WO2024021609A1 - 一种毫米波收发装置及通信系统 - Google Patents

一种毫米波收发装置及通信系统 Download PDF

Info

Publication number
WO2024021609A1
WO2024021609A1 PCT/CN2023/079866 CN2023079866W WO2024021609A1 WO 2024021609 A1 WO2024021609 A1 WO 2024021609A1 CN 2023079866 W CN2023079866 W CN 2023079866W WO 2024021609 A1 WO2024021609 A1 WO 2024021609A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
millimeter wave
sub
unit
Prior art date
Application number
PCT/CN2023/079866
Other languages
English (en)
French (fr)
Inventor
余苏胜
王雪宏
田之继
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024021609A1 publication Critical patent/WO2024021609A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a millimeter wave transceiver device and a communication system.
  • Millimeter wave communication systems usually include network management devices, baseband processing devices and millimeter wave transceiver devices.
  • the millimeter wave base station functions are completed through the baseband processing device and millimeter wave transceiver devices.
  • millimeter wave transceiver devices are usually integrated AAU (Active Antenna Unit, active antenna unit) architecture.
  • AAU usually includes an integrated baseband processing unit, digital IF processing unit, nTnR (n Transmitter and Receiver, n transceiver channel) Transceiver unit and very large-scale antenna array.
  • the present disclosure provides a millimeter wave transceiver device and a communication system.
  • the present disclosure provides a millimeter wave transceiver device, including: a digital intermediate frequency module, at least two millimeter wave transmission modules, and at least two millimeter wave remote modules; wherein, the digital intermediate frequency module and at least two millimeter wave transmission modules Connection, at least two millimeter wave transmission modules are connected in a one-to-one correspondence with at least two millimeter wave remote modules; the digital intermediate frequency module is used for sending downlink RF signals and receiving uplink RF signals; the millimeter wave remote module is used for Radiation transmits downlink millimeter wave signals and radiates uplink millimeter wave signals.
  • the transmission module is used for the transmission of downlink radio frequency signals and uplink radio frequency reception signals between the digital intermediate frequency module and the millimeter wave remote module.
  • the present disclosure provides a millimeter wave communication system, including a network management device, a baseband processing device, and a network management device connected in sequence. processing device and the millimeter wave transceiver device as described above.
  • Figure 1 is a schematic structural diagram of a millimeter wave transceiver device provided by the present disclosure
  • Figure 2 is a schematic structural diagram of a digital intermediate frequency module provided by the present disclosure
  • Figure 3 is a schematic structural diagram of a first control sub-module provided by the present disclosure
  • Figure 4 is a schematic structural diagram of a millimeter wave transmission module provided by the present disclosure.
  • Figure 5 is a schematic structural diagram of a millimeter wave remote module provided by the present disclosure.
  • Figure 6 is a schematic structural diagram of a transceiver link sub-module provided by the present disclosure.
  • Figure 7 is a schematic diagram of the downlink process of a millimeter wave transceiver device provided by the present disclosure
  • Figure 8 is a schematic diagram of the uplink process of a millimeter wave transceiver device provided by the present disclosure
  • Figure 9 is a schematic structural diagram of a millimeter wave communication system provided by the present disclosure.
  • 20. Millimeter wave transmission module 21. First signal processing sub-module; 211. First multiplexing and separation unit; 2111. First signal multiplexing sub-unit; 2112. First signal separation sub-unit; 212. First analog light Transceiver unit; 2121, first laser transmitting subunit; 2122, first laser receiving subunit; 2123, first optical combining subunit; 2124, first optical splitting subunit; 22, optical fiber submodule; 23, second signal processing Submodule; 231, second multiplexing and separation unit; 2311, second signal multiplexing subunit; 2312, second signal separation subunit; 232, second analog optical transceiver unit; 2321, second laser emission subunit; 2322 , the second laser receiving subunit; 2323, the second optical combining subunit; 2324, the second optical splitting subunit;
  • Millimeter wave remote module 31. Transceiver link sub-module; 311. Frequency conversion unit; 3111. Up-conversion sub-unit; 3112. Down-conversion sub-unit; 312. Front-end unit; 3121. Power amplifier sub-unit; 3122. Low Noise amplification sub-unit; 3123, filter sub-unit; 313, wave control unit; 314, array antenna unit; 32, second control sub-module; 33, second power sub-module.
  • the millimeter wave transceiver device 100 includes a digital intermediate frequency module 10 , at least two millimeter wave transmission modules 20 and at least two millimeter wave remote modules 30 .
  • the digital intermediate frequency module 10 is connected to at least two millimeter wave transmission modules 20, and the at least two millimeter wave transmission modules 20 are connected to at least two millimeter wave remote modules 30 in a one-to-one correspondence, that is, the number of millimeter wave transmission modules 20 is equal to the number of millimeter wave transmission modules 20.
  • the number of wave remote modules 30 is the same, which is M (M ⁇ 2), and the number of transceiver channels of the millimeter wave remote module 30 is N (N ⁇ 2).
  • the digital intermediate frequency module 10 is used for sending downlink radio frequency signals and receiving uplink radio frequency signals.
  • the digital intermediate frequency module 10 is a convergence processing module of at least two millimeter wave remote modules 30 .
  • the digital intermediate frequency module 10 supports signal processing of M*N transceiver channels.
  • the digital intermediate frequency module 10 interacts with the baseband processing device 200 performs signal interaction, and when receiving the downlink baseband signal sent by the baseband processing device 200, performs mid-RF transmission processing on the downlink baseband signal to obtain a downlink RF signal for signal transmission with each millimeter wave remote module 30.
  • the device 200 is used to realize the signal transceiver of the millimeter wave transceiver device.
  • the digital IF module 10 is provided with an eCPRI (evolved Common Public Radio Interface) interface.
  • the digital IF module 10 interacts with the baseband processing device 200 through the eCPRI interface to obtain downlink baseband signals and upload uplink baseband signals.
  • the downlink baseband signal includes a downlink baseband transmitting service signal, a clock reference signal and a control instruction signal.
  • the uplink baseband signal includes an uplink baseband receiving service signal and a response signal.
  • the downlink radio frequency transmitting signal corresponding to each millimeter wave remote module 30 The signals include at least two first service signals and first control signals (that is, including a clock reference signal, a millimeter-wave local oscillator signal, and a control instruction signal).
  • the uplink radio frequency reception signal corresponding to each millimeter-wave remote module 30 includes at least two a second service signal and a second control signal (i.e., response response signal).
  • the digital intermediate frequency module 10 includes a baseband processing sub-module 11, an intermediate frequency processing sub-module 12 and a first control sub-module 13 connected to the baseband processing sub-module 11, wherein the baseband processing sub-module 11 and the baseband processing sub-module 12 are connected to the baseband processing sub-module 11.
  • the processing device 200 is connected, and both the intermediate frequency processing sub-module 12 and the first control sub-module 13 are connected to at least two millimeter wave transmission modules 20 .
  • the baseband processing sub-module 11 is used to perform baseband signal exchange with the baseband processing device 200. Mutually, to receive the downlink baseband signal sent by the baseband processing device 200 and send the uplink baseband signal to the baseband processing device 200 .
  • the intermediate frequency processing sub-module 12 is used to send at least two first service signals obtained by processing the downlink baseband signals to the millimeter wave transmission module 20 and process at least two second service signals transmitted by the millimeter wave transmission module 20 to generate uplink baseband signals.
  • the first control sub-module 13 is used to send the first control signal obtained according to the downlink baseband signal processing to the millimeter wave transmission module 20 and receive the second control signal transmitted by the millimeter wave transmission module 20.
  • the second control signal is the first control signal. response signal.
  • the second service signal and the second control signal are sent by the millimeter wave remote module 30 to the millimeter wave transmission module 20 .
  • the baseband processing sub-module 11 is provided with an eCPRI interface, and the baseband processing sub-module 11 performs baseband signal interaction with the baseband processing device 200 through the eCPRI interface.
  • the baseband processing sub-module 11 receives the downlink baseband signal sent by the baseband processing device 200, it sends the downlink baseband service signal to the intermediate frequency processing sub-module 12, and sends the clock reference signal and the control instruction signal to the first control sub-module. 13.
  • the intermediate frequency sub-module processes the downlink baseband service signals (digital frequency conversion, digital-to-analog conversion, amplification, etc.) to obtain at least two first service signals corresponding to each millimeter wave remote module 30 .
  • the number of first service signals is consistent with the number of transceiver channels of the millimeter wave remote module 30 .
  • the number of first service signals is two.
  • the intermediate frequency processing sub-module 12 receives at least two second service signals corresponding to each millimeter wave remote module 30 transmitted by the millimeter wave transmission module 20, it generates an uplink baseband reception service signal from the at least two second service signals, and The uplink baseband received service signal is transmitted to the baseband processing sub-module 11, so that the baseband processing sub-module 11 and the baseband processing device 200 perform uplink baseband signal interaction.
  • the number of the second service signals is related to the number of the millimeter wave remote module 30.
  • the number of sending and receiving channels is the same.
  • the acquisition of the second service signal and the second control signal will be described below, and will not be described in detail here in this embodiment.
  • the first control sub-module 13 receives the clock reference signal and the control instruction signal, it processes the clock reference signal to obtain the radio frequency reference signal and millimeter wave local oscillator signal required for the operation of the millimeter wave remote module 30 .
  • the radio frequency reference signal, the millimeter wave local oscillator signal and the control command signal may be composed into the first control signal.
  • the clock reference signal is used to achieve time synchronization between the digital intermediate frequency module 10 and the millimeter wave remote module 30 .
  • the first control sub-module 13 in this embodiment includes a first main control unit 131 and a clock local oscillator unit 132.
  • the first main control unit 131 and the clock local oscillator unit 132 both Connected to the millimeter wave transmission module 20, the first main control unit 131 and the clock local oscillator unit 132 are also connected to the baseband processing sub-module 11.
  • the clock local oscillator unit 132 is used to receive the clock reference signal sent by the baseband processing sub-module 11.
  • the clock reference signal is processed to generate the clock and synchronization signals required for the module's own operation, and each millimeter wave remote module is obtained 30 runs the required radio frequency reference signal and millimeter wave local oscillator signal, and sends the radio frequency reference signal and millimeter wave local oscillator signal to the millimeter wave transmission module 20 .
  • the first main control unit 131 is configured to receive the control instruction signal sent by the baseband processing sub-module 11 and receive the second control signal sent by the millimeter wave transmission module 20 .
  • the first main control unit 131 includes a first main control sub-unit 1311, at least two first modulation sub-units 1312 and at least two first demodulation sub-units 1313.
  • the first main control sub-unit 1311 and at least two first modulation sub-units 1313 The sub-unit 1312 is connected, and the first main control sub-unit 1311 is also connected to at least two first demodulation sub-units 1313. Among them, the number of the first modulation sub-unit 1312 and the first demodulation sub-unit 1313 are consistent, and both are consistent with the number of millimeter wave remote modules 30 to which the digital intermediate frequency module 10 is connected.
  • the first modulation subunit 1312 is an OOK modulation subunit
  • the first demodulation subunit 1313 is an OOK demodulation subunit.
  • the first main control subunit 1311 When the first main control subunit 1311 receives the control instruction signal, it performs corresponding control operations and The control command signal related to the millimeter wave remote module 30 is sent to the first modulation subunit 1312 to realize OOK modulation of the digital control command signal to the intermediate frequency OOK control signal.
  • the first modulation subunit 1312 modulates the control command signal. sent to the millimeter wave transmission module 20.
  • the first demodulation subunit 1313 receives the second control signal sent by the millimeter wave transmission module 20, it performs OOK demodulation processing on the second control signal, and sends the processed second control signal to the first main control subunit. 1311 performs control response response confirmation.
  • the digital intermediate frequency module 10 further includes a first power sub-module 14 .
  • the first power supply sub-module 14 is used to supply power to the baseband processing sub-module 11, the intermediate frequency processing sub-module 12 and the first control sub-module 13.
  • the millimeter wave transmission module 20 is used for the transmission of downlink radio frequency signals and uplink radio frequency reception signals between the digital intermediate frequency module 10 and the millimeter wave remote module 30 .
  • each millimeter wave transmission module 20 includes a first signal processing sub-module 21 , an optical fiber sub-module 22 and a second signal processing sub-module 23 connected in sequence.
  • the first signal processing sub-module 21 is also connected to the digital intermediate frequency module 10 , in an exemplary embodiment, the first signal processing sub-module 21 is also connected to the clock local oscillator unit 132, the intermediate frequency processing sub-module 12, the first modulation sub-unit 1312 and the first demodulation sub-unit 1313.
  • the second signal processing The sub-module 23 is also connected to the millimeter wave remote module 30 .
