WO2024021540A1 - Perovskite solar cell and preparation method therefor - Google Patents

Perovskite solar cell and preparation method therefor Download PDF

Info

Publication number
WO2024021540A1
WO2024021540A1 PCT/CN2023/072269 CN2023072269W WO2024021540A1 WO 2024021540 A1 WO2024021540 A1 WO 2024021540A1 CN 2023072269 W CN2023072269 W CN 2023072269W WO 2024021540 A1 WO2024021540 A1 WO 2024021540A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
layer
sputtering
perovskite
solar cell
Prior art date
Application number
PCT/CN2023/072269
Other languages
French (fr)
Chinese (zh)
Inventor
肖平
蔡子贺
赵志国
赵政晶
刘云
张赟
秦校军
赵东明
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024021540A1 publication Critical patent/WO2024021540A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of solar cells, and in particular relates to a perovskite solar cell and a preparation method thereof.
  • a solar cell is a device that directly converts light energy into electrical energy through the photoelectric effect or photochemical reaction. Its technological development has roughly gone through three stages: the first generation of solar cells mainly refers to monocrystalline silicon and polycrystalline silicon solar cells. The photoelectric conversion efficiency has reached 25% and 20.4% respectively; the second generation solar cells mainly include amorphous silicon thin film cells and polycrystalline silicon thin film cells; the third generation solar cells mainly refer to some new concept cells with high conversion efficiency, such as dye-sensitive Chemical batteries, quantum dot batteries and organic solar cells, etc.
  • Perovskite solar cells are solar cells that use perovskite-type organic metal halide semiconductors as light-absorbing materials and belong to the third generation of solar cells. Perovskite solar cells can convert photons into electrical energy with high efficiency. They have the advantages of easy manufacturing and wide source of materials. They are currently a research hotspot in the photovoltaic field. How to further improve the photoelectric performance of perovskite solar cells is the current research focus.
  • the object of the present invention is to provide a perovskite solar cell and a preparation method thereof.
  • the perovskite solar cell provided by the present invention has very excellent photoelectric properties.
  • the invention provides a perovskite solar cell, which includes: a transparent conductive base layer, an electron transport layer, a perovskite layer, a hole transport layer and a top electrode layer that are stacked in sequence;
  • the electron transport layer includes: a TiO 2 dense layer, a TiO 2 nanocolumn array arranged on one side of the TiO 2 dense layer, and an amorphous TiO 2-x nanoshell compounded on the surface of the TiO 2 nanocolumn array. ; The other side of the TiO2 dense layer is in contact with the transparent conductive base layer.
  • the thickness of the TiO 2 dense layer is 20 to 100 nm.
  • the thickness of the amorphous TiO 2-x nanoshell is 10-100 nm.
  • the invention provides a method for preparing the perovskite solar cell described in the above technical solution, which includes the following steps:
  • a TiO 2 dense layer, a TiO 2 nanopillar array, an amorphous TiO 2-x nanoshell, a perovskite layer, a hole transport layer and a top electrode layer are sequentially prepared from bottom to top to obtain a perovskite solar cell. .
  • the TiO 2 dense layer is prepared by magnetron sputtering.
  • the sputtering pressure of the magnetron sputtering is 0.1 to 2.0 Pa; the sputtering rate of the magnetron sputtering is 0.1 to 2 nm/min; the sputtering target material of the magnetron sputtering is TiO 2 -x ; the sputtering atmosphere of the magnetron sputtering is a mixed atmosphere of oxygen and inert gas; after the magnetron sputtering is completed, an annealing treatment is performed, and the temperature of the annealing treatment is 400 to 500°C.
  • the processing time is 1 to 5 hours.
  • the TiO 2 nanopillar array is prepared by hydrothermal synthesis.
  • the solution used in the hydrothermal synthesis is a saturated NaCl aqueous solution of TiCl 3 ; the concentration of TiCl 3 in the water solution is 0.1-0.5 mol/L; the reaction temperature of the hydrothermal synthesis is 100-200°C; The reaction time of the hydrothermal synthesis is 1 to 5 hours.
  • the method of preparing the amorphous TiO 2-x nanoshell is magnetron sputtering.
  • the sputtering pressure of the magnetron sputtering is 0.1 to 2.0 Pa; the sputtering rate of the magnetron sputtering is 0.1 to 2 nm/min; the sputtering target material of the magnetron sputtering is TiO 2 -x ;
  • the sputtering atmosphere of the magnetron sputtering is an inert gas atmosphere.
  • the present invention provides a perovskite solar cell and a preparation method thereof.
  • the perovskite solar cell provided by the invention includes: a transparent conductive base layer, an electron transport layer, a perovskite layer, a hole transport layer and a top electrode layer that are stacked in sequence;
  • the electron transport layer includes: a TiO 2 dense layer, which is The TiO 2 nano-column array on one side of the TiO 2 dense layer, and the amorphous TiO 2-x nanoshell composited on the surface of the TiO 2 nano-column array; the other side of the TiO 2 dense layer has a transparent
  • the conductive base layers are in contact.
  • the technical solution provided by the invention sets up a nano-column array in the electron transmission layer, and composites an amorphous nano-shell on the surface of the nano-column array.
  • This nano-structure can produce a strong localized surface plasmon resonance effect, causing the surface of the nano-structure to generate The strong electromagnetic field and high concentration of high-energy carriers (electron- hole pairs), thereby increasing the photocurrent of the perovskite cell.
  • the technical solution provided by the present invention can effectively enhance the photoelectric performance of perovskite cells and has good market prospects.
  • Figure 1 is a schematic structural diagram of a perovskite solar cell provided by the present invention.
  • Figure 2 is a partial structural diagram of the perovskite solar cell provided by the present invention.
  • the markings in the drawing are as follows: 1 is the top electrode layer, 2 is the hole transport layer, 3 is the perovskite layer, 4 is the electron transport layer, 5 is the transparent conductive base layer, 6 is TiO2 dense layer, 7 is TiO2 nanometer Pillar array, 8 is amorphous TiO 2-x nanoshell.
  • the invention provides a perovskite solar cell, which includes: a transparent conductive base layer (5), an electron transport layer (4), a perovskite layer (3), a hole transport layer (2) and a top electrode that are stacked in sequence. layer(1).
  • the transparent conductive base layer (5) is preferably an FTO transparent conductive base layer, an ITO transparent conductive base layer or an AZO transparent conductive base layer.
  • the electron transport layer (4) includes: a TiO 2 dense layer (6), a TiO 2 nanocolumn array (7) provided on one side of the TiO 2 dense layer (6), and the amorphous TiO 2-x nanoshell (8) compounded on the surface of the TiO 2 nanopillar array (7); the other side of the TiO 2 dense layer (6) is in contact with the transparent conductive base layer (5).
  • the thickness of the TiO 2 dense layer (6) is preferably 20 to 100nm, specifically 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 70nm.
  • the TiO 2 dense layer (6) is preferably prepared by magnetron sputtering.
  • the sputtering pressure is preferably 0.1 ⁇ 2.0Pa, more preferably 0.6Pa; the sputtering rate is preferably 0.1 ⁇ 2nm/min, more preferably 1.3nm/min;
  • the sputtering target is preferably TiO 2-x (oxygen defect type titanium dioxide);
  • the sputtering atmosphere is preferably a mixture of oxygen and inert gas, more preferably a mixture of 3% oxygen and 97% argon; annealing is preferably performed after sputtering, and the annealing temperature is preferably 400 to 500°C. More preferably, it is 450°C, and the annealing time is preferably 1 to 5 hours, and more preferably 3 hours.
  • the diameter of the nanopillars in the TiO 2 nanopillar array (7) is preferably 5 to 500nm, specifically 5nm, 25nm, 50nm, 75nm, 100nm, 125nm, 150nm, 175nm, 200nm, 225nm, 250nm, 275nm, 300nm, 325nm, 350nm, 375nm, 400nm, 425nm, 450nm, 475nm or 500nm, most preferably 100nm; the length of the nanopillar is preferably 100-800nm, specifically 100nm, 125nm, 150nm , 175nm, 200nm, 225nm, 250nm, 275nm, 300nm, 325nm, 350nm, 375nm, 400nm, 425nm, 450nm, 475nm, 500nm, 525nm, 550nm, 575nm, 600nm, 6
  • the TiO 2 nanopillar array (7) is preferably prepared by a hydrothermal method.
  • the solution used is preferably a saturated NaCl aqueous solution of TiCl 3 , and the concentration of TiCl 3 is preferably 0.1 to 0.5 mol/L, more preferably 0.15 mol/L;
  • the temperature of the hydrothermal reaction is preferably 100 to 200°C, and more preferably 170 °C;
  • the hydrothermal reaction time is preferably 1 to 5 hours, more preferably 2 hours.
  • the thickness of the amorphous TiO 2-x nanoshell (8) is preferably 10 to 100nm, specifically 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 30nm.
  • the amorphous TiO 2-x nanoshell (8) is preferably prepared by magnetron sputtering.
  • the sputtering pressure is preferably 0.1 ⁇ 2.0Pa, more preferably 0.6Pa;
  • the sputtering rate is preferably 0.1 ⁇ 2nm/min, more preferably 1.0nm/min;
  • the sputtering target material is preferably TiO 2-x ;
  • the atmosphere is preferably an inert gas, more preferably argon gas.
  • the materials of the perovskite layer (3) include but are not limited to For light-absorbing materials with perovskite crystal form such as organic-inorganic hybrid lead halide perovskite, organic-inorganic hybrid tin/lead mixed halide perovskite or all-inorganic perovskite; the thickness of the perovskite layer (3) It is preferably 300nm to 1.5 ⁇ m, specifically 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m or 1.5 ⁇ m, with 400nm being the most preferred.
  • the specific preparation method of the perovskite layer (3) is not particularly limited, including but not limited to spin coating, blade coating, spray coating, slit coating, screen printing, evaporation Or chemical vapor deposition (CVD), etc.
  • the material of the hole transport layer (2) includes but is not limited to spiro-OMeTAD (2,2',7,7'-tetra[N,N-di(4-methyl Oxyphenyl)amino]-9,9'-spirobifluorene), P3HT (3-hexyl-substituted polythiophene) and PTAA (poly[bis(4-phenyl)(2,4,6-trimethylbenzene) base) amine]);
  • the thickness of the hole transport layer (2) is preferably 20 to 200nm, specifically 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm , 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm or 200nm, most preferably 50nm.
  • the specific preparation method of the hole transport layer (2) is not particularly limited, including but not limited to spin coating, blade coating, spray coating, slit coating, screen printing, Evaporation or chemical vapor deposition (CVD), etc.
  • the material of the top electrode layer (1) is preferably a metal material and/or a carbon material; the metal material includes but is not limited to one or more of gold, silver and copper. ;
  • the carbon material includes but is not limited to graphene and/or amorphous carbon;
  • the thickness of the top electrode layer (1) is preferably 20nm to 50 ⁇ m, specifically 20nm, 50nm, 100nm, 200nm, 300nm, 400nm, 500nm, 700nm , 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m, most preferably 200nm.
  • the specific preparation method of the top electrode layer (1) is not particularly limited, including but not limited to magnetron sputtering, electron beam evaporation, thermal evaporation, atomic layer deposition, or pulse Laser deposition, etc.
  • the invention also provides a method for preparing a perovskite solar cell, which includes the following steps:
  • a transparent conductive base layer (5) is provided;
  • the bottom layer (5) is preferably an FTO transparent conductive base layer, an ITO transparent conductive base layer or an AZO transparent conductive base layer.
  • the transparent conductive base layer (5) is preferably cleaned before use; the cleaning method is preferably ultrasonic cleaning using ionized water, acetone and ethanol in sequence; the time of each ultrasound is preferably 10 to 30 minutes, more preferably 20 minutes; after the ultrasonic cleaning is completed, drying is performed; the drying method is preferably blow drying, and more preferably nitrogen blow drying.
  • the method of preparing the TiO 2 dense layer (6) is preferably magnetron sputtering;
  • the sputtering pressure of the magnetron sputtering is preferably 0.1 to 2.0 Pa, specifically 0.1 Pa, 0.2 Pa, 0.3Pa, 0.4Pa, 0.5Pa, 0.6Pa, 0.7Pa, 0.8Pa, 0.9Pa, 1.0Pa, 1.1Pa, 1.2Pa, 1.3Pa, 1.4Pa, 1.5Pa, 1.6Pa, 1.7Pa, 1.8Pa, 1.9Pa or 2.0Pa, most preferably 0.6Pa;
  • the sputtering rate of the magnetron sputtering is preferably 0.1 ⁇ 2nm/min, specifically 0.1nm/min, 0.2nm/min, 0.3nm/min, 0.4nm /min ⁇ 0.5nm/min ⁇ 0.6nm/min ⁇ 0.7nm/min ⁇ 0.8nm/min ⁇ 0.9nm/min ⁇
  • the temperature of the annealing treatment is preferably 400-500°C, specifically 400°C, 410°C, 420°C, 430°C, 440°C, 450°C, 460°C, 470°C , 480°C, 490°C or 500°C, most preferably 450°C;
  • the time of the annealing treatment is preferably 1 to 5h, specifically 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h Or 5h, most preferably 3h.
  • the thickness of the prepared TiO 2 dense layer (6) is preferably 20 to 100nm, specifically 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 70nm.
  • the method of preparing the TiO 2 nanocolumn array (7) is preferably hydrothermal synthesis;
  • the solution used in the hydrothermal synthesis is preferably a saturated NaCl aqueous solution of TiCl 3 , and the concentration of TiCl 3 is preferably 0.1 ⁇ 0.5mol/L, specifically 0.1mol/L, 0.12mol/L, 0.15mol/L, 0.17mol/L, 0.2mol/L, 0.25mol/L, 0.3mol/L, 0.35mol/L, 0.4mol/L, 0.45mol/L or 0.5mol/L, the most preferred is 0.15mol/L;
  • the reaction temperature of the hydrothermal synthesis is preferably 100 ⁇ 200°C, specifically it can be 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C or 200°C, most preferably 170°C;
  • the reaction time of the hydrothermal synthesis is preferably 1 ⁇
  • the method of preparing the amorphous TiO 2-x nanoshell (8) is preferably magnetron sputtering;
  • the sputtering pressure of the magnetron sputtering is preferably 0.1 to 2.0 Pa, specifically, it can be 0.1Pa, 0.2Pa, 0.3Pa, 0.4Pa, 0.5Pa, 0.6Pa, 0.7Pa, 0.8Pa, 0.9Pa, 1.0Pa, 1.1Pa, 1.2Pa, 1.3Pa, 1.4Pa, 1.5Pa, 1.6Pa, 1.7Pa , 1.8Pa, 1.9Pa or 2.0Pa, most preferably 0.6Pa;
  • the sputtering rate of the magnetron sputtering is preferably 0.1 ⁇ 2nm/min, specifically 0.1nm/min, 0.2nm/min, 0.3nm/ min, 0.4nm/min, 0.5nm/min, 0.6nm/min, 0.7nm/
  • the thickness of the prepared amorphous TiO 2-x nanoshell (8) is preferably 10 to 100nm, specifically 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 30nm.
  • the method of preparing the perovskite layer (3) includes but is not limited to spin coating, blade coating, spray coating, slit coating, screen printing, evaporation or chemical vapor deposition (CVD), etc.
  • the materials of the prepared perovskite layer (3) include but are not limited to organic-inorganic hybrid lead halide perovskite, organic-inorganic hybrid tin/lead mixed halide perovskite or all- Inorganic perovskite and other light-absorbing materials with perovskite crystal form;
  • the thickness of the prepared perovskite layer (3) is preferably 300nm to 1.5 ⁇ m, specifically 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m or 1.5 ⁇ m, most preferably 400 nm.
  • the method of preparing the hole transport layer (2) includes but is not limited to spin coating, blade coating, spray coating, slit coating, screen printing, evaporation or chemical vapor deposition (CVD), etc. .
  • the material of the prepared hole transport layer (2) includes but is not limited to one or more of spiro-OMeTAD, P3HT and PTAA; the prepared hole transport layer (2)
  • the thickness is preferably 20 to 200nm, specifically 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm or 200nm, most preferably 50nm.
  • the method of preparing the top electrode layer (1) includes but is not limited to magnetron sputtering, electron beam evaporation, thermal evaporation, atomic layer deposition, or pulsed laser deposition.
  • the material of the prepared top electrode layer (1) is preferably a metal material and/or a carbon material; the metal material includes but is not limited to one or more of gold, silver and copper. ;
  • the carbon material includes but is not limited to graphene and/or amorphous carbon;
  • the thickness of the prepared top electrode layer (1) is preferably 20nm to 50 ⁇ m, specifically 20nm, 50nm, 100nm, 200nm, 300nm, 400nm, 500nm, 700nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m, most preferably 200nm.
  • the technical solution provided by the invention sets up a nano-column array in the electron transmission layer, and composites an amorphous nano-shell on the surface of the nano-column array.
  • This nano-structure can produce a strong localized surface plasmon resonance effect, causing the surface of the nano-structure to generate
  • the strong electromagnetic field and high concentration of high-energy carriers (electron-hole pairs) increase the photocurrent of perovskite cells.
  • the technical solution provided by the present invention can effectively enhance the photoelectric performance of perovskite cells and has good market prospects.
  • a non-noble metal plasma resonance enhanced perovskite solar cell has the structure shown in Figures 1 to 2. Its specific preparation steps are as follows:
  • TiO 2 nanopillar array on TiO 2 dense layer Prepare TiCl 3 saturated NaCl aqueous solution, TiCl 3 concentration is 0.15mol/L, the specific preparation process is: first dissolve 23.14gTi in 115.7mL 3wt% hydrochloric acid in, and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into the saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 Nanopillar array (the diameter of the nanopillar is about 100nm, the length of the nanopillar is about is 500nm).
  • Example 1 prepared amorphous TiO 2-x nanoshells to form a localized surface plasmon resonance structure.
  • a non-noble metal plasma resonance enhanced perovskite solar cell has the structure shown in Figures 1 to 2. Its specific preparation steps are as follows:
  • TiO 2 nanopillar array on TiO 2 dense layer Prepare TiCl 3 saturated NaCl aqueous solution, TiCl 3 concentration is 0.15mol/L, the specific preparation process is: first dissolve 23.14gTi in 115.7mL 3wt% hydrochloric acid in, and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into the saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 Nanopillar array (the diameter of the nanopillar is about 100nm, the length of the nanopillar is about is 500nm).
  • Example 2 prepared amorphous TiO 2-x nanoshells to form a localized surface plasmon resonance structure.
  • a non-noble metal plasma resonance enhanced perovskite solar cell has the structure shown in Figures 1 to 2. Its specific preparation steps are as follows:
  • TiO 2 nanopillar array on TiO 2 dense layer Prepare TiCl 3 saturated NaCl aqueous solution, TiCl 3 concentration is 0.15mol/L, the specific preparation process is: first dissolve 23.14gTi in 115.7mL 3wt% hydrochloric acid in, and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into the saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 Nanopillar array (the diameter of the nanopillar is about 100nm, the length of the nanopillar is about is 500nm).
  • Example 3 prepared amorphous TiO 2-x nanoshells to form a localized surface plasmon resonance structure.
  • a kind of perovskite solar cell differs from Example 1 in that it does not have an amorphous TiO 2-x nanoshell structure, and its specific preparation steps are as follows:
  • a perovskite layer on the electron transport layer (TiO 2 dense layer/TiO 2 nanopillar array): Prepare a perovskite layer precursor with a mass fraction of 30%, the solvent is NMP, and use the scraper coating method to coat the TiO 2 electron A perovskite active layer was prepared on the surface of the transmission layer, with a scraping speed of 12mm/s, and annealed at 150°C for 20 minutes, resulting in a perovskite layer with a final thickness of 450nm.
  • Comparative Example 1 is used as a control group. Amorphous TiO 2-x nanoshells were not prepared and there was no localized surface plasmon resonance effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to the field of solar cells, and in particular to a perovskite solar cell and a preparation method therefor. The perovskite solar cell provided by the present invention comprises a transparent conductive substrate layer, an electron transport layer, a perovskite layer, a hole transport layer, and a top electrode layer which are sequentially stacked. The electron transport layer comprises: a TiO2 compact layer, a TiO2 nanopillar array arranged on one side surface of the TiO2 compact layer, and an amorphous TiO2-x nanoshell compounded on the surface of the TiO2 nanopillar array. According to the technical solution provided by the present invention, the nanopillar array is arranged in the electron transport layer, and the amorphous nanoshell is compounded on the surface of the nanopillar array. Such a nanostructure can generate a strong localized surface plasmon resonance effect, and thus a strong electromagnetic field and high-concentration high-energy carriers (electron-hole pairs) are generated on the surface of the nanostructure, thereby increasing the photocurrent of the perovskite cell.

