WO2024019396A1 - Initial connection method and apparatus for network-controlled repeater in next generation mobile communication system - Google Patents

Initial connection method and apparatus for network-controlled repeater in next generation mobile communication system Download PDF

Info

Publication number
WO2024019396A1
WO2024019396A1 PCT/KR2023/009850 KR2023009850W WO2024019396A1 WO 2024019396 A1 WO2024019396 A1 WO 2024019396A1 KR 2023009850 W KR2023009850 W KR 2023009850W WO 2024019396 A1 WO2024019396 A1 WO 2024019396A1
Authority
WO
WIPO (PCT)
Prior art keywords
ncr
terminal
message
base station
random access
Prior art date
Application number
PCT/KR2023/009850
Other languages
French (fr)
Korean (ko)
Inventor
황준
에기월아닐
강현정
정병훈
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2024019396A1 publication Critical patent/WO2024019396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • This disclosure relates to a network controlled repeater system.
  • the 5G communication system or pre-5G communication system is called a Beyond 4G Network communication system or a Post LTE system.
  • 5G communication systems are being considered for implementation in ultra-high frequency (mmWave) bands (such as the 60 GHz band).
  • mmWave ultra-high frequency
  • the 5G communication system uses beamforming, massive array multiple input/output (massive MIMO), and full dimension multiple input/output (FD-MIMO).
  • the 5G communication system uses advanced small cells, advanced small cells, cloud radio access networks (cloud RAN), and ultra-dense networks. , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, CoMP (Coordinated Multi-Points), and interference cancellation. Technology development is underway.
  • the 5G system uses FQAM (Hybrid FSK and QAM Modulation) and SWSC (Sliding Window Superposition Coding), which are advanced coding modulation (ACM) methods, and advanced access technologies such as FBMC (Filter Bank Multi Carrier) and NOMA. (non orthogonal multiple access), and SCMA (sparse code multiple access) are being developed.
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • IoT Internet Technology
  • IoT Internet Technology
  • fields such as smart home, smart building, smart city, smart car or connected car, smart grid, healthcare, smart home appliances, and advanced medical services through the convergence and combination of existing IT (information technology) technology and various industries. It can be applied to .
  • 5G communication system technologies such as sensor network, Machine to Machine (M2M), and Machine Type Communication (MTC) are implemented through 5G communication technologies such as beam forming, MIMO, and array antennas.
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • cloud RAN cloud radio access network
  • One purpose of the present disclosure is to provide a method for a network control repeater to connect to a network and configure necessary operations.
  • one purpose of the present disclosure is to provide an apparatus and method that can effectively provide services in a mobile communication system.
  • the method includes receiving system information from a base station; Checking whether the system information includes an indicator indicating support for a network controlled repeater (NCR); and transmitting a random access preamble for a random access procedure to the base station based on the indicator being included in the system information, and the terminal may be a terminal supporting the NCR function.
  • NCR network controlled repeater
  • the method includes generating an indicator indicating support for a network controlled repeater (NCR); Broadcasting system information including the indicator; And it may include receiving a random access preamble from the terminal based on the system information.
  • NCR network controlled repeater
  • a terminal includes: a transceiver; And from a base station, control the transceiver to receive system information, check whether the system information includes an indicator indicating support for NCR (network controlled repeater), and based on the indicator being included in the system information, and a control unit that controls the transceiver to transmit a random access preamble for a random access procedure to the base station, and the terminal can support the NCR function.
  • NCR network controlled repeater
  • a base station includes a transceiver; and generating an indicator indicating support for NCR (network controlled repeater), controlling the transceiver to broadcast system information including the indicator, and receiving a random access preamble from a terminal based on the system information. It may include a control unit that controls the unit.
  • NCR network controlled repeater
  • a specific method of operating a network control repeater by attempting to connect to a base station and receiving necessary configuration information from the network can be provided.
  • the serving cell distinguishes between cells that can operate a control repeater and cells that cannot operate the control repeater, and then performs an operation to selectively allow access, After the control repeater is connected, it performs an operation to inform the corresponding cell that it is a network control repeater, which has the effect of allowing signals for controlling the control repeater to be properly transmitted/received between the cell and the network control repeater.
  • Figure 1 is a diagram showing the structure of an LTE system according to an embodiment of the present disclosure.
  • Figure 2 is a diagram showing the wireless protocol structure of an LTE system according to an embodiment of the present disclosure.
  • Figure 3 is a diagram showing the structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • Figure 4 is a diagram showing the wireless protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • Figure 5 is a block diagram showing the internal structure of a terminal according to an embodiment of the present disclosure.
  • Figure 6 is a block diagram showing the configuration of a base station according to an embodiment of the present disclosure.
  • Figure 7 is a diagram showing the configuration of a network control repeater according to an embodiment of the present disclosure.
  • Figure 8a is a flowchart of how NCR-MT announces that it is an NCR entity using the RRCSetupComplete message.
  • Figure 8b is a flowchart of how NCR-MT announces that it is an NCR entity using the RRCSetupComplete message.
  • Figure 9a is a flowchart of how NCR-MT uses the RRCSetupRequest message to announce that it is an NCR entity.
  • Figure 9b is a flowchart of how NCR-MT uses the RRCSetupRequest message to announce that it is an NCR entity.
  • connection node a term referring to network entities
  • a term referring to messages a term referring to an interface between network objects
  • a term referring to various types of identification information a term referring to various types of identification information.
  • the following are examples for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
  • the present disclosure uses terms and names defined in the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) standard.
  • 3GPP LTE 3rd Generation Partnership Project Long Term Evolution
  • each block of the processing flow diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions.
  • These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions.
  • These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s).
  • Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s).
  • the term ' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles. do.
  • ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card. Additionally, in an embodiment, ' ⁇ part' may include one or more processors.
  • the terminal may refer to a MAC entity within the terminal that exists for each Master Cell Group (MCG) and Secondary Cell Group (SCG), which will be described later.
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the present disclosure uses terms and names defined in the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) standard.
  • 3GPP LTE 3rd Generation Partnership Project Long Term Evolution
  • the base station is the entity that performs resource allocation for the terminal and may be at least one of gNode B, eNode B, Node B, BS (Base Station), wireless access unit, base station controller, or node on the network.
  • a terminal may include a UE (User Equipment), MS (Mobile Station), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing communication functions. Of course, it is not limited to the above example.
  • the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard).
  • this disclosure provides intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services) based on 5G communication technology and IoT-related technology. etc.) can be applied.
  • eNB may be used interchangeably with gNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB.
  • the term terminal can refer to mobile phones, NB-IoT devices, sensors, as well as other wireless communication devices.
  • Wireless communication systems have moved away from providing early voice-oriented services to, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), and LTE-Advanced.
  • Broadband wireless that provides high-speed, high-quality packet data services such as communication standards such as (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
  • the LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) in the downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink (UL).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Uplink refers to a wireless link in which a terminal (UE; User Equipment or MS; Mobile Station) transmits data or control signals to a base station (eNode B or BS; Base Station), and downlink refers to a wireless link in which the base station transmits data or control signals to the terminal. It refers to a wireless link that transmits signals.
  • the multiple access method described above differentiates each user's data or control information by allocating and operating the time-frequency resources to carry data or control information for each user so that they do not overlap, that is, orthogonality is established. .
  • Enhanced Mobile BroadBand eMBB
  • massive Machine Type Communication mMTC
  • Ultra Reliability Low Latency Communication URLLC
  • eMBB may aim to provide more improved data transmission rates than those supported by existing LTE, LTE-A, or LTE-Pro.
  • eMBB must be able to provide a peak data rate of 20Gbps in the downlink and 10Gbps in the uplink from the perspective of one base station.
  • the 5G communication system may need to provide the maximum transmission rate and at the same time provide an increased user perceived data rate.
  • the 5G communication system may require improvements in various transmission and reception technologies, including more advanced multi-antenna (MIMO; Multi Input Multi Output) transmission technology.
  • MIMO Multi Input Multi Output
  • the 5G communication system uses a frequency bandwidth wider than 20 MHz in the 3 to 6 GHz or above 6 GHz frequency band, meeting the requirements of the 5G communication system. Data transfer speed can be satisfied.
  • mMTC is being considered to support application services such as Internet of Things (IoT) in 5G communication systems.
  • IoT Internet of Things
  • mMTC may require support for access to a large number of terminals within a cell, improved coverage of terminals, improved battery time, and reduced terminal costs.
  • the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (for example, 1,000,000 terminals/km 2 ) within a cell.
  • terminals supporting mMTC are likely to be located in shadow areas that cannot be covered by cells, such as the basement of a building, so wider coverage may be required compared to other services provided by the 5G communication system.
  • Terminals that support mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal's battery, a very long battery life time, such as 10 to 15 years, may be required.
  • URLLC Ultra-low latency
  • ultra-reliability very high reliability
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds and may have a packet error rate of 10 -5 or less.
  • the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design that requires allocating wide resources in the frequency band to ensure the reliability of the communication link. Specifications may be required.
  • TTI Transmit Time Interval
  • the three services considered in the above-described 5G communication system namely eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system.
  • different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy the different requirements of each service.
  • the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which this disclosure is applied are not limited to the above-described examples.
  • embodiments of the present invention will be described using LTE, LTE-A, LTE Pro or 5G (or NR, next-generation mobile communication) systems as examples, but the present invention can also be applied to other communication systems with similar technical background or channel type. Examples of may be applied.
  • embodiments of the present invention may be applied to other communication systems through some modifications without significantly departing from the scope of the present invention at the discretion of a person with skilled technical knowledge.
  • Figure 1 is a diagram showing the structure of an LTE system according to an embodiment of the present disclosure.
  • the wireless access network of the LTE system includes a next-generation base station (Evolved Node B, hereinafter referred to as ENB, Node B or base station) (1-05, 1-10, 1-15, 1-20) and It may be composed of a Mobility Management Entity (MME) (1-25) and S-GW (1-30, Serving-Gateway).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • UE or terminal 1-35 can access an external network through ENB (1-05 to 1-20) and S-GW (1-30).
  • ENBs 1-05 to 1-20 may correspond to the existing Node B of the UMTS system.
  • the ENB is connected to the UE (1-35) through a wireless channel and can perform a more complex role than the existing Node B.
  • all user traffic including real-time services such as VoIP (Voice over IP) through the Internet protocol, can be serviced through a shared channel. Therefore, a device that collects status information such as buffer status, available transmission power status, and channel status of UEs and performs scheduling may be needed, and the ENB (1-05 to 1-20) may be responsible for this.
  • One ENB can typically control multiple cells.
  • the LTE system can use Orthogonal Frequency Division Multiplexing (OFDM) as a wireless access technology in, for example, a 20 MHz bandwidth.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the ENB can apply the Adaptive Modulation & Coding (AMC) method, which determines the modulation scheme and channel coding rate according to the channel status of the terminal.
  • AMC Adaptive Modulation & Coding
  • the S-GW (1a-30) is a device that provides a data bearer, and can create or remove a data bearer under the control of the MME (1-25).
  • the MME is a device that handles various control functions as well as mobility management functions for the terminal and can be connected to multiple base stations.
  • Figure 2 is a diagram showing the wireless protocol structure of an LTE system according to an embodiment of the present disclosure.
  • the wireless protocols of the LTE system are Packet Data Convergence Protocol (PDCP) (2-05, 2-40) and Radio Link Control (RLC) (Radio Link Control, RLC) in the terminal and ENB, respectively. 2-10, 2-35) and Medium Access Control (MAC) (2-15, 2-30).
  • PDCP may be responsible for operations such as IP (internet protocol) header compression/restoration.
  • IP internet protocol
  • the Radio Link Control (2-10, 2-35) reconfigures the PDCP Packet Data Unit (PDU) to an appropriate size to perform an automatic repeat request (ARQ) operation. etc. can be performed.
  • RLC Radio Link Control
  • PDU Packet Data Unit
  • ARQ automatic repeat request
  • RLC SDU deletion function (RLC SDU discard (only for UM and AM data transfer)
  • MAC (2-15, 2-30) is connected to several RLC layer devices configured in one terminal, and performs an operation of multiplexing RLC PDUs to MAC PDUs and demultiplexing RLC PDUs from MAC PDUs. can do.
  • the main functions of MAC can be summarized as follows. Of course, this is not limited to the examples below.
  • the physical layer (2-20, 2-25) channel codes and modulates upper layer data, creates an OFDM symbol and transmits it over a wireless channel, or demodulates an OFDM symbol received through a wireless channel and transmits it to the channel. You can decode and transmit it to the upper layer.
  • this is not limited to the examples below.
  • Figure 3 is a diagram showing the structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the radio access network of the next-generation mobile communication system includes a next-generation base station (New Radio Node B, hereinafter referred to as NR gNB or NR base station) (3-10) and a next-generation wireless core network (New Radio Core). Network, NR CN) (3-05).
  • the next-generation wireless user equipment (New Radio User Equipment, NR UE or UE) (3-15) can access an external network through NR gNB (3-10) and NR CN (3-05).
  • the NR gNB (3-10) may correspond to an Evolved Node B (eNB) of the existing LTE system.
  • NR gNB is connected to NR UE (3-15) through a wireless channel and can provide superior services than the existing Node B.
  • eNB Evolved Node B
  • NR gNB is connected to NR UE (3-15) through a wireless channel and can provide superior services than the existing Node B.
  • all user traffic can be serviced through a shared channel. Therefore, a device that collects status information such as buffer status, available transmission power status, and channel status of UEs and performs scheduling may be needed, and the NR gNB 3-10 may be responsible for this.
  • One NR gNB (3-10) can control multiple cells.
  • Beamforming technology may be additionally used using Orthogonal Frequency Division Multiplexing (OFDM) as a wireless access technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the NR gNB (3-10) uses Adaptive Modulation & Coding (hereinafter referred to as Adaptive Modulation & Coding) to determine the modulation scheme and channel coding rate according to the channel status of the terminal. (referred to as AMC) method may be applied.
  • NR CN (3-05) can perform functions such as mobility support, bearer setup, and QoS setup.
  • NR CN (3-05) is a device responsible for various control functions as well as mobility management functions for the terminal and can be connected to multiple base stations.
  • the next-generation mobile communication system can be linked to the existing LTE system, and NR CN can be connected to the MME (3-25) through a network interface.
  • MME (3-25) can be connected to eNB (3-30), which is an existing base station.
  • Figure 4 is a diagram showing the wireless protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
  • the wireless protocols of the next-generation mobile communication system are NR Service Data Adaptation Protocol (SDAP) (4-01, 4-45) and NR PDCP (4-05, 4-05) in the terminal and NR base station, respectively. 4-40), NR RLC (4-10, 4-35), and NR MAC (4-15, 4-30).
  • SDAP NR Service Data Adaptation Protocol
  • NR PDCP (4-05, 4-05) in the terminal and NR base station, respectively.
  • 4-40 NR RLC (4-10, 4-35), and NR MAC (4-15, 4-30).
  • the main functions of NR SDAP (4-01, 4-45) may include some of the following functions. However, it is not limited to the examples below.
  • the terminal uses a Radio Resource Control (RRC) message to determine whether to use the header of the SDAP layer device for each PDCP layer device, for each bearer, or for each logical channel, or whether to use the function of the SDAP layer device. can be set.
  • RRC Radio Resource Control
  • the terminal sets a 1-bit indicator (NAS reflective QoS) that reflects the Non-Access Stratum (NAS) QoS (Quality of Service) in the SDAP header and the access layer (Access Stratum).
  • NAS Non-Access Stratum
  • AS QoS reflection setting 1-bit indicator
  • AS reflective QoS can indicate that the terminal can update or reset mapping information for uplink and downlink QoS flows and data bearers.
  • the SDAP header may include QoS flow ID information indicating QoS.
  • QoS information can be used as data processing priority, scheduling information, etc. to support smooth service.
  • the main functions of NR PDCP (4-05, 4-40) may include some of the following functions. However, it is not limited to the examples below.
  • the reordering function of the NR PDCP device may mean the function of reordering PDCP PDUs received from the lower layer in order based on PDCP sequence number (SN).
  • the reordering function of the NR PDCP device may include the function of delivering data to a higher layer in the reordered order, or may include the function of delivering data directly without considering the order, and may include the function of transmitting data directly without considering the order, and reordering the data may cause loss. It may include a function to record lost PDCP PDUs, it may include a function to report the status of lost PDCP PDUs to the transmitting side, and it may include a function to request retransmission of lost PDCP PDUs. there is.
  • the main functions of NR RLC (4-10, 4-35) may include some of the following functions. However, it is not limited to the examples below.
  • the in-sequence delivery function of the NR RLC device may mean the function of delivering RLC SDUs received from the lower layer to the upper layer in order.
  • the in-sequence delivery function of the NR RLC device may include the function of reassembling and delivering it.
  • the in-sequence delivery function of the NR RLC device may include a function to rearrange the received RLC PDUs based on the RLC SN (sequence number) or PDCP SN (sequence number), and rearrange the order to prevent loss. It may include a function to record lost RLC PDUs, it may include a function to report the status of lost RLC PDUs to the transmitting side, and it may include a function to request retransmission of lost RLC PDUs. there is.
  • the in-sequence delivery function of the NR RLC device may include a function of delivering only the RLC SDUs up to the lost RLC SDU in order when there is a lost RLC SDU to the upper layer.
  • the in-sequence delivery function of the NR RLC device may include a function of delivering all RLC SDUs received before the timer starts to the upper layer in order if a predetermined timer expires even if there are lost RLC SDUs. there is.
  • the in-sequence delivery function of the NR RLC device may include a function of delivering all RLC SDUs received to date to the upper layer in order if a predetermined timer expires even if there are lost RLC SDUs.
  • the NR RLC device can process RLC PDUs in the order they are received and deliver them to the NR PDCP device, regardless of the order of the sequence number (out-of sequence delivery).
  • the NR RLC device When the NR RLC device receives a segment, it can receive segments stored in a buffer or to be received later, reconstruct them into one complete RLC PDU, and then transmit it to the NR PDCP device.
  • the NR RLC layer may not include a concatenation function, and may perform the function in the NR MAC layer or replace it with the multiplexing function of the NR MAC layer.
  • the out-of-sequence delivery function of the NR RLC device may refer to the function of directly delivering RLC SDUs received from a lower layer to the upper layer regardless of their order.
  • the out-of-sequence delivery function of the NR RLC device may include a function of reassembling and delivering when one RLC SDU is originally received by being divided into several RLC SDUs.
  • the out-of-sequence delivery function of the NR RLC device may include a function of storing the RLC SN or PDCP SN of received RLC PDUs, sorting the order, and recording lost RLC PDUs.
  • the NR MAC (4-15, 4-30) may be connected to several NR RLC layer devices configured in one terminal, and the main functions of the NR MAC may include some of the following functions. . However, it is not limited to the examples below.
  • the NR PHY layer (4-20, 4-25) channel-codes and modulates the upper layer data, creates OFDM symbols and transmits them to the wireless channel, or demodulates and channel decodes the OFDM symbols received through the wireless channel and transmits them to the upper layer.
  • the transfer operation can be performed.
  • Figure 5 is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • the terminal may include an RF (Radio Frequency) processing unit 5-10, a baseband processing unit 5-20, a storage unit 5-30, and a control unit 5-40. there is. Of course, it is not limited to the above example, and the terminal may include fewer or more components than those shown in FIG. 5.
  • RF Radio Frequency
  • the RF processing unit 5-10 can perform functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit 5-10 up-converts the baseband signal provided from the baseband processing unit 5-20 into an RF band signal and transmits it through an antenna, and converts the RF band signal received through the antenna into a baseband signal. It can be down-converted into a signal.
  • the RF processing unit 5-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), etc. there is. Of course, it is not limited to the above example. In FIG.