  • the first signal processing sub-module 21 is used to convert the downlink radio frequency transmission signal into a first optical signal and the second optical signal into an uplink radio frequency reception signal;
  • the second signal processing sub-module 23 is used to convert the uplink radio frequency reception signal into The second optical signal and the first optical signal are converted into downlink radio frequency signals;
  • the optical fiber sub-module 22 is used for the first optical signal and the second optical signal between the first signal processing sub-module 21 and the second signal processing sub-module 23 transmission.
  • the transmitting side converts the downlink radio frequency transmission signal or the uplink radio frequency reception signal into a corresponding optical signal, and transmits it on the optical fiber.
  • Phase transmission is performed on the sub-module 22, and the optical signal is restored to a downlink radio frequency signal or an uplink radio frequency receive signal on the receiving side, thereby realizing the optical signal based on MOF technology. Long-distance transmission of millimeter wave signals over fiber optic links.
  • each millimeter wave transmission module 20 is connected to a millimeter wave remote module 30, the star structure in which the digital intermediate frequency module 10 and multiple millimeter wave remote modules 30 are interconnected through optical fiber is more conducive to multiple millimeter wave remote ends.
  • the cooperation between the ultra-large-scale antenna arrays of the module 30 forms a distributed millimeter-wave ultra-large-scale MIMO effect, which greatly improves the wireless channel synergy gain of millimeter-wave communications and effectively overcomes the shortcomings of large millimeter-wave insertion loss and poor penetration.
  • a first signal processing sub-module 21 includes a connected first multiplexing and separation unit 211 and a first analog optical transceiver.
  • Unit 212, the first multiplexing and separation unit 211 is also connected to the digital intermediate frequency module 10.
  • the first multiplexing and separation unit 211 is also connected to the clock local oscillator unit 132, the intermediate frequency processing sub-module 12, the first modulation The subunit 1312 is connected to the first demodulation subunit 1313.
  • the first analog optical transceiver unit 212 is also connected to the optical fiber sub-module 22 .
  • the first multiplexing and separating unit 211 is used to multiplex at least two first service signals and first control signals into at least two downlink analog multiplexed signals and separate at least two uplink analog multiplexed signals into at least two a second service signal and a second control signal.
  • the first analog optical transceiver unit 212 is configured to convert at least two downlink analog multiplexed signals into first optical signals and convert the second optical signal into at least two uplink analog multiplexed signals. Converting the second optical signal into an uplink analog multiplexed signal will be described below, and will not be described in detail here in this embodiment. It should be noted that the number of first service signals is consistent with the number of downlink analog multiplexed signals, and similarly, the number of second service signals is consistent with the number of uplink analog multiplexed signals.
  • a first multiplexing and separation unit 211 includes at least two first signal multiplexing sub-units 2111 and at least two first signal separation sub-units 2112.
  • the first signal multiplexing sub-unit 2112 The number of sub-units 2111 and the first signal separation sub-unit 2112 is consistent, and both are consistent with the number of transceiver channels of the millimeter wave remote module 30 . For example, when the number of transceiver channels of the millimeter wave remote module 30 is two, the number of the first signal multiplexing subunit 2111 and the first signal separation subunit 2112 is both two. At least two first signal multiplexing sub-units 2111 are connected to the digital intermediate frequency module 10.
  • At least two first signal multiplexing sub-units 2111 are connected to the clock local oscillator unit 132 and the intermediate frequency processing sub-module 12 respectively. connection, wherein a first signal multiplexing subunit 2111 is connected to a first modulation subunit 1312. At least two first signal separation sub-units 2112 are connected to the digital intermediate frequency module 10. In an exemplary embodiment, at least two first signal separation sub-units 2112 are connected to the intermediate frequency processing sub-module 12 respectively. One of the first signal separation sub-units 2112 is connected to the intermediate frequency processing sub-module 12. The ion unit 2112 is connected to a first demodulation subunit 1313.
  • At least two first signal multiplexing sub-units 2111 are also connected to the first analog optical transceiver unit 212, and at least two first signal separation sub-units 2112 are also connected to the first analog optical transceiver unit 212.
  • Each first signal multiplexing subunit 2111 is used to multiplex the obtained first service signal and first control signal into downlink analog signals. Multiplex the signal and transmit the downlink analog multiplexed signal to the first analog optical transceiver unit 212 .
  • Each first signal separation subunit 2112 is used to separate the uplink analog multiplexed signal received and converted by the first analog optical transceiver unit 212 into a second service signal and a second control signal.
  • a first analog optical transceiver unit 212 includes at least two first laser emitting subunits 2121 , at least two first laser receiving subunits 2122 , and a first optical combining subunit 2123 and the first optical splitting subunit 2124, at least two first laser emitting subunits 2121 are connected to the first optical combining subunit 2123, and at least two first laser emitting subunits 2121 are also connected to the first multiplexing and splitting unit 211, that is, , at least two first laser emitting sub-units 2121 are also connected to at least two first signal multiplexing sub-units 2111 in a one-to-one correspondence.
  • At least two first laser receiving sub-units 2122 are connected to the first optical splitting sub-unit 2124, and at least two first laser receiving sub-units 2122 are also connected to the first multiplexing and separation unit 211, that is, at least two first laser receiving sub-units 2122 are connected to the first optical splitting sub-unit 2124.
  • the subunit 2122 is also connected to at least two first signal separation subunits 2112 in a one-to-one correspondence.
  • the first optical combining subunit 2123 and the first optical splitting subunit 2124 are both connected to the optical fiber submodule 22 .
  • the first laser emitting subunit 2121 is used to convert the received downlink analog multiplexed signal into a corresponding single wavelength optical signal.
  • the first optical combining subunit 2123 is used to convert the single wavelength generated by at least two first laser emitting subunits 2121.
  • the wavelength optical signals are divided and combined into a first optical signal corresponding to the downlink analog multiplexing signal, and the first optical signal is sent to the optical fiber sub-module 22 for optical signal transmission.
  • the first optical splitting subunit 2124 is used to receive the second optical signal transmitted by the optical fiber submodule 22, and wavelength split the second optical signal into single-wavelength optical signals, which enter each first laser receiving subunit 2122 respectively.
  • a laser receiving subunit 2122 is used to convert the corresponding uplink analog multiplexed signal generated according to the received single wavelength optical signal and send it to the corresponding first signal separation subunit 2112 to separate the uplink analog multiplexed signal.
  • the first laser emitting sub-unit 2121 is an analog laser transmitter
  • the first laser receiving sub-unit 2122 is an analog laser receiver.
  • the working principle of the first laser emission subunit 2121 is as follows: the analog electrical signal is input to the laser diode after impedance matching processing, is emitted into a light wave, and then undergoes optical isolation processing to achieve isolation of analog optical signals of different wavelengths and different directions.
  • the working principle of the first laser receiving subunit 2122 is: the analog optical signal passes through the photoelectric conversion diode, is restored into an electrical signal, and then outputs the analog electrical signal after impedance matching processing.
  • a second signal processing sub-module 23 includes a connected second multiplexing and separation unit 231 and a second
  • the analog optical unit 232 and the second multiplexing and separation unit 231 are also connected to the millimeter wave remote module 30 , and the second analog optical transceiver unit 232 is also connected to the optical fiber sub-module 22 .
  • the second multiplexing and separation unit 231 is configured to multiplex at least two second service signals and second control signals into at least two uplink analog multiplexed signals and separate at least two downlink analog multiplexed signals.
  • the second analog optical transceiver unit 232 is used to convert at least two of the uplink analog multiplexed signals into second optical signals and convert the first optical signal into at least two downlink analog multiplexing signal.
  • a second multiplexing and separation unit 231 includes at least two second signal multiplexing sub-units 2311 and at least two second signal separation sub-units 2312.
  • the second signal multiplexing and separation unit 231 The numbers of the sub-units 2311 and the second signal separation sub-units 2312 are consistent, and both are consistent with the number of transceiver channels of the millimeter wave remote module 30 . For example, when the number of transceiver channels of the millimeter wave remote module 30 is two, the number of the second signal multiplexing subunit 2311 and the second signal separation subunit 2312 is both two.
  • At least two second signal multiplexing sub-units 2311 are connected to the second analog optical transceiver unit 232, at least two second signal separation sub-units 2312 are connected to the second analog optical transceiver unit 232, and at least two second signal multiplexing sub-units are connected to the second analog optical transceiver unit 232.
  • the unit 2311 is also connected to the millimeter wave remote module 30, and at least two second signal separation sub-units 2312 are also connected to the millimeter wave remote module 30.
  • the second signal multiplexing subunit 2311 is used to multiplex the obtained second service signal and the second control signal into an uplink analog multiplexed signal, and send the uplink analog multiplexed signal to the second analog optical transceiver unit 232.
  • the second signal The separation sub-unit 2312 is used to separate the obtained downlink analog multiplexed signal, and send the separated signals (the first service signal and the first control signal) to the millimeter wave remote module 30 .
  • a second analog optical transceiver unit 232 includes at least two second laser emitting subunits 2321, at least two second laser receiving subunits 2322, a second optical combining subunit 2323 and a second optical splitting subunit.
  • Path subunit 2324, at least two second laser emitting subunits 2321 are connected to the second optical combining path subunit 2323, and at least two second laser emitting subunits 2321 are also connected to the second multiplexing and separation unit 231, that is, at least two second laser emitting subunits 2324 are connected to the second optical combining path subunit 2323.
  • the two laser emitting subunits 2321 are also connected to at least two second signal multiplexing subunits 2311 in one-to-one correspondence.
  • At least two second laser receiving sub-units 2322 are connected to the second optical splitting sub-unit 2324, and at least two second laser receiving sub-units 2322 are also connected to the second multiplexing and separation unit 231, that is, at least two second laser receiving sub-units 2322 are connected to the second optical splitting sub-unit 2324.
  • the subunit 2322 is also connected to at least two second signal separation subunits 2312 in a one-to-one correspondence.
  • the second laser emitting subunit 2321 is used to convert the received uplink analog multiplexed signal into a corresponding single wavelength optical signal
  • the second optical combining subunit 2323 is used to convert the single wavelength generated by at least two second laser emitting subunits 2321.
  • the wavelength optical signals are wavelength divided and combined into a second optical signal, and the second optical signal is sent to the optical fiber sub-module 22 for optical signal transmission.
  • the second optical splitting subunit 2324 is used to receive the first optical signal transmitted by the optical fiber submodule 22, and wavelength split the first optical signal into single-wavelength optical signals that enter each second laser receiving subunit 2322.
  • the laser receiving subunit 2322 is used to convert the received single-wavelength optical signal into a corresponding downlink analog multiplexed signal and send it to the corresponding second signal separation subunit 2312 to separate the downlink analog multiplexed signal (first Business signals and first control Signal).
  • the second laser emitting subunit 2321 is an analog laser transmitter
  • the second laser receiving subunit 2322 is an analog laser receiver.
  • the working principle of the second laser emission subunit 2321 is as follows: the analog electrical signal is input to the laser diode after impedance matching processing, is emitted into a light wave, and then undergoes optical isolation processing to achieve isolation of analog optical signals of different wavelengths and different directions.
  • the working principle of the second laser receiving sub-unit 2322 is as follows: the optical signal passes through the photoelectric conversion diode, is restored to an electrical signal, and then outputs an analog electrical signal after impedance matching processing.
  • the millimeter wave remote module 30 is used for radiating and transmitting downlink millimeter wave signals and radiating and receiving uplink millimeter wave receiving signals. It is also used for conversion between downlink RF signaling and downlink millimeter wave signaling, and for uplink RF signal receiving and uplink millimeter wave signaling. Conversion between receiving signals.
  • the millimeter wave remote module 30 includes at least two transceiver link submodules 31 , and the number of transceiver link submodules 31 is the number of transceiver channels of the millimeter wave remote module 30 . number, which is N. At least two transceiver link sub-modules 31 are connected to the second signal processing sub-module 23.
  • At least two transceiver link sub-modules 31 are connected to the second multiplexing and separation unit 231. In an exemplary embodiment, In the embodiment, at least two transceiver link sub-modules 31 are connected to at least two second signal multiplexing sub-units 2311 in a one-to-one correspondence, and at least two transceiver link sub-modules 31 are also connected to at least two second signal separation sub-units. 2312 one-to-one corresponding connection.
  • each transceiver link sub-module 31 includes a frequency conversion unit 311 , a front-end unit 312 , a wave control unit 313 and an array antenna unit 314 connected in sequence.
