WO2024020801A1 - 一种碳排放量的计算方法、电子设备和可读介质 - Google Patents

一种碳排放量的计算方法、电子设备和可读介质 Download PDF

Info

Publication number
WO2024020801A1
WO2024020801A1 PCT/CN2022/108020 CN2022108020W WO2024020801A1 WO 2024020801 A1 WO2024020801 A1 WO 2024020801A1 CN 2022108020 W CN2022108020 W CN 2022108020W WO 2024020801 A1 WO2024020801 A1 WO 2024020801A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
production resources
carbon emission
resources
simulation model
Prior art date
Application number
PCT/CN2022/108020
Other languages
English (en)
French (fr)
Inventor
李朝春
李纯超
傅玲
李婧
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2022/108020 priority Critical patent/WO2024020801A1/zh
Publication of WO2024020801A1 publication Critical patent/WO2024020801A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • the embodiments of this application mainly relate to the field of carbon emissions, and in particular, to a method for calculating carbon emissions, electronic equipment, and readable media.
  • Embodiments of the present application provide a carbon emission calculation method, electronic equipment, and readable media for quickly and accurately calculating dynamic carbon emissions in the production process.
  • the first aspect provides a method for calculating carbon emissions, including: establishing a production simulation model; mapping the unit energy consumption per unit of raw materials and production resources involved in the production simulation model to corresponding data in the carbon emission factor database. , obtain the carbon emission factor of the raw materials and the carbon emission factor of the production resources; simulate and run the production simulation model; count the direct carbon emissions of production resources, the consumption of raw materials and the consumption of production resources within the preset time period Energy consumption; Based on the direct carbon emissions of production resources, the consumption of raw materials and the energy consumption of production resources, as well as the carbon emission factors of the raw materials and the carbon emission factors of the production resources, the total production resources within the preset time period are obtained carbon emission.
  • an electronic device including: at least one memory configured to store computer readable code; at least one processor configured to call the computer readable code to execute each of the methods provided in the first aspect. step.
  • a computer-readable medium is provided.
  • Computer-readable instructions are stored on the computer-readable medium. When executed by a processor, the computer-readable instructions cause the processor to execute the method provided in the first aspect. Each step in the method.
  • Figure 1 is a flow chart of a method for calculating carbon emissions according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the term "includes” and variations thereof represent an open term meaning “including, but not limited to.”
  • the term “based on” means “based at least in part on.”
  • the terms “one embodiment” and “an embodiment” mean “at least one embodiment.”
  • the term “another embodiment” means “at least one other embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same object. Other definitions may be included below, whether explicit or implicit. The definition of a term is consistent throughout this specification unless the context clearly dictates otherwise.
  • Figure 1 is a flow chart of a method for calculating carbon emissions according to an embodiment of the present application. As shown in Figure 1, the method 100 for calculating carbon emissions includes:
  • Step 101 Establish a production simulation model.
  • the production simulation model can be a simulation of the production system of a real factory, which can reflect relevant information such as technology, production, and processes, and specifically includes factory layout simulation, logistics simulation, and process simulation.
  • a factory simulation model is established.
  • the factory simulation model includes multiple production resources and topological relationships between the multiple production resources.
  • the production resources include equipment and transportation tools.
  • the transportation tools include conveyor belts, trucks, or truck. Users can also configure corresponding transmission parameters according to the actual performance of the factory.
  • the energy consumption parameters include: electric energy parameters consumed per unit time, steam parameters consumed per unit time, or hot water parameters consumed per unit time.
  • Process time includes processing time, reset time and recovery time.
  • Different states include: working, waiting, standby, stagnant, power up and power down.
  • Step 102 Map the unit energy consumption per unit of raw materials and production resources involved in the production simulation model to corresponding data in the carbon emission factor database to obtain the carbon emission factor of the raw material and the carbon emission factor of the production resource.
  • the carbon emission factor of raw materials/production resources refers to the emission coefficient of carbon dioxide (CO 2 ) during the relevant use of raw materials/production resources.
  • CO 2 emission coefficient of carbon dioxide
  • the CO 2 emissions involved in consuming each unit of raw materials is the carbon emission of the corresponding raw materials. factor.
  • Step 103 Simulate and run the production simulation model.
  • Step 104 Statistics of direct carbon emissions, consumption of raw materials, and energy consumption of production resources within a preset time period.
  • the energy consumption of production resources includes: electricity, steam or hot water.
