WO2024020971A1 - 通信方法和站点 - Google Patents

通信方法和站点 Download PDF

Info

Publication number
WO2024020971A1
WO2024020971A1 PCT/CN2022/108759 CN2022108759W WO2024020971A1 WO 2024020971 A1 WO2024020971 A1 WO 2024020971A1 CN 2022108759 W CN2022108759 W CN 2022108759W WO 2024020971 A1 WO2024020971 A1 WO 2024020971A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
bandwidth
center frequency
main
frequency index
Prior art date
Application number
PCT/CN2022/108759
Other languages
English (en)
French (fr)
Inventor
李雅璞
黄磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/108759 priority Critical patent/WO2024020971A1/zh
Publication of WO2024020971A1 publication Critical patent/WO2024020971A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and site.
  • the embodiment of the present application provides a communication method, including:
  • the station obtains first information, and the first information is used to indicate bandwidth-related information of the first channel.
  • This embodiment of the present application provides a site, including:
  • a processing unit configured to obtain first information, where the first information is used to indicate bandwidth-related information of the first channel.
  • An embodiment of the present application provides a communication device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory, so that the communication device performs the above communication method.
  • An embodiment of the present application provides a chip for implementing the above communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned communication method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, it causes the device to perform the above communication method.
  • An embodiment of the present application provides a computer program product, which includes computer program instructions, and the computer program instructions cause the computer to execute the above communication method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to perform the above communication method.
  • the embodiments of the present application can expand the communication bandwidth and thereby improve the throughput of the communication device.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the main channel and the auxiliary channel in the 320MHz BSS according to an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a communication method according to an embodiment of the present application.
  • Figure 4 is a schematic block diagram of a site according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of constructing a 240MHz channel in the 5GHz frequency band according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of the main channel and auxiliary channel of a 240MHz BSS according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of the main channel and auxiliary channel of another 240MHz BSS according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of constructing a 480MHz channel in the 6GHz frequency band according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of the main channel and auxiliary channel of the 480MHz BSS according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of constructing a 640MHz channel in the 6GHz frequency band according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of the main channel and auxiliary channel of the 640MHz BSS according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of the UHR capability element format according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the UHR operation element format according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of a format of a UHR operation element subfield according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of another format of a UHR operation element subfield according to an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 17 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • WLAN wireless local area network
  • WiFi Wireless Fidelity
  • the communication system 100 applied in the embodiment of the present application is shown in Figure 1 .
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 that accesses the network through the access point 110.
  • Access Point Access Point
  • STA station
  • AP is also called AP STA, that is, in a certain sense, AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • Communication in the communication system 100 may be communication between AP and non-AP STA, communication between non-AP STA and non-AP STA, or communication between STA and peer STA, where peer STA It can refer to the device that communicates with the STA peer.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router).
  • the terminal device or network device has a chip that implements communication functions, such as a WLAN or WiFi chip.
  • the role of STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA.
  • the mobile phone When the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT), smart cameras, smart remote controls, smart water meters, etc. in smart homes. and sensors in smart cities, etc.
  • IoT Internet of Things
  • non-AP STAs may support the 802.11be standard.
  • Non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b and 802.11a and other current and future 802.11 family wireless LAN (wireless local area networks, WLAN) standards.
  • the AP may be a device supporting the 802.11be standard.
  • the AP can also be a device that supports multiple current and future 802.11 family WLAN standards such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA can be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device that supports WLAN/WiFi technology, Wireless equipment in industrial control, set-top boxes, wireless equipment in self-driving, vehicle communication equipment, wireless equipment in remote medical, and wireless equipment in smart grid , wireless equipment in transportation safety, wireless equipment in smart city (smart city) or wireless equipment in smart home (smart home), wireless communication chips/ASIC/SOC/, etc.
  • the frequency bands that WLAN technology can support may include, but are not limited to: low frequency bands (such as 2.4GHz, 5GHz, 6GHz) and high frequency bands (such as 45GHz, 60GHz).
  • Figure 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This is not the case in the embodiment of the present application. Make limitations.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • the current maximum bandwidth of Wi-Fi channels is 320MHz.
  • Primary and secondary channels may include the following examples.
  • Primary 20MHz channel (Primary 20MHz channel): used to transmit 20MHz PHY (Physical layer, physical layer) PPDU (Physical Layer Protocol Data Unit) in the BSS (Basic service set, basic service set) of 40MHz, 80MHz, 160MHz or 320MHz. Physical layer protocol data unit) 20MHz channel. Or the 20MHz channel used to transmit beacons in a 40MHz, 80MHz, 160MHz or 320MHz BSS.
  • PHY Physical layer, physical layer
  • PPDU Physical Layer Protocol Data Unit
  • BSS Basic service set, basic service set
  • BSS Basic service set, basic service set
  • Physical layer protocol data unit 20MHz channel.
  • the 20MHz channel used to transmit beacons in a 40MHz, 80MHz, 160MHz or 320MHz BSS.
  • Primary 40MHz channel A 40MHz channel used to transmit 40MHz PHY PPDU in an 80MHz, 160MHz or 320MHz BSS. Or a 40MHz channel containing a main 20MHz channel in an 80MHz, 160MHz or 320MHz BSS.
  • Primary 80MHz channel In the 160MHz or 320MHz BSS, the 80MHz channel used to transmit 80MHz PHY PPDU. Or an 80MHz channel that contains the main 20MHz channel in a 160MHz or 320MHz BSS.
  • Primary 160MHz channel In the 320MHz BSS, the 160MHz channel used to transmit 160MHz PHY PPDU. Or in a 320MHz BSS, a 160MHz channel containing the main 20MHz channel.
  • the 20MHz channel is adjacent to the main 20MHz channel and together with the main 20MHz channel forms the 40MHz channel in the 40MHz BSS.
  • the 20MHz channel is adjacent to the main 20MHz channel and together with the main 20MHz channel forms the main 40MHz channel in the 80MHz BSS.
  • the 20MHz channel is adjacent to the main 20MHz channel and together with the main 20MHz channel forms the main 40MHz channel in the 160MHz BSS.
  • the 20MHz channel is adjacent to the main 20MHz channel and together with the main 20MHz channel forms the main 40MHz channel in the 320MHz BSS.
  • Secondary 40MHz channel (Secondary 40MHz channel): In an 80MHz BSS, the 40MHz channel is adjacent to the main 40MHz channel and together with the main 40MHz channel forms the 80MHz channel in the 80MHz BSS. In a 160MHz BSS, the 40MHz channel is adjacent to the main 40MHz channel and together with the main 40MHz channel forms the main 80MHz channel in the 160MHz BSS. In a 320MHz BSS, the 40MHz channel is adjacent to the main 40MHz channel and together with the main 40MHz channel forms the main 80MHz channel in the 320MHz BSS.
  • the 80MHz channel In a 160MHz BSS, the 80MHz channel is adjacent to the main 80MHz channel and together with the main 80MHz channel forms the 160MHz channel in the 160MHz BSS. In a 320MHz BSS, the 80MHz channel is adjacent to the main 80MHz channel and together with the main 80MHz channel forms the main 160MHz channel in the 320MHz BSS.
  • Secondary 160MHz channel In a 320MHz BSS, the 160MHz channel is adjacent to the main 160MHz channel and together with the main 160MHz channel forms the 320MHz channel in the 320MHz BSS.
  • Figure 2 shows a schematic diagram of the primary channel and secondary channel in 320MHz BSS.
  • Figure 3 is a schematic flow chart of a communication method 300 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the station obtains first information, where the first information is used to indicate bandwidth-related information of the first channel.
  • the station may be an AP STA or a non-AP STA.
  • the way for the station to obtain the first information may include the station itself dividing the transmission resources of the communication system to obtain the bandwidth information of the first channel.
  • the way in which the site obtains the first information may also include receiving the first information from other devices, such as other sites.
  • the non-AP STA receives the first information from the AP STA.
  • AP STA receives the first information from non-AP STA.
  • the site may also send the first information to other devices, such as other sites.
  • the non-AP STA sends the first message to the AP STA.
  • AP STA sends the first information to non-AP STA.
  • the specific device for dividing transmission resources is not limited and can be flexibly selected according to actual application scenarios.
  • the bandwidth-related information of the first channel includes relevant information that the bandwidth of the first channel is greater than the set bandwidth.
  • the set bandwidth may be the maximum channel bandwidth or a larger channel bandwidth of the communication system.
  • the maximum bandwidth of the 5GHz band is 160MHz.
  • the maximum bandwidth of the 6GHz band is 320MHz.
  • the first channel may be a newly added channel, and the bandwidth of the first channel may be a newly added bandwidth.
  • the bandwidth of the first channel can be 240MHz, 480MHz or 640MHz in the 5GHz band, and can be 240MHz, 480MHz or 640MHz in the 6GHz band. Channel bandwidth.
  • the specific value of the newly added channel bandwidth in the above example can also be other values.
  • the first information used to indicate the bandwidth-related information of the first channel may also be compatible with related information indicating other bandwidths, such as one or more related information of 40 MHz, 80 MHz, 160 MHz or 320 MHz.
  • the bandwidth-related information of the first channel includes at least one of the following: a starting frequency, a bandwidth of a sub-channel, and a channel center frequency index of the sub-channel.
  • the starting frequency may also be called the starting frequency.
  • the starting frequency may be indicated by the operating class field (Operating Class field) in the MAC (Medium Access Control) frame.
  • the operation type field may indicate the starting frequency of the frequency band, for example, the starting frequency of the 2.4GHz frequency band, the 5GHz frequency band, or the 6GHz frequency band.
  • the first channel may include multiple sub-channels.
  • the sub-channels of the first channel may include a primary channel and a secondary channel.
  • the channel center frequency index of the sub-channel may be determined based on physical layer (PHY) parameters.
  • PHY physical layer
  • the physical layer parameter dot11UHRCurrentChannelCenterFrequencyIndex0 current channel center frequency index 0
  • CENTER_FREQUENCY_SEGMENT_0 center frequency segment
  • PHYCONFIG_VECTOR interface physical layer configuration vector
  • the first channel includes N adjacent second channels, where N is an integer greater than 1; the bandwidth of the first channel is equal to the sum of the bandwidths of the N second channels.
  • the second channel may be a channel with other bandwidths in the communication system.
  • the second channel is a channel with a bandwidth of 80MHz, 160MHz, 320MHz, etc.
  • the second channel can be understood as a sub-channel of the first channel.
  • the sub-channel of the first channel includes a first sub-channel and at least one second sub-channel, the first sub-channel is a main channel and the second sub-channel is a secondary channel.
  • the first channel may be divided into multiple sub-channels, and the primary channel and the secondary channel may be determined from the multiple sub-channels.
  • the main channel may include a main 20MHz channel, and the auxiliary channel may be adjacent to the main channel.
  • the first channel is a 240MHz channel
  • the 240MHz channel is a channel with a bandwidth of 240MHz in the 5GHz frequency band.
  • the first channel includes three adjacent second channels, and the second channel is a channel with a bandwidth of 80MHz in the 5GHz frequency band. channel or a channel with a bandwidth of 80MHz in the 6GHz band.
  • the first channel is a 240MHz channel
  • the first sub-channel is a main 80MHz channel
  • the two second sub-channels of the first channel are a first auxiliary 80MHz channel and a second auxiliary 80MHz channel respectively.
  • the main 80MHz channel Includes the main 20MHz channel.
  • the main 80MHz channel can represent the main channel with a bandwidth of 80MHz.
  • Primary 20MHz channel may represent a primary channel with a bandwidth of 20MHz.
  • the first auxiliary 80MHz channel may represent the first auxiliary channel with a bandwidth of 80MHz.
  • the second auxiliary 80MHz channel may represent a second auxiliary channel with a bandwidth of 80MHz.
  • the first channel is a 240MHz channel
  • the first sub-channel is a main 160MHz channel
  • the second sub-channel is a secondary 80MHz channel
  • the main 160MHz channel includes the main 20MHz channel.
  • the main 160MHz channel can represent the main channel with a bandwidth of 160MHz.
  • the secondary 80MHz channel may represent a secondary channel with a bandwidth of 80MHz.
  • the channel center frequency index of the primary 20 MHz channel is 100, 104, 108, 112, 116, 120, or 128.
  • primary 80MHz, secondary 80MHz and secondary 80MHz In 240MHz BSS, the primary 80MHz channel includes the primary 20MHz channel, and the secondary 1 (secondary1) 80MHz and secondary 2 (secondary2) 80MHz do not include the primary 20MHz channel.
  • the main 80MHz, secondary1 (secondary1) 80MHz and secondary2 (secondary2) 80MHz can form the 240MHz channel in the 240MHz BSS.
  • the main 20MHz channel can be any 20MHz sub-channel in the 240MHz channel.
  • primary 160MHz and secondary 80MHz In the 240MHz BSS, the primary 160MHz channel includes the primary 20MHz channel, the secondary 1 (secondary1) 80MHz does not include the primary 20MHz channel, and the primary 160MHz and secondary 1 (secondary1) 80MHz together form a 240MHz BSS.
  • 240MHz channel The main 20MHz channel may be one of the 20MHz sub-channels in the 160MHz channel under the IEEE standard 5GHz frequency band, and the center frequency index of the main 20MHz channel may be one of 100, 104, 108, 112, 116, 120, and 128.
  • the first channel is a 480MHz channel
  • the 480MHz channel is a channel with a bandwidth of 480MHz in the 6GHz frequency band.
  • the first channel includes three adjacent second channels, and the second channel is a channel with a bandwidth of 160MHz in the 6GHz frequency band. channel.
  • the first channel is a 480MHz channel
  • the first sub-channel is a main 320MHz channel
  • the two second sub-channels of the first channel are a first auxiliary 80MHz channel and a second auxiliary 80MHz channel respectively
  • the main 320MHz channel Includes the main 20MHz channel.
  • the first channel is a first 480MHz channel, and the channel center frequency index of the first 480MHz channel is 47 or 143; or, the first channel is a second 480MHz channel, and the channel center frequency index of the second 480MHz channel is 47 or 143.
  • the channel center frequency index is 79 or 175.
  • a 480MHz channel can be constructed in the 6GHz frequency band (or spectrum), which is composed of any three adjacent 160MHz channels in the 6GHz frequency band.
  • the following are examples of 2 types of 480MHz channels: 480MHz-1 and 480MHz-2.
  • the channel center frequency index of 480MHz-1 is 47,143; the channel center frequency index of 480MHz-2 is 79,175.
  • examples of primary channels and secondary channels of 480MHz BSS are as follows:
  • the primary 320MHz channel includes the primary 20MHz channel, the secondary1 (secondary1) 80MHz channel and the secondary2 (secondary2) 80MHz channel do not contain the primary 20MHz channel.
  • the main 320MHz, secondary1 (secondary1) 80MHz and secondary2 (secondary2) 80MHz form the 480MHz channel in the 480MHz BSS.
  • the main 20MHz channel can be any 20MHz sub-channel in the 480MHz channel.
  • the first channel is a 640MHz channel
  • the 640MHz channel is a channel with a bandwidth of 640MHz in the 6GHz frequency band.
  • the first channel includes four adjacent second channels, and the second channel is a channel with a bandwidth of 160MHz in the 6GHz frequency band. channel.
  • the first channel is a 640MHz channel
  • the first subchannel is a main 320MHz channel
  • the second subchannel is a secondary 320MHz channel
  • the main 320MHz channel includes the main 20MHz channel.
  • the first channel is a first 640MHz channel, and the channel center frequency index of the first 640MHz channel is 63; or, the first channel is a second 640MHz channel, and the channel center frequency of the second 640MHz channel is 63.
  • the frequency index is 159.
  • a 640MHz channel can be constructed in the 6GHz frequency band, which is composed of any four adjacent 160MHz channels in 6GHz.
  • the following is an example of defining 2 types of 640MHz channels: 640MHz-1 and 640MHz-2. Among them, the channel center frequency index of 640MHz-1 is 63; the channel center frequency index of 640MHz-2 is 159.
  • examples of the primary channel and secondary channel of 640MHz BSS are as follows:
  • the primary 320MHz channel includes the primary 20MHz channel
  • the secondary 320MHz does not include the primary 20MHz channel
  • the primary 320MHz and secondary 320MHz form the 640MHz channel in the 640MHz BSS.
  • the primary 20MHz channel It can be any 20MHz sub-channel in the 640MHz channel.
  • the bandwidth-related information of the first channel includes an operation class corresponding to the first channel.
  • the operation class corresponding to the first channel is used to indicate at least one of the bandwidth, starting frequency and channel center frequency index of the first channel. one.
  • the operation class corresponding to the first channel includes at least one of the following:
  • the first operation category indicates that the first channel is a channel with a bandwidth of 240MHz in the 5GHz frequency band, the starting frequency of the first channel is 5GHz, and the channel center frequency index of the first channel is 122;