  • the frequency conversion unit 311 is also connected to the millimeter wave transmission module 20 .
  • the frequency conversion unit 311 is used for conversion of uplink radio frequency signal reception and uplink millimeter wave signal reception, and conversion of downlink radio frequency signal transmission and downlink millimeter wave signal transmission, that is, to realize the conversion of the first service signal and the second service signal in the medium radio frequency band and millimeter wave.
  • the conversion of the wave frequency band controls the working frequency band of the first service signal and the second service signal to facilitate efficient transmission;
  • the front-end unit 312 is used to amplify and filter the downlink millimeter wave signal and receive, amplify and filter the uplink millimeter wave received signal.
  • the wave control unit 313 is used to control the phase and amplitude of downlink millimeter wave signaling and uplink millimeter wave receiving signals;
  • the array antenna unit 314 is used to radiate downlink millimeter wave signals to the air interface and receive uplink millimeter wave receiving signals from the air interface radiation.
  • the array antenna unit 314 radiates the received downlink millimeter wave signal to the air interface, and receives the uplink millimeter wave reception signal from the air interface radiation.
  • efficient reception and transmission of uplink and downlink millimeter wave transceiver signals is achieved, and the electromagnetic compatibility of the millimeter wave transceiver device is improved, which has a good shielding effect.
  • the frequency conversion unit 311 includes an up-conversion sub-unit 3111 and a down-conversion sub-unit 3112 that share a millimeter wave local oscillator signal.
  • the front-end unit 312 includes a power amplification sub-unit 3121 and a low-noise amplification sub-unit 3122 connected to the frequency conversion unit 311, and is connected to the power amplification sub-unit 3121 and the low-noise amplification sub-unit 3122 respectively.
  • the noise amplification subunit 3122 is connected to the filtering subunit 3123, and the filtering subunit 3123 is also connected to the wave control unit 313.
  • the power amplification subunit 3121 is used to perform power amplification processing (i.e., perform power amplification and transmission processing) on the downlink millimeter wave signal processed by the frequency conversion unit 311; the filtering subunit 3123 is used to perform power amplification processing on the downlink millimeter wave signal processed by the power amplification subunit 3121.
  • the wave signal is filtered, and the uplink millimeter wave received signal processed by the wave control unit 313 is filtered; the low noise amplification subunit 3122 is used to receive the uplink millimeter wave received signal processed by the filtering subunit 3123 and perform low noise amplification deal with.
  • each millimeter wave remote module 30 also includes: a second control sub-module 32.
  • the second control sub-module 32 is connected to the millimeter wave transmission module 20.
  • the second control sub-module 32 is used to Receive the first control signal sent by the millimeter wave transmission module 20 and send the second control signal to the millimeter wave transmission module 20 .
  • the second control sub-module 32 is connected to the second multiplexing and separation unit 231 in the second signal processing sub-module 23.
  • the second control sub-module 32 is connected to the second multiplexing and separation unit 231 respectively.
  • the second signal multiplexing subunit 2311 is connected to the second signal separation subunit 2312, receives the first control signal through the second signal separation subunit 2312, and sends the second control signal to the second signal multiplexing subunit 2311, so as to Implement response to the first control signal.
  • the millimeter wave remote module also includes: a second power sub-module 33.
  • the second power sub-module 33 is used to control at least two transceiver link sub-modules 31 and a second control sub-module 32. Provide power.
  • the second signal separation subunit 2312 separates the downlink analog multiplexed signal to obtain a first service signal and a first control signal (first control signal Including radio frequency reference signal, millimeter wave local oscillator signal and intermediate frequency OOK control signal), the second signal separation sub-unit 2312 sends the first service signal and millimeter-wave local oscillator signal to the up-conversion sub-unit 3111, and the up-conversion sub-unit 3111 is based on the millimeter wave
  • the frequency multiplication processing signal of the local oscillator signal performs frequency conversion processing on the first service signal in the mid-radio frequency band to control the operating frequency band of the first service signal to the millimeter wave frequency band to obtain downlink millimeter wave signaling.
  • the second signal separation subunit 2312 sends the radio frequency reference signal and the control instruction signal to the second control submodule 32.
  • the second control submodule 32 performs clock synchronization based on the radio frequency reference signal and provides a clock reference to the millimeter wave remote module 30. Execute corresponding operations according to the control instruction signal, complete the control of other modules, and generate a corresponding intermediate frequency OOK response signal (ie, the second control signal) according to the execution result.
  • the downlink millimeter wave signal obtained by frequency conversion processing is sent to the power amplification subunit 3121 for power amplification, and then filtered by the filtering subunit 3123 and then enters the wave control unit 313 to control the phase and amplitude of the downlink millimeter wave signal.
  • the downlink millimeter wave signal processed by the wave control unit 313 is sent to the array antenna unit 314, and the array antenna unit 314 radiates and transmits the downlink millimeter wave signal to the air interface into a wireless signal in the millimeter wave band.
  • the array antenna unit 314 receives wireless signals in the millimeter wave band from air interface radiation to obtain uplink millimeter wave reception signals. After the phase and amplitude are controlled by the wave control unit 313, the uplink millimeter wave reception signals enter the filtering subunit 3123 for filtering.
  • the down-conversion sub-unit 3112 is based on the multiplication signal of the millimeter-wave local oscillator signal shared with the up-conversion sub-unit 3111.
  • This embodiment provides a millimeter wave transceiver device, including a digital intermediate frequency module, at least two millimeter wave transmission modules and at least two millimeter wave remote modules; the digital intermediate frequency module is connected to at least two millimeter wave transmission modules, and at least two The millimeter wave transmission module is connected to at least two millimeter wave remote modules in a one-to-one correspondence; the digital intermediate frequency module is used for transmitting downlink RF signals and receiving uplink RF signals; the millimeter wave remote module is used for radiating and transmitting downlink millimeter waves Signaling and radiating reception uplink millimeter wave signals are also used for conversion between downlink RF signals and downlink millimeter wave signals, and conversion between uplink RF signals and uplink millimeter wave signals; the millimeter wave transmission module is used for digital Transmission of downlink RF signals and uplink RF reception signals between the IF module and the millimeter wave remote module.
  • the millimeter wave transceiver device in the present disclosure adopts a distributed architecture, which reduces the size and weight compared to the integrated AAU architecture, and can be used in complex application scenarios such as business areas and indoors where hot spots require large capacity. , easy to deploy.
  • the baseband processing unit receives the downlink baseband service signal, clock reference signal and control instruction signal from the baseband processing device via the eCPRI interface.
  • the baseband processing sub-module sends the downlink baseband service signal to the intermediate frequency processing sub-module. module, so that the intermediate frequency processing sub-module generates the first service signal RF_Down1 and the first service signal RF_Down2 after performing intermediate radio frequency processing according to the downlink baseband service signal.
  • the baseband processing sub-module sends the clock reference signal to the clock local oscillator unit, and the clock local oscillator
  • the unit generates clock and synchronization signals required for the operation of the module itself based on the clock reference signal, and also generates one-to-one corresponding radio frequency reference signals (RF_REF) and millimeter wave local oscillator signals (RF_LO) required by each millimeter wave remote module 30 .
  • the baseband processing sub-module sends the control instruction signal to the first main control sub-unit.
  • the first main control sub-unit parses it into a control instruction and generates corresponding control signals related to the control instructions for each millimeter wave remote module 30 and sends them to each
  • the corresponding first modulation subunit modulates the intermediate frequency OOK control signal IF_OOK_Ctrl that is one-to-one with the millimeter wave remote module 30 through OOK.
  • Will RF_Down1, RF_REF and IF_OOK_Ctrl are sent to a first signal multiplexing subunit for multiplexing to obtain one downlink analog multiplexed signal.
  • RF_Down2 and RF_LO are sent to another first signal multiplexing subunit for multiplexing to obtain another downlink signal. Analog multiplexed signals.
  • the two downlink analog multiplexing signals are sent to the corresponding first laser emission subunit to be converted into the corresponding single-wavelength optical signal.
  • the two single-wavelength optical signals are wavelength-divided and combined into the first optical signal by the first optical combining subunit.
  • the first optical signal is sent to the second optical splitter sub-unit through the optical fiber sub-module.
  • the second optical splitter sub-unit splits the first optical signal into two single-wavelength optical signals.
  • Each single-wavelength optical signal is sent to the corresponding The second laser receiving subunit converts it into a corresponding downlink analog multiplexing signal.
  • a downlink analog multiplexed signal is sent to a second signal separation subunit for separation, and RF_Down1, RF_REF and IF_OOK_Ctrl are recovered.
  • Another downlink analog multiplexed signal is sent to another second signal separation subunit for separation, and RF_Down2 and RF_LO are recovered.
  • RF_LO is sent to the frequency conversion unit in the transceiver link submodule as the millimeter wave local oscillator signal required by the frequency conversion unit in all transceiver link submodules.
  • the frequency conversion unit uses the frequency multiplication signal of the aforementioned RF_LO to convert RF_Down1 to the millimeter wave frequency band, and after processing by the power amplification sub-unit, filtering sub-unit and wave control unit, The downlink millimeter wave signal corresponding to RF_Down1 is radiated to the air interface through the array antenna unit.
  • the frequency conversion unit uses the frequency multiplication signal of RF_LO to convert RF_Down2 to the millimeter wave frequency band, and after processing by the power amplification sub-unit, filtering sub-unit and wave control unit, it passes The array antenna unit radiates and transmits the downlink millimeter wave signal corresponding to RF_Down2 to the air interface.
  • the array antenna unit in a transceiver link sub-module radiates and receives the uplink millimeter wave receiving signal. After being processed by the wave control unit, filter sub-unit, low-noise amplification sub-unit and frequency conversion unit, the second The service signal RF_Up1 is sent to a second signal multiplexing subunit.
  • the array antenna unit in the other transceiver link sub-module radiates and receives the uplink millimeter wave reception signal on the other line, and obtains another second service signal after being processed by the wave control unit, filter sub-unit, low-noise amplification sub-unit and frequency conversion unit RF_Up2, send RF_Up2 to another second signal multiplexing subunit.
  • the second control submodule demodulates the aforementioned intermediate frequency OOK control signal and executes the corresponding control instruction, generates a corresponding response signal, and modulates the intermediate frequency OOK into the second control signal IF_OOK_Ack.
  • the two single-wavelength optical signals pass through the second optical combining path subunit.
  • the elementary waves are split and combined into a second optical signal.
  • the second optical signal is sent to the first optical splitting subunit through the optical fiber sub-module.
  • the first optical splitting subunit analog splits the second optical signal into two single-wavelength optical signals, and each single-wavelength optical signal is sent to the corresponding third optical signal.
  • a laser receiving subunit is used to convert the corresponding uplink analog multiplexed signal.
  • An uplink analog multiplexed signal is sent to a first signal separation subunit for separation, and a second service signal RF_Up1 and a second control signal IF_OOK_Ack are recovered.
  • Another uplink analog multiplexed signal is sent to another signal separation subunit for separation, and another second service signal RF_Up2 is recovered.
  • IF_OOK_Ack is sent to a first demodulation subunit for OOK demodulation to generate Up_ACK, and Up_ACK is sent to the first main control subunit for confirmation of response information.
  • the RF_Up1 and RF_Up2 second service signals are transmitted to the intermediate frequency sub-module for reception and demodulation to obtain the uplink baseband reception service signal.
  • the IF sub-module transmits the uplink baseband reception service signal to the baseband processing sub-module, and then uploads the uplink baseband signal to the baseband processing device.
  • the millimeter wave communication system includes a network management device 300, a baseband processing device 200 and a millimeter wave transceiver device 100 connected in sequence.
  • the millimeter wave transceiver device 100 is the millimeter wave transceiver device 100 as described above. Wave transceiver device.
  • the specific structure of the millimeter wave transceiver device may refer to the above description, and will not be described again in this embodiment.
  • the present disclosure provides a millimeter wave transceiver device, which includes a digital intermediate frequency module, at least two millimeter wave transmission modules and at least two millimeter wave remote modules; the digital intermediate frequency module is connected to at least two millimeter wave transmission modules, and at least two millimeter wave transmission modules are connected.
  • the transmission module is connected to at least two millimeter wave remote modules in a one-to-one correspondence; the digital intermediate frequency module is used for sending downlink RF signals and receiving uplink RF signals; the millimeter wave remote module is used for radiating and transmitting downlink millimeter wave signals.
  • the millimeter wave transmission module is used for the digital intermediate frequency module Transmission of downlink radio frequency signals and uplink radio frequency reception signals with the millimeter wave remote module.