  • Step 105 Based on the direct carbon emissions of production resources, the consumption of raw materials and the energy consumption of production resources, as well as the carbon emission factors of raw materials and the carbon emission factors of production resources, the total carbon emissions of production resources within the preset time period are obtained.
  • the direct carbon emissions of production resources refer to the equivalent CO 2 emissions converted from greenhouse gas emissions caused by the combustion of fossil fuels or related gas spills involved in the operation of production resources.
  • the direct carbon emissions of production resources + consumption of raw materials ⁇ carbon emission factor of raw materials + energy consumption of production resources ⁇ carbon emission factor of production resources can be obtained to obtain the total carbon emissions of production resources emissions.
  • the embodiment of this application provides a method for dynamically calculating the carbon emissions related to production resources.
  • the unit energy consumption per unit of raw materials and production resources are mapped to the carbon emission factor database, respectively.
  • the direct carbon emissions of production resources, the carbon emissions corresponding to the energy consumption of production resources, and the carbon emissions corresponding to the raw materials consumed within the preset time period are accumulated to obtain the total carbon emissions of production resources. emissions.
  • the carbon emissions of production resources in different time periods can be quickly and accurately reflected, helping users achieve carbon emission management in factories.
  • the total carbon emissions of all production resources in the production simulation model within the preset time period under the specified process steps are obtained.
  • the specified process step can be selected by the user, pre-set, or output the carbon emissions corresponding to all relevant process steps of different production resources, such as semi-finished product experiments, meteorological drying, or fine blowing.
  • the first equipment calculates the first carbon emissions under the weather drying process within the preset time period
  • the second equipment calculates the second carbon emissions under the weather drying process within the preset time period
  • the first carbon emissions Accumulating the second carbon emissions, the total carbon emissions of related equipment under the meteorological drying process are obtained.
  • the key performance indicator (Key Performance Indicator, KPI) of production within the corresponding preset time period can also be displayed. For example: daily output, annual output, work-in-progress volume, production rhythm, equipment utilization, etc., thus providing users with richer statistical dimensions. Users can intuitively understand the total carbon dioxide of production resources within a preset time period on the graphical user interface. Production KPI corresponding to emissions.
  • the production digital twin model and the life cycle assessment model are integrated in a simulation platform for collaborative modeling and collaborative generation of simulation workflows, which is not only more convenient and faster in operation, but also helps users to perform more effectively. Make horizontal comparisons of relevant data and adjust operational strategies in a timely manner.
  • FIG. 2 is a schematic diagram of an electronic device 200 according to an embodiment of the present application.
  • the electronic device 200 includes a processor 202 and a memory 201.
  • the memory 201 stores instructions, and when the instructions are executed by the processor 202, the method 100 as described above is implemented.
  • At least one processor 202 may include a microprocessor, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a central processing unit (CPU), a graphics processing unit (GPU), a state machine, etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • CPU central processing unit
  • GPU graphics processing unit
  • Examples of computer readable media include, but are not limited to, floppy disks, CD-ROMs, magnetic disks, memory chips, ROM, RAM, ASICs, configured processors, all-optical media, all magnetic tape or other magnetic media, or from which a computer processor can Any other medium from which instructions are read.
  • various other forms of computer-readable media can be used to send or carry instructions to a computer, including routers, private or public networks, or other wired and wireless transmission devices or channels. Instructions can include code in any computer programming language, including C, C++, C++, Visual Basic, Java, and JavaScript.
  • the embodiments of the present application also provide a computer-readable medium.
  • Computer-readable instructions are stored on the computer-readable medium. When executed by the processor, the computer-readable instructions cause the processor to perform the aforementioned carbon emission reduction. calculation method. Examples of computer-readable media include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), magnetic tape, non- Volatile memory cards and ROM.
  • the computer-readable instructions may be downloaded from the server computer or the cloud by the communications network.
  • the execution order of each step is not fixed and can be adjusted as needed.
  • the system structure described in the above embodiments may be a physical structure or a logical structure, that is, some modules may be implemented by the same physical entity, or some modules may be implemented by multiple physical entities, or may be implemented by multiple Some components in separate devices are implemented together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请实施例主要涉及碳排放领域,尤其涉及一种碳排放量的计算方法、电子设备和可读介质。其中,建立生产仿真模型;将所述生产仿真模型中涉及的单位原材料和生产资源的单位能耗分别映射至碳排放因子数据库中对应的数据,得到所述原材料的碳排因子和所述生产资源的碳排因子;仿真运行所述生产仿真模型;统计在预设时间段内生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗;根据生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗,以及所述原材料的碳排因子和所述生产资源的碳排因子,得到预设时间段内生产资源总碳排放量。