Description

一种钙钛矿太阳能电池及其制备方法A perovskite solar cell and its preparation method
本申请要求于2022年07月27日提交中国专利局、申请号为202210888565.2、发明名称为“一种钙钛矿太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to the Chinese patent application filed with the China Patent Office on July 27, 2022, with the application number 202210888565.2 and the invention title "A perovskite solar cell and its preparation method", the entire content of which is incorporated by reference. in this application.
技术领域Technical field
本发明属于太阳能电池领域,尤其涉及一种钙钛矿太阳能电池及其制备方法。The invention belongs to the field of solar cells, and in particular relates to a perovskite solar cell and a preparation method thereof.
背景技术Background technique
太阳能电池是一种通过光电效应或者光化学反应直接把光能转化成电能的装置,其技术发展大致经历了三个阶段:第一代太阳能电池主要指单晶硅和多晶硅太阳能电池,其在实验室的光电转换效率已经分别达到25%和20.4%;第二代太阳能电池主要包括非晶硅薄膜电池和多晶硅薄膜电池;第三代太阳能电池主要指具有高转换效率的一些新概念电池,如染料敏化电池、量子点电池以及有机太阳能电池等。A solar cell is a device that directly converts light energy into electrical energy through the photoelectric effect or photochemical reaction. Its technological development has roughly gone through three stages: the first generation of solar cells mainly refers to monocrystalline silicon and polycrystalline silicon solar cells. The photoelectric conversion efficiency has reached 25% and 20.4% respectively; the second generation solar cells mainly include amorphous silicon thin film cells and polycrystalline silicon thin film cells; the third generation solar cells mainly refer to some new concept cells with high conversion efficiency, such as dye-sensitive Chemical batteries, quantum dot batteries and organic solar cells, etc.
钙钛矿太阳能电池(perovskite solar cells),是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池。钙钛矿太阳能电池能够高效率将光子转换为电能,拥有便于制造和材料来源广泛等优势,是目前光伏领域的研究热点。如何进一步提升钙钛矿太阳能电池的光电学性能,是当前的研究重点。Perovskite solar cells are solar cells that use perovskite-type organic metal halide semiconductors as light-absorbing materials and belong to the third generation of solar cells. Perovskite solar cells can convert photons into electrical energy with high efficiency. They have the advantages of easy manufacturing and wide source of materials. They are currently a research hotspot in the photovoltaic field. How to further improve the photoelectric performance of perovskite solar cells is the current research focus.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种钙钛矿太阳能电池及其制备方法,本发明提供的钙钛矿太阳能电池具有十分优异的光电学性能。In view of this, the object of the present invention is to provide a perovskite solar cell and a preparation method thereof. The perovskite solar cell provided by the present invention has very excellent photoelectric properties.
本发明提供了一种钙钛矿太阳能电池,包括:依次层叠设置的透明导电基底层、电子传输层、钙钛矿层、空穴传输层和顶电极层;The invention provides a perovskite solar cell, which includes: a transparent conductive base layer, an electron transport layer, a perovskite layer, a hole transport layer and a top electrode layer that are stacked in sequence;
所述电子传输层包括:TiO2致密层,设置在所述TiO2致密层一侧表面的TiO2纳米柱阵列,和复合在所述TiO2纳米柱阵列表面的无定形TiO2-x纳米壳; 所述TiO2致密层的另一侧与透明导电基底层相接触。The electron transport layer includes: a TiO 2 dense layer, a TiO 2 nanocolumn array arranged on one side of the TiO 2 dense layer, and an amorphous TiO 2-x nanoshell compounded on the surface of the TiO 2 nanocolumn array. ; The other side of the TiO2 dense layer is in contact with the transparent conductive base layer.
优选的,所述TiO2致密层的厚度为20~100nm。Preferably, the thickness of the TiO 2 dense layer is 20 to 100 nm.
优选的,所述无定形TiO2-x纳米壳的厚度为10~100nm。Preferably, the thickness of the amorphous TiO 2-x nanoshell is 10-100 nm.
本发明提供了一种上述技术方案所述的钙钛矿太阳能电池的制备方法,包括以下步骤:The invention provides a method for preparing the perovskite solar cell described in the above technical solution, which includes the following steps:
在透明导电基底层上由下至上依次制备TiO2致密层、TiO2纳米柱阵列、无定形TiO2-x纳米壳、钙钛矿层、空穴传输层和顶电极层,得到钙钛矿太阳能电池。On the transparent conductive base layer, a TiO 2 dense layer, a TiO 2 nanopillar array, an amorphous TiO 2-x nanoshell, a perovskite layer, a hole transport layer and a top electrode layer are sequentially prepared from bottom to top to obtain a perovskite solar cell. .
优选的,制备所述TiO2致密层的方式为磁控溅射。Preferably, the TiO 2 dense layer is prepared by magnetron sputtering.
优选的,所述磁控溅射的溅射压强为0.1~2.0Pa;所述磁控溅射的溅射速率为0.1~2nm/min;所述磁控溅射的溅射靶材为TiO2-x;所述磁控溅射的溅射气氛为氧气和惰性气体的混合气氛;所述磁控溅射结束后,进行退火处理,所述退火处理的温度为400~500℃,所述退火处理的时间为1~5h。Preferably, the sputtering pressure of the magnetron sputtering is 0.1 to 2.0 Pa; the sputtering rate of the magnetron sputtering is 0.1 to 2 nm/min; the sputtering target material of the magnetron sputtering is TiO 2 -x ; the sputtering atmosphere of the magnetron sputtering is a mixed atmosphere of oxygen and inert gas; after the magnetron sputtering is completed, an annealing treatment is performed, and the temperature of the annealing treatment is 400 to 500°C. The processing time is 1 to 5 hours.
优选的,制备所述TiO2纳米柱阵列的方式为水热合成。Preferably, the TiO 2 nanopillar array is prepared by hydrothermal synthesis.
优选的,所述水热合成所使用的溶液为TiCl3的饱和NaCl水溶液;所述水溶中TiCl3的浓度为0.1~0.5mol/L;所述水热合成的反应温度为100~200℃;所述水热合成的反应时间为1~5h。Preferably, the solution used in the hydrothermal synthesis is a saturated NaCl aqueous solution of TiCl 3 ; the concentration of TiCl 3 in the water solution is 0.1-0.5 mol/L; the reaction temperature of the hydrothermal synthesis is 100-200°C; The reaction time of the hydrothermal synthesis is 1 to 5 hours.
优选的,制备所述无定形TiO2-x纳米壳的方式为磁控溅射。Preferably, the method of preparing the amorphous TiO 2-x nanoshell is magnetron sputtering.
优选的,所述磁控溅射的溅射压强为0.1~2.0Pa;所述磁控溅射的溅射速率为0.1~2nm/min;所述磁控溅射的溅射靶材为TiO2-x;所述磁控溅射的溅射气氛为惰性气体气氛。Preferably, the sputtering pressure of the magnetron sputtering is 0.1 to 2.0 Pa; the sputtering rate of the magnetron sputtering is 0.1 to 2 nm/min; the sputtering target material of the magnetron sputtering is TiO 2 -x ; The sputtering atmosphere of the magnetron sputtering is an inert gas atmosphere.
与现有技术相比,本发明提供了一种钙钛矿太阳能电池及其制备方法。本发明提供的钙钛矿太阳能电池包括:依次层叠设置的透明导电基底层、电子传输层、钙钛矿层、空穴传输层和顶电极层;所述电子传输层包括:TiO2致密层,设置在所述TiO2致密层一侧表面的TiO2纳米柱阵列,和复合在所述TiO2纳米柱阵列表面的无定形TiO2-x纳米壳;所述TiO2致密层的另一侧与透明导电基底层相接触。本发明提供的技术方案在电子传输层中设置了纳米柱阵列,并在纳米柱阵列表面复合了无定形纳米壳,这种纳米可以结构产生强烈的局域表面等离子共振效应,使纳米结构表面产生的强电磁场和高浓度的高能载流子(电子- 空穴对),从而提升钙钛矿电池的光电流。本发明提供的技术方案可以有效增强钙钛矿电池的光电学性能,具有良好的市场前景。Compared with the existing technology, the present invention provides a perovskite solar cell and a preparation method thereof. The perovskite solar cell provided by the invention includes: a transparent conductive base layer, an electron transport layer, a perovskite layer, a hole transport layer and a top electrode layer that are stacked in sequence; the electron transport layer includes: a TiO 2 dense layer, which is The TiO 2 nano-column array on one side of the TiO 2 dense layer, and the amorphous TiO 2-x nanoshell composited on the surface of the TiO 2 nano-column array; the other side of the TiO 2 dense layer has a transparent The conductive base layers are in contact. The technical solution provided by the invention sets up a nano-column array in the electron transmission layer, and composites an amorphous nano-shell on the surface of the nano-column array. This nano-structure can produce a strong localized surface plasmon resonance effect, causing the surface of the nano-structure to generate The strong electromagnetic field and high concentration of high-energy carriers (electron- hole pairs), thereby increasing the photocurrent of the perovskite cell. The technical solution provided by the present invention can effectively enhance the photoelectric performance of perovskite cells and has good market prospects.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on the provided drawings without exerting creative efforts.
图1是本发明提供的钙钛矿太阳能电池的结构示意图;Figure 1 is a schematic structural diagram of a perovskite solar cell provided by the present invention;
图2是本发明提供的钙钛矿太阳能电池的局部结构示意图。Figure 2 is a partial structural diagram of the perovskite solar cell provided by the present invention.
附图中标记如下:1为顶电极层,2为空穴传输层,3为钙钛矿层,4为电子传输层,5为透明导电基底层,6为TiO2致密层,7为TiO2纳米柱阵列,8为无定形TiO2-x纳米壳。The markings in the drawing are as follows: 1 is the top electrode layer, 2 is the hole transport layer, 3 is the perovskite layer, 4 is the electron transport layer, 5 is the transparent conductive base layer, 6 is TiO2 dense layer, 7 is TiO2 nanometer Pillar array, 8 is amorphous TiO 2-x nanoshell.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
本发明提供了一种钙钛矿太阳能电池,包括:依次层叠设置的透明导电基底层(5)、电子传输层(4)、钙钛矿层(3)、空穴传输层(2)和顶电极层(1)。The invention provides a perovskite solar cell, which includes: a transparent conductive base layer (5), an electron transport layer (4), a perovskite layer (3), a hole transport layer (2) and a top electrode that are stacked in sequence. layer(1).