Abstract

本公开涉及一种毫米波收发装置及通信系统,包括:数字中频模块、至少两个毫米波传输模块及至少两个毫米波远端模块;数字中频模块与至少两个毫米波传输模块连接,至少两个毫米波传输模块与至少两个毫米波远端模块一一对应连接;数字中频模块用于下行射频发信号的发信和上行射频收信号的收信;毫米波远端模块用于辐射发射下行毫米波发信号、辐射接收上行毫米波收信号、上行射频收信号与上行毫米波收信号的转换及下行射频发信号与下行毫米波发信号的转换;毫米波传输模块用于数字中频模块与毫米波远端模块之间的下行射频发信号和上行射频收信号的传输。

Description

一种毫米波收发装置及通信系统
相关申请的交叉引用
本公开要求享有2022年07月27日提交的名称为“一种毫米波收发装置及通信系统”的中国专利申请CN202210891706.6的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种毫米波收发装置及通信系统。
背景技术
毫米波通信系统中通常包括有网管装置、基带处理装置及毫米波收发装置组成,通过基带处理装置和毫米波收发装置完成毫米波基站功能。目前,毫米波收发装置通常为一体化AAU(Active Antenna Unit,有源天线单元)架构,AAU通常包括有集成一体的基带处理单元、数字中频处理单元、nTnR(n Transmitter and Receiver,n收发通道)收发信机单元及超大规模天线阵列。上述的AAU虽然功能强大,但是AAU的体积和重量仍较大,不利于造型创新,对环境友好性差。并且,有热点大容量需求的商业区及室内场景而言,可部署性差,影响毫米波产品的推广。
发明内容
鉴于此,为解决上述技术问题或部分技术问题,本公开提供一种毫米波收发装置及通信系统。
第一方面,本公开提供一种毫米波收发装置,包括:数字中频模块、至少两个毫米波传输模块及至少两个毫米波远端模块;其中,数字中频模块与至少两个毫米波传输模块连接,至少两个毫米波传输模块与至少两个毫米波远端模块一一对应连接;数字中频模块用于下行射频发信号的发信和上行射频收信号的收信;毫米波远端模块用于辐射发射下行毫米波发信号和辐射接收上行毫米波收信号,还用于下行射频发信号与下行毫米波发信号间的转换,及上行射频收信号与上行毫米波收信号间的转换;毫米波传输模块用于数字中频模块与毫米波远端模块之间的下行射频发信号和上行射频收信号的传输。
第二方面,本公开提供一种毫米波通信系统,包括依次连接的网管装置、基带处 理装置及如上述所述的毫米波收发装置。
附图说明
图1为本公开提供的一个毫米波收发装置的结构示意图;
图2为本公开提供的一个数字中频模块结构示意图;
图3为本公开提供的一个第一控制子模块的结构示意图;
图4为本公开提供的一个毫米波传输模块的结构示意图;
图5为本公开提供的一个毫米波远端模块的结构示意图;
图6为本公开提供的一个收发链路子模块的结构示意图;
图7为本公开提供的一个毫米波收发装置的下行过程的示意图;
图8为本公开提供的一个毫米波收发装置的上行过程的示意图;
图9为本公开提供的一个毫米波通信系统的结构示意图;
以上附图中:
10、数字中频模块;11、基带处理子模块;12、中频处理子模块;13、第一控制子模块;131、第一主控单元;1311、第一主控子单元;1312、第一调制子单元;1313、第一解调子单元;132、时钟本振单元;14、第一电源子模块;
20、毫米波传输模块;21、第一信号处理子模块;211、第一复用分离单元;2111、第一信号复用子单元;2112、第一信号分离子单元;212、第一模拟光收发单元;2121、第一激光发射子单元;2122、第一激光接收子单元;2123、第一光合路子单元;2124、第一光分路子单元;22、光纤子模块;23、第二信号处理子模块;231、第二复用分离单元;2311、第二信号复用子单元;2312、第二信号分离子单元;232、第二模拟光收发单元;2321、第二激光发射子单元;2322、第二激光接收子单元;2323、第二光合路子单元;2324、第二光分路子单元;
30、毫米波远端模块;31、收发链路子模块;311、变频单元;3111、上变频子单元;3112、下变频子单元;312、前端单元;3121、功率放大子单元;3122、低噪声放大子单元;3123、滤波子单元;313、波控单元;314、阵列天线单元;32、第二控制子模块;33、第二电源子模块。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开中的附图,对 本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为便于对本公开的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本公开的限定。
本公开提供的一种毫米波收发装置,如图1所示,毫米波收发装置100包括数字中频模块10、至少两个毫米波传输模块20及至少两个毫米波远端模块30。其中,数字中频模块10与至少两个毫米波传输模块20连接,至少两个毫米波传输模块20与至少两个毫米波远端模块30一一对应连接,即毫米波传输模块20的数量与毫米波远端模块30的数量一致,均为M(M≥2)个,毫米波远端模块30的收发通道个数为N(N≥2)个。
数字中频模块10用于下行射频发信号的发信和上行射频收信号的收信。在一示例性实施例中,数字中频模块10为至少两个毫米波远端模块30的汇聚处理模块,数字中频模块10支持M*N个收发通道的信号处理,数字中频模块10与基带处理装置200进行信号交互,在接收到基带处理装置200下发的下行基带信号时,对下行基带信号进行中射频发送处理,得到与每个毫米波远端模块30进行信号传输的下行射频发信号,同样的,当接收到每个毫米波远端模块30用于信号传输的上行射频收信号时,对上行射频收信号进行中射频接收处理,得到上行基带信号,并将该上行基带信号上传至基带处理装置200,从而实现毫米波收发装置的信号收发。数字中频模块10上设置有eCPRI(evolved Common Public Radio Interface)接口,数字中频模块10通过eCPRI接口与基带处理装置200进行信号交互,获得下行基带信号,并上传上行基带信号。
本实施例中,下行基带信号包括下行基带发业务信号、时钟基准信号和控制指令信号,上行基带信号包括上行基带收业务信号和应答响应信号,每个毫米波远端模块30对应的下行射频发信号包括至少两个第一业务信号和第一控制信号(即包括时钟基准参考信号、毫米波本振信号和控制指令信号),每个毫米波远端模块30对应的上行射频收信号包括至少两个第二业务信号和第二控制信号(即应答响应信号)。
本实施例中,参考图2,数字中频模块10包括基带处理子模块11及与基带处理子模块11连接的中频处理子模块12和第一控制子模块13,其中,基带处理子模块11与基带处理装置200连接,中频处理子模块12和第一控制子模块13均与至少两个毫米波传输模块20连接。基带处理子模块11用于与基带处理装置200进行基带信号交 互,以接收基带处理装置200发送的下行基带信号,并将上行基带信号发送至基带处理装置200。中频处理子模块12用于将根据下行基带信号处理得到的至少两个第一业务信号发送至毫米波传输模块20及将毫米波传输模块20传输的至少两个第二业务信号处理生成上行基带信号。第一控制子模块13用于将根据下行基带信号处理得到的第一控制信号发送至毫米波传输模块20及接收毫米波传输模块20传输的第二控制信号,第二控制信号为第一控制信号的应答响应信号。在一示例性实施例中,第二业务信号和第二控制信号由毫米波远端模块30发送至毫米波传输模块20。
在一示例性实施例中,基带处理子模块11上设置有eCPRI接口,基带处理子模块11通过eCPRI接口与基带处理装置200进行基带信号交互。当基带处理子模块11接收到基带处理装置200发送的下行基带信号时,将其中的下行基带发业务信号发送至中频处理子模块12,将时钟基准信号和控制指令信号发送至第一控制子模块13。中频子模块对下行基带发业务信号进行处理(数字变频、数模转换和放大等)后得到每个毫米波远端模块30对应的至少两个第一业务信号。需要说明的是,第一业务信号的个数与毫米波远端模块30的收发通道个数一致。例如,当毫米波远端模块30为一个2T2R通道的毫米波远端模块30时,则第一业务信号的个数为两个。当中频处理子模块12接收到毫米波传输模块20传输的各毫米波远端模块30对应的至少两个第二业务信号时,将至少两个第二业务信号生成上行基带收业务信号,并将该上行基带收业务信号传输至基带处理子模块11,以使得基带处理子模块11与基带处理装置200进行上行基带信号交互,同样的,第二业务信号的个数与毫米波远端模块30的收发通道个数一致。其中,第二业务信号和第二控制信号的获取将在下面进行描述,本实施例在此不做赘述。当第一控制子模块13接收到时钟基准信号和控制指令信号时,对时钟基准信号进行处理得到毫米波远端模块30运行所需要的射频参考信号和毫米波本振信号。本实施例中可将射频参考信号、毫米波本振信号和控制指令信号组成为第一控制信号。其中,时钟基准信号用于实现数字中频模块10与毫米波远端模块30之间的时间同步。