Description

一种碳排放量的计算方法、电子设备和可读介质 技术领域
本申请实施例主要涉及碳排放领域,尤其涉及一种碳排放量的计算方法、电子设备和可读介质。
背景技术
随着全球气候变化问题的日益严重和自然灾害的频繁发生,控制温室气体的排放势在必行。然而,在工业生产的过程中往往伴随着大量的温室气体排放,因此迫切需要从工业产品的整个生命周期中快速量化生产过程中的排放量,从而有效地针对相应的温室气体排放进行管理或控制。
发明内容
本申请实施例提供一种碳排放量的计算方法、电子设备和可读介质,用于快速且准确地计算生产过程中的动态碳排放量。
第一方面,提供一种碳排放量的计算方法,包括:建立生产仿真模型;将所述生产仿真模型中涉及的单位原材料和生产资源的单位能耗分别映射至碳排放因子数据库中对应的数据,得到所述原材料的碳排因子和所述生产资源的碳排因子;仿真运行所述生产仿真模型;统计在预设时间段内生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗;根据生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗,以及所述原材料的碳排因子和所述生产资源的碳排因子,得到预设时间段内生产资源总碳排放量。
第二方面,提供一种电子设备,包括:至少一个存储器,被配置为存储计算机可读代码;至少一个处理器,被配置为调用所述计算机可读代码,执行第一方面提供的方法中各步骤。
第三方面,提供一种计算机可读介质,所述计算机可读介质上存储有计算机可读指令,所述计算机可读指令在被处理器执行时,使所述处理器执行第一方面提供的方法中各步骤。
附图说明
以下附图仅旨在于对本申请实施例做示意性说明和解释,并不限定本申请实施例的范围。其中:
图1是根据本申请一实施例的一种碳排放量的计算方法的流程图;
图2是根据本申请一实施例的一种电子装置的示意图。
附图标记说明
100:碳排放量的计算方法101-104:方法步骤
200:电子设备201:存储器202:处理器
具体实施方式
现在将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对权利要求书中所阐述的保护范围、适用性或者示例的限制。可以在不脱离本申请实施例内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。例如,所描述的方法可以按照与所描述的顺序不同的顺序来执行,以及各个步骤可以被添加、省略或者组合。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示“至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个说明书中是一致的。
下面结合附图对本申请实施例进行详细说明。
图1是根据本申请的一实施例的一种碳排放量的计算方法的流程图,如图1所示,碳排放量的计算方法100包括:
步骤101,建立生产仿真模型。
根据生产订单信息、物料清单(bill of material,BOM)、工艺清单(bill of process,BOP)和生产资源,建立生产仿真模型,其中,工艺清单包括工艺步骤和工艺时间,生产资源包括设备和运输工具。可选地,生产仿真模型可以是针对真实工厂的生产系统进行的仿真,可以体现工艺、生产和流程等相关信息,具体包含工厂布局仿真、物流仿真以及工艺过程仿真。在一实施例中,首先,建立工厂仿真模型,工厂仿真模型包括多个生产资源以及多个生产资源之间的拓扑关系,其中,生产资源包括设备和运输工具,运输工具包括传送带、搬运车或卡车。用户还可以根据工厂实际的性能配置相应的传输参数。接着,在工厂仿真 模型中配置生产资源在加工预设工件在不同状态下的用能参数、工艺时间和单位时间内直接碳排放量。其中,用能参数包括:单位时间内消耗的电能参数、单位时间内消耗的蒸汽参数或单位时间内消耗的热水参数。工艺时间包括处理时间、重置时间和恢复时间。不同状态包括:工作、等待、待机、停滞、升功和降功。再次,根据生产订单信息,在工厂仿真模型中确定原材料的种类和数量,得到生产仿真模型。
步骤102,将生产仿真模型中涉及的单位原材料和生产资源的单位能耗分别映射至碳排放因子数据库中对应的数据,得到原材料的碳排因子和生产资源的碳排因子。
原材料/生产资源的碳排因子是指原材料/生产资源在相关使用过程中的二氧化碳(CO 2)的排放系数,例如,消耗每单位原材料涉及到的CO 2的排放量,就是相应原材料的碳排因子。
