WO2024021026A1 - 一种铁蛋白-硫化铁复合物及其制备方法和应用 - Google Patents

一种铁蛋白-硫化铁复合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024021026A1
WO2024021026A1 PCT/CN2022/108993 CN2022108993W WO2024021026A1 WO 2024021026 A1 WO2024021026 A1 WO 2024021026A1 CN 2022108993 W CN2022108993 W CN 2022108993W WO 2024021026 A1 WO2024021026 A1 WO 2024021026A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
ferritin
iron sulfide
sulfide complex
tumor
Prior art date
Application number
PCT/CN2022/108993
Other languages
English (en)
French (fr)
Other versions
WO2024021026A9 (zh
Inventor
阎锡蕴
范克龙
高利增
方龙
王前
段德民
Original Assignee
中国科学院生物物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院生物物理研究所 filed Critical 中国科学院生物物理研究所
Priority to PCT/CN2022/108993 priority Critical patent/WO2024021026A1/zh
Publication of WO2024021026A1 publication Critical patent/WO2024021026A1/zh
Publication of WO2024021026A9 publication Critical patent/WO2024021026A9/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/04Sulfur, selenium or tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

一种铁蛋白-硫化铁复合物及其制备方法和应用。通过仿生合成的方式在铁蛋白内腔合成硫化铁纳米颗粒,可用于抗肿瘤,如慢性髓系白血病。该铁蛋白-硫化铁复合物还可用于抗细菌或真菌引起的感染。

Description

一种铁蛋白-硫化铁复合物及其制备方法和应用 技术领域
本发明涉及铁蛋白-硫化铁复合物及其制备方法和应用。
背景技术
铁蛋白(ferritin)是参与和维持铁代谢平衡的重要功能蛋白,是一类广泛存在于动植物及微生物细胞中含高铁量的蛋白质。从细菌到人类,尽管不同生物的铁蛋白氨基酸序列具有极大的差别,但其结构相似。典型的铁蛋白结构是由蛋白外壳和铁内核两部分构成,其中蛋白外壳是由24个亚基自组装形成的笼状结构(外径12nm,内径8nm),铁内核的主要成分为水铁矿(5Fe 2O 3·9H 2O)。铁蛋白外壳通常是由两种蛋白亚基(H和L)组成。在机体不同组织和器官中,铁蛋白分子中含有H和L亚基的比例有所不同。人铁蛋白H亚基和L亚基以及激烈火球菌铁蛋白(pfFn)的全长氨基酸序列分别如CN110237047A中的SEQ ID No.1-3所示。
近期有研究将装载不同金属元素的铁蛋白纳米药物用于不同疾病的诊疗。铁蛋白纳米药物在疾病诊疗过程中具有潜在的应用价值。然而,虽然现有技术中公开了利用铁蛋白包载药物的多个报道,但是,由于被包载的药物的性质可能存在巨大的差异,适用于某种药物的包载方式并不必然适用于另一种药物,因此,对于性质存在显著差异的药物,其包载方式需要进行个体化的设计方可实现有效的包载。
硫化铁纳米颗粒是一种无机纳米药物,具有重要的抗实体瘤及抗感染活性。但是,硫化铁纳米颗粒在生物医学应用中面临水溶性差、粒径不均一、无靶向性等问题。以铁蛋白为载体,在其内腔原位合成硫化铁纳米颗粒从而构建铁蛋白-硫化铁复合物并未见有相关报道。本领域依然存在对铁蛋白-硫化铁复合物的需求。
发明内容
本发明的一个方面涉及一种铁蛋白-硫化铁复合物,其中硫化铁以纳米颗粒的形式包载于铁蛋白中。在一些实施方案中,所述铁蛋白-硫化铁复合物中仅包载纳米颗粒形式的硫化铁。在一些实施方案中,所述铁蛋白-硫化铁复合物中还包载其他药物,如三氧化二砷、阿霉素、顺铂、长春新碱、环磷酰胺和5-氟尿嘧啶中的一种或多种。
在一些实施方案中,所述铁蛋白-硫化铁复合物包含5~60%(重量比)的硫化铁纳米颗粒,优选地,5~40%,5~30%或5~20%。
本发明的另一个方面涉及一种组合物,其包含如上所述的铁蛋白-硫化铁复合物。
在一些实施方案中,所述的组合物为药物组合物且包含药学上可接受的赋形剂。
在一些实施方案中,所述的组合物还包含另一种抗癌药物。本领域技术人员知晓,所述另一种抗癌药物应该与所述铁蛋白-硫化铁复合物在性质上相容。本领域技术人员知晓如何确定两种药物组分是否在性质上相容。在进一步的实施方案中,所述另一种抗癌药物是可商购的抗癌药物,如化疗药物、靶向治疗药物和免疫治疗药物等。在进一步的实施方案中,所述另一种抗癌药物是紫杉醇、多西紫杉醇、长春瑞滨、吉西他滨、丝裂霉素、博来霉素、表阿霉素、顺铂、卡铂、草酸铂、洛铂、奈达铂、5-氟尿嘧啶、卡培他滨、替吉奥胶囊、伊立替康、吉非替尼、厄洛替尼、阿法替尼、奥希替尼、克唑替尼、舒尼替尼、帕博利珠单抗、纳武单抗、特瑞普利单抗和德瓦鲁单抗等。
本发明的再一个方面涉及一种制备如上所述的铁蛋白-硫化铁复合物的方法,其中方法1包括步骤:将氯化亚铁溶液加入到全重链铁蛋白的水溶液中,孵育后缓慢加入四硫化二钠水溶液,缓慢搅拌下孵育,离心后取上清并过滤;或
方法2包括步骤:将硫化钠水溶液缓慢加入含有醋酸钠,pH 4.5-6.5的天然铁蛋白水溶液中,搅拌,获得铁蛋白-硫化铁复合物。