  • the RF processing unit 5-10 may include a plurality of RF chains. Additionally, the RF processing unit 5-10 can perform beamforming. For beamforming, the RF processing unit 5-10 can adjust the phase and size of each signal transmitted and received through a plurality of antennas or antenna elements. Additionally, the RF processing unit 5-10 can perform MIMO (Multi Input Multi Output) and can receive multiple layers when performing a MIMO operation.
  • MIMO Multi Input Multi Output
  • the baseband processing unit 5-20 performs a conversion function between baseband signals and bit strings according to the physical layer specifications of the system. For example, when transmitting data, the baseband processing unit 5-20 generates complex symbols by encoding and modulating the transmission bit string. Additionally, when receiving data, the baseband processing unit 5-20 can restore the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit 5-10. For example, when following the OFDM (orthogonal frequency division multiplexing) method, when transmitting data, the baseband processing unit 5-20 generates complex symbols by encoding and modulating the transmission bit string, and maps the complex symbols to subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are configured through IFFT (inverse fast Fourier transform) operation and CP (cyclic prefix) insertion.
  • the baseband processing unit 5-20 divides the baseband signal provided from the RF processing unit 5-10 into OFDM symbol units, and signals mapped to subcarriers through FFT (fast Fourier transform). After restoring the received bit string, the received bit string can be restored through demodulation and decoding.
  • the baseband processing unit 5-20 and the RF processing unit 5-10 transmit and receive signals as described above.
  • the baseband processing unit 5-20 and the RF processing unit 5-10 may be referred to as a transmitting unit, a receiving unit, a transceiving unit, or a communication unit.
  • at least one of the baseband processing unit 5-20 and the RF processing unit 5-10 may include a plurality of communication modules to support a plurality of different wireless access technologies.
  • at least one of the baseband processing unit 5-20 and the RF processing unit 5-10 may include different communication modules to process signals in different frequency bands.
  • different wireless access technologies may include wireless LAN (eg, IEEE 802.11), cellular network (eg, LTE), etc.
  • the different frequency bands may include a super high frequency (SHF) (e.g., 2.NRHz, NRhz) band and a millimeter wave (e.g., 60GHz) band.
  • SHF super high frequency
  • the terminal can transmit and receive signals with the base station using the baseband processing unit 5-20 and the RF processing unit 5-10, and the signals may include control information and data.
  • the storage unit 5-30 stores data such as basic programs, application programs, and setting information for operation of the terminal.
  • the storage unit 5-30 may store information related to an access node that performs wireless communication using a second wireless access technology. Additionally, the storage unit 5-30 provides stored data upon request from the control unit 5-40.
  • the storage unit 5-30 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media. Additionally, the storage unit 5-30 may be composed of a plurality of memories.
  • the control unit 5-40 controls the overall operations of the terminal. For example, the control unit 5-40 transmits and receives signals through the baseband processing unit 5-20 and the RF processing unit 5-10. Additionally, the control unit 5-40 writes and reads data into the storage unit 5-30.
  • the control unit 5-40 may include at least one processor.
  • the control unit 5-40 may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs. Additionally, at least one component within the terminal may be implemented with one chip.
  • Figure 6 is a block diagram showing the configuration of a base station according to an embodiment of the present disclosure.
  • the base station may include an RF processing unit 6-10, a baseband processing unit 6-20, a backhaul communication unit 6-30, a storage unit 6-40, and a control unit 6-50. You can. Of course, it is not limited to the above example, and the base station may include fewer or more configurations than the configuration shown in FIG. 6.
  • the RF processing unit 6-10 can perform functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit 6-10 up-converts the baseband signal provided from the baseband processing unit 6-20 into an RF band signal and transmits it through an antenna, and converts the RF band signal received through the antenna into a baseband signal. Downconvert it to a signal.
  • the RF processing unit 6-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, etc. In Figure 6, only one antenna is shown, but the RF processing unit 6-10 may be equipped with a plurality of antennas.
  • the RF processing unit 6-10 may include a plurality of RF chains. Additionally, the RF processing unit 6-10 can perform beamforming. For beamforming, the RF processing unit 6-10 can adjust the phase and size of each signal transmitted and received through a plurality of antennas or antenna elements. The RF processing unit can perform downward MIMO operation by transmitting one or more layers.
  • the baseband processing unit 6-20 may perform a conversion function between a baseband signal and a bit string according to the physical layer standard of the first wireless access technology. For example, when transmitting data, the baseband processing unit 6-20 may generate complex symbols by encoding and modulating the transmission bit stream. Additionally, when receiving data, the baseband processing unit 6-20 can restore the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit 6-10. For example, when following the OFDM method, when transmitting data, the baseband processing unit 6-20 generates complex symbols by encoding and modulating the transmission bit string, maps the complex symbols to subcarriers, and performs IFFT operation and OFDM symbols are configured through CP insertion.
  • the baseband processing unit 6-20 when receiving data, divides the baseband signal provided from the RF processing unit 6-10 into OFDM symbols, restores the signals mapped to subcarriers through FFT operation, and then , the received bit string can be restored through demodulation and decoding.
  • the baseband processing unit 6-20 and the RF processing unit 6-10 can transmit and receive signals as described above. Accordingly, the baseband processing unit 6-20 and the RF processing unit 6-10 may be referred to as a transmitting unit, a receiving unit, a transceiving unit, a communication unit, or a wireless communication unit.
  • the base station can transmit and receive signals with the terminal using the baseband processing unit 6-20 and the RF processing unit 6-10, and the signals can include control information and data.
  • the backhaul communication unit 6-30 provides an interface for communicating with other nodes in the network.
  • the backhaul communication unit 6-30 converts a bit string transmitted from the main base station to another node, for example, an auxiliary base station, a core network, etc., into a physical signal, and converts a physical signal received from another node into a bit string. can do.
  • the backhaul communication unit 6-30 may be included in the communication unit.
  • the storage unit 6-40 stores data such as basic programs, application programs, and setting information for operation of the base station.
  • the storage unit 6-40 can store information about bearers assigned to the connected terminal, measurement results reported from the connected terminal, etc. Additionally, the storage unit 6-40 may store information that serves as a criterion for determining whether to provide or suspend multiple connections to the terminal. Additionally, the storage unit 6-40 provides stored data upon request from the control unit 6-50.
  • the storage unit 6-40 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media. Additionally, the storage unit 6-40 may be composed of a plurality of memories. According to some embodiments, the storage unit 6-40 may store a program for performing the buffer status reporting method according to the present disclosure.
  • the control unit 6-50 controls the overall operations of the base station. For example, the control unit 6-50 transmits and receives signals through the baseband processing unit 6-20 and the RF processing unit 6-10 or through the backhaul communication unit 6-30. Additionally, the control unit 6-50 writes and reads data into the storage unit 6-40.
  • the control unit 6-50 may include at least one processor. Additionally, at least one component of the base station may be implemented with one chip.
  • NCR network controlled repeater
  • NCR-MT mobile termination
  • NCR-FWD forwarding
  • Figure 7 is a diagram showing the configuration of a network control repeater according to an embodiment of the present disclosure.
  • the network controlled repeater consists of NCR (network controlled repeater) - MT and NCR-FWD.
  • MT stands for mobile termination, and can receive control signals for NCR operation from the serving base station and transmit control information to NCR-FWD.
  • NCR-FWD stands for forwarding and performs the role of amplifying the RF signal received from the base station and transmitting it to the terminal.
  • NCR-FWD can perform additional operations through control information received from NCR-MT.
  • NCR-FWD can deliver a signal amplified using a specific beam to the terminal or receive a signal transmitted by the terminal.
  • NCR-FWD may or may not receive/amplify/transmit a signal from a base station according to a specific time division duplex (TDD) pattern, or receive/amplify/transmit a signal from a terminal.
  • TDD time division duplex
  • NCR and the network In order to perform the above operations, NCR and the network must be able to distinguish between each other. Below, we will explain how the NCR and the network, that is, the serving base station, distinguish between each other and how to exchange configuration information specific to the NCR accordingly.
  • the cell may include a separate cell for controlling NCR.
  • the NCR can perform operations required when accessing the separate cell, and for this purpose, it can receive control information from the separate cell.
  • the separate cell needs to provide an indicator indicating that it is a cell for NCR use, and the NCR that confirms that it is a cell for NCR use can continue attempting to connect to the separate cell.
  • the serving base station can support a general terminal and may be a base station that simultaneously supports a general terminal and NCR, or it may be a base station that cannot support a general terminal and NCR at the same time. Depending on the example, it can be divided into the following cases.
  • a base station supporting NCR or the NCR function may broadcast including an NCR support indicator in a master information block (MIB) or system information block (SIB).
  • MIB master information block
  • SIB system information block
  • the base station may introduce intraFreqReselection-NCR bit (IFR bit) in SIB.
  • the bit can have the value of allowed or not-allowed. The presence of this bit may mean that this cell supports NCR.
  • NCR-MT can attempt to access the cell by performing random access if this bit is included in the SIB.
  • the NCR-MT When selecting/reselecting a cell, if this bit does not exist in the SIB of the cell, the NCR-MT considers this cell as barred and the intraFreqReselection-NCR bit is set to allowed, and selects/reselects another cell. When reselecting, you can select/reselect another cell with the same frequency as the barred cell.
  • the NCR-MT can attempt to access this cell, and if it is barred while trying to access, it can use a frequency other than the frequency of the barred cell. Frequency must be considered when selecting/reselecting cells. In other words, the corresponding frequency is also considered barred.
  • the NCR-MT can attempt to access this cell, and if it is barred while attempting access, it will cell a cell on the same frequency as the frequency of the barred cell. This can be taken into consideration when selecting/reselecting.
  • the NCR-MT can selectively attempt to connect to an NCR-supporting cell during the cell selection/reselection process. After that, if there is a process of establishing an RRC connection, the NCR-MT must inform the corresponding cell that it is an NCR entity or NCR-MT. Here's how to do this:
  • Case 1 Notification method during RACH (random access channel) preamble transmission process.
  • NCR-MT may receive a dedicated random access preamble and/or rach occasion (RO) and/or RACH resources in advance.
  • the NCR-MT can receive RACH-related settings from the MIB or SIB of the cell it is attempting to connect to.
  • the NCR-MT may attempt random access to access the cell.
  • the gNB may attempt the access. The terminal attempting can identify that it is NCR, and then the base station can transmit control information for NCR-FWD through NCR-MT.
  • MSG (Message) 3 may include an NCR-specific LCID (logical channel ID).
  • This LCID is used to identify the common control channel (CCCH) included in the MSG3 or MSGA MAC PDU, and this LCID may be included in the MAC subheader in the MAC PDU.
  • the UL CCCH may be, for example, RRCSetupRequest.
  • the base station that successfully receives MSG 3 or MSG A learns that the corresponding terminal is NCR based on this. Afterwards, the base station can transmit control information for NCR-FWD through NCR-MT.
  • the NCR-MT After cell selection/reselection, when the NCR-MT receives a UL (uplink) grant with a successful RACH procedure, it delivers MSG3 to the serving base station through the RRCSetupRequest message, and when the serving base station delivers the RRCSetup message, the settings are applied. Afterwards, the RRCSetupComplete message is delivered to the serving base station. At this time, the RRCSetupComplete message may be delivered by including an indicator indicating that it is NCR. The following shows the detailed flow, which can correspond to the procedures shown in FIGS. 8A and 8B. In this example, the NCR support bit is included in the MIB/SIB as an example, but it is also possible to utilize the intra-Frequency Reselection bit.
  • 8A and 8B are flowcharts of how the NCR-MT uses the RRCSetupComplete message to announce that it is an NCR entity.
  • the NCR-MT 810 can be switched from an idle state to a connected state or powered on (S801).
  • the NCR-MT (810) is a synchronization signal block (SSB) radiated from surrounding cells (e.g., base station 1 (gNB 1 (830)) and base station 2 (gNB 2 (820)) as shown in FIG. 8A. ) is received to derive the signal strength of the cell, and based on this measurement, a cell that satisfies the cell selection conditions is selected (S802).
  • the cell selected by the NCT-MT (810) is gNB. Assume it is a cell of 2 (820).
  • the NCR-MT (810) receives the MIB or SIB1 of the selected cell and confirms that the cell is not an NCR support cell, it assumes a cell barred state (S803) and assumes a cell barred state (S803), and determines that another cell (e.g., gNB Cell 1 (cell of 830) is selected (S804), and MIB/SIB1 of the corresponding cell is received to check whether it is an NCR-supporting cell (S805).
  • gNB Cell 1 cell of 830
  • the NCR-MT 810 can perform a random access procedure to the corresponding cell (S806). For example, in this procedure, the NCR-MT (810) transmits MSG 3 through an RRCSetupRequest message to the corresponding cell (830) (S806a) and receives an RRCsetup message from the cell (830) in response (S806b). You can. At this time, the RRCSetupRequest message may include information about the connection establishment cause (EstablishmentCause) specific to NCR.
  • the NCR-MT 810 which has received the RRCSetup message, can apply the master cell group (MCG) settings for the MAC and PHY obtained from the corresponding cell 830, as shown in FIG. 8b (S807).
  • the NCR-MT 810 may transmit an RRCSetupComplete message to the corresponding cell to complete RRC connection setup (S808).
  • the RRCSetupComplete message includes an indicator indicating that the NCR-MT 810 is an NCR, NCR- At least one of an MT ID or a NAS registration request may be included.
  • gNB supporting NCR broadcasts the NCR-support indication in MIB or SIB.2)
  • UE which is NCR-MT is powered on(or UE is in Idle/inactive), it can first search frequency to camp and select the cell based on measurement result (i.e., do legacy cell(re)selection procedure).
  • NCR-MT applies the configurations in MIB and SIB1 of the selected cell.
  • NCR-MT When NCR-MT tries to setup RRC connection, NCR-MT does random access procedure with gNB. NCR-MT sends RRCSetupRequest msg to gNB, and gNB responds with RRCSetup msg to NCR-MT. Within RRCSetupRequest msg, there is new cause value for Establishment indicating NCR control traffic. After NCR-MT configures the received RRCsetup msg, UE can add NCR-MT indication within RRCSetupComplete message and transmit it upon successful RRC setup procedure.
  • RRCSetupComplete msg can also include: NCR specific entity ID (and/or (MT) ID , and/or FWD ID) either in legacy NAS msg 'Registration Request' or out, and transfer this.
  • Serving gNB identifies that the accessed UE is NCR-MT, and some UE ID visible in CN can be transferred to CN for authorization (like 5G TMSI or 5G-GUTI, or NCR-FWD ID).
  • NCR-FWD ID is transferred to CN within IE 'NCR', then CN can identify NCR-FWD.
  • the serving base station 830 may transmit a Registration Request to the AMF 840 using the NGAP initial UE message (S808).
  • the NGAP initial UE message may include an Establishment cause indicating that it is an RRC connection indicator for NCR control, obtained during the RRC connection process.
  • the ID of the NCR-MT or NCR entity, or NCR-Fwd ID may be included in the message. This information can be transmitted from the serving base station 830 to the AMF 840 (S809) and used for authorization and authentication of the NCR entity in the core network 850 (S810, S811).
  • the AMF 840 receiving an indicator that identifies the terminal as an NCR node through an Initial UE message from the serving base station 830 (e.g. , NCR MT's terminal ID) can be confirmed by transmitting it to a separate server on the core network (850) that holds the ID or to the AMF (840) and co-located server (850). If it is confirmed that the terminal is authenticated as an NCR node, a separate server on the core network 850 or a server co-located with the AMF 840 may transmit an indication that it has been authorized to the AMF 840.
  • the AMF 840 that receives this is the serving base station 830 and can provide an indication that the corresponding terminal has been authorized through an initial UE context setup request message.
  • the NCR authorization confirmation operation of the AMF and co-located server described above can be replaced by the implementation of AMF.
  • the serving base station 830 may transmit control information for operation of the NCR-Fwd to the NCR-MT 810.
  • the configuration information of the L1/L2 channel for transmitting this control information may be transmitted to the NCR-MT 810 through a DL RRC message or RRCReconfiguration message (S812). More detailed settings transmitted at this time may be as follows.
  • NCR specific configurations i.e., PDCCH/PDSCH configuration for side control information channel, PUCCH/PUSCH configuration for side control information channel, configuration for DCI/UCI and MAC CE for side control information reception and transmission.
  • the NCR-MT (810) can receive side control information for NCR-Fwd from the serving base station (830) through the L1/L2 control signal (S813).
  • the NCR-MT After cell selection/reselection, when the NCR-MT receives a UL grant through a successful RACH procedure, it delivers MSG3 to the serving base station through the RRCSetupRequest message, and when the serving base station delivers the RRCSetup message in response, the settings are applied. Afterwards, the RRCSetupComplete message is delivered to the serving base station. At this time, the RRCSetupRequest message may be delivered with an indicator indicating that it is NCR.
  • FIGS. 9A and 9B shows the detailed flow, which can correspond to the procedures shown in FIGS. 9A and 9B. In this example, the case of including the NCR support bit in the MIB/SIB is explained, but it is also possible to utilize the intra-Frequency Reselection bit.
  • 9A and 9B are flowcharts of how the NCR-MT uses the RRCSetupRequest message to announce that it is an NCR entity.
  • the NCR-MT (910) may be converted from an idle state to a connected state or may be powered on (S901).
  • the NCR-MT (910) receives SSBs radiated from surrounding cells (e.g., base station 1 (gNB 1 (930)) and base station 2 (gNB 2 (920)) as shown in FIG. 9A and connects the cell to the cell.
  • the signal strength of is derived, and based on this measurement, a cell that satisfies the cell selection conditions is selected (S902).
  • the cell selected by the NCT-MT (910) is that of gNB 2 (920). Assume it is a cell.
  • the NCR-MT (910) receives the MIB or SIB1 of the selected cell and confirms that the cell is not an NCR support cell, it assumes a cell barred state (S903) and connects to another cell (e.g., gNB 1).
  • a cell of (830) is selected (S904), and the MIB/SIB1 of the corresponding cell is received to check whether it is an NCR-supporting cell (S905).
  • the MIB/SIB1 may include an NCR support indicator indicating that the corresponding cell supports NCR.
  • the NCR-MT 910 can perform a random access procedure to the corresponding cell (S906).
  • the NCR-MT 910 may, for example, transmit (S906a) MSG 3 to the corresponding cell 930 through an RRCSetupRequest.
  • the RRCSetupRequest message includes an NCR-MT indicator indicating that it is an NCR-MT.
  • NCR-specific connection establishment cause (EstablishmentCause) and/or NCR-related ID may be included.
  • gNB supporting NCR broadcasts the NCR-support indication in MIB or SIB.
  • NCR-MT applies the configurations in MIB and SIB1 of the selected cell
  • UE can add 1-bit indication to indicate NCR-MT or NCR entity within RRCSetupRequest msg and transmit it upon obtaining UL grant.
  • legacy 'InitialUE-Identity' field can indicate NCR specific UE ID, or NCR specific UE ID can be further indicated in separate IE than 'initialUE-Identity' field.
  • 'EstablishmentCause' can further indicate 'NCR MT access' value
  • Serving gNB Upon receiving above RRCSetupRequest msg, Serving gNB identifies that the accessed UE is NCR-MT, and select the radio resource and schedule the resource accordingly for NCR MT (frequency /time domain resource assignment, MCS selection etc.) via PDCCH
  • D> serving gNB setup SRB1 and send RRCSetup msg to NCR-MT.
  • UE applies the received RRCSetup configuration, and generates RRCSetupComplete msg which can include: NCR specific entity ID (and/or UE ID, and/or FWD ID) either in legacy NAS msg 'Registration Request' or out , and transmit this.
  • the serving base station 930 based on the information received from the NCR-MT 910, confirms that the connected terminal is an NCR-MT and sets the NCR-specific master cell group (e.g., mac-CellGroupConfig, PhysicalCellGroupConfig) can be provided (S907). Such settings can be transmitted to the NCR-MT (910) through an RRCSetup message (S907a).
  • the NCR-MT 910 which has received NCR specific cell group settings for the MAC layer or PHY layer from the serving base station 930, can apply the corresponding cell group settings (S908).
  • the NCR-MT (910) can transmit (S909) a NAS message including a registration request to the serving base station (930) through the RRCSetupComplete message, and after establishing an RRC connection with the NCR-MT (910),
  • the serving base station 930 may transmit a Registration Request to the AMF 940 using the NGAP initial UE message (S910).
  • the NGAP initial UE message may also include an Establishment cause indicating that it is an RRC connection indicator for NCR control, obtained during the RRC connection process.
  • the ID of the NCR-MT or NCR entity, or NCR-Fwd ID may be included in the message.
  • This information can be transmitted from the serving base station 930 to the AMF 940 and used for authorization and authentication of the NCR entity in the core network 950 (S911, S912).
  • the authentication procedure between the AMF (940) and the core network (950) is the same as described above in FIGS. 8A and 8B.
  • the serving base station 930 may transmit control information for operation of the NCR-Fwd to the NCR-MT 910.
  • the configuration information of the L1/L2 channel for transmitting this control information may be transmitted to the NCR-MT 910 through a DL RRC message or RRCReconfiguration message (S913). More detailed settings transmitted at this time may be as follows.
  • NCR specific configurations i.e., PDCCH/PDSCH configuration for side control information channel, PUCCH/PUSCH configuration for side control information channel, configuration for DCI/UCI and MAC CE for side control information reception and transmission.
  • the NCR-MT 910 can receive side control information for NCR-Fwd from the serving base station 930 through the L1/L2 control signal (S914).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to: a communication technique for merging IoT technology with a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security- and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present disclosure provides an apparatus and a method related to a network-controlled repeater system.