在本发明提供的钙钛矿太阳能电池中,透明导电基底层(5)优选为FTO透明导电基底层、ITO透明导电基底层或AZO透明导电基底层。In the perovskite solar cell provided by the invention, the transparent conductive base layer (5) is preferably an FTO transparent conductive base layer, an ITO transparent conductive base layer or an AZO transparent conductive base layer.
在本发明提供的钙钛矿太阳能电池中,电子传输层(4)包括:TiO2致密层(6),设置在TiO2致密层(6)一侧表面的TiO2纳米柱阵列(7),和复合在TiO2纳米柱阵列表面(7)的无定形TiO2-x纳米壳(8);TiO2致密层(6)的另一侧与透明导电基底层(5)相接触。In the perovskite solar cell provided by the invention, the electron transport layer (4) includes: a TiO 2 dense layer (6), a TiO 2 nanocolumn array (7) provided on one side of the TiO 2 dense layer (6), and the amorphous TiO 2-x nanoshell (8) compounded on the surface of the TiO 2 nanopillar array (7); the other side of the TiO 2 dense layer (6) is in contact with the transparent conductive base layer (5).
在本发明提供的钙钛矿太阳能电池中,TiO2致密层(6)的厚度优选为20~100nm,具体可为20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、 60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm或100nm,最优选为70nm。In the perovskite solar cell provided by the invention, the thickness of the TiO 2 dense layer (6) is preferably 20 to 100nm, specifically 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 70nm.
在本发明提供的钙钛矿太阳能电池中,TiO2致密层(6)优选采用磁控溅射法制备得到。其中,溅射压强优选为0.1~2.0Pa,更优选为0.6Pa;溅射速率优选为0.1~2nm/min,更优选为1.3nm/min;溅射靶材优选为TiO2-x(氧缺陷型二氧化钛);溅射气氛优选为氧气和惰性气体的混合气,更优选为3%氧气和97%氩气的混合气;溅射结束后优选进行退火,退火的温度优选为400~500℃,更优选为450℃,退火的时间优选为1~5h,更优选为3h。In the perovskite solar cell provided by the present invention, the TiO 2 dense layer (6) is preferably prepared by magnetron sputtering. Among them, the sputtering pressure is preferably 0.1~2.0Pa, more preferably 0.6Pa; the sputtering rate is preferably 0.1~2nm/min, more preferably 1.3nm/min; the sputtering target is preferably TiO 2-x (oxygen defect type titanium dioxide); the sputtering atmosphere is preferably a mixture of oxygen and inert gas, more preferably a mixture of 3% oxygen and 97% argon; annealing is preferably performed after sputtering, and the annealing temperature is preferably 400 to 500°C. More preferably, it is 450°C, and the annealing time is preferably 1 to 5 hours, and more preferably 3 hours.
在本发明提供的钙钛矿太阳能电池中,TiO2纳米柱阵列(7)中纳米柱的直径优选为5~500nm,具体可为5nm、25nm、50nm、75nm、100nm、125nm、150nm、175nm、200nm、225nm、250nm、275nm、300nm、325nm、350nm、375nm、400nm、425nm、450nm、475nm或500nm,最优选为100nm;纳米柱的长度优选为100~800nm,具体可为100nm、125nm、150nm、175nm、200nm、225nm、250nm、275nm、300nm、325nm、350nm、375nm、400nm、425nm、450nm、475nm、500nm、525nm、550nm、575nm、600nm、625nm、650nm、675nm、700nm、725nm、750nm、775nm或800nm,最优选为500nm。In the perovskite solar cell provided by the invention, the diameter of the nanopillars in the TiO 2 nanopillar array (7) is preferably 5 to 500nm, specifically 5nm, 25nm, 50nm, 75nm, 100nm, 125nm, 150nm, 175nm, 200nm, 225nm, 250nm, 275nm, 300nm, 325nm, 350nm, 375nm, 400nm, 425nm, 450nm, 475nm or 500nm, most preferably 100nm; the length of the nanopillar is preferably 100-800nm, specifically 100nm, 125nm, 150nm , 175nm, 200nm, 225nm, 250nm, 275nm, 300nm, 325nm, 350nm, 375nm, 400nm, 425nm, 450nm, 475nm, 500nm, 525nm, 550nm, 575nm, 600nm, 625nm, 650nm, 675 nm, 700nm, 725nm, 750nm, 775nm or 800nm, most preferably 500nm.
在本发明提供的钙钛矿太阳能电池中,所述TiO2纳米柱阵列(7)优选采用水热法制备得到。其中,所用溶液优选为TiCl3的饱和NaCl水溶液,TiCl3的浓度优选为0.1~0.5mol/L,更优选为0.15mol/L;水热反应的温度优选为100~200℃,更优选为170℃;水热反应的时间优选为1~5h,更优选为2h。In the perovskite solar cell provided by the present invention, the TiO 2 nanopillar array (7) is preferably prepared by a hydrothermal method. Among them, the solution used is preferably a saturated NaCl aqueous solution of TiCl 3 , and the concentration of TiCl 3 is preferably 0.1 to 0.5 mol/L, more preferably 0.15 mol/L; the temperature of the hydrothermal reaction is preferably 100 to 200°C, and more preferably 170 ℃; the hydrothermal reaction time is preferably 1 to 5 hours, more preferably 2 hours.
在本发明提供的钙钛矿太阳能电池中,无定形TiO2-x纳米壳(8)的厚度优选为10~100nm,具体可为10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm或100nm,最优选为30nm。In the perovskite solar cell provided by the invention, the thickness of the amorphous TiO 2-x nanoshell (8) is preferably 10 to 100nm, specifically 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 30nm.
在本发明提供的钙钛矿太阳能电池中,无定形TiO2-x纳米壳(8)优选采用磁控溅射法制备得到。其中,溅射压强优选为0.1~2.0Pa,更优选为0.6Pa;溅射速率优选为0.1~2nm/min,更优选为1.0nm/min;溅射靶材优选为TiO2-x;溅射气氛优选为惰性气体,更优选为氩气。In the perovskite solar cell provided by the present invention, the amorphous TiO 2-x nanoshell (8) is preferably prepared by magnetron sputtering. Among them, the sputtering pressure is preferably 0.1~2.0Pa, more preferably 0.6Pa; the sputtering rate is preferably 0.1~2nm/min, more preferably 1.0nm/min; the sputtering target material is preferably TiO 2-x ; sputtering The atmosphere is preferably an inert gas, more preferably argon gas.
在本发明提供的钙钛矿太阳能电池中,钙钛矿层(3)的材料包括但不限 于有机-无机杂化铅卤钙钛矿、有机-无机杂化锡/铅混合卤钙钛矿或全无机钙钛矿等具有钙钛矿晶型的吸光材料;钙钛矿层(3)的厚度优选为300nm~1.5μm,具体可为300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、1.1μm、1.2μm、1.3μm、1.4μm或1.5μm,最优选为400nm。In the perovskite solar cell provided by the invention, the materials of the perovskite layer (3) include but are not limited to For light-absorbing materials with perovskite crystal form such as organic-inorganic hybrid lead halide perovskite, organic-inorganic hybrid tin/lead mixed halide perovskite or all-inorganic perovskite; the thickness of the perovskite layer (3) It is preferably 300nm to 1.5μm, specifically 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm or 1.5μm, with 400nm being the most preferred.
在本发明提供的钙钛矿太阳能电池中,对钙钛矿层(3)的具体制备方法没特别限制,包括但不局限于旋涂、刮涂、喷涂、狭缝涂布、丝网印刷、蒸发或化学气相沉积(CVD)等。In the perovskite solar cell provided by the present invention, the specific preparation method of the perovskite layer (3) is not particularly limited, including but not limited to spin coating, blade coating, spray coating, slit coating, screen printing, evaporation Or chemical vapor deposition (CVD), etc.
在本发明提供的钙钛矿太阳能电池中,空穴传输层(2)的材料包括但不限于spiro-OMeTAD(2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)、P3HT(3-己基取代聚噻吩)和PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺])中的一种或多种;空穴传输层(2)的厚度优选为20~200nm,具体可为20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm或200nm,最优选为50nm。In the perovskite solar cell provided by the invention, the material of the hole transport layer (2) includes but is not limited to spiro-OMeTAD (2,2',7,7'-tetra[N,N-di(4-methyl Oxyphenyl)amino]-9,9'-spirobifluorene), P3HT (3-hexyl-substituted polythiophene) and PTAA (poly[bis(4-phenyl)(2,4,6-trimethylbenzene) base) amine]); the thickness of the hole transport layer (2) is preferably 20 to 200nm, specifically 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm , 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm or 200nm, most preferably 50nm.
在本发明提供的钙钛矿太阳能电池中,对空穴传输层(2)的具体制备方法没特别限制,包括但不局限于旋涂、刮涂、喷涂、狭缝涂布、丝网印刷、蒸发或化学气相沉积(CVD)等。In the perovskite solar cell provided by the present invention, the specific preparation method of the hole transport layer (2) is not particularly limited, including but not limited to spin coating, blade coating, spray coating, slit coating, screen printing, Evaporation or chemical vapor deposition (CVD), etc.
在本发明提供的钙钛矿太阳能电池中,顶电极层(1)的材料优选为金属材料和/或碳材料;所述金属材料包括但不限于金、银和铜中的一种或多种;所述碳材料包括但不限于石墨烯和/或无定形碳;顶电极层(1)的厚度优选为20nm~50μm,具体可为20nm、50nm、100nm、200nm、300nm、400nm、500nm、700nm、1μm、5μm、10μm、20μm、30μm、40μm或50μm,最优选为200nm。In the perovskite solar cell provided by the present invention, the material of the top electrode layer (1) is preferably a metal material and/or a carbon material; the metal material includes but is not limited to one or more of gold, silver and copper. ; The carbon material includes but is not limited to graphene and/or amorphous carbon; the thickness of the top electrode layer (1) is preferably 20nm to 50μm, specifically 20nm, 50nm, 100nm, 200nm, 300nm, 400nm, 500nm, 700nm , 1μm, 5μm, 10μm, 20μm, 30μm, 40μm or 50μm, most preferably 200nm.
在本发明提供的钙钛矿太阳能电池中,对顶电极层(1)的具体制备方法没特别限制,包括但不局限于磁控溅射、电子束蒸发、热蒸发、原子层沉积、或脉冲激光沉积等。In the perovskite solar cell provided by the present invention, the specific preparation method of the top electrode layer (1) is not particularly limited, including but not limited to magnetron sputtering, electron beam evaporation, thermal evaporation, atomic layer deposition, or pulse Laser deposition, etc.
本发明还提供了一种钙钛矿太阳能电池的制备方法,包括以下步骤:The invention also provides a method for preparing a perovskite solar cell, which includes the following steps:
在透明导电基底层(5)上由下至上依次制备TiO2致密层(6)、TiO2纳米柱阵列(7)、无定形TiO2-x纳米壳(8)、钙钛矿层(3)、空穴传输层(2)和顶电极层(1),得到钙钛矿太阳能电池。On the transparent conductive base layer (5), a TiO 2 dense layer (6), a TiO 2 nanopillar array (7), an amorphous TiO 2-x nanoshell (8), a perovskite layer (3), and hole transport layer (2) and top electrode layer (1) to obtain a perovskite solar cell.
