second output terminal of the switch circuit 24 is connected with the input terminal of the signal amplifier circuit.
  • the processing circuit 23 controls the input terminal of the switch circuit 24 to be connected to the first output terminal; when the human skin impedance detection is not performed or the human skin impedance detection is completed, the processing circuit 23 controls the input terminal of the switch circuit 24 Connect to the second output.
  • the switch circuit 24 may be a switch matrix integrated in the impedance detection circuit 21 .
  • the processing circuit 23 controls the switch matrix to disconnect from the signal amplifier circuit of the receiving electrode 10 and connect the receiving electrode 10 with the impedance detection circuit 21 to realize impedance detection; when human skin impedance detection is not performed Or when human skin impedance detection is completed, the switch matrix switches the receiving electrode 10 to connect to the signal amplifying circuit to amplify and output the received excitation signal.
  • the switch circuit 24 may also be an external overlapping hardware circuit, such as a transistor, a MOS transistor, etc.
  • the switch circuit 24 is a switch matrix integrated in the impedance detection circuit 21 .
  • the receiving wearable device control circuit 20 also includes a first resistor R15, a second resistor R16, a third resistor R17, a first capacitor C7 and a second capacitor C8.
  • the number of receiving electrodes 10 is two.
  • the first end of the first capacitor and the input end of the second resistor R16 are connected to one receiving electrode 10 .
  • One end of the second capacitor and the input end of the third resistor are connected to another receiving electrode 10 .
  • AFE2 pin and AFE3 pin are connected to the input end of the signal amplifier circuit.
  • the processing circuit 23 controls the switch circuit 24 to disconnect the path between the RE0 pin and the AFE2 pin, and disconnect the path between the AIN0 pin and the AFE3 pin, so as to disconnect the receiving electrode 10 and the signal amplification circuit. and control the switch circuit 24 to connect the CE0 pin and the AIN3 pin to the impedance detection circuit 21 for impedance detection.
  • the processing circuit 23 controls the switch circuit 24 to open the path between the RE0 pin and the AFE2 pin, and the path between the AIN0 pin and the AFE3 pin, to connect the receiving The path between the electrode 10 and the signal amplifier circuit; and controls the switch circuit 24 to disconnect the CE0 pin and the AIN3 pin from the impedance detection circuit 21.
  • the switch circuit 24 is used to switch the connection between the receiving electrode 10 and the impedance detection circuit 21 and the signal amplification circuit.
  • the receiving electrode 10 When performing impedance detection, the receiving electrode 10 is connected to the impedance detection circuit 21 and disconnected from the signal amplification circuit. , to ensure that the impedance detection will not be interfered by the excitation signal; when the human skin impedance detection is not performed or the human skin impedance detection is completed, the receiving electrode 10 is connected to the signal amplification circuit and disconnected from the impedance detection circuit 21 to ensure When receiving the excitation signal, it will not be interfered by the signal of the impedance detection circuit 21.
  • the wearable device control circuit 20 further includes a signal sampling circuit
  • the input end of the signal sampling circuit is connected to the output end of the signal amplifier circuit, and the output end of the signal sampling circuit is connected to the processing circuit 23;
  • the signal sampling circuit is used to collect the excitation signal output by the signal amplifier circuit
  • the processing circuit 23 is also used to extract the feature values of multiple excitation signals collected by the signal sampling circuit within the preset time period, and calculate the average of the multiple feature values to obtain the feature value of the user's current click position; and determine the feature value based on the click position. Click on location.
  • the signal sampling circuit samples the excitation signal output by the signal amplifier circuit according to a preset sampling rate.
  • the processing circuit 23 extracts the feature values by setting a time window and an incremental window, and calculates the average value of multiple feature values within a preset time period to obtain the feature value of the user's current click position and output it to Upper level equipment.
  • the upper-layer device compares and matches the click position feature value with multiple position standard feature values representing different click positions, and determines based on the matching results that the position corresponding to the position standard feature value that best matches the click position feature value is the user's current click position.
  • the position standard feature values representing different click positions may be set before leaving the factory.
  • the amplitude of the excitation signal output by the wearable device at different click positions when the user wears it for the first time can also be collected as the position standard feature value. Because everyone's skin condition is different, different users set the initial skin impedance and position standard characteristic values according to the user's own skin condition when wearing it. The initial value collection is performed when the user wears it for the first time. If the user does not change, there is no need to collect the initial value again. If the user is changed, the initial value collection needs to be performed again.
  • the signal sampling circuit samples the received excitation signal with a sampling rate of 3.2kHz. Divide every 30 sampling points in the sampling data into a time window, with 20 sampling points as a step. That is, in two adjacent time windows, the first time window slides 20 sampling points to become the second time window. For example, the first time window is the 1-30th sampling point, and the second time window is the 21st-50th sampling point. There is an overlap of 10 sampling points between the two time windows, and the overlapping part is the incremental window.
  • the processing circuit 23 extracts the maximum value fMAX of the amplitudes of all sampling points in each time window within the preset time period, and calculates the average value of all maximum values fMAX to obtain the click position characteristic value.
  • the maximum value fMAX is a type of signal characteristic value, which is the maximum absolute value of all sampling points in each time window. In addition to this, the average absolute value can also be extracted as a feature value.
  • the click position characteristic value obtained by extracting the characteristic value of the excitation signal and calculating its average value can represent the amplitude of the excitation signal at the current time, preventing the click position characteristic value from being too large or too small due to interference from signal fluctuations. Ensure the accuracy of location identification.
  • the present invention also provides a signal processing method, which is applied to the above-mentioned wearable device.
  • the wearable device includes receiving electrodes; the signal processing method includes:
  • S100 Obtain the user's current skin impedance through the receiving electrode, and obtain the functional relationship between the user's skin impedance and the gain of the excitation signal, so as to adjust the response according to the user's current skin impedance and the functional relationship between the user's skin impedance and the gain of the excitation signal. the gain of the excitation signal; and,
  • the transmitting wearable device has a transmitting electrode that is in contact with the user's skin when the transmitting wearable device is worn by the user.
  • the excitation signal is loaded onto the skin surface through the transmitting electrode and is conducted to the receiving electrode of the wearable device through the human skin.
  • the receiving electrode receives the excitation signal on the skin surface, and after amplification, analog-to-digital conversion and other processing by the wearable device control circuit, the analog excitation signal is converted into a digital signal that can be recognized by the machine, and is passed to the upper device, and the converted The voltage value of the digital signal is compared and matched with multiple position standard feature values representing different click positions, and based on the matching results, the position corresponding to the position standard feature value that best matches the excitation signal collected by the receiving electrode is determined to be the user's current click position.
  • the part of the human body wearing the transmitting wearable device performs a clicking action on the part of the human body wearing the wearable device.
  • the waveform changes of the excitation signals collected by the receiving electrodes are basically the same at different positions, and they all show click actions. Therefore, it is difficult to distinguish different click positions by relying on action recognition alone.
  • the resistance between the receiving electrode and the transmitting wearable device is different, and the amplitude of the excitation signal waveform collected at the receiving end is different. After amplification, analog-to-digital conversion, etc. of the wearable device control circuit, it is output to the upper layer.
  • the amplitude of the device's excitation signal also differs.
  • the current click position can be determined by comparing and matching the amplitude of the excitation signal output by the wearable device with multiple position standard feature values that characterize different click positions.
  • the transmitting wearable device and/or the wearable device may be a watch, a bracelet, a ring, etc., which are not limited here. This embodiment uses a watch as an example for explanation.
  • a selection menu appears on a certain part of the hand wearing the wearable device (here, take the palm of the left hand as an example), and the right hand wearing the transmitting wearable device can click and select on the menu.
  • the palm of the left hand can be divided into click areas representing different functional modules.
  • three areas A, B and C are defined, as shown in Figure 1.
  • the resistance between the transmitting electrode-A and the receiving electrode is defined as RA1
  • the resistance between the transmitting electrode-B and the receiving electrode is defined as RB1
  • the resistance between the transmitting electrode-C and the receiving electrode is defined as RC1, RA1 ⁇ RB1 ⁇ RC1
  • the corresponding collected excitation signal amplitude VA1>VB1>VC1 is shown in Figure 2.
  • Figure 2 shows the amplitude waveforms of the excitation signals collected by clicking on the three positions A, B, and C under normal skin conditions at room temperature under the condition that the excitation voltage, excitation frequency, and skin resistance remain unchanged. At this time, the user's current current is obtained through the receiving electrode. Skin impedance is 3.2M ⁇ .
  • human skin resistance will change with changes in the skin surface. For example, if the skin surface sweats and the skin becomes moist, the skin resistance will become smaller. As the skin resistance changes, the excitation signal amplitudes VA1, VB1, and VC1 collected by the receiving electrode will also change.
  • Vemg (V excitation voltage/Z)*R receiving circuit*Gain,
  • Vemg is the amplitude of the excitation signal output by the wearable device, namely VA1, VA2, VA3;
  • V is the excitation voltage loaded by the transmitting wearable device, which is a fixed value
  • Z is the skin impedance between the transmitting electrode and the receiving electrode, namely RA1, RB1, RC1;
  • R is the resistance of the receiving circuit part of the wearable device, which can be regarded as a fixed value
  • Gain is the gain of the wearable device control circuit to the excitation signal.