在方法1的一些实施方案中,氯化亚铁水溶液的浓度为1.5-5mM,优选地,2.0-3.5mM,更优选地,2.2-2.8mM。在方法1的一些实施方案中,全重链铁蛋白水溶液的浓度为1-20μM,优选地,1.5-10μM,更优选地,2-8μM,更优选地,3-5.5μM。在方法1的一些实施方案中,氯化亚铁水溶液与全重链铁蛋白水溶液的体积比为10:1-1:10,优选地,5:1-1:5,更优选地,2:1-1:2,更优选地,1.5-1:1:1.5。在方法1的一些实施方案中,孵育温度为30-80℃,优选地,45-70℃,更优选地,55-65℃。在方法1的一些实施方案中,孵育时间为2min-30min,优选地,5min-25min,更优选地,10min-20min。在方法1的一些实施方案中,四硫化二钠水溶液的浓度为4-25mM,优选地,5-15mM,更优选地,6-9mM。在方法1的一些实施方案中,氯化亚铁水溶液与全重链铁蛋白水溶液的混合物与四硫化二钠水溶液的体积比为10:1-1:10,优选地,5:1-1:5,更优选地,2:1-1:2,更优选地,1.5-1:1:1.5。在方法1的一些实施方案中,搅拌下孵育的时间为20min-2hr,优选地,30min-1.5hr,更优选地,35min-1hr。在方法1的一些实施方案中,搅拌下孵育后包括迅速在低温下孵育的步骤,优选地,所述低温为0-8℃,优选地, 0-4℃,更优选地,0-2℃。在方法1的一些实施方案中,所述低温通过置于冰上获得。在方法1的一些实施方案中,所述离心的离心力与12000rpm,离心20min类似。在方法1的一些实施方案中,全重链铁蛋白为人全重链铁蛋白HFn。
在方法2的一些实施方案中,天然铁蛋白水溶液的浓度为1-20μM,优选地,1.5-10μM,更优选地,2-8μM,更优选地,3-5.5μM。在方法2的一些实施方案中,醋酸钠的浓度为0.02–0.5M,优选地,0.04-0.3M,更优选地,0.06-0.2M,更优选地,0.08-0.15M。在方法2的一些实施方案中,pH为4.8-6.0,相应地,5.0-5.8,更优选地,5.2-5.6。在方法2的一些实施方案中,硫化钠水溶液的浓度为16-100mM,优选地,20-60mM,更优选地,24-36mM。在方法2的一些实施方案中,硫化钠水溶液与天然铁蛋白水溶液的体积比为10:1-1:10,优选地,5:1-1:5,更优选地,2:1-1:2,更优选地,1.5-1:1:1.5。在方法2的一些实施方案中,搅拌时间为0.4-2.5hr,更优选地,0.6-1.8hr,更优选地,0.8-1.3hr。在方法2的一些实施方案中,天然铁蛋白为马脾铁蛋白或人铁蛋白。
本发明的一个方面涉及如上所述的铁蛋白-硫化铁复合物或组合物在制备促进肿瘤细胞凋亡的药物中的用途。
在一些实施方案中,所述肿瘤细胞选自白血病细胞或实体瘤细胞,优选地,慢性髓系白血病细胞系K562、急性髓系白血病细胞系Kasumi-1,或选自下述肿瘤的细胞:结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌、胃癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、尤文肉瘤、膀胱癌、甲状腺癌、头颈部鳞癌、睾丸癌、宫颈癌、子宫内膜癌、黑色素瘤、网状细胞肉瘤、精原性细胞瘤、鼻咽癌、食道癌、甲状腺癌、头颈部肿瘤和鳞状上皮癌,优选地,选自下述肿瘤的细胞:结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌和胃癌。
本发明的另一个方面涉及如上所述的铁蛋白-硫化铁复合物或组合物在制备用于靶向治疗肿瘤或感染的药物中的用途。
在一些实施方案中,所述肿瘤为血液肿瘤,优选地,白血病,更优选地,急性髓系白血病(AML)和/或慢性髓系白血病(CML)。
在一些实施方案中,所述肿瘤为实体肿瘤,优选地,所述肿瘤选自结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌、胃癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、尤文肉瘤、膀胱癌、甲状腺癌、头颈部鳞癌、睾丸癌、宫颈癌、子宫内膜癌、黑色素瘤、网状细胞肉瘤、精原性细胞瘤、鼻咽癌、食道癌、甲状腺癌、头颈部肿瘤和鳞状上皮癌,优选地,结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌和胃癌。
在一些实施方案中,所述感染选自细菌或真菌引起的感染。在进一步的实施方案中,所述感染选自口腔变异链球菌、金黄色葡萄球菌、MRSA金黄色葡萄球菌、MDR金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌、枯草芽孢杆菌、加德纳菌、沙门氏菌、白色念珠菌或霉菌中的一种或多种引起的感染。在一些实施方案中,所述感染选自幽门螺杆菌引起的胃炎,阴道加特纳杆菌(G.vaginalis)引起的细菌性阴道炎,大肠杆菌或金黄色葡萄球菌引起的局部化脓感染、肺炎、伪膜性肠炎、心包炎以及败血症、脓毒血症,铜绿假单胞菌引起的伤口感染以及褥疮、脓肿、化脓性中耳炎,白色念珠菌引起的全身性念珠菌症,加德纳菌引起的宫颈表皮不典型增生、孕妇早产、绒毛膜羊膜炎、胎膜早破,和/或变异链球菌引起的龋齿。在进一步的实施方案中,所述感染是幽门螺杆菌引起的胃炎或阴道加特纳杆菌(G.vaginalis)引起的细菌性阴道炎。
换言之,为了利用铁蛋白来包载硫化铁,以解决其水溶性差、粒径不均一、无靶向性等问题并使之成功应用于疾病的诊疗,本发明在人重链铁蛋白(HFn)内腔仿生合成了硫化铁纳米颗粒,通过靶向结合肿瘤细胞表面高表达的分子CD71,实现了对肿瘤细胞的靶向精准治疗。铁蛋白-硫化铁复合物具有较好的抗肿瘤细胞(实体瘤和血液肿瘤)疗效,尤其是对于慢性髓系白血病,铁蛋白-硫化铁复合物显著诱导慢性髓系白血病细胞凋亡。铁蛋白-硫化铁复合物主要通过产生ROS诱导肿瘤细胞凋亡(实体瘤和血液肿瘤)。铁蛋白-硫化铁复合物诱导慢性髓系白血病细胞凋亡的主要机制是通过产生ROS来诱导融合蛋白BCR-ABL的降解。本发明制备的铁蛋白-硫化铁复合物具有重要的生物医学应用潜力。
附图说明
图1显示了铁蛋白-硫化铁复合物(HFn-FeS)的表征结果。其中,A图:铁蛋白-硫化铁复合物的TEM负染色结果,B图:铁蛋白-硫化铁复合物的TEM不染色结果,C图:铁蛋白-硫化铁复合物的高分辨透射电镜图。
