WO2024021532A1 - 电力系统的振荡抑制系统及振荡抑制方法 - Google Patents

电力系统的振荡抑制系统及振荡抑制方法 Download PDF

Info

Publication number
WO2024021532A1
WO2024021532A1 PCT/CN2023/070602 CN2023070602W WO2024021532A1 WO 2024021532 A1 WO2024021532 A1 WO 2024021532A1 CN 2023070602 W CN2023070602 W CN 2023070602W WO 2024021532 A1 WO2024021532 A1 WO 2024021532A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power system
oscillation
power generation
hydrogen production
Prior art date
Application number
PCT/CN2023/070602
Other languages
English (en)
French (fr)
Inventor
黄天罡
夏彦辉
Original Assignee
阳光电源(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源(南京)有限公司 filed Critical 阳光电源(南京)有限公司
Publication of WO2024021532A1 publication Critical patent/WO2024021532A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present application relates to the technical field of hydrogen production oscillation suppression, and in particular to an oscillation suppression system and oscillation suppression method for a power system.
  • the active power fluctuations of the power generation units in the power system are generally monitored in real time. Once an oscillation response occurs, the grid-connected power generation units are removed in turns.
  • the method of cutting off the grid-connected power generation units in rounds not only reduces the system penetration rate, which is not conducive to the consumption of renewable energy, but also the renewable energy power generation units are connected to the large power grid through converters. There are frequent power interactions between the power grid and the AC-DC hybrid grid. Removing some power generation units may further aggravate the oscillation.
  • this application provides an oscillation suppression system and oscillation suppression method for a power system to solve the problem that the existing method of removing grid-connected power generation units in turns not only reduces the system penetration rate, but is also detrimental to the sustainability of the system.
  • the consumption of renewable energy, and the renewable energy power generation units are connected to the large power grid through converters. There are frequent power interactions between multiple converters and with the AC and DC hybrid power grid. After cutting off some power generation units, This may further exacerbate the problem of oscillation.
  • the first aspect of the present application provides an oscillation suppression system for a power system.
  • the oscillation suppression system includes: a hydrogen production and storage device installed at the sending end power generation unit of the power system; The power generation device at the receiving end power generation unit of the system;
  • the power generation fuel of the power generation device comes from the hydrogen production and hydrogen storage device.
  • the hydrogen production and hydrogen storage device and the power generation device are put into operation when active power oscillation occurs in the power system to maintain the power generation at the sending end.
  • the active power reduced by the unit is equal to the active power increased by the receiving end power generation unit.
  • the hydrogen production and storage device and the power generation device stop operating when active power oscillation does not occur in the power system.
  • the sending-end power generation unit is a power generation unit whose power flow flows out of the dominant contact section in the power system
  • the receiving-end power generation unit is a power generation unit where the power flow flows into the main contact section. power generation unit.
  • the generation process of the dominant contact section includes:
  • Calculation is performed based on the complete set of preset faults of the power system and the complete set of cut sets to obtain the dominant contact section of the power system.
  • calculation is performed based on the complete set of preset faults of the power system and the complete set of cut sets to obtain the dominant contact section of the power system, including:
  • the critical cut set corresponding to the maximum risk sum is selected as the dominant connection section of the power system.
  • the critical cut sets corresponding to each calculation example in the preset fault set are respectively determined, including:
  • the cut set corresponding to the maximum value of the comprehensive index among all the cut sets is selected as the critical cut set corresponding to the calculation example.
  • the hydrogen production and hydrogen storage device includes: an electrolysis water hydrogen production device and a hydrogen storage device.
  • the water electrolysis hydrogen production device is a proton exchange membrane electrolytic cell.
  • the power generation device is a hydrogen fuel cell power generation device.
  • the hydrogen fuel cell power generation device is a proton exchange membrane fuel cell.
  • the power system is a wind power system, a photovoltaic system, or a wind-solar hybrid system.
  • a second aspect of the present application provides a method for oscillation suppression of a power system, which is applied to the oscillation suppression system of the power system disclosed in any one of the first aspects.
  • the method includes:
  • the hydrogen production and storage device and power generation device in the oscillation suppression system of the power system are started.
  • the method further includes:
  • the hydrogen production and storage device and the power generation device are in operation, the hydrogen production and storage device and the power generation device are controlled to shut down.
  • the method further includes:
  • monitoring whether active power oscillation occurs in the power system includes:
  • the oscillation suppression method of the power system if it is determined that the oscillation amplitude of the power system is not greater than the preset oscillation amplitude, it also includes:
  • the present application provides an oscillation suppression system for a power system, including: a hydrogen production and storage device installed at the sending end power generation unit of the power system, and a power generation device installed at the receiving end power generation unit of the power system; wherein , the power generation fuel of the power generation device comes from the hydrogen production and storage device.
  • the hydrogen production and storage device and the power generation device are put into operation when the active power oscillation occurs in the power system.
  • the active power transmitted by the sending end power generation unit is kept equal to the increase in transmission by the receiving end power generation unit.
  • the active power does not need to be cut off in turns when the power system oscillates.
  • the grid-connected power generation units can be directly used to suppress the oscillation through hydrogen production and storage devices and power generation devices to maintain high permeability wind/light absorption and solve the existing problem.
  • the method of removing grid-connected power generation units in rounds not only reduces the system penetration rate, which is not conducive to the consumption of renewable energy, but also the renewable energy power generation units are connected to the large power grid through converters, and there is a gap between multiple converters. It has frequent power interactions with the AC-DC hybrid grid. Removing some power generation units may further aggravate the oscillation problem.
  • Figure 1 is a flow chart for generating a dominant contact section of a power system provided by an embodiment of the present application
  • Figure 2 is a specific generation flow chart of a leading contact section provided by the embodiment of the present application.
  • Figure 3 is a flow chart of an oscillation suppression method for a power system provided by an embodiment of the present application
  • FIGS 4 and 5 are flow charts for monitoring two types of active power oscillations provided by another embodiment of the present application.
  • 6 to 7 are flow charts of two power system oscillation suppression methods provided by embodiments of the present application.
  • Embodiments of the present application provide an oscillation suppression system for a power system to solve the problem that the existing method of cutting off grid-connected power generation units in rounds not only results in a reduction in system penetration, which is not conducive to the consumption of renewable energy, but also Energy generation units are connected to the large power grid through converters, and there are frequent power interactions between multiple converters and with the AC-DC hybrid power grid. Removing some power generation units may further aggravate the oscillation problem.