步骤103,仿真运行生产仿真模型。
步骤104,统计在预设时间段内生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗。
其中,生产资源的能耗包括:电能、蒸汽或热水。
步骤105,根据生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗,以及原材料的碳排因子和生产资源的碳排因子,得到预设时间段内生产资源总碳排放量。
其中,生产资源的直接碳排放量是指:生产资源在运行过程中涉及的化石燃料的燃烧或相关气体溢散所导致的温室气体排放而折算的等效CO 2排放量。
可选地,可以在预设时间段内,将生产资源的直接碳排放量+原材料的消耗量×原材料的碳排因子+生产资源的能耗×生产资源的碳排因子,得到生产资源总碳排放量。
本申请实施例提供了一种动态计算生产资源相关的碳排放量的方法,在仿真运行生产仿真模型的基础上,将单位原材料和生产资源的单位能耗分别映射至碳排放因子数据库,分别得到对应的碳排因子,再将预设时间段内的生产资源的直接碳排放量、生产资源的能耗对应的碳排放量和所消耗的原材料对应的碳排放量进行累加得到生产资源的总碳排放量。通过本申请实施例可以快速并准确地反映生产资源在不同时间段内的碳排放情况,帮助用户实现工厂的碳排放管理。
在一实施例中,根据指定的工艺步骤,得到预设时间段内生产仿真模型中所有生产资源在指定的工艺步骤下总碳排放量。指定的工艺步骤可以是通过用户选择、预先设置或将不同生产资源所有相关的工艺步骤例如半成品实验、气象干燥或精放等分别对应的碳排放量进行输出。假设第一设备在预设时间段内气象干燥工艺下计算得到第一碳排放量,第二设备在预设时间段内气象干燥工艺下计算得到第二碳排放量,则将第一碳排放量和第二碳 排放量进行累加,得到在气象干燥工艺下相关设备的总碳排放量。可选地,还可以将指定订单/排放源类型/总车间对应的碳排放量进行输出。
在一实施例中,除了可以在图形用户界面上显示预设时间段内生产资源总碳排放量之外,还可以显示相应预设时间段内生产的关键绩效指标(Key Performance Indicator,KPI),例如:日产量、年产量、在制品量、生产节拍、设备的利用率等,从而提供用户更丰富的统计维度,用户可以直观地在图形用户界面上了解在预设时间段内生产资源总碳排放量所对应的生产KPI。在本实施例中,将生产数字孪生模型与生命周期评价模型集成在一个模拟平台中进行协同建模和协同生成仿真工作流,不仅在操作上更为便捷快速,还有利于用户更有效地进行相关数据的横向比较并及时调整运营策略。
本申请实施例还提出一种电子设备200。图2是根据本申请的一实施例的一种电子设备200的示意图。如图2所示,电子设备200包括处理器202和存储器201,存储器201中存储有指令,其中指令被处理器202执行时实现如上文所述的方法100。
其中,至少一个处理器202可以包括微处理器、专用集成电路(ASIC)、数字信号处理器(DSP)、中央处理单元(CPU)、图形处理单元(GPU)、状态机等。计算机可读介质的实施例包括但不限于软盘、CD-ROM、磁盘,存储器芯片、ROM、RAM、ASIC、配置的处理器、全光介质、所有磁带或其他磁性介质,或计算机处理器可以从中读取指令的任何其他介质。此外,各种其它形式的计算机可读介质可以向计算机发送或携带指令,包括路由器、专用或公用网络、或其它有线和无线传输设备或信道。指令可以包括任何计算机编程语言的代码,包括C、C++、C语言、Visual Basic、java和JavaScript。
此外,本申请实施例实施例还提供一种计算机可读介质,该计算机可读介质上存储有计算机可读指令,计算机可读指令在被处理器执行时,使处理器执行前述的碳排放量的计算方法。计算机可读介质的实施例包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选地,可以由通信网络从服务器计算机上或云上下载计算机可读指令。
需要说明的是,上述各流程和各系统结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。上述各实施例中描述的系统结构可以是物理结构,也可以是逻辑结构,即,有些模块可能由同一物理实体实现,或者,有些模块可能分由多个物理实体实现,或者,可以由多个独立设备中的某些部件共同实现。

Claims (10)