在本发明提供的制备方法中,首先提供透明导电基底层(5);透明导电基 底层(5)优选为FTO透明导电基底层、ITO透明导电基底层或AZO透明导电基底层。In the preparation method provided by the invention, first a transparent conductive base layer (5) is provided; The bottom layer (5) is preferably an FTO transparent conductive base layer, an ITO transparent conductive base layer or an AZO transparent conductive base layer.
在本发明提供的制备方法中,透明导电基底层(5)在使用前优选先进行清洗;所述清洗的方式优选为依次使用离子水、丙酮和乙醇进行超声清洗;每次超声的时间优选为10~30min,更优选为20min;超声清洗结束后,进行干燥;所述干燥的方式优选为吹干,更优选为氮气吹干。In the preparation method provided by the present invention, the transparent conductive base layer (5) is preferably cleaned before use; the cleaning method is preferably ultrasonic cleaning using ionized water, acetone and ethanol in sequence; the time of each ultrasound is preferably 10 to 30 minutes, more preferably 20 minutes; after the ultrasonic cleaning is completed, drying is performed; the drying method is preferably blow drying, and more preferably nitrogen blow drying.
在本发明提供的制备方法中,制备TiO2致密层(6)的方式优选为磁控溅射;所述磁控溅射的溅射压强优选为0.1~2.0Pa,具体可为0.1Pa、0.2Pa、0.3Pa、0.4Pa、0.5Pa、0.6Pa、0.7Pa、0.8Pa、0.9Pa、1.0Pa、1.1Pa、1.2Pa、1.3Pa、1.4Pa、1.5Pa、1.6Pa、1.7Pa、1.8Pa、1.9Pa或2.0Pa,最优选为0.6Pa;所述磁控溅射的溅射速率优选为0.1~2nm/min,具体可为0.1nm/min、0.2nm/min、0.3nm/min、0.4nm/min、0.5nm/min、0.6nm/min、0.7nm/min、0.8nm/min、0.9nm/min、1nm/min、1.1nm/min、1.2nm/min、1.3nm/min、1.4nm/min、1.5nm/min、1.6nm/min、1.7nm/min、1.8nm/min、1.9nm/min或2nm/min,最优选为1.3nm/min;所述磁控溅射的溅射靶材优选为TiO2-x(氧缺陷型二氧化钛);所述磁控溅射的溅射气氛优选为氧气和惰性气体的混合气,更优选为3%氧气和97%氩气的混合气。磁控溅射结束后,进行退火处理;所述退火处理的温度优选为400~500℃,具体可为400℃、410℃、420℃、430℃、440℃、450℃、460℃、470℃、480℃、490℃或500℃,最优选为450℃;所述退火处理的时间优选为1~5h,具体可为1h、1.5h、2h、2.5h、3h、3.5h、4h、4.5h或5h,最优选为3h。In the preparation method provided by the present invention, the method of preparing the TiO 2 dense layer (6) is preferably magnetron sputtering; the sputtering pressure of the magnetron sputtering is preferably 0.1 to 2.0 Pa, specifically 0.1 Pa, 0.2 Pa, 0.3Pa, 0.4Pa, 0.5Pa, 0.6Pa, 0.7Pa, 0.8Pa, 0.9Pa, 1.0Pa, 1.1Pa, 1.2Pa, 1.3Pa, 1.4Pa, 1.5Pa, 1.6Pa, 1.7Pa, 1.8Pa, 1.9Pa or 2.0Pa, most preferably 0.6Pa; the sputtering rate of the magnetron sputtering is preferably 0.1~2nm/min, specifically 0.1nm/min, 0.2nm/min, 0.3nm/min, 0.4nm /min、0.5nm/min、0.6nm/min、0.7nm/min、0.8nm/min、0.9nm/min、1nm/min、1.1nm/min、1.2nm/min、1.3nm/min、1.4nm/ min, 1.5nm/min, 1.6nm/min, 1.7nm/min, 1.8nm/min, 1.9nm/min or 2nm/min, most preferably 1.3nm/min; the sputtering target material for magnetron sputtering Preferably it is TiO 2-x (oxygen defective titanium dioxide); the sputtering atmosphere of the magnetron sputtering is preferably a mixture of oxygen and inert gas, more preferably a mixture of 3% oxygen and 97% argon. After the magnetron sputtering is completed, annealing treatment is performed; the temperature of the annealing treatment is preferably 400-500°C, specifically 400°C, 410°C, 420°C, 430°C, 440°C, 450°C, 460°C, 470°C , 480°C, 490°C or 500°C, most preferably 450°C; the time of the annealing treatment is preferably 1 to 5h, specifically 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h Or 5h, most preferably 3h.
在本发明提供的制备方法中,制备得到的TiO2致密层(6)的厚度优选为20~100nm,具体可为20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm或100nm,最优选为70nm。In the preparation method provided by the invention, the thickness of the prepared TiO 2 dense layer (6) is preferably 20 to 100nm, specifically 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 70nm.
在本发明提供的制备方法中,制备TiO2纳米柱阵列(7)的方式优选为水热合成;所述水热合成所使用的溶液优选为TiCl3的饱和NaCl水溶液,TiCl3的浓度优选为0.1~0.5mol/L,具体可为0.1mol/L、0.12mol/L、0.15mol/L、0.17mol/L、0.2mol/L、0.25mol/L、0.3mol/L、0.35mol/L、0.4mol/L、0.45mol/L或0.5mol/L,最优选为0.15mol/L;所述水热合成的反应温度优选为100~200℃,具体可为 100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃或200℃,最优选为170℃;所述水热合成的反应时间优选为1~5h,具体可为1h、1.5h、2h、2.5h、3h、3.5h、4h、4.5h或5h,最优选为2h。In the preparation method provided by the present invention, the method of preparing the TiO 2 nanocolumn array (7) is preferably hydrothermal synthesis; the solution used in the hydrothermal synthesis is preferably a saturated NaCl aqueous solution of TiCl 3 , and the concentration of TiCl 3 is preferably 0.1~0.5mol/L, specifically 0.1mol/L, 0.12mol/L, 0.15mol/L, 0.17mol/L, 0.2mol/L, 0.25mol/L, 0.3mol/L, 0.35mol/L, 0.4mol/L, 0.45mol/L or 0.5mol/L, the most preferred is 0.15mol/L; the reaction temperature of the hydrothermal synthesis is preferably 100~200°C, specifically it can be 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C or 200°C, most preferably 170°C; the reaction time of the hydrothermal synthesis is preferably 1 ~5h, specifically 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 4.5h or 5h, most preferably 2h.
在本发明提供的制备方法中,制备无定形TiO2-x纳米壳(8)的方式优选为磁控溅射;所述磁控溅射的溅射压强优选为0.1~2.0Pa,具体可为0.1Pa、0.2Pa、0.3Pa、0.4Pa、0.5Pa、0.6Pa、0.7Pa、0.8Pa、0.9Pa、1.0Pa、1.1Pa、1.2Pa、1.3Pa、1.4Pa、1.5Pa、1.6Pa、1.7Pa、1.8Pa、1.9Pa或2.0Pa,最优选为0.6Pa;所述磁控溅射的溅射速率优选为0.1~2nm/min,具体可为0.1nm/min、0.2nm/min、0.3nm/min、0.4nm/min、0.5nm/min、0.6nm/min、0.7nm/min、0.8nm/min、0.9nm/min、1nm/min、1.1nm/min、1.2nm/min、1.3nm/min、1.4nm/min、1.5nm/min、1.6nm/min、1.7nm/min、1.8nm/min、1.9nm/min或2nm/min,最优选为1.0nm/min;所述磁控溅射的溅射靶材优选为TiO2-x(氧缺陷型二氧化钛);所述磁控溅射的溅射气氛优选为惰性气体,更优选为氩气。In the preparation method provided by the present invention, the method of preparing the amorphous TiO 2-x nanoshell (8) is preferably magnetron sputtering; the sputtering pressure of the magnetron sputtering is preferably 0.1 to 2.0 Pa, specifically, it can be 0.1Pa, 0.2Pa, 0.3Pa, 0.4Pa, 0.5Pa, 0.6Pa, 0.7Pa, 0.8Pa, 0.9Pa, 1.0Pa, 1.1Pa, 1.2Pa, 1.3Pa, 1.4Pa, 1.5Pa, 1.6Pa, 1.7Pa , 1.8Pa, 1.9Pa or 2.0Pa, most preferably 0.6Pa; the sputtering rate of the magnetron sputtering is preferably 0.1~2nm/min, specifically 0.1nm/min, 0.2nm/min, 0.3nm/ min, 0.4nm/min, 0.5nm/min, 0.6nm/min, 0.7nm/min, 0.8nm/min, 0.9nm/min, 1nm/min, 1.1nm/min, 1.2nm/min, 1.3nm/min , 1.4nm/min, 1.5nm/min, 1.6nm/min, 1.7nm/min, 1.8nm/min, 1.9nm/min or 2nm/min, most preferably 1.0nm/min; the magnetron sputtering The sputtering target material is preferably TiO 2-x (oxygen-deficient titanium dioxide); the sputtering atmosphere of the magnetron sputtering is preferably an inert gas, and more preferably argon gas.
在本发明提供的制备方法中,制备得到的无定形TiO2-x纳米壳(8)的厚度优选为10~100nm,具体可为10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm或100nm,最优选为30nm。In the preparation method provided by the invention, the thickness of the prepared amorphous TiO 2-x nanoshell (8) is preferably 10 to 100nm, specifically 10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm, 50nm, 55nm, 60nm, 65nm, 70nm, 75nm, 80nm, 85nm, 90nm, 95nm or 100nm, most preferably 30nm.
在本发明提供的制备方法中,制备钙钛矿层(3)的方式包括但不局限于旋涂、刮涂、喷涂、狭缝涂布、丝网印刷、蒸发或化学气相沉积(CVD)等。In the preparation method provided by the present invention, the method of preparing the perovskite layer (3) includes but is not limited to spin coating, blade coating, spray coating, slit coating, screen printing, evaporation or chemical vapor deposition (CVD), etc.
在本发明提供的制备方法中,制备得到的钙钛矿层(3)的材料包括但不限于有机-无机杂化铅卤钙钛矿、有机-无机杂化锡/铅混合卤钙钛矿或全无机钙钛矿等具有钙钛矿晶型的吸光材料;制备得到的钙钛矿层(3)的厚度优选为300nm~1.5μm,具体可为300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、1.1μm、1.2μm、1.3μm、1.4μm或1.5μm,最优选为400nm。In the preparation method provided by the present invention, the materials of the prepared perovskite layer (3) include but are not limited to organic-inorganic hybrid lead halide perovskite, organic-inorganic hybrid tin/lead mixed halide perovskite or all- Inorganic perovskite and other light-absorbing materials with perovskite crystal form; the thickness of the prepared perovskite layer (3) is preferably 300nm to 1.5μm, specifically 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1 μm, 1.1 μm, 1.2 μm, 1.3 μm, 1.4 μm or 1.5 μm, most preferably 400 nm.
在本发明提供的制备方法中,制备空穴传输层(2)的方式包括但不局限于旋涂、刮涂、喷涂、狭缝涂布、丝网印刷、蒸发或化学气相沉积(CVD)等。In the preparation method provided by the present invention, the method of preparing the hole transport layer (2) includes but is not limited to spin coating, blade coating, spray coating, slit coating, screen printing, evaporation or chemical vapor deposition (CVD), etc. .
在本发明提供的制备方法中,制备得到的空穴传输层(2)的材料包括但不限于spiro-OMeTAD、P3HT和PTAA中的一种或多种;制备得到的空穴传输层(2)的厚度优选为20~200nm,具体可为20nm、30nm、40nm、50nm、 60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm或200nm,最优选为50nm。In the preparation method provided by the invention, the material of the prepared hole transport layer (2) includes but is not limited to one or more of spiro-OMeTAD, P3HT and PTAA; the prepared hole transport layer (2) The thickness is preferably 20 to 200nm, specifically 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm or 200nm, most preferably 50nm.