  • the oscillation suppression system of the power system mainly includes: a hydrogen production and storage device installed at the sending end power generation unit of the power system, and a power generation device installed at the receiving end power generation unit of the power system.
  • the power generation fuel of the power generation device comes from the hydrogen production and storage device.
  • the hydrogen production and storage device and the power generation device are put into operation when the active power oscillation occurs in the power system.
  • the active power transmitted by the sending end power generation unit is reduced equal to the increase in the receiving end power generation unit. Transmitted active power.
  • the hydrogen production and hydrogen storage device may include: a water electrolysis hydrogen production device and a hydrogen storage device.
  • the electrolytic water hydrogen production device can be a proton exchange membrane electrolytic cell; of course, it is not limited to this, and can also be other existing electrolytic water hydrogen production devices. This application does not limit its specific type, and all are described in this application. within the scope of protection applied for.
  • the power generation device can be a hydrogen fuel cell power generation device. Specifically, it can be a proton exchange membrane fuel cell; of course, it is not limited to this. It can also be other existing hydrogen fuel cell power generation devices. This application does not limit its specific type. , are all within the protection scope of this application.
  • the hydrogen production and hydrogen storage device may include: a water electrolysis hydrogen production device and a hydrogen storage device.
  • the power generation fuel of the power generation device comes from the hydrogen storage device in the hydrogen production and hydrogen storage device.
  • the hydrogen production and storage device and power generation device stop operating when power oscillation does not occur in the power system.
  • the power system in practical applications can be a wind power system, a photovoltaic system, or a wind-solar hybrid system; of course, it is not limited to this, and can also be other existing power systems.
  • This application covers the power system The specific types are not limited and are all within the protection scope of this application.
  • the sending-end power generation unit may be a power generation unit with the power flow flowing out of the dominant contact section in the power system
  • the receiving-end power generation unit may be a power generation unit with the power flow flowing into the dominant connection section
  • power flow is the steady-state distribution of voltage (each node) and power (active and reactive power) (each branch) in the power system, which can be calculated through power flow.
  • Power flow calculation is to calculate the voltage of each busbar, the current of each branch, the power and the network loss in the steady-state operation of the power system through the known wiring method, parameters and operating conditions of the power grid.
  • Figure 1 the generation process of the dominant contact section in the power system can be shown in Figure 1, which can include the following steps:
  • the complete set of cut sets includes all possible cut sets in the power system.
  • the number of cut sets in the power system is generally greater than 1.
  • step S102 is executed and calculation is performed based on the complete set of preset faults and the complete set of cut sets of the power system.
  • Figure 2 The specific process of obtaining the dominant contact section of the power system is shown in Figure 2, which mainly includes:
  • the comprehensive index of each cut set corresponding to each calculation case can be calculated separately in the preset fault set, and then for each calculation case, the cut set with the largest comprehensive index value is selected as the cut set corresponding to the calculation case. critical cut set of .
  • M j is the inertia of generator j corresponding to cut set C i
  • ⁇ j is the rotor angular speed of generator j corresponding to cut set C i at the time of fault clearing.
  • the cut set of is used as the critical cut set of this calculation example.
  • the relevant lines in the critical cut set can be used as the dominant contact section in this example.
  • the complete set of preset faults can be a collection of one or more types of fault events in the power system, such as three-phase permanent short-circuit faults, single-phase permanent short-circuit faults, power oscillation faults, etc.
  • at least one fault needs to be configured in advance, and then all faults are composed into a preset fault set.
  • each calculation example in the preset fault set has a corresponding critical cut set, and each critical cut set also has at least one corresponding calculation example. Therefore, for each critical cut set, we can The risk values of each corresponding calculation example are summed to obtain the sum of risks corresponding to each critical cut set.
  • each critical cut set can be sorted according to the total risk from large to small, and the critical cut set ranked first is selected as the dominant contact section of the power system; of course, it is not limited to this, and other existing selections can also be used. In this way, among the sum of risks of all critical cut sets, the critical cut set corresponding to the maximum risk sum is selected as the dominant contact section of the power system.
  • This application does not limit the specific selection process, and it is all within the scope of protection of this application.
  • the dominant contact section of the power system can also be generated through other existing methods. This application does not specifically limit the generation method of the dominant contact section. within the scope of protection applied for.
  • the location selection of hydrogen production and storage devices and power generation devices can also be determined based on actual application conditions and user needs, in addition to being located at the sending-end power generation unit and the receiving-end power generation unit. Regardless of the hydrogen production and storage device and where the power generation device is arranged in the power system are all within the protection scope of this application.
  • the oscillation suppression system of the power system includes: a hydrogen production and storage device installed at the sending-end power generation unit of the power system, and a power generation device installed at the receiving-end power generation unit of the power system.
  • the power generation fuel of the power generation device comes from the hydrogen production and hydrogen storage device, the hydrogen production and hydrogen storage device and the power generation device are put into operation when the active power oscillation occurs in the power system, and the active power transmitted by the sending end power generation unit is kept equal to the received power.
  • the end power generation unit increases the active power transmitted. There is no need to cut off the grid-connected power generation unit in turns when the power system oscillates.
  • the oscillation can be suppressed directly through the hydrogen production and storage device and the power generation device to maintain high penetration of wind/light absorption. , solves the problem that the existing method of removing grid-connected power generation units in rounds not only reduces the system penetration rate, which is not conducive to the consumption of renewable energy, but also, the renewable energy power generation units are connected to the large power grid through converters, and multiple There are frequent power interactions between converters and between the AC and DC hybrid grids. Removing some power generation units may further aggravate the oscillation problem.
  • this application realizes the oscillation suppression of the power system by applying hydrogen production and hydrogen storage devices and power generation devices, filling the gap that the hydrogen production, hydrogen storage and hydrogen fuel cell links are not applied to the research on the active power oscillation suppression of the power system; and, for each For the transient stability calculation example, we can find its dominant contact section from the perspective of dynamic potential energy conversion; in addition, for the complete set of preset faults, we can calculate the leading contact section of a large power grid with high penetration rate from the risk perspective of each calculation example; finally, adopt the system When hydrogen storage devices and power generation devices suppress active power oscillations, the operating status of wind power and photovoltaics can be maintained without changing the wind/light penetration rate of the power system.
  • an oscillation suppression method of the power system which is applied to the oscillation suppression of the power system as described in any of the above embodiments.
  • System please refer to Figure 3.
  • the oscillation suppression method of this power system mainly includes the following steps:
  • step S300 the specific process of executing step S300 and monitoring whether active power oscillation occurs in the power system can be shown in Figure 4, which mainly includes the following steps:
  • the specific value of the preset oscillation amplitude may be determined by the specific application environment and user needs. This application does not specifically limit it, and they are all within the protection scope of this application.