  • the second operation category means that the first channel is a channel with a bandwidth of 480MHz in the 6GHz frequency band, the starting frequency of the first channel is 5.950GHz, and the channel center frequency index of the first channel is 47, 79, 143 or 175;
  • the third operation category indicates that the first channel is a channel with a bandwidth of 640MHz in the 6GHz frequency band, the starting frequency of the first channel is 5.950GHz, and the channel center frequency index of the first channel is 63 or 159.
  • new operating classes can be determined based on the newly added 240MHz, 480MHz and 640MHz bandwidths:
  • the station may receive and/or send the operation class corresponding to the first channel.
  • the AP station sends first information carrying the operation class corresponding to the first channel to the non-AP station.
  • the AP station receives the first information carrying the operation class corresponding to the first channel from the non-AP station.
  • the operation class corresponding to the first channel is in the operation class field of the first MAC frame and/or the first MAC element.
  • a Reduced Neighbor Report element or a Neighbor Report element may contain an Operating Class field.
  • the operating class of the corresponding channel, such as the first channel, can be specified through the Operating Class field.
  • the operation class field is also used to indicate at least one of the following parameters:
  • the channel spacing may represent the channel bandwidth.
  • the bandwidth-related information of the first channel includes the bandwidth support capability of the station.
  • a station may receive and/or send the station's bandwidth support capability.
  • the AP station sends first information carrying the bandwidth support capability of the station to the non-AP station.
  • the AP station receives the first information carrying the bandwidth support capability of the station from the non-AP station.
  • the bandwidth support capability of the station receiving and/or sending station, and the operation class corresponding to the station receiving and/or sending the first channel can be executed at different times, and can be flexibly selected according to actual application requirements.
  • the bandwidth support capability of the station includes whether the station supports the physical layer protocol data unit PPDU related to the bandwidth of the first channel when the station operates in the first frequency band.
  • the bandwidth support capability of the site includes at least one of the following:
  • non-OFDMA Orthogonal Frequency Division Multiple Access, Orthogonal Frequency Division Multiple Access
  • non-OFDMA 240MHz PPDU can represent a non-OFDMA PPDU with a bandwidth of 240MHz;
  • non-OFDMA 480MHz PPDU can represent a non-OFDMA PPDU with a bandwidth of 480MHz;
  • non-OFDMA 640MHz PPDU can represent a bandwidth of 640MHz.
  • non-OFDMA PPDU can represent a non-OFDMA PPDU.
  • the bandwidth support capabilities of the site are in the UHR PHY Capabilities Information (Capabilities Information) field of the ultra-high reliability UHR capability element (Capabilities element).
  • the UHR capability element is a second MAC element, and/or the UHR capability element is in the second MAC frame.
  • the first station can inform the second station of the first station's own PHY capabilities through the UHR PHY capability information carried in the MAC frame.
  • the UHR PHY capability information field contains the following subfields:
  • the bandwidth-related information of the first channel includes configuration information of the first channel of the BSS of the station.
  • the station may receive and/or send the configuration information of the first channel of the station's BSS.
  • the AP station sends the first information carrying the configuration information of the first channel of the BSS of the station to the non-AP station.
  • the AP site receives first information carrying configuration information of a first channel of the BSS of the site from a non-AP site.
  • the bandwidth support capability of the station receiving and/or sending the station, the operation class corresponding to the station receiving and/or sending the first channel, the station receiving and/or sending the configuration information of the first channel of the BSS of the station may be at different times.
  • the specific implementation can be flexibly selected according to the needs of actual applications.
  • the configuration information of the first channel includes:
  • the configuration information of the first channel is in the UHR operation information field in the UHR operation element.
  • the UHR Operation Information field in the MAC element UHR Operation element includes the Control field and the CCFS (Channel Center Frequency Segment, channel center frequency segment) field.
  • the Control field can be used to indicate the bandwidth
  • the CCFS field can be used to indicate the channel center frequency index of the BSS bandwidth.
  • the field used to indicate the channel center frequency index is a CCFS field, and the CCFS field includes a first CCFS subfield and a second CCFS subfield;
  • the first CCFS subfield is used to indicate the channel center frequency index of the main channel in the first channel
  • the second CCFS subfield is used to indicate the channel center frequency index of the first channel
  • the field used to indicate the channel center frequency index is a CCFS field.
  • the CCFS field includes a third CCFS subfield, and the third CCFS subfield is used to indicate the channel center frequency index of the first channel of the BSS.
  • CCFS field includes CCFS0 and CCFS1:
  • CCFS0 indicates the channel center frequency index of the primary 80MHz of the BSS bandwidth (see option 1 above for 240MHz channels).
  • CCFS1 indicates the channel center frequency index of the BSS bandwidth 240MHz.
  • 16.
  • CCFS0 indicates the channel center frequency index for the primary 160 MHz of BSS bandwidth (see option 2 above for 240 MHz channels).
  • CCFS1 indicates the channel center frequency index of the BSS bandwidth 240MHz.
  • 8.
  • CCFS0 indicates the channel center frequency index of the primary 320MHz BSS bandwidth.
  • CCFS1 indicates the channel center frequency index of the BSS bandwidth 480MHz.
  • 16.
  • CCFS0 indicates the channel center frequency index of the primary 320MHz BSS bandwidth.
  • CCFS1 indicates the channel center frequency index of the BSS bandwidth 640MHz.
  • 32.
  • CCFS0 indicates the channel center frequency index of the BSS bandwidth.
  • CCFS0 indicates the channel center frequency index of the BSS bandwidth.
  • CCFS0 indicates the channel center frequency index of the BSS bandwidth.
  • the UHR operational element is in at least one of the following:
  • Beacon frame Probe Response frame, Association Response frame and Reassociation Response frame.
  • the station may receive and/or send at least one of a beacon frame, a detection response frame, an association response frame, and a re-association response frame. Furthermore, at least one of a beacon frame, a detection response frame, an association response frame, and a re-association response frame may carry configuration information of the first channel of the station's BSS.
  • the channel center frequency index of the main 20 MHz channel is determined based on the channel center frequency index of the first channel, the number of 20 MHz channels included in the first channel, and the location of the main 20 MHz channel. The position corresponds to the channel center frequency index and bandwidth of the first channel.
  • the channel center frequency index of the first sub-channel in the first channel is based on the starting frequency of the first channel, the channel center frequency index of the first channel, and the number of 20 MHz channels included in the first channel. , and the position of the main 20 MHz channel is determined, and the position of the main 20 MHz channel corresponds to the channel center frequency index and bandwidth of the first channel.
  • the channel center frequency index of the second sub-channel in the first channel is determined based on the starting frequency of the first channel and the channel center frequency index of the first sub-channel.
  • a 240MHz channel is divided into three 80MHz channels and includes one 80MHz channel as the main 80MHz channel (ie, the first subchannel) and two auxiliary 80MHz channels (ie, the second subchannel).
  • the center frequency of the primary 80MHz channel may be based on the starting frequency of the 240MHz channel, the channel center frequency index of the 240MHz channel, the number of 20MHz channels included in the 240MHz channel, and the channel center frequency index and bandwidth of the primary 20MHz channel corresponding to the 240MHz channel. Location determined.
  • the bandwidth of the first auxiliary 80MHz channel (or recorded as the auxiliary 1 80MHz channel) can be determined based on the starting frequency of the 240MHz channel and the channel center frequency index of the main 80MHz channel.
  • the bandwidth of the second auxiliary 80MHz channel (or recorded as the auxiliary 2 80MHz channel) can also be determined based on the starting frequency of the 240MHz channel and the channel center frequency index of the main 80MHz channel.
  • the 240MHz channel is divided into a main 160MHz channel (i.e., the first sub-channel) and an auxiliary 80MHz channel (i.e., the second sub-channel).
  • the center frequency of the main 160 MHz channel may be based on the starting frequency of the 240 MHz channel, the channel center frequency index of the 240 MHz channel, the number of 20 MHz channels included in the 240 MHz channel, and the channel center frequency index and bandwidth of the main 20 MHz channel corresponding to the 240 MHz channel. Location determined.
  • the bandwidth of the secondary 80MHz channel can be determined based on the starting frequency of the 240MHz channel and the channel center frequency index of the primary 160MHz channel.
  • the 480MHz channel is divided into one main 320MHz channel (i.e., the first sub-channel) and two auxiliary 80MHz channels (i.e., the second sub-channel).
  • the center frequency of the main 320MHz channel may be based on the starting frequency of the 480MHz channel, the channel center frequency index of the 480MHz channel, the number of 20MHz channels included in the 480MHz channel, and the channel center frequency index and bandwidth of the main 20MHz channel corresponding to the 480MHz channel. Location determined.
  • the bandwidth of the auxiliary 80MHz channel can be determined based on the starting frequency of the 480MHz channel and the channel center frequency index of the main 320MHz channel.
  • the 640MHz channel is divided into a main 320MHz channel (i.e., the first sub-channel) and an auxiliary 320MHz channel (i.e., the second sub-channel).
  • the center frequency of the primary 320MHz channel may be based on the starting frequency of the 640MHz channel, the channel center frequency index of the 640MHz channel, the number of 20MHz channels included in the 640MHz channel, and the channel center frequency index and bandwidth of the primary 20MHz channel corresponding to the 640MHz channel. Location determined.
  • the bandwidth of the secondary 320MHz channel can be determined based on the starting frequency of the 640MHz channel and the channel center frequency index of the primary 320MHz channel.
  • the 240MHz, 480MHz and 640MHz channel bandwidths proposed by the embodiments of this application for next-generation Wi-Fi communications can improve the throughput of communication devices such as WiFi devices, increase data rates, increase the number of OFDMA transmission users, and greatly improve 5GHz and 6GHz utilization of spectrum resources.
  • FIG. 4 is a schematic block diagram of a site 400 according to an embodiment of the present application.
  • the site 400 may include:
  • the processing unit 410 is configured to obtain first information, where the first information is used to indicate bandwidth-related information of the first channel.
  • the bandwidth-related information of the first channel includes relevant information that the bandwidth of the first channel is greater than the set bandwidth.
  • the bandwidth-related information of the first channel includes at least one of the following: a starting frequency, a bandwidth of a sub-channel, and a channel center frequency index of the sub-channel.
  • the bandwidth-related information of the first channel includes an operation class corresponding to the first channel.
  • the operation class corresponding to the first channel is used to indicate at least one of the bandwidth, starting frequency and channel center frequency index of the first channel. one.
  • the operation class corresponding to the first channel includes at least one of the following:
  • the first operation category indicates that the first channel is a channel with a bandwidth of 240MHz in the 5GHz frequency band, the starting frequency of the first channel is 5GHz, and the channel center frequency index of the first channel is 122;
  • the second operation category means that the first channel is a channel with a bandwidth of 480MHz in the 6GHz frequency band, the starting frequency of the first channel is 5.950GHz, and the channel center frequency index of the first channel is 47, 79, 143 or 175;
  • the third operation category indicates that the first channel is a channel with a bandwidth of 640MHz in the 6GHz frequency band, the starting frequency of the first channel is 5.950GHz, and the channel center frequency index of the first channel is 63 or 159.
  • the operation class corresponding to the first channel is in the operation class field of the first MAC frame and/or the first MAC element.
  • the operation class field is also used to indicate at least one of the following parameters:
  • the bandwidth-related information of the first channel includes the bandwidth support capability of the station.
  • the bandwidth support capability of the station includes whether the station supports PPDU related to the bandwidth of the first channel when the station operates in the first frequency band.
  • the bandwidth support capability of the site includes at least one of the following:
  • the site's bandwidth support capabilities are in the UHR PHY capability information field of the ultra-high reliability UHR capability element.
  • the UHR capability element is a second MAC element, and/or the UHR capability element is in the second MAC frame.
  • the bandwidth-related information of the first channel includes configuration information of the first channel of the basic service set BSS of the site.
  • the configuration information of the first channel includes:
  • the field used to indicate the channel center frequency index is a CCFS field, and the CCFS field includes a first CCFS subfield and a second CCFS subfield;
  • the first CCFS subfield is used to indicate the channel center frequency index of the main channel in the first channel
  • the second CCFS subfield is used to indicate the channel center frequency index of the first channel
  • the field used to indicate the channel center frequency index is a CCFS field.
  • the CCFS field includes a third CCFS subfield, and the third CCFS subfield is used to indicate the channel center frequency index of the first channel of the BSS.
  • the configuration information of the first channel is in the UHR operation information field in the UHR operation element.
  • the UHR operational element is in at least one of the following:
  • Beacon frame Probe Response frame, Association Response frame and Reassociation Response frame.
  • the first channel includes N adjacent second channels, where N is an integer greater than 1; the bandwidth of the first channel is equal to the sum of the bandwidths of the N second channels.
  • the first channel is a 240MHz channel
  • the 240MHz channel is a channel with a bandwidth of 240MHz in the 5GHz frequency band.
  • the first channel includes three adjacent second channels, and the second channel is a channel with a bandwidth of 80MHz in the 5GHz frequency band. Channel.
  • the first channel is a 480MHz channel
  • the 480MHz channel is a channel with a bandwidth of 480MHz in the 6GHz frequency band.
  • the first channel includes three adjacent second channels, and the second channel is a channel with a bandwidth of 160MHz in the 6GHz frequency band. channel.
  • the first channel is a 640MHz channel
  • the 640MHz channel is a channel with a bandwidth of 640MHz in the 6GHz frequency band.
  • the first channel includes four adjacent second channels, and the second channel is a channel with a bandwidth of 160MHz in the 6GHz frequency band. channel.
  • the sub-channel of the first channel includes a first sub-channel and at least one second sub-channel, the first sub-channel is a main channel and the second sub-channel is a secondary channel.
  • the first channel is a 240MHz channel
  • the first sub-channel is a main 80MHz channel
  • the two second sub-channels of the first channel are a first auxiliary 80MHz channel and a second auxiliary 80MHz channel respectively.
  • the main 80MHz channel Includes the main 20MHz channel.
  • the first channel is a 240MHz channel
  • the first sub-channel is a main 160MHz channel
  • the second sub-channel is a secondary 80MHz channel
  • the main 160MHz channel includes the main 20MHz channel.
  • the channel center frequency index of the primary 20 MHz channel is 100, 104, 108, 112, 116, 120, or 128.
  • the first channel is a 480MHz channel
  • the first sub-channel is a main 320MHz channel
  • the two second sub-channels of the first channel are a first auxiliary 80MHz channel and a second auxiliary 80MHz channel respectively
  • the main 320MHz channel Includes the main 20MHz channel.
  • the first channel is a first 480MHz channel, and the channel center frequency index of the first 480MHz channel is 47 or 143; or, the first channel is a second 480MHz channel, and the channel center frequency index of the second 480MHz channel is 47 or 143.
  • the channel center frequency index is 79 or 175.
  • the first channel is a 640MHz channel
  • the first subchannel is a main 320MHz channel
  • the second subchannel is a secondary 320MHz channel
  • the main 320MHz channel includes the main 20MHz channel.
  • the first channel is a first 640MHz channel, and the channel center frequency index of the first 640MHz channel is 63; or, the first channel is a second 640MHz channel, and the channel center frequency of the second 640MHz channel is 63.
  • the frequency index is 159.
  • the channel center frequency index of the main 20 MHz channel is determined based on the channel center frequency index of the first channel, the number of 20 MHz channels included in the first channel, and the location of the main 20 MHz channel. The position corresponds to the channel center frequency index and bandwidth of the first channel.
  • the channel center frequency index of the first sub-channel in the first channel is based on the starting frequency of the first channel, the channel center frequency index of the first channel, and the number of 20 MHz channels included in the first channel. , and the position of the main 20MHz channel is determined, and the position of the main 20MHz channel corresponds to the channel center frequency index and bandwidth of the first channel;
  • the channel center frequency index of the second sub-channel in the first channel is determined based on the starting frequency of the first channel and the channel center frequency index of the first sub-channel.
  • the site 400 in the embodiment of the present application can implement the corresponding functions of the site in the aforementioned method 300 embodiment.
  • each module (sub-module, unit or component, etc.) in the site 400 please refer to the corresponding description in the above method 300 embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the site 400 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. (Submodule, unit or component, etc.) implementation.