  • the change in the amplitude Vemg of the excitation signal output by the wearable device has an inverse linear relationship with the change in skin impedance Z , that is, the smaller the skin impedance, the greater the amplitude of the excitation signal output by the wearable device; the greater the skin impedance, the smaller the amplitude of the excitation signal output by the wearable device.
  • Figure 3 shows the excitation signal amplitude waveform collected by clicking on the three positions A, B, and C respectively when the skin surface is moist with the excitation voltage and gain unchanged.
  • the user's current skin impedance obtained through the receiving electrode is 2.2M ⁇ . Comparing Figure 2 and Figure 3, it can be seen that the skin impedance becomes smaller, and the corresponding amplitude of the collected excitation signal becomes larger.
  • the excitation signal transmitted to the upper device is compared with multiple position standard signals representing different click positions, the matching is performed. , it is possible to match the represented click position with the user's actual click position Different position standard signals lead to errors in judgment.
  • the present invention obtains the user's current skin impedance through receiving electrodes to obtain the changing pattern of skin impedance.
  • the gain of the excitation signal is adjusted according to the change pattern of skin impedance and the functional relationship between the user's skin impedance and the gain of the excitation signal, so that the amplitude of the excitation signal output by the wearable device to the upper device follows changes in human skin impedance.
  • the number of receiving electrodes is at least two, and the wearable device control circuit measures the human skin impedance between the two receiving electrodes to obtain the user's current skin impedance.
  • the human body is a conductor, and a small patch of skin changes in the same way as the entire human body. Therefore, the impedance change pattern of this small section of skin can represent the impedance change pattern of the entire arm skin.
  • the skin impedance Z between the transmitting electrode and the receiving electrode has an inverse linear relationship with the gain of the wearable device control circuit to the excitation signal.
  • the gain Gain of the wearable device control circuit on the excitation signal needs to be reduced accordingly; when the skin impedance Z becomes smaller, the gain Gain of the wearable device control circuit on the excitation signal needs to be increased accordingly.
  • the target gain can be determined as:
  • G1 G0*Z1/Z0; among them, G1 is the target gain, G0 is the initial gain, Z1 is the current skin impedance, and Z0 is the initial skin impedance.
  • the wearable device control circuit adjusts the gain of the received excitation signal to the target gain to adjust the excitation signal output to the upper device following the change in skin impedance, so that the excitation signal output to the upper device changes after the skin impedance changes.
  • the difference between the signal and the excitation signal output to the upper device under normal skin conditions is within the preset amplitude range, ensuring that the upper device can correctly identify the user's current click position.
  • the initial skin impedance may be set before leaving the factory.
  • the user's skin impedance when wearing it for the first time can also be collected as the initial skin impedance. Because everyone's skin condition is different, different users set the initial skin impedance and position standard characteristic values according to the user's own skin condition when wearing it. The initial value collection is performed when the user wears it for the first time. If the user does not change, there is no need to collect the initial value again. If the user is changed, the initial value collection needs to be performed again.
  • the present invention obtains the user's current skin impedance and determines the actual change in the user's skin impedance based on the user's current skin impedance and initial skin impedance.
  • the gain of the excitation signal is adjusted accordingly according to the actual change in the user's skin impedance, and the excitation signal is amplified according to the adjusted gain, so that the amplitude of the excitation signal output by the wearable device is consistent with the amplitude of the excitation signal output under normal skin conditions.
  • the difference does not exceed the preset amplitude range, which avoids misidentification caused by the amplitude of the output excitation signal being too large or too small, and improves the accuracy of click position identification.
  • the functional relationship between the user's skin impedance and the gain of the excitation signal is specifically:
  • Vemg (V excitation voltage/Z)*R receiving circuit*Gain;
  • Vemg is the amplitude of the excitation signal output by the wearable device
  • V excitation voltage is the excitation voltage loaded by the transmitting wearable device
  • Z is the skin impedance between the transmitting electrode and the receiving electrode
  • R receiving circuit is the receiving circuit of the wearable device The resistance value of the part
  • Gain is the gain of the wearable device control circuit to the excitation signal.
  • the gain of the excitation signal of the wearable device control circuit needs to be adjusted accordingly.
  • the skin impedance Z between the transmitting electrode and the receiving electrode has an inverse linear relationship with the gain of the wearable device control circuit to the excitation signal.
  • the amplitude of the excitation signal output to the upper device after the skin impedance changes always follows the change of human body impedance, reducing the difference with the excitation signal output to the upper device under normal skin conditions, ensuring that the upper device can correctly identify the user's current click. Location.
  • the step of adjusting the gain of the excitation signal specifically includes:
  • G1 G0*Z1/Z0; among them, G1 is the target gain, G0 is the initial gain, Z1 is the current skin impedance, and Z0 is the initial skin impedance;
  • Vemg0/Vemg1 (Z0/Z1)*(Gain0/Gain1).
  • Vemg0 is the amplitude of the excitation signal collected by the receiving electrode at the initial moment
  • Vemg1 is the amplitude of the excitation signal collected by the receiving electrode at the current moment
  • Gain0 is the initial gain
  • Gain1 is the target gain.
  • the wearable device control circuit adjusts the gain of the received excitation signal according to the target gain to adjust the excitation signal output to the upper device following the change in skin impedance, so that the excitation signal output to the upper device is output after the skin impedance changes.
  • the difference from the excitation signal output to the upper device under normal skin conditions is within the preset amplitude range, ensuring that the upper device can correctly identify the user's current click position.
  • the signal processing method further includes:
  • the user's current skin impedance is obtained as the user's initial skin impedance.
  • the query information "Is it the first time to wear it" is output in the form of image and/or voice, and the user can click the corresponding functional area (for example, the palm of the left hand) to select yes or no. If the user selects Yes, the wearable device measures the user's current skin impedance as the user's initial skin impedance. If the user selects No, the function menu option is entered.
  • the signal processing method specifically includes the following steps:
  • Impedance detection can be actively triggered by the user, or the control circuit of the receiving wearable device can perform impedance detection at certain intervals.
  • S2 Determine whether the user is wearing it for the first time
  • the query information "Is this the first time to wear it" is output in the form of images and/or voice, and the user can click the corresponding functional area (for example, the palm of the left hand) to select yes or no. If the user selects Yes, the wearable device measures the user's current skin impedance as the user's initial skin impedance. If the user selects No, the function menu option is entered.
  • step S3 After step S22, determine whether the measured current skin impedance is equal to the initial skin impedance
  • S4 Sampling the excitation signal with a preset sampling rate (for example, 3.2kHZ);
  • the sampling data is divided into a time window every 30 points, with a step of 30 points. That is, in two adjacent time windows, the first time window slides 20 sampling points to become the second time window.
  • the first time window is the 1-30th sampling point
  • the second time window is the 21st-50th sampling point.
  • S6 Extract the feature values of each time window. And average all feature values to determine the click position feature value;
  • the maximum value fMAX is a type of signal characteristic value, which is the maximum absolute value of all sampling points in each time window.
  • the average absolute value can also be extracted as a feature value.
  • the present invention also provides a wearable system, including:
  • the above-mentioned wearable device 200 is electrically or wirelessly connected to the host 100; the wearable device 200 control circuit of the wearable device 200 outputs corresponding click position information according to the click position.
  • the signal is sent to the host 100 so that the host 100 generates corresponding images and/or audio according to the click position signal.
  • the detailed structure of the wearable device may refer to the above-mentioned embodiments and will not be repeated here; it can be understood that since the above-mentioned wearable device is used in the wearable system of the present invention, the embodiments of the wearable system of the present invention include the above-mentioned wearable device. All the technical solutions of all embodiments of the wearable device and the technical effects achieved are exactly the same, so they will not be described again here.
  • the wearable system further includes a transmitting wearable device 300;
  • the transmitting wearable device 300 has a transmitting electrode that contacts the user's skin when the transmitting wearable device 300 is worn by the user;
  • the transmitting wearable device 300 When the human body part wearing the transmitting wearable device 300 comes into contact with the human body part wearing the wearable device 200, the transmitting electrode of the transmitting wearable device 300, the human skin and the receiving electrode of the wearable device 200 form a signal channel; the transmitting wearable device 300 transmits The excitation signal sent by the electrode is transmitted to the receiving electrode of the wearable device 200 through the signal channel.
  • the excitation signal generating circuit includes:
  • An excitation source which is used to generate an excitation signal
  • a filter circuit the input end of the filter circuit is connected to the output end of the excitation source; the filter circuit is used to filter the excitation signal;
  • the third amplifier circuit has an input terminal connected to the output terminal of the filter circuit, an output terminal of the third amplifier circuit is electrically connected to the transmitter electrode group, and the third amplifier circuit is used to amplify the excitation signal output by the filter circuit and output.
  • an excitation source generates an excitation signal of a specific frequency and a specific voltage
  • a filter circuit filters the excitation signal
  • a third amplifier circuit amplifies the excitation signal, so that the excitation signal can be smoothly transmitted and received.