  1. 一种碳排放量的计算方法,其特征在于,包括:
    -建立(101)生产仿真模型;
    -将所述生产仿真模型中涉及的单位原材料和生产资源的单位能耗分别映射(102)至碳排放因子数据库中对应的数据,得到所述原材料的碳排因子和所述生产资源的碳排因子;
    -仿真运行(103)所述生产仿真模型;
    -统计(104)在预设时间段内生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗;
    -根据生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗,以及所述原材料的碳排因子和所述生产资源的碳排因子,得到(105)预设时间段内生产资源总碳排放量。
  2. 根据权利要求1所述的方法,其特征在于,所述建立(101)生产仿真模型包括:
    -根据生产订单信息、物料清单、工艺清单和生产资源,建立生产仿真模型;其中,工艺清单包括工艺步骤和工艺时间,生产资源包括设备和运输工具。
  3. 根据权利要求1所述的方法,其特征在于,所述建立(101)生产仿真模型包括:
    -建立工厂仿真模型,所述工厂仿真模型包括多个生产资源以及所述多个生产资源之间的拓扑关系;其中,生产资源包括设备和运输工具;
    -在所述工厂仿真模型中配置生产资源在加工预设工件在不同状态下的用能参数、工艺时间和单位时间内直接碳排放量;
    -根据生产订单信息,在所述工厂仿真模型中确定原材料的种类和数量,得到生产仿真模型。
  4. 根据权利要求3所述的方法,其特征在于,
    -所述用能参数包括:单位时间内消耗的电能参数、单位时间内消耗的蒸汽参数或单位时间内消耗的热水参数;
    -所述工艺时间包括:处理时间、重置时间和恢复时间。
  5. 根据权利要求3所述的方法,其特征在于,所述不同状态包括:工作、等待、待 机、停滞、升功和降功。
  6. 根据权利要求1所述的方法,其特征在于,所述生产资源的能耗包括:电能、蒸汽或热水。
  7. 根据权利要求1所述的方法,其特征在于,根据生产资源的直接碳排放量、原材料的消耗量和生产资源的能耗,以及所述原材料的碳排因子和所述生产资源的碳排因子,得到(105)预设时间段内生产资源总碳排放量,包括:
    -在预设时间段内,将生产资源的直接碳排放量+原材料的消耗量×所述原材料的碳排因子+生产资源的能耗×所述生产资源的碳排因子,得到生产资源总碳排放量。
  8. 根据权利要求1所述的方法,其特征在于,所述得到(105)预设时间段内生产资源总碳排放量包括:
    -根据指定的工艺步骤,得到预设时间段内所述生产仿真模型中所有生产资源在所述指定的工艺步骤下总碳排放量。
  9. 一种电子设备,其特征在于,包括:
    至少一个存储器(201),被配置为存储计算机可读代码;
    至少一个处理器(202),被配置为调用所述计算机可读代码,执行如权利要求1~8任一项所述的方法中的步骤。
  10. 一种计算机可读介质,其特征在于,所述计算机可读介质上存储有计算机可读指令,所述计算机可读指令在被处理器执行时,使所述处理器执行如权利要求1~8任一项所述的方法中的步骤。
PCT/CN2022/108020 2022-07-26 2022-07-26 一种碳排放量的计算方法、电子设备和可读介质 WO2024020801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108020 WO2024020801A1 (zh) 2022-07-26 2022-07-26 一种碳排放量的计算方法、电子设备和可读介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108020 WO2024020801A1 (zh) 2022-07-26 2022-07-26 一种碳排放量的计算方法、电子设备和可读介质

Publications (1)

Publication Number Publication Date
WO2024020801A1 true WO2024020801A1 (zh) 2024-02-01

Family

ID=89704744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108020 WO2024020801A1 (zh) 2022-07-26 2022-07-26 一种碳排放量的计算方法、电子设备和可读介质

Country Status (1)