Description

차세대 이동통신 시스템에서 네트워크 제어 리피터의 최초 접속 방법 및 장치The first connection method and device for a network control repeater in a next-generation mobile communication system
본 개시는 네트워크 제어 리피터 시스템에 관한 것이다.This disclosure relates to a network controlled repeater system.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.In order to meet the increasing demand for wireless data traffic following the commercialization of the 4G communication system, efforts are being made to develop an improved 5G communication system or pre-5G communication system. For this reason, the 5G communication system or pre-5G communication system is called a Beyond 4G Network communication system or a Post LTE system. To achieve high data rates, 5G communication systems are being considered for implementation in ultra-high frequency (mmWave) bands (such as the 60 GHz band). In order to alleviate the path loss of radio waves in the ultra-high frequency band and increase the transmission distance of radio waves, the 5G communication system uses beamforming, massive array multiple input/output (massive MIMO), and full dimension multiple input/output (FD-MIMO). ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed. In addition, to improve the network of the system, the 5G communication system uses advanced small cells, advanced small cells, cloud radio access networks (cloud RAN), and ultra-dense networks. , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, CoMP (Coordinated Multi-Points), and interference cancellation. Technology development is underway. In addition, the 5G system uses FQAM (Hybrid FSK and QAM Modulation) and SWSC (Sliding Window Superposition Coding), which are advanced coding modulation (ACM) methods, and advanced access technologies such as FBMC (Filter Bank Multi Carrier) and NOMA. (non orthogonal multiple access), and SCMA (sparse code multiple access) are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.Meanwhile, the Internet is evolving from a human-centered network where humans create and consume information to an IoT (Internet of Things) network that exchanges and processes information between distributed components such as objects. IoE (Internet of Everything) technology, which combines IoT technology with big data processing technology through connection to cloud servers, etc., is also emerging. In order to implement IoT, technological elements such as sensing technology, wired and wireless communication and network infrastructure, service interface technology, and security technology are required. Recently, sensor networks for connection between things, and machine to machine communication (Machine to Machine) are required to implement IoT. , M2M), and MTC (Machine Type Communication) technologies are being researched. In an IoT environment, intelligent IT (Internet Technology) services that create new value in human life can be provided by collecting and analyzing data generated from connected objects. IoT is used in fields such as smart home, smart building, smart city, smart car or connected car, smart grid, healthcare, smart home appliances, and advanced medical services through the convergence and combination of existing IT (information technology) technology and various industries. It can be applied to .
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts are being made to apply the 5G communication system to the IoT network. For example, technologies such as sensor network, Machine to Machine (M2M), and Machine Type Communication (MTC) are implemented through 5G communication technologies such as beam forming, MIMO, and array antennas. There is. The application of cloud radio access network (cloud RAN) as the big data processing technology described above can be said to be an example of the convergence of 5G technology and IoT technology.
상술한 것과 같이 이동통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 효과적으로 제공하기 위한 방안이 요구되고 있다.As described above, with the development of mobile communication systems, various services can be provided, and a method for effectively providing these services is required.
본 개시의 일 목적은 네트워크 제어 리피터가 네트워크 접속을 하고, 필요한 동작을 설정 받는 방법을 제공하는 것이다.One purpose of the present disclosure is to provide a method for a network control repeater to connect to a network and configure necessary operations.
또한, 본 개시의 일 목적은, 이동 통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공하는 것이다.Additionally, one purpose of the present disclosure is to provide an apparatus and method that can effectively provide services in a mobile communication system.
상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시 예에 따른 , 무선 통신 시스템에서 단말의 방법에 있어서, 기지국으로부터, 시스템 정보를 수신하는 단계; 상기 시스템 정보에 NCR(network controlled repeater)를 지원함을 지시하는 지시자가 포함되었는지 확인하는 단계; 상기 시스템 정보에 상기 지시자가 포함된 것에 기반하여, 상기 기지국으로, 랜덤 액세스 절차를 위한 랜덤 액세스 프리앰블을 전송하는 단계를 포함하고, 상기 단말은, NCR 기능을 지원하는 단말일 수 있다.In a method of a terminal in a wireless communication system according to an embodiment of the present disclosure to solve the above problem, the method includes receiving system information from a base station; Checking whether the system information includes an indicator indicating support for a network controlled repeater (NCR); and transmitting a random access preamble for a random access procedure to the base station based on the indicator being included in the system information, and the terminal may be a terminal supporting the NCR function.
또한, 본 개시의 일 실시 예에 따른 무선 통신 시스템에서 기지국의 방법에 있어서, NCR(network controlled repeater)를 지원함을 지시하는 지시자를 생성하는 단계; 상기 지시자를 포함한 시스템 정보를 방송하는 단계; 및 단말로부터, 상기 시스템 정보에 기반하여 랜덤 액세스 프리앰블을 수신하는 단계를 포함할 수 있다.Additionally, in a method of a base station in a wireless communication system according to an embodiment of the present disclosure, the method includes generating an indicator indicating support for a network controlled repeater (NCR); Broadcasting system information including the indicator; And it may include receiving a random access preamble from the terminal based on the system information.
또한, 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말에 있어서, 송수신부; 및 기지국으로부터, 시스템 정보를 수신하도록 상기 송수신부를 제어하고, 상기 시스템 정보에 NCR(network controlled repeater)를 지원함을 지시하는 지시자가 포함되었는지 확인하며, 상기 시스템 정보에 상기 지시자가 포함된 것에 기반하여, 및 상기 기지국으로, 랜덤 액세스 절차를 위한 랜덤 액세스 프리앰블을 전송하도록 상기 송수신부를 제어하는 제어부를 포함하고, 상기 단말은, NCR 기능을 지원할 수 있다.Additionally, in a wireless communication system according to an embodiment of the present disclosure, a terminal includes: a transceiver; And from a base station, control the transceiver to receive system information, check whether the system information includes an indicator indicating support for NCR (network controlled repeater), and based on the indicator being included in the system information, and a control unit that controls the transceiver to transmit a random access preamble for a random access procedure to the base station, and the terminal can support the NCR function.
또한, 본 개시의 일 실시예에 따른 무선 통신 시스템에서 기지국에 있어서, 송수신부; 및 NCR(network controlled repeater)를 지원함을 지시하는 지시자를 생성하고, 상기 지시자를 포함한 시스템 정보를 방송하도록 상기 송수신부를 제어하며, 및 단말로부터, 상기 시스템 정보에 기반하여 랜덤 액세스 프리앰블을 수신하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다.Additionally, in a wireless communication system according to an embodiment of the present disclosure, a base station includes a transceiver; and generating an indicator indicating support for NCR (network controlled repeater), controlling the transceiver to broadcast system information including the indicator, and receiving a random access preamble from a terminal based on the system information. It may include a control unit that controls the unit.
본 개시의 일 예시에 따르면, 네트워크 제어 리피터가 기지국과 접속을 시도하고, 네트워크부터 필요한 설정 정보를 수신하여 동작하는 구체적인 방법을 제공할 수 있다. According to an example of the present disclosure, a specific method of operating a network control repeater by attempting to connect to a base station and receiving necessary configuration information from the network can be provided.
보다 구체적으로, 본 개시의 일 예시에 따르면, 네트워크 제어 리피터가 서빙셀에 접속 시, 서빙셀은 제어 리피터 운영이 가능한 셀과 그렇지 않은 셀을 구분한 뒤 선택적으로 접속을 허용하는 동작을 수행하며, 제어 리피터는 접속한 후, 네트워크 제어 리피터임을 해당 셀에게 알리는 동작을 수행함으로써, 제어 리피터를 제어하기 위한 신호가 셀과 네트워크 제어 리피터 사이에서 적절히 송/수신될 수 있는 효과가 있다. More specifically, according to an example of the present disclosure, when a network control repeater connects to a serving cell, the serving cell distinguishes between cells that can operate a control repeater and cells that cannot operate the control repeater, and then performs an operation to selectively allow access, After the control repeater is connected, it performs an operation to inform the corresponding cell that it is a network control repeater, which has the effect of allowing signals for controlling the control repeater to be properly transmitted/received between the cell and the network control repeater.
도 1은 본 개시의 일 실시예에 따른 LTE 시스템의 구조를 도시하는 도면이다. Figure 1 is a diagram showing the structure of an LTE system according to an embodiment of the present disclosure.
도 2는 본 개시의 일 실시예에 따른 LTE 시스템의 무선 프로토콜 구조를 나타낸 도면이다.Figure 2 is a diagram showing the wireless protocol structure of an LTE system according to an embodiment of the present disclosure.
도 3은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.Figure 3 is a diagram showing the structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.Figure 4 is a diagram showing the wireless protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다.Figure 5 is a block diagram showing the internal structure of a terminal according to an embodiment of the present disclosure.
도 6은 본 개시의 일 실시예에 따른 기지국의 구성을 나타낸 블록도이다.Figure 6 is a block diagram showing the configuration of a base station according to an embodiment of the present disclosure.
도 7은 본 개시의 일 실시예에 따른 네트워크 제어 리피터의 구성을 나타낸 도면이다.Figure 7 is a diagram showing the configuration of a network control repeater according to an embodiment of the present disclosure.
도 8a는 NCR-MT가 RRCSetupComplete 메시지를 사용하여 자신이 NCR 엔티티임을 알리는 방법의 흐름도이다.Figure 8a is a flowchart of how NCR-MT announces that it is an NCR entity using the RRCSetupComplete message.
도 8b는 NCR-MT가 RRCSetupComplete 메시지를 사용하여 자신이 NCR 엔티티임을 알리는 방법의 흐름도이다.Figure 8b is a flowchart of how NCR-MT announces that it is an NCR entity using the RRCSetupComplete message.
도 9a는 NCR-MT가 RRCSetupRequest 메시지를 사용하여 자신이 NCR 엔티티임을 알리는 방법의 흐름도이다.Figure 9a is a flowchart of how NCR-MT uses the RRCSetupRequest message to announce that it is an NCR entity.
도 9b는 NCR-MT가 RRCSetupRequest 메시지를 사용하여 자신이 NCR 엔티티임을 알리는 방법의 흐름도이다.Figure 9b is a flowchart of how NCR-MT uses the RRCSetupRequest message to announce that it is an NCR entity.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, the operating principle of the present disclosure will be described in detail with reference to the attached drawings. In the following description of the present disclosure, if a detailed description of a related known function or configuration is determined to unnecessarily obscure the gist of the present disclosure, the detailed description will be omitted. In addition, the terms described below are terms defined in consideration of the functions in the present disclosure, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.Terms used in the following description to identify a connection node, a term referring to network entities, a term referring to messages, a term referring to an interface between network objects, and a term referring to various types of identification information. The following are examples for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
이하 설명의 편의를 위하여, 본 개시은 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, the present disclosure uses terms and names defined in the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) standard. However, the present disclosure is not limited by the above terms and names, and can be equally applied to systems complying with other standards.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. The advantages and features of the present disclosure and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below and may be implemented in various different forms, and the present embodiments are merely intended to ensure that the disclosure is complete and to provide common knowledge in the technical field to which the present disclosure pertains. It is provided to fully inform those who have the scope of the invention, and the present disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this time, it will be understood that each block of the processing flow diagrams and combinations of the flow diagram diagrams can be performed by computer program instructions. These computer program instructions can be mounted on a processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, so that the instructions performed through the processor of the computer or other programmable data processing equipment are described in the flow chart block(s). It creates the means to perform functions. These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular manner, so that the computer-usable or computer-readable memory It is also possible to produce manufactured items containing instruction means that perform the functions described in the flowchart block(s). Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing the functions described in the flow diagram block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다. Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). Additionally, it should be noted that in some alternative execution examples, it is possible for the functions mentioned in the blocks to occur out of order. For example, it is possible for two blocks shown in succession to be performed substantially simultaneously, or it is possible for the blocks to be performed in reverse order depending on the corresponding function.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다. At this time, the term '~unit' used in this embodiment refers to software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~unit' performs certain roles. do. However, '~part' is not limited to software or hardware. The '~ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided within the components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card. Additionally, in an embodiment, '~ part' may include one or more processors.
하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 개시의 실시 예를 설명하기로 한다. In the following description of the present disclosure, if a detailed description of a related known function or configuration is determined to unnecessarily obscure the gist of the present disclosure, the detailed description will be omitted. Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다. 예를 들어, 이하 설명에서 단말이라 함은, 후술할 MCG(Master Cell Group)와 SCG(Secondary Cell Group)별로 각각 존재하는 단말 내의 MAC entity를 칭할 수 있다.Terms used in the following description to identify a connection node, a term referring to network entities, a term referring to messages, a term referring to an interface between network objects, and a term referring to various types of identification information. The following are examples for convenience of explanation. Accordingly, the present disclosure is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used. For example, in the following description, the terminal may refer to a MAC entity within the terminal that exists for each Master Cell Group (MCG) and Secondary Cell Group (SCG), which will be described later.
이하 설명의 편의를 위하여, 본 개시는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, the present disclosure uses terms and names defined in the 3rd Generation Partnership Project Long Term Evolution (3GPP LTE) standard. However, the present disclosure is not limited by the above terms and names, and can be equally applied to systems complying with other standards.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다. Hereinafter, the base station is the entity that performs resource allocation for the terminal and may be at least one of gNode B, eNode B, Node B, BS (Base Station), wireless access unit, base station controller, or node on the network. A terminal may include a UE (User Equipment), MS (Mobile Station), a cellular phone, a smartphone, a computer, or a multimedia system capable of performing communication functions. Of course, it is not limited to the above example.
특히 본 개시는 3GPP NR (5세대 이동통신 표준)에 적용할 수 있다. 또한 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 발명에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다. 또한 단말이라는 용어는 핸드폰, NB-IoT 기기들, 센서들 뿐만아니라 또 다른 무선 통신 기기들을 나타낼 수 있다. In particular, the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard). In addition, this disclosure provides intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services) based on 5G communication technology and IoT-related technology. etc.) can be applied. In the present invention, eNB may be used interchangeably with gNB for convenience of explanation. That is, a base station described as an eNB may represent a gNB. Additionally, the term terminal can refer to mobile phones, NB-IoT devices, sensors, as well as other wireless communication devices.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. Wireless communication systems have moved away from providing early voice-oriented services to, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), and LTE-Advanced. Broadband wireless that provides high-speed, high-quality packet data services such as communication standards such as (LTE-A), LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e. It is evolving into a communication system.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(DL; DownLink)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(UL; UpLink)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE; User Equipment 또는 MS; Mobile Station)이 기지국(eNode B 또는 BS; Base Station)으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.As a representative example of a broadband wireless communication system, the LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) in the downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink (UL). ) method is adopted. Uplink refers to a wireless link in which a terminal (UE; User Equipment or MS; Mobile Station) transmits data or control signals to a base station (eNode B or BS; Base Station), and downlink refers to a wireless link in which the base station transmits data or control signals to the terminal. It refers to a wireless link that transmits signals. The multiple access method described above differentiates each user's data or control information by allocating and operating the time-frequency resources to carry data or control information for each user so that they do not overlap, that is, orthogonality is established. .
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 동시에 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(eMBB; Enhanced Mobile BroadBand), 대규모 기계형 통신(mMTC; massive Machine Type Communication), 초신뢰 저지연 통신(URLLC; Ultra Reliability Low Latency Communication) 등이 있다. As a future communication system after LTE, that is, the 5G communication system must be able to freely reflect the various requirements of users and service providers, so services that simultaneously satisfy various requirements must be supported. Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). There is.
일부 실시예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 할 수 있다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 할 수 있다. 이와 같은 요구 사항을 만족시키기 위해, 5G 통신 시스템에서는 더욱 향상된 다중 안테나 (MIMO; Multi Input Multi Output) 전송 기술을 포함하여 다양한 송수신 기술의 향상을 요구될 수 있다. 또한 현재의 LTE가 사용하는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호를 전송하는 반면에 5G 통신시스템은 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. According to some embodiments, eMBB may aim to provide more improved data transmission rates than those supported by existing LTE, LTE-A, or LTE-Pro. For example, in a 5G communication system, eMBB must be able to provide a peak data rate of 20Gbps in the downlink and 10Gbps in the uplink from the perspective of one base station. In addition, the 5G communication system may need to provide the maximum transmission rate and at the same time provide an increased user perceived data rate. In order to meet these requirements, the 5G communication system may require improvements in various transmission and reception technologies, including more advanced multi-antenna (MIMO; Multi Input Multi Output) transmission technology. In addition, while the current LTE transmits signals using a maximum of 20 MHz transmission bandwidth in the 2 GHz band, the 5G communication system uses a frequency bandwidth wider than 20 MHz in the 3 to 6 GHz or above 6 GHz frequency band, meeting the requirements of the 5G communication system. Data transfer speed can be satisfied.
동시에, 5G 통신시스템에서 사물 인터넷(IoT; Internet of Thing)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지가 요구될 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10~15년과 같이 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다. At the same time, mMTC is being considered to support application services such as Internet of Things (IoT) in 5G communication systems. In order to efficiently provide the Internet of Things, mMTC may require support for access to a large number of terminals within a cell, improved coverage of terminals, improved battery time, and reduced terminal costs. Since the Internet of Things provides communication functions by attaching various sensors and various devices, it must be able to support a large number of terminals (for example, 1,000,000 terminals/km 2 ) within a cell. Additionally, due to the nature of the service, terminals supporting mMTC are likely to be located in shadow areas that cannot be covered by cells, such as the basement of a building, so wider coverage may be required compared to other services provided by the 5G communication system. Terminals that support mMTC must be composed of low-cost terminals, and since it is difficult to frequently replace the terminal's battery, a very long battery life time, such as 10 to 15 years, may be required.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmanned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스 등에 사용될 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연(초저지연) 및 매우 높은 신뢰도(초신뢰도)를 제공해야 할 수 있다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 가질 수 있다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(TTI; Transmit Time Interval)를 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구될 수 있다.Lastly, in the case of URLLC, it is a cellular-based wireless communication service used for specific purposes (mission-critical), such as remote control of robots or machinery, industrial automation, It can be used for services such as unmanned aerial vehicles, remote health care, and emergency alerts. Therefore, the communication provided by URLLC may need to provide very low latency (ultra-low latency) and very high reliability (ultra-reliability). For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds and may have a packet error rate of 10 -5 or less. Therefore, for services supporting URLLC, the 5G system must provide a smaller Transmit Time Interval (TTI) than other services, and at the same time, a design that requires allocating wide resources in the frequency band to ensure the reliability of the communication link. Specifications may be required.