  • the excitation signal is loaded to the human skin through the transmitting electrode, and then transmitted through the human skin to the receiving electrode in contact with the human skin to complete the transmission and reception of the excitation signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种可穿戴设备(200)、信号处理方法和穿戴系统,可穿戴设备包括接收电极(10)和可穿戴设备控制电路(20)。接收电极(10)能够通过用户皮肤接收发射穿戴设备(300)发送的激励信号。可穿戴设备控制电路(20)用于通过接收电极(10)获取用户当前皮肤阻抗,并调整对激励信号的增益;以及,在接收到激励信号时,根据调整后的增益对激励信号进行放大处理,以确定用户当前点击位置。通过获取用户当前皮肤阻抗,根据用户当前皮肤阻抗和初始皮肤阻抗确定用户皮肤阻抗的实际变化。根据用户皮肤阻抗的实际变化相应调整对激励信号的增益,避免输出的激励信号的幅值过大或者过小导致误识别。

Description

可穿戴设备、信号处理方法和穿戴系统 技术领域
本发明涉及AR/VR(增强现实/虚拟现实)领域,具体涉及一种可穿戴设备、信号处理方法和穿戴系统。
发明背景
EMG(Electro-Magnetic Gun,肌电图)技术现在已经广泛被应用在AR/VR领域。主要通过手部动作识别,配合AR/VR的应用,来实现某些触摸和选择的功能,比如通过点击或者进行菜单选择,而这些都是通过接触人体的电极采集人体激励信号进行动作分析进行的。由于人体的皮肤电阻会随着身体情况或者环境变化出现改变,比如干燥,出汗变得潮湿,皮肤电阻发生变化,从皮肤上采集到的激励信号就会有变化,若不进行处理,就会使识别结果出现差异,进而识别的成功率就下降了。
发明内容
本发明的主要目的是,提供一种可穿戴设备、信号处理方法和穿戴系统,旨在提高识别结果的成功率。
为实现上述目的,本发明一个实施例提出一种可穿戴设备,所述可穿戴设备包括:
接收电极,在所述可穿戴设备被穿戴至用户时,所述接收电极能够与用户皮肤接触,并通过用户皮肤接收发射穿戴设备发送的激励信号;
穿戴设备控制电路,与所述接收电极电连接,以经所述接收电极接收所述激励信号;其中,
所述可穿戴设备控制电路用于通过所述接收电极获取用户当前皮肤阻抗,并获取用户皮肤阻抗与激励信号的增益之间的函数关系,以根据所述用户当前皮肤阻抗及所述用户皮肤阻抗与激励信号的增益之间的函数关系,调整对所述激励信号的增益;以及,
在接收到所述激励信号时,根据调整后的所述增益对所述激励信号进行放大处理,以确定用户当前点击位置。
本发明一个实施例还提出一种信号处理方法,应用于上述的可穿戴设备,所述可穿戴设备包括接收电极;所述信号处理方法包括:
通过所述接收电极获取用户当前皮肤阻抗,并获取用户皮肤阻抗与激励信号的增益之间的函数关系,以根据所述用户当前皮肤阻抗及所述用户皮肤阻抗与激励信号的增益之间的函数关系,调整对所述激励信号的增益;以及,
在接收到所述激励信号时,根据调整后的所述增益对所述激励信号进行放大处理,以确定用户当前点击位置。
本发明一个实施例还提出一种穿戴系统,所述穿戴系统包括:
主机;
上述的可穿戴设备,所述可穿戴设备与所述主机电连接或无线连接;所述可穿戴设备的可穿戴设备控制电路根据所述点击位置输出相应的点击位置信号至所述主机,以使所述主机根据所述点击位置信号生成相应的图像和/或音频。
本发明通过可穿戴设备控制电路检测用户当前皮肤阻抗,根据用户当前皮肤阻抗和初始皮肤阻抗确定用户皮肤阻抗的实际变化。根据用户皮肤阻抗的实际变化相应调整可穿戴设备控制电路对接收到的激励信号的增益,并按照调整后的增益对激励信号进行放大处理,使可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异不超过预设幅值范围内,避免输出的激励信号的幅值过大或者过小导致误识别,提高点击位置识别的准确性。
附图简要说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获取其他的附图。
图1为本发明可穿戴设备一实施例的结构示意图;
图2为本发明正常皮肤状态下点击A、B、C时的激励信号波形图和提取激励信号特征值的波形图;
图3为本发明皮肤潮湿状态下点击A、B、C时的激励信号波形图和提取激励信号特征值的波形图;
图4为本发明可穿戴设备一实施例的结构示意图;
图5为本发明可穿戴设备控制电路一实施例的结构示意图;
图6为本发明阻抗检测电路一实施例的结构示意图;
图7为本发明开关电路一实施例的结构示意图;
图8为本发明信号处理方法一实施例的流程示意图;
图9为本发明信号处理方法一实施例的流程示意图;
图10为本发明穿戴系统一实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时 应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
人体是导体,人体电阻主要是皮肤电阻,其值与接触电压、接触面积、接触压力、皮肤表面情况(干湿程度、有无组织损伤、是否出汗、有无导电粉尘、皮肤表层角质的厚薄)等因素有关。一般情况下,人体电阻可按1000~2000Ω考虑。EMG(肌电图,electromyography)技术主要就是采集人体皮肤表面的电信号来进行动作识别,人体电阻变化肯定会带来电信号的变化,进而影响到信号的识别。
为解决上述问题,参照图1~4,本发明提出一种可穿戴设备。该可穿戴设备包括:
接收电极10,在所述可穿戴设备被穿戴至用户时,接收电极10能够与用户皮肤接触,并通过用户皮肤接收发射穿戴设备发送的激励信号;
可穿戴设备控制电路20,与接收电极10电连接,以经接收电极10接收激励信号;其中,
可穿戴设备控制电路20用于通过接收电极10获取用户当前皮肤阻抗,并获取用户皮肤阻抗与激励信号的增益之间的函数关系,以根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系,调整对激励信号的增益;以及,
在接收到激励信号时,根据调整后的增益对激励信号进行放大处理,以确定用户当前点击位置。
本实施例中,发射穿戴设备具有在发射穿戴设备被穿戴至用户时与用户皮肤接触的发射电极,激励信号通过发射电极加载到皮肤表面,经人体皮肤传导至可穿戴设备的接收电极10。接收电极10接收到皮肤表面的激励信号,经过可穿戴设备控制电路20的放大、模数转换等处理,将模拟的激励信号转化为可被机器识别的数字信号,传递给上层设备中,将转化后的数字信号的电压值与多个表征不同点击位置的位置标准特征值对比进行匹配,并根据匹配结果确定与接收电极10采集到的激励信号最匹配的位置标准特征值对应的位置为用户当前点击位置。
需要进行点击操作时,穿戴有发射穿戴设备的人体部位在穿戴有可穿戴设备的人体部位上进行点击动作。接收电极10采集到的激励信号在不同位置上波形变化规律基本一致,表现出来的都是点击动作,所以仅靠动作识别来区分不同的点击位置有困难。而点击不同位置时接收电极10与发射可穿戴设备之间电 阻大小不同,在接收端采集到的激励信号波形的幅值不同,经过可穿戴设备控制电路20的放大、模数转换等处理后输出至上层设备的激励信号的幅值也不同。因此可以通过将可穿戴设备输出的激励信号的幅值与多个表征不同点击位置的位置标准特征值比对进行匹配,来确定当前点击位置。其中,发射穿戴设备和/可穿戴设备可以是手表、手环或者戒指等,在此不作限制。本实施例以手表为例进行说明。
例如,在AR/VR应用中,在穿戴有可穿戴设备的手的某个部位(这里就以左手掌心为例),出现选择菜单,穿戴有发射穿戴设备的右手在菜单上就行点击选择等操作。左手手掌心可以划分为表征不同功能模块的点击区域,本实施例中定义3个区域(A、B和C),如图1a所示。
当左右手接触时,发射电极和接收电极10之间形成导电回路,如图1b中虚线所示。当右手分别点击A、B、C 3个位置时,由于路径长度不一样,导电回路电阻也不一样。在激励电压固定不变的情况下,路径越长,电阻越大,接收电极10接收到的激励信号幅值就越小,经放大、模数转换等处理后输出的激励信号的幅值也越小;路径越短,电阻越小,相应的接收电极10接收到的激励信号幅值就越大,经放大、模数转换等处理后输出的激励信号的幅值也越大。本实施例中发射电极-A-接收电极10之间电阻定义为RA1,发射电极-B-接收电极10之间电阻定义为RB1,发射电极-C-接收电极10之间电阻定义为RC1,RA1<RB1<RC1,相应的采集到的激励信号幅值VA1>VB1>VC1,波形如图2所示。图2为激励电压、激励频率、皮肤电阻都不变的情况下,室温正常皮肤状态下分别点击A、B、C三个位置采集到的激励信号幅值波形,此时通过接收电极10获取用户当前皮肤阻抗为3.2MΩ。