  • the preset oscillation amplitude can be obtained through offline simulation.
  • step S500 After executing step S400 and determining whether the oscillation amplitude of the power system is greater than the preset oscillation amplitude, as shown in Figure 5, if it is determined that the oscillation amplitude of the power system is not greater than the preset oscillation amplitude, you can directly It is determined that active power oscillation does not occur in the power system, that is, step S500.
  • step S402 is executed.
  • S402. Determine whether the oscillation duration is greater than the preset duration.
  • the specific value of the preset duration can also be determined according to the specific application environment and user needs. This application does not specifically limit it, and they are all within the protection scope of this application.
  • the preset duration can also be obtained through offline simulation trials.
  • step S404 is executed; if it is determined that the oscillation duration is not greater than the preset duration, step S406 is executed.
  • the oscillation amplitude of the power system is greater than the preset oscillation amplitude, but the oscillation duration is not greater than the preset duration, it can be shown that the power system only oscillates briefly, and the oscillation will be eliminated soon.
  • the probability of active power oscillation is small, and it can be determined that no active power oscillation occurs in the power system.
  • step S302 may be executed. If it is detected that no active power oscillation occurs in the power system, no action is required.
  • the hydrogen production and storage device in the oscillation suppression system of the power system can be started by issuing control instructions, so that the hydrogen production and storage device can be put into operation, and the hydrogen production and storage device can be put into operation.
  • the hydrogen storage device produces and stores hydrogen while absorbing the reactive power of the power system, reducing the terminal voltage of the sending-end power generation unit in the power system and reducing the active power emitted by the sending-end power generation unit; and starting the power generation device to generate electricity.
  • the device is put into operation to convert hydrogen energy into electrical energy.
  • the hydrogen fuel cell inverter is used to transmit reactive power to the power system, which increases the terminal voltage of the receiving end power generation unit and increases the active power emitted by the receiving end power generation unit.
  • This maintains the consistency of the hydrogen production power of the hydrogen production and storage device and the power of the power generation device, maintains the consistency of the reduced power of the sending-end power generation unit and the increased power of the receiving-end power generation unit in the power system, and meets the real-time balance of the active power of the large power grid. .
  • the oscillation suppression method of the power system can, after detecting that active power oscillation occurs in the power system, activate the hydrogen production and storage device and the power generation device in the oscillation suppression system of the power system to utilize hydrogen production respectively.
  • the hydrogen storage device produces and stores hydrogen, and absorbs the reactive power of the power system, reducing the terminal voltage of the sending-end power generation unit in the power system and reducing the active power emitted by the sending-end power generation unit; and using hydrogen fuel cell inverters Convert hydrogen energy into electrical energy and deliver reactive power to the power system, increasing the terminal voltage of the receiving-end power generation unit and increasing the active power emitted by the receiving-end power generation unit, thereby maintaining the hydrogen production power of the hydrogen production and storage device.
  • the grid-connected power generation unit not only reduces the penetration rate of the system, which is not conducive to the consumption of renewable energy, but also the renewable energy power generation unit is connected to the large power grid through a converter. Multiple converters and the same AC and DC The power interactions between hybrid power grids are frequent, and removing some power generation units may further aggravate the oscillation problem.
  • the power system Oscillation suppression methods also include:
  • step S602 can be executed. If it is determined that the hydrogen production and storage device and the power generation device are in operation, no action may be performed.
  • the hydrogen production and storage device and the power generation device can be controlled at the same time.
  • the power generation device is shut down, that is, the water electrolysis hydrogen production device and the hydrogen fuel cell power generation device are blocked at the same time, and the power supply mode is restored to the power system, so as to avoid the continuous operation of the hydrogen production and hydrogen storage device and the power generation device from interfering with the power system and causing active power oscillation in the power system. .
  • the oscillation suppression of the power system Methods also include:
  • step S300 Return to the step of monitoring whether active power oscillation occurs in the power system, that is, return to step S300.
  • the step of monitoring whether active power oscillation occurs in the power system can be returned to perform periodic monitoring of the power system to monitor
  • the hydrogen production and storage device and power generation device are controlled in a timely manner, further ensuring the reliability of the oscillation suppression method of the power system.
  • the oscillation suppression method of the power system has the following implementation process:
  • the hydrogen fuel cell is used to reverse
  • the inverter emits reactive power to the system, which increases the terminal voltage of the receiving end power generation unit, increases the active power emitted by the receiving end power generation unit, maintains the consistency of the electrolyzed water hydrogen production power and the hydrogen fuel cell power generation, and maintains the consistency of the sending end power generation unit.