  • the embodiments of this application can be used in new generation Wi-Fi communications, such as Ultra-High Reliability (UHR).
  • UHR Ultra-High Reliability
  • the embodiment of this application proposes that the new channel bandwidth may include 240MHz, 480MHz, 640MHz, etc.
  • the solutions of the embodiments of the present application are introduced below according to several aspects.
  • the establishment and channelization of the 240MHz bandwidth in the 5GHz frequency band, the establishment and channelization of the 480MHz and 640MHz bandwidth in the 6GHz frequency band, and the corresponding operating class (Operating class) is provided.
  • MAC element indicating the STA bandwidth support capability such as UHR Capabilities element is provided.
  • 240/480/640MHz channelization is specifically: the establishment and channelization of the 240MHz bandwidth in the 5GHz frequency band, and the establishment and channelization of the 480MHz and 640MHz bandwidth in the 6GHz frequency band.
  • the bandwidth can include 20MHz, 40MHz, 80MHz and 160MHz, as shown in Figure 5.
  • a 240MHz bandwidth can be expanded, as shown in the shaded part of Figure 5.
  • the starting and ending frequencies of the 240MHz bandwidth are 5490MHz and 5730MHz respectively.
  • the channel center frequency index is 122.
  • the channel center frequency can be calculated by the following formula.
  • Channel center frequency (channel center frequency) Channel starting frequency (channel starting frequency) + 5 ⁇ nch (MHz)
  • the embodiment of this application proposes two options, as follows.
  • Option 1 Primary 80MHz channel, secondary 1 80MHz channel and secondary 2 80MHz channel (Primary 80MHz+Secondary1 80MHz+Secondary2 80MHz)
  • the primary 80MHz channel (P80) contains the primary 20MHz channel
  • the secondary 1 80MHz channel (S1-80) and secondary 2 80MHz channel (S2-80) do not contain the primary 20MHz channel.
  • the main 80MHz, auxiliary 1 80MHz channel and auxiliary 2 80MHz channel together form the 240MHz channel in the 240MHz BSS.
  • the main 20MHz channel can appear in any 20MHz sub-channel in the 240MHz channel.
  • the 240MHz channel includes P80, S1-80 and S2-80 in sequence. If the location of the main 20MHz channel changes, the 240MHz channel can also include S1-80, P80 and S2-80 in sequence; or the 240MHz channel can also include S1-80, S2-80 and P80 in sequence.
  • the primary 160MHz channel contains the primary 20MHz channel
  • the secondary 1 80MHz channel does not contain the primary 20MHz channel.
  • the main 160MHz and the auxiliary 1 80MHz together form the 240MHz channel in the 240MHz BSS.
  • the 240MHz channel includes P160 and S1-80 in sequence. If the location of the main 20MHz channel changes, the 240MHz channel can also include S1-80 and P160 in sequence.
  • the main 20MHz can appear in one of the 20MHz sub-channels in the 160MHz channel in the IEEE.
  • the main 20MHz can be included in the 160MHz channel with a channel center frequency index of 114, that is, the main 20MHz channel center frequency index can be 100, 104, 108, At least one of 112, 116, 120 or 128.
  • the 20MHz sub-channels with channel center frequency indexes of 132, 136, 140, and 144 cannot be used as the main 20MHz channel.
  • the bandwidth defined by IEEE 802.11 includes 20MHz, 40MHz, 80MHz, 60MHz and 320MHz, as shown in Figure 8 (the 20MHz and 40MHz bandwidths are not shown).
  • the embodiment of this application proposes a 480MHz channel bandwidth and its channelization. Specific examples are as follows.
  • the 480MHz channel consists of any three adjacent 160MHz channels in the 6GHz frequency band.
  • the embodiment of this application provides two types of 480MHz channel division examples: 480MHz-1 and 480MHz-2.
  • the channel center frequency index of 480MHz-1 is 47,143; the channel center frequency index of 480MHz-2 is 79,175.
  • the main channel and auxiliary channel of the 480MHz BSS in the embodiment of this application are as follows:
  • the main 320MHz channel includes the main 20MHz channel, and the auxiliary 1 80MHz channel and the auxiliary 2 80MHz channel do not include the main 20MHz channel.
  • the main 320MHz channel, the auxiliary 1 80MHz and the auxiliary 2 80MHz together form the 480MHz channel in the 480MHz BSS.
  • the main 20MHz channel can be any 20MHz sub-channel in the 480MHz channel.
  • the 480MHz channel includes P160, S1-80 and S2-80 in sequence. If the location of the main 20MHz channel changes, the 480MHz channel can also include S1-80, P160 and S2-80 in sequence; or the 480MHz channel can also include S1-80, S2-80 and P160 in sequence.
  • the bandwidth defined by IEEE 802.11 includes 20MHz, 40MHz, 80MHz, 60MHz and 320MHz, as shown in Figure 10 (the 20MHz and 40MHz bandwidths are not drawn).
  • the embodiment of this application proposes a 640MHz channel bandwidth and its channelization. Specific examples are as follows.
  • the 640MHz channel consists of any four adjacent 160MHz channels in the 6GHz frequency band.
  • the embodiment of this application provides two types of 640MHz channel division examples: 640MHz-1 and 640MHz-2.
  • the channel center frequency index of 640MHz-1 is 63; the channel center frequency index of 640MHz-2 is 159.
  • the main 320MHz channel in the 640MHz BSS, includes the main 20MHz channel, and the auxiliary 320MHz does not include the main 20MHz channel.
  • the main 320MHz and the auxiliary 320MHz together form the 640MHz channel in the 640MHz BSS.
  • the main 20MHz channel can be any 20MHz sub-channel in the 640MHz channel. As shown in Figure 11. According to the location of the main 20MHz channel, the 640MHz channel includes P320 and S320 in sequence. If the location of the main 20MHz channel changes, the 640MHz channel can also include S320 and P320 in sequence.
  • the embodiment of this application defines a new operating class (Operating class) based on 240MHz, 480MHz and 640MHz bandwidth, channel starting frequency and channel center frequency index.
  • the operating class can be carried in the MAC frame or MAC element, such as: Reduced Neighbor Report (reduced neighbor report) element or Neighbor Report (neighbor report) element, which may contain the Operating Class field (operating class field).
  • the Operating Class field can specify the operating class of the corresponding channel.
  • the length of the Operating Class field can be 1 byte or other lengths, which can be set flexibly according to needs.
  • the definition of the operating class is shown in Table 3-1.
  • the Operating Class field indicates the operating class, which in turn indicates the Channel starting frequency (channel starting frequency), Channel spacing (channel spacing), Channel center frequency index (channel center frequency index), etc. parameter.
  • the STA declares itself to be a UHR STA by transmitting the UHR Capabilities element. If the STA is an AP STA, the UHR Capabilities element may be included in a Beacon frame, Probe Response frame, Association Response frame, or Reassociation Response frame. If the STA is a non-AP STA, the UHR Capabilities element can be included in the Probe Request frame, Association Request frame, or Reassociation Request frame.
  • the UHR Capabilities element contains a series of fields used to broadcast the UHR capabilities of the UHR STA. As shown in Figure 12, UHR Capabilities element can include element identification (Element ID), length (Length), element identification extension (Element ID Extension) and UHT PHY capability information.
  • examples of the "Support For 240MHz In 5GHz” subfield, the “Support For 480MHz In 6GHz” subfield and the “Support For 640MHz In 6GHz” subfield in the UHR PHY Capabilities Information field are as shown in the table 2 shown.
  • UHR STAs UHR STAs in the UHR BSS are controlled by the following elements:
  • HT High-throughput, high throughput
  • HE High-efficiency, high efficiency
  • EHT Extremely high throughput, extremely high throughput
  • UHR Operation element
  • VHT Very High Throughput Operation element
  • HE Operation element HE Operation element
  • EHT Operation element UHR Operation element
  • the STA's operating frequency band is 6GHz, HE Operation element, EHT Operation element and UHR Operation element.
  • UHR Operation element can include element identification (Element ID), length (Length), element identification extension (Element ID Extension) and UHT operation information (Operation Information).
  • the UHR Operation element can be included in the Beacon frame, Probe Response frame, Association Response frame or Reassociation Response frame transmitted by the AP STA.
  • the UHR non-AP STA obtains the BSS channel configuration information from the UHR Operation Information subfield in the UHR Operation element.
  • the embodiment of this application provides an example of the UHR Operation Information subfield.
  • CCFS Channel Center Frequency Segment subfield
  • Disabled Subchannel Bitmap (disabled subchannel bitmap) subfield, this field can be a 32-bit bitmap, the lowest bit indicates the lowest frequency 20MHz sub-channel in the BSS bandwidth, each consecutive bit in the bitmap indicates the next higher frequency 20MHz sub-channel. Bit 1 indicates that the corresponding 20MHz sub-channel is punctured, and bit 0 indicates that the corresponding 20MHz sub-channel is not punctured.
  • the hole punching mode can follow the hole punching mode during non-OFDMA PPDU transmission.
  • UHR Operation Information subfield format 1 is shown in Figure 14. Use 2 subfields CCFS0 and CCFS1 to indicate the channel center frequency index (channel center frequency index).
  • CCFS0 when the BSS bandwidth is at least one of 20MHz, 40MHz and 80MHz, CCFS0 indicates the channel center frequency index of the BSS bandwidth.
  • the indication method of CCFS0 may include at least one of the following:
  • CCFS0 indicates the main 80MHz channel center frequency index in the 160MHz BSS.
  • CCFS0 indicates the main 80MHz or main 160MHz channel center frequency index in the 240MHz BSS.
  • CCFS0 indicates the main 160MHz channel center frequency index in the 320MHz BSS.
  • CCFS0 indicates the main 320MHz channel center frequency index in the 480MHz BSS.
  • CCFS0 indicates the main 320MHz channel center frequency index in the 640MHz BSS.
  • CCFS1 when the BSS bandwidth is 20MHz, 40MHz and 80MHz, CCFS1 is set to all 0s.
  • the BSS bandwidth is at least one of 160MHz, 240MHz, 320MHz, 480MHz and 640MHz, CCFS1 respectively indicates the channel center frequency index of at least one of the BSS bandwidth of 160MHz, 240MHz, 320MHz, 480MHz and 640MHz. As shown in Table 3 and Table 4.
  • a channel width value of 4 in the above table indicates CCFS1>0 and
  • 16, corresponding to option 1 above; or indicates CCFS1>0 and
  • 8, corresponding to option 2 above.
  • UHR Operation Information subfield format 2 is shown in Figure 15.
  • subfield CCFS0 is used to indicate the channel center frequency index of the 20/40/80/160/240/320/480/640MHz channel respectively.
  • PHY can provide an interface to MAC by extending the general PHY service interface.
  • the interface can include TXVECTOR (transmit vector), RXVECTOR (receive vector), PHYCONFIG_VECTOR (physical layer configuration vector), TRIG_VECTOR (trigger vector), etc.
  • the MAC can use PHYCONFIG_VECTOR to configure the PHY so that the PHY operation is independent of frame transmission or reception.
  • the PHYCONFIG_VECTOR carried in the PHY-CONFIG.request (physical layer configuration request) primitive of UHR PHY contains an OPERATING_CHANNEL (operating channel) parameter, which indicates the operating channel or primary channel.
  • the PHY can set dot11CurrentPrimaryChannel (current primary channel) to the value of this OPERATING_CHANNEL parameter.
  • the PHYCONFIG_VECTOR carried in the PHY-CONFIG.request primitive of UHR PHY contains a CHANNEL_WIDTH (channel width) parameter, which indicates the operating channel bandwidth.
  • the value is one of 20MHz, 40MHz, 80MHz, 160MHz, 240MHz, 320MHz, 480MHz and 640MHz.
  • the PHY can set dot11UHRCurrentChannelWidth (UHR current channel width) to the value of the CHANNEL_WIDTH parameter.
  • the PHYCONFIG_VECTOR carried in the PHY-CONFIG.request primitive of UHR PHY contains a CENTER_FREQUENCY_SEGMENT_0 (channel frequency segment) parameter, which indicates the channel center frequency. The value is one from 1 to 255.
  • the PHY should set dot11UHRCurrentChannelCenterFrequencyIndex0 (current channel center frequency index) to the value of this CENTER_FREQUENCY_SEGMENT_0 parameter.
  • the Operating Class field in the MAC frame indicates the channel start frequency.
  • dot11UHRCurrentChannelCenterFrequencyIndex0 and dot11CurrentPrimaryChannel are shown in Table 6, dot11ChannelStartingFactor ⁇ 500kHz represents the channel starting frequency.
  • Table 6 specifies the fields of the UHR channel
  • N 20MHz is the number of 20MHz sub-channels in the current channel.
  • n P20 is an integer, indicating the position of the main 20MHz channel corresponding to dot11UHRCurrentChannelCenterFrequencyIndex0 (UHR current channel center frequency index) and dot11UHRCurrentChannelWidth (UHR current channel width).
  • the possible values are 0 ⁇ n P20 ⁇ N 20MHz - 1.
  • the center frequency of the main 80MHz channel is f CH,start +5 ⁇ f P80,idx MHz, where the channel center frequency index f P80,idx of the main 80MHz channel is as shown in Equation (5):
  • n P20 is an integer, indicating the position of the main 20MHz channel corresponding to dot11UHRCurrentChannelCenterFrequencyIndex0 and dot11UHRCurrentChannelWidth.
  • the possible values are 0 ⁇ n P20 ⁇ N 20MHz -1.
  • the center frequency of the Secondary1 80MHz channel is f CH,start +5 ⁇ f S1 80,idx MHz
  • the center frequency of the Secondary2 80MHz channel is f CH,start +5 ⁇ f S2 80,idx MHz, where the channel center of the secondary 1 80MHz channel
  • the frequency index f S1 80, idx and the channel center frequency index f S2 80, idx of the auxiliary 1 80MHz channel are as shown in equations (6)-(8)
  • n P80 0, it means that the main 80MHz channel (P80) is located at the lowest frequency.
  • n P80 1
  • P80 the main 80MHz channel
  • n P80 2
  • P80 the main 80MHz channel
  • the center frequency of the main 160MHz channel is f CH,start +5 ⁇ f P160,idx MHz, where the channel center frequency index f P160,idx of the main 160MHz channel is as shown in Equation (9)
  • the center frequency of the Secondary1 80MHz channel is f CH,start +5 ⁇ f S1 80,idx MHz, where the channel center frequency index f S1 80,idx of the Secondary 1 80MHz channel is as shown in Equation (10):
  • n P20 is an integer, indicating the position of the primary 20MHz channel corresponding to dot11UHRCurrentChannelCenterFrequencyIndex0 and dot11UHRCurrentChannelWidth.
  • the possible values are 0 ⁇ n P20 ⁇ 7.
  • the center frequency of the Primary 320MHz channel is f CH,start +5 ⁇ f P320,idx MHz, where the channel center frequency index f P320,idx of the primary 320MHz channel is as shown in Equation (11)
  • n P20 is an integer, indicating the position of the primary 20MHz channel corresponding to dot11UHRCurrentChannelCenterFrequencyIndex0 and dot11UHRCurrentChannelWidth.
  • the possible values are 0 ⁇ n P20 ⁇ N 20MHz -1.
  • the center frequency of the Secondary1 80MHz channel is f CH,start +5 ⁇ f S1 80,idx MHz
  • the center frequency of the Secondary2 80MHz channel is f CH,start +5 ⁇ f S2 80,idx MHz, where the channel center of the secondary 1 80MHz channel
  • the frequency index f S1 80, idx and the channel center frequency index f S2 80, idx of the auxiliary 2 80MHz channel are as shown in equations (12)-(13)
  • n P320 0, it means that the main 320MHz channel (P320) is located at the lowest frequency.
  • n P320 1
  • P320 the main 320MHz channel
  • the center frequency of the Primary 320MHz channel is f CH,start +5 ⁇ f P320,idx MHz, where the channel center frequency index f P320,idx of the primary 320MHz channel is as shown in Equation (14)
  • the center frequency of the Secondary 320MHz channel is f CH,start +5 ⁇ f S320,idx MHz, where the channel center frequency index f S320,idx of the secondary 320MHz channel is as shown in Equation (15)
  • n P20 is an integer, indicating the position of the primary 20MHz channel corresponding to dot11UHRCurrentChannelCenterFrequencyIndex0 and dot11UHRCurrentChannelWidth.
  • the possible values are 0 ⁇ n P20 ⁇ N 20MHz -1.
  • the 240MHz, 480MHz and 640MHz channel bandwidths proposed in the embodiments of this application for next-generation Wi-Fi communications can increase the data rate and increase the number of OFDMA transmission users, thus greatly improving the utilization of 5GHz and 6GHz spectrum resources.
  • a 240MHz channel bandwidth can also be constructed at 6GHz.
  • the 240MHz channel in 6GHz can also be formed by punching an 80MHz sub-channel in the standard 320MHz bandwidth.
  • Figure 16 is a schematic structural diagram of a communication device 1600 according to an embodiment of the present application.
  • the communication device 1600 includes a processor 1610, and the processor 1610 can call and run a computer program from the memory, so that the communication device 1600 implements the method in the embodiment of the present application.
  • communication device 1600 may also include memory 1620.
  • the processor 1610 can call and run the computer program from the memory 1620, so that the communication device 1600 implements the method in the embodiment of the present application.
  • the memory 1620 may be a separate device independent of the processor 1610, or may be integrated into the processor 1610.
  • the communication device 1600 may also include a transceiver 1630, and the processor 1610 may control the transceiver 1630 to communicate with other devices. Specifically, the communication device 1600 may send information or data to other devices, or receive information sent by other devices. information or data.
  • the transceiver 1630 may include a transmitter and a receiver.
  • the transceiver 1630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1600 can be a site of the embodiment of the present application, and the communication device 1600 can implement the corresponding processes implemented by the site in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described again here. .
  • Figure 17 is a schematic structural diagram of a chip 1700 according to an embodiment of the present application.
  • the chip 1700 includes a processor 1710, and the processor 1710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 1700 may also include memory 1720.
  • the processor 1710 can call and run the computer program from the memory 1720 to implement the method executed by the site in the embodiment of the present application.
  • the memory 1720 may be a separate device independent of the processor 1710 , or may be integrated into the processor 1710 .
  • the chip 1700 may also include an input interface 1730.
  • the processor 1710 can control the input interface 1730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1700 may also include an output interface 1740.
  • the processor 1710 can control the output interface 1740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the site in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the site in each method of the embodiment of the present application. For the sake of brevity, the details will not be described again.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Figure 18 is a schematic block diagram of a communication system 1800 according to an embodiment of the present application.
  • the communication system 1800 includes a first site 1810 and a second site 1820.
  • the first site 1810 can be used to implement the corresponding functions implemented by the non-AP site in the above method
  • the second site 1820 can be used to implement the corresponding functions implemented by the AP site in the above method.
  • no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,更具体地,涉及一种通信方法和站点。该通信方法包括:站点获取第一信息,第一信息用于指示第一信道的带宽相关信息。本申请实施例可以拓展通信带宽,进而提高通信设备的吞吐量。