但是实际上人的皮肤电阻是会随着皮肤表面的变化而变化的,比如皮肤表面出汗,皮肤变得潮湿,皮肤电阻就会变小。皮肤电阻变化了,接收电极10采集到的激励信号幅值VA1、VB1、VC1也会变化。
可穿戴设备输出的激励信号的幅值与皮肤阻抗和可穿戴设备控制电路20对激励信号的增益之间的关系为:
Vemg=(V激励电压/Z)*R接收电路*Gain,
其中,Vemg为可穿戴设备输出的激励信号的幅值,即VA1、VA2、VA3;
V激励电压为发射可穿戴设备加载的激励电压,为固定值;
Z为发射电极和接收电极10之间的皮肤阻抗,即RA1、RB1、RC1;
R接收电路为可穿戴设备接收电路部分的阻值,可以看做是固定值;
Gain为可穿戴设备控制电路20对激励信号的增益。
在V激励电压、R接收电路和可穿戴设备控制电路20对激励信号的增益Gai不变的情况下,可穿戴设备输出的激励信号的幅值Vemg的变化与皮肤阻抗Z的变化是反向线性关系,即皮肤阻抗越小,可穿戴设备输出的激励信号的幅值越大;皮肤阻抗越大,可穿戴设备输出至上层设备的激励信号的幅值越小。
图3为激励电压和增益不变,皮肤表面潮湿的情况下分别点击A、B、C三个位置采集到的激励信号幅值波形,此时通过接收电极10获取用户当前皮肤阻抗为2.2MΩ。比较图2和图3,可以看到皮肤阻抗变小,相应的采集到的激励信号幅值变大,传递给上层设备中的激励信号与多个表征不同点击位置的位置标准信号对比进行匹配时,可能会匹配到表征的点击位置与用户实际的点击位置不同的位置标准信号,进而导致判断错误。
为了保证点击位置识别的准确性,需要尽可能减小皮肤阻抗变化时可穿戴设备输出的激励信号的幅值与正常皮肤状态下可穿戴设备输出的激励信号的幅值之间的差异。本发明通过可穿戴设备控制电路20测量用户当前皮肤阻抗,以得到皮肤阻抗的变化关系。根据皮肤阻抗的变化规律和用户皮肤阻抗与激励信号的增益之间的函数关系调整对激励信号的增益,使得可穿戴设备输出至上层设备的激励信号的幅值跟随人体皮肤阻抗变化。不管用户皮肤阻抗如何变化,保证可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异始终不超过预设幅值范围。
具体地,接收电极10的数量至少为两个,可穿戴设备控制电路20测量两个接收电极10之间的人体皮肤阻抗,得到用户当前皮肤阻抗。人体是一个导体,一小块皮肤和整个人体皮肤变化相同。因此,这一小段皮肤的阻抗变化规律可以代表整个手臂皮肤的阻抗变化规律。
根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系Vemg=(V激励电压/Z)*R接收电路*Gain可知,在V激励电压和R接收电路不变的情况下,当发射电极和接收电极10之间的皮肤阻抗Z变化时,要保证可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异始终不超过预设幅值范围,则当人体阻抗变化时,需要相应调整可穿戴设备控制电路20对激励信号的增益Gain。发射电极和接收电极10之间的皮肤阻抗Z与可穿戴设备控制电路20对激励信号的增益Gain成反向线性关系。当皮肤阻 抗Z变大时,需要相应减小可穿戴设备控制电路20对激励信号的增益Gain;当皮肤阻抗Z变小时,需要相应增大可穿戴设备控制电路20对激励信号的增益Gain。具体地,根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系可以确定目标增益为:
G1=G0*Z1/Z0;其中,G1为目标增益,G0为初始增益,Z1为当前皮肤阻抗,Z0为初始皮肤阻抗。
可穿戴设备控制电路20将对接收到的激励信号的增益调整为目标增益,以在皮肤阻抗变化时跟随皮肤阻抗的变化调整输出至上层设备的激励信号,使得皮肤阻抗变化后输出至上层设备的激励信号与正常皮肤状态下输出至上层设备的激励信号的差异在预设幅值范围内,保证上层设备可以正确识别用户当前的点击位置。本实施例应用在AR/VR领域,可以替代手柄,解放双手,实现真正的裸手交互。裸手交互里的菜单选择功能,是通过点击不同位置时发射电极、人体皮肤和接收电极10组成的回路上的电阻不一样,来确定点击的位置,从而选择相应的菜单功能。本实施例在点击动作识别的基础上,实现了点击位置识别的功能,使其功能更完善。
本实施例中,初始皮肤阻抗可以是出厂前设定的。或者,也可以采集用户首次佩戴时的皮肤阻抗作为初始皮肤阻抗。因为每个人的皮肤状态不一样,因此不同的用户使用佩戴时根据用户自身的皮肤状态设定初始皮肤阻抗和位置标准特征值。用户首次佩戴时进行初始值采集,后续若不更换使用者,则不需要再进行采集,若更换使用者,则需要再重新进行初始值采集。
本发明通过可穿戴设备控制电路检测用户当前皮肤阻抗,根据用户当前皮肤阻抗和初始皮肤阻抗确定用户皮肤阻抗的实际变化。根据用户皮肤阻抗的实际变化相应调整可穿戴设备控制电路对接收到的激励信号的增益,并按照调整后的增益对激励信号进行放大处理,使可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异不超过预设幅值范围内,避免输出的激励信号的幅值过大或者过小导致误识别,提高点击位置识别的准确性。
参照图4~6,在一实施例中,可穿戴设备控制电路20包括:
阻抗检测电路21,该阻抗检测电路21的检测端与接收电极10电连接;阻抗检测电路21用于检测用户的当前皮肤阻抗;
处理电路,该处理电路与阻抗检测电路21电连接;处理电路用于计算阻抗检测电路21检测到的当前皮肤阻抗和初始皮肤阻抗得到变化比例系数,并根据 变化比例系数调整对激励信号的增益。
本实施例中,接收电极10的数量至少为两个。两个接收电极10、阻抗检测电路21和人体皮肤形成回路,以对两个接收电极10之间的人体皮肤进行阻抗检测。或者,佩戴有发射穿戴设备的人体部位与佩戴有可穿戴设备的人体部位接触时,发射电极、接收电极10、阻抗检测电路21和人体皮肤形成回路,以对发射电极和接收电极10之间的人体皮肤进行阻抗检测。进一步地,对人体皮肤进行阻抗检测可以由可穿戴设备控制电路20自动触发,例如,自用户穿戴上可穿戴设备开始,可穿戴设备控制电路20间隔1s进行一次人体皮肤阻抗检测,将相邻两次检测中,前一次检测到的皮肤阻抗作为初始皮肤阻抗,后一次检测到的皮肤阻抗为当前皮肤阻抗;或者,对人体皮肤进行阻抗检测可以由用户主动触发,例如,用户点击相应的功能区域,触发人体皮肤阻抗检测。其中,阻抗检测电路21可以采用AD5940芯片实现,处理电路23可以采用AD8233芯片实现。
处理电路23计算阻抗检测电路21检测到的当前人体阻抗和初始人体阻抗的比值,得到皮肤阻抗的变化比例系数τ。计算变化比例系数τ和初始增益得到目标增益,并将对激励信号的增益调整为目标增益,以使对激励信号的增益始终跟随皮肤阻抗变化,保证可穿戴设备控制电路20输出的激励信号可以被正确识别。
本实施例通过阻抗检测电路21检测用户当前皮肤阻抗,通过处理电路23计算当前皮肤阻抗和初始皮肤阻抗得到皮肤阻抗的变化比例系数,以及计算变化比例系数和初始增益得到目标增益,以将信号放大电路对激励信号的增益调整为目标增益,使得信号放大电路对激励信号的增益始终跟随皮肤阻抗变化,保证可穿戴设备控制电路20输出的激励信号可以被正确识别。
在一实施例中,处理电路23包括:
主控电路,该主控电路与阻抗检测电路21电连接;主控电路用于计算阻抗检测电路21检测到的当前皮肤阻抗和初始皮肤阻抗得到变化比例系数;
信号放大电路,该信号放大电路的输入端与接收电极10电连接,信号放大电路用于对接收到的激励信号进行放大并输出;
增益调整电路21a,增益调整电路21a的输入端与主控电路连接,增益调整电路21a的输出端与信号放大电路的受控端连接;
主控电路还用于根据变化比例系数控制增益调整电路21a调整信号放大电 路的增益。
在一实施例中,可穿戴设备控制电路20还包括模数转换电路。模数转换电路的输入端与信号放大电路的输出端连接,模数转换电路用于将信号放大电路输出的激励信号转换为数字信号并输出,以使上层设备可以处理并识别。
本实施例中,主控电路计算阻抗检测电路21检测到的当前人体阻抗和初始人体阻抗的比值,得到皮肤阻抗的变化比例系数τ,以及计算变化比例系数τ和初始增益得到目标增益,并控制增益调整电路21a将信号放大电路的增益调整为目标增益,以使信号放大电路对激励信号的增益始终跟随皮肤阻抗变化,保证可穿戴设备控制电路20输出的激励信号可以被正确识别。
参照图5,在一实施例中,增益调整电路21a包括:
可变电阻R14,该可变电阻R14的输入端与信号放大电路的输入端连接,可变电阻R14的输出端与信号放大电路的输出端连接,可变电阻R14的受控端与主控电路连接;
主控电路用于根据变化比例系数调整可变电阻R14的阻值。
本实施例中,信号放大电路的输入端包括正相输入端和反相输入端。信号放大电路的正向输入端用于接入参考电压,信号放大电路的反相输入端与接收电极10连接。可变电阻R14的输入端与信号放大电路的反相输入端连接,可变电阻R14的输出端与信号放大电路的输出端连接,以对接收到的激励信号进行放大。主控电路根据变化比例系数调整可变电阻R14的阻值,进而调整信号放大电路的对激励信号的增益。