在一示例性实施例中,参考图3,本实施例中的第一控制子模块13包括第一主控单元131和时钟本振单元132,第一主控单元131和时钟本振单元132均与毫米波传输模块20连接,第一主控单元131和时钟本振单元132还均与基带处理子模块11连接,时钟本振单元132用于接收基带处理子模块11发送的时钟基准信号,对时钟基准信号进行处理,产生模块自身运行需要的时钟及同步信号,并得到各毫米波远端模块 30运行需要的射频参考信号和毫米波本振信号,并将射频参考信号和毫米波本振信号发送至毫米波传输模块20。第一主控单元131用于接收基带处理子模块11发送的控制指令信号及接收毫米波传输模块20发送的第二控制信号。第一主控单元131包括第一主控子单元1311、至少两个第一调制子单元1312和至少两个第一解调子单元1313,第一主控子单元1311与至少两个第一调制子单元1312连接,第一主控子单元1311还与至少两个第一解调子单元1313连接。其中,第一调制子单元1312与第一解调子单元1313的个数一致,且均与数字中频模块10所汇接的毫米波远端模块30的个数一致。第一调制子单元1312为一OOK调制子单元,第一解调子单元1313为一OOK解调子单元,当第一主控子单元1311接收到控制指令信号时,执行相应控制操作,并将同毫米波远端模块30相关的控制指令信号发送至第一调制子单元1312中,以实现数字控制指令信号到中频OOK控制信号的OOK调制,第一调制子单元1312将调制后的控制指令信号发送至毫米波传输模块20中。第一解调子单元1313接收到毫米波传输模块20发送的第二控制信号时,将第二控制信号进行OOK解调处理,并将处理后的第二控制信号发送至第一主控子单元1311进行控制应答响应确认。
本实施例中,参考图2,数字中频模块10还包括第一电源子模块14。第一电源子模块14用于对基带处理子模块11、中频处理子模块12和第一控制子模块13进行供电。
毫米波传输模块20用于数字中频模块10与毫米波远端模块30之间的下行射频发信号和上行射频收信号的传输。参考图4,每个毫米波传输模块20包括依次连接的第一信号处理子模块21、光纤子模块22及第二信号处理子模块23,第一信号处理子模块21还与数字中频模块10连接,在一示例性实施例中,第一信号处理子模块21还与时钟本振单元132、中频处理子模块12、第一调制子单元1312和第一解调子单元1313连接,第二信号处理子模块23还与毫米波远端模块30连接。第一信号处理子模块21用于将下行射频发信号转化为第一光信号及将第二光信号转化为上行射频收信号;第二信号处理子模块23模块用于将上行射频收信号转化为第二光信号及将第一光信号转化为下行射频发信号;光纤子模块22用于第一信号处理子模块21与第二信号处理子模块23之间的第一光信号和第二光信号的传输。在本实施例中,在毫米波收发装置的数字中频模块10和毫米波远端模块30的信号传输中,发送侧将下行射频发信号或上行射频收信号转化为对应的光信号,并在光纤子模块22上进行相向传输,在接收侧实现光信号信号恢复成下行射频发信号或上行射频收信号,实现了基于MOF技术的 毫米波信号在光纤链路上的长距离传输。并且,由于每个毫米波传输模块20连接有一个毫米波远端模块30,数字中频模块10与多个毫米波远端模块30通过光纤互联的星型架构,更有利于多个毫米波远端模块30的超大规模天线阵列间的协作,形成分布式毫米波超大规模MIMO效应,极大提升毫米波通讯的无线信道协同增益,有效克服毫米波插损大、穿透差的不足。
在一示例性实施例中,为了提高光纤的利用效率,本实施例中,继续参考图4,一个第一信号处理子模块21包括相连接的第一复用分离单元211和第一模拟光收发单元212,第一复用分离单元211还与数字中频模块10连接,在一示例性实施例中,第一复用分离单元211还与时钟本振单元132、中频处理子模块12、第一调制子单元1312和第一解调子单元1313连接。第一模拟光收发单元212还与光纤子模块22连接。其中,第一复用分离单元211用于将至少两个第一业务信号和第一控制信号复用成至少两个下行模拟复用信号及将至少两个上行模拟复用信号分离成至少两个第二业务信号和第二控制信号。第一模拟光收发单元212用于将至少两个下行模拟复用信号转化为第一光信号及将第二光信号转化为至少两个上行模拟复用信号。将第二光信号转化为上行模拟复用信号将在下面进行阐述,本实施例在此不做赘述。需要说明的是,第一业务信号的个数与下行模拟复用信号的个数一致,同样的,第二业务信号的个数与上行模拟复用信号的个数一致。
在一示例性实施例中,继续参考图4,一个第一复用分离单元211包括至少两个第一信号复用子单元2111和至少两个第一信号分离子单元2112,第一信号复用子单元2111和第一信号分离子单元2112的数量一致,且均与毫米波远端模块30的收发通道的个数一致。例如,当毫米波远端模块30的收发通道的个数为两个时,则第一信号复用子单元2111和第一信号分离子单元2112的个数均为两个。至少两个第一信号复用子单元2111与数字中频模块10连接,在一示例性实施例中,至少两个第一信号复用子单元2111分别与时钟本振单元132和中频处理子模块12连接,其中一个第一信号复用子单元2111与一个第一调制子单元1312连接。至少两个第一信号分离子单元2112与数字中频模块10连接,在一示例性实施例中,至少两个第一信号分离子单元2112分别与中频处理子模块12连接,其中一个第一信号分离子单元2112与一个第一解调子单元1313连接。至少两个第一信号复用子单元2111还与第一模拟光收发单元212,至少两个第一信号分离子单元2112还与第一模拟光收发单元212连接。每个第一信号复用子单元2111用于将得到的第一业务信号和第一控制信号复用成下行模拟 复用信号,并将下行模拟复用信号传输至第一模拟光收发单元212。每个第一信号分离子单元2112用于将第一模拟光收发单元212接收转换成的上行模拟复用信号进行分离成第二业务信号和第二控制信号。
在一示例性实施例中,继续参考图4,一个第一模拟光收发单元212包括至少两个第一激光发射子单元2121、至少两个第一激光接收子单元2122、第一光合路子单元2123和第一光分路子单元2124,至少两个第一激光发射子单元2121与第一光合路子单元2123连接,至少两个第一激光发射子单元2121还与第一复用分离单元211连接,即,至少两个第一激光发射子单元2121还与至少两个第一信号复用子单元2111一一对应连接。至少两个第一激光接收子单元2122与第一光分路子单元2124连接,至少两个第一激光接收子单元2122还与第一复用分离单元211连接,即,至少两个第一激光接收子单元2122还与至少两个第一信号分离子单元2112一一对应连接,第一光合路子单元2123和第一光分路子单元2124均与光纤子模块22连接。第一激光发射子单元2121用于把接收到的下行模拟复用信号转换产生相应的单波长光信号,第一光合路子单元2123用于将至少两个第一激光发射子单元2121所产生的单波长光信号进行波分合路为下行模拟复用信号对应的第一光信号,并将第一光信号发送至光纤子模块22以进行光信号的传输。第一光分路子单元2124用于接收光纤子模块22传输的第二光信号,并将第二光信号波分分路为各单波长光信号,分别进入各第一激光接收子单元2122,第一激光接收子单元2122用于把将根据接收到的单波长光信号转换产生的对应上行模拟复用信号,并发送至相应的第一信号分离子单元2112,以进行上行模拟复用信号的分离(至少两个第二业务信号和第二控制信号)。需要说明的是,第一激光发射子单元2121为一模拟激光发射器,第一激光接收子单元2122为一模拟激光接收器。第一激光发射子单元2121的工作原理为:模拟电信号经过阻抗匹配处理后输入至激光二极管,发射成光波,再经过光隔离处理后实现不同波长及收发不同方向模拟光信号的隔离。第一激光接收子单元2122的工作原理为:模拟光信号经过光电转换二极管,恢复成电信号,经过阻抗匹配处理后输出模拟电信号。
在一示例性实施例中,同样的,为了提高光纤的利用效率,本实施例中,继续参考图4,一个第二信号处理子模块23包括相连接的第二复用分离单元231和第二模拟光单元232,第二复用分离单元231还与毫米波远端模块30连接,第二模拟光收发单元232还与光纤子模块22连接。第二复用分离单元231用于将至少两个第二业务信号和第二控制信号复用成至少两个上行模拟复用信号及将至少两个下行模拟复用信号分 离成至少两个第一业务信号和第一控制信号;第二模拟光收发单元232用于将至少两个述上行模拟复用信号转化成第二光信号及将第一光信号转化为至少两个下行模拟复用信号。
在一示例性实施例中,继续参考图4,一个第二复用分离单元231包括至少两个第二信号复用子单元2311和至少两个第二信号分离子单元2312,第二信号复用子单元2311和第二信号分离子单元2312的数量一致,且均与毫米波远端模块30的收发通道的个数一致。例如,当毫米波远端模块30的收发通道的个数为两个时,则第二信号复用子单元2311和第二信号分离子单元2312的个数均为两个。至少两个第二信号复用子单元2311与第二模拟光收发单元232连接,至少两个第二信号分离子单元2312与第二模拟光收发单元232连接,至少两个第二信号复用子单元2311还与毫米波远端模块30连接,至少两个第二信号分离子单元2312还与毫米波远端模块30连接。第二信号复用子单元2311用于将得到第二业务信号和第二控制信号复用成上行模拟复用信号,并将上行模拟复用信号发送至第二模拟光收发单元232,第二信号分离子单元2312用于将得到的下行模拟复用信号进行分离,并将分离后得到的信号(第一业务信号和第一控制信号)发送至毫米波远端模块30。
在一示例性实施例中,一个第二模拟光收发单元232包括至少两个第二激光发射子单元2321、至少两个第二激光接收子单元2322、第二光合路子单元2323和第二光分路子单元2324,至少两个第二激光发射子单元2321与第二光合路子单元2323连接,至少两个第二激光发射子单元2321还与第二复用分离单元231连接,即,至少两个第二激光发射子单元2321还与至少两个第二信号复用子单元2311一一对应连接。至少两个第二激光接收子单元2322与第二光分路子单元2324连接,至少两个第二激光接收子单元2322还与第二复用分离单元231连接,即,至少两个第二激光接收子单元2322还与至少两个第二信号分离子单元2312一一对应连接。第二激光发射子单元2321用于把所接收的上行模拟复用信号转换产生相应的单波长光信号,第二光合路子单元2323用于将至少两个第二激光发射子单元2321所产生的单波长光信号进行波分合路为第二光信号,并将第二光信号发送至光纤子模块22以进行光信号的传输。第二光分路子单元2324用于接收光纤子模块22传输的第一光信号,并将第一光信号波分分路为各单波长光信号分别进入各第二激光接收子单元2322,第二激光接收子单元2322用于把接收到的单波长光信号转换产生的对应下行模拟复用信号,并发送至相应的第二信号分离子单元2312,以进行下行模拟复用信号的分离(第一业务信号和第一控制 信号)。需要说明的是,第二激光发射子单元2321为一模拟激光发射器,第二激光接收子单元2322为一模拟激光接收器。第二激光发射子单元2321的工作原理为:模拟电信号经过阻抗匹配处理后输入至激光二极管,发射成光波,再经过光隔离处理后实现不同波长及收发不同方向模拟光信号的隔离。第二激光接收子单元2322的工作原理为:光信号经过光电转换二极管,恢复成电信号,经过阻抗匹配处理后输出模拟电信号。