在本发明提供的制备方法中,制备顶电极层(1)的方式包括但不局限于磁控溅射、电子束蒸发、热蒸发、原子层沉积、或脉冲激光沉积等。In the preparation method provided by the present invention, the method of preparing the top electrode layer (1) includes but is not limited to magnetron sputtering, electron beam evaporation, thermal evaporation, atomic layer deposition, or pulsed laser deposition.
在本发明提供的制备方法中,制备得到的顶电极层(1)的材料优选为金属材料和/或碳材料;所述金属材料包括但不限于金、银和铜中的一种或多种;所述碳材料包括但不限于石墨烯和/或无定形碳;制备得到的顶电极层(1)的厚度优选为20nm~50μm,具体可为20nm、50nm、100nm、200nm、300nm、400nm、500nm、700nm、1μm、5μm、10μm、20μm、30μm、40μm或50μm,最优选为200nm。In the preparation method provided by the present invention, the material of the prepared top electrode layer (1) is preferably a metal material and/or a carbon material; the metal material includes but is not limited to one or more of gold, silver and copper. ; The carbon material includes but is not limited to graphene and/or amorphous carbon; the thickness of the prepared top electrode layer (1) is preferably 20nm to 50μm, specifically 20nm, 50nm, 100nm, 200nm, 300nm, 400nm, 500nm, 700nm, 1μm, 5μm, 10μm, 20μm, 30μm, 40μm or 50μm, most preferably 200nm.
本发明提供的技术方案在电子传输层中设置了纳米柱阵列,并在纳米柱阵列表面复合了无定形纳米壳,这种纳米可以结构产生强烈的局域表面等离子共振效应,使纳米结构表面产生的强电磁场和高浓度的高能载流子(电子-空穴对),从而提升钙钛矿电池的光电流。本发明提供的技术方案可以有效增强钙钛矿电池的光电学性能,具有良好的市场前景。The technical solution provided by the invention sets up a nano-column array in the electron transmission layer, and composites an amorphous nano-shell on the surface of the nano-column array. This nano-structure can produce a strong localized surface plasmon resonance effect, causing the surface of the nano-structure to generate The strong electromagnetic field and high concentration of high-energy carriers (electron-hole pairs) increase the photocurrent of perovskite cells. The technical solution provided by the present invention can effectively enhance the photoelectric performance of perovskite cells and has good market prospects.
为更清楚起见,下面通过以下实施例和对比例进行详细说明。For greater clarity, detailed description is provided below through the following examples and comparative examples.
实施例1Example 1
一种非贵金属等离子体共振增强的钙钛矿太阳能电池,具有图1~2所示结构,其具体的制备步骤如下:A non-noble metal plasma resonance enhanced perovskite solar cell has the structure shown in Figures 1 to 2. Its specific preparation steps are as follows:
(1)将FTO透明导电玻璃裁成1cm×1cm的片,置于离子水、丙酮、乙醇中分别超声清洗20min后,氮气吹干后保存备用。(1) Cut the FTO transparent conductive glass into 1cm × 1cm pieces, ultrasonically clean them in ionized water, acetone, and ethanol for 20 minutes respectively, blow dry with nitrogen, and store them for later use.
(2)在FTO透明导电玻璃上制备TiO2致密层:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.3nm/min,靶材为TiO2-x,溅射气氛为3%氧气+97%氩气,溅射后在450℃下退火3h,得到致密层厚度为70nm。(2) Preparation of TiO 2 dense layer on FTO transparent conductive glass: magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.3nm/min, the target material is TiO 2-x , and the sputtering atmosphere is 3% Oxygen + 97% argon, annealed at 450°C for 3 hours after sputtering, to obtain a dense layer thickness of 70nm.
(3)在TiO2致密层上制备TiO2纳米柱阵列:配制TiCl3的饱和NaCl水溶液,TiCl3浓度为0.15mol/L,具体的配制过程为:首先将23.14gTi溶解于115.7mL 3wt%盐酸中,再溶于884.3L的饱和NaCl水溶液中;将步骤(2)制得的材料浸没在TiCl3的饱和NaCl水溶液中,在置于高压反应釜中,170℃下水热反应2h,得到TiO2纳米柱阵列(纳米柱直径约为100nm,纳米柱长度约 为500nm)。(3) Preparation of TiO 2 nanopillar array on TiO 2 dense layer: Prepare TiCl 3 saturated NaCl aqueous solution, TiCl 3 concentration is 0.15mol/L, the specific preparation process is: first dissolve 23.14gTi in 115.7mL 3wt% hydrochloric acid in, and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into the saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 Nanopillar array (the diameter of the nanopillar is about 100nm, the length of the nanopillar is about is 500nm).
(4)在TiO2纳米柱阵列上制备无定形TiO2-x纳米壳:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.0nm/min,靶材为TiO2-x,溅射气氛为100%氩气,纳米壳厚度为30nm。(4) Preparation of amorphous TiO 2-x nanoshells on TiO 2 nanopillar arrays: Magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.0nm/min, the target material is TiO 2-x , and the sputtering The emission atmosphere was 100% argon, and the nanoshell thickness was 30 nm.
(5)在电子传输层(TiO2致密层/TiO2纳米柱阵列/无定形TiO2-x纳米壳)上沉积钙钛矿层:配制质量分数为30%的钙钛矿层前驱液,溶剂为NMP,采用刮涂法在TiO2电子传输层表面制备钙钛矿活性层,刮涂速度12mm/s,经150℃退火20分钟,最终厚度为450nm的钙钛矿层。(5) Deposit the perovskite layer on the electron transport layer (TiO 2 dense layer/TiO 2 nanopillar array/amorphous TiO 2-x nanoshell): Prepare a perovskite layer precursor solution with a mass fraction of 30%, and the solvent is NMP , the perovskite active layer was prepared on the surface of the TiO 2 electron transport layer using the scraping method. The scraping speed was 12mm/s. After annealing at 150°C for 20 minutes, the final thickness of the perovskite layer was 450nm.
(6)在钙钛矿层上制备空穴传输层:称取72.3mg spiro-OMeTAD,溶于1mL氯苯,分别加入17.5μL锂盐溶液(称取52mgLi-TFSI,溶于100μL乙腈)和28.8μLTBP,搅拌过夜得到澄清溶液,以4000rpm的速度旋涂在钙钛矿层表面。(6) Prepare the hole transport layer on the perovskite layer: weigh 72.3 mg spiro-OMeTAD and dissolve it in 1 mL chlorobenzene. Add 17.5 μL lithium salt solution (weigh 52 mg Li-TFSI and dissolve it in 100 μL acetonitrile) and 28.8 μL LTBP respectively. , stir overnight to obtain a clear solution, and spin-coat it on the surface of the perovskite layer at a speed of 4000 rpm.
(7)在空穴传输层上沉积顶电极:在高真空(<5×10-4Pa)环境下,将金属Ag蒸镀到空穴传输层表面,蒸速为厚度100nm,得到钙钛矿太阳能电池。(7) Deposit the top electrode on the hole transport layer: In a high vacuum (<5×10 -4 Pa) environment, metal Ag is evaporated onto the surface of the hole transport layer at a evaporation rate of With a thickness of 100nm, a perovskite solar cell is obtained.
实施例1制备了无定形TiO2-x纳米壳,形成局域表面等离子共振结构。Example 1 prepared amorphous TiO 2-x nanoshells to form a localized surface plasmon resonance structure.
实施例2Example 2
一种非贵金属等离子体共振增强的钙钛矿太阳能电池,具有图1~2所示结构,其具体的制备步骤如下:A non-noble metal plasma resonance enhanced perovskite solar cell has the structure shown in Figures 1 to 2. Its specific preparation steps are as follows:
(1)将FTO透明导电玻璃裁成1cm×1cm的片,置于离子水、丙酮、乙醇中分别超声清洗20min后,氮气吹干后保存备用。(1) Cut the FTO transparent conductive glass into 1cm × 1cm pieces, ultrasonically clean them in ionized water, acetone, and ethanol for 20 minutes respectively, blow dry with nitrogen, and store them for later use.
(2)在FTO透明导电玻璃上制备TiO2致密层:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.3nm/min,靶材为TiO2-x,溅射气氛为3%氧气+97%氩气,溅射后在450℃下退火3h,得到致密层厚度为70nm。(2) Preparation of TiO 2 dense layer on FTO transparent conductive glass: magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.3nm/min, the target material is TiO 2-x , and the sputtering atmosphere is 3% Oxygen + 97% argon, annealed at 450°C for 3 hours after sputtering, to obtain a dense layer thickness of 70nm.
(3)在TiO2致密层上制备TiO2纳米柱阵列:配制TiCl3的饱和NaCl水溶液,TiCl3浓度为0.15mol/L,具体的配制过程为:首先将23.14gTi溶解于115.7mL 3wt%盐酸中,再溶于884.3L的饱和NaCl水溶液中;将步骤(2)制得的材料浸没在TiCl3的饱和NaCl水溶液中,在置于高压反应釜中,170℃下水热反应2h,得到TiO2纳米柱阵列(纳米柱直径约为100nm,纳米柱长度约 为500nm)。(3) Preparation of TiO 2 nanopillar array on TiO 2 dense layer: Prepare TiCl 3 saturated NaCl aqueous solution, TiCl 3 concentration is 0.15mol/L, the specific preparation process is: first dissolve 23.14gTi in 115.7mL 3wt% hydrochloric acid in, and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into the saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 Nanopillar array (the diameter of the nanopillar is about 100nm, the length of the nanopillar is about is 500nm).
(4)在TiO2纳米柱阵列上制备无定形TiO2-x纳米壳:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.0nm/min,靶材为TiO2-x,溅射气氛为100%氩气,纳米壳厚度为10nm。(4) Preparation of amorphous TiO 2-x nanoshells on TiO 2 nanopillar arrays: Magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.0nm/min, the target material is TiO 2-x , and the sputtering The emission atmosphere is 100% argon, and the nanoshell thickness is 10 nm.
(5)在电子传输层(TiO2致密层/TiO2纳米柱阵列/无定形TiO2-x纳米壳)上沉积钙钛矿层:配制质量分数为30%的钙钛矿层前驱液,溶剂为NMP,采用刮涂法在TiO2电子传输层表面制备钙钛矿活性层,刮涂速度12mm/s,经150℃退火20分钟,最终厚度为450nm的钙钛矿层。(5) Deposit the perovskite layer on the electron transport layer (TiO 2 dense layer/TiO 2 nanopillar array/amorphous TiO 2-x nanoshell): Prepare a perovskite layer precursor solution with a mass fraction of 30%, and the solvent is NMP , the perovskite active layer was prepared on the surface of the TiO 2 electron transport layer using the scraping method. The scraping speed was 12mm/s. After annealing at 150°C for 20 minutes, the final thickness of the perovskite layer was 450nm.
(6)在钙钛矿层上制备空穴传输层:称取72.3mg spiro-OMeTAD,溶于1mL氯苯,分别加入17.5μL锂盐溶液(称取52mgLi-TFSI,溶于100μL乙腈)和28.8μLTBP,搅拌过夜得到澄清溶液,以4000rpm的速度旋涂在钙钛矿层表面。(6) Prepare the hole transport layer on the perovskite layer: weigh 72.3 mg spiro-OMeTAD and dissolve it in 1 mL chlorobenzene. Add 17.5 μL lithium salt solution (weigh 52 mg Li-TFSI and dissolve it in 100 μL acetonitrile) and 28.8 μL LTBP respectively. , stir overnight to obtain a clear solution, and spin-coat it on the surface of the perovskite layer at a speed of 4000 rpm.