  • the consistency of the power generation unit/receiving end power generation unit to generate less/increased active power satisfies the real-time balance of the active power of the large power grid; when the oscillation amplitude A ⁇ 3 and the duration T ⁇ 4 , the electrolysis of water for hydrogen production is simultaneously blocked
  • the device and the hydrogen fuel cell power generation device are restored to the high-penetration wind and solar power supply mode.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are set thresholds, which can be set experimentally through offline simulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种电力系统的振荡抑制系统及振荡抑制方法,该系统包括:装设于电力系统中送端发电单元处的制氢储氢装置,及装设于电力系统中受端发电单元处的发电装置;发电装置的发电燃料来源于制氢储氢装置,制氢储氢装置和发电装置在电力系统发生有功功率振荡时投入运行,保持送端发电单元减少传输的有功功率等于受端发电单元增加传输的有功功率,无需在电力系统发生有功功率振荡时,分轮次切除并网发电单元,可直接通过制氢储氢装置和发电装置进行振荡抑制,从而保持高渗透率风/光消纳。

Description

电力系统的振荡抑制系统及振荡抑制方法
本公开要求于2022年7月25日提交中国专利局、申请号为202210876919.1、发明名称为“电力系统的振荡抑制系统及振荡抑制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及制氢振荡抑制技术领域,特别涉及一种电力系统的振荡抑制系统及振荡抑制方法。
背景技术
随着高渗透率新能源大规模并网以及其它大容量电力电子设备的广泛投运,尤其在我国西部、北部等地区集中接入程度更高,振荡稳定性问题成为了潜在风险,若不能及时研判振荡态势、快速实时精准控制,则可能会给设备厂商、发电企业、电网公司以及人民群众造成经济损失。
目前,一般通过实时监测电力系统中发电单元的有功功率波动,一旦出现振荡响应,则分轮次切除并网发电单元。
但是,分轮次切除并网发电单元的方式不仅造成系统渗透率降低,不利于可再生能源的消纳,并且,可再生能源发电单元通过变流器接入大电网,多个变流器之间及其同交直流混联电网之间的功率交互频繁,切除部分发电单元之后,可能会进一步加剧振荡。
发明内容
基于上述现有技术的不足,本申请提供了一种电力系统的振荡抑制系统及振荡抑制方法,以解决现有通过分轮次切除并网发电单元的方式不仅造成系统渗透率降低,不利于可再生能源的消纳,并且,可再生能源发电单元通过变流器接入大电网,多个变流器之间及其同交直流混联电网之间的功率交互频繁,切除部分发电单元之后,可能会进一步加剧振荡的问题。
为了实现上述目的,本申请提供了以下技术方案:
本申请第一方面提供了一种电力系统的振荡抑制系统,所述振荡抑制系统包括:装设于所述电力系统中送端发电单元处的制氢储氢装置,以及装设于所述电力系统的受端发电单元处的发电装置;
其中,所述发电装置的发电燃料来源于所述制氢储氢装置,所述制氢储氢装置和所述发电装置在所述电力系统发生有功功率振荡时投入运行,保持所述送端发电单元减少的有功功率等于所述受端发电单元增加的有功功率。
可选地,在上述的电力系统的振荡抑制系统中,所述制氢储氢装置和所述发电装置在所述电力系统未发生有功功率振荡时停止运行。
可选地,在上述的电力系统的振荡抑制系统中,所述送端发电单元是潮流流出所述电力系统中主导联络断面的发电单元,所述受端发电单元是潮流流入所述主导联络断面的发电单元。
可选地,在上述的电力系统的振荡抑制系统中,所述主导联络断面的生成过程,包括:
对所述电力系统进行潮流拓扑分析,得到所述电力系统的割集全集;
基于所述电力系统的预设故障全集和所述割集全集进行计算,得到所述电力系统的主导联络断面。
可选地,在上述的电力系统的振荡抑制系统中,基于所述电力系统的预设故障全集和所述割集全集进行计算,得到所述电力系统的主导联络断面,包括:
分别确定出所述预设故障全集中与每个算例对应的临界割集;
分别将每个所述临界割集对应的各个算例的风险值进行叠加,得到各个所述临界割集的风险总和;
在所有所述临界割集的风险总和中,选取与最大风险总和对应的那个临界割集作为所述电力系统的主导联络断面。
可选地,在上述的电力系统的振荡抑制系统中,分别确定出与所述预设故障全集中与每个算例对应的临界割集,包括:
分别计算出所述预设故障全集中每个算例在所述割集全集中各个割集的综合指标;
针对每一算例,选取所述割集全集中,与综合指标最大值对应的那个割集作为所述算例对应的临界割集。
可选地,在上述的电力系统的振荡抑制系统中,所述制氢储氢装置包括:电解水制氢装置和氢气存储装置。
可选地,在上述的电力系统的振荡抑制系统中,所述电解水制氢装置 为质子交换膜电解池。
可选地,在上述的电力系统的振荡抑制系统中,所述发电装置为氢燃料电池发电装置。
可选地,在上述的电力系统的振荡抑制系统中,所述氢燃料电池发电装置为质子交换膜燃料电池。
可选地,在上述的电力系统的振荡抑制系统中,所述电力系统为风力系统,或者,光伏系统,或者风光混合系统。
本申请第二方面提供了一种电力系统的振荡抑制方法,应用于如第一方面公开的任一项所述的电力系统的振荡抑制系统,所述方法包括:
监测所述电力系统是否发生有功功率振荡;
若监测出所述电力系统发生有功功率振荡,则启动所述电力系统的振荡抑制系统中的制氢储氢装置和发电装置。
可选地,在上述的电力系统的振荡抑制方法中,若监测出所述电力系统未发生有功功率振荡,则还包括:
判断所述制氢储氢装置和所述发电装置是否处于运行状态;
若判断出所述制氢储氢装置和所述发电装置处于运行状态,则控制所述制氢储氢装置和所述发电装置停机。
可选地,在上述的电力系统的振荡抑制方法中,在启动所述电力系统的振荡抑制系统中的制氢储氢装置和发电装置之后,还包括:
返回执行监测所述电力系统是否发生有功功率振荡的步骤。
可选地,在上述的电力系统的振荡抑制方法中,监测所述电力系统是否发生有功功率振荡,包括:
判断所述电力系统的振荡幅值是否大于预设振荡幅值;
若判断出所述电力系统的振荡幅值大于预设振荡幅值,则判断振荡持续时间是否大于预设持续时间;
若判断出振荡持续时间大于预设持续时间,则判定所述电力系统发生有功功率振荡;
若判断出振荡持续时间不大于预设持续时间,则判定所述电力系统未发生有功功率振荡。
可选地,在上述的电力系统的振荡抑制方法中,若判断出所述电力系统的振荡幅值不大于预设振荡幅值,则还包括:
判定所述电力系统未发生有功功率振荡。