毫米波远端模块30用于辐射发射下行毫米波发信号和辐射接收上行毫米波收信号,还用于下行射频发信号与下行毫米波发信号间的转换,及上行射频收信号与上行毫米波收信号间的转换。在一示例性实施例中,参考图5,毫米波远端模块30包括至少两个收发链路子模块31,收发链路子模块31的个数为毫米波远端模块30的收发通道的个数,即为N。至少两个收发链路子模块31与第二信号处理子模块23连接,在一示例性实施例中,至少两个收发链路子模块31与第二复用分离单元231连接,在一示例性实施例中,至少两个收发链路子模块31与至少两个第二信号复用子单元2311一一对应连接,至少两个收发链路子模块31还与至少两个第二信号分离子单元2312一一对应连接。
本实施例中,参考图6,每个收发链路子模块31包括依次连接的变频单元311、前端单元312、波控单元313及阵列天线单元314,变频单元311还与毫米波传输模块20连接。变频单元311用于上行射频收信号与上行毫米波收信号的转换,及下行射频发信号与下行毫米波发信号的转换,即,实现第一业务信号和第二业务信号在中射频频段和毫米波频段的变换,控制第一业务信号和第二业务信号的工作频段,以便于高效传输;前端单元312用于对下行毫米波发信号进行放大滤波处理及对上行毫米波收信号进行接收放大滤波处理;波控单元313用于控制下行毫米波发信号及上行毫米波收信号的相位和幅度;阵列天线单元314用于向空口辐射发射下行毫米波发信号和从空口辐射接收到上行毫米波收信号,在一示例性实施例中,阵列天线单元314将接收到的下行毫米波发信号向空口辐射发射,并且从空口辐射接收上行毫米波收信号。本实施例中实现了上下行毫米波收发信号的高效接收和发送,以及提高了毫米波收发装置的电磁兼容性,具有良好的屏蔽作用。在一示例性实施例中,变频单元311包括共毫米波本振信号的上变频子单元3111和下变频子单元3112。
在一示例性实施例中,继续参考图6,前端单元312包括与变频单元311连接的功率放大子单元3121和低噪声放大子单元3122,及分别与功率放大子单元3121和低 噪声放大子单元3122连接的滤波子单元3123,滤波子单元3123还与波控单元313连接。功率放大子单元3121用于对变频单元311处理后的下行毫米波发信号进行功率放大处理(即进行功率放大及发送处理);滤波子单元3123用于对功率放大子单元3121处理后的下行毫米波信号进行滤波处理,及对波控单元313处理后的上行毫米波收信号进行滤波处理;低噪声放大子单元3122用于接收滤波子单元3123处理后的上行毫米波收信号并进行低噪声放大处理。
本实施例中,继续参考图5,每个毫米波远端模块30还包括:第二控制子模块32,第二控制子模块32与毫米波传输模块20连接,第二控制子模块32用于接收毫米波传输模块20发送的第一控制信号及将第二控制信号发送至毫米波传输模块20。在一示例性实施例中,第二控制子模块32与第二信号处理子模块23中的第二复用分离单元231连接,在一示例性实施例中,第二控制子模块32分别与第二信号复用子单元2311连接和第二信号分离子单元2312连接,通过第二信号分离子单元2312接收第一控制信号,及将第二控制信号发送至第二信号复用子单元2311,以实现第一控制信号的响应应答。
本实施例中,继续参考图5,毫米波远端模块还包括:第二电源子模块33,第二电源子模块33用于对至少两个收发链路子模块31和第二控制子模块32进行供电。
在一示例性实施例中,当毫米波远端模块30下行发射工作时,第二信号分离子单元2312将下行模拟复用信号进行分离得到第一业务信号和第一控制信号(第一控制信号包括射频参考信号、毫米波本振信号和中频OOK控制信号),第二信号分离子单元2312将第一业务信号和毫米波本振信号发送至上变频子单元3111,上变频子单元3111根据毫米波本振信号的倍频处理信号对中射频频段的第一业务信号进行频率变换处理,以控制第一业务信号的工作频段到毫米波频段,得到下行毫米波发信号。第二信号分离子单元2312将射频参考信号和控制指令信号发送至第二控制子模块32,第二控制子模块32根据基于射频参考信号进行时钟同步并对毫米波远端模块30提供时钟基准,根据控制指令信号执行对应操作,完成对其他模块的控制并根据执行结果产生对应的中频OOK应答响应信号(即第二控制信号)。变频处理得到的下行毫米波发信号发送至功率放大子单元3121以进行功率放大,再经过滤波子单元3123进行滤波处理后进入波控单元313中以对下行毫米波发信号进行相位和幅度的控制,波控单元313处理后的下行毫米波发信号发送至阵列天线单元314,阵列天线单元314向空口辐射发射下行毫米波发信号成毫米波频段的无线信号。当毫米波远端模块30上行 接收工作时,阵列天线单元314从空口辐射接收毫米波频段的无线信号得到上行毫米波收信号,上行毫米波收信号经过波控单元313进行相位和幅度的控制后,进入滤波子单元3123进行滤波处理,经滤波处理后进入低噪声放大子单元3122进行低噪声放大处理后,进入下变频子单元3112,下变频子单元3112根据与上变频子单元3111共用的毫米波本振信号的倍频信号对上行毫米波信号进行频率变换处理,以控制上行毫米波收信号的工作频段至便于传输的中射频频段,得到第二业务信号,并将第二业务信号发送至第二信号复用子单元2311,第二控制子模块32产生第二控制信号发送至第二信号复用子单元2311。
本实施例提供的一种毫米波收发装置,包括数字中频模块、至少两个毫米波传输模块及至少两个毫米波远端模块;数字中频模块与至少两个毫米波传输模块连接,至少两个毫米波传输模块与至少两个毫米波远端模块一一对应连接;数字中频模块用于下行射频发信号的发信和上行射频收信号的收信;毫米波远端模块用于辐射发射下行毫米波发信号和辐射接收上行毫米波收信号,还用于下行射频发信号与下行毫米波发信号间的转换,及上行射频收信号与上行毫米波收信号间的转换;毫米波传输模块用于数字中频模块与毫米波远端模块之间的下行射频发信号和上行射频收信号的传输。通过以上方式,本公开中的毫米波收发装置采用分布式架构,相较于一体化的AAU架构,减小了体积和重量,并且,在有热点大容量需求的商务区和室内等复杂应用场景中,便于部署。
下面作为一个示例,具体介绍一下2个收发通道的上下毫米波的收发过程,具体如下。
下行发送方向,参考图7,基带处理单元经eCPRI接口从基带处理装置接收到包括下行基带发业务信号、时钟基准信号和控制指令信号,基带处理子模块将下行基带发业务信号发送至中频处理子模块,以使得中频处理子模块根据下行基带发业务信号进行中射频处理后生成第一业务信号RF_Down1和第一业务信号RF_Down2,基带处理子模块将时钟基准信号发送至时钟本振单元,时钟本振单元根据时钟基准信号产生模块自身运行需要的时钟及同步信号,也产生各毫米波远端模块30所需要的一一对应的射频参考信号(RF_REF)和毫米波本振信号(RF_LO)。基带处理子模块将控制指令信号发送至第一主控子单元,第一主控子单元解析成控制指令,并把有关对各毫米波远端模块30的控制指令生成对应的控制信号发送至各自对应的第一调制子单元,经过OOK调制同毫米波远端模块30一一对应的中频OOK控制信号IF_OOK_Ctrl。将 RF_Down1、RF_REF和IF_OOK_Ctrl发送至一个第一信号复用子单元进行复用,得到一路下行模拟复用信号,将RF_Down2和RF_LO发送至另一个第一信号复用子单元进行复用,得到另一路下行模拟复用信号。将两路下行模拟复用信号发送至相应的第一激光发射子单元以转换成对应的单波长光信号,两个单波长光信号经第一光合路子单元波分合路成第一光信号。第一光信号经光纤子模块发送至第二光分路子单元,第二光分路子单元将第一光信号波分分路成两个单波长光信号,每个单波长光信号发送至对应的第二激光接收子单元以转换成对应的下行模拟复用信号。一个下行模拟复用信号发送至一个第二信号分离子单元进行分离,恢复得到RF_Down1、RF_REF和IF_OOK_Ctrl。另一个下行模拟复用信号发送至另一个第二信号分离子单元进行分离,恢复得到RF_Down2和RF_LO。将RF_REF和IF_OOK_Ctrl发送至第二控制子模块,转换生成系统的基准时钟信号及操作控制信号,保证系统同步运行及按控制指令进行操作。RF_LO发送至收发链路子模块中的变频单元,作为所有收发链路子模块中变频单元所需要的毫米波本振信号。将RF_Down1发送至一个收发链路子模块中的变频单元,变频单元利用前述RF_LO的倍频信号把RF_Down1经变频到毫米波频段,并经过功率放大子单元、滤波子单元和波控单元处理后,通过阵列天线单元将RF_Down1对应的下行毫米波发信号向空口辐射发射。将RF_Down2发送至另一个收发链路子模块中的变频单元,变频单元利用RF_LO的倍频信号把RF_Down2变频到毫米波频段,并经过功率放大子单元、滤波子单元和波控单元处理后,通过阵列天线单元将RF_Down2对应的下行毫米波发信号向空口辐射发射。