Description

通信方法和站点 技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法和站点。
背景技术
随着AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实技术)、MR(Mixed Reality,混合现实)以及物联网等的发展,可能会有大量的无线通信设备例如Wi-Fi(Wireless Fidelity,无线保真)设备接入。目前通信系统支持的最大信道带宽可能难以满足大量设备的高吞吐量需求。
发明内容
本申请实施例提供一种通信方法,包括:
站点获取第一信息,第一信息用于指示第一信道的带宽相关信息。
本申请实施例提供一种站点,包括:
处理单元,用于获取第一信息,第一信息用于指示第一信道的带宽相关信息。
本申请实施例提供一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该通信设备执行上述的通信方法。
本申请实施例提供一种芯片,用于实现上述的通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的通信方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的通信方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的通信方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的通信方法。
本申请实施例可以拓展通信带宽,进而提高通信设备的吞吐量。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是根据本申请实施例的320MHz BSS中的主信道和辅信道的示意图。
图3是根据本申请一实施例的通信方法的示意性流程图。
图4是根据本申请一实施例的站点的示意性框图。
图5是根据本申请实施例的5GHz频段构建240MHz信道的示意图。
图6是根据本申请实施例的一种240MHz BSS的主信道和辅信道的示意图。
图7是根据本申请实施例的另一种240MHz BSS的主信道和辅信道的示意图。
图8是根据本申请实施例的6GHz频段构建480MHz信道的示意图。
图9是根据本申请实施例的480MHz BSS的主信道和辅信道的示意图。
图10是根据本申请实施例的6GHz频段构建640MHz信道的示意图
图11是根据本申请实施例的640MHz BSS的主信道和辅信道的示意图。
图12是根据本申请实施例的UHR能力元素格式的示意图。
图13是根据本申请实施例的UHR操作元素格式的示意图。
图14是根据本申请实施例的UHR操作元素子字段的一种格式的示意图。
图15是根据本申请实施例的UHR操作元素子字段的另一种格式的示意图。
图16是根据本申请实施例的通信设备的结构示意图。
图17是根据本申请实施例的芯片的示意性框图。
图18是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信系统100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是终端设备(如手机)或者网络设备(如路由器)。该终端设备或者网络设备具有实现通信功能的芯片,例如WLAN或者WiFi芯片。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如45GHz、60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信系统100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
主(primary)信道和辅(secondary)信道
目前Wi-Fi信道的最大带宽为320MHz。主信道和辅信道可以包括以下示例。
主20MHz信道(Primary 20MHz channel):在40MHz、80MHz、160MHz或320MHz的BSS(Basic service set,基本服务集)中,用于传输20MHz PHY(Physical layer,物理层)PPDU(Physical Layer Protocol Data Unit,物理层协议数据单元)的20MHz信道。或在40MHz、80MHz、160MHz或320MHz的BSS中,用于传输信标(beacon)的20MHz信道。
主40MHz信道(Primary 40MHz channel):在80MHz、160MHz或320MHz的BSS中,用于传输40MHz PHY PPDU的40MHz信道。或在80MHz、160MHz或320MHz的BSS中,包含主20MHz信道的40MHz信道。
主80MHz信道(Primary 80MHz channel):在160MHz或320MHz的BSS中,用于传输80MHz PHY PPDU的80MHz信道。或在160MHz或320MHz的BSS中,包含主20MHz信道的80MHz信道。
主160MHz信道(Primary 160MHz channel):在320MHz的BSS中,用于传输160MHz PHY PPDU的160MHz信道。或在320MHz的BSS中,包含主20MHz信道的160MHz信道。
辅20MHz信道(Secondary 20MHz channel):在一个40MHz的BSS中,邻近主20MHz信道且和主20MHz信道一起构成40MHz BSS中40MHz信道的20MHz信道。在一个80MHz BSS中,邻近主20MHz信道且和主20MHz信道一起构成80MHz BSS中的主40MHz信道的20MHz信道。在一个160MHz的 BSS中,邻近主20MHz信道且和主20MHz信道一起构成160MHz BSS中的主40MHz信道的20MHz信道。在一个320MHz的BSS中,邻近主20MHz信道且和主20MHz信道一起构成320MHz BSS中的主40MHz信道的20MHz信道。
辅40MHz信道(Secondary 40MHz channel):在一个80MHz的BSS中,邻近主40MHz信道且和主40MHz信道一起构成80MHz BSS中80MHz信道的40MHz信道。在一个160MHz的BSS中,邻近主40MHz信道且和主40MHz信道一起构成160MHz BSS中主80MHz信道的40MHz信道。在一个320MHz的BSS中,邻近主40MHz信道且和主40MHz信道一起构成320MHz BSS中主80MHz信道的40MHz信道。
辅80MHz信道(Secondary 80MHz channel):在一个160MHz的BSS中,邻近主80MHz信道且和主80MHz信道一起构成160MHz BSS中160MHz信道的80MHz信道。在一个320MHz的BSS中,邻近主80MHz信道且和主80MHz信道一起构成320MHz BSS中主160MHz信道的80MHz信道。
辅160MHz信道(Secondary 160MHz channel):在一个320MHz的BSS中,邻近主160MHz信道且和主160MHz信道一起构成320MHz BSS中320MHz信道的160MHz信道。图2展示了320MHz BSS中的主信道和辅信道的示意图。
图3是根据本申请一实施例的通信方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、站点获取第一信息,第一信息用于指示第一信道的带宽相关信息。
在本申请实施例中,站点可以是AP STA,也可以是非AP STA。站点获取第一信息的方式可以包括该站点自身对通信系统的传输资源进行划分,得到第一信道的带宽信息。站点获取第一信息的方式还可以包括从其他设备例如其他站点接收第一信息。例如,非AP STA从AP STA接收第一信息。再如,AP STA从非AP STA接收第一信息。站点还可以向其他设备例如其他站点发送第一信息。例如,非AP STA向AP STA发送第一信息。再如,AP STA向非AP STA发送第一信息。在本申请实施例中,不限定划分传输资源的具体设备,可以根据实际的应用场景灵活选择。
在一种实施方式中,第一信道的带宽相关信息包括第一信道的带宽大于设定带宽的相关信息。在本申请实施例中,设定带宽可以是通信系统的最大信道带宽或较大信道带宽。例如,5GHz频段的最大带宽是160MHz。6GHz频段的最大带宽是320MHz。第一信道可以是一种新增信道,第一信道的带宽可以是新增带宽。例如,在UHR(Ultra-High Reliability,超高可靠性)Wi-Fi通信中,第一信道的带宽在5GHz频段可以是240MHz、480MHz或640MHz,在6GHz频段可以是240MHz、480MHz或640MHz等新增信道带宽。上述示例中新增信道带宽的具体数值也可以是其他值。此外,第一信息用于指示第一信道的带宽相关信息也可以兼容指示其他带宽的相关信息,例如40MHz、80MHz、160MHz或320MHz等一种或多种的相关信息。
在一种实施方式中,第一信道的带宽相关信息包括以下至少之一:起始频率、子信道的带宽和子信道的信道中心频率索引。在本申请实施例中,起始频率也可以称为开始频率,例如,可以由MAC(Medium Access Control,介质访问控制)帧中的操作类字段(Operating Class field)指示起始频率。例如操作类字段可以指示频段的起始频率,例如指示2.4GHz频段、5GHz频段或6GHz频段的起始频率。第一信道可以包括多个子信道。例如,第一信道的子信道可以包括主信道和辅信道。子信道的信道中心频率索引可以基于物理层(PHY)参数确定。例如该物理层参数dot11UHRCurrentChannelCenterFrequencyIndex0(当前信道中心频率索引0)可以来自PHY与MAC的PHYCONFIG_VECTOR接口(物理层配置向量)中的CENTER_FREQUENCY_SEGMENT_0(中心频率分段)参数。
在一种实施方式中,第一信道包括相邻的N个第二信道,N为大于1的整数;第一信道的带宽等于N个第二信道的带宽之和。在本申请实施例中,第二信道可以是通信系统中的其他带宽的信道。例如,第二信道是带宽为80MHz、160MHz、320MHz等的信道。在本申请实施例中,第二信道可以理解为第一信道的子信道。
在一种实施方式中,第一信道的子信道包括第一子信道和至少一个第二子信道,第一子信道为主信道,第二子信道为辅信道。在本申请实施例中,可以将第一信道划分为多个子信道,并从多个子信道中确定出主信道和辅信道。其中,主信道可以包括主20MHz信道,辅信道可以与主信道相邻。
在一种实施方式中,第一信道为240MHz信道,240MHz的信道为5GHz频段中带宽为240MHz的信道,第一信道包括相邻的三个第二信道,第二信道为5GHz频段中带宽为80MHz的信道或者6GHz频段中带宽为80MHz的信道。
在一种实施方式中,第一信道为240MHz信道,第一子信道为主80MHz信道,第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,主80MHz信道中包括主20MHz信道。其中,主80MHz信道可以表示带宽为80MHz的主信道。主20MHz信道可以表示带宽为20MHz的主信 道。第一辅80MHz信道可以表示带宽为80MHz的第一辅信道。第二辅80MHz信道可以表示带宽为80MHz的第二辅信道。
在一种实施方式中,第一信道为240MHz信道,第一子信道为主160MHz信道,第二子信道为辅80MHz信道,主160MHz信道中包括主20MHz信道。其中,主160MHz信道可以表示带宽为160MHz的主信道。辅80MHz信道可以表示带宽为80MHz的辅信道。
在一种实施方式中,主20MHz信道的信道中心频率索引为100、104、108、112、116、120或128。
例如,对于240MHz BSS可以提供以下主信道和辅信道组合的选项:
Option(选项)1,主80MHz、辅80MHz和辅80MHz:在240MHz BSS中,主80MHz信道包含主20MHz信道,辅1(secondary1)80MHz和辅2(secondary2)80MHz不包含主20MHz信道。主80MHz,辅1(secondary1)80MHz和辅2(secondary2)80MHz可以组成240MHz BSS中的240MHz信道。主20MHz信道可以是240MHz信道中任意一个20MHz子信道。
Option(选项),主160MHz和辅80MHz:在240MHz BSS中,主160MHz信道包含主20MHz信道,辅1(secondary1)80MHz不包含主20MHz信道,主160MHz和辅1(secondary1)80MHz一起组成240MHz BSS中的240MHz信道。主20MHz信道可以是IEEE标准的5GHz频段下160MHz信道中的20MHz子信道的其中之一,主20MHz的信道中心频率索引可以是100,104,108,112,116,120,128的其中之一。
在一种实施方式中,第一信道为480MHz信道,480MHz信道为6GHz频段中带宽为480MHz的信道,第一信道包括相邻的三个第二信道,第二信道为6GHz频段中带宽为160MHz的信道。
在一种实施方式中,第一信道为480MHz信道,第一子信道为主320MHz信道,第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,主320MHz信道中包括主20MHz信道。
在一种实施方式中,第一信道为第一种480MHz信道,第一种480MHz信道的信道中心频率索引为47或143;或者,第一信道为第二种480MHz信道,第二种480MHz信道的信道中心频率索引为79或175。
例如,在6GHz频段(或称为频谱)中可以构建480MHz信道,该480MHz信道由6GHz频段中任意3个相邻的160MHz信道组成。以下为2种类型480MHz信道的示例:480MHz-1和480MHz-2。其中,480MHz-1的信道中心频率索引为47,143;480MHz-2的信道中心频率索引为79,175。
此外,480MHz BSS的主信道和辅信道的示例如下:在480MHz BSS中,主320MHz信道包含主20MHz信道,辅1(secondary1)80MHz信道和辅2(secondary2)80MHz信道不包含主20MHz信道。主320MHz,辅1(secondary1)80MHz和辅2(secondary2)80MHz组成480MHz BSS中的480MHz信道。主20MHz信道可以是480MHz信道中任意一个20MHz子信道。
在一种实施方式中,第一信道为640MHz信道,640MHz信道为6GHz频段中带宽为640MHz的信道,第一信道包括相邻的四个第二信道,第二信道为6GHz频段中带宽为160MHz的信道。
在一种实施方式中,第一信道为640MHz信道,第一子信道为主320MHz信道,第二子信道为辅320MHz信道,主320MHz信道中包括主20MHz信道。
在一种实施方式中,第一信道为第一种640MHz信道,第一种640MHz信道的信道中心频率索引为63;或者,第一信道为第二种640MHz信道,第二种640MHz信道的信道中心频率索引为159。
例如,在6GHz频段中可以构建640MHz信道,该640MHz信道由6GHz中任意4个相邻的160MHz信道组成。以下为定义了2种类型640MHz信道的示例:640MHz-1和640MHz-2。其中,640MHz-1的信道中心频率索引为63;640MHz-2的信道中心频率索引为159。
此外,640MHz BSS的主信道和辅信道的示例如下:在640MHz BSS中,主320MHz信道包含主20MHz信道,辅320MHz不包含主20MHz信道,主320MHz和辅320MHz组成640MHz BSS中的640MHz信道主20MHz信道可以是640MHz信道中任意一个20MHz子信道。
在一种实施方式中,第一信道的带宽相关信息包括第一信道对应的操作类,第一信道对应的操作类用于指示第一信道的带宽、起始频率和信道中心频率索引中的至少之一。
在一种实施方式中,第一信道对应的操作类包括以下至少之一:
第一操作类,表示第一信道为5GHz频段中带宽为240MHz的信道,第一信道的起始频率为5GHz,第一信道的信道中心频率索引为122;
第二操作类,表示第一信道为6GHz频段中带宽为480MHz的信道,第一信道的起始频率为5.950GHz,第一信道的信道中心频率索引为47,79,143或175;
第三操作类,表示第一信道为6GHz频段中带宽为640MHz的信道,第一信道的起始频率为5.950GHz,第一信道的信道中心频率索引为63或159。
例如,可以根据新增的240MHz,480MHz和640MHz带宽确定新的操作类(Operating class):
操作类a(即第一操作类)表示5GHz频段中带宽为240MHz的信道,信道起始频率为5GHz,信道中 心频率索引为122。例如a=138。
操作类b(即第二操作类)表示6GHz频段中带宽为480MHz的信道,信道起始频率为5.950GHz,信道中心频率索引为47,79,143,175。例如b=138或139。
操作类c(即第三操作类)表示6GHz频段中带宽为640MHz的信道,信道起始频率为5.950GHz,信道中心频率索引为63,159。例如c=138或139或140。
上述a、b、c的具体取值,可以根据实际需求灵活设置。
在本申请实施例中,站点可以接收和/或发送第一信道对应的操作类。例如,AP站点向非AP站点发送携带第一信道对应的操作类的第一信息。再如,AP站点从非AP站点接收携带第一信道对应的操作类的第一信息。
在一种实施方式中,第一信道对应的操作类在第一MAC帧和/或第一MAC元素的操作类字段中。
例如,Reduced Neighbor Report(减少邻居报告)元素或Neighbor Report(邻居报告)元素,可能包含Operating Class field(操作类字段)。通过Operating Class field可以指定相应信道例如第一信道的操作类。
在一种实施方式中,操作类字段还用于指示以下参数的至少之一:
信道起始频率(Channel starting frequency);
信道间距(Channel spacing);
信道中心频率索引(Channel center frequency index)。
在一种实施方式中,信道间距可以表示信道带宽。
在一种实施方式中,第一信道的带宽相关信息包括站点的带宽支持能力。
在本申请实施例中,站点可以接收和/或发送站点的带宽支持能力。例如,AP站点向非AP站点发送携带站点的带宽支持能力的第一信息。再如,AP站点从非AP站点接收携带站点的带宽支持能力的第一信息。站点接收和/或发送站点的带宽支持能力,与站点接收和/或发送第一信道对应的操作类,可以是在不同的时间执行的,具体可以根据实际应用的需求灵活选择。
在一种实施方式中,站点的带宽支持能力包括站点在第一频段工作的状态下是否支持与第一信道的带宽相关的物理层协议数据单元PPDU。
在一种实施方式中,站点的带宽支持能力包括以下至少之一:
在5GHz频段工作时是否支持非(non)-OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)240MHz PPDU;
在6GHz频段工作时是否支持non-OFDMA 480MHz PPDU;
在6GHz频段工作时是否支持non-OFDMA 640MHz PPDU。
在本申请实施例中,non-OFDMA 240MHz PPDU可以表示带宽为240MHz的non-OFDMA PPDU;non-OFDMA 480MHz PPDU可以表示带宽为480MHz的non-OFDMA PPDU;non-OFDMA 640MHz PPDU可以表示带宽为640MHz的non-OFDMA PPDU。
在一种实施方式中,站点的带宽支持能力在超高可靠性UHR能力元素(Capabilities element)的UHR PHY能力信息(Capabilities Information)字段中。
在一种实施方式中,UHR能力元素为第二MAC元素,和/或,UHR能力元素在第二MAC帧中。例如,第一站点可以通过MAC帧携带的UHR PHY能力信息告知第二站点该第一站点自身的PHY的能力。
例如,UHR PHY能力信息字段,包含以下子字段:
“Support For 240MHz In 5GHz”(5GHz中支持240MHz)子字段,用于指示在5GHz频段工作时支持non-OFDMA 240MHz PPDU。
“Support For 480MHz In 6GHz”(6GHz中支持480MHz)子字段,用于指示在6GHz频段工作时支持non-OFDMA 480MHz PPDU。
“Support For 640MHz In 6GHz”(6GHz中支持640MHz)子字段,用于指示在6GHz频段工作时支持non-OFDMA 640MHz PPDU。
在一种实施方式中,第一信道的带宽相关信息包括站点的BSS的第一信道的配置信息。
在本申请实施例中,站点可以接收和/或发送站点的BSS的第一信道的配置信息。例如,AP站点向非AP站点发送携带站点的BSS的第一信道的配置信息的第一信息。再如,AP站点从非AP站点接收携带站点的BSS的第一信道的配置信息的第一信息。站点接收和/或发送站点的带宽支持能力,与站点接收和/或发送第一信道对应的操作类,站点接收和/或发送站点的BSS的第一信道的配置信息,可以是在不同的时间执行的,具体可以根据实际应用的需求灵活选择。