本申请提供了一种电力系统的振荡抑制系统,包括:装设于电力系统中送端发电单元处的制氢储氢装置,以及装设于电力系统的受端发电单元处的发电装置;其中,发电装置的发电燃料来源于制氢储氢装置,制氢储氢装置和发电装置在电力系统发生有功功率振荡时投入运行,保持送端发电单元减少传输的有功功率等于受端发电单元增加传输的有功功率,无需在电力系统发生振荡时,分轮次切除并网发电单元,可直接通过制氢储氢装置和发电装置进行振荡抑制,保持高渗透率风/光消纳,解决了现有通过分轮次切除并网发电单元的方式不仅造成系统渗透率降低,不利于可再生能源的消纳,并且,可再生能源发电单元通过变流器接入大电网,多个变流器之间及其同交直流混联电网之间的功率交互频繁,切除部分发电单元之后,可能会进一步加剧振荡的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种电力系统的主导联络断面的生成流程图;
图2为本申请实施例提供的一种主导联络断面的具体生成流程图;
图3为本申请实施例提供的一种电力系统的振荡抑制方法的流程图;
图4和图5为本申请另一实施例提供的两种有功功率振荡的监测流程图;
图6至图7为本申请实施例提供的两种电力系统的振荡抑制方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的 范围。
本申请实施例提供了一种电力系统的振荡抑制系统,以解决现有通过分轮次切除并网发电单元的方式不仅造成系统渗透率降低,不利于可再生能源的消纳,并且,可再生能源发电单元通过变流器接入大电网,多个变流器之间及其同交直流混联电网之间的功率交互频繁,切除部分发电单元之后,可能会进一步加剧振荡的问题。
该电力系统的振荡抑制系统主要包括:装设于电力系统中送端发电单元处的制氢储氢装置,以及装设于电力系统的受端发电单元处的发电装置。
其中,发电装置的发电燃料来源于制氢储氢装置,制氢储氢装置和发电装置在电力系统发生有功功率振荡时投入运行,保持送端发电单元减少传输的有功功率等于受端发电单元增加传输的有功功率。
具体的,该制氢储氢装置可以包括:电解水制氢装置和氢气存储装置。实际应用中,该电解水制氢装置可以为质子交换膜电解池;当然,并不仅限于此,还可以为现有的其他电解水制氢装置,本申请对其具体类型不作限定,均在本申请的保护范围之内。
该发电装置可以为氢燃料电池发电装置,具体的,可以是质子交换膜燃料电池;当然,并不仅限于此,还可以是其他现有的氢燃料电池发电装置,本申请对其具体类型不作限定,均在本申请的保护范围之内。
需要说明的是,制氢储氢装置可以包括:电解水制氢装置和氢气存储装置,发电装置的发电燃料来源于制氢储氢装置中的氢气存储装置。
实际应用中,该制氢储氢装置和发电装置在电力系统未发生功率振荡时停止运行。
需要说明的是,实际应用中的电力系统可以为风力系统,或者,光伏系统,或者,风光混合系统;当然,并不仅限于此,也可以是其他现有的电力系统,本申请对电力系统的具体类型不作限定,均在本申请的保护范围之内。
实际应用中,该送端发电单元可以是潮流流出电力系统中主导联络断面的发电单元,受端发电单元可以是潮流流入主导联络断面的发电单元。
需要说明的是,潮流是电力系统中电压(各节点)、功率(有功、无功)(各支路)的稳态分布,可以通过潮流计算得到。潮流计算是通过已 知电网的接线方式与参数及运行条件,计算电力系统稳态运行各母线电压、各支路电流、功率及网损。
其中,电力系统中主导联络断面的生成过程可如图1所示,可以包括如下步骤:
S100、对电力系统进行潮流拓扑分析,得到电力系统的割集全集。
实际应用中,可以针对电力系统的大电网进行潮流拓扑分析,得到电力系统的割集全集。其中,割集全集包含电力系统所有可能出现的割集。具体的,电力系统中的割集数量一般大于1。
S102、基于电力系统的预设故障全集和割集全集进行计算,得到电力系统的主导联络断面。
实际应用中,执行步骤S102、基于电力系统的预设故障全集和割集全集进行计算,得到电力系统的主导联络断面的具体过程可如图2所示,主要包括:
S200、分别确定出预设故障全集与每个算例对应的临界割集。
其中,可以先分别计算出预设故障全集中,对应于每个算例的各个割集的综合指标,然后针对每一算例,选取具有最大综合指标值的那个割集作为与该算例对应的临界割集。
具体的,割集的综合指标计算式为:
Figure PCTCN2023070602-appb-000001
其中,σ Ci表示割集C i的综合指标,i=1、2、3……n,
Figure PCTCN2023070602-appb-000002
为故障清除时刻与割集C i对应的发电机动能之和,
Figure PCTCN2023070602-appb-000003
为与割集C i对应的各支路势能之和。
Figure PCTCN2023070602-appb-000004
为与割集C i对应的发电机数,M j为与割集C i对应的发电机j惯量,ω j为故障清除时刻与割集C i对应的发电机j转子角速度。
Figure PCTCN2023070602-appb-000005
为与割集C i对应的支路数,
Figure PCTCN2023070602-appb-000006
为与割集C i对应的支路k在故障后稳定平衡状态下的相角差,
Figure PCTCN2023070602-appb-000007
为与割集C i对应的支路k在故障后不稳定平衡状态下的相角差,P k(u)为故障演化过程中与割集C i对应的支路k的有功潮流,
Figure PCTCN2023070602-appb-000008
为与割集C i对应的支路k相对于故障后稳定平衡状态下的有功潮流。
在计算出对应于预设故障全集中每个算例的各个割集的综合指标之后,可以针对每一算例,选择对应于
Figure PCTCN2023070602-appb-000009
的那个割集作为该算例的 临界割集。其中,临界割集中相关线路可以作为该算例的主导联络断面。
实际应用中,预设故障全集可以是电力系统中某一类或多类故障事件的集合,比如,三相永久短路故障、单相永久短路故障、功率振荡故障等。具体的,本发明中,需要预先配置出至少一种故障,然后将所有的故障组成预设故障全集。
S202、分别将与每个临界割集对应的各个算例的风险值进行叠加,得到各个临界割集的风险总和。
实际应用中,预设故障全集中每个算例存在一个与之对应的临界割集,每个临界割集也同样存在至少一个与之对应的算例,因此,针对每一个临界割集,可以将与其对应的各个算例的风险值进行求和,得到与每个临界割集对应的风险总和。
S204、在所有临界割集的风险总和中,选取与最大风险总和对应的那个临界割集作为电力系统的主导联络断面。
实际应用中,可以按照风险总和由大至小对各个临界割集进行排序,选取排序第一的临界割集作为电力系统的主导联络断面;当然,并不仅限于此,还可以通过其他现有选取方式,在所有临界割集的风险总和中,选取与最大风险总和对应的临界割集作为电力系统的主导联络断面,本申请对具体的选取过程不作限定,均在本申请的保护范围之内。
需要说明的是,除了通过上述方式生成电力系统的主导联络断面外,还可以通过现有其他方式,生成电力系统的主导联络断面,本申请对主导联络断面的生成方式不作具体限定,均在本申请的保护范围之内。
此外,除了通过电力系统的主导联络断面的方式,确定出电力系统中送端发电单元和受端发电单元外,还可以根据实际应用环境和用户需求,采用其他方式,确定出电力系统中送端发电单元和受端发电单元,也同样在本申请的保护范围之内。