图2显示了肿瘤细胞(实体瘤和白血病)对铁蛋白-硫化铁复合物的敏感性检测结果。
图3显示了铁蛋白-硫化铁复合物诱导白血病细胞凋亡。A图:流式检测铁蛋白-硫化铁复合物诱导白血病细胞细胞系K562凋亡。B图:Western Blot(WB)检测铁蛋白-硫化铁复合物诱导切割的(Cleaved)caspase3和Pro-caspase9的表达变化。
图4的A-D图显示了铁蛋白-硫化铁复合物通过产生ROS诱导BCR-ABL降解。
图5显示了铁蛋白-硫化铁复合物的体内抗白血病疗效的评估。
图6显示了铁蛋白-硫化铁复合物的安全性评估。A图:铁蛋白-硫化铁复合物注射两周后,小鼠主要器官HE染色。B图:铁蛋白-硫化铁复合物注射后,两周内小鼠体重变化。
图7显示了铁蛋白-硫化铁复合物的抗阴道加特纳杆菌(G.vaginalis)效果。
图8显示了铁蛋白-硫化铁复合物的抗幽门螺杆菌(H.pylori)效果。
具体实施方式
定义
除非另外指明,否则权利要求和说明书中使用的术语如下文所示进行定义。
除非本文中另外定义,否则与本文所述的本发明方法和组合物结合使用的科学和技术术语应具有本领域中的普通技术人员通常所理解的含义。另外,除非上下文另外要求,否则单数术语应包括复数,且复数术语应包括单数。通常,与以下结合使用的命名法和以下技术为本领域中众所周知且常用的那些:本文所述的生物化学、免疫学酶学、分子与细胞生物学、微生物学、遗传学和多肽化学。
除非另外指明,否则本文所述的方法和技术通常是根据本领域中众所周知的常规方法并且如在本说明书中通篇引用和讨论的各种一般和更具体的参考文献中所述来执行的。参见例如Sambrook等人,Molecular Cloning:A Laboratory Manual,第2版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1989);Ausubel等人,Current Protocols in Molecular Biology,Greene Publishing Associates(1992,以及至2002年的增刊);Harlow和Lane,Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.(1990);Worthington Enzyme Manual,Worthington Biochemical Corp.,Freehold,N.J.;Handbook of Biochemistry:Section A Proteins,第I卷,CRC Press(1976);Handbook of Biochemistry:Section A Proteins,第II卷,CRC Press(1976)。
本文提及的所有出版物、专利和其他参考文献均以特此引用的方式整体并入本文。
除非另外指示,否则以下术语应理解成具有以下含义。
当与数目结合使用时,术语“约”指在所提及数目的±1、±5或±10%内的任何数目。
在本发明的上下文中,包载硫化铁纳米颗粒的铁蛋白与铁蛋白-硫化铁复合物可互换使用。
本发明的铁蛋白是指可以形成笼状结构的任何铁蛋白,其可以是天然来源的铁蛋 白,也可以是重组表达的铁蛋白,或其突变体,其可以来源于原核生物、原生生物、真菌、植物或动物,例如来源于细菌、真菌、昆虫、爬行动物、禽类、两栖动物、鱼类、哺乳动物,例如来源于啮齿类动物、反刍动物、非人灵长类动物或人类,例如小鼠、大鼠、豚鼠、犬类、猫、牛、马、羊、猴、大猩猩、人。从细菌到人类,尽管不同生物的铁蛋白氨基酸序列具有极大的差别,但其结构相似,均可以形成蛋白壳结构。在一些实施方案中,本发明的铁蛋白是人铁蛋白,在一些实施方案中,本发明的铁蛋白是基因工程全人重链铁蛋白(HFn),其氨基酸序列如CN110237047A中的SEQ ID No.1所示。在另一些实施方式中,本发明的铁蛋白的氨基酸序列如CN110237047A中的SEQ ID No.2或3所示。在一些实施方案中,本发明的铁蛋白是马脾铁蛋白,CAS号:9007-73-2。
在一些实施方案中,本发明的铁蛋白-硫化铁复合物采用如下的方法获得:将氯化亚铁加入全重链铁蛋白的水溶液中,孵育后缓慢加入四硫化二钠,缓慢搅拌下孵育,离心后将上清过滤即可。在一些实施方案中,本发明的铁蛋白-硫化铁复合物采用如下的方法获得:将硫化钠缓慢加入含有0.1M醋酸钠,pH 5.4的马脾铁蛋白(CAS号:9007-73-2)溶液中,搅拌1小时,获得铁蛋白-硫化铁复合物。在一些实施方案中,本发明的铁蛋白-硫化铁复合物采用下文实施例1中所述的方法获得。
本发明经研究发现,天然的铁蛋白内腔装载的是水铁矿(5Fe 2O 3·9H 2O),其基于铁与氧反应生成三氧化二铁而生成,基于与生理条件类似的条件就可实现。与之相比,本发明铁蛋白中的硫化铁是利用亚铁与硫反应或者亚铁氧化形成的三氧化二铁与硫反应生成硫化铁,二者的反应条件截然不同,由天然的包含水铁矿的铁蛋白的形成方法并不能显而易见地推导获知本发明的铁蛋白-硫化铁复合物的制备方法。
本发明中的铁蛋白中包载硫化铁纳米颗粒的上限为铁蛋白笼状结构的内部容积所能容纳的硫化铁纳米颗粒的最大量,即约268立方纳米的体积内所能容纳的硫化铁纳米颗粒的量。在一些实施方案中,以质量比计算,硫化铁纳米颗粒包载量为5~60%,优选地,5~50%、5~40%、5~30%、5~20%、5~15%,例如至少5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%或更高。
在一些实施方案中,在本发明的铁蛋白内腔中仿生形成的硫化铁纳米颗粒的平均粒径为4.607±0.9527nm。本领域技术人员知晓,通过调整方法条件,在本发明的铁蛋白内腔中仿生形成的硫化铁纳米颗粒的平均粒径可以发生改变,可以更大或更小。相应的,硫化铁纳米颗粒的包载量也会发生改变。通过重复反应等方法,也可以在本发明的铁蛋白内 腔中仿生形成多于一个的硫化铁纳米颗粒。
在一些实施方案中,每分子铁蛋白包载1-14个硫化铁纳米颗粒,例如1、2、3、4、5、6、7、8、9、10或更多个硫化铁纳米颗粒。在一些实施方案中,每分子铁蛋白包载1个硫化铁纳米颗粒。在一些实施方案中,每分子铁蛋白包载2个硫化铁纳米颗粒。在一些实施方案中,每分子铁蛋白包载3个硫化铁纳米颗粒。