在一种实施方式中,第一信道的配置信息包括:
用于指示带宽的字段;
用于指示信道中心频率索引的字段。
在一种实施方式中,第一信道的配置信息在UHR操作元素中的UHR操作信息字段中。
例如,MAC元素UHR Operation element(操作元素)中的UHR Operation Information(操作信息)字段包含Control(控制)字段和CCFS(Channel Center Frequency Segment,信道中心频率段)字段。Control字段可以用于指示带宽,CCFS字段可以用于指示BSS带宽的信道中心频率索引。
在一种实施方式中,用于指示信道中心频率索引的字段为CCFS字段,CCFS字段包括第一CCFS子字段和第二CCFS子字段;
第一CCFS子字段用于指示第一信道中的主信道的信道中心频率索引,第二CCFS子字段用于指示第一信道的信道中心频率索引。
在一种实施方式中,用于指示信道中心频率索引的字段为CCFS字段,CCFS字段包括第三CCFS子字段,第三CCFS子字段用于指示BSS的第一信道的信道中心频率索引。
以下为CCFS字段的两种格式的示例:
1、格式1(CCFS字段包括CCFS0和CCFS1):
当BSS带宽为240MHz,CCFS0指示BSS带宽的主80MHz(参见上述的240MHz信道的选项1)的信道中心频率索引。CCFS1指示BSS带宽240MHz的信道中心频率索引。CCFS1>0且|CCFS1–CCFS0|=16。
当BSS带宽为240MHz,CCFS0指示BSS带宽的主160MHz(参见上述的240MHz信道的选项2)的信道中心频率索引。CCFS1指示BSS带宽240MHz的信道中心频率索引。CCFS1>0且|CCFS1–CCFS0|=8。
当BSS带宽为480MHz,CCFS0指示BSS带宽的主320MHz的信道中心频率索引。CCFS1指示BSS带宽480MHz的信道中心频率索引。CCFS1>0且|CCFS1–CCFS0|=16。
当BSS带宽为640MHz,CCFS0指示BSS带宽的主320MHz的信道中心频率索引。CCFS1指示BSS带宽640MHz的信道中心频率索引。CCFS1>0且|CCFS1–CCFS0|=32。
2、格式2(CCFS字段包括CCFS0):
当BSS带宽为240MHz,CCFS0指示BSS带宽的信道中心频率索引。
当BSS带宽为480MHz,CCFS0指示BSS带宽的信道中心频率索引。
当BSS带宽为640MHz,CCFS0指示BSS带宽的信道中心频率索引。
在一种实施方式中,UHR操作元素在以下至少之一中:
信标帧(Beacon frame)、探测响应帧(Probe Response frame)、关联响应帧(Association Response frame)和重关联响应帧(Reassociation Response frame)。
在本申请实施例中,站点可以接收和/或发送信标帧、探测响应帧、关联响应帧和重关联响应帧的至少一种。并且,信标帧、探测响应帧、关联响应帧和重关联响应帧的至少一种中可以携带站点的BSS的第一信道的配置信息。
在一种实施方式中,主20MHz信道的信道中心频率索引是基于第一信道的信道中心频率索引、第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,该主20MHz信道的位置对应于第一信道的信道中心频率索引和带宽。
在一种实施方式中,第一信道中的第一子信道的信道中心频率索引是基于第一信道的起始频率、第一信道的信道中心频率索引、第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,该主20MHz信道的位置对应于第一信道的信道中心频率索引和带宽。
在一种实施方式中,第一信道中的第二子信道的信道中心频率索引是基于第一信道的起始频率以及第一子信道的信道中心频率索引确定的。
例如,如果240MHz信道划分为3个80MHz信道,并且包括1个80MHz信道为主80MHz信道(即第一子信道)和2个辅80MHz信道(即第二子信道)。主80MHz信道的中心频率可以基于240MHz信道的起始频率、240MHz信道的信道中心频率索引、240MHz信道包括的20MHz信道的个数,以及对应于240MHz信道的信道中心频率索引和带宽的主20MHz信道的位置确定。第一辅80MHz信道(或者记为辅1 80MHz信道)的带宽可以基于240MHz信道的起始频率、主80MHz信道的信道中心频率索引确定。第二辅80MHz信道(或者记为辅2 80MHz信道)的带宽也可以基于240MHz信道的起始频率、主80MHz信道的信道中心频率索引确定。
再如,如果240MHz信道划分为1个主160MHz信道(即第一子信道)和1个辅80MHz信道(即第二子信道)。主160MHz信道的中心频率可以基于240MHz信道的起始频率、240MHz信道的信道中心频率索引、240MHz信道包括的20MHz信道的个数,以及对应于240MHz信道的信道中心频率索引和带宽的主20MHz信道的位置确定。辅80MHz信道的带宽可以基于240MHz信道的起始频率、主160MHz 信道的信道中心频率索引确定。
再如,如果480MHz信道划分为1个主320MHz信道(即第一子信道)和2个辅80MHz信道(即第二子信道)。主320MHz信道的中心频率可以基于480MHz信道的起始频率、480MHz信道的信道中心频率索引、480MHz信道包括的20MHz信道的个数,以及对应于480MHz信道的信道中心频率索引和带宽的主20MHz信道的位置确定。辅80MHz信道的带宽可以基于480MHz信道的起始频率、主320MHz信道的信道中心频率索引确定。
再如,如果640MHz信道划分为1个主320MHz信道(即第一子信道)和1个辅320MHz信道(即第二子信道)。主320MHz信道的中心频率可以基于640MHz信道的起始频率、640MHz信道的信道中心频率索引、640MHz信道包括的20MHz信道的个数,以及对应于640MHz信道的信道中心频率索引和带宽的主20MHz信道的位置确定。辅320MHz信道的带宽可以基于640MHz信道的起始频率、主320MHz信道的信道中心频率索引确定。
本申请实施例提出的用于下一代Wi-Fi通信的240MHz、480MHz和640MHz信道带宽,可以提高通信设备例如WiFi设备的吞吐量,增加数据速率,增加OFDMA传输用户数量,极大地提高5GHz和6GHz的频谱资源的利用率。
图4是根据本申请一实施例的站点400的示意性框图。该站点400可以包括:
处理单元410,用于获取第一信息,第一信息用于指示第一信道的带宽相关信息。
在一种实施方式中,第一信道的带宽相关信息包括第一信道的带宽大于设定带宽的相关信息。
在一种实施方式中,第一信道的带宽相关信息包括以下至少之一:起始频率、子信道的带宽和子信道的信道中心频率索引。
在一种实施方式中,第一信道的带宽相关信息包括第一信道对应的操作类,第一信道对应的操作类用于指示第一信道的带宽、起始频率和信道中心频率索引中的至少之一。
在一种实施方式中,第一信道对应的操作类包括以下至少之一:
第一操作类,表示第一信道为5GHz频段中带宽为240MHz的信道,第一信道的起始频率为5GHz,第一信道的信道中心频率索引为122;
第二操作类,表示第一信道为6GHz频段中带宽为480MHz的信道,第一信道的起始频率为5.950GHz,第一信道的信道中心频率索引为47,79,143或175;
第三操作类,表示第一信道为6GHz频段中带宽为640MHz的信道,第一信道的起始频率为5.950GHz,第一信道的信道中心频率索引为63或159。
在一种实施方式中,第一信道对应的操作类在第一MAC帧和/或第一MAC元素的操作类字段中。
在一种实施方式中,操作类字段还用于指示以下参数的至少之一:
信道起始频率(Channel starting frequency);
信道间距(Channel spacing);
信道中心频率索引(Channel center frequency index)。
在一种实施方式中,第一信道的带宽相关信息包括站点的带宽支持能力。
在一种实施方式中,站点的带宽支持能力包括站点在第一频段工作的状态下是否支持与第一信道的带宽相关的PPDU。
在一种实施方式中,站点的带宽支持能力包括以下至少之一:
在5GHz频段工作时是否支持非正交频分多址non-OFDMA 240MHz PPDU;
在6GHz频段工作时是否支持non-OFDMA 480MHz PPDU;
在6GHz频段工作时是否支持non-OFDMA 640MHz PPDU。
在一种实施方式中,站点的带宽支持能力在超高可靠性UHR能力元素的UHR PHY能力信息字段中。
在一种实施方式中,UHR能力元素为第二MAC元素,和/或,UHR能力元素在第二MAC帧中。
在一种实施方式中,第一信道的带宽相关信息包括站点的基本服务集BSS的第一信道的配置信息。
在一种实施方式中,第一信道的配置信息包括:
用于指示带宽的字段;
用于指示信道中心频率索引的字段。
在一种实施方式中,用于指示信道中心频率索引的字段为CCFS字段,CCFS字段包括第一CCFS子字段和第二CCFS子字段;
第一CCFS子字段用于指示第一信道中的主信道的信道中心频率索引,第二CCFS子字段用于指示第一信道的信道中心频率索引。
在一种实施方式中,用于指示信道中心频率索引的字段为CCFS字段,CCFS字段包括第三CCFS 子字段,第三CCFS子字段用于指示BSS的第一信道的信道中心频率索引。
在一种实施方式中,第一信道的配置信息在UHR操作元素中的UHR操作信息字段中。
在一种实施方式中,UHR操作元素在以下至少之一中:
信标帧(Beacon frame)、探测响应帧(Probe Response frame)、关联响应帧(Association Response frame)和重关联响应帧(Reassociation Response frame)。
在一种实施方式中,第一信道包括相邻的N个第二信道,N为大于1的整数;第一信道的带宽等于N个第二信道的带宽之和。
在一种实施方式中,第一信道为240MHz信道,240MHz的信道为5GHz频段中带宽为240MHz的信道,第一信道包括相邻的三个第二信道,第二信道为5GHz频段中带宽为80MHz的信道。
在一种实施方式中,第一信道为480MHz信道,480MHz信道为6GHz频段中带宽为480MHz的信道,第一信道包括相邻的三个第二信道,第二信道为6GHz频段中带宽为160MHz的信道。
在一种实施方式中,第一信道为640MHz信道,640MHz信道为6GHz频段中带宽为640MHz的信道,第一信道包括相邻的四个第二信道,第二信道为6GHz频段中带宽为160MHz的信道。
在一种实施方式中,第一信道的子信道包括第一子信道和至少一个第二子信道,第一子信道为主信道,第二子信道为辅信道。
在一种实施方式中,第一信道为240MHz信道,第一子信道为主80MHz信道,第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,主80MHz信道中包括主20MHz信道。
在一种实施方式中,第一信道为240MHz信道,第一子信道为主160MHz信道,第二子信道为辅80MHz信道,主160MHz信道中包括主20MHz信道。
在一种实施方式中,主20MHz信道的信道中心频率索引为100、104、108、112、116、120或128。
在一种实施方式中,第一信道为480MHz信道,第一子信道为主320MHz信道,第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,主320MHz信道中包括主20MHz信道。
在一种实施方式中,第一信道为第一种480MHz信道,第一种480MHz信道的信道中心频率索引为47或143;或者,第一信道为第二种480MHz信道,第二种480MHz信道的信道中心频率索引为79或175。
在一种实施方式中,第一信道为640MHz信道,第一子信道为主320MHz信道,第二子信道为辅320MHz信道,主320MHz信道中包括主20MHz信道。
在一种实施方式中,第一信道为第一种640MHz信道,第一种640MHz信道的信道中心频率索引为63;或者,第一信道为第二种640MHz信道,第二种640MHz信道的信道中心频率索引为159。
在一种实施方式中,主20MHz信道的信道中心频率索引是基于第一信道的信道中心频率索引、第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,该主20MHz信道的位置对应于第一信道的信道中心频率索引和带宽。
在一种实施方式中,第一信道中的第一子信道的信道中心频率索引是基于第一信道的起始频率、第一信道的信道中心频率索引、第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,该主20MHz信道的位置对应于第一信道的信道中心频率索引和带宽;
第一信道中的第二子信道的信道中心频率索引是基于第一信道的起始频率以及第一子信道的信道中心频率索引确定的。
本申请实施例的站点400能够实现前述的方法300实施例中的站点的对应功能。该站点400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法300实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的站点400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
本申请实施例可以用于新一代Wi-Fi通信,例如:超高可靠性(Ultra-High Reliability,UHR)。本申请实施例提出新的信道带宽可以包含240MHz、480MHz和640MHz等。下面按照几个方面分别介绍本申请实施例的方案。
1、5GHz频段中240MHz带宽的建立和信道化,6GHz频段中480MHz和640MHz带宽的建立和信道化,且提供了对应的操作类(Operating class)。
2、根据新的信道带宽,提供了指示STA带宽支持能力的MAC元素例如UHR Capabilities element(UHR能力元素)。
3、提供了指示BSS信道配置的MAC元素例如UHR Operation element(UHR操作元素)。
4、根据MAC与PHY的接口例如PHYCONFIG_VECTOR(物理层配置向量),提出了主信道和辅信道的中心频率的计算公式。
1、240/480/640MHz信道化
240/480/640MHz信道化具体为:5GHz频段中240MHz带宽的建立和信道化,和6GHz频段中480MHz和640MHz带宽的建立和信道化。
(1)5GHz频段构建240MHz信道
当当BSS的工作频段为5GHz时,带宽可以包括20MHz、40MHz、80MHz和160MHz,如图5所示。
在UNII-2(Unlicensed National Information Infrastructure-2,非授权国家信息基础设施-2)范围内,可以拓展一个240MHz带宽,如图5的阴影部分所示,该240MHz的带宽起止频率分别为5490MHz和5730MHz,信道中心频率索引为122。
例如,信道中心频率可以由以下公式计算。
Channel center frequency(信道中心频率)=Channel starting frequency(信道起始频率)+5×nch(MHz)
其中,Channel starting frequency为5GHz,nch=1,...,200。
对于240MHz BSS的主信道和辅信道,本申请实施例提出2种选项,具体如下。
Option 1:主80MHz信道、辅1 80MHz信道和辅2 80MHz信道(Primary 80MHz+Secondary1 80MHz+Secondary2 80MHz)
在240MHz BSS中,主80MHz信道(P80)包含主20MHz信道,辅1 80MHz信道(S1-80)和辅2 80MHz信道(S2-80)不包含主20MHz信道。主80MHz、辅1 80MHz信道和辅2 80MHz信道一起组成240MHz BSS中的240MHz信道。主20MHz信道可以出现在240MHz信道中任意一个20MHz子信道。如图6所示,按照主20MHz信道的位置,240MHz信道依次包括P80、S1-80和S2-80。如果主20MHz信道的位置变化,240MHz信道还可以依次包括S1-80、P80和S2-80;或者240MHz信道还可以依次包括S1-80、S2-80和P80。
Option 2:Primary 160MHz+Secondary1 80MHz
在240MHz BSS中,主160MHz信道(P160)包含主20MHz信道,辅1 80MHz信道(S1-80)不包含主20MHz信道。主160MHz和辅1 80MHz一起组成240MHz BSS中的240MHz信道。如图7所示,按照主20MHz信道的位置,240MHz信道依次包括P160和S1-80。如果主20MHz信道的位置变化,240MHz信道还可以依次包括S1-80和P160。
主20MHz能够出现在IEEE中的160MHz信道中的20MHz子信道其中之一。当工作在5GHz频段的AP STA建立240MHz BSS时,如图5所示,主20MHz能够包含在信道中心频率索引为114的160MHz信道中,即主20MHz信道中心频率索引可以为100、104、108、112、116、120或128的至少之一。而信道中心频率索引为132、136、140、144的20MHz子信道不能作为主20MHz信道。
(2)6GHz频段构建480MHz信道
当当BSS的工作频段为6GHz时,IEEE 802.11定义的带宽包含20MHz,40MHz,80MHz,60MHz和320MHz,如图8所示(20MHz和40MHz带宽未画出)。本申请实施例提出480MHz信道带宽及其信道化。具体示例如下。
480MHz信道由6GHz频段中任意3个相邻的160MHz信道组成,参见图8,本申请实施例提供了2种类型的480MHz信道的划分示例:480MHz-1和480MHz-2。例如,480MHz-1的信道中心频率索引为47,143;480MHz-2的信道中心频率索引为79,175。
本申请实施例中480MHz BSS的主信道和辅信道的示例如下:在480MHz BSS中,主320MHz信道包含主20MHz信道,辅1 80MHz信道和辅2 80MHz信道不包含主20MHz信道。主320MHz信道,辅1 80MHz和辅2 80MHz一起组成480MHz BSS中的480MHz信道。主20MHz信道可以是480MHz信道中任意一个20MHz子信道。如图9所示,按照主20MHz信道的位置,480MHz信道依次包括P160、S1-80和S2-80。如果主20MHz信道的位置变化,480MHz信道还可以依次包括S1-80、P160和S2-80;或者480MHz信道还可以依次包括S1-80、S2-80和P160。
(3)6GHz构建640MHz信道
当当BSS的工作频段为6GHz时,IEEE 802.11定义的带宽包含20MHz,40MHz,80MHz,60MHz和320MHz,如图10所示(20MHz和40MHz带宽未画出)。本申请实施例提出640MHz信道带宽及其信道化。具体示例如下。
640MHz信道由6GHz频段中任意4个相邻的160MHz信道组成,参见图10,本申请实施例提供了2种类型的640MHz信道的划分示例:640MHz-1和640MHz-2。例如,640MHz-1的信道中心频率索引为63;640MHz-2的信道中心频率索引为159。
本申请实施例中,在640MHz BSS中,主320MHz信道包含主20MHz信道,辅320MHz不包含主20MHz信道。主320MHz和辅320MHz一起组成640MHz BSS中的640MHz信道。主20MHz信道可 以是640MHz信道中任意一个20MHz子信道。如图11所示。按照主20MHz信道的位置,640MHz信道依次包括P320和S320。如果主20MHz信道的位置变化,640MHz信道还可以依次包括S320和P320。
(4)定义操作类(Operating class)
本申请实施例根据240MHz、480MHz和640MHz带宽,信道起始频率和信道中心频率索引,定义了新的操作类(Operating class)。
操作类a表示5GHz中带宽为240MHz的信道,信道起始频率为5GHz,信道中心频率索引为122。例如a=138。
操作类b表示6GHz中带宽为480MHz的信道,信道起始频率为5.950GHz,信道中心频率索引为47,79,143,175。例如b=138或139。
操作类c表示6GHz中带宽为640MHz的信道,信道起始频率为5.950GHz,信道中心频率索引为63,159。例如c=138或139或140。
操作类可以携带在MAC帧或MAC元素中,例如:Reduced Neighbor Report(减少邻居报告)元素或Neighbor Report(邻居报告)元素,可能包含Operating Class field(操作类字段)。Operating Class field可以指定相应信道的操作类。Operating Class field的长度可以为1个字节,也可以为其他长度,具体可以根据需求灵活设置。