再者,制氢储氢装置和发电装置布点位置的选取,同样除设置于送端发电单元处和受端发电单元处外,也可根据实际应用情况和用户需求确定,无论制氢储氢装置和发电装置布置于电力系统的何处,均在本申请的保护范围之内。
基于上述原理,本实施例提供的电力系统的振荡抑制系统,包括:装设于电力系统中送端发电单元处的制氢储氢装置,以及装设于电力系统的 受端发电单元处的发电装置;其中,发电装置的发电燃料来源于所述制氢储氢装置,制氢储氢装置和发电装置在电力系统发生有功功率振荡时投入运行,保持送端发电单元减少传输的有功功率等于受端发电单元增加传输的有功功率,无需在电力系统发生振荡时,分轮次切除并网发电单元,可直接通过制氢储氢装置和发电装置进行振荡抑制,保持高渗透率风/光消纳,解决了现有通过分轮次切除并网发电单元的方式不仅造成系统渗透率降低,不利于可再生能源的消纳,并且,可再生能源发电单元通过变流器接入大电网,多个变流器之间及其同交直流混联电网之间的功率交互频繁,切除部分发电单元之后,可能会进一步加剧振荡的问题。
此外,本申请通过应用制氢储氢装置和发电装置实现电力系统的振荡抑制,填充了制氢、储氢及氢燃料电池环节未应用于电力系统有功功率振荡抑制研究的空白;并且,对于各暂态稳定算例,从动势能转化的观点来寻找其主导联络断面;另外,对于预设故障全集,可以按各算例的风险观点来统计高渗透率大电网主导联络断面;最后,采用制氢储氢装置和发电装置进行有功功率振荡抑制时,可不改变风电、光伏的运行状态,保持电力系统的风/光渗透率。
基于上述实施例提供的电力系统的振荡抑制系统,相应的,本申请另一实施例还提供了一种电力系统的振荡抑制方法,应用于如上述任一实施例所述的电力系统的振荡抑制系统,请参见图3,该电力系统的振荡抑制方法主要包括如下步骤:
S300、监测电力系统是否发生有功功率振荡。
实际应用中,执行步骤S300、监测电力系统是否发生有功功率振荡的具体过程可如图4所示,主要包括如下步骤:
S400、判断电力系统的振荡幅值是否大于预设振荡幅值。
其中,预设振荡幅值的具体取值可视具体应用环境和用户需求而定,本申请不作具体限定,均在本申请的保护范围内。
在一些实施例中,预设振荡幅值可以通过离线仿真试探得到。
实际应用中,在执行步骤S400、判断电力系统的振荡幅值是否大于预设振荡幅值之后,如图5所示,若判断电力系统的振荡幅值不大于预设振荡幅值,则可以直接判定电力系统未发生有功功率振荡,也即步骤S500。
若判断出电力系统的振荡幅值大于预设振荡幅值,也即判断结果为是,则执行步骤S402。
S402、判断振荡持续时间是否大于预设持续时间。
其中,预设持续时间的具体取值也可视具体应用环境和用户需求确定,本申请不作具体限定,均在本申请的保护范围内。
在一些实施例中,预设持续时间同样可以通过离线仿真试探得到。
若判断出振荡持续时间大于预设持续时间,则执行步骤S404;若判断出振荡持续时间不大于预设持续时间,则执行步骤S406。
S404、判定电力系统发生有功功率振荡。
实际应用中,当判断出电力系统的振荡幅值大于预设振荡幅值,且振荡持续时间大于预设持续时间之后,则说明电力系统存在较高概率的有功功率振荡,可以判定电力系统发生有功功率振荡。
S406、判定电力系统未发生有功功率振荡。
实际应用中,当判断出电力系统的振荡幅值大于预设振荡幅值,但是振荡持续时间未大于预设持续时间之后,则可以说明电力系统只是短暂时出现振荡,振荡很快就能消除,存在有功功率振荡的概率较小,可以判定电力系统未发生有功功率振荡。
若监测出电力系统发生有功功率振荡,则可以执行步骤S302。若检测出电力系统未发生有功功率振荡,则可以不执行任何动作。
需要说明的是,在一些实施例中,还可以通过电力系统中自带的广域监测系统,监测出电力系统是否发生有功功率振荡。并且,在监测出电力系统发生有功功率振荡之后,还可以及时进行预警。
S302、启动电力系统的振荡抑制系统中的制氢储氢装置和发电装置。
实际应用中,当监测出电力系统发生有功功率振荡,则可以通过下发控制指令的方式,启动电力系统的振荡抑制系统中的制氢储氢装置,使制氢储氢装置投入运行,利用制氢储氢装置进行制氢、储氢,同时吸收电力系统的无功功率,使电力系统中送端发电单元的端电压降低,减少送端发电单元发出的有功功率;以及启动发电装置,使发电装置投入运行,进行氢能向电能的转化,同时利用氢燃料电池逆变器向电力系统输送无功功率,使受端发电单元的端电压升高,增大受端发电单元发出的有功功率,从而保持制氢储氢装置制氢功率和发电装置发电功率的一致性,保持电力系统 中送端发电单元减少的功率和受端发电单元增发的功率的一致性,满足大电网有功功率的实时平衡。
基于上述原理,本实施例提供的电力系统的振荡抑制方法能够在监测出电力系统发生有功功率振荡之后,通过启动电力系统的振荡抑制系统中的制氢储氢装置和发电装置,分别利用制氢储氢装置进行制氢、储氢,并吸收电力系统的无功功率,使电力系统中送端发电单元的端电压降低,减少送端发电单元发出的有功功率;以及利用氢燃料电池逆变器进行氢能向电能的转化,并向电力系统输送无功功率,使受端发电单元的端电压升高,增大受端发电单元发出的有功功率,从而保持制氢储氢装置制氢功率和发电装置发电功率的一致性,以及保持电力系统中送端发电单元减少的功率和受端发电单元增发的功率的一致性,满足大电网有功功率的实时平衡,解决了现有通过分轮次切除并网发电单元的方式不仅造成系统渗透率降低,不利于可再生能源的消纳,并且,可再生能源发电单元通过变流器接入大电网,多个变流器之间及其同交直流混联电网之间的功率交互频繁,切除部分发电单元之后,可能会进一步加剧振荡的问题。
可选地,在本申请提供的另一实施例中,在执行步骤S300、监测电力系统是否发生有功功率振荡之后,若监测出电力系统未发生有功功率振荡,则请参见图6,该电力系统的振荡抑制方法还包括:
S600、判断制氢储氢装置和发电装置是否处于运行状态。
实际应用中,可以通过获取制氢储氢装置和发电装置的运行参数,判断制氢储氢装置和发电装置是否处于运行状态;当然,并不仅限于此,还可以通过现有其他方式,判断制氢储氢装置和发电装置是否处于运行状态,均在本申请的保护范围之内。
若判断出制氢储氢装置和发电装置处于运行状态,则可以执行步骤S602。若判断出制氢储氢装置和发电装置不处于运行状态,则可以不执行任何动作。
S602、控制制氢储氢装置和发电装置停机。
实际应用中,由于监测出电力系统未发生有功功率振荡,则说明电力系统当前处于正常运行状态,可以在判断出制氢储氢装置和发电装置处于运行状态之后,同时控制制氢储氢装置和发电装置停机,也即同时闭锁电 解水制氢装置和氢燃料电池发电装置,恢复由电力系统供电模式,以免制氢储氢装置和发电装置持续运行对电力系统干扰,导致电力系统出现有功功率振荡。
可选地,在本申请提供的另一实施例中,在执行步骤S302、启动电力系统的振荡抑制系统中的制氢储氢装置和发电装置之后,请参见图7,该电力系统的振荡抑制方法还包括:
返回执行监测电力系统是否发生有功功率振荡的步骤,也即返回执行步骤S300。
实际应用中,在启动电力系统的振荡抑制系统中的制氢储氢装置和发电装置之后,可以返回执行监测电力系统是否发生有功功率振荡的步骤,从而对电力系统进行周期性监测,以在监测出电力系统未发生有功功率振荡时,及时控制制氢储氢装置和发电装置,进一步保证了电力系统的振荡抑制方法的可靠性。
基于上述实施例示出的电力系统的振荡抑制系统和电力系统的振荡抑制方法,假设电力系统为高渗透率风光系统,制氢储氢装置包括电解水制氢装置和氢气存储装置,发电装置为氢燃料电池发电装置,则该电力系统的振荡抑制方法具有如下实施过程:
当系统振荡幅值A>ε 1,且持续时间T>ε 2时,启动电解水制氢装置,进行制氢,并将氢气存于氢气存储装置,利用电解水制氢电源向系统吸收无功功率,使送端发电单元的端电压降低,减小送端发电单元发出的有功功率,同时启动氢燃料电池发电装置从氢气存储装置取氢气,进行氢能向电能的转化,利用氢燃料电池逆变器向系统发出无功功率,使受端发电单元的端电压升高,增大受端发电单元发出的有功功率,保持电解水制氢功率和氢燃料电池发电功率的一致性,保持送端发电单元/受端发电单元少发/增发有功功率的一致性,满足大电网有功功率的实时平衡;当振荡幅值A<ε 3,且持续时间T<ε 4时,同时闭锁电解水制氢装置和氢燃料电池发电装置,恢复由高渗透率风光供电模式,ε 1、ε 2、ε 3、ε 4为设定阈值,可通过离线仿真试探设置。
需要说明的是,上述实例仅仅是本发明提供的一个具体应用实例,但 实际应用中的应用实例并不仅限于上述,还可以根据应用环境和用户需求进行变形,只要实现方式与本申请提供的原理、思路相同,均在本申请的保护范围内。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种电力系统的振荡抑制系统,其特征在于,所述振荡抑制系统包括:装设于所述电力系统中送端发电单元处的制氢储氢装置,以及装设于所述电力系统中受端发电单元处的发电装置;
    其中,所述发电装置的发电燃料来源于所述制氢储氢装置,所述制氢储氢装置和所述发电装置在所述电力系统发生有功功率振荡时投入运行,保持所述送端发电单元减少传输的有功功率等于所述受端发电单元增加传输的有功功率。
  2. 根据权利要求1所述的电力系统的振荡抑制系统,其特征在于,所述制氢储氢装置和所述发电装置在所述电力系统未发生有功功率振荡时停止运行。
  3. 根据权利要求1所述的电力系统的振荡抑制系统,其特征在于,所述送端发电单元是潮流流出所述电力系统中主导联络断面的发电单元,所述受端发电单元是潮流流入所述主导联络断面的发电单元。
  4. 根据权利要求3所述的电力系统的振荡抑制系统,其特征在于,所述主导联络断面的生成过程,包括:
    对所述电力系统进行潮流拓扑分析,得到所述电力系统的割集全集;
    基于所述电力系统的预设故障全集和所述割集全集进行计算,得到所述电力系统的主导联络断面。
  5. 根据权利要求4所述的电力系统的振荡抑制系统,其特征在于,基于所述电力系统的预设故障全集和所述割集全集进行计算,得到所述电力系统的主导联络断面,包括:
    分别确定出所述预设故障全集中与每个算例对应的临界割集;
    分别将与每个所述临界割集对应的各个算例的风险值进行叠加,得到各个所述临界割集的风险总和;
    在所有所述临界割集的风险总和中,选取与最大风险总和对应的那个临界割集作为所述电力系统的主导联络断面。
  6. 根据权利要求5所述的电力系统的振荡抑制系统,其特征在于,分别确定出所述预设故障全集中与每个算例对应的临界割集,包括:
    分别计算出所述预设故障全集中每个算例在所述割集全集中各个割集的综合指标;
    针对每一算例,选取所述割集全集中,与综合指标最大值对应的那个割集作为所述算例对应的临界割集。
  7. 根据权利要求1-6任一项所述的电力系统的振荡抑制系统,其特征在于,所述制氢储氢装置包括:电解水制氢装置和氢气存储装置。
  8. 根据权利要求7所述的电力系统的振荡抑制系统,其特征在于,所述电解水制氢装置为质子交换膜电解池。
  9. 根据权利要求1-6任一项所述的电力系统的振荡抑制系统,其特征在于,所述发电装置为氢燃料电池发电装置。
  10. 根据权利要求9所述的电力系统的振荡抑制系统,其特征在于,所述氢燃料电池发电装置为质子交换膜燃料电池。
  11. 根据权利要求1-6任一项所述的电力系统的振荡抑制系统,其特征在于,所述电力系统为风力系统,或者,光伏系统,或者,风光混合系统。
  12. 一种电力系统的振荡抑制方法,其特征在于,应用于如权利要求1-11任一项所述的电力系统的振荡抑制系统,所述方法包括:
    监测所述电力系统是否发生有功功率振荡;
    若监测出所述电力系统发生有功功率振荡,则启动所述电力系统的振荡抑制系统中的制氢储氢装置和发电装置。
  13. 根据权利要求12所述的电力系统的振荡抑制方法,其特征在于,若监测出所述电力系统未发生有功功率振荡,还包括:
    判断所述制氢储氢装置和所述发电装置是否处于运行状态;
    若判断出所述制氢储氢装置和所述发电装置处于运行状态,则控制所述制氢储氢装置和所述发电装置停机。
  14. 根据权利要求12所述的电力系统的振荡抑制方法,其特征在于,在启动所述电力系统的振荡抑制系统中的制氢储氢装置和发电装置之后,还包括:
    返回执行监测所述电力系统是否发生有功功率振荡的步骤。
  15. 根据权利要求12所述的电力系统的振荡抑制方法,其特征在于,监测所述电力系统是否发生有功功率振荡,包括:
    判断所述电力系统的振荡幅值是否大于预设振荡幅值;
    若判断出所述电力系统的振荡幅值大于预设振荡幅值,则判断振荡持 续时间是否大于预设持续时间;
    若判断出振荡持续时间大于预设持续时间,则判定所述电力系统发生有功功率振荡;
    若判断出振荡持续时间不大于预设持续时间,则判定所述电力系统未发生有功功率振荡。
  16. 根据权利要求15所述的电力系统的振荡抑制方法,其特征在于,若判断出所述电力系统的振荡幅值不大于预设振荡幅值,则还包括:
    判定所述电力系统未发生有功功率振荡。
PCT/CN2023/070602 2022-07-25 2023-01-05 电力系统的振荡抑制系统及振荡抑制方法 WO2024021532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210876919.1A CN115117903A (zh) 2022-07-25 2022-07-25 电力系统的振荡抑制系统及振荡抑制方法
CN202210876919.1 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024021532A1 true WO2024021532A1 (zh) 2024-02-01

Family

ID=83334579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070602 WO2024021532A1 (zh) 2022-07-25 2023-01-05 电力系统的振荡抑制系统及振荡抑制方法

Country Status (2)

Country Link
CN (1) CN115117903A (zh)
WO (1) WO2024021532A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117903A (zh) * 2022-07-25 2022-09-27 阳光电源(南京)有限公司 电力系统的振荡抑制系统及振荡抑制方法
CN118487331B (zh) * 2024-07-15 2024-09-20 国网陕西省电力有限公司电力科学研究院 一种分布式光伏电源调控方法及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767199A (zh) * 2015-04-17 2015-07-08 华北电力大学(保定) 电力系统中割集断面潮流定向控制方法