利用本发明的方法所获得的包载硫化铁纳米颗粒的铁蛋白(即铁蛋白-硫化铁复合物)可以用于治疗和/或预防受试者的疾病或状态。本发明的包载硫化铁纳米颗粒的铁蛋白所能治疗治疗和/或预防的疾病或状态取决于所包载的硫化铁纳米颗粒,即,现有技术中已知可以由硫化铁纳米颗粒治疗和/或预防的疾病或状态均可以由本发明的包载硫化铁纳米颗粒的铁蛋白治疗和/或预防。不受限于任何理论,本发明的包载硫化铁纳米颗粒的铁蛋白可以靶向肿瘤,从而在施用后在肿瘤部位释放所包载的硫化铁纳米颗粒,实现对所述肿瘤的预防和/或治疗。在一些实施方案中,本发明的包载硫化铁纳米颗粒的铁蛋白通过靶向结合肿瘤细胞表面高表达的分子CD71而实现对肿瘤细胞靶向精准治疗。因此,在一些实施方案中,任何在细胞表面高表达CD71分子的肿瘤细胞均可以被本发明的包载硫化铁纳米颗粒的铁蛋白精准治疗。
在一些实施方案中,所述疾病或状态选自肿瘤,包括实体瘤和血液肿瘤。在进一步的实施方案中,所述血液肿瘤选自白血病、多发性骨髓瘤以及恶性淋巴瘤。在进一步的实施方案中,所述血液肿瘤是白血病,优选地,急性髓系白血病(AML)和慢性髓系白血病(CML)。在一些实施方案中,所述实体瘤选自结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌、胃癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、尤文肉瘤、膀胱癌、甲状腺癌、头颈部鳞癌、睾丸癌、宫颈癌、子宫内膜癌、黑色素瘤、网状细胞肉瘤、精原性细胞瘤、鼻咽癌、食道癌、甲状腺癌、头颈部肿瘤和鳞状上皮癌。在一些实施方案中,所述实体瘤选自结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌和肺癌、肝癌、胃癌。
如本文使用的,术语“治疗”是指治疗性治疗和预防性措施,其中目的是预防或减慢(减轻)不希望的生理变化或障碍,如癌症的发展。有益的或所希望的临床结果包括但不限于症状的减轻、疾病的程度减弱、疾病状态稳定(即,未恶化)、疾病进展的延迟或减慢、疾病状态的改善或缓和以及缓解(无论是部分缓解或完全缓解),无论是可检测的还是不可检测的。“治疗”还可以意指存活期相较于未接受治疗时的预期存活期延长。需要治疗的那些包括已患有病症或障碍的那些以及易于患上病症或障碍的那些或要预防病 症或障碍的表现的那些。如本文使用的“药物”是用于治疗不期望的生理变化或障碍的药剂。
本发明的包载硫化铁纳米颗粒的铁蛋白可以以药物组合物的形式提供,即,除包载硫化铁纳米颗粒的铁蛋白外,其还含有药学上可接受的载体。在一些实施方案中,包载硫化铁纳米颗粒的铁蛋白占药物组合物总重量的0.1-99.9%,如0.2%、0.3%、0.4%、0.5%、1.0%、1.5%、2.0%、3.0%、4.0%、5.0%、10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%、95%或更多。这些药物组合物可以用药学上可接受的载体或稀释剂以及任何其他已知的赋形剂根据常规技术配制,这些常规技术是例如在以下中披露的技术:Remington:The Science and Practice of Pharmacy,第22版,Gennaro编,Mack Publishing Co.,2013。
如本文使用的,“药学上可接受的载体”指稀释剂、佐剂、赋形剂或媒介物,其与组合物一起施用,并且是无毒的并且不应干扰活性成分的功效。形容词“药学上可接受的”表明指示物适用于施用于受试者(例如,人或动物受试者)。Remington's Pharmaceutical Sciences,E.W.Martin,Mack Publishing Co.,Easton,Pa.,第15版(1975)描述了适用于药物递送治疗性和/或预防性组合物的组合物和制剂(包括稀释剂)。
例如,所述载体或赋形剂可以有利地包括缓冲剂。任选地,所述载体或赋形剂也含有至少一种稳定溶解度和/或稳定性的组分。增溶剂/稳定剂的实例包括去污剂,例如月桂肌氨酸和/或Tween。许多药学上可接受的载体和/或药学上可接受的赋形剂是本领域中已知的,并且描述于例如Remington's Pharmaceutical Sciences,E.W.Martin,Mack Publishing Co.,Easton,Pa.,第5版(1975)。因此,本领域技术人员可以选择合适的赋形剂和载体以产生适用于通过选择的施用途径递送给受试者的制剂。
合适的赋形剂包括,但不限于:甘油、聚乙二醇(PEG)、山梨糖醇、海藻糖、N-月桂酰肌氨酸钠盐、L-脯氨酸、非去污剂磺基甜菜碱、盐酸胍、尿素、三甲胺氧化物、KCl、Ca2+、Mg2+、Mn2+、Zn2+和其他二价阳离子相关的盐、二硫苏糖醇、二硫赤藓醇和13-巯基乙醇。其他赋形剂可以是去污剂(包括:Tween80、Tween20、Triton X-00、NP-40、Empigen BB、辛基葡糖苷、月桂酰麦芽糖苷、Zwittergent 3-08、Zwittergent 3-0、Zwittergent 3-2、Zwittergent 3-4、Zwittergent 3-6、CHAPS、脱氧胆酸钠、十二烷基硫酸钠、十六烷基三甲基溴化铵)。
[24]在某些实施方案中,本文所述的组合物被配制为适合于对受试者的预期施用途径。例如,本文所述的组合物(例如,药物组合物)可以配制用于皮下、肠胃外、经口、 舌下、颊、皮内、经皮、结肠直肠、腹膜内、直肠施用、静脉内、鼻内、气管内、肌内、局部、经皮或皮内施用。在一个具体实施方案中,本文提供的组合物(例如,药物组合物)被配制用于肌内注射。在一些实施方案中,本发明的药物组合物可以是溶液的形式或无菌可注射粉末的形式,如水溶液或冻干粉末。
本发明的药物组合物可以通过任何适合途径和模式给予,包括都不限于静脉内或皮下注射或输注。
本发明的药物组合物还可以与其他药物组合使用,例如与所包载的硫化铁纳米颗粒不同的其他抗肿瘤药物,如阿霉素、铂类药物如顺铂和卡铂、长春新碱、环磷酰胺、5-氟尿嘧啶联用,或者与放疗配合使用,例如ABVD、CAF、CAOP、FAM、AC、AOP、ACP、CY-VA-DIC、MACC。本领域技术人员知晓如何具体组合使用这些药物或治疗措施。