전술한 5G 통신 시스템에서 고려되는 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 이 때, 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스 간에 서로 다른 송수신 기법 및 송수신 파라미터를 사용할 수 있다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.The three services considered in the above-described 5G communication system, namely eMBB, URLLC, and mMTC, can be multiplexed and transmitted in one system. At this time, different transmission/reception techniques and transmission/reception parameters can be used between services to satisfy the different requirements of each service. However, the above-described mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which this disclosure is applied are not limited to the above-described examples.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 5G(또는 NR, 차세대 이동 통신) 시스템을 일례로서 본 발명의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시예가 적용될 수 있다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.In addition, hereinafter, embodiments of the present invention will be described using LTE, LTE-A, LTE Pro or 5G (or NR, next-generation mobile communication) systems as examples, but the present invention can also be applied to other communication systems with similar technical background or channel type. Examples of may be applied. In addition, the embodiments of the present invention may be applied to other communication systems through some modifications without significantly departing from the scope of the present invention at the discretion of a person with skilled technical knowledge.
도 1은 본 개시의 일 실시예에 따른 LTE 시스템의 구조를 도시하는 도면이다. Figure 1 is a diagram showing the structure of an LTE system according to an embodiment of the present disclosure.
도 1을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(1-05, 1-10, 1-15, 1-20)과 이동성 관리 엔티티 (Mobility Management Entity, MME)(1-25) 및 S-GW(1-30, Serving-Gateway)로 구성될 수 있다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(1-35)은 ENB(1-05 내지 1-20) 및 S-GW(1-30)를 통해 외부 네트워크에 접속할 수 있다.Referring to FIG. 1, as shown, the wireless access network of the LTE system includes a next-generation base station (Evolved Node B, hereinafter referred to as ENB, Node B or base station) (1-05, 1-10, 1-15, 1-20) and It may be composed of a Mobility Management Entity (MME) (1-25) and S-GW (1-30, Serving-Gateway). User equipment (hereinafter referred to as UE or terminal) (1-35) can access an external network through ENB (1-05 to 1-20) and S-GW (1-30).
도 1에서 ENB(1-05 내지 1-20)는 UMTS 시스템의 기존 노드 B(Node B)에 대응될 수 있다. ENB는 UE(1-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행할 수 있다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요할 수 있으며, 이를 ENB(1-05 ~ 1-20)가 담당할 수 있다. 하나의 ENB는 통상 다수의 셀들을 제어할 수 있다. 예를 들면, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, OFDM)을 무선 접속 기술로 사용할 수 있다. 또한 ENB는 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, AMC) 방식을 적용할 수 있다. S-GW(1a-30)는 데이터 베어러(bearer)를 제공하는 장치이며, MME(1-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거할 수 있다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결될 수 있다. In FIG. 1, ENBs 1-05 to 1-20 may correspond to the existing Node B of the UMTS system. The ENB is connected to the UE (1-35) through a wireless channel and can perform a more complex role than the existing Node B. In the LTE system, all user traffic, including real-time services such as VoIP (Voice over IP) through the Internet protocol, can be serviced through a shared channel. Therefore, a device that collects status information such as buffer status, available transmission power status, and channel status of UEs and performs scheduling may be needed, and the ENB (1-05 to 1-20) may be responsible for this. One ENB can typically control multiple cells. For example, in order to implement a transmission speed of 100 Mbps, the LTE system can use Orthogonal Frequency Division Multiplexing (OFDM) as a wireless access technology in, for example, a 20 MHz bandwidth. Additionally, the ENB can apply the Adaptive Modulation & Coding (AMC) method, which determines the modulation scheme and channel coding rate according to the channel status of the terminal. The S-GW (1a-30) is a device that provides a data bearer, and can create or remove a data bearer under the control of the MME (1-25). The MME is a device that handles various control functions as well as mobility management functions for the terminal and can be connected to multiple base stations.
도 2는 본 개시의 일 실시예에 따른 LTE 시스템의 무선 프로토콜 구조를 나타낸 도면이다.Figure 2 is a diagram showing the wireless protocol structure of an LTE system according to an embodiment of the present disclosure.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 패킷 데이터 컨버전스 프로토콜(Packet Data Convergence Protocol, PDCP)(2-05, 2-40), 무선 링크 제어(Radio Link Control, RLC)(2-10, 2-35), 매체 액세스 제어(Medium Access Control, MAC)(2-15, 2-30)를 포함할 수 있다. PDCP는 IP(internet protocol) 헤더 압축/복원 등의 동작을 담당할 수 있다. PDCP의 주요 기능은 하기와 같이 요약될 수 있다. 물론 하기 예시에 제한되는 것은 아니다.Referring to Figure 2, the wireless protocols of the LTE system are Packet Data Convergence Protocol (PDCP) (2-05, 2-40) and Radio Link Control (RLC) (Radio Link Control, RLC) in the terminal and ENB, respectively. 2-10, 2-35) and Medium Access Control (MAC) (2-15, 2-30). PDCP may be responsible for operations such as IP (internet protocol) header compression/restoration. The main functions of PDCP can be summarized as follows. Of course, it is not limited to the examples below.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)- Header compression and decompression (ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)- Transfer of user data
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)- In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)- Order reordering function (For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)- Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)- Retransmission function (Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)- Encryption and decryption function (Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)- Timer-based SDU discard in uplink.
일 실시예에 따르면, 무선 링크 제어(Radio Link Control, RLC)(2-10, 2-35)는 PDCP 패킷 데이터 유닛(Packet Data Unit, PDU)을 적절한 크기로 재구성해서 ARQ(automatic repeat request) 동작 등을 수행할 수 있다. RLC의 주요 기능은 하기와 같이 요약될 수 있다. 물론 하기 예시에 제한되는 것은 아니다. According to one embodiment, the Radio Link Control (RLC) (2-10, 2-35) reconfigures the PDCP Packet Data Unit (PDU) to an appropriate size to perform an automatic repeat request (ARQ) operation. etc. can be performed. The main functions of RLC can be summarized as follows. Of course, it is not limited to the examples below.
- 데이터 전송 기능(Transfer of upper layer PDUs)- Data transfer function (Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))- ARQ function (Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))- Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer)
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))- Re-segmentation of RLC data PDUs (only for AM data transfer)
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)- Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))- Duplicate detection (only for UM and AM data transfer)
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))- Error detection function (Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))- RLC SDU deletion function (RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)- RLC re-establishment function
일 실시예에 따르면, MAC(2-15, 2-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행할 수 있다. MAC의 주요 기능은 하기와 같이 요약될 수 있다. 물론 하기 예시에 제한되지 않는다.According to one embodiment, MAC (2-15, 2-30) is connected to several RLC layer devices configured in one terminal, and performs an operation of multiplexing RLC PDUs to MAC PDUs and demultiplexing RLC PDUs from MAC PDUs. can do. The main functions of MAC can be summarized as follows. Of course, this is not limited to the examples below.
- 맵핑 기능(Mapping between logical channels and transport channels)- Mapping function (Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)- Multiplexing and demultiplexing function (Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)- Scheduling information reporting
- HARQ 기능(Error correction through HARQ)- HARQ function (Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)- Priority handling between logical channels of one UE
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)- Priority handling between UEs by means of dynamic scheduling
- MBMS 서비스 확인 기능(MBMS service identification)- MBMS service identification function
- 전송 포맷 선택 기능(Transport format selection)- Transport format selection function
- 패딩 기능(Padding)- Padding function
일 실시예에 따르면, 물리 계층(2-20, 2-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 할 수 있다. 물론 하기 예시에 제한되지 않는다.According to one embodiment, the physical layer (2-20, 2-25) channel codes and modulates upper layer data, creates an OFDM symbol and transmits it over a wireless channel, or demodulates an OFDM symbol received through a wireless channel and transmits it to the channel. You can decode and transmit it to the upper layer. Of course, this is not limited to the examples below.
도 3은 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.Figure 3 is a diagram showing the structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 3을 참조하면, 차세대 이동통신 시스템(이하 NR 또는 5g)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 또는 NR 기지국)(3-10)과 차세대 무선 코어 네트워크(New Radio Core Network, NR CN)(3-05)로 구성될 수 있다. 차세대 무선 사용자 단말(New Radio User Equipment, NR UE 또는 단말)(3-15)은 NR gNB(3-10) 및 NR CN (3-05)를 통해 외부 네트워크에 접속할 수 있다.Referring to Figure 3, the radio access network of the next-generation mobile communication system (hereinafter referred to as NR or 5g) includes a next-generation base station (New Radio Node B, hereinafter referred to as NR gNB or NR base station) (3-10) and a next-generation wireless core network (New Radio Core). Network, NR CN) (3-05). The next-generation wireless user equipment (New Radio User Equipment, NR UE or UE) (3-15) can access an external network through NR gNB (3-10) and NR CN (3-05).
도 3에서 NR gNB(3-10)는 기존 LTE 시스템의 eNB(Evolved Node B)에 대응될 수 있다. NR gNB는 NR UE(3-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요할 수 있으며, 이를 NR gNB(3-10)가 담당할 수 있다. 하나의 NR gNB(3-10)는 다수의 셀들을 제어할 수 있다. 차세대 이동통신 시스템에서는, 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서, 현재의 최대 대역폭 이상의 대역폭이 적용될 수 있다. 또한, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, OFDM)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 사용될 수 있다. In FIG. 3, the NR gNB (3-10) may correspond to an Evolved Node B (eNB) of the existing LTE system. NR gNB is connected to NR UE (3-15) through a wireless channel and can provide superior services than the existing Node B. In the next-generation mobile communication system, all user traffic can be serviced through a shared channel. Therefore, a device that collects status information such as buffer status, available transmission power status, and channel status of UEs and performs scheduling may be needed, and the NR gNB 3-10 may be responsible for this. One NR gNB (3-10) can control multiple cells. In the next-generation mobile communication system, in order to implement ultra-fast data transmission compared to the current LTE, a bandwidth exceeding the current maximum bandwidth may be applied. Additionally, beamforming technology may be additionally used using Orthogonal Frequency Division Multiplexing (OFDM) as a wireless access technology.
또한, 일 실시예에 따르면, NR gNB(3-10)는 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식이 적용될 수 있다. NR CN(3-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행할 수 있다. NR CN(3-05)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME(3-25)와 네트워크 인터페이스를 통해 연결될 수 있다. MME(3-25)는 기존 기지국인 eNB(3-30)과 연결될 수 있다.Additionally, according to one embodiment, the NR gNB (3-10) uses Adaptive Modulation & Coding (hereinafter referred to as Adaptive Modulation & Coding) to determine the modulation scheme and channel coding rate according to the channel status of the terminal. (referred to as AMC) method may be applied. NR CN (3-05) can perform functions such as mobility support, bearer setup, and QoS setup. NR CN (3-05) is a device responsible for various control functions as well as mobility management functions for the terminal and can be connected to multiple base stations. Additionally, the next-generation mobile communication system can be linked to the existing LTE system, and NR CN can be connected to the MME (3-25) through a network interface. MME (3-25) can be connected to eNB (3-30), which is an existing base station.
도 4는 본 개시의 일 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다. Figure 4 is a diagram showing the wireless protocol structure of a next-generation mobile communication system according to an embodiment of the present disclosure.
도 4를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR 서비스 데이터 적응 프로토콜(Service Data Adaptation Protocol, SDAP)(4-01, 4-45), NR PDCP(4-05, 4-40), NR RLC(4-10, 4-35), NR MAC(4-15, 4-30)를 포함할 수 있다. Referring to FIG. 4, the wireless protocols of the next-generation mobile communication system are NR Service Data Adaptation Protocol (SDAP) (4-01, 4-45) and NR PDCP (4-05, 4-05) in the terminal and NR base station, respectively. 4-40), NR RLC (4-10, 4-35), and NR MAC (4-15, 4-30).
일 실시예에 따르면, NR SDAP(4-01, 4-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 다만, 하기 예시에 제한되지 않는다.According to one embodiment, the main functions of NR SDAP (4-01, 4-45) may include some of the following functions. However, it is not limited to the examples below.
- 사용자 데이터의 전달 기능(transfer of user plane data)- Transfer of user plane data
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)- Mapping function of QoS flow and data bearer for uplink and downlink (mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)- Marking QoS flow ID in both DL and UL packets for uplink and downlink
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs). - A function to map the relective QoS flow to the data bearer for uplink SDAP PDUs (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 무선 자원 제어(Radio Resource Control, RRC) 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. 또한 SDAP 계층 장치는 SDAP 헤더가 설정된 경우, 단말은, SDAP 헤더의 비접속 계층(Non-Access Stratum, NAS) QoS(Quality of Service) 반영 설정 1비트 지시자(NAS reflective QoS)와, 접속 계층 (Access Stratum, AS) QoS 반영 설정 1비트 지시자(AS reflective QoS)로, 단말이 상향 링크와 하향 링크의 QoS 플로우(flow)와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. 일 실시예에 따르면, SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 일 실시에에 따르면, QoS 정보는 원활한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다. For SDAP layer devices, the terminal uses a Radio Resource Control (RRC) message to determine whether to use the header of the SDAP layer device for each PDCP layer device, for each bearer, or for each logical channel, or whether to use the function of the SDAP layer device. can be set. In addition, when the SDAP layer device has an SDAP header set, the terminal sets a 1-bit indicator (NAS reflective QoS) that reflects the Non-Access Stratum (NAS) QoS (Quality of Service) in the SDAP header and the access layer (Access Stratum). Stratum, AS) QoS reflection setting 1-bit indicator (AS reflective QoS) can indicate that the terminal can update or reset mapping information for uplink and downlink QoS flows and data bearers. According to one embodiment, the SDAP header may include QoS flow ID information indicating QoS. According to one implementation, QoS information can be used as data processing priority, scheduling information, etc. to support smooth service.
일 실시예에 따르면, NR PDCP (4-05, 4-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 다만, 하기 예시에 제한되지 않는다.According to one embodiment, the main functions of NR PDCP (4-05, 4-40) may include some of the following functions. However, it is not limited to the examples below.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)- Header compression and decompression (ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)- Transfer of user data
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)- In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)- Out-of-sequence delivery of upper layer PDUs
- 순서 재정렬 기능(PDCP PDU reordering for reception)- Order reordering function (PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)- Duplicate detection of lower layer SDUs
- 재전송 기능(Retransmission of PDCP SDUs)- Retransmission of PDCP SDUs
- 암호화 및 복호화 기능(Ciphering and deciphering)- Encryption and decryption function (Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)- Timer-based SDU discard in uplink.
상술한 내용에서, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 의미할 수 있다. NR PDCP 장치의 순서 재정렬 기능(reordering)은 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 또는 순서를 고려하지 않고 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다. In the above description, the reordering function of the NR PDCP device may mean the function of reordering PDCP PDUs received from the lower layer in order based on PDCP sequence number (SN). The reordering function of the NR PDCP device may include the function of delivering data to a higher layer in the reordered order, or may include the function of delivering data directly without considering the order, and may include the function of transmitting data directly without considering the order, and reordering the data may cause loss. It may include a function to record lost PDCP PDUs, it may include a function to report the status of lost PDCP PDUs to the transmitting side, and it may include a function to request retransmission of lost PDCP PDUs. there is.
일 실시예에 따르면, NR RLC(4-10, 4-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 다만 하기 예시에 제한되지 않는다.According to one embodiment, the main functions of NR RLC (4-10, 4-35) may include some of the following functions. However, it is not limited to the examples below.
- 데이터 전송 기능(Transfer of upper layer PDUs)- Data transfer function (Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)- In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)- Out-of-sequence delivery of upper layer PDUs
- ARQ 기능(Error Correction through ARQ)- ARQ function (Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)- Concatenation, segmentation and reassembly of RLC SDUs
- 재분할 기능(Re-segmentation of RLC data PDUs)- Re-segmentation of RLC data PDUs
- 순서 재정렬 기능(Reordering of RLC data PDUs)- Reordering of RLC data PDUs
- 중복 탐지 기능(Duplicate detection)- Duplicate detection function
- 오류 탐지 기능(Protocol error detection)- Protocol error detection
- RLC SDU 삭제 기능(RLC SDU discard)- RLC SDU deletion function (RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)- RLC re-establishment function
상술한 내용에서, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미할 수 있다. 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 이를 재조립하여 전달하는 기능을 포함할 수 있다. In the above description, the in-sequence delivery function of the NR RLC device may mean the function of delivering RLC SDUs received from the lower layer to the upper layer in order. When one RLC SDU is originally received by being divided into multiple RLC SDUs, the in-sequence delivery function of the NR RLC device may include the function of reassembling and delivering it.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 수신한 RLC PDU들을 RLC SN(sequence number) 또는 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.The in-sequence delivery function of the NR RLC device may include a function to rearrange the received RLC PDUs based on the RLC SN (sequence number) or PDCP SN (sequence number), and rearrange the order to prevent loss. It may include a function to record lost RLC PDUs, it may include a function to report the status of lost RLC PDUs to the transmitting side, and it may include a function to request retransmission of lost RLC PDUs. there is.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.The in-sequence delivery function of the NR RLC device may include a function of delivering only the RLC SDUs up to the lost RLC SDU in order when there is a lost RLC SDU to the upper layer.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.The in-sequence delivery function of the NR RLC device may include a function of delivering all RLC SDUs received before the timer starts to the upper layer in order if a predetermined timer expires even if there are lost RLC SDUs. there is.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. The in-sequence delivery function of the NR RLC device may include a function of delivering all RLC SDUs received to date to the upper layer in order if a predetermined timer expires even if there are lost RLC SDUs.
NR RLC 장치는, 일련번호(Sequence number)의 순서와 상관없이(Out-of sequence delivery) RLC PDU들을 수신하는 순서대로 처리하여 NR PDCP 장치로 전달할 수 있다. The NR RLC device can process RLC PDUs in the order they are received and deliver them to the NR PDCP device, regardless of the order of the sequence number (out-of sequence delivery).
NR RLC 장치가 세그먼트(segment)를 수신할 경우에는, 버퍼에 저장되어 있거나 추후에 수신될 세그먼트들을 수신하여, 온전한 하나의 RLC PDU로 재구성한 후, 이를 NR PDCP 장치로 전달할 수 있다. When the NR RLC device receives a segment, it can receive segments stored in a buffer or to be received later, reconstruct them into one complete RLC PDU, and then transmit it to the NR PDCP device.
NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고, NR MAC 계층에서 기능을 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다. The NR RLC layer may not include a concatenation function, and may perform the function in the NR MAC layer or replace it with the multiplexing function of the NR MAC layer.
상술한 내용에서, NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 의미할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다. In the above description, the out-of-sequence delivery function of the NR RLC device may refer to the function of directly delivering RLC SDUs received from a lower layer to the upper layer regardless of their order. The out-of-sequence delivery function of the NR RLC device may include a function of reassembling and delivering when one RLC SDU is originally received by being divided into several RLC SDUs. The out-of-sequence delivery function of the NR RLC device may include a function of storing the RLC SN or PDCP SN of received RLC PDUs, sorting the order, and recording lost RLC PDUs.
일 실시예에 따르면, NR MAC(4-15, 4-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 다만, 하기 예시에 제한되지 않는다.According to one embodiment, the NR MAC (4-15, 4-30) may be connected to several NR RLC layer devices configured in one terminal, and the main functions of the NR MAC may include some of the following functions. . However, it is not limited to the examples below.
- 맵핑 기능(Mapping between logical channels and transport channels)- Mapping function (Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)- Multiplexing and demultiplexing function (Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)- Scheduling information reporting
- HARQ 기능(Error correction through HARQ)- HARQ function (Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)- Priority handling between logical channels of one UE
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)- Priority handling between UEs by means of dynamic scheduling
- MBMS 서비스 확인 기능(MBMS service identification)- MBMS service identification function
- 전송 포맷 선택 기능(Transport format selection)- Transport format selection function
- 패딩 기능(Padding)- Padding function
NR PHY 계층(4-20, 4-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.The NR PHY layer (4-20, 4-25) channel-codes and modulates the upper layer data, creates OFDM symbols and transmits them to the wireless channel, or demodulates and channel decodes the OFDM symbols received through the wireless channel and transmits them to the upper layer. The transfer operation can be performed.
도 5는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.Figure 5 is a block diagram showing the internal structure of a terminal to which the present invention is applied.
도 5를 참고하면, 단말은 RF(Radio Frequency)처리부(5-10), 기저대역(baseband)처리부(5-20), 저장부(5-30), 제어부(5-40)를 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니며 단말은 도 5에 도시된 구성보다 더 적은 구성을 포함하거나, 더 많은 구성을 포함할 수 있다.Referring to Figure 5, the terminal may include an RF (Radio Frequency) processing unit 5-10, a baseband processing unit 5-20, a storage unit 5-30, and a control unit 5-40. there is. Of course, it is not limited to the above example, and the terminal may include fewer or more components than those shown in FIG. 5.