(7)在空穴传输层上沉积顶电极:在高真空(<5×10-4Pa)环境下,将金属Ag蒸镀到空穴传输层表面,蒸速为厚度100nm,得到钙钛矿太阳能电池。(7) Deposit the top electrode on the hole transport layer: In a high vacuum (<5×10 -4 Pa) environment, metal Ag is evaporated onto the surface of the hole transport layer at a evaporation rate of With a thickness of 100nm, a perovskite solar cell is obtained.
实施例2制备了无定形TiO2-x纳米壳,形成局域表面等离子共振结构。Example 2 prepared amorphous TiO 2-x nanoshells to form a localized surface plasmon resonance structure.
实施例3Example 3
一种非贵金属等离子体共振增强的钙钛矿太阳能电池,具有图1~2所示结构,其具体的制备步骤如下:A non-noble metal plasma resonance enhanced perovskite solar cell has the structure shown in Figures 1 to 2. Its specific preparation steps are as follows:
(1)将FTO透明导电玻璃裁成1cm×1cm的片,置于离子水、丙酮、乙醇中分别超声清洗20min后,氮气吹干后保存备用。(1) Cut the FTO transparent conductive glass into 1cm × 1cm pieces, ultrasonically clean them in ionized water, acetone, and ethanol for 20 minutes respectively, blow dry with nitrogen, and store them for later use.
(2)在FTO透明导电玻璃上制备TiO2致密层:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.3nm/min,靶材为TiO2-x,溅射气氛为3%氧气+97%氩气,溅射后在450℃下退火3h,得到致密层厚度为70nm。(2) Preparation of TiO 2 dense layer on FTO transparent conductive glass: magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.3nm/min, the target material is TiO 2-x , and the sputtering atmosphere is 3% Oxygen + 97% argon, annealed at 450°C for 3 hours after sputtering, to obtain a dense layer thickness of 70nm.
(3)在TiO2致密层上制备TiO2纳米柱阵列:配制TiCl3的饱和NaCl水溶液,TiCl3浓度为0.15mol/L,具体的配制过程为:首先将23.14gTi溶解于115.7mL 3wt%盐酸中,再溶于884.3L的饱和NaCl水溶液中;将步骤(2)制得的材料浸没在TiCl3的饱和NaCl水溶液中,在置于高压反应釜中,170℃下水热反应2h,得到TiO2纳米柱阵列(纳米柱直径约为100nm,纳米柱长度约 为500nm)。(3) Preparation of TiO 2 nanopillar array on TiO 2 dense layer: Prepare TiCl 3 saturated NaCl aqueous solution, TiCl 3 concentration is 0.15mol/L, the specific preparation process is: first dissolve 23.14gTi in 115.7mL 3wt% hydrochloric acid in, and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into the saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 Nanopillar array (the diameter of the nanopillar is about 100nm, the length of the nanopillar is about is 500nm).
(4)在TiO2纳米柱阵列上制备无定形TiO2-x纳米壳:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.0nm/min,靶材为TiO2-x,溅射气氛为100%氩气,纳米壳厚度为50nm。(4) Preparation of amorphous TiO 2-x nanoshells on TiO 2 nanopillar arrays: Magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.0nm/min, the target material is TiO 2-x , and the sputtering The emission atmosphere was 100% argon, and the nanoshell thickness was 50 nm.
(5)在电子传输层(TiO2致密层/TiO2纳米柱阵列/无定形TiO2-x纳米壳)上沉积钙钛矿层:配制质量分数为30%的钙钛矿层前驱液,溶剂为NMP,采用刮涂法在TiO2电子传输层表面制备钙钛矿活性层,刮涂速度12mm/s,经150℃退火20分钟,最终厚度为450nm的钙钛矿层。(5) Deposit the perovskite layer on the electron transport layer (TiO 2 dense layer/TiO 2 nanopillar array/amorphous TiO 2-x nanoshell): Prepare a perovskite layer precursor solution with a mass fraction of 30%, and the solvent is NMP , the perovskite active layer was prepared on the surface of the TiO 2 electron transport layer using the scraping method. The scraping speed was 12mm/s. After annealing at 150°C for 20 minutes, the final thickness of the perovskite layer was 450nm.
(6)在钙钛矿层上制备空穴传输层:称取72.3mg spiro-OMeTAD,溶于1mL氯苯,分别加入17.5μL锂盐溶液(称取52mgLi-TFSI,溶于100μL乙腈)和28.8μL TBP,搅拌过夜得到澄清溶液,以4000rpm的速度旋涂在钙钛矿层表面。(6) Prepare the hole transport layer on the perovskite layer: weigh 72.3 mg spiro-OMeTAD and dissolve it in 1 mL chlorobenzene. Add 17.5 μL lithium salt solution (weigh 52 mg Li-TFSI and dissolve it in 100 μL acetonitrile) and 28.8 μL respectively. TBP, stir overnight to obtain a clear solution, and spin-coat it on the surface of the perovskite layer at a speed of 4000 rpm.
(7)在空穴传输层上沉积顶电极:在高真空(<5×10-4Pa)环境下,将金属Ag蒸镀到空穴传输层表面,蒸速为厚度100nm,得到钙钛矿太阳能电池。(7) Deposit the top electrode on the hole transport layer: In a high vacuum (<5×10 -4 Pa) environment, metal Ag is evaporated onto the surface of the hole transport layer at a evaporation rate of With a thickness of 100nm, a perovskite solar cell is obtained.
实施例3制备了无定形TiO2-x纳米壳,形成局域表面等离子共振结构。Example 3 prepared amorphous TiO 2-x nanoshells to form a localized surface plasmon resonance structure.
对比例1Comparative example 1
一种钙钛矿太阳能电池,与实施例1的区别为未设置无定形TiO2-x纳米壳结构,其具体的制备步骤如下:A kind of perovskite solar cell differs from Example 1 in that it does not have an amorphous TiO 2-x nanoshell structure, and its specific preparation steps are as follows:
(1)将FTO透明导电玻璃裁成1cm×1cm的片,置于离子水、丙酮、乙醇中分别超声清洗20min后,氮气吹干后保存备用。(1) Cut the FTO transparent conductive glass into 1cm × 1cm pieces, ultrasonically clean them in ionized water, acetone, and ethanol for 20 minutes respectively, blow dry with nitrogen, and store them for later use.
(2)在FTO透明导电玻璃上制备TiO2致密层:采用磁控溅射法,溅射压强0.6Pa,溅射速率1.3nm/min,靶材为TiO2-x,溅射气氛为3%氧气+97%氩气,溅射后在450℃下退火3h,得到致密层厚度为70nm。(2) Preparation of TiO 2 dense layer on FTO transparent conductive glass: magnetron sputtering method is used, the sputtering pressure is 0.6Pa, the sputtering rate is 1.3nm/min, the target material is TiO 2-x , and the sputtering atmosphere is 3% Oxygen + 97% argon, annealed at 450°C for 3 hours after sputtering, to obtain a dense layer thickness of 70nm.
(3)在TiO2致密层上制备TiO2纳米柱阵列:配制TiCl3的饱和NaCl水溶液,浓度为0.15mol/L,具体的配制过程为:首先将23.14gTi溶解于115.7ml,3%盐酸中,再溶于884.3L的饱和NaCl水溶液中;将步骤(2)制得的材料浸没在TiCl3的饱和NaCl水溶液中,在置于高压反应釜中,170℃下水热反应2h,得到TiO2纳米柱阵列。 (3) Preparation of TiO 2 nanopillar arrays on the TiO 2 dense layer: Prepare a saturated NaCl aqueous solution of TiCl 3 with a concentration of 0.15 mol/L. The specific preparation process is: first dissolve 23.14g Ti in 115.7 ml, 3% hydrochloric acid , and then dissolved in 884.3L of saturated NaCl aqueous solution; immerse the material prepared in step (2) into a saturated NaCl aqueous solution of TiCl 3 , place it in a high-pressure reactor, and perform a hydrothermal reaction at 170°C for 2 hours to obtain TiO 2 nanometers column array.
(4)在电子传输层(TiO2致密层/TiO2纳米柱阵列)上沉积钙钛矿层:配制质量分数为30%的钙钛矿层前驱液,溶剂为NMP,采用刮涂法在TiO2电子传输层表面制备钙钛矿活性层,刮涂速度12mm/s,经150℃退火20分钟,最终厚度为450nm的钙钛矿层。(4) Deposit a perovskite layer on the electron transport layer (TiO 2 dense layer/TiO 2 nanopillar array): Prepare a perovskite layer precursor with a mass fraction of 30%, the solvent is NMP, and use the scraper coating method to coat the TiO 2 electron A perovskite active layer was prepared on the surface of the transmission layer, with a scraping speed of 12mm/s, and annealed at 150°C for 20 minutes, resulting in a perovskite layer with a final thickness of 450nm.
(5)在钙钛矿层上制备空穴传输层:称取72.3mg spiro-OMeTAD,溶于1mL氯苯,分别加入17.5μL锂盐溶液(称取52mgLi-TFSI,溶于100μL乙腈)和28.8μL TBP,搅拌过夜得到澄清溶液,以4000rpm的速度旋涂在钙钛矿层表面。(5) Prepare the hole transport layer on the perovskite layer: weigh 72.3 mg spiro-OMeTAD and dissolve it in 1 mL chlorobenzene. Add 17.5 μL lithium salt solution (weigh 52 mg Li-TFSI and dissolve it in 100 μL acetonitrile) and 28.8 μL respectively. TBP, stir overnight to obtain a clear solution, and spin-coat it on the surface of the perovskite layer at a speed of 4000 rpm.
(6)在空穴传输层上沉积顶电极:在高真空(<5×10-4Pa)环境下,将金属Ag蒸镀到空穴传输层表面,蒸速为厚度100nm,得到钙钛矿太阳能电池。(6) Deposit the top electrode on the hole transport layer: In a high vacuum (<5×10 -4 Pa) environment, metal Ag is evaporated onto the surface of the hole transport layer at a evaporation rate of With a thickness of 100nm, a perovskite solar cell is obtained.
对比例1作为对照组,未制备无定形TiO2-x纳米壳,无局域表面等离子共振效应。Comparative Example 1 is used as a control group. Amorphous TiO 2-x nanoshells were not prepared and there was no localized surface plasmon resonance effect.
性能测试Performance Testing
对实施例1~3和对比例1得到的钙钛矿太阳能电池进行性能测试:用NREL校正的Si电池调试光源密度为1个太阳光后,以450W氙灯为光源,通过一个AM 1.5滤波器照射电池,用数字万用表记录电池的光电流-电压曲线;数据整理后的测试结果如表1所述:Perform performance testing on the perovskite solar cells obtained in Examples 1 to 3 and Comparative Example 1: use a NREL calibrated Si cell to adjust the light source density to 1 sunlight, use a 450W xenon lamp as the light source, and illuminate through an AM 1.5 filter Battery, use a digital multimeter to record the photocurrent-voltage curve of the battery; the test results after data collection are as described in Table 1:
表1钙钛矿太阳能电池的性能测试结果
Table 1 Performance test results of perovskite solar cells
通过表1可以看出,无定形TiO2-x纳米壳使电池性能提升,其优选厚度为30nm。It can be seen from Table 1 that the amorphous TiO 2-x nanoshell improves battery performance, and its preferred thickness is 30nm.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 The above description is only the preferred embodiment of the present invention. It should be pointed out that for ordinary people in this technical field For those skilled in the art, several improvements and modifications can be made without departing from the principle of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention.