在一些实施方案中,本发明的受试者是哺乳动物包括人。在一些实施方案中,本发明的受试者是患有肿瘤或感染的患者。
以下结合具体的实施案例对本发明做进一步说明,以下实施例仅用于说明本发明而不意欲限定本发明的范围。下述实施例中所用的试剂,如无特殊标注,均可从试剂公司如Sigma Aldrich、Merck容易地商购,所述试验方法,如无特殊备注,均可以从教科书如Sambrook,J.,Fritsch,E.F.和Maniatis,T.(1989)Molecular Cloning:A Laboratory Manual.Cold Spring Harbor Press,New York中找到。对于本领域的技术人员来说,在本发明范围内所做的任何变更、修改或直接采用实施例中的同等条件而实施的例子,都应理解为在本发明的涵盖范围内。
实施例
实施例1:铁蛋白-硫化铁复合物的合成及表征
1.1铁蛋白-硫化铁复合物的合成
方法1:将等体积的2.5mM氯化亚铁水溶液加入含有4μM HFn的水溶液中,60℃水浴中孵育15min,缓慢加入等体积的7.5mM的四硫化二钠水溶液,60℃水浴中缓慢搅拌孵育达45min,然后取出后迅速放入冰上达30分钟,12000rpm,离心20min,上清用0.22μm Millex-GP针头式过滤器过滤,用100kD蛋白浓缩管浓缩,用Hiprep TM 26/10 Desalting脱盐,获得铁蛋白-硫化铁复合物。
方法2:将等体积的30mM的硫化钠水溶液缓慢加入含有0.1M醋酸钠,pH 5.4的4μM马脾铁蛋白(CAS号:9007-73-2)水溶液中,搅拌1小时,获得铁蛋白-硫化铁复合物。
本发明还尝试了如下制备方法:方法3:将2.5mM氯化亚铁水溶液加入含有4μM HFn的50mM Tris-HCL溶液中,60℃水浴中孵育15min,缓慢加入等体积的7.5mM的四硫化二钠,但是无法获得铁蛋白-硫化铁复合物。方法4:将7.5mM氯化亚铁水溶液加入含有4μM HFn的水溶液中,60℃水浴中孵育15min,缓慢加入等体积的2.5mM的四硫化二钠,结果也无法获得铁蛋白-硫化铁复合物。
1.2铁蛋白-硫化铁复合物的表征
准备0.1mg/mL的上述铁蛋白-硫化铁复合物,通过TEM负染色和不负染色分别检测铁蛋白-硫化铁复合物的组装和硫化铁纳米颗粒。准备0.1mg/mL的铁蛋白-硫化铁复合物,送中科百测,进行高分辨透射电镜检测。
结果如图1所示,TEM负染色表明铁蛋白-硫化铁复合物呈球壳结构,且单分散性较好。TEM不负染色和高分辨透射电镜的结果表明铁蛋白-硫化铁复合物含有约3nm大小的纳米颗粒。
实施例2:肿瘤细胞对铁蛋白-硫化铁复合物的敏感性检测
使用细胞增殖-毒性检测试剂盒(CCK8),检测实体瘤细胞系(HT29、U87、PC3、MDA-MB-231)和白血病细胞(Kasumi-1、K562)对铁蛋白-硫化铁复合物的敏感性,计算半数致死剂量(IC 50)。
结果如图2所示,肿瘤细胞(实体瘤和白血病)对铁蛋白-硫化铁复合物具有一定的敏感性,慢性髓系白血病细胞K562和急性髓系白血病细胞kasumi-1对铁蛋白-硫化铁复合物较敏感,导致急性髓系白血病细胞的形态发生明显变化。
实施例3:铁蛋白-硫化铁复合物诱导白血病细胞凋亡
流式细胞术:分别用90μg/mL、180μg/mL、270μg/mL铁蛋白-硫化铁复合物诱导K562细胞,在48h时进行Annexin V-FITC和PI染色,检测K562细胞凋亡情况。
Western Blot:分别用90μg/mL、180μg/mL、270μg/mL铁蛋白-硫化铁复合物诱导K562细胞,在24h、48h时检测切割的(Cleaved)caspase3和Pro-caspase9蛋白的表达水平。
结果如图3所示,铁蛋白-硫化铁复合物诱导慢性髓系白血病细胞K562呈剂量依赖性凋亡。同时发现,铁蛋白-硫化铁复合物诱导慢性髓系白血病细胞Cleaved caspase3表达水平升高,诱导慢性髓系白血病细胞Pro-caspase9表达水平降低。
实施例4:铁蛋白-硫化铁复合物通过产生ROS诱导BCR-ABL降解
分别用90μg/mL、180μg/mL铁蛋白-硫化铁复合物处理K562细胞24h、48h,检测融合蛋白BCR-ABL的表达水平。使用90μg/mL、180μg/mL铁蛋白-硫化铁复合物处理K562细胞12h,通过DCFH-DA检测ROS水平。分别使用PBS、5mM N-乙酰半胱氨酸(NAC)、270μg/mL铁蛋白、5mM NAC+270μg/mL铁蛋白、270μg/mL铁蛋白-硫化铁复合物、5mM NAC+270μg/mL铁蛋白-硫化铁复合物刺激慢性髓系白血病细胞K562,48h,通过流式细胞术检测凋亡。分别使用PBS、5mM N-乙酰半胱氨酸(NAC)、270μg/mL铁蛋白、5mM NAC+270μg/mL铁蛋白、270μg/mL铁蛋白-硫化铁复合物、5mM NAC+270μg/mL铁蛋白-硫化铁复合物刺激慢性髓系白血病细胞K562,24h,检测融合蛋白BCR-ABL表达水平。
结果如图4的A-D图所示,铁蛋白-硫化铁复合物诱导慢性髓系白血病细胞K562呈时间和剂量依赖性凋亡。铁蛋白-硫化铁复合物主要通过产生ROS来诱导慢性髓系白血病细胞凋亡。同时研究发现,N-乙酰半胱氨酸(NAC)抑制铁蛋白-硫化铁复合物诱导的慢性髓系白血病细胞凋亡且抑制铁蛋白-硫化铁复合物引起的融合蛋白BCR-ABL降解。
实施例5:铁蛋白-硫化铁复合物的体内抗白血病疗效评估
将K562皮下瘤裸鼠(斯贝福(北京)生物技术有限公司)分为三组,每组6只小鼠,分别每天注射PBS、25mg/kg铁蛋白、25mg/kg铁蛋白-硫化铁复合物,连续给药,12天后,解剖皮下瘤,称重。
结果如图5所示,与PBS组和铁蛋白组相比,铁蛋白-硫化铁复合物给药组的皮下瘤体积显著减小,瘤重减轻。
实施例6:铁蛋白-硫化铁复合物的安全性评估
分别通过尾静脉注射PBS和30mg/kg铁蛋白-硫化铁复合物后,每天监测小鼠体重,两周后取主要器官进行HE染色。
结果如图6所示,HE染色显示,与PBS组相比,铁蛋白-硫化铁复合物组对主要器官无毒性。小鼠体重监测显示,与PBS组相比,铁蛋白-硫化铁复合物组的小鼠体重无明显变化。