RF처리부(5-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(5-10)는 기저대역처리부(5-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, RF처리부(5-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 물론 상기 예시에 제한되지 않는다. 도 5에서는, 하나의 안테나만이 도시되었으나, 단말은 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(5-10)는 복수의 RF 체인들을 포함할 수 있다. 또한, RF처리부(5-10)는 빔포밍(beamforming)을 수행할 수 있다. 빔포밍을 위해, RF처리부(5-10)는 복수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 RF 처리부(5-10)는 MIMO(Multi Input Multi Output)를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. The RF processing unit 5-10 can perform functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit 5-10 up-converts the baseband signal provided from the baseband processing unit 5-20 into an RF band signal and transmits it through an antenna, and converts the RF band signal received through the antenna into a baseband signal. It can be down-converted into a signal. For example, the RF processing unit 5-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), etc. there is. Of course, it is not limited to the above example. In FIG. 5, only one antenna is shown, but the terminal may be equipped with multiple antennas. Additionally, the RF processing unit 5-10 may include a plurality of RF chains. Additionally, the RF processing unit 5-10 can perform beamforming. For beamforming, the RF processing unit 5-10 can adjust the phase and size of each signal transmitted and received through a plurality of antennas or antenna elements. Additionally, the RF processing unit 5-10 can perform MIMO (Multi Input Multi Output) and can receive multiple layers when performing a MIMO operation.
기저대역처리부(5-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 기저대역처리부(5-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 기저대역처리부(5-20)은 RF처리부(5-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(5-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 기저대역처리부(5-20)은 RF처리부(5-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform)를 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.The baseband processing unit 5-20 performs a conversion function between baseband signals and bit strings according to the physical layer specifications of the system. For example, when transmitting data, the baseband processing unit 5-20 generates complex symbols by encoding and modulating the transmission bit string. Additionally, when receiving data, the baseband processing unit 5-20 can restore the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit 5-10. For example, when following the OFDM (orthogonal frequency division multiplexing) method, when transmitting data, the baseband processing unit 5-20 generates complex symbols by encoding and modulating the transmission bit string, and maps the complex symbols to subcarriers. Afterwards, OFDM symbols are configured through IFFT (inverse fast Fourier transform) operation and CP (cyclic prefix) insertion. In addition, when receiving data, the baseband processing unit 5-20 divides the baseband signal provided from the RF processing unit 5-10 into OFDM symbol units, and signals mapped to subcarriers through FFT (fast Fourier transform). After restoring the received bit string, the received bit string can be restored through demodulation and decoding.
기저대역처리부(5-20) 및 RF처리부(5-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 기저대역처리부(5-20) 및 RF처리부(5-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 기저대역처리부(5-20) 및 RF처리부(5-10) 중 적어도 하나는 서로 다른 복수의 무선 접속 기술들을 지원하기 위해 복수의 통신 모듈들을 포함할 수 있다. 또한, 기저대역처리부(5-20) 및 RF처리부(5-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다. 단말은 기저대역처리부(5-20) 및 RF처리부(5-10)을 이용하여 기지국과 신호를 송수신할 수 있으며, 신호는 제어 정보 및 데이터를 포함할 수 있다.The baseband processing unit 5-20 and the RF processing unit 5-10 transmit and receive signals as described above. The baseband processing unit 5-20 and the RF processing unit 5-10 may be referred to as a transmitting unit, a receiving unit, a transceiving unit, or a communication unit. Furthermore, at least one of the baseband processing unit 5-20 and the RF processing unit 5-10 may include a plurality of communication modules to support a plurality of different wireless access technologies. Additionally, at least one of the baseband processing unit 5-20 and the RF processing unit 5-10 may include different communication modules to process signals in different frequency bands. For example, different wireless access technologies may include wireless LAN (eg, IEEE 802.11), cellular network (eg, LTE), etc. Additionally, the different frequency bands may include a super high frequency (SHF) (e.g., 2.NRHz, NRhz) band and a millimeter wave (e.g., 60GHz) band. The terminal can transmit and receive signals with the base station using the baseband processing unit 5-20 and the RF processing unit 5-10, and the signals may include control information and data.
저장부(5-30)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 저장부(5-30)는 제2 무선 접속 기술을 이용하여 무선 통신을 수행하는 접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 저장부(5-30)는 제어부(5-40)의 요청에 따라 저장된 데이터를 제공한다. 저장부(5-30)는 롬 (ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(5-30)는 복수 개의 메모리로 구성될 수도 있다.The storage unit 5-30 stores data such as basic programs, application programs, and setting information for operation of the terminal. In particular, the storage unit 5-30 may store information related to an access node that performs wireless communication using a second wireless access technology. Additionally, the storage unit 5-30 provides stored data upon request from the control unit 5-40. The storage unit 5-30 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media. Additionally, the storage unit 5-30 may be composed of a plurality of memories.
제어부(5-40)는 단말의 전반적인 동작들을 제어한다. 예를 들어, 제어부(5-40)는 기저대역처리부(5-20) 및 RF처리부(5-10)을 통해 신호를 송수신한다. 또한, 제어부(5-40)는 저장부(5-30)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(5-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(5-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 또한 단말 내의 적어도 하나의 구성은 하나의 칩으로 구현될 수 있다.The control unit 5-40 controls the overall operations of the terminal. For example, the control unit 5-40 transmits and receives signals through the baseband processing unit 5-20 and the RF processing unit 5-10. Additionally, the control unit 5-40 writes and reads data into the storage unit 5-30. For this purpose, the control unit 5-40 may include at least one processor. For example, the control unit 5-40 may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs. Additionally, at least one component within the terminal may be implemented with one chip.
도 6은 본 개시의 일 실시예에 따른 기지국의 구성을 나타낸 블록도이다.Figure 6 is a block diagram showing the configuration of a base station according to an embodiment of the present disclosure.
도 6을 참조하면, 기지국은 RF처리부(6-10), 기저대역처리부(6-20), 백홀통신부(6-30), 저장부(6-40), 제어부(6-50)를 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니며 기지국은 도 6에 도시된 구성보다 더 적은 구성을 포함하거나, 더 많은 구성을 포함할 수 있다.Referring to FIG. 6, the base station may include an RF processing unit 6-10, a baseband processing unit 6-20, a backhaul communication unit 6-30, a storage unit 6-40, and a control unit 6-50. You can. Of course, it is not limited to the above example, and the base station may include fewer or more configurations than the configuration shown in FIG. 6.
RF처리부(6-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(6-10)는 기저대역처리부(6-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, RF처리부(6-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 도 6에서는, 하나의 안테나만이 도시되었으나, 상기 RF 처리부(6-10)는 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(6-10)는 복수의 RF 체인들을 포함할 수 있다. 또한 RF처리부(6-10)는 빔포밍을 수행할 수 있다. 빔포밍을 위해, RF처리부(6-10)는 복수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다. The RF processing unit 6-10 can perform functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit 6-10 up-converts the baseband signal provided from the baseband processing unit 6-20 into an RF band signal and transmits it through an antenna, and converts the RF band signal received through the antenna into a baseband signal. Downconvert it to a signal. For example, the RF processing unit 6-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, etc. In Figure 6, only one antenna is shown, but the RF processing unit 6-10 may be equipped with a plurality of antennas. Additionally, the RF processing unit 6-10 may include a plurality of RF chains. Additionally, the RF processing unit 6-10 can perform beamforming. For beamforming, the RF processing unit 6-10 can adjust the phase and size of each signal transmitted and received through a plurality of antennas or antenna elements. The RF processing unit can perform downward MIMO operation by transmitting one or more layers.
기저대역처리부(6-20)는 제1 무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(6-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(6-20)은 상기 RF처리부(6-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(6-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 기저대역처리부(6-20)은 RF처리부(6-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 기저대역처리부(6-20) 및 RF처리부(6-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 기저대역처리부(6-20) 및 RF처리부(6-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다. 기지국은 기저대역처리부(6-20) 및 RF처리부(6-10)을 이용하여 단말과 신호를 송수신할 수 있으며, 신호는 제어 정보 및 데이터를 포함할 수 있다.The baseband processing unit 6-20 may perform a conversion function between a baseband signal and a bit string according to the physical layer standard of the first wireless access technology. For example, when transmitting data, the baseband processing unit 6-20 may generate complex symbols by encoding and modulating the transmission bit stream. Additionally, when receiving data, the baseband processing unit 6-20 can restore the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit 6-10. For example, when following the OFDM method, when transmitting data, the baseband processing unit 6-20 generates complex symbols by encoding and modulating the transmission bit string, maps the complex symbols to subcarriers, and performs IFFT operation and OFDM symbols are configured through CP insertion. In addition, when receiving data, the baseband processing unit 6-20 divides the baseband signal provided from the RF processing unit 6-10 into OFDM symbols, restores the signals mapped to subcarriers through FFT operation, and then , the received bit string can be restored through demodulation and decoding. The baseband processing unit 6-20 and the RF processing unit 6-10 can transmit and receive signals as described above. Accordingly, the baseband processing unit 6-20 and the RF processing unit 6-10 may be referred to as a transmitting unit, a receiving unit, a transceiving unit, a communication unit, or a wireless communication unit. The base station can transmit and receive signals with the terminal using the baseband processing unit 6-20 and the RF processing unit 6-10, and the signals can include control information and data.
백홀통신부(6-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 백홀통신부(6-30)는 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환할 수 있다. 백홀통신부(6-30)은 통신부에 포함될 수도 있다. The backhaul communication unit 6-30 provides an interface for communicating with other nodes in the network. In other words, the backhaul communication unit 6-30 converts a bit string transmitted from the main base station to another node, for example, an auxiliary base station, a core network, etc., into a physical signal, and converts a physical signal received from another node into a bit string. can do. The backhaul communication unit 6-30 may be included in the communication unit.
저장부(6-40)는 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부(6-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 저장부(6-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 저장부(6-40)는 제어부(6-50)의 요청에 따라 저장된 데이터를 제공한다. 저장부(6-40)는 롬 (ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(6-40)는 복수 개의 메모리로 구성될 수도 있다. 일부 실시예에 따르면, 일부 실시예에 따르면, 저장부(6-40)는 본 개시에 따른 버퍼 상태 보고 방법을 수행하기 위한 프로그램을 저장할 수도 있다.The storage unit 6-40 stores data such as basic programs, application programs, and setting information for operation of the base station. The storage unit 6-40 can store information about bearers assigned to the connected terminal, measurement results reported from the connected terminal, etc. Additionally, the storage unit 6-40 may store information that serves as a criterion for determining whether to provide or suspend multiple connections to the terminal. Additionally, the storage unit 6-40 provides stored data upon request from the control unit 6-50. The storage unit 6-40 may be composed of a storage medium such as ROM, RAM, hard disk, CD-ROM, and DVD, or a combination of storage media. Additionally, the storage unit 6-40 may be composed of a plurality of memories. According to some embodiments, the storage unit 6-40 may store a program for performing the buffer status reporting method according to the present disclosure.
제어부(6-50)는 기지국의 전반적인 동작들을 제어한다. 예를 들어, 제어부(6-50)는 기저대역처리부(6-20) 및 RF처리부(6-10)을 통해 또는 백홀통신부(6-30)을 통해 신호를 송수신한다. 또한, 제어부(6-50)는 저장부(6-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(6-50)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 기지국의 적어도 하나의 구성은 하나의 칩으로 구현될 수 있다.The control unit 6-50 controls the overall operations of the base station. For example, the control unit 6-50 transmits and receives signals through the baseband processing unit 6-20 and the RF processing unit 6-10 or through the backhaul communication unit 6-30. Additionally, the control unit 6-50 writes and reads data into the storage unit 6-40. For this purpose, the control unit 6-50 may include at least one processor. Additionally, at least one component of the base station may be implemented with one chip.
본 개시에서는 네트워크 제어 리피터(network controlled repeater, NCR)를 하나의 entity로 지칭하며, 동작의 측면에서 하나의 NCR은 NCR-MT(mobile termination), NCR-FWD(forwarding)으로 구분하여 언급한다.In this disclosure, a network controlled repeater (NCR) is referred to as one entity, and in terms of operation, one NCR is referred to as NCR-MT (mobile termination) and NCR-FWD (forwarding).
도 7은 본 개시의 일 실시예에 따른 네트워크 제어 리피터의 구성을 나타낸 도면이다.Figure 7 is a diagram showing the configuration of a network control repeater according to an embodiment of the present disclosure.
네트워크 제어 리피터는 NCR(network controlled repeater) - MT와 NCR-FWD로 구성되어 있다. MT는 mobile termination의 약자로, NCR 동작을 위한 제어 신호를 서빙 기지국으로부터 수신하고, 제어 정보를 NCR-FWD에 전달하는 역할을 수행할 수 있다. NCR-FWD는 forwarding의 약자로서, 기지국으로부터 수신한 RF 신호를 증폭하여 단말에게 전송하는 역할을 수행한다. NCR-FWD는, NCR-MT로부터 수신된 제어 정보를 통하여 추가적인 동작을 수행할 수 있다. 예를 들어, NCR-FWD는 특정 빔을 사용하여 증폭한 신호를 단말에게 전달하거나 단말이 송신한 신호를 수신할 수 있다. 또한, 일 예로 NCR-FWD는 특정 TDD(time division duplex) 패턴에 따라 기지국으로부터의 신호를 수신/증폭/전달 하거나, 단말로부터의 신호를 수신/증폭/전달을 수행하거나 수행하지 않을 수 있다.The network controlled repeater consists of NCR (network controlled repeater) - MT and NCR-FWD. MT stands for mobile termination, and can receive control signals for NCR operation from the serving base station and transmit control information to NCR-FWD. NCR-FWD stands for forwarding and performs the role of amplifying the RF signal received from the base station and transmitting it to the terminal. NCR-FWD can perform additional operations through control information received from NCR-MT. For example, NCR-FWD can deliver a signal amplified using a specific beam to the terminal or receive a signal transmitted by the terminal. Additionally, as an example, NCR-FWD may or may not receive/amplify/transmit a signal from a base station according to a specific time division duplex (TDD) pattern, or receive/amplify/transmit a signal from a terminal.
상기 동작들을 수행하기 위하여, NCR과 네트워크는 서로를 구분할 수 있어야 한다. 이하에서는 NCR과 네트워크, 즉, 서빙 기지국이 서로를 구분하는 방법 및 그에 따라 NCR에 특정된 설정정보를 주고 받는 방법에 대하여 설명한다. In order to perform the above operations, NCR and the network must be able to distinguish between each other. Below, we will explain how the NCR and the network, that is, the serving base station, distinguish between each other and how to exchange configuration information specific to the NCR accordingly.
셀은 NCR을 제어하기 위한 별도의 셀을 포함할 수 있다. NCR은 상기 별도의 셀에 접속하는 경우에 필요로 하는 동작을 수행할 수 있고, 이를 위하여 상기 별도의 셀로부터 제어정보를 수신할 수 있다. 상기 별도의 셀은, NCR 용도의 셀임을 알리는 지시자를 제공할 필요가 있고, NCR 용도의 셀임을 확인한 NCR은 상기 별도의 셀로 접속 시도를 지속할 수 있다. 일 예로, 서빙 기지국은 일반 단말을 지원할 수 있으며, 일반 단말과 NCR을 동시에 지원하는 기지국이거나 일반 단말과 NCR을 동시에 지원할 수 없는 기지국일 수 있다. 일 예시에 따라 다음의 case 들로 나뉠 수 있다. The cell may include a separate cell for controlling NCR. The NCR can perform operations required when accessing the separate cell, and for this purpose, it can receive control information from the separate cell. The separate cell needs to provide an indicator indicating that it is a cell for NCR use, and the NCR that confirms that it is a cell for NCR use can continue attempting to connect to the separate cell. As an example, the serving base station can support a general terminal and may be a base station that simultaneously supports a general terminal and NCR, or it may be a base station that cannot support a general terminal and NCR at the same time. Depending on the example, it can be divided into the following cases.
NCR 또는 NCR 기능을 지원하는 기지국은, MIB(master information block) 또는 SIB(system information block)에 NCR 지원 지시자를 포함하여 방송할 수 있다. A base station supporting NCR or the NCR function may broadcast including an NCR support indicator in a master information block (MIB) or system information block (SIB).
또 다른 예시에서, 기지국은 SIB 에 intraFreqReselection-NCR bit(IFR bit)을 도입할 수 있다. 해당 bit은 allowed 또는 not-allowed의 값을 가질 수 있다. 이 bit가 존재한다는 것은, 이 셀이 NCR을 지원한다는 것을 의미할 수 있다. NCR-MT는 셀 선택/재선택 후, 이 bit가 SIB에 포함되어 있을 경우, random access를 수행하여 해당 셀에 접속을 시도할 수 있다. 셀 선택/재선택시, 해당 셀의 SIB에 이 bit가 존재하지 않는 경우, NCR-MT는 이 셀을 barred된 것으로 간주하고, intraFreqReselection-NCR bit이 allowed로 설정된 것으로 간주하여, 다른 셀을 선택/재선택 할 때, barred 된 셀과 동일한 주파수의 다른 셀을 선택/재선택할 수 있다. In another example, the base station may introduce intraFreqReselection-NCR bit (IFR bit) in SIB. The bit can have the value of allowed or not-allowed. The presence of this bit may mean that this cell supports NCR. After cell selection/reselection, NCR-MT can attempt to access the cell by performing random access if this bit is included in the SIB. When selecting/reselecting a cell, if this bit does not exist in the SIB of the cell, the NCR-MT considers this cell as barred and the intraFreqReselection-NCR bit is set to allowed, and selects/reselects another cell. When reselecting, you can select/reselect another cell with the same frequency as the barred cell.
보다 구체적인 예로, 이 bit이 SIB에 존재하며 그 값이 not-Allowed이면, NCR-MT는 이 셀에 접속을 시도할 수 있으며, 만약 접속을 시도하는 중에 barred 되었다면, barred된 셀의 주파수가 아닌 다른 주파수의 셀을 선택/재선택시 고려해야 한다. 즉, 해당 주파수 역시 barred된 것으로 고려한다. As a more specific example, if this bit is present in the SIB and its value is not-Allowed, the NCR-MT can attempt to access this cell, and if it is barred while trying to access, it can use a frequency other than the frequency of the barred cell. Frequency must be considered when selecting/reselecting cells. In other words, the corresponding frequency is also considered barred.
이와 달리, 이 bit이 SIB에 존재하며 그 값이 allowed인 경우, NCR-MT는 이 셀에 접속 시도할 수 있으며, 접속을 시도하는 중에 barred 되었다면, barred된 셀의 주파수와 동일한 주파수 상의 셀을 셀 선택/재선택시 고려할 수 있다. On the other hand, if this bit is present in the SIB and its value is allowed, the NCR-MT can attempt to access this cell, and if it is barred while attempting access, it will cell a cell on the same frequency as the frequency of the barred cell. This can be taken into consideration when selecting/reselecting.
NCR-MT는 상기와 같은 방법으로, 셀 선택/재선택의 과정에서 선택적으로 NCR 지원 셀로의 접속을 시도할 수 있다. 그 이후 RRC 연결을 설정(establishment)하는 과정이 존재할 경우, NCR-MT는 해당 셀에게 자신이 NCR entity 또는 NCR-MT임을 알려야 한다. 이를 위한 방법은 다음과 같다:In the same way as above, the NCR-MT can selectively attempt to connect to an NCR-supporting cell during the cell selection/reselection process. After that, if there is a process of establishing an RRC connection, the NCR-MT must inform the corresponding cell that it is an NCR entity or NCR-MT. Here's how to do this:
Case 1: RACH(random access channel) 프리엠블 전송 과정에서 알리는 방법.Case 1: Notification method during RACH (random access channel) preamble transmission process.
NCR-MT는 dedicated random access 프리앰블 그리고/또는 rach occasion(RO) 그리고/또는 RACH 자원을 미리 설정받을 수 있다. 또는 NCR-MT는 접속 시도하는 셀의 MIB나 SIB에서 RACH 관련 설정을 전달받을 수 있다. NCR-MT는 셀 선택/재선택 후, 해당 셀에의 접속을 위하여 random access를 시도할 수 있는데, 이 과정에서 NCR dedicated RACH 프리앰블/RO/자원을 사용하여 RACH를 시도하는 경우, gNB는 해당 접속을 시도하는 단말이 NCR임을 인지(identify)할 수 있고, 이후, 기지국은 NCR-MT를 통하여 NCR-FWD를 위한 제어 정보를 전달할 수 있다. NCR-MT may receive a dedicated random access preamble and/or rach occasion (RO) and/or RACH resources in advance. Alternatively, the NCR-MT can receive RACH-related settings from the MIB or SIB of the cell it is attempting to connect to. After selecting/reselecting a cell, the NCR-MT may attempt random access to access the cell. In this process, if RACH is attempted using the NCR dedicated RACH preamble/RO/resource, the gNB may attempt the access. The terminal attempting can identify that it is NCR, and then the base station can transmit control information for NCR-FWD through NCR-MT.
Case 2: 나머지 RACH 과정에서 알리는 방법Case 2: How to inform the rest of the RACH process
RACH 과정 중, 4 step RACH의 경우, MSG(Message) 3, 또는 2 step RACH의 경우, MSG A는 NCR 특화된 LCID(logical channel ID)를 포함할 수 있다. 이 LCID는 해당 MSG3 또는 MSGA MAC PDU에 포함되는 CCCH(common control channel)에 대하여, 해당 CCCH를 구분하는 용도의 LCID이며, 이 LCID는 MAC PDU 내의 MAC subheader에 포함될 수 있다. 이 경우, UL CCCH는 예를 들어, RRCSetupRequest가 될 수 있다. 이 방법에 따르면, 상기 MSG 3 또는 MSG A를 성공적으로 수신한 기지국은, 이에 기반하여 해당 단말이 NCR인 것을 알게 된다. 이후, 기지국은 NCR-MT를 통하여 NCR-FWD 를 위한 제어 정보를 전달할 수 있다. During the RACH process, in the case of 4 step RACH, MSG (Message) 3, or in the case of 2 step RACH, MSG A may include an NCR-specific LCID (logical channel ID). This LCID is used to identify the common control channel (CCCH) included in the MSG3 or MSGA MAC PDU, and this LCID may be included in the MAC subheader in the MAC PDU. In this case, the UL CCCH may be, for example, RRCSetupRequest. According to this method, the base station that successfully receives MSG 3 or MSG A learns that the corresponding terminal is NCR based on this. Afterwards, the base station can transmit control information for NCR-FWD through NCR-MT.
Case 3: RACH 성공 후, RRC connection 설정 과정에서 알리는 방법Case 3: How to notify during RRC connection setup process after RACH is successful
Case 3-1: RRCSetupComplete 메시지로 알리는 방법Case 3-1: How to notify with RRCSetupComplete message
NCR-MT는 셀 선택/재선택 후, RACH 절차 성공으로 UL(uplink) grant를 수신한 경우, MSG3을 RRCSetupRequest 메시지를 통하여 서빙 기지국으로 전달하고, 서빙 기지국이 RRCSetup 메시지를 전달하면, 그 설정을 적용한 후, RRCSetupComplete 메시지를 서빙 기지국으로 전달하는데, 이때, 상기 RRCSetupComplete 메시지에 NCR임을 나타내는 지시자를 포함하여 전달할 수 있다. 다음은 상세 흐름을 나타내며, 이것은 도 8a 및 도 8b에서 도시하고 있는 절차와 대응될 수 있다. 이 예시에서는, MIB/SIB에 NCR support bit을 포함하는 것을 예시적으로 하였으나, intra-Frequency Reselection bit을 활용하는 방법 역시 가능하다.After cell selection/reselection, when the NCR-MT receives a UL (uplink) grant with a successful RACH procedure, it delivers MSG3 to the serving base station through the RRCSetupRequest message, and when the serving base station delivers the RRCSetup message, the settings are applied. Afterwards, the RRCSetupComplete message is delivered to the serving base station. At this time, the RRCSetupComplete message may be delivered by including an indicator indicating that it is NCR. The following shows the detailed flow, which can correspond to the procedures shown in FIGS. 8A and 8B. In this example, the NCR support bit is included in the MIB/SIB as an example, but it is also possible to utilize the intra-Frequency Reselection bit.
도 8a 및 도 8b는 NCR-MT가 RRCSetupComplete 메시지를 사용하여 자신이 NCR 엔티티임을 알리는 방법의 흐름도이다8A and 8B are flowcharts of how the NCR-MT uses the RRCSetupComplete message to announce that it is an NCR entity.
도 8a를 참조하면, NCR-MT(810)는 유휴(idle) 상태에서 연결(connected) 상태로 전환되거나 파워 온(powered on)이 될 수 있다(S801). Referring to FIG. 8A, the NCR-MT 810 can be switched from an idle state to a connected state or powered on (S801).