Claims (10)

  1. 一种钙钛矿太阳能电池,包括:依次层叠设置的透明导电基底层、电子传输层、钙钛矿层、空穴传输层和顶电极层;A perovskite solar cell includes: a transparent conductive base layer, an electron transport layer, a perovskite layer, a hole transport layer and a top electrode layer that are stacked in sequence;
    所述电子传输层包括:TiO2致密层,设置在所述TiO2致密层一侧表面的TiO2纳米柱阵列,和复合在所述TiO2纳米柱阵列表面的无定形TiO2-x纳米壳;所述TiO2致密层的另一侧与透明导电基底层相接触。The electron transport layer includes: a TiO 2 dense layer, a TiO 2 nanocolumn array arranged on one side of the TiO 2 dense layer, and an amorphous TiO 2-x nanoshell compounded on the surface of the TiO 2 nanocolumn array. ; The other side of the TiO 2 dense layer is in contact with the transparent conductive base layer.
  2. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述TiO2致密层的厚度为20~100nm。The perovskite solar cell according to claim 1, wherein the thickness of the TiO 2 dense layer is 20 to 100 nm.
  3. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述无定形TiO2-x纳米壳的厚度为10~100nm。The perovskite solar cell according to claim 1, wherein the thickness of the amorphous TiO 2-x nanoshell is 10 to 100 nm.
  4. 一种权利要求1~3任一项所述的钙钛矿太阳能电池的制备方法,包括以下步骤:A method for preparing a perovskite solar cell according to any one of claims 1 to 3, comprising the following steps:
    在透明导电基底层上由下至上依次制备TiO2致密层、TiO2纳米柱阵列、无定形TiO2-x纳米壳、钙钛矿层、空穴传输层和顶电极层,得到钙钛矿太阳能电池。On the transparent conductive base layer, a TiO 2 dense layer, a TiO 2 nanopillar array, an amorphous TiO 2-x nanoshell, a perovskite layer, a hole transport layer and a top electrode layer are sequentially prepared from bottom to top to obtain a perovskite solar cell. .
  5. 根据权利要求4所述的制备方法,其特征在于,制备所述TiO2致密层的方式为磁控溅射。The preparation method according to claim 4, characterized in that the method of preparing the TiO 2 dense layer is magnetron sputtering.
  6. 根据权利要求5所述的制备方法,其特征在于,所述磁控溅射的溅射压强为0.1~2.0Pa;所述磁控溅射的溅射速率为0.1~2nm/min;所述磁控溅射的溅射靶材为TiO2-x;所述磁控溅射的溅射气氛为氧气和惰性气体的混合气氛;所述磁控溅射结束后,进行退火处理,所述退火处理的温度为400~500℃,所述退火处理的时间为1~5h。The preparation method according to claim 5, characterized in that the sputtering pressure of the magnetron sputtering is 0.1~2.0Pa; the sputtering rate of the magnetron sputtering is 0.1~2nm/min; The sputtering target material of controlled sputtering is TiO 2-x ; the sputtering atmosphere of magnetron sputtering is a mixed atmosphere of oxygen and inert gas; after the magnetron sputtering is completed, annealing treatment is performed, and the annealing treatment The temperature is 400 to 500°C, and the annealing treatment time is 1 to 5 hours.
  7. 根据权利要求4所述的制备方法,其特征在于,制备所述TiO2纳米柱阵列的方式为水热合成。The preparation method according to claim 4, characterized in that the method of preparing the TiO 2 nanopillar array is hydrothermal synthesis.
  8. 根据权利要求7所述的制备方法,其特征在于,所述水热合成所使用的溶液为TiCl3的饱和NaCl水溶液;所述水溶中TiCl3的浓度为0.1~0.5mol/L;所述水热合成的反应温度为100~200℃;所述水热合成的反应时间为1~5h。The preparation method according to claim 7, characterized in that the solution used in the hydrothermal synthesis is a saturated NaCl aqueous solution of TiCl 3 ; the concentration of TiCl 3 in the water solution is 0.1 to 0.5 mol/L; the water The reaction temperature of thermal synthesis is 100-200°C; the reaction time of hydrothermal synthesis is 1-5 hours.
  9. 根据权利要求4所述的制备方法,其特征在于,制备所述无定形TiO2-x 纳米壳的方式为磁控溅射。The preparation method according to claim 4, characterized in that, preparing the amorphous TiO 2-x The method of nanoshell is magnetron sputtering.
  10. 根据权利要求9所述的制备方法,其特征在于,所述磁控溅射的溅射压强为0.1~2.0Pa;所述磁控溅射的溅射速率为0.1~2nm/min;所述磁控溅射的溅射靶材为TiO2-x;所述磁控溅射的溅射气氛为惰性气体气氛。 The preparation method according to claim 9, characterized in that the sputtering pressure of the magnetron sputtering is 0.1-2.0 Pa; the sputtering rate of the magnetron sputtering is 0.1-2nm/min; The sputtering target material of controlled sputtering is TiO 2-x ; the sputtering atmosphere of magnetron sputtering is an inert gas atmosphere.
PCT/CN2023/072269 2022-07-27 2023-01-16 Perovskite solar cell and preparation method therefor WO2024021540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210888565.2A CN114975792B (en) 2022-07-27 2022-07-27 Perovskite solar cell and preparation method thereof
CN202210888565.2 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024021540A1 true WO2024021540A1 (en) 2024-02-01