实施例7:铁蛋白-硫化铁复合物抗阴道加特纳杆菌(G.vaginalis)
对于阴道加特纳杆菌(G.vaginalis),挑取5~7个菌落,接种于5mL BHIs培养液中,在37℃含5%CO 2的培养箱中培养12~18小时。接种过夜后取所需量的菌液,按1:100的比例转入新鲜培养基中,于37℃含5%CO 2的培养箱中培养6-8h。当OD 600达到0.8时,100μL的菌液与900μL BHIs混合作为对照组。100μL菌液、100μLHFn或HFn-Fes和800μL BHIs混合作为实验组。37℃孵育3h后,将细菌适当稀释后涂板,计数检测细菌活力。
结果如图7所示,与对照组相比,铁蛋白-硫化铁复合物具有显著抗阴道加特纳杆菌(G.vaginalis)效果。
实施例8:铁蛋白-硫化铁复合物抗幽门螺杆菌(H.pylori)
对于幽门螺杆菌(H.pylori),用4ml BHIs培养液冲刷哥伦比亚血琼脂平板上的菌落,将冲下的菌液转移到5ml新鲜BHIs培养液中,在37℃,85%N 2,10%CO 2,5%O 2的三气培养箱中培养40-48h。接种两天后,将菌液按1:100的比例转移到新鲜培养基,继续培养40-48h。当OD 600达到值为0.8时,100μL的菌液与900μL BHIs混合作为对照组。100μL菌液、100μL HFn或HFn-Fes和800μL BHIs混合作为实验组。37℃孵育3h后,将细菌适当稀释后涂板,计数检测细菌活力。
结果如图8所示,与对照组相比,铁蛋白-硫化铁复合物具有显著抗幽门螺杆菌(H.pylori)效果。
等同方案
虽然本文已经描述和示出了本发明的多个实施方案,但本领域普通技术人员将容易预想到用于实现本文所述的功能和/或获得本文所述的结果和/或一个或多个优点的各种其他手段和/或结构,并且认为每一个这样的变化和/或修改均在本发明的范围内。更广泛地,本领域技术人员将容易理解,本文所述的所有参数、材料和设定意为示例性的,并且实际的参数、材料和/或设定将取决于使用本发明的教导的具体应用。本领域技术人员仅使用常规实验将认识到或能够确定本文所述的本发明的具体实施方案的许多等同方案。因此,应当理解,前述实施方案和实施例仅通过示例的方式呈现,并且在所附权利要求及其等同方案的范围内,本发明可以以不同于具体描述和要求保护的方式实施。如果这样的特征、系统、物品、材料和/或方法不是相互冲突的话,则两个或更多个这样的特征、系统、物品、材料和/或方法的任意组合包括在本发明的范围内。
本发明说明书和权利要求书中使用的短语“和/或”应理解为意指如此结合的元素的“任一或两者”,即在一些情况下结合存在而在其他情况下不结合存在的元素。除了由“和/或”从句具体标识的元素之外,可以任选地存在其他元素,无论与那些具体标识的元素相关或不相关,除非另外明确指出。因此,作为非限制性示例,当与开放式语言例如“包含”结合使用时,对“A和/或B”的引用在一个实施方案中可以指有A没B(任选地包括除B之外的其他元素);在另一个实施方案中,指有B没A(任选地包括除A之外的元素);在又一个实施方案中,指有A和B两者(任选地包括其他元素);等等。
如本文在说明书和权利要求中所用,“或”应理解为与如上定义的“和/或”具有相同的含义。例如,当分隔列表中的项时,“或”或“和/或”应理解为包含性的,即包括多个元素或元素列表的至少一个,但也包括多于一个,以及任选地,其他未列出的项。只有明确指出相反的术语,例如“仅其一”或“正好其一”,或当用于权力要求中时,“由……组成”将指包含多个元素或元素列表的正好一个元素。通常,当前面有排他性术语,例如“任一”、“其一”、“仅其一”或“正好其一”时,本文所用的术语“或”应该仅理解为表示排他性的替代方案(即,“一个或另一个但不是两者”)。“基本上由……组成”用于权利要求中时,应具有其在专利法领域中的普通含义。
如本文在说明书和权利要求中所用,指代一个或多个元素的列表时,短语“至少一个”应理解为意指选自所述元素列表的任意一个或多个元素中的至少一个元素,但不一定包括所述元素列表中具体列出的每个元素的至少一个,并且不排除所述元素列表中元素的任意组合。这个定义还允许除短语“至少一个”指代的元素列表中具体标识的元素之外的元素可以任选地存在,无论与那些具体标识的元素相关或不相关。因此,作为非限制性示例,在一个实施方案中,“A和B的至少一个”(或等价地,“A或B的至少一个”,或等价地,“A和/或B的至少一个”)可以指至少一个,任选地包括多于一个A,不存在B(并且任选地包括除B之外的元素);在另一个实施方案中,指至少一个,任选地包括多于一个B,不存在A(并且任选地包括除A之外的元素);在又一个实施方案中,指至少一个,任选地包括多于一个A,和至少一个,任选地包括多于一个B(并且任选地包括其他元素);等等。
在权利要求以及上述说明书中,所有连接词,例如“包含”、“包括”、“带有”、“具有”、“含有”、“涉及”、“拥有”等理解为是开放式的,即意味着包括但不限于。仅连接词“由……组成”和“基本上由……组成”应分别是封闭式或半封闭式的连接词。
在权利要求中使用顺序术语,例如“第一”、“第二”、“第三”等来修改权利要求元 素本身并不意味着一个权利要求元素相对于另一个权利要求元素的任何优先级、优先性或顺序,或一个方法中动作进行的时间顺序,而仅仅用作将具有某一名称的一个权利要求元素与具有相同名称的另一个元素区分开(但用于序数术语)的标签,以区分权利要求元素。

Claims (12)

  1. 一种铁蛋白-硫化铁复合物,其中硫化铁以纳米颗粒的形式包载于铁蛋白中。
  2. 根据权利要求1所述的铁蛋白-硫化铁复合物,其中所述铁蛋白-硫化铁复合物包含5~60%(重量比)的硫化铁纳米颗粒,优选地,5~40%,5~30%或5~20%。
  3. 一种组合物,其包含权利要求1或2所述的铁蛋白-硫化铁复合物。
  4. 根据权利要求3所述的组合物,其为药物组合物且包含药学上可接受的赋形剂。
  5. 根据权利要求3或4所述的组合物,其还包含另一种抗癌药物。
  6. 一种制备权利要求1或2所述的铁蛋白-硫化铁复合物的方法,其包括步骤:将氯化亚铁溶液加入到全重链铁蛋白的水溶液中,孵育后缓慢加入四硫化二钠水溶液,缓慢搅拌下孵育,离心后取上清并过滤;或