NCR-MT(810)는, 주변의 셀(예를 들어, 도 8a에서 도시된 바와 같이 기지국 1(gNB 1(830)) 및 기지국 2(gNB 2(820))에서 방사되는 SSB(synchronization signal block)를 수신하여 셀의 신호 세기를 도출하고, 이와 같은 측정에 기반하여 셀 선택(cell selection) 조건을 만족하는 셀을 선택한다(S802). 여기서 NCT-MT(810)에 의하여 선택되는 셀은 gNB 2(820)의 셀이라고 가정한다. The NCR-MT (810) is a synchronization signal block (SSB) radiated from surrounding cells (e.g., base station 1 (gNB 1 (830)) and base station 2 (gNB 2 (820)) as shown in FIG. 8A. ) is received to derive the signal strength of the cell, and based on this measurement, a cell that satisfies the cell selection conditions is selected (S802). Here, the cell selected by the NCT-MT (810) is gNB. Assume it is a cell of 2 (820).
그리고, NCR-MT(810)는 선택된 해당 셀의 MIB 또는 SIB1을 수신하여, 해당 셀이 NCR 지원 셀이 아님을 확인하면, cell barred 상태를 가정(S803)하고, 다른 셀(예를 들어, gNB 1(830)의 셀)을 cell selection하며(S804), 해당 셀의 MIB/SIB1을 수신하여 NCR 지원 셀인지를 확인한다(S805).And, when the NCR-MT (810) receives the MIB or SIB1 of the selected cell and confirms that the cell is not an NCR support cell, it assumes a cell barred state (S803) and assumes a cell barred state (S803), and determines that another cell (e.g., gNB Cell 1 (cell of 830) is selected (S804), and MIB/SIB1 of the corresponding cell is received to check whether it is an NCR-supporting cell (S805).
해당 셀이 NCR 지원 셀임을 확인하면, NCR-MT(810)는 해당 셀로 랜덤 액세스 절차를 수행(S806)할 수 있다. 예를 들어, 이 절차에서 NCR-MT(810)는 해당 셀(830)로 RRCSetupRequest message를 통하여 MSG 3를 전송(S806a)하고, 이에 대한 응답으로 RRCsetup message를 셀(830)로부터 수신(S806b)할 수 있다. 이때, RRCSetupRequest message에는, NCR에 특정된 연결 설정 원인(EstablishmentCause)에 대한 정보가 포함될 수 있다.If it is confirmed that the corresponding cell is an NCR support cell, the NCR-MT 810 can perform a random access procedure to the corresponding cell (S806). For example, in this procedure, the NCR-MT (810) transmits MSG 3 through an RRCSetupRequest message to the corresponding cell (830) (S806a) and receives an RRCsetup message from the cell (830) in response (S806b). You can. At this time, the RRCSetupRequest message may include information about the connection establishment cause (EstablishmentCause) specific to NCR.
RRCSetup message를 수신한 NCR-MT(810)는 이에 기반하여, 도 8b에서와 같이, 해당 셀(830)로부터 획득한 MAC, PHY에 대한 MCG(master cell group) 설정을 적용할 수 있다(S807). 또한, NCR-MT(810)는 RRC 연결 설정을 완료하기 위한 RRCSetupComplete message를 해당 셀로 전송(S808)할 수 있는데, 여기에서 RRCSetupComplete message에는, NCR-MT(810)가 NCR임을 지시하는 지시자, NCR-MT ID, 또는 NAS 등록 요청 중 적어도 하나가 포함될 수 있다.Based on this, the NCR-MT 810, which has received the RRCSetup message, can apply the master cell group (MCG) settings for the MAC and PHY obtained from the corresponding cell 830, as shown in FIG. 8b (S807). . In addition, the NCR-MT 810 may transmit an RRCSetupComplete message to the corresponding cell to complete RRC connection setup (S808). Here, the RRCSetupComplete message includes an indicator indicating that the NCR-MT 810 is an NCR, NCR- At least one of an MT ID or a NAS registration request may be included.
한편, 상술한 절차들 및 후술할 절차들에는 하기의 구체적인 동작/내용이 적용될 수 있다.Meanwhile, the following specific operations/contents may be applied to the above-mentioned procedures and the procedures to be described later.
1) gNB supporting NCR broadcasts the NCR-support indication in MIB or SIB.2) When UE which is NCR-MT is powered on(or UE is in Idle/inactive), it can first search frequency to camp and select the cell based on measurement result (i.e., do legacy cell (re)selection procedure).1) gNB supporting NCR broadcasts the NCR-support indication in MIB or SIB.2) When UE which is NCR-MT is powered on(or UE is in Idle/inactive), it can first search frequency to camp and select the cell based on measurement result (i.e., do legacy cell(re)selection procedure).
3) If the above selected cell is providing or broadcasting NCR-support bit in MIB or SIB, UE (NCR-MT), then finally select the cell to set RRC connection up with.3) If the above selected cell is providing or broadcasting NCR-support bit in MIB or SIB, UE (NCR-MT), then finally select the cell to set RRC connection up with.
A> NCR-MT applies the configurations in MIB and SIB1 of the selected cell.A> NCR-MT applies the configurations in MIB and SIB1 of the selected cell.
B> When NCR-MT tries to setup RRC connection, NCR-MT does random access procedure with gNB. NCR-MT sends RRCSetupRequest msg to gNB, and gNB responds with RRCSetup msg to NCR-MT. Within RRCSetupRequest msg, there is new cause value for Establishment indicating NCR control traffic. After NCR-MT configures the received RRCsetup msg, UE can add NCR-MT indication within RRCSetupComplete message and transmit it upon successful RRC setup procedure. B> When NCR-MT tries to setup RRC connection, NCR-MT does random access procedure with gNB. NCR-MT sends RRCSetupRequest msg to gNB, and gNB responds with RRCSetup msg to NCR-MT. Within RRCSetupRequest msg, there is new cause value for Establishment indicating NCR control traffic. After NCR-MT configures the received RRCsetup msg, UE can add NCR-MT indication within RRCSetupComplete message and transmit it upon successful RRC setup procedure.
i. with or without above NCR-MT indication, RRCSetupComplete msg can also include: NCR specific entity ID (and/or (MT) ID , and/or FWD ID) either in legacy NAS msg 'Registration Request' or out, and transfer this.i. with or without above NCR-MT indication, RRCSetupComplete msg can also include: NCR specific entity ID (and/or (MT) ID , and/or FWD ID) either in legacy NAS msg 'Registration Request' or out, and transfer this.
C> Serving gNB identifies that the accessed UE is NCR-MT, and some UE ID visible in CN can be transferred to CN for authorization (like 5G TMSI or 5G-GUTI, or NCR-FWD ID).C> Serving gNB identifies that the accessed UE is NCR-MT, and some UE ID visible in CN can be transferred to CN for authorization (like 5G TMSI or 5G-GUTI, or NCR-FWD ID).
i. NCR-FWD ID is transferred to CN within IE 'NCR', then CN can identify NCR-FWD.i. NCR-FWD ID is transferred to CN within IE 'NCR', then CN can identify NCR-FWD.
4) Else UE (NCR-MT) considers the cell as barred.4) Else UE (NCR-MT) considers the cell as barred.
A> for the frequency of this barred cell: A> for the frequency of this barred cell:
i. bar the frequency as welli. bar the frequency as well
ii. (assuming that NCR-MT does not ignore the other cell reservation bits including IFRI bit in MIB) bar the frequency if IFRI bit in MIB is set to not-Allowed. Otherwise, do not bar the frequencyii. (assuming that NCR-MT does not ignore the other cell reservation bits including IFRI bit in MIB) bar the frequency if IFRI bit in MIB is set to not-Allowed. Otherwise, do not bar the frequency
iii. do not bar the frequencyiii. do not bar the frequency
다시 도 8b를 참조하면, 서빙 기지국(830)은 NCR-MT(810)와 RRC 연결을 설정한 이후, NGAP initial UE message를 사용하여 Registration Request를 AMF(840)로 전달할 수 있다(S808). 이때, 상기 NGAP initial UE message에는, 상기 RRC 연결 과정에서 획득한, NCR control용 RRC 연결 지시자임을 나타내는 Establishment cause 가 포함될 수 있다. 또한 그와 함께 NCR-MT 또는 NCR entity의 ID, 또는 NCR-Fwd ID가 상기 메시지에 포함될 수 있다. 이 정보들은 서빙 기지국(830)에서 AMF(840)로 전달(S809)될 수 있고, core network(850)에서 NCR entity의 인증(authorization)과 authentication에 사용될 수 있다(S810, S811).Referring again to FIG. 8B, after establishing an RRC connection with the NCR-MT 810, the serving base station 830 may transmit a Registration Request to the AMF 840 using the NGAP initial UE message (S808). At this time, the NGAP initial UE message may include an Establishment cause indicating that it is an RRC connection indicator for NCR control, obtained during the RRC connection process. Additionally, the ID of the NCR-MT or NCR entity, or NCR-Fwd ID may be included in the message. This information can be transmitted from the serving base station 830 to the AMF 840 (S809) and used for authorization and authentication of the NCR entity in the core network 850 (S810, S811).
보다 구체적으로, 단말이 NCR 노드로 인증되는(authorized)지 여부는, AMF(840)가, 서빙 기지국(830)으로부터 Initial UE message를 통하여 해당 단말이 NCR 노드임을 식별할 수 있는 지시자(예를 들어, NCR MT의 단말 ID)를 수신하면, 이를 해당 ID를 보유하고 있는 core network(850) 상의 별도의 서버 또는 AMF(840)와 co-located 서버(850)로 전송하는 것을 통하여 확인될 수 있다. 만약, 단말이 NCR 노드로 인증되는 것이 확인되면, core network(850) 상의 별도의 서버, 또는 AMF(840)와 co-located 서버(850)는 AMF(840)로 authorize되었다는 지시를 전달할 수 있다. 이를 수신한 AMF(840)는 서빙 기지국(830)으로, initial UE context setup request 메시지를 통하여 해당 단말이 authorize되었다는 지시를 제공할 수 있다. 상술한 AMF와 co-located 서버의 NCR authorization 확인 동작은 AMF의 구현으로 대체될 수 있다. More specifically, whether the terminal is authorized as an NCR node is determined by the AMF 840 receiving an indicator that identifies the terminal as an NCR node through an Initial UE message from the serving base station 830 (e.g. , NCR MT's terminal ID) can be confirmed by transmitting it to a separate server on the core network (850) that holds the ID or to the AMF (840) and co-located server (850). If it is confirmed that the terminal is authenticated as an NCR node, a separate server on the core network 850 or a server co-located with the AMF 840 may transmit an indication that it has been authorized to the AMF 840. The AMF 840 that receives this is the serving base station 830 and can provide an indication that the corresponding terminal has been authorized through an initial UE context setup request message. The NCR authorization confirmation operation of the AMF and co-located server described above can be replaced by the implementation of AMF.
서빙 기지국(830)은 NCR entity의 authorization과 authentication 관련 정보를 수신한 이후, NCR-Fwd의 동작을 위한 제어 정보를 NCR-MT(810)에게 전달할 수 있다. 이 제어 정보를 전달하기 위한 L1/L2 채널의 설정 정보는 DL RRC 메시지 또는 RRCReconfiguration 메시지를 통하여 NCR-MT(810)에게 전달될 수 있다(S812). 이때 전달되는 보다 상세한 설정은, 다음과 같을 수 있다. After receiving information related to authorization and authentication of the NCR entity, the serving base station 830 may transmit control information for operation of the NCR-Fwd to the NCR-MT 810. The configuration information of the L1/L2 channel for transmitting this control information may be transmitted to the NCR-MT 810 through a DL RRC message or RRCReconfiguration message (S812). More detailed settings transmitted at this time may be as follows.
NCR specific configurations i.e., PDCCH/PDSCH configuration for side control information channel, PUCCH/PUSCH configuration for side control information channel, configuration for DCI/UCI and MAC CE for side control information reception and transmission. NCR specific configurations i.e., PDCCH/PDSCH configuration for side control information channel, PUCCH/PUSCH configuration for side control information channel, configuration for DCI/UCI and MAC CE for side control information reception and transmission.
NCR-MT(810)는 상기 설정을 적용하여, 서빙 기지국(830)으로부터 NCR-Fwd를 위한 side control 정보를 L1/L2 제어 신호를 통하여 받을 수 있고(S813). By applying the above settings, the NCR-MT (810) can receive side control information for NCR-Fwd from the serving base station (830) through the L1/L2 control signal (S813).
Case 3-2: RRCSetupRequest 메시지로 알리는 방법Case 3-2: Notification method with RRCSetupRequest message
NCR-MT는 셀 선택/재선택 후, RACH 절차 성공으로 UL grant 를 수신한 경우, MSG3을 RRCSetupRequest 메시지를 통하여 서빙 기지국으로 전달하고, 이에 대응하여 서빙 기지국이 RRCSetup 메시지를 전달하면, 그 설정을 적용한 후, RRCSetupComplete 메시지를 서빙 기지국으로 전달하는데, 이때, 상기 RRCSetupRequest 메시지에는 NCR 임을 나타내는 지시자가 포함되어 전달될 수 있다. 다음은 상세 흐름을 나타내며, 이것은 도 9a 및 도 9b에서 도시된 절차와 대응될 수 있다. 이 예시에서는 MIB/SIB에 NCR support bit을 포함하는 경우에 대하여 설명 하였으나, intra-Frequency Reselection bit을 활용하는 방법 역시 가능하다.After cell selection/reselection, when the NCR-MT receives a UL grant through a successful RACH procedure, it delivers MSG3 to the serving base station through the RRCSetupRequest message, and when the serving base station delivers the RRCSetup message in response, the settings are applied. Afterwards, the RRCSetupComplete message is delivered to the serving base station. At this time, the RRCSetupRequest message may be delivered with an indicator indicating that it is NCR. The following shows the detailed flow, which can correspond to the procedures shown in FIGS. 9A and 9B. In this example, the case of including the NCR support bit in the MIB/SIB is explained, but it is also possible to utilize the intra-Frequency Reselection bit.
도 9a 및 도 9b는 NCR-MT가 RRCSetupRequest 메시지를 사용하여 자신이 NCR 엔티티임을 알리는 방법의 흐름도이다9A and 9B are flowcharts of how the NCR-MT uses the RRCSetupRequest message to announce that it is an NCR entity.
도 9a를 참조하면, NCR-MT(910)는 유휴(idle) 상태에서 연결 상태로 전환되었거나, powered on될 수 있다(S901). Referring to FIG. 9A, the NCR-MT (910) may be converted from an idle state to a connected state or may be powered on (S901).
NCR-MT(910)는, 주변의 셀(예를 들어, 도 9a에서 도시된 바와 같이 기지국 1(gNB 1(930)) 및 기지국 2(gNB 2(920))에서 방사되는 SSB를 수신하여 셀의 신호 세기를 도출하고, 이와 같은 측정에 기반하여 셀 선택(cell selection) 조건을 만족하는 셀을 선택한다(S902). 여기서 NCT-MT(910)에 의하여 선택되는 셀은 gNB 2(920)의 셀이라고 가정한다. The NCR-MT (910) receives SSBs radiated from surrounding cells (e.g., base station 1 (gNB 1 (930)) and base station 2 (gNB 2 (920)) as shown in FIG. 9A and connects the cell to the cell. The signal strength of is derived, and based on this measurement, a cell that satisfies the cell selection conditions is selected (S902). Here, the cell selected by the NCT-MT (910) is that of gNB 2 (920). Assume it is a cell.
그리고, NCR-MT(910)는 선택된 해당 셀의 MIB 또는 SIB1을 수신하여 해당 셀이 NCR 지원 셀이 아님을 확인하면, cell barred 상태를 가정(S903)하고, 다른 셀(예를 들어, gNB 1(830)의 셀)을 cell selection하며(S904), 해당 셀의 MIB/SIB1을 수신하여 NCR 지원 셀인지를 확인한다(S905). 예를 들어, 상기 MIB/SIB1에는, 해당 셀이 NCR을 지원함을 나타내는 NCR 지원 지시자가 포함될 수 있다.Then, when the NCR-MT (910) receives the MIB or SIB1 of the selected cell and confirms that the cell is not an NCR support cell, it assumes a cell barred state (S903) and connects to another cell (e.g., gNB 1). A cell of (830) is selected (S904), and the MIB/SIB1 of the corresponding cell is received to check whether it is an NCR-supporting cell (S905). For example, the MIB/SIB1 may include an NCR support indicator indicating that the corresponding cell supports NCR.
해당 셀이 NCR 지원 셀임을 확인하면, NCR-MT(910)는 해당 셀로 랜덤 액세스 절차를 수행(S906)할 수 있다. 이 절차에서 NCR-MT(910)는 예를 들어, 해당 셀(930)로 RRCSetupRequest를 통하여 MSG 3를 전송(S906a)할 수 있는데, 이때, RRCSetupRequest message에는, NCR-MT임을 지시하는 NCR-MT 지시자, NCR에 특정된 연결 설정 원인(EstablishmentCause), 및/또는 NCR 관련 ID가 포함될 수 있다.If it is confirmed that the corresponding cell is an NCR support cell, the NCR-MT 910 can perform a random access procedure to the corresponding cell (S906). In this procedure, the NCR-MT 910 may, for example, transmit (S906a) MSG 3 to the corresponding cell 930 through an RRCSetupRequest. At this time, the RRCSetupRequest message includes an NCR-MT indicator indicating that it is an NCR-MT. , NCR-specific connection establishment cause (EstablishmentCause), and/or NCR-related ID may be included.
한편, 상술한 절차들 및 후술할 절차들에는 하기의 구체적인 동작/내용이 적용될 수 있다.Meanwhile, the following specific operations/contents may be applied to the above-mentioned procedures and the procedures to be described later.
1) gNB supporting NCR broadcasts the NCR-support indication in MIB or SIB.1) gNB supporting NCR broadcasts the NCR-support indication in MIB or SIB.
2) When UE which is NCR-MT is powered on (or UE is in Idle/inactive), it can first search frequency to camp and select the cell based on measurement result (i.e., do legacy cell (re)selection procedure).2) When UE which is NCR-MT is powered on (or UE is in Idle/inactive), it can first search frequency to camp and select the cell based on measurement result (i.e., do legacy cell(re)selection procedure).
3) If the above selected cell is providing or broadcasting NCR-support bit in MIB or SIB, UE (NCR-MT), then finally select the cell to set RRC connection up with.3) If the above selected cell is providing or broadcasting NCR-support bit in MIB or SIB, UE (NCR-MT), then finally select the cell to set RRC connection up with.
A> NCR-MT applies the configurations in MIB and SIB1 of the selected cellA> NCR-MT applies the configurations in MIB and SIB1 of the selected cell
B> When NCR-MT tries to setup RRC connection, UE can add 1-bit indication to indicate NCR-MT or NCR entity within RRCSetupRequest msg and transmit it upon obtaining UL grant. B> When NCR-MT tries to setup RRC connection, UE can add 1-bit indication to indicate NCR-MT or NCR entity within RRCSetupRequest msg and transmit it upon obtaining UL grant.
i. with or without above NCR-MT indication, in RRCSetupRequest msg, legacy 'InitialUE-Identity' field can indicate NCR specific UE ID, or NCR specific UE ID can be further indicated in separate IE than 'initialUE-Identity' field.i. with or without above NCR-MT indication, in RRCSetupRequest msg, legacy 'InitialUE-Identity' field can indicate NCR specific UE ID, or NCR specific UE ID can be further indicated in separate IE than 'initialUE-Identity' field.
ii. Independent with above indication, in RRCSetupRequest msg, 'EstablishmentCause' can further indicate 'NCR MT access' valueii. Independent with above indication, in RRCSetupRequest msg, 'EstablishmentCause' can further indicate 'NCR MT access' value
C> Upon receiving above RRCSetupRequest msg, Serving gNB identifies that the accessed UE is NCR-MT, and select the radio resource and schedule the resource accordingly for NCR MT (frequency /time domain resource assignment, MCS selection etc. ) via PDCCHC> Upon receiving above RRCSetupRequest msg, Serving gNB identifies that the accessed UE is NCR-MT, and select the radio resource and schedule the resource accordingly for NCR MT (frequency /time domain resource assignment, MCS selection etc.) via PDCCH
D> serving gNB setup SRB1 and send RRCSetup msg to NCR-MT.D> serving gNB setup SRB1 and send RRCSetup msg to NCR-MT.
E> UE (NCR-MT) applies the received RRCSetup configuration, and generates RRCSetupComplete msg which can include: NCR specific entity ID (and/or UE ID, and/or FWD ID) either in legacy NAS msg 'Registration Request' or out, and transmit this.E> UE (NCR-MT) applies the received RRCSetup configuration, and generates RRCSetupComplete msg which can include: NCR specific entity ID (and/or UE ID, and/or FWD ID) either in legacy NAS msg 'Registration Request' or out , and transmit this.
4) Else UE (NCR-MT) considers the cell as barred.4) Else UE (NCR-MT) considers the cell as barred.
A> for the frequency of this barred cell: A> for the frequency of this barred cell:
i. bar the frequency as welli. bar the frequency as well
ii. (assuming that NCR-MT does not ignore the other cell reservation bits including IFRI bit in MIB) bar the frequency if IFRI bit in MIB is set to not-Allowed. Otherwise, do not bar the frequencyii. (assuming that NCR-MT does not ignore the other cell reservation bits including IFRI bit in MIB) bar the frequency if IFRI bit in MIB is set to not-Allowed. Otherwise, do not bar the frequency
iii. do not bar the frequencyiii. do not bar the frequency
도 9b를 참조하면, 서빙 기지국(930)은, NCR-MT(910)로부터 수신한 정보들에 기반하여, 접속한 단말이 NCR-MT임을 확인하고, NCR 특정 마스터 셀 그룹 설정(예를 들어, mac-CellGroupConfig, PhysicalCellGroupConfig)을 제공할 수 있다(S907). 이와 같은 설정은, RRCSetup message를 통하여 NCR-MT(910)로 전송될 수 있다(S907a). 서빙 기지국(930)으로부터 MAC 계층 또는 PHY 계층에 대한 NCR 특정 셀 그룹 설정을 수신한 NCR-MT(910)는, 해당 셀그룹 설정을 적용할 수 있다(S908).Referring to Figure 9b, the serving base station 930, based on the information received from the NCR-MT 910, confirms that the connected terminal is an NCR-MT and sets the NCR-specific master cell group (e.g., mac-CellGroupConfig, PhysicalCellGroupConfig) can be provided (S907). Such settings can be transmitted to the NCR-MT (910) through an RRCSetup message (S907a). The NCR-MT 910, which has received NCR specific cell group settings for the MAC layer or PHY layer from the serving base station 930, can apply the corresponding cell group settings (S908).
또한, NCR-MT(910)는 RRCSetupComplete message를 통하여, 서빙 기지국(930)으로 등록 요청을 포함하는 NAS 메시지를 전송(S909)할 수 있고, NCR-MT(910)와 RRC 연결을 설정한 이후, 서빙 기지국(930)은 NGAP initial UE message를 사용하여 Registration Request를 AMF(940)로 전달할 수 있다(S910). 이때, 상기 NGAP initial UE message에는, 그 외에도 상기 RRC 연결 과정에서 획득한, NCR control용 RRC 연결 지시자임을 나타내는 Establishment cause 가 포함될 수 있다. 또한 그와 함께 NCR-MT 또는 NCR entity의 ID, 또는 NCR-Fwd ID가 상기 메시지에 포함될 수 있다. 이 정보들은 서빙 기지국(930)에서 AMF(940)로 전달될 수 있고, core network(950)에서 NCR entity의 authorization과 authentication에 사용될 수 있다(S911, S912). 여기에서 AMF(940) 및 core network(950) 간의 authentication 절차는 도 8a 및 도 8b에서 상술한 바와 동일하다.In addition, the NCR-MT (910) can transmit (S909) a NAS message including a registration request to the serving base station (930) through the RRCSetupComplete message, and after establishing an RRC connection with the NCR-MT (910), The serving base station 930 may transmit a Registration Request to the AMF 940 using the NGAP initial UE message (S910). At this time, the NGAP initial UE message may also include an Establishment cause indicating that it is an RRC connection indicator for NCR control, obtained during the RRC connection process. Additionally, the ID of the NCR-MT or NCR entity, or NCR-Fwd ID may be included in the message. This information can be transmitted from the serving base station 930 to the AMF 940 and used for authorization and authentication of the NCR entity in the core network 950 (S911, S912). Here, the authentication procedure between the AMF (940) and the core network (950) is the same as described above in FIGS. 8A and 8B.
서빙 기지국(930)은 NCR entity의 authorization과 authentication 관련 정보를 수신한 이후, NCR-Fwd의 동작을 위한 제어 정보를 NCR-MT(910)에게 전달할 수 있다. 이 제어 정보를 전달하기 위한 L1/L2 채널의 설정 정보는 DL RRC 메시지 또는 RRCReconfiguration 메시지를 통하여, NCR-MT(910)에게 전달될 수 있다(S913). 이때 전달되는 보다 상세한 설정은 다음과 같을 수 있다. After receiving information related to authorization and authentication of the NCR entity, the serving base station 930 may transmit control information for operation of the NCR-Fwd to the NCR-MT 910. The configuration information of the L1/L2 channel for transmitting this control information may be transmitted to the NCR-MT 910 through a DL RRC message or RRCReconfiguration message (S913). More detailed settings transmitted at this time may be as follows.
NCR specific configurations i.e., PDCCH/PDSCH configuration for side control information channel, PUCCH/PUSCH configuration for side control information channel, configuration for DCI/UCI and MAC CE for side control information reception and transmission. NCR specific configurations i.e., PDCCH/PDSCH configuration for side control information channel, PUCCH/PUSCH configuration for side control information channel, configuration for DCI/UCI and MAC CE for side control information reception and transmission.
NCR-MT(910)는 상기 설정을 적용하여, 서빙 기지국(930)으로부터, NCR-Fwd 를 위한 side control 정보를 L1/L2 제어 신호를 통하여 받을 수 있다(S914). By applying the above settings, the NCR-MT 910 can receive side control information for NCR-Fwd from the serving base station 930 through the L1/L2 control signal (S914).
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시예는 필요에 따라 서로 조합되어 운용할 수 있다. 예를 들면, 본 개시의 일 실시예와 다른 일 실시예의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한, 본 개시의 실시예들은 다른 통신 시스템에서도 적용 가능하며, 실시예의 기술적 사상에 바탕을 둔 다른 변형예들 또한 실시 가능할 것이다. 예를 들면, 실시예들은 LTE 시스템, 5G, NR 시스템 또는 6G 시스템 등에도 적용될 수 있다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, the embodiments of the present disclosure disclosed in the specification and drawings are merely provided as specific examples to easily explain the technical content of the present disclosure and aid understanding of the present disclosure, and are not intended to limit the scope of the present disclosure. In other words, it is obvious to those skilled in the art that other modifications based on the technical idea of the present disclosure can be implemented. Additionally, each of the above embodiments can be operated in combination with each other as needed. For example, a base station and a terminal may be operated by combining parts of one embodiment of the present disclosure and another embodiment. Additionally, the embodiments of the present disclosure can be applied to other communication systems, and other modifications based on the technical idea of the embodiments may also be implemented. For example, embodiments may also be applied to LTE systems, 5G, NR systems, or 6G systems. Therefore, the scope of the present disclosure should not be limited to the described embodiments, but should be determined not only by the scope of the patent claims described later, but also by the scope of this patent claim and equivalents.