上行接收方向,参考图8,一个收发链路子模块中的阵列天线单元辐射接收到上行毫米波收信号,经波控单元、滤波子单元、低噪声放大子单元和变频单元处理后得到第二业务信号RF_Up1,将RF_Up1发送至一个第二信号复用子单元。另一个收发链路子模块中的阵列天线单元辐射接收到另一路上行毫米波收信号,经波控单元、滤波子单元、低噪声放大子单元和变频单元处理后得到另一个第二业务信号RF_Up2,将RF_Up2发送至另一个第二信号复用子单元。第二控制子模块解调前述中频OOK控制信号并执行对应的控制指令,产生相应的应答响应信号并中频OOK调制成第二控制信号IF_OOK_Ack。将RF_Up1和IF_OOK_Ack发送至一个第二信号复用子单元进行复用,以得到一个上行模拟复用信号,将RF_Up2发送至另一个第二信号复用子单元进行复用,以得到另一个上行模拟复用信号,将上行模拟复用信号发送至相应的第二激光发射子单元以转换成对应的单波长光信号,两个单波长光信号经第二光合路子单 元波分合路成第二光信号。第二光信号经光纤子模块发送至第一光分路子单元,第一光分路子单元将第二光信号模拟分路成两个单波长光信号,每个单波长光信号发送至对应的第一激光接收子单元以转换成对应的上行模拟复用信号。一个上行模拟复用信号发送至一个第一信号分离子单元进行分离,恢复得到一个第二业务信号RF_Up1和第二控制信号IF_OOK_Ack。另一个上行模拟复用信号发送至另一个信号分离子单元进行分离,恢复得到另一个第二业务信号RF_Up2。将IF_OOK_Ack发送至一个第一解调子单元进行OOK解调后产生Up_ACK,将Up_ACK发送至第一主控子单元中以进行应答信息确认。将RF_Up1和RF_Up2第二业务信号传输至中频子模块中收信解调以得到上行基带收业务信号,中频子模块将上行基带收业务信号传输至基带处理子模块,随上行基带信号上传至基带处理装置。
本实施例还提供一种毫米波通信系统,参考图9,毫米波通信系统包括依次连接的网管装置300、基带处理装置200和毫米波收发装置100,毫米波收发装置100为如上所述的毫米波收发装置。毫米波收发装置的具体结构可参考上述所述,本实施例中在此不做赘述。
本公开提供一种毫米波收发装置,包括数字中频模块、至少两个毫米波传输模块及至少两个毫米波远端模块;数字中频模块与至少两个毫米波传输模块连接,至少两个毫米波传输模块与至少两个毫米波远端模块一一对应连接;数字中频模块用于下行射频发信号的发信和上行射频收信号的收信;毫米波远端模块用于辐射发射下行毫米波发信号和辐射接收上行毫米波收信号,还用于下行射频发信号与下行毫米波发信号间的转换,及上行射频收信号与上行毫米波收信号间的转换;毫米波传输模块用于数字中频模块与毫米波远端模块之间的下行射频发信号和上行射频收信号的传输。通过以上方式,本公开中的毫米波收发装置采用分布式架构,相较于一体化的AAU架构,减小了体积和重量,并且,在有热点大容量需求的商务区和室内等复杂应用场景中,便于部署。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、电路、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、电路、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括 一个……”限定的要素,并不排除在包括所述要素的过程、电路、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。
因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种毫米波收发装置,包括:数字中频模块、至少两个毫米波传输模块及至少两个毫米波远端模块;其中,
    所述数字中频模块与至少两个所述毫米波传输模块连接,至少两个所述毫米波传输模块与至少两个所述毫米波远端模块一一对应连接;
    所述数字中频模块用于下行射频发信号的发信和上行射频收信号的收信;
    所述毫米波远端模块用于辐射发射下行毫米波发信号和辐射接收上行毫米波收信号,还用于所述下行射频发信号与所述下行毫米波发信号间的转换,及所述上行射频收信号与所述上行毫米波收信号间的转换;
    所述毫米波传输模块用于所述数字中频模块与所述毫米波远端模块之间的所述下行射频发信号和所述上行射频收信号的传输。
  2. 根据权利要求1所述的装置,其中,每个所述毫米波传输模块包括:依次连接的第一信号处理子模块、光纤子模块及第二信号处理子模块,所述第一信号处理子模块还与所述数字中频模块连接,所述第二信号处理子模块还与所述毫米波远端模块连接;其中,
    所述第一信号处理子模块用于将所述下行射频发信号转化为第一光信号及将第二光信号转化为所述上行射频收信号;
    所述第二信号处理子模块用于将所述上行射频收信号转化为所述第二光信号及将所述第一光信号转化为所述下行射频发信号;
    所述光纤子模块用于所述第一信号处理子模块与所述第二信号处理子模块之间的所述第一光信号和所述第二光信号的传输。
  3. 根据权利要求2所述的装置,其中,所述下行射频发信号包括至少两个第一业务信号和第一控制信号,所述上行射频收信号包括至少两个第二业务信号和第二控制信号;
    所述第一信号处理子模块包括:相连接的第一复用分离单元和第一模拟光收发单元,所述第一复用分离单元还与所述数字中频模块连接,所述第一模拟光收发单元还与所述光纤子模块连接;其中,
    所述第一复用分离单元用于将至少两个所述第一业务信号和所述第一控制信号复 用成至少两个下行模拟复用信号及将至少两个上行模拟复用信号分离成至少两个所述第二业务信号和所述第二控制信号;
    所述第一模拟光收发单元用于将至少两个所述下行模拟复用信号转化为所述第一光信号及将所述第二光信号转化为至少两个所述上行模拟复用信号。
  4. 根据权利要求3所述的装置,其中,所述第二信号处理子模块包括:相连接的第二复用分离单元和第二模拟光收发单元,所述第二复用分离单元还与所述毫米波远端模块连接,所述第二模拟光收发单元还与所述光纤子模块连接;其中,
    所述第二复用分离单元用于将至少两个所述第二业务信号和所述第二控制信号复用成至少两个所述上行模拟复用信号及将至少两个所述下行模拟复用信号分离成至少两个所述第一业务信号和所述第一控制信号;
    所述第二模拟光收发单元用于将至少两个所述上行模拟复用信号转化为所述第二光信号及将所述第一光信号转化为至少两个所述下行模拟复用信号。
  5. 根据权利要求3所述的装置,其中,每个所述毫米波远端模块包括:至少两个收发链路子模块,每个所述收发链路子模块包括:依次连接的变频单元、前端单元、波控单元及阵列天线单元,所述变频单元还与所述毫米波传输模块连接;其中,
    所述变频单元用于所述上行射频收信号与所述上行毫米波收信号的转换,及所述下行射频发信号与所述下行毫米波发信号的转换;
    所述前端单元用于对所述下行毫米波发信号及所述上行毫米波收信号进行放大滤波处理;
    所述波控单元用于控制所述下行毫米波发信号及所述上行毫米波收信号的相位和幅度;
    所述阵列天线单元用于辐射发射所述下行毫米波发信号到空口和从所述空口辐射接收所述上行毫米波收信号。
  6. 根据权利要求5所述的装置,其中,所述前端单元包括:与所述变频单元连接的功率放大子单元和低噪声放大子单元,及分别与所述功率放大子单元和所述低噪声放大子单元连接的滤波子单元,所述滤波子单元还与所述波控单元连接;其中,
    所述功率放大子单元用于对所述变频单元处理后的所述下行毫米波发信号进行功率放大处理;
    所述滤波子单元用于对所述功率放大子单元处理后的所述下行毫米波发信号进行滤波处理,及对所述波控单元处理后的所述上行毫米波收信号进行滤波处理;
    所述低噪声放大子单元用于对所述滤波子单元处理后的所述上行毫米波收信号进行低噪声放大处理。
  7. 根据权利要求5所述的装置,其中,所述数字中频模块包括:基带处理子模块及与所述基带处理子模块连接的中频处理子模块和第一控制子模块,所述中频处理子模块和所述第一控制子模块均与至少两个所述毫米波传输模块连接,其中,
    所述基带处理子模块用于与基带处理装置进行基带信号交互;
    所述中频处理子模块用于将根据下行基带信号处理得到的至少两个所述第一业务信号发送至所述毫米波传输模块及将所述毫米波传输模块传输的至少两个所述第二业务信号处理生成上行基带信号;
    所述第一控制子模块用于将根据所述下行基带信号处理得到的所述第一控制信号发送至所述毫米波传输模块及接收所述毫米波传输模块传输的所述第二控制信号,所述第二控制信号为所述第一控制信号的应答响应信号。
  8. 根据权利要求7所述的装置,其中,每个所述毫米波远端模块还包括:第二控制子模块,所述第二控制子模块与所述毫米波传输模块连接;其中,
    所述第二控制子模块用于接收所述毫米波传输模块传输的所述第一控制信号及将所述第二控制信号发送至所述毫米波传输模块。
  9. 根据权利要求8所述的装置,其中,所述数字中频模块还包括:第一电源子模块;所述毫米波远端模块还包括:第二电源子模块;其中,
    所述第一电源子模块用于对所述基带处理子模块、所述中频处理子模块和所述第一控制子模块进行供电;
    所述第二电源子模块用于对至少两个所述收发链路子模块和所述第二控制子模块进行供电。
  10. 一种毫米波通信系统,包括依次连接的网管装置、基带处理装置及如权利要求1~9任一项所述的毫米波收发装置。
PCT/CN2023/079866 2022-07-27 2023-03-06 一种毫米波收发装置及通信系统 WO2024021609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210891706.6 2022-07-27
CN202210891706.6A CN117526985A (zh) 2022-07-27 2022-07-27 一种毫米波收发装置及通信系统