CN106230016A (zh) * 2016-07-26 2016-12-14 史瑞静 风光‑氢储能及煤化工混合动力发电系统
CN108493961A (zh) * 2018-04-28 2018-09-04 清华大学 可再生能源制氢系统抑制次/超同步振荡的方法及系统
CN110707749A (zh) * 2019-11-11 2020-01-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种风氢耦合系统及其控制方法
CN114374220A (zh) * 2021-12-03 2022-04-19 中国电建集团华东勘测设计研究院有限公司 一种电化学电池-电解水制氢-储氢-氢燃料电池耦合储能系统及控制方法
US20220166223A1 (en) * 2010-03-02 2022-05-26 Rajiv Kumar Varma Multivariable modulator controller for power generation facility
CN114614499A (zh) * 2022-03-30 2022-06-10 中国华能集团清洁能源技术研究院有限公司 一种可再生能源制氢综合供电系统
CN115117903A (zh) * 2022-07-25 2022-09-27 阳光电源(南京)有限公司 电力系统的振荡抑制系统及振荡抑制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166223A1 (en) * 2010-03-02 2022-05-26 Rajiv Kumar Varma Multivariable modulator controller for power generation facility
CN104767199A (zh) * 2015-04-17 2015-07-08 华北电力大学(保定) 电力系统中割集断面潮流定向控制方法
CN106230016A (zh) * 2016-07-26 2016-12-14 史瑞静 风光‑氢储能及煤化工混合动力发电系统
CN108493961A (zh) * 2018-04-28 2018-09-04 清华大学 可再生能源制氢系统抑制次/超同步振荡的方法及系统
CN110707749A (zh) * 2019-11-11 2020-01-17 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种风氢耦合系统及其控制方法
CN114374220A (zh) * 2021-12-03 2022-04-19 中国电建集团华东勘测设计研究院有限公司 一种电化学电池-电解水制氢-储氢-氢燃料电池耦合储能系统及控制方法
CN114614499A (zh) * 2022-03-30 2022-06-10 中国华能集团清洁能源技术研究院有限公司 一种可再生能源制氢综合供电系统
CN115117903A (zh) * 2022-07-25 2022-09-27 阳光电源(南京)有限公司 电力系统的振荡抑制系统及振荡抑制方法

Also Published As

Publication number Publication date
CN115117903A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2024021532A1 (zh) 电力系统的振荡抑制系统及振荡抑制方法
CN103390920B (zh) 一种应用于规模储能的全钒液流电池管理方法及系统
Li et al. Engineering practices for the integration of large-scale renewable energy VSC-HVDC systems
CN110829479A (zh) 一种海上风电场高频不控整流直流输电系统
WO2022142812A1 (zh) 多端海上风电柔性直流与储能协同并网系统及其控制方法
CN111668860B (zh) 一种风氢耦合发电系统及其控制方法
CN101944746A (zh) 光伏并网发电系统的孤岛检测方法、装置及系统
CN109038664B (zh) 计及风机涉网保护高频分轮次整定方法
CN112039130B (zh) 一种考虑电压约束的弱送端电网直流故障后紧急控制方法
CN103618335A (zh) 一种用于光伏并网逆变器低电压穿越的控制方法
CN103138282A (zh) 光伏并网逆变器的逆功率保护系统
CN113890078B (zh) 一种基于vdcol参数优化的多直流协调恢复方法
CN113315140A (zh) 一种海上风电无功补偿协调控制方法
Li et al. Research on improving power quality of wind power system based on the flywheel energy storage system
He et al. Simulation of large-scale energy storage to improve high-voltage DC stability
CN112994065A (zh) 基于光伏电站调相运行的抑制直流输电系统连续换相失败的方法
Li et al. Voltage stability index based synchronous condenser capacity configuration strategy of sending endsystem integrated renewable energies
CN213637093U (zh) 一种商业微电网整合系统
CN110148968A (zh) 光伏直流并网系统故障恢复控制方法
Cheng et al. Artificial Short-circuit Test and Result Analysis of Ximeng UHV AC/DC Transmission Project
Gu et al. Modeling and Simulation Method of Offshore Power Delivery System with Hydrogen Production
Huo et al. Research on modeling technology of PV/storage integrated operation analysis model
CN215601046U (zh) 一种垃圾焚烧发电厂光伏发电系统
Ge et al. Virtual synchronous control for fuel cell power generation system
Tao et al. Research on Calculation and Lifting Method of Distribution Network Hosting Capacity under High Permeability New Energy Access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844751

Country of ref document: EP

Kind code of ref document: A1