进一步地,增益调整电路21a还包括第四电阻R13。第四电阻13的输入端用于接入参考电压,第四电阻13的输出端与信号放大电路的输入端连接。可变电阻R14的受控端与处理电路23连接。信号放大电路的增益由第四电阻R13和可变电阻R14来决定:G=1+R14/R13。处理电路23根据变化比例系数确定R14的目标阻值,并通过GAIN_S引脚将R14的阻值调整至目标阻值,进而调节信号放大电路的增益。例如,第四电阻R13为固定阻值124Kohm,可变电阻R14的阻值可以在0~1Mohm之间调节,信号放大电路的增益范围也就可以在1V/V~9V/V之间变化。
主控电路在检测、计算得到目标增益后,可以根据目标增益快速调整可变电阻R14的阻值,进而调整信号放大电路对激励信号的增益。当目标增益大于初始增益时,调大可变电阻R14的阻值,进而调大信号放大电路对激励信号的 增益;当目标增益小于初始增益时,减小可变电阻R14的阻值,进而减小信号放大电路对激励信号的增益。本实施例通过调节可变电阻R14的阻值来调节信号放大电路对激励信号的增益,增益调节简单迅速。
在一实施例中,信号放大电路包括:
第一放大电路,该第一放大电路的输入端为信号放大电路的输入端;第一放大电路用于对接收到的激励信号进行一级放大;
第二放大电路,该第二放大电路的输入端与第一放大电路的输出端连接,第二放大电路的输出端为信号放大电路的输出端,第二放大电路的受控端与处理电路23连接;第二放大电路用于对第一放大电路输出的激励信号进行二级放大;
处理电路23用于根据变化比例系数调整第二放大电路的增益。
本实施例中,第一放大电路包括第一放大器Q1,第一放大器Q1可以选用仪表放大器或者功率放大器。第二放大电路包括第二放大器Q2,第二放大器Q2可以选用仪表放大器或者功率放大器。第一放大电路的增益固定,第二放大电路的增益可调。例如,第一放大电路固定增益100V/V,第二放大电路的增益在1V/V~9V/V之间可调,信号放大电路的增益范围就在100V/V~900V/V之间可调。
本实施例通过第一放大电路和第二放大电路对接收到的激励信号进行两级放大,提高对激励信号的增益。通过调节第二放大电路的增益来调节信号放大电路的总增益,不需要对第一放大电路的增益也进行调整,增益调整更加简单方便。
在一实施例中,接收电极10的数量至少为两个;阻抗检测电路21还用于测量两个接收电极10之间的皮肤阻抗,得到用户的当前皮肤阻抗。
本实施例中,阻抗检测电路21通过与两个接收电极10和人体皮肤形成的回路就可以完成对人体皮肤阻抗的检测。不需要发射可穿戴设备参与,检测更加方便快捷。且接收电极10设置于可穿戴设备上,两个接收电极10之间的距离是固定不变的,不会产生位移而影响阻抗检测结果,进而保证计算当前皮肤阻抗与初始皮肤阻抗得到的变化比例系数更加准确。
在一实施例中,接收穿戴设备控制电路20还包括:
开关电路24,该开关电路24的受控端与处理电路23连接,开关电路24的输入端与接收电极10电连接,开关电路24的第一输出端与阻抗检测电路21的 检测端连接,开关电路24的第二输出端与信号放大电路的输入端连接。
在进行人体皮肤阻抗检测时,处理电路23控制开关电路24的输入端与第一输出端连接;在未进行人体皮肤阻抗检测或者完成人体皮肤阻抗检测时,处理电路23控制开关电路24的输入端与第二输出端连接。
本实施例中,参照图7,开关电路24可以是集成于阻抗检测电路21内的开关矩阵。在进行人体皮肤阻抗检测时,处理电路23控制开关矩阵断开与接收电极10信号放大电路的连接,接通接收电极10与阻抗检测电路21的连接,实现阻抗检测;在未进行人体皮肤阻抗检测或者完成人体皮肤阻抗检测时,开关矩阵切换接收电极10与信号放大电路连接,以对接收到的激励信号进行放大并输出。或者,开关电路24也可以是外部搭接的硬件电路,例如三极管、MOS管等。
参照图5,在一实施例中,开关电路24为集成于阻抗检测电路21内的开关矩阵。接收穿戴设备控制电路20还包括第一电阻R15、第二电阻R16、第三电阻R17、第一电容C7和第二电容C8。接收电极10的数量为两个,第一电容的第一端和第二电阻R16的输入端与一接收电极10连接,第二电容的一端和第三电阻的输入端与另一接收电极10连接。AFE2脚和AFE3脚与信号放大电路的输入端连接。
在进行人体皮肤阻抗检测时,处理电路23控制开关电路24断开RE0脚与AFE2脚之间的通路,断开AIN0脚与AFE3脚之间的通路,以断开接收电极10与信号放大电路之间的通路;并控制开关电路24将CE0脚和AIN3脚与阻抗检测电路21连接,以进行阻抗检测。
在未进行人体皮肤阻抗检测或者完成人体皮肤阻抗检测时,处理电路23控制开关电路24导通RE0脚与AFE2脚之间的通路,导通AIN0脚与AFE3脚之间的通路,以接通接收电极10与信号放大电路之间的通路;并控制开关电路24断开CE0脚和AIN3脚与阻抗检测电路21连接。
本实施例通过开关电路24切换接收电极10与阻抗检测电路21和信号放大电路之间的连接,在进行阻抗检测时将接收电极10与阻抗检测电路21连接,并断开与信号放大电路的连接,保证进行阻抗检测时不会被激励信号干扰;在未进行人体皮肤阻抗检测或者完成人体皮肤阻抗检测时,将接收电极10与信号放大电路连接,并断开与阻抗检测电路21的连接,保证接收激励信号时不会被阻抗检测电路21的信号干扰。
在一实施例中,可穿戴设备控制电路20还包括信号采样电路;
信号采样电路的输入端与信号放大电路的输出端连接,信号采样电路的输出端与处理电路23连接;
信号采样电路用于采集信号放大电路输出的激励信号;
处理电路23还用于提取预设时长内信号采样电路采集的多个激励信号的特征值,并计算多个特征值的平均值,以得到用户当前点击位置特征值;以及根据点击位置特征值确定点击位置。
本实施例中,信号采样电路按照预设采样率对信号放大电路输出的激励信号进行采样。为了保证特征值的连续性,处理电路23采用设置时间窗和增量窗的方式提取特征值,并计算预设时长内的多个特征值的平均值,得到用户当前点击位置特征值并输出至上层设备。上层设备将点击位置特征值与多个表征不同点击位置的位置标准特征值比对进行匹配,并根据匹配结果确定与点击位置特征值最匹配的位置标准特征值对应的位置为用户当前点击位置。
本实施例中,表征不同点击位置的位置标准特征值可以是出厂前设定的。或者,也可以采集用户首次佩戴时,点击不同点击位置可穿戴设备输出的激励信号的幅值作为位置标准特征值。因为每个人的皮肤状态不一样,因此不同的用户使用佩戴时根据用户自身的皮肤状态设定初始皮肤阻抗和位置标准特征值。用户首次佩戴时进行初始值采集,后续若不更换使用者,则不需要再进行采集,若更换使用者,则需要再重新进行初始值采集。
例如,参照图8,信号采样电路用3.2kHZ的采样率对接收到的激励信号进行采样。将采样数据中每30个采样点分为一个时间窗,以20个采样点为步进,即相邻两个时间窗中,第一个时间窗滑动20个采样点成为第二个时间窗。比如第一个时间窗是第1-30个采样点,第二个时间窗就是第21-50个采样点,两个时间窗中间有10个采样点的重叠,重叠部分即为增量窗。处理电路23提取预设时长内每个时间窗里的所有采样点的幅值的最大值fMAX,并计算所有最大值fMAX的平均值,得到点击位置特征值。最大值fMAX是信号特征值的一种,是每个时间窗里所有采样点绝对值的最大值。除此之外,还可以提取平均绝对值作为特征值。
本实施例通过提取激励信号的特征值,并计算其平均值得到的点击位置特征值可以代表当前时间激励信号的幅值,避免了点击位置特征值受到信号波动的干扰而过大或者过小,保证位置识别的准确性。
参照图9,本发明还提供一种信号处理方法,应用于上述的可穿戴设备,可穿戴设备包括接收电极;信号处理方法包括:
S100:通过接收电极获取用户当前皮肤阻抗,并获取用户皮肤阻抗与激励信号的增益之间的函数关系,以根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系,调整对激励信号的增益;以及,
S200:在接收到激励信号时,根据调整后的增益对激励信号进行放大处理,以确定用户当前点击位置。
本实施例中,发射穿戴设备具有在发射穿戴设备被穿戴至用户时与用户皮肤接触的发射电极,激励信号通过发射电极加载到皮肤表面,经人体皮肤传导至可穿戴设备的接收电极。接收电极接收到皮肤表面的激励信号,经过可穿戴设备控制电路的放大、模数转换等处理,将模拟的激励信号转化为可被机器识别的数字信号,传递给上层设备中,将转化后的数字信号的电压值与多个表征不同点击位置的位置标准特征值对比进行匹配,并根据匹配结果确定与接收电极采集到的激励信号最匹配的位置标准特征值对应的位置为用户当前点击位置。
需要进行点击操作时,穿戴有发射穿戴设备的人体部位在穿戴有可穿戴设备的人体部位上进行点击动作。接收电极采集到的激励信号在不同位置上波形变化规律基本一致,表现出来的都是点击动作,所以仅靠动作识别来区分不同的点击位置有困难。而点击不同位置时接收电极与发射可穿戴设备之间电阻大小不同,在接收端采集到的激励信号波形的幅值不同,经过可穿戴设备控制电路的放大、模数转换等处理后输出至上层设备的激励信号的幅值也不同。因此可以通过将可穿戴设备输出的激励信号的幅值与多个表征不同点击位置的位置标准特征值比对进行匹配,来确定当前点击位置。其中,发射穿戴设备和/可穿戴设备可以是手表、手环或者戒指等,在此不作限制。本实施例以手表为例进行说明。