Claims (14)

  1. 무선 통신 시스템에서 단말의 방법에 있어서, In a terminal method in a wireless communication system,
    기지국으로부터, 시스템 정보를 수신하는 단계;Receiving system information from a base station;
    상기 시스템 정보에 NCR(network controlled repeater)를 지원함을 지시하는 지시자가 포함되었는지 확인하는 단계; 및Checking whether the system information includes an indicator indicating support for a network controlled repeater (NCR); and
    상기 시스템 정보에 상기 지시자가 포함된 것에 기반하여, 상기 기지국으로, 랜덤 액세스 절차를 위한 랜덤 액세스 프리앰블을 전송하는 단계를 포함하고,Based on the indicator being included in the system information, transmitting a random access preamble for a random access procedure to the base station,
    상기 단말은, NCR 기능을 지원하는 단말인 것을 특징으로 하는 단말의 방법.A method of a terminal, characterized in that the terminal supports the NCR function.
  2. 제1항에 있어서,According to paragraph 1,
    상기 기지국으로부터, 상기 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답을 수신하는 단계; Receiving a random access response to the random access preamble from the base station;
    상기 랜덤 액세스 응답에 포함된 상향링크 그랜트에 기반하여, 상기 기지국으로 RRC(radio resource control) Setup Request 메시지를 전송하는 단계;Transmitting a radio resource control (RRC) Setup Request message to the base station based on the uplink grant included in the random access response;
    상기 기지국으로부터, 상기 RRC Setup Request 메시지에 대한 응답으로 RRC Setup 메시지를 수신하는 단계; 및Receiving an RRC Setup message from the base station in response to the RRC Setup Request message; and
    상기 기지국으로, 상기 RRC Setup 메시지에 기반하여, RRC Setup Complete 메시지를 전송하는 단계를 포함하고, Including transmitting an RRC Setup Complete message to the base station based on the RRC Setup message,
    상기 RRC Setup Complete 메시지는, 상기 단말이 상기 NCR 기능을 지원하는 것을 지시하는 지시 정보를 포함하는 것을 특징으로 하는 단말의 방법.The RRC Setup Complete message is a terminal method characterized in that it includes indication information indicating that the terminal supports the NCR function.
  3. 제2항에 있어서,According to paragraph 2,
    상기 RRC Setup Complete 메시지는, AMF(access and mobility management function)에 대한 등록 요청을 더 포함하고,The RRC Setup Complete message further includes a registration request for AMF (access and mobility management function),
    상기 단말에 대한 NCR 인증(authentication)은, 상기 지시 정보에 기반하여 상기AMF에 의하여 수행되는 것을 특징으로 하는 단말의 방법.A method of a terminal, characterized in that NCR authentication for the terminal is performed by the AMF based on the indication information.
  4. 무선 통신 시스템에서 기지국의 방법에 있어서,In a method of a base station in a wireless communication system,
    NCR(network controlled repeater)를 지원함을 지시하는 지시자를 생성하는 단계;Creating an indicator indicating support for a network controlled repeater (NCR);
    상기 지시자를 포함한 시스템 정보를 방송하는 단계; 및Broadcasting system information including the indicator; and
    단말로부터, 상기 시스템 정보에 기반하여 랜덤 액세스 프리앰블을 수신하는 단계를 포함하는 것을 특징으로 하는 기지국의 방법.A method of a base station comprising receiving a random access preamble from a terminal based on the system information.
  5. 제4항에 있어서,According to paragraph 4,
    상기 단말로, 상기 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답을 전송하는 단계; Transmitting, to the terminal, a random access response to the random access preamble;
    상기 단말로부터, 상기 랜덤 액세스 응답에 포함된 상향링크 그랜트에 기반하여, RRC(radio resource control) Setup Request 메시지를 수신하는 단계;Receiving a radio resource control (RRC) Setup Request message from the terminal, based on an uplink grant included in the random access response;
    상기 단말로, 상기 RRC Setup Request 메시지에 대한 응답으로 RRC Setup 메시지를 전송하는 단계; 및Transmitting, to the terminal, an RRC Setup message in response to the RRC Setup Request message; and
    상기 단말로부터, 상기 RRC Setup 메시지에 기반하여 RRC Setup Complete 메시지를 수신하는 단계를 포함하고, Comprising the step of receiving an RRC Setup Complete message from the terminal based on the RRC Setup message,
    상기 RRC Setup Complete 메시지는, 상기 단말이 상기 NCR 기능을 지원하는 것을 지시하는 지시 정보를 포함하는 것을 특징으로 하는 기지국의 방법.The RRC Setup Complete message is a method of a base station, characterized in that it includes indication information indicating that the terminal supports the NCR function.
  6. 제5항에 있어서,According to clause 5,
    AMF(access and mobility management function)로, 상기 RRC Setup Complete 메시지에 기반하여, initial UE(user equipment) 메시지를 전송하는 단계; 및Transmitting an initial UE (user equipment) message to an access and mobility management function (AMF) based on the RRC Setup Complete message; and
    상기 AMF로부터, 상기 initial UE 메시지에 기반하여, 상기 단말에 대한 NCR 인증(authentication) 정보를 포함하는 메시지를 수신하는 단계를 더 포함하고,Further comprising receiving, from the AMF, a message containing NCR authentication information for the terminal, based on the initial UE message,
    상기 RRC setup Complete 메시지는 상기 단말의 등록 요청을 더 포함하고,The RRC setup Complete message further includes a registration request for the terminal,
    상기 initial UE 메시지는, 상기 지시 정보를 포함하며,The initial UE message includes the indication information,
    상기 NCR 인증 정보는, 상기 지시 정보에 기반하여 결정되는 것을 특징으로 하는 기지국의 방법.The method of the base station, characterized in that the NCR authentication information is determined based on the indication information.
  7. 제6항에 있어서,According to clause 6,
    상기 단말로, 상기 NCR 인증 정보에 기반하여, 상기 단말의 동작을 제어하기 위한 제어 정보를 포함하는 메시지를 전송하는 단계를 더 포함하는 것을 특징으로 하는 기지국의 방법.The method of the base station further comprising transmitting a message containing control information for controlling the operation of the terminal to the terminal based on the NCR authentication information.
  8. 무선 통신 시스템에서 단말에 있어서,In a terminal in a wireless communication system,
    송수신부; 및Transmitter and receiver; and
    기지국으로부터, 시스템 정보를 수신하도록 상기 송수신부를 제어하고, 상기 시스템 정보에 NCR(network controlled repeater)를 지원함을 지시하는 지시자가 포함되었는지 확인하며, 상기 시스템 정보에 상기 지시자가 포함된 것에 기반하여, 및 상기 기지국으로, 랜덤 액세스 절차를 위한 랜덤 액세스 프리앰블을 전송하도록 상기 송수신부를 제어하는 제어부를 포함하고,From a base station, control the transceiver to receive system information, check whether the system information includes an indicator indicating support for NCR (network controlled repeater), and based on the inclusion of the indicator in the system information, and A control unit that controls the transceiver to transmit a random access preamble for a random access procedure to the base station,
    상기 단말은, NCR 기능을 지원하는 것을 특징으로 하는 단말.The terminal is characterized in that it supports the NCR function.
  9. 제8항에 있어서,According to clause 8,
    상기 제어부는, 상기 기지국으로부터, 상기 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답을 수신하도록 상기 송수신부를 제어하고, 상기 랜덤 액세스 응답에 포함된 상향링크 그랜트에 기반하여, 상기 기지국으로 RRC(radio resource control) Setup Request 메시지를 전송하도록 상기 송수신부를 제어하며, 상기 기지국으로부터, 상기 RRC Setup Request 메시지에 대한 응답으로 RRC Setup 메시지를 수신하도록 상기 송수신부를 제어하고, 및 상기 기지국으로, 상기 RRC Setup 메시지에 기반하여, RRC Setup Complete 메시지를 전송하도록 상기 송수신부를 제어하며, The control unit controls the transceiver to receive a random access response to the random access preamble from the base station, and sets up RRC (radio resource control) setup to the base station based on the uplink grant included in the random access response. Controlling the transceiver to transmit a Request message, controlling the transceiver to receive an RRC Setup message in response to the RRC Setup Request message from the base station, and based on the RRC Setup message to the base station, RRC Controls the transceiver to transmit a Setup Complete message,
    상기 RRC Setup Complete 메시지는, 상기 단말이 상기 NCR 기능을 지원하는 것을 지시하는 지시 정보를 포함하는 것을 특징으로 하는 단말.The RRC Setup Complete message is a terminal characterized in that it includes indication information indicating that the terminal supports the NCR function.
  10. 제9항에 있어서,According to clause 9,
    상기 RRC Setup Complete 메시지는, AMF(access and mobility management function)에 대한 등록 요청을 더 포함하고,The RRC Setup Complete message further includes a registration request for AMF (access and mobility management function),
    상기 단말에 대한 NCR 인증(authentication)은, 상기 지시 정보에 기반하여 상기AMF에 의하여 수행되는 것을 특징으로 하는 단말.A terminal, characterized in that NCR authentication for the terminal is performed by the AMF based on the indication information.
  11. 무선 통신 시스템에서 기지국에 있어서,In a base station in a wireless communication system,
    송수신부; 및Transmitter and receiver; and
    NCR(network controlled repeater)를 지원함을 지시하는 지시자를 생성하고, 상기 지시자를 포함한 시스템 정보를 방송하도록 상기 송수신부를 제어하며, 및 단말로부터, 상기 시스템 정보에 기반하여 랜덤 액세스 프리앰블을 수신하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 기지국.Generate an indicator indicating support for NCR (network controlled repeater), control the transceiver to broadcast system information including the indicator, and configure the transceiver to receive a random access preamble from a terminal based on the system information. A base station comprising a control unit for controlling.
  12. 제11항에 있어서,According to clause 11,
    상기 제어부는, 상기 단말로, 상기 랜덤 액세스 프리앰블에 대한 랜덤 액세스 응답을 전송하도록 상기 송수신부를 제어하고, 상기 단말로부터, 상기 랜덤 액세스 응답에 포함된 상향링크 그랜트에 기반하여, RRC(radio resource control) Setup Request 메시지를 수신하도록 상기 송수신부를 제어하며, 상기 단말로, 상기 RRC Setup Request 메시지에 대한 응답으로 RRC Setup 메시지를 전송하도록 상기 송수신부를 제어하고, 및 상기 단말로부터, 상기 RRC Setup 메시지에 기반하여 RRC Setup Complete 메시지를 수신하도록 상기 송수신부를 제어하며, The control unit controls the transceiver to transmit a random access response to the random access preamble to the terminal, and provides radio resource control (RRC) from the terminal based on the uplink grant included in the random access response. Controlling the transceiver to receive a Setup Request message, controlling the transceiver to transmit an RRC Setup message in response to the RRC Setup Request message to the terminal, and controlling the RRC based on the RRC Setup message from the terminal Controls the transceiver to receive a Setup Complete message,
    상기 RRC Setup Complete 메시지는, 상기 단말이 상기 NCR 기능을 지원하는 것을 지시하는 지시 정보를 포함하는 것을 특징으로 하는 기지국.The RRC Setup Complete message is a base station characterized in that it includes indication information indicating that the terminal supports the NCR function.
  13. 제12항에 있어서,According to clause 12,
    상기 제어부는, AMF(access and mobility management function)로, 상기 RRC Setup Complete 메시지에 기반하여, initial UE(user equipment) 메시지를 전송하도록 상기 송수신부를 제어하고, 및 상기 AMF로부터, 상기 initial UE 메시지에 기반하여, 상기 단말에 대한 NCR 인증(authentication) 정보를 포함하는 메시지를 수신하도록 상기 송수신부를 제어하며,The control unit controls the transceiver to transmit an initial UE (user equipment) message using an access and mobility management function (AMF) based on the RRC Setup Complete message, and from the AMF, based on the initial UE message. Thus, controlling the transceiver to receive a message containing NCR authentication information for the terminal,
    상기 RRC setup Complete 메시지는 상기 단말의 등록 요청을 더 포함하고,The RRC setup Complete message further includes a registration request for the terminal,
    상기 initial UE 메시지는, 상기 지시 정보를 포함하며,The initial UE message includes the indication information,
    상기 NCR 인증 정보는, 상기 지시 정보에 기반하여 결정되는 것을 특징으로 하는 기지국.A base station wherein the NCR authentication information is determined based on the indication information.
  14. 제13항에 있어서,According to clause 13,
    상기 제어부는, The control unit,
    상기 단말로, 상기 NCR 인증 정보에 기반하여, 상기 단말의 동작을 제어하기 위한 제어 정보를 포함하는 메시지를 전송하도록 상기 송수신부를 제어하는 단계를 더 포함하는 을 특징으로 하는 기지국.A base station further comprising controlling the transceiver to transmit a message containing control information for controlling the operation of the terminal to the terminal based on the NCR authentication information.
PCT/KR2023/009850 2022-07-21 2023-07-11 Initial connection method and apparatus for network-controlled repeater in next generation mobile communication system WO2024019396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220090239A KR20240012808A (en) 2022-07-21 2022-07-21 Apparatus and method for initial access of network controlled repeater in a next generation wireless communication system
KR10-2022-0090239 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024019396A1 true WO2024019396A1 (en) 2024-01-25