Family

ID=82970387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072269 WO2024021540A1 (en) 2022-07-27 2023-01-16 Perovskite solar cell and preparation method therefor

Country Status (2)

Country Link
CN (1) CN114975792B (en)
WO (1) WO2024021540A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975792B (en) * 2022-07-27 2022-11-15 中国华能集团清洁能源技术研究院有限公司 Perovskite solar cell and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662625A (en) * 2012-05-18 2015-05-27 埃西斯创新有限公司 Optoelectronic devices with organometal perovskites with mixed anions
CN105206751A (en) * 2015-10-13 2015-12-30 南京大学昆山创新研究院 Perovskite solar cell taking titanium dioxide nanotube as mesoporous layer and preparation method of perovkite solar cell
CN114975792A (en) * 2022-07-27 2022-08-30 中国华能集团清洁能源技术研究院有限公司 Perovskite solar cell and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681722B (en) * 2015-03-06 2018-08-14 中国科学院合肥物质科学研究院 The accurate one-dimensional TiO of perovskite solar cell2Nano-structure array casing play preparation method
CN107445199B (en) * 2017-06-15 2019-11-19 中国科学院上海硅酸盐研究所 Multilevel structure titanium dioxide nanowire array and preparation method thereof
US10516132B2 (en) * 2017-08-24 2019-12-24 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Inverted quantum dot light-emitting diode and manufacturing method thereof
CN110611030A (en) * 2019-10-14 2019-12-24 常熟理工学院 Perovskite solar cell with array structure electron transport layer and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662625A (en) * 2012-05-18 2015-05-27 埃西斯创新有限公司 Optoelectronic devices with organometal perovskites with mixed anions
CN105206751A (en) * 2015-10-13 2015-12-30 南京大学昆山创新研究院 Perovskite solar cell taking titanium dioxide nanotube as mesoporous layer and preparation method of perovkite solar cell
CN114975792A (en) * 2022-07-27 2022-08-30 中国华能集团清洁能源技术研究院有限公司 Perovskite solar cell and preparation method thereof

Also Published As

Publication number Publication date
CN114975792B (en) 2022-11-15
CN114975792A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
Liu et al. Nano-structured electron transporting materials for perovskite solar cells
Liu et al. SnO2‐based perovskite solar cells: configuration design and performance improvement
Noh et al. The architecture of the electron transport layer for a perovskite solar cell
Tétreault et al. Novel nanostructures for next generation dye-sensitized solar cells
Chen et al. Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials
Uddin et al. Progress and challenges of SnO2 electron transport layer for perovskite solar cells: A critical review
Wu et al. Multifunctional nanostructured materials for next generation photovoltaics
Sengupta et al. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application–A review
Lu et al. Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells
Cui et al. Improved efficient perovskite solar cells based on Ta-doped TiO 2 nanorod arrays
Mohammadian-Sarcheshmeh et al. Application of bifunctional photoanode materials in DSSCs: A review
Vaiciulis et al. On titanium oxide spray deposited thin films for solar cells applications
TW201033382A (en) Copper delafossite transparent p-type semiconductor: methods of manufacture and applications
Ren et al. A three-dimensional hierarchical TiO 2 urchin as a photoelectrochemical anode with omnidirectional anti-reflectance properties
WO2024021540A1 (en) Perovskite solar cell and preparation method therefor
Kyaw et al. Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode
Jafarzadeh et al. Recent progresses in solar cells: Insight into hollow micro/nano–structures
Chang et al. Preparation and characterization of MoSe2/CH3NH3PbI3/PMMA perovskite solar cells using polyethylene glycol solution
KR101540364B1 (en) ZSO-base perovskite solar cell and its preparation method
Marandi et al. Synthesis of TiO 2 hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO 2 sub-layers
Wang et al. W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells
Nien et al. Investigation of Dye-Sensitized Solar Cell With Photoanode Modified by TiO₂-ZnO Nanofibers
Abidin et al. Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells
Islavath et al. The performance enhancement of HTM-free ZnO nanowire-based perovskite solar cells via low-temperature TiCl4 treatment
Xu et al. Aged sol-gel solution-processed texture tin oxide for high-efficient perovskite solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844759

Country of ref document: EP

Kind code of ref document: A1