操作类的定义如表3-1所示,Operating Class field指示操作类,进而指示了Channel starting frequency(信道起始频率),Channel spacing(信道间距),Channel center frequency index(信道中心频率索引)等参数。
表1 Global operating classes(全局操作类)
Figure PCTCN2022108759-appb-000001
2、指示STA带宽支持能力的MAC元素例如UHR Capabilities element(能力元素)
STA通过传输UHR Capabilities element来声明自己是UHR STA。如果STA是一个AP STA,UHR Capabilities element可以被包括在Beacon frame(信标帧),Probe Response frame(探测响应帧),Association Response frame(关联响应帧)或Reassociation Response frame(重关联响应帧)。如果STA是一个non-AP STA,UHR Capabilities element可以被包括在Probe Request frame、Association Request frame或Reassociation Request frame。
UHR Capabilities element包含一系列字段,用于广播UHR STA的UHR能力。如图12所示,UHR Capabilities element可以包括元素标识(Element ID)、长度(Length)、元素标识扩展(Element ID Extension)和UHT PHY能力信息。
本申请实施例中,UHR PHY Capabilities Information(能力信息)字段中“Support For 240MHz In 5GHz”子字段,“Support For 480MHz In 6GHz”子字段和“Support For 640MHz In 6GHz”子字段的示例,如表2所示。
表2 UHR PHY Capabilities Information filed(能力信息字段)的子字段
Figure PCTCN2022108759-appb-000002
Figure PCTCN2022108759-appb-000003
3、指示BSS信道配置的MAC元素例如UHR Operation element(操作元素)
UHR BSS中的站点(UHR STAs)由以下元素控制:
若STA的工作频段为2.4GHz,HT(High-throughput,高吞吐量)Operation element,HE(High-efficiency,高效率)Operation element,EHT(Extremely high throughput,极高吞吐量)Operation element和UHR Operation element。
若STA的工作频段为5GHz,VHT(Very High Throughput,非常高吞吐量)Operation element,HE Operation element,EHT Operation element和UHR Operation element。
若STA的工作频段为6GHz,HE Operation element,EHT Operation element和UHR Operation element。
例如,UHR Operation element的格式的示例如图13所示,可以包括元素标识(Element ID)、长度(Length)、元素标识扩展(Element ID Extension)和UHT操作信息(Operation Information)。UHR Operation element可以被包括在AP STA传输的Beacon frame、Probe Response frame、Association Response frame或Reassociation Response frame。此外,UHR non-AP STA从UHR Operation element中的UHR Operation Information子字段中获取BSS信道配置信息。本申请实施例提供了UHR Operation Information子字段的示例。
UHR Operation Information子字段可以包含:
(1)Control子字段,用于指示带宽。
(2)CCFS(Channel Center Frequency Segment(信道中心频率段))子字段,用于指示BSS信道中心频率索引。
Disabled Subchannel Bitmap(禁用子信道位图)子字段,该字段可以是32-bit bitmap,最低位指示BSS带宽中最低频率的20MHz子信道,bitmap中的每个连续位指示对应于下一个更高频率的20MHz子信道。比特1表示对应的20MHz子信道被打孔,比特0表示对应的20MHz子信道未被打孔。打孔的模式可以遵循non-OFDMA PPDU传输时的打孔模式。
根据CCFS数量的不同,本申请实施例提供了2种格式的UHR Operation Information子字段,示例如下。
格式1:CCFS0+CCFS1
UHR Operation Information子字段格式1如图14所示。使用2个子字段CCFS0和CCFS1指示信道中心频率索引(channel center frequency index)。
对于CCFS0,当BSS带宽为20MHz、40MHz和80MHz的至少之一,CCFS0指示BSS带宽的信道中心频率索引。当BSS带宽为160MHz、240MHz、320MHz、480MHz和640MHz的至少之一,CCFS0的指示方式可以包括以下至少之一:
当BSS带宽为160MHz时,CCFS0指示160MHz BSS中的主80MHz信道中心频率索引。
当BSS带宽为240MHz时,CCFS0指示240MHz BSS中的主80MHz或主160MHz信道中心频率索引。
当BSS带宽为320MHz时,CCFS0指示320MHz BSS中的主160MHz信道中心频率索引。
当BSS带宽为480MHz时,CCFS0指示480MHz BSS中的主320MHz信道中心频率索引。
当BSS带宽为640MHz时,CCFS0指示640MHz BSS中的主320MHz信道中心频率索引。
对于CCFS1,当BSS带宽为20MHz、40MHz和80MHz,CCFS1设置为全0。当BSS带宽为160MHz、240MHz、320MHz、480MHz和640MHz的至少之一,CCFS1分别指示BSS带宽的160MHz、240MHz、320MHz、480MHz和640MHz的至少之一的信道中心频率索引。如表3和表4所示。
示例一:
表3格式1中的Channel Width(信道宽度),CCFS0,CCFS1子字段
Figure PCTCN2022108759-appb-000004
Figure PCTCN2022108759-appb-000005
Figure PCTCN2022108759-appb-000006
表4格式1中的UHR BSS channel width(信道宽度)
Figure PCTCN2022108759-appb-000007
上表中的信道宽度取值为4指示CCFS1>0且|CCFS1–CCFS0|=16,对应上述的选项1;或者指示CCFS1>0且|CCFS1–CCFS0|=8,对应上述的选项2。
格式2:CCFS0
UHR Operation Information子字段格式2如图15所示。
当BSS带宽为20/40/80/160/240/320/480/640MHz时,使用子字段CCFS0分别指示20/40/80/160/240/320/480/640MHz信道的信道中心频率索引。
示例二:
表5格式2中的Channel Width,CCFS0,CCFS1子字段
Figure PCTCN2022108759-appb-000008
Figure PCTCN2022108759-appb-000009
4、MAC与PHY的交互-信道的中心频率
PHY通过对通用PHY服务接口的扩展,可以提供到MAC的接口。该接口可以包括TXVECTOR(发送向量)、RXVECTOR(接收向量)、PHYCONFIG_VECTOR(物理层配置向量)和TRIG_VECTOR(触发向量)等。其中,MAC可以使用PHYCONFIG_VECTOR来配置PHY,使PHY操作独立于帧传输或接收。
例如,UHR PHY的PHY-CONFIG.request(物理层配置请求)原语中携带的PHYCONFIG_VECTOR包含一个OPERATING_CHANNEL(操作信道)参数,该参数指示操作(operating)信道或主(primary)信道。PHY可以将dot11CurrentPrimaryChannel(当前主信道)设置为该OPERATING_CHANNEL参数的值。
再如,UHR PHY的PHY-CONFIG.request原语中携带的PHYCONFIG_VECTOR包含一个CHANNEL_WIDTH(信道宽度)参数,该参数指示operating信道带宽。取值为20MHz、40MHz、80MHz、160MHz,240MHz、320MHz、480MHz和640MHz之一。PHY可以将dot11UHRCurrentChannelWidth(UHR当前信道宽度)设置为该CHANNEL_WIDTH参数的值。
再如,UHR PHY的PHY-CONFIG.request原语中携带的PHYCONFIG_VECTOR包含一个CENTER_FREQUENCY_SEGMENT_0(信道频率分段)参数,该参数指示信道中心频率。取值为1到255之一。PHY应将dot11UHRCurrentChannelCenterFrequencyIndex0(当前信道中心频率索引)设置为该CENTER_FREQUENCY_SEGMENT_0参数的值。
MAC帧中的Operating Class field(操作类字段)指示信道开始频率。
可以令:
f c,idx0=dot11UHRCurrentChannelCenterFrequencyIndex0    (1)
f P20,idx=dot11CurrentPrimaryChannel   (2)
f CH,start=dot11ChannelStartingFactor×500kHz   (3)
其中,dot11UHRCurrentChannelCenterFrequencyIndex0和dot11CurrentPrimaryChannel如表6所示,dot11ChannelStartingFactor×500kHz表示信道开始频率。
表6规定UHR信道的字段
Figure PCTCN2022108759-appb-000010
Figure PCTCN2022108759-appb-000011
(1)计算主20MHz信道的信道中心频率索引
当UHR dot11UHRCurrentChannelWidth为240MHz,480MHz或640MHz时,主20MHz信道的信道中心频率索引f P20,idx和当前信道的中心频率索引f c,idx0的关系如下所示:
Figure PCTCN2022108759-appb-000012
其中,N 20MHz为当前信道中的20MHz的子信道个数。
Figure PCTCN2022108759-appb-000013
该式表示,在当前信道宽度为240MHz的情况下,N 20MHz=12;在当前信道宽度为480MHz的情况下,N 20MHz=24;在当前信道宽度为640MHz的情况下,N 20MHz=36。
主20MHz信道的位置n P20是整数,表示对应于dot11UHRCurrentChannelCenterFrequencyIndex0(UHR当前信道中心频率索引)和dot11UHRCurrentChannelWidth(UHR当前信道宽度)的主20MHz信道的位置,可能的取值为0≤n P20≤N 20MHz-1。
(2)计算240MHz中主信道和辅1信道和辅2信道的信道中心频率索引
当UHR dot11UHRCurrentChannelWidth为240MHz时,N 20MHz=12,
(2-1)对于Option 1(P80+S1-80+S2-80):
主80MHz信道的中心频率为f CH,start+5×f P80,idxMHz,其中主80MHz信道的信道中心频率索引f P80,idx如式(5)所示:
Figure PCTCN2022108759-appb-000014
其中,
Figure PCTCN2022108759-appb-000015
n P20是整数,表示对应于dot11UHRCurrentChannelCenterFrequencyIndex0和dot11UHRCurrentChannelWidth的主20MHz信道的位置,可能的取值为0≤n P20≤N 20MHz-1。
Secondary1 80MHz信道的中心频率为f CH,start+5×f S1 80,idxMHz,Secondary2 80MHz信道的中心频率为f CH,start+5×f S2 80,idxMHz,其中辅1 80MHz信道的信道中心频率索引f S1 80,idx和辅1 80MHz信道的信道中心频率索引f S2 80,idx如式(6)—(8)所示
当n P80=0时,表示主80MHz信道(P80)位于最低频率的位置。
f S1 80,idx=f P80,idx+16
f S2 80,idx=f P80,idx+2×16   (6)
当n P80=1时,表示主80MHz信道(P80)位于中间频率的位置。
f S1 80,idx=f P80,idx-16
f S2 80,idx=f P80,idx+16    (7)
当n P80=2时,表示主80MHz信道(P80)位于最高频率的位置。
f S1 80,idx=f P80,idx-16
f S2 80,idx=f P80,idx-2×16    (8)
(2-2)对于Option 2(P160+S1-80):
主160MHz信道的中心频率为f CH,start+5×f P160,idxMHz,其中主160MHz信道的信道中心频率索引f P160,idx如式(9)所示
Figure PCTCN2022108759-appb-000016
Secondary1 80MHz信道的中心频率为f CH,start+5×f S1 80,idxMHz,其中辅1 80MHz信道的信道中心频率索引f S1 80,idx如式(10)所示:
f S1 80,idx=f P160,idx+24     (10)
其中,
Figure PCTCN2022108759-appb-000017
n P20是整数,表示对应于dot11UHRCurrentChannelCenterFrequencyIndex0和dot11UHRCurrentChannelWidth的primary 20MHz信道的位置,可能的取值为0≤n P20≤7。
(3)计算480MHz中primary320MHz,secondary1 80MHz和secondary2 80MHz的信道中心频率索引
当UHR dot11UHRCurrentChannelWidth为480MHz时,N 20MHz=24,
Primary 320MHz信道的中心频率为f CH,start+5×f P320,idxMHz,其中主320MHz信道的信道中心频率索引f P320,idx如式(11)所示
Figure PCTCN2022108759-appb-000018
其中,
Figure PCTCN2022108759-appb-000019
n P20是整数,表示对应于dot11UHRCurrentChannelCenterFrequencyIndex0和dot11UHRCurrentChannelWidth的primary 20MHz信道的位置,可能的取值为0≤n P20≤N 20MHz-1。
Secondary1 80MHz信道的中心频率为f CH,start+5×f S1 80,idxMHz,Secondary2 80MHz信道的中心频率为f CH,start+5×f S2 80,idxMHz,其中辅1 80MHz信道的信道中心频率索引f S1 80,idx和辅2 80MHz信道的信道中心频率索引f S2 80,idx如式(12)—(13)所示
当n P320=0时,表示主320MHz信道(P320)位于最低频率的位置。
f S1 80,idx=f P320,idx+40
f S2 80,idx=f P320,idx+56    (12)
当n P320=1时,表示主320MHz信道(P320)位于最高频率的位置。
f S1 80,idx=f P320,idx-40
f S2 80,idx=f P320,idx-56    (13)
(4)计算640MHz中primary 320MHz和secondary 320MHz的信道中心频率索引
当UHR dot11UHRCurrentChannelWidth为640MHz时,N 20MHz=32,
Primary 320MHz信道的中心频率为f CH,start+5×f P320,idxMHz,其中主320MHz信道的信道中心频率索引f P320,idx如式(14)所示
Figure PCTCN2022108759-appb-000020
Secondary 320MHz信道的中心频率为f CH,start+5×f S320,idxMHz,其中辅320MHz信道的信道中心频率索引f S320,idx如式(15)所示
Figure PCTCN2022108759-appb-000021
其中,
Figure PCTCN2022108759-appb-000022
n P20是整数,表示对应于dot11UHRCurrentChannelCenterFrequencyIndex0和dot11UHRCurrentChannelWidth的primary 20MHz信道的位置,可能的取值为0≤n P20≤N 20MHz-1。
本申请实施例提出的用于下一代Wi-Fi通信的240MHz、480MHz和640MHz信道带宽,可以增加数据速率,增加OFDMA传输用户数量,从而极大地提高5GHz和6GHz的频谱资源的利用率。
此外,与本申请实施例在5GHz构建240MHz信道带宽类似,也可在6GHz构建240MHz信道带宽。6GHz中的240MHz信道也可以标准中的320MHz带宽打孔1个80MHz子信道构成。
图16是根据本申请实施例的通信设备1600示意性结构图。该通信设备1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以使通信设备1600实现本申请实施例中的方法。
在一种实施方式中,通信设备1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以使通信设备1600实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
在一种实施方式中,通信设备1600还可以包括收发器1630,处理器1610可以控制该收发器1630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1630可以包括发射机和接收机。收发器1630还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该通信设备1600可为本申请实施例的站点,并且该通信设备1600可以实现本申请实施例的各个方法中由站点实现的相应流程,为了简洁,在此不再赘述。
图17是根据本申请实施例的芯片1700的示意性结构图。该芯片1700包括处理器1710,处理器1710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中由站点执行的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1710中。
在一种实施方式中,该芯片1700还可以包括输入接口1730。其中,处理器1710可以控制该输入接口1730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片1700还可以包括输出接口1740。其中,处理器1710可以控制该输出接口1740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的站点,并且该芯片可以实现本申请实施例的各个方法中由站点实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图18是根据本申请实施例的通信系统1800的示意性框图。该通信系统1800包括第一站点1810和第二站点1820。
其中,该第一站点1810可以用于实现上述方法中由非AP站点实现的相应的功能,以及该第二站点1820可以用于实现上述方法中由AP站点实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (69)