    将硫化钠水溶液缓慢加入含有醋酸钠,pH 4.5-6.5的天然铁蛋白水溶液中,搅拌1小时,获得铁蛋白-硫化铁复合物。
  7. 根据权利要求1或2所述的铁蛋白-硫化铁复合物或根据权利要求3-5任一项所述的组合物在制备促进肿瘤细胞凋亡的药物中的用途。
  8. 根据权利要求7所述的用途,其中所述肿瘤细胞选自白血病细胞或实体瘤细胞,优选地,慢性髓系白血病细胞系K562、急性髓系白血病细胞系Kasumi-1,或选自下述肿瘤的细胞:结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌、胃癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、尤文肉瘤、膀胱癌、甲状腺癌、头颈部鳞癌、睾丸癌、宫颈癌、子宫内膜癌、黑色素瘤、网状细胞肉瘤、精原性细胞瘤、鼻咽癌、食道癌、甲状腺癌、头颈部肿瘤和鳞状上皮癌,优选地,选自下述肿瘤的细胞:结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌和胃癌。
  9. 根据权利要求1或2所述的铁蛋白-硫化铁复合物或根据权利要求3-5任一项所述的组合物在制备用于靶向治疗肿瘤或感染的药物中的用途。
  10. 根据权利要求9所述的用途,其中所述肿瘤为血液肿瘤,优选地,白血病,更优选地,急性髓系白血病(AML)和/或慢性髓系白血病(CML)。
  11. 根据权利要求9所述的用途,其中所述肿瘤为实体肿瘤,优选地,所述肿瘤选自结肠癌、神经胶质细胞瘤、前列腺癌、乳腺癌、肺癌、肝癌、胃癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、尤文肉瘤、膀胱癌、甲状腺癌、头颈部鳞癌、睾丸癌、宫颈癌、 子宫内膜癌、黑色素瘤、网状细胞肉瘤、精原性细胞瘤、鼻咽癌、食道癌、甲状腺癌、头颈部肿瘤和鳞状上皮癌。
  12. 根据权利要求9所述的用途,其中所述感染选自细菌或真菌引起的感染;优选地,所述感染选自口腔变异链球菌、金黄色葡萄球菌、MRSA金黄色葡萄球菌、MDR金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌、枯草芽孢杆菌、加德纳菌、沙门氏菌、白色念珠菌或霉菌中的一种或多种引起的感染;更优选地,所述感染选自幽门螺杆菌引起的胃炎,阴道加特纳杆菌(G.vaginalis)引起的细菌性阴道炎,大肠杆菌或金黄色葡萄球菌引起的局部化脓感染、肺炎、伪膜性肠炎、心包炎以及败血症、脓毒血症,铜绿假单胞菌引起的伤口感染以及褥疮、脓肿、化脓性中耳炎,白色念珠菌引起的全身性念珠菌症,加德纳菌引起的宫颈表皮不典型增生、孕妇早产、绒毛膜羊膜炎、胎膜早破,和/或变异链球菌引起的龋齿。
PCT/CN2022/108993 2022-07-29 2022-07-29 一种铁蛋白-硫化铁复合物及其制备方法和应用 WO2024021026A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108993 WO2024021026A1 (zh) 2022-07-29 2022-07-29 一种铁蛋白-硫化铁复合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108993 WO2024021026A1 (zh) 2022-07-29 2022-07-29 一种铁蛋白-硫化铁复合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
WO2024021026A1 true WO2024021026A1 (zh) 2024-02-01
WO2024021026A9 WO2024021026A9 (zh) 2024-03-21

Family

ID=89705037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108993 WO2024021026A1 (zh) 2022-07-29 2022-07-29 一种铁蛋白-硫化铁复合物及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024021026A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028694A1 (en) * 2002-02-01 2004-02-12 Young Mark J. Novel nanoparticles and use thereof
CN109364100A (zh) * 2018-08-31 2019-02-22 扬州大学 一种高效抗菌的纳米硫化铁混合物及其制备方法和应用
CN111388451A (zh) * 2020-04-29 2020-07-10 南京工业大学 蛋白自组装铁基纳米粒及其制备方法与抗肿瘤药物递送系统中的应用
CN111840250A (zh) * 2019-04-29 2020-10-30 中国科学院生物物理研究所 一种用于恶性脑疟治疗的新型试剂及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040028694A1 (en) * 2002-02-01 2004-02-12 Young Mark J. Novel nanoparticles and use thereof
CN109364100A (zh) * 2018-08-31 2019-02-22 扬州大学 一种高效抗菌的纳米硫化铁混合物及其制备方法和应用
CN111840250A (zh) * 2019-04-29 2020-10-30 中国科学院生物物理研究所 一种用于恶性脑疟治疗的新型试剂及方法
CN111388451A (zh) * 2020-04-29 2020-07-10 南京工业大学 蛋白自组装铁基纳米粒及其制备方法与抗肿瘤药物递送系统中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOUGLAS, T. ET AL.: "Synthesis and Structure of an Iron(III) Sulfide-Ferritin Bioinorganic Nanocomposite", SCIENCE, vol. 269, 7 July 1995 (1995-07-07), XP002069034, DOI: 10.1126/science.269.5220.54 *