Publications (1)

Publication Number Publication Date
WO2024021609A1 true WO2024021609A1 (zh) 2024-02-01

Family

ID=89705164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079866 WO2024021609A1 (zh) 2022-07-27 2023-03-06 一种毫米波收发装置及通信系统

Country Status (2)

Country Link
CN (1) CN117526985A (zh)
WO (1) WO2024021609A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100138572A1 (en) * 2008-12-02 2010-06-03 Broadcom Corporation Universal serial bus device with millimeter wave transceiver and system with host device for use therewith
CN208224481U (zh) * 2018-01-23 2018-12-11 成都菲斯洛克电子技术有限公司 一种毫米波信号收发一体机
CN110661558A (zh) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 一种毫米波收发信机
CN111082861A (zh) * 2019-12-02 2020-04-28 广东省电信规划设计院有限公司 毫米波通信测试系统
CN111273278A (zh) * 2020-02-06 2020-06-12 零八一电子集团有限公司 四通道毫米波数字和差单脉冲精密跟踪系统
CN112187309A (zh) * 2019-06-13 2021-01-05 中兴通讯股份有限公司 一种毫米波收发信机
CN112867018A (zh) * 2020-12-29 2021-05-28 广东省电信规划设计院有限公司 一种增加频谱带宽、毫米波成像的方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100138572A1 (en) * 2008-12-02 2010-06-03 Broadcom Corporation Universal serial bus device with millimeter wave transceiver and system with host device for use therewith
CN208224481U (zh) * 2018-01-23 2018-12-11 成都菲斯洛克电子技术有限公司 一种毫米波信号收发一体机
CN110661558A (zh) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 一种毫米波收发信机
CN112187309A (zh) * 2019-06-13 2021-01-05 中兴通讯股份有限公司 一种毫米波收发信机
CN111082861A (zh) * 2019-12-02 2020-04-28 广东省电信规划设计院有限公司 毫米波通信测试系统
CN111273278A (zh) * 2020-02-06 2020-06-12 零八一电子集团有限公司 四通道毫米波数字和差单脉冲精密跟踪系统
CN112867018A (zh) * 2020-12-29 2021-05-28 广东省电信规划设计院有限公司 一种增加频谱带宽、毫米波成像的方法和系统

Also Published As

Publication number Publication date
CN117526985A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
Sung et al. RoF-based radio access network for 5G mobile communication systems in 28 GHz millimeter-wave
EP3360390B1 (en) Wireless access system
US10027415B2 (en) Apparatuses and methods for transmitting and receiving control signal in analog radio-over-fiber (ROF)-based mobile fronthaul
CN107615876B (zh) 用于大规模mimo系统的rru控制消息传递架构的系统和方法
CN113765589B (zh) 一种太赫兹无线光纤扩展装置及其实时传输系统
US10164731B2 (en) Method for base station backhaul, related device and system for base station backhaul
WO2023124112A1 (zh) 基站及通信系统
US7844217B2 (en) Point-to-multipoint communication terminal having a single RF chain
US11050491B2 (en) Radio access network using radio over fibre
CN102006137B (zh) 多频率毫米波产生及在多基站光载微波通信系统中的应用方法与系统
WO2015024453A1 (zh) 基于ftth网络的光纤和无线混合接入系统及混合接入方法
Sung et al. 5G trial services demonstration: IFoF-based distributed antenna system in 28 GHz millimeter-wave supporting gigabit mobile services
JP2016533132A (ja) 遠隔無線装置
Ruggeri et al. Multi-user IFoF uplink transmission over a 32-element 60GHz phased array antenna enabling both frequency and spatial division multiplexing
Dat et al. High-speed radio-on-free-space optical mobile fronthaul system for ultra-dense radio access network
Guillory et al. Radio over fiber tunnel for 60 GHz wireless home network
WO2024021609A1 (zh) 一种毫米波收发装置及通信系统
CN111769882A (zh) 基于多倍频光矢量毫米波信号产生的光载无线链路架构
US7463905B1 (en) Cellular telephony mast cable reduction
Li et al. Multi-service digital radio over fibre system with millimetre wave bridging
WO2021115234A1 (zh) 中心单元和拉远单元
Li et al. Novel digital and analogue hybrid radio over fibre system for distributed antenna system (DAS) fronthaul applications
CN111918154B (zh) 网络设备和终端设备
CN115426010B (zh) 一种5g mimo信号传输系统及方法
WO2022067820A1 (zh) 天线控制装置、射频拉远单元以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844827

Country of ref document: EP

Kind code of ref document: A1