  1. 一种通信方法,包括:
    站点获取第一信息,所述第一信息用于指示第一信道的带宽相关信息。
  2. 根据权利要求1所述的方法,其中,所述第一信道的带宽相关信息包括所述第一信道的带宽大于设定带宽的相关信息。
  3. 根据权利要求1或2所述的方法,其中,所述第一信道的带宽相关信息包括以下至少之一:起始频率、子信道的带宽和子信道的信道中心频率索引。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一信道的带宽相关信息包括所述第一信道对应的操作类,所述第一信道对应的操作类用于指示第一信道的带宽、起始频率和信道中心频率索引中的至少之一。
  5. 根据权利要求4所述的方法,其中,所述第一信道对应的操作类包括以下至少之一:
    第一操作类,表示所述第一信道为5GHz频段中带宽为240MHz的信道,所述第一信道的起始频率为5GHz,所述第一信道的信道中心频率索引为122;
    第二操作类,表示所述第一信道为6GHz频段中带宽为480MHz的信道,所述第一信道的起始频率为5.950GHz,所述第一信道的信道中心频率索引为47,79,143或175;
    第三操作类,表示所述第一信道为6GHz频段中带宽为640MHz的信道,所述第一信道的起始频率为5.950GHz,所述第一信道的信道中心频率索引为63或159。
  6. 根据权利要求4或5所述的方法,其中,所述第一信道对应的操作类在第一MAC帧和/或第一MAC元素的操作类字段中。
  7. 根据权利要求6所述的方法,其中,所述操作类字段用于指示以下参数的至少之一:
    信道起始频率;
    信道间距;
    信道中心频率索引。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述第一信道的带宽相关信息包括所述站点的带宽支持能力。
  9. 根据权利要求8所述的方法,其中,所述站点的带宽支持能力包括所述站点在第一频段工作的状态下是否支持与所述第一信道的带宽相关的物理层协议数据单元PPDU。
  10. 根据权利要求9所述的方法,其中,所述站点的带宽支持能力包括以下至少之一:
    在5GHz频段工作时是否支持非正交频分多址non-OFDMA 240MHz PPDU;
    在6GHz频段工作时是否支持non-OFDMA 480MHz PPDU;
    在6GHz频段工作时是否支持non-OFDMA 640MHz PPDU。
  11. 根据权利要求8至10中任一项所述的方法,其中,所述站点的带宽支持能力在超高可靠性UHR能力元素的UHR PHY能力信息字段中。
  12. 根据权利要求11所述的方法,其中,所述UHR能力元素为第二MAC元素,和/或,所述UHR能力元素在第二MAC帧中。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第一信道的带宽相关信息包括所述站点的基本服务集BSS的第一信道的配置信息。
  14. 根据权利要求13所述的方法,其中,所述第一信道的配置信息包括:
    用于指示带宽的字段;
    用于指示信道中心频率索引的字段。
  15. 根据权利要求14所述的方法,其中,所述用于指示信道中心频率索引的字段为信道中心频率段CCFS字段,所述CCFS字段包括第一CCFS子字段和第二CCFS子字段;
    所述第一CCFS子字段用于指示所述第一信道中的主信道的信道中心频率索引,所述第二CCFS子字段用于指示所述第一信道的信道中心频率索引。
  16. 根据权利要求14所述的方法,其中,所述用于指示信道中心频率索引的字段为CCFS字段,所述CCFS字段包括第三CCFS子字段,所述第三CCFS子字段用于指示BSS的第一信道的信道中心频率索引。
  17. 根据权利要求1至13中任一项所述的方法,其中,所述第一信道的配置信息在UHR操作元素中的UHR操作信息字段中。
  18. 根据权利要求17所述的方法,其中,所述UHR操作元素在以下至少之一中:
    信标帧、探测响应帧、关联响应帧和重关联响应帧。
  19. 根据权利要求1至18中任一项所述的方法,其中,所述第一信道包括相邻的N个第二信道,N 为大于1的整数;所述第一信道的带宽等于所述N个第二信道的带宽之和。
  20. 根据权利要求19所述的方法,其中,所述第一信道为240MHz信道,所述240MHz的信道为5GHz频段中带宽为240MHz的信道,所述第一信道包括相邻的三个第二信道,所述第二信道为5GHz频段中带宽为80MHz的信道。
  21. 根据权利要求19所述的方法,其中,所述第一信道为480MHz信道,所述480MHz信道为6GHz频段中带宽为480MHz的信道,所述第一信道包括相邻的三个第二信道,所述第二信道为6GHz频段中带宽为160MHz的信道。
  22. 根据权利要求19所述的方法,其中,所述第一信道为640MHz信道,所述640MHz信道为6GHz频段中带宽为640MHz的信道,所述第一信道包括相邻的四个第二信道,所述第二信道为6GHz频段中带宽为160MHz的信道。
  23. 根据权利要求19至22中任一项所述的方法,其中,所述第一信道的子信道包括第一子信道和至少一个第二子信道,所述第一子信道为主信道,所述第二子信道为辅信道。
  24. 根据权利要求23所述的方法,其中,所述第一信道为240MHz信道,所述第一子信道为主80MHz信道,所述第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,所述主80MHz信道中包括主20MHz信道。
  25. 根据权利要求23所述的方法,其中,所述第一信道为240MHz信道,所述第一子信道为主160MHz信道,所述第二子信道为辅80MHz信道,所述主160MHz信道中包括主20MHz信道。
  26. 根据权利要求25所述的方法,其中,所述主20MHz信道的信道中心频率索引为100、104、108、112、116、120或128。
  27. 根据权利要求23所述的方法,其中,所述第一信道为480MHz信道,所述第一子信道为主320MHz信道,所述第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,所述主320MHz信道中包括主20MHz信道。
  28. 根据权利要求27所述的方法,其中,所述第一信道为第一种480MHz信道,所述第一种480MHz信道的信道中心频率索引为47或143;或者,所述第一信道为第二种480MHz信道,所述第二种480MHz信道的信道中心频率索引为79或175。
  29. 根据权利要求23所述的方法,其中,所述第一信道为640MHz信道,所述第一子信道为主320MHz信道,所述第二子信道为辅320MHz信道,所述主320MHz信道中包括主20MHz信道。
  30. 根据权利要求29所述的方法,其中,所述第一信道为第一种640MHz信道,所述第一种640MHz信道的信道中心频率索引为63;或者,所述第一信道为第二种640MHz信道,所述第二种640MHz信道的信道中心频率索引为159。
  31. 根据权利要求24至29中任一项所述的方法,其中,所述主20MHz信道的信道中心频率索引是基于所述第一信道的信道中心频率索引、所述第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,所述主20MHz信道的位置对应于所述第一信道的信道中心频率索引和带宽的主20MHz信道的位置。
  32. 根据权利要求23至31中任一项所述的方法,其中,所述第一信道中的第一子信道的信道中心频率索引是基于所述第一信道的起始频率、所述第一信道的信道中心频率索引、所述第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,所述主20MHz信道的位置对应于所述第一信道的信道中心频率索引和带宽;
    所述第一信道中的第二子信道的信道中心频率索引是基于所述第一信道的起始频率以及所述第一子信道的信道中心频率索引确定的。
  33. 一种站点,包括:
    处理单元,用于获取第一信息,所述第一信息用于指示第一信道的带宽相关信息。
  34. 根据权利要求33所述的站点,其中,所述第一信道的带宽相关信息包括所述第一信道的带宽大于设定带宽的相关信息。
  35. 根据权利要求33或34所述的站点,其中,所述第一信道的带宽相关信息包括以下至少之一:起始频率、子信道的带宽和子信道的信道中心频率索引。
  36. 根据权利要求33至35中任一项所述的站点,其中,所述第一信道的带宽相关信息包括所述第一信道对应的操作类,所述第一信道对应的操作类用于指示第一信道的带宽、起始频率和信道中心频率索引中的至少之一。
  37. 根据权利要求36所述的站点,其中,所述第一信道对应的操作类包括以下至少之一:
    第一操作类,表示所述第一信道为5GHz频段中带宽为240MHz的信道,所述第一信道的起始频率为5GHz,所述第一信道的信道中心频率索引为122;
    第二操作类,表示所述第一信道为6GHz频段中带宽为480MHz的信道,所述第一信道的起始频率为5.950GHz,所述第一信道的信道中心频率索引为47,79,143或175;
    第三操作类,表示所述第一信道为6GHz频段中带宽为640MHz的信道,所述第一信道的起始频率为5.950GHz,所述第一信道的信道中心频率索引为63或159。
  38. 根据权利要求36或37所述的站点,其中,所述第一信道对应的操作类在第一MAC帧和/或第一MAC元素的操作类字段中。
  39. 根据权利要求38所述的站点,其中,所述操作类字段还用于指示以下参数的至少之一:
    信道起始频率;
    信道间距;
    信道中心频率索引。
  40. 根据权利要求33至39中任一项所述的站点,其中,所述第一信道的带宽相关信息包括所述站点的带宽支持能力。
  41. 根据权利要求40所述的站点,其中,所述站点的带宽支持能力包括所述站点在第一频段工作的状态下是否支持与所述第一信道的带宽相关的物理层协议数据单元PPDU。
  42. 根据权利要求41所述的站点,其中,所述站点的带宽支持能力包括以下至少之一:
    在5GHz频段工作时是否支持非正交频分多址non-OFDMA 240MHz PPDU;
    在6GHz频段工作时是否支持non-OFDMA 480MHz PPDU;
    在6GHz频段工作时是否支持non-OFDMA 640MHz PPDU。
  43. 根据权利要求40至42中任一项所述的站点,其中,所述站点的带宽支持能力在超高可靠性UHR能力元素的UHR PHY能力信息字段中。
  44. 根据权利要求43所述的站点,其中,所述UHR能力元素为第二MAC元素,和/或,所述UHR能力元素在第二MAC帧中。
  45. 根据权利要求33至44中任一项所述的站点,其中,所述第一信道的带宽相关信息包括所述站点的基本服务集BSS的第一信道的配置信息。
  46. 根据权利要求45所述的站点,其中,所述第一信道的配置信息包括:
    用于指示带宽的字段;
    用于指示信道中心频率索引的字段。
  47. 根据权利要求46所述的站点,其中,所述用于指示信道中心频率索引的字段为信道中心频率段CCFS字段,所述CCFS字段包括第一CCFS子字段和第二CCFS子字段;
    所述第一CCFS子字段用于指示所述第一信道中的主信道的信道中心频率索引,所述第二CCFS子字段用于指示所述第一信道的信道中心频率索引。
  48. 根据权利要求46所述的站点,其中,所述用于指示信道中心频率索引的字段为CCFS字段,所述CCFS字段包括第三CCFS子字段,所述第三CCFS子字段用于指示BSS的第一信道的信道中心频率索引。
  49. 根据权利要求33至45中任一项所述的站点,其中,所述第一信道的配置信息在UHR操作元素中的UHR操作信息字段中。
  50. 根据权利要求49所述的站点,其中,所述UHR操作元素在以下至少之一中:
    信标帧、探测响应帧、关联响应帧和重关联响应帧。
  51. 根据权利要求33至50中任一项所述的站点,其中,所述第一信道包括相邻的N个第二信道,N为大于1的整数;所述第一信道的带宽等于所述N个第二信道的带宽之和。
  52. 根据权利要求51所述的站点,其中,所述第一信道为240MHz信道,所述240MHz的信道为5GHz频段中带宽为240MHz的信道,所述第一信道包括相邻的三个第二信道,所述第二信道为5GHz频段中带宽为80MHz的信道。
  53. 根据权利要求51所述的站点,其中,所述第一信道为480MHz信道,所述480MHz信道为6GHz频段中带宽为480MHz的信道,所述第一信道包括相邻的三个第二信道,所述第二信道为6GHz频段中带宽为160MHz的信道。
  54. 根据权利要求51所述的站点,其中,所述第一信道为640MHz信道,所述640MHz信道为6GHz频段中带宽为640MHz的信道,所述第一信道包括相邻的四个第二信道,所述第二信道为6GHz频段中带宽为160MHz的信道。
  55. 根据权利要求51至54中任一项所述的站点,其中,所述第一信道的子信道包括第一子信道和至少一个第二子信道,所述第一子信道为主信道,所述第二子信道为辅信道。
  56. 根据权利要求55所述的站点,其中,所述第一信道为240MHz信道,所述第一子信道为主80MHz 信道,所述第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,所述主80MHz信道中包括主20MHz信道。
  57. 根据权利要求55所述的站点,其中,所述第一信道为240MHz信道,所述第一子信道为主160MHz信道,所述第二子信道为辅80MHz信道,所述主160MHz信道中包括主20MHz信道。
  58. 根据权利要求57所述的站点,其中,所述主20MHz信道的信道中心频率索引为100、104、108、112、116、120或128。
  59. 根据权利要求55所述的站点,其中,所述第一信道为480MHz信道,所述第一子信道为主320MHz信道,所述第一信道的两个第二子信道分别为第一辅80MHz信道和第二辅80MHz信道,所述主320MHz信道中包括主20MHz信道。
  60. 根据权利要求59所述的站点,其中,所述第一信道为第一种480MHz信道,所述第一种480MHz信道的信道中心频率索引为47或143;或者,所述第一信道为第二种480MHz信道,所述第二种480MHz信道的信道中心频率索引为79或175。
  61. 根据权利要求55所述的站点,其中,所述第一信道为640MHz信道,所述第一子信道为主320MHz信道,所述第二子信道为辅320MHz信道,所述主320MHz信道中包括主20MHz信道。
  62. 根据权利要求61所述的站点,其中,所述第一信道为第一种640MHz信道,所述第一种640MHz信道的信道中心频率索引为63;或者,所述第一信道为第二种640MHz信道,所述第二种640MHz信道的信道中心频率索引为159。
  63. 根据权利要求56至61中任一项所述的站点,其中,所述主20MHz信道的信道中心频率索引是基于所述第一信道的信道中心频率索引、所述第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,所述主20MHz信道的位置对应于所述第一信道的信道中心频率索引和带宽。
  64. 根据权利要求55至63中任一项所述的站点,其中,所述第一信道中的第一子信道的信道中心频率索引是基于所述第一信道的起始频率、所述第一信道的信道中心频率索引、所述第一信道包括的20MHz信道的个数,以及主20MHz信道的位置确定的,所述主20MHz信道的位置对应于所述第一信道的信道中心频率索引和带宽;
    所述第一信道中的第二子信道的信道中心频率索引是基于所述第一信道的起始频率以及所述第一子信道的信道中心频率索引确定的。
  65. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述通信设备执行如权利要求1至32中任一项所述的方法。
  66. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至32中任一项所述的方法。
  67. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至32中任一项所述的方法。
  68. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至32中任一项所述的方法。
  69. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至32中任一项所述的方法。
PCT/CN2022/108759 2022-07-28 2022-07-28 通信方法和站点 WO2024020971A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108759 WO2024020971A1 (zh) 2022-07-28 2022-07-28 通信方法和站点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108759 WO2024020971A1 (zh) 2022-07-28 2022-07-28 通信方法和站点