例如,在AR/VR应用中,在穿戴有可穿戴设备的手的某个部位(这里就以左手掌心为例),出现选择菜单,穿戴有发射穿戴设备的右手在菜单上就行点击选择等操作。左手手掌心可以划分为表征不同功能模块的点击区域,本实施例中定义3个区域(A、B和C),如图1所示。
当左右手接触时,发射电极和接收电极之间形成导电回路,如图1中虚线 所示。当右手分别点击A、B、C 3个位置时,由于路径长度不一样,导电回路电阻也不一样。在激励电压固定不变的情况下,路径越长,电阻越大,接收电极接收到的激励信号幅值就越小,经放大、模数转换等处理后输出的激励信号的幅值也越小;路径越短,电阻越小,相应的接收电极接收到的激励信号幅值就越大,经放大、模数转换等处理后输出的激励信号的幅值也越大。本实施例中发射电极-A-接收电极之间电阻定义为RA1,发射电极-B-接收电极之间电阻定义为RB1,发射电极-C-接收电极之间电阻定义为RC1,RA1<RB1<RC1,相应的采集到的激励信号幅值VA1>VB1>VC1,波形如图2所示。图2为激励电压、激励频率、皮肤电阻都不变的情况下,室温正常皮肤状态下分别点击A、B、C三个位置采集到的激励信号幅值波形,此时通过接收电极获取用户当前皮肤阻抗为3.2MΩ。
但是实际上人的皮肤电阻是会随着皮肤表面的变化而变化的,比如皮肤表面出汗,皮肤变得潮湿,皮肤电阻就会变小。皮肤电阻变化了,接收电极采集到的激励信号幅值VA1、VB1、VC1也会变化。
可穿戴设备输出的激励信号的幅值与皮肤阻抗和可穿戴设备控制电路对激励信号的增益之间的关系为:
Vemg=(V激励电压/Z)*R接收电路*Gain,
其中,Vemg为可穿戴设备输出的激励信号的幅值,即VA1、VA2、VA3;
V为发射可穿戴设备加载的激励电压,为固定值;
Z为发射电极和接收电极之间的皮肤阻抗,即RA1、RB1、RC1;
R为可穿戴设备接收电路部分的阻值,可以看做是固定值;
Gain为可穿戴设备控制电路对激励信号的增益。
在V激励电压、R接收电路和可穿戴设备控制电路对激励信号的增益Gai不变的情况下,可穿戴设备输出的激励信号的幅值Vemg的变化与皮肤阻抗Z的变化是反向线性关系,即皮肤阻抗越小,可穿戴设备输出的激励信号的幅值越大;皮肤阻抗越大,可穿戴设备输出的激励信号的幅值越小。
图3为激励电压和增益不变,皮肤表面潮湿的情况下分别点击A、B、C三个位置采集到的激励信号幅值波形,此时通过接收电极获取用户当前皮肤阻抗为2.2MΩ。比较图2和图3,可以看到皮肤阻抗变小,相应的采集到的激励信号幅值变大,传递给上层设备中的激励信号与多个表征不同点击位置的位置标准信号对比进行匹配时,可能会匹配到表征的点击位置与用户实际的点击位置 不同的位置标准信号,进而导致判断错误。
为了保证点击位置识别的准确性,需要尽可能减小皮肤阻抗变化时可穿戴设备输出的激励信号的幅值与正常皮肤状态下可穿戴设备输出的激励信号的幅值之间的差异。本发明通过接收电极获取用户当前皮肤阻抗,以得到皮肤阻抗的变化规律。根据皮肤阻抗的变化规律和用户皮肤阻抗与激励信号的增益之间的函数关系调整对激励信号的增益,使得可穿戴设备输出至上层设备的激励信号的幅值跟随人体皮肤阻抗变化。不管用户皮肤阻抗如何变化,保证可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异始终不超过预设幅值范围。
具体地,接收电极的数量至少为两个,可穿戴设备控制电路测量两个接收电极之间的人体皮肤阻抗,得到用户当前皮肤阻抗。人体是一个导体,一小块皮肤和整个人体皮肤变化相同。因此,这一小段皮肤的阻抗变化规律可以代表整个手臂皮肤的阻抗变化规律。
根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系Vemg=(V激励电压/Z)*R接收电路*Gain可知,在V激励电压和R接收电路不变的情况下,当发射电极和接收电极之间的皮肤阻抗Z变化时,要保证可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异始终不超过预设幅值范围,则当人体阻抗变化时,需要相应调整可穿戴设备控制电路对激励信号的增益Gain。发射电极和接收电极之间的皮肤阻抗Z与可穿戴设备控制电路对激励信号的增益Gain成反向线性关系。当皮肤阻抗Z变大时,需要相应减小可穿戴设备控制电路对激励信号的增益Gain;当皮肤阻抗Z变小时,需要相应增大可穿戴设备控制电路对激励信号的增益Gain。具体地,根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系可以确定目标增益为:
G1=G0*Z1/Z0;其中,G1为目标增益,G0为初始增益,Z1为当前皮肤阻抗,Z0为初始皮肤阻抗。
可穿戴设备控制电路将对接收到的激励信号的增益调整为目标增益,以在皮肤阻抗变化时跟随皮肤阻抗的变化调整输出至上层设备的激励信号,使得皮肤阻抗变化后输出至上层设备的激励信号与正常皮肤状态下输出至上层设备的激励信号的差异在预设幅值范围内,保证上层设备可以正确识别用户当前的点击位置。
本实施例中,初始皮肤阻抗可以是出厂前设定的。或者,也可以采集用户首次佩戴时的皮肤阻抗作为初始皮肤阻抗。因为每个人的皮肤状态不一样,因此不同的用户使用佩戴时根据用户自身的皮肤状态设定初始皮肤阻抗和位置标准特征值。用户首次佩戴时进行初始值采集,后续若不更换使用者,则不需要再进行采集,若更换使用者,则需要再重新进行初始值采集。
本发明通过获取用户当前皮肤阻抗,根据用户当前皮肤阻抗和初始皮肤阻抗确定用户皮肤阻抗的实际变化。根据用户皮肤阻抗的实际变化相应调整对激励信号的增益,按照调整后的增益对激励信号进行放大处理,使可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异不超过预设幅值范围内,避免输出的激励信号的幅值过大或者过小导致误识别,提高点击位置识别的准确性。
在一实施例中,用户皮肤阻抗与激励信号的增益之间的函数关系具体为:
Vemg=(V激励电压/Z)*R接收电路*Gain;
其中,Vemg为可穿戴设备输出的激励信号的幅值;V激励电压为发射可穿戴设备加载的激励电压;Z为发射电极和接收电极之间的皮肤阻抗;R接收电路为可穿戴设备接收电路部分的阻值;Gain为可穿戴设备控制电路对激励信号的增益。
在V激励电压和R接收电路不变的情况下,要保证可穿戴设备输出的激励信号的幅值与正常皮肤状态下输出的激励信号的幅值差异始终不超过预设幅值范围,则当人体阻抗变化时,需要相应调整可穿戴设备控制电路对激励信号的增益。发射电极和接收电极之间的皮肤阻抗Z与可穿戴设备控制电路对激励信号的增益Gain成反向线性关系。当皮肤阻抗Z变大时,需要相应减小可穿戴设备控制电路对激励信号的增益Gain;当皮肤阻抗Z变小时,需要相应增大可穿戴设备控制电路对激励信号的增益Gain。如此,使得皮肤阻抗变化后输出至上层设备的激励信号的幅值始终跟随人体阻抗变化,减小与正常皮肤状态下输出至上层设备的激励信号的差异,保证上层设备可以正确识别用户当前的点击位置。
在一实施例中,根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系,调整对激励信号的增益的步骤具体包括:
根据用户当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系 确定目标增益:
G1=G0*Z1/Z0;其中,G1为目标增益,G0为初始增益,Z1为当前皮肤阻抗,Z0为初始皮肤阻抗;
将可穿戴设备的信号放大电路的增益调整为目标增益。
计算初始皮肤阻抗与当前皮肤阻抗的比值得到皮肤阻抗的变化规律:Z11/Z12=τ,其中,τ为皮肤阻抗的变化比例系数。联系上述函数关系Vemg=(V激励电压/Z)*R接收电路*100*Gain可以得到当前皮肤阻抗及用户皮肤阻抗与激励信号的增益之间的函数关系为:
Vemg0/Vemg1=(Z0/Z1)*(Gain0/Gain1)。其中,Vemg0为初始时刻接收电极采集到的激励信号的幅值,Vemg1为当前时刻接收电极采集到的激励信号的幅值,Gain0为初始增益,Gain1为目标增益。
要保证当前时刻接收电极采集到的激励信号的幅值与初始时刻接收电极采集到的激励信号的幅值之间的差异尽可能小,本实施例中可以将Vemg0和Vemg1看做近似相等。即G1=G0*Z1/Z0,将Z11/Z12=τ代入得到目标增益:Gain2=Gain1/τ。
可穿戴设备控制电路根据目标增益调整对接收到的激励信号的增益,以在皮肤阻抗变化时跟随皮肤阻抗的变化调整输出至上层设备的激励信号,使得皮肤阻抗变化后输出至上层设备的激励信号与正常皮肤状态下输出至上层设备的激励信号的差异在预设幅值范围内,保证上层设备可以正确识别用户当前的点击位置。
在一实施例中,信号处理方法还包括:
当用户为首次佩戴时,获取用户的当前皮肤阻抗为用户的初始皮肤阻抗。