Country Link
WO (1) WO2024020801A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117892563A (zh) * 2024-03-15 2024-04-16 中铁二十三局集团第一工程有限公司 拌合站沥青废气处理碳排放测算评价方法、系统及装置
CN117910657A (zh) * 2024-03-14 2024-04-19 杭州阿里云飞天信息技术有限公司 碳排因子的预测方法、模型训练方法、计算设备、存储介质及程序产品
CN117892563B (zh) * 2024-03-15 2024-05-28 中铁二十三局集团第一工程有限公司 拌合站沥青废气处理碳排放测算评价方法、系统及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016838A1 (en) * 2004-08-05 2006-02-16 Viktor Vasilyevich Potapov A method of evaluation of anthropogenic impact on the environment
CN106292590A (zh) * 2016-08-19 2017-01-04 广东亚仿科技股份有限公司 一种电厂煤耗及碳排放监测方法及系统
CN108984927A (zh) * 2018-07-25 2018-12-11 大连理工大学 一种基于系统仿真的港口碳排放计算方法
CN113516371A (zh) * 2021-06-16 2021-10-19 杭州慧源智谷科技有限责任公司 一种全口径碳排强度及碳源结构的测算方法
CN114742353A (zh) * 2022-03-10 2022-07-12 国网浙江省电力有限公司舟山供电公司 基于电税数据联合的碳排放量动态监控及用能优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016838A1 (en) * 2004-08-05 2006-02-16 Viktor Vasilyevich Potapov A method of evaluation of anthropogenic impact on the environment
CN106292590A (zh) * 2016-08-19 2017-01-04 广东亚仿科技股份有限公司 一种电厂煤耗及碳排放监测方法及系统
CN108984927A (zh) * 2018-07-25 2018-12-11 大连理工大学 一种基于系统仿真的港口碳排放计算方法
CN113516371A (zh) * 2021-06-16 2021-10-19 杭州慧源智谷科技有限责任公司 一种全口径碳排强度及碳源结构的测算方法
CN114742353A (zh) * 2022-03-10 2022-07-12 国网浙江省电力有限公司舟山供电公司 基于电税数据联合的碳排放量动态监控及用能优化方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117910657A (zh) * 2024-03-14 2024-04-19 杭州阿里云飞天信息技术有限公司 碳排因子的预测方法、模型训练方法、计算设备、存储介质及程序产品
CN117892563A (zh) * 2024-03-15 2024-04-16 中铁二十三局集团第一工程有限公司 拌合站沥青废气处理碳排放测算评价方法、系统及装置
CN117892563B (zh) * 2024-03-15 2024-05-28 中铁二十三局集团第一工程有限公司 拌合站沥青废气处理碳排放测算评价方法、系统及装置

Similar Documents

Publication Publication Date Title
Thiede et al. Environmental aspects in manufacturing system modelling and simulation—State of the art and research perspectives
CN102411764B (zh) 电网设备的数据管理系统及管理方法
CN115545450B (zh) 一种基于数字孪生的碳排放协同预测方法
WO2024020801A1 (zh) 一种碳排放量的计算方法、电子设备和可读介质
Lingli Smart city, smart transportation: recommendations of the logistics platform construction
CN115693650B (zh) 一种区域电力碳排放因子的确定方法、装置、设备及介质
Solli Global carbon footprints
CN111651818A (zh) 一种bim模型快速变更方法
CN114722104A (zh) 基于区块链的企业碳排能耗数据管理运营系统及方法
Nabielek et al. Balanced renewable energy scenarios: a method for making spatial decisions despite insufficient data, illustrated by a case study of the Vorderland-Feldkirch Region, Vorarlberg, Austria
CN111666619A (zh) 基于bim技术的变电站工程实施现场数字化管理系统
CN116542430B (zh) 多维度水务碳排放量智能分析方法及系统
Zeule et al. Model for sustainability implementation and measurement in construction sites
Ojala et al. Climate and Environmental Strategy for the ICT Sector
Wesumperuma et al. Green activity based management (ABM) for organisations
CN111581302A (zh) 一种基于数据仓库的辅助决策系统
CN113807573A (zh) 一种基于数据管理和三维搜索的施工预测分析方法及系统
Rabe et al. An approach for increasing flexibility in green supply chains driven by simulation
Alsehrawy et al. A Critical Review of the Challenges and Barriers to an Effective Use of BIM in Green Building Assessment
CN114638431A (zh) 一种基于infoworks模型的典型地块年径流总量控制率速查方法
Baysan et al. Assessment of Energy Efficiency in Lean Transformation: a simulation based improvement methodology
Wang et al. The dynamic role of ecological innovation and sustainable finance in improving green productivity: evidence from China
Ünal et al. Impact of Digital Twin Technology Utilization in Manufacturing on Sustainability: An Industrial Case Study
CN111127657A (zh) 基于Unreal Engine引擎的虚拟制造方法及系统
Liu et al. AHP and fuzzy assessment based sustainability indicator for hybrid renewable energy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952266

Country of ref document: EP

Kind code of ref document: A1