Publications (1)

Publication Number Publication Date
WO2024020971A1 true WO2024020971A1 (zh) 2024-02-01

Family

ID=89704958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108759 WO2024020971A1 (zh) 2022-07-28 2022-07-28 通信方法和站点

Country Status (1)

Country Link
WO (1) WO2024020971A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769467A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种带宽信息的指示方法和通信设备
CN111162885A (zh) * 2018-11-07 2020-05-15 华为技术有限公司 一种多频段指示方法和通信设备
CN111213428A (zh) * 2017-10-16 2020-05-29 高通股份有限公司 用于支持320mhz操作带宽的基本服务集(bss)的带宽信令
WO2020242109A1 (ko) * 2019-05-29 2020-12-03 엘지전자 주식회사 무선랜 시스템에서 mu ppdu를 수신하는 방법 및 장치
US20210321388A1 (en) * 2020-04-13 2021-10-14 Nxp Usa, Inc. Apparatus and methods for communication with respective communication types
CN113543227A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 信道带宽配置方法及设备
US11382101B1 (en) * 2019-03-25 2022-07-05 Marvell Asia Pte Ltd Bandwidth indication, negotiation and TXOP protection with multiple channel segments

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213428A (zh) * 2017-10-16 2020-05-29 高通股份有限公司 用于支持320mhz操作带宽的基本服务集(bss)的带宽信令
CN110769467A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种带宽信息的指示方法和通信设备
CN111162885A (zh) * 2018-11-07 2020-05-15 华为技术有限公司 一种多频段指示方法和通信设备
US11382101B1 (en) * 2019-03-25 2022-07-05 Marvell Asia Pte Ltd Bandwidth indication, negotiation and TXOP protection with multiple channel segments
WO2020242109A1 (ko) * 2019-05-29 2020-12-03 엘지전자 주식회사 무선랜 시스템에서 mu ppdu를 수신하는 방법 및 장치
US20210321388A1 (en) * 2020-04-13 2021-10-14 Nxp Usa, Inc. Apparatus and methods for communication with respective communication types
CN113543227A (zh) * 2020-04-17 2021-10-22 华为技术有限公司 信道带宽配置方法及设备

Similar Documents

Publication Publication Date Title
US9066283B2 (en) Procedure for basic service set (BSS) load management in WLAN system
EP4109977B1 (en) Rnr format
CN112218363B (zh) 一种多链路通信方法及相关装置
US20210212150A1 (en) Method and apparatus for multi-link operations
WO2021190605A1 (zh) 无线局域网中应用于多链路设备的通信方法及装置
CN113726473B (zh) 无线局域网中的信令信息的交互方法及通信装置
CN112217758B (zh) 发送关于缓冲状态信息的无线通信方法和无线通信终端
JP2023535814A (ja) 同期信号ブロック伝送方法及び通信装置
US11778541B2 (en) Channel bandwidth configuration method and device
WO2022002265A1 (zh) 探测mld的请求和响应方法及站点,接入点
WO2024020971A1 (zh) 通信方法和站点
TWI816558B (zh) 無線幀發送方法及裝置、無線幀接收方法及裝置
US20230247568A1 (en) Methods for communication under multiple links and electronic device
JP2023551111A (ja) マルチリンク通信プローブ要求の方法および装置
WO2024020973A1 (zh) 通信方法和站点
WO2024020969A1 (zh) 通信方法和站点
JP2024513028A (ja) マルチ接続における通信方法及び通信装置
EP3975657A1 (en) Data transmission method, apparatus, and device, and storage medium
WO2024114668A1 (zh) 一种指示功率的方法和通信装置
EP4247085A1 (en) Method for indicating channel division information, and communication apparatus
US20230032255A1 (en) Device, system, and method for multi-link tunneled direct link setup (tdls) setup
WO2023283802A1 (zh) 通信方法和通信装置
CN115777231A (zh) 信号处理方法及装置、电子设备及存储介质
CN118119001A (zh) 一种指示功率的方法和通信装置
CN118042605A (zh) 一种指示功率的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952428

Country of ref document: EP

Kind code of ref document: A1