本实施例中,用户在佩戴可穿戴设备时,以图像和/或语音的形式输出“是否为首次佩戴”的询问信息,用户可以点击相应的功能区域(例如左手掌心)选择是或否。若用户选择是,则可穿戴设备测量用户的当前皮肤阻抗为用户的初始皮肤阻抗。若用户选择否,则进入功能菜单选项。
下面将结合附图对本发明的原理进行阐述:
参照图8,在一实施例中,信号处理方法具体包括如下步骤:
S1:阻抗检测开始;
阻抗检测可以由用户主动触发,或者接收穿戴设备控制电路间没隔一定时间进行一次阻抗检测。
S2:判断用户是否为首次佩戴;
例如,用户在佩戴可穿戴设备时,以图像和/或语音的形式输出“是否为首次佩戴”的询问信息,用户可以点击相应的功能区域(例如左手掌心)选择是或否。若用户选择是,则可穿戴设备测量用户的当前皮肤阻抗为用户的初始皮肤阻抗。若用户选择否,则进入功能菜单选项。
S21:若用户为首次佩戴,则采集用户当前皮肤阻抗保存为初始皮肤阻抗,采集A,B,C位置的初始值保存为位置标准特征值;
S22:若用户不是首次佩戴,则测量当前皮肤阻抗;
S3:步骤S22之后,判断测量的当前皮肤阻抗与初始皮肤阻抗是否相等;
S31:若当前皮肤阻抗与初始皮肤阻抗不相等,则根据皮肤阻抗的变化比例系数调整电路增益;其中,根据皮肤阻抗的变化比例系数调整电路增益的具体方式可以参照步骤S100和S200,在此不再赘述。
S4:对激励信号用预设采样率(例如3.2kHZ)进行采样;
S5:以预设采样点和预设步进划分采样数据的时间窗;
例如,将采样数据分成每30个点一个时间窗,以30个点为步进,即相邻两个时间窗中,第一个时间窗滑动20个采样点成为第二个时间窗。比如第一个时间窗是第1-30个采样点,第二个时间窗就是第21-50个采样点,两个时间窗中间有10个采样点的重叠,重叠部分即为增量窗。
S6:提取每个时间窗的特征值。并对所有特征值求平均值,确定点击位置特征值;
例如,提取预设时长内每个时间窗里的所有采样点的幅值的最大值fMAX,并计算所有最大值fMAX的平均值,得到点击位置特征值。最大值fMAX是信号特征值的一种,是每个时间窗里所有采样点绝对值的最大值。除此之外,还可以提取平均绝对值作为特征值。
S7:将点击位置特征值分别与A,B,C三个位置的位置标准特征值比对,确定与点击位置特征值最匹配的位置标准特征值;
S8:确定点击位置。
参照图10,本发明还提供一种穿戴系统,包括:
主机100;
上述的可穿戴设备200,可穿戴设备200与主机100电连接或无线连接;可穿戴设备200的可穿戴设备200控制电路根据点击位置输出相应的点击位置信 号至主机100,以使主机100根据点击位置信号生成相应的图像和/或音频。
该可穿戴设备的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本发明穿戴系统中使用了上述可穿戴设备,因此,本发明穿戴系统的实施例包括上述可穿戴设备全部实施例的全部技术方案,且所达到的技术效果也完全相同,在此不再赘述。
在一实施例中,穿戴系统还包括发射穿戴设备300;
发射穿戴设备300具有在发射穿戴设备300被穿戴至用户时与用户皮肤接触的发射电极;
穿戴有发射穿戴设备300的人体部位与穿戴有可穿戴设备200的人体部位接触时,发射穿戴设备300的发射电极、人体皮肤和可穿戴设备200的接收电极形成信号通道;发射穿戴设备300的发射电极发送的激励信号通过信号通道传输至可穿戴设备200的接收电极。
在一实施例中,激励信号产生电路包括:
激励源,该激励源用于产生激励信号;
滤波电路,滤波电路的输入端与激励源的输出端连接;滤波电路用于对激励信号进行滤波;
第三放大电路,第三放大电路的输入端与滤波电路的输出端连接,第三放大电路的输出端与发射电极组电连接,第三放大电路用于对滤波电路输出的激励信号进行放大并输出。
本实施例通过激励源产生特定频率和特定电压的激励信号,通过滤波电路对激励信号进行滤波,通过第三放大电路放大激励信号,使激励信号可以被顺利传导和接收。最后通过发射电极将激励信号加载至人体皮肤,再通过人体皮肤传导至与人体皮肤接触的接收电极,完成激励信号的发射和接收。
以上仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (13)

  1. 一种可穿戴设备,其中,所述可穿戴设备包括:
    接收电极,在所述可穿戴设备被穿戴至用户时,所述接收电极能够与用户皮肤接触,并通过用户皮肤接收发射穿戴设备发送的激励信号;
    穿戴设备控制电路,与所述接收电极电连接,以经所述接收电极接收所述激励信号;其中,
    所述可穿戴设备控制电路用于通过所述接收电极获取用户当前皮肤阻抗,并获取用户皮肤阻抗与激励信号的增益之间的函数关系,以根据所述用户当前皮肤阻抗及所述用户皮肤阻抗与激励信号的增益之间的函数关系,调整对所述激励信号的增益;以及,
    在接收到所述激励信号时,根据调整后的所述增益对所述激励信号进行放大处理,以确定用户当前点击位置。
  2. 如权利要求1所述的可穿戴设备,其中,所述可穿戴设备控制电路包括:
    阻抗检测电路,所述阻抗检测电路的检测端与所述接收电极电连接;所述阻抗检测电路用于检测用户的当前皮肤阻抗;
    处理电路,所述处理电路与所述阻抗检测电路电连接;所述处理电路用于计算所述阻抗检测电路检测到的当前皮肤阻抗和初始皮肤阻抗得到变化比例系数,并根据所述变化比例系数调整对所述激励信号的增益。
  3. 如权利要求2所述的可穿戴设备,其中,所述处理电路包括:
    主控电路,所述主控电路与所述阻抗检测电路电连接;所述主控电路用于计算所述阻抗检测电路检测到的当前皮肤阻抗和初始皮肤阻抗得到变化比例系数;
    信号放大电路,所述信号放大电路的输入端与所述接收电极电连接,所述信号放大电路用于对接收到的激励信号进行放大并输出;
    增益调整电路,所述增益调整电路的输入端与所述主控电路连接,所述增益调整电路的输出端与所述信号放大电路的受控端连接;
    所述主控电路还用于根据所述变化比例系数控制所述增益调整电路调整所述信号放大电路的增益。
  4. 如权利要求3所述的可穿戴设备,其中,所述增益调整电路包括:
    可变电阻,所述可变电阻的输入端与所述信号放大电路的输入端连接,所述可变电阻的输出端与所述信号放大电路的输出端连接,所述可变电阻的受控端与所述主控电路连接;
    所述主控电路用于根据所述变化比例系数调整所述可变电阻的阻值。
  5. 如权利要求2所述的可穿戴设备,其中,所述接收电极的数量为至少两个;所述阻抗检测电路还用于测量两个所述接收电极之间的皮肤阻抗,得到用户的当前皮肤阻抗。
  6. 如权利要求2所述的可穿戴设备,其中,所述接收穿戴设备控制电路还包括:
    开关电路,所述开关电路的受控端与所述处理电路连接,所述开关电路的输入端与所述接收电极电连接,所述开关电路的第一输出端与所述阻抗检测电路的检测端连接,所述开关电路的第二输出端与所述信号放大电路的输入端连接;
    在进行人体皮肤阻抗检测时,所述处理电路控制所述开关电路的输入端与第一输出端连接;在未进行人体皮肤阻抗检测或者完成人体皮肤阻抗检测时,所述处理电路控制所述开关电路的输入端与第二输出端连接。
  7. 如权利要求2所述的可穿戴设备,其中,所述可穿戴设备控制电路还包括信号采样电路;
    所述信号采样电路的输入端与所述信号放大电路的输出端连接,所述信号采样电路的输出端与所述处理电路连接;
    所述信号采样电路用于采集所述信号放大电路输出的激励信号;
    所述处理电路还用于提取预设时长内所述信号采样电路采集的多个激励信号的特征值,并计算多个特征值的平均值,以得到用户当前点击位置特征值;以及根据所述点击位置特征值确定点击位置。
  8. 一种信号处理方法,应用于如权利要求1~7任一项所述的可穿戴设备, 所述可穿戴设备包括接收电极;其中,所述信号处理方法包括:
    通过所述接收电极获取用户当前皮肤阻抗,并获取用户皮肤阻抗与激励信号的增益之间的函数关系,以根据所述用户当前皮肤阻抗及所述用户皮肤阻抗与激励信号的增益之间的函数关系,调整对所述激励信号的增益;以及,
    在接收到所述激励信号时,根据调整后的所述增益对所述激励信号进行放大处理,以确定用户当前点击位置。
  9. 如权利要求8所述的信号处理方法,其中,所述用户皮肤阻抗与激励信号的增益之间的函数关系具体为:
    Vemg=(V激励电压/Z)*R接收电路*Gain;
    其中,Vemg为可穿戴设备输出的激励信号的幅值;V激励电压为发射可穿戴设备加载的激励电压;Z为发射电极和接收电极之间的皮肤阻抗;R接收电路为可穿戴设备接收电路部分的阻值;Gain为可穿戴设备控制电路对激励信号的增益。
  10. 如权利要求8所述的信号处理方法,其中,所述根据所述用户当前皮肤阻抗及所述用户皮肤阻抗与激励信号的增益之间的函数关系,调整对所述激励信号的增益的步骤具体包括:
    根据所述用户当前皮肤阻抗及所述用户皮肤阻抗与激励信号的增益之间的函数关系确定目标增益:
    G1=G0*Z1/Z0;其中,G1为目标增益,G0为初始增益,Z1为当前皮肤阻抗,Z0为初始皮肤阻抗;
    将所述可穿戴设备的信号放大电路的增益调整为目标增益。