Family

ID=89618002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009850 WO2024019396A1 (en) 2022-07-21 2023-07-11 Initial connection method and apparatus for network-controlled repeater in next generation mobile communication system

Country Status (2)

Country Link
KR (1) KR20240012808A (en)
WO (1) WO2024019396A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140364124A1 (en) * 2010-06-22 2014-12-11 Telefonaktiebolaget L M Ericsson (Publ) Method and Device for a Relay Node
WO2018196497A1 (en) * 2017-04-28 2018-11-01 中兴通讯股份有限公司 Relay discovery and relay forwarding method and device and storage medium
US20210075497A1 (en) * 2019-09-05 2021-03-11 Qualcomm Incorporated Relay with a configurable mode of operation
US20210194569A1 (en) * 2019-12-18 2021-06-24 Qualcomm Incorporated Coverage expansion and interference operating modes for a repeater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140364124A1 (en) * 2010-06-22 2014-12-11 Telefonaktiebolaget L M Ericsson (Publ) Method and Device for a Relay Node
WO2018196497A1 (en) * 2017-04-28 2018-11-01 中兴通讯股份有限公司 Relay discovery and relay forwarding method and device and storage medium
US20210075497A1 (en) * 2019-09-05 2021-03-11 Qualcomm Incorporated Relay with a configurable mode of operation
US20210194569A1 (en) * 2019-12-18 2021-06-24 Qualcomm Incorporated Coverage expansion and interference operating modes for a repeater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "L1/L2 signaling for side control information", 3GPP DRAFT; R1-2203922, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143995 *

Also Published As

Publication number Publication date
KR20240012808A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2019160327A1 (en) Method and device for performing cell reselection in mobile communication system
WO2020231104A1 (en) Method and apparatus for performing embedded radio resource control connection resume procedure in wireless communication system
WO2019216668A1 (en) Method and apparatus for indicating semi-persistent sounding reference signal as reference signal of neighboring cell in next-generation mobile communication system
WO2020197235A1 (en) Method and apparatus for handling cell reselection priorities for supporting v2x communication in next-generation mobile communication system
WO2019235768A1 (en) Method and apparatus for accelerating ciphering and deciphering in wireless communication system
WO2017018783A1 (en) Method and device for determining rank-related information in wireless communication system
WO2019066438A1 (en) Method and apparatus for controlling partial frequency band in wireless communication system
WO2018131990A1 (en) Method and apparatus for processing data in a wireless communication system
WO2021215884A1 (en) Method and device for transmitting and receiving signals in wireless communication system
WO2021066433A1 (en) Measurement method and apparatus for conditional handover
WO2020197307A1 (en) Method and device for handover in next generation mobile communication system
WO2021206506A1 (en) Method and device for allocating ip address to du in backhaul and access hole combination system
WO2021215831A1 (en) Method and apparatus for requesting system information for position-based system in wireless communication system
WO2022010135A1 (en) Method and device for providing terminal capability information in wireless communication system
WO2021230713A1 (en) Method and apparatus for performing conditional pscell change procedure in next-generation mobile communication system
WO2020197315A1 (en) Method and device for handover without suspension of data transmission and reception in next generation mobile communication system
WO2022211526A1 (en) Method and device for supporting transmittable downlink positioning reference signal as needed in wireless communication system
EP3928557A1 (en) Method and apparatus for handling cell reselection priorities for supporting v2x communication in next-generation mobile communication system
WO2021157991A1 (en) Device and terminal operation in next generation mobile communication system
WO2024019396A1 (en) Initial connection method and apparatus for network-controlled repeater in next generation mobile communication system
WO2022146044A1 (en) Device and method for supporting control plane signaling in integrated backhaul and access system
WO2022211591A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2023063789A1 (en) Method and device for presetting assistance data for positioning of terminal in wireless communication system
WO2022086150A1 (en) Method and apparatus for reporting uplink tx direct current location by considering intra-band ul ca in next-generation mobile communication system
WO2023287194A1 (en) Method for controlling selective admission during migration between donors in backhaul and access hole combination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843247

Country of ref document: EP

Kind code of ref document: A1