Also Published As

Publication number Publication date
WO2024021026A9 (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
Fan et al. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization
US9066971B2 (en) Method for treating and diagnosing cancer by using cell-derived microvesicles
Jiang et al. A natural drug entry channel in the ferritin nanocage
Li et al. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug
Zhao et al. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection
AU2011271830B2 (en) Microvesicles derived from cell protoplast, and use thereof
US20120195976A1 (en) Methods of treating inflammation by administration of heme oxygenase-1 and products of heme degradation
Xiao et al. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer
US9913862B2 (en) Methods of treating gram-negative microbial infections
CN108210883B (zh) 一种基于蜂毒肽的纳米试剂及其制备方法和应用
Yang et al. Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis
Yao et al. Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer
Zhao et al. Oral nanozyme-engineered probiotics for the treatment of ulcerative colitis
Wang et al. Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives
CN111840250B (zh) 一种用于恶性脑疟治疗的新型试剂及方法
Ren et al. A neutrophil-mediated carrier regulates tumor stemness by inhibiting autophagy to prevent postoperative triple-negative breast cancer recurrence and metastasis
Wang et al. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy
Wang et al. Mitochondria-targeting folic acid-modified nanoplatform based on mesoporous carbon and a bioactive peptide for improved colorectal cancer treatment
WO2024021026A1 (zh) 一种铁蛋白-硫化铁复合物及其制备方法和应用
Huang et al. Nano-platelets as an oxygen regulator for augmenting starvation therapy against hypoxic tumor
Mahboub et al. Chitosan nanogel aqueous treatment improved blood biochemicals, antioxidant capacity, immune response, immune-related gene expression and infection resistance of Nile tilapia
Liu et al. Rapamycin liposomes combined with 5-fluorouracil inhibits angiogenesis and tumor growth of APC (Min/+) mice and AOM/DSS-induced colorectal cancer mice
Tian et al. Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis
Yang et al. Boosting the anti-tumor performance of disulfiram against glioblastoma by using ultrasmall nanoparticles and HIF-1α inhibitor
Zhang et al. A “bulldozer” driven by anoxic bacteria for pancreatic cancer chemo-immunotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952474

Country of ref document: EP

Kind code of ref document: A1