  11. 如权利要求8所述的信号处理方法,其中,所述信号处理方法还包括:
    当用户为首次佩戴时,获取用户的当前皮肤阻抗为用户的初始皮肤阻抗。
  12. 一种穿戴系统,其中,所述穿戴系统包括:
    主机;
    如权利要求1~7任一项所述的可穿戴设备,所述可穿戴设备与所述主机电连接或无线连接;所述可穿戴设备的可穿戴设备控制电路根据所述点击位置输 出相应的点击位置信号至所述主机,以使所述主机根据所述点击位置信号生成相应的图像和/或音频。
  13. 如权利要求12所述的穿戴系统,其中,所述穿戴系统还包括发射穿戴设备;
    所述发射穿戴设备具有在所述发射穿戴设备被穿戴至用户时与用户皮肤接触的发射电极;
    穿戴有所述发射穿戴设备的人体部位与穿戴有所述可穿戴设备的人体部位接触时,所述发射穿戴设备的发射电极、人体皮肤和所述可穿戴设备的接收电极形成信号通道;所述发射穿戴设备的发射电极发送的激励信号通过所述信号通道传输至所述可穿戴设备的接收电极。
PCT/CN2023/106290 2022-07-28 2023-07-07 可穿戴设备、信号处理方法和穿戴系统 WO2024022081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210903464.8 2022-07-28
CN202210903464.8A CN115270877A (zh) 2022-07-28 2022-07-28 可穿戴设备、信号处理方法和穿戴系统

Publications (1)

Publication Number Publication Date
WO2024022081A1 true WO2024022081A1 (zh) 2024-02-01

Family

ID=83770876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106290 WO2024022081A1 (zh) 2022-07-28 2023-07-07 可穿戴设备、信号处理方法和穿戴系统

Country Status (2)

Country Link
CN (1) CN115270877A (zh)
WO (1) WO2024022081A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115270877A (zh) * 2022-07-28 2022-11-01 歌尔股份有限公司 可穿戴设备、信号处理方法和穿戴系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379056A (zh) * 2012-03-27 2015-02-25 B10尼克斯有限公司 用于肌肉活动的采集和分析的系统及其操作方法
CN104939825A (zh) * 2015-06-24 2015-09-30 中国医学科学院生物医学工程研究所 可穿戴式电阻抗断层成像胃动力信息提取装置及提取方法
US20180035910A1 (en) * 2016-08-08 2018-02-08 Analog Devices Global Systems and methods of monitoring electrodermal activity (eda) using an ac signal and discrete fourier transform (dft) analysis
CN110974210A (zh) * 2019-12-09 2020-04-10 武汉联影智融医疗科技有限公司 生理信号采集通路阻抗校正方法及装置
CN114661161A (zh) * 2022-03-30 2022-06-24 歌尔股份有限公司 手势交互方法、装置、系统、可穿戴设备及存储介质
CN115270877A (zh) * 2022-07-28 2022-11-01 歌尔股份有限公司 可穿戴设备、信号处理方法和穿戴系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379056A (zh) * 2012-03-27 2015-02-25 B10尼克斯有限公司 用于肌肉活动的采集和分析的系统及其操作方法
CN104939825A (zh) * 2015-06-24 2015-09-30 中国医学科学院生物医学工程研究所 可穿戴式电阻抗断层成像胃动力信息提取装置及提取方法
US20180035910A1 (en) * 2016-08-08 2018-02-08 Analog Devices Global Systems and methods of monitoring electrodermal activity (eda) using an ac signal and discrete fourier transform (dft) analysis
CN110974210A (zh) * 2019-12-09 2020-04-10 武汉联影智融医疗科技有限公司 生理信号采集通路阻抗校正方法及装置
CN114661161A (zh) * 2022-03-30 2022-06-24 歌尔股份有限公司 手势交互方法、装置、系统、可穿戴设备及存储介质
CN115270877A (zh) * 2022-07-28 2022-11-01 歌尔股份有限公司 可穿戴设备、信号处理方法和穿戴系统

Also Published As

Publication number Publication date
CN115270877A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024022081A1 (zh) 可穿戴设备、信号处理方法和穿戴系统
WO2016210441A1 (en) System for wearable, low-cost electrical impedance tomography for non-invasive gesture recognition
CN104510459B (zh) 测量脉搏率的装置及方法
CN111973151A (zh) 一种基于可穿戴智能绷带的传染病监测系统及方法
KR20160144620A (ko) 생체신호 계측모듈, 웨어러블 근전도 밴드 및 생체계측 모바일 장치
McCool et al. Lower arm electromyography (EMG) activity detection using local binary patterns
JP2018516471A (ja) 指紋検出回路、指紋検出方法及び電子機器
TWI575464B (zh) 用於基於指紋的導移的方法及系統
TW201218049A (en) employing measurement of electric field variation to identify touch control input
CN113679391B (zh) 心电基线漂移滤波装置、心电信号采样系统及采样方法
KR20130103259A (ko) 생체 신호의 피크를 검출하는 임계값 제어 방법 및 장치.
CN109100070A (zh) 一种传感器及检测触觉信号的方法
CN106326672A (zh) 入睡检测方法与系统
CN203898296U (zh) 新型心电检测装置
US11275479B2 (en) Frequency-based ratiometric feature extraction device for user authentication
WO2022091195A1 (ja) Rri計測装置、rri計測方法およびrri計測プログラム
TW201901388A (zh) 觸控處理裝置、方法與系統
CN208721296U (zh) 一种传感器
US20040005024A1 (en) Apparatus and method for measuring current flow in an animal or human body
US20230380770A1 (en) Multi-channel array sensor for spatiotemporal signal tracking
JPWO2019082763A1 (ja) 土壌センサ及び土壌計測方法
EP3539466B1 (en) Snr of intracardiac signals
CN214284874U (zh) 基于人体传输的体域网同步信号处理电路和体域网传感器
US20220257165A1 (en) Step Counting System and Method
KR20210131854A (ko) 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845294

Country of ref document: EP

Kind code of ref document: A1