WO2024019333A1 - Vapor injection heat pump system and operation method thereof - Google Patents

Vapor injection heat pump system and operation method thereof Download PDF

Info

Publication number
WO2024019333A1
WO2024019333A1 PCT/KR2023/008447 KR2023008447W WO2024019333A1 WO 2024019333 A1 WO2024019333 A1 WO 2024019333A1 KR 2023008447 W KR2023008447 W KR 2023008447W WO 2024019333 A1 WO2024019333 A1 WO 2024019333A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating mode
vapor injection
refrigerant
expansion means
pump system
Prior art date
Application number
PCT/KR2023/008447
Other languages
French (fr)
Korean (ko)
Inventor
김윤진
김성훈
이해준
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2024019333A1 publication Critical patent/WO2024019333A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3213Control means therefor for increasing the efficiency in a vehicle heat pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations

Definitions

  • the embodiment relates to a vapor injection heat pump system and method of operating the same.
  • a heat pump is a device that absorbs heat at low temperatures and moves the absorbed heat to high temperatures.
  • a heat pump has a cycle in which a liquid refrigerant evaporates in an evaporator, takes heat from the surroundings, becomes a gas, and then liquefies while releasing heat to the surroundings through a condenser. Applying this to an electric vehicle or hybrid vehicle has the advantage of securing a heat source that is insufficient in a conventional air conditioning case.
  • This heat pump system may operate in a first heating mode and a second heating mode depending on the heating load. At this time, noise may occur due to the refrigerant valve switching, and the abnormal refrigerant at a high flow rate hits the wall of the gas-liquid separator and then rotates the inner wall in the downward direction, increasing vibration in the process of separating the gas phase and the liquid phase.
  • Embodiments may provide a vapor injection heat pump system and a method of operating the same.
  • a method of operating a vapor injection heat pump system consisting of a compressor, an indoor heat exchanger, a vapor injection module, an outdoor heat exchanger, and an evaporator according to an embodiment of the present invention is a method of operating a vapor injection heat pump system in which the refrigerant flowing into the vapor injection module flows into the outdoor heat exchanger. It includes a step of being controlled in one of a first heating mode, which is an injection heating mode, and a second heating mode, which is a vapor injection heating mode, in which a part of the refrigerant flowing into the vapor module flows into the compressor and the remainder flows into the outdoor exchanger. And, in the controlled step, when changing from the first heating mode to the second heating mode or from the second heating mode to the first heating mode, the flow of the refrigerant can be maintained in the vapor injection module. there is.
  • the controlled step may be set so that the start time of the second heating mode is not earlier than the end time of the first heating mode.
  • the end time of the first heating mode and the start time of the second heating mode may be set to be the same, or the end time of the first heating mode may be set after the start time of the second heating mode.
  • the second heating mode is operated for a predetermined time and then changed to the first heating mode, and the starting point of the first heating mode is the second heating mode. It can be set no earlier than the end point of the mode.
  • the end time of the first heating mode and the start time of the second heating mode may be set to be the same, or the end time of the second heating mode may be set after the start time of the first heating mode.
  • the controlled step may be controlled in the first heating mode for a certain period of time and then controlled in the second heating mode according to the pressure difference between the inlet pressure and outlet pressure of the compressor, or may be controlled directly in the second heating mode. there is.
  • the controlled step is controlled to the second heating mode when the pressure difference between the inlet pressure and the outlet pressure of the compressor exceeds a predetermined reference pressure, and when the pressure difference is less than or equal to the predetermined reference pressure, the second heating mode is controlled.
  • 1 Can be controlled in heating mode.
  • the vapor injection module is used to cool the refrigerant flowing into the vapor injection module to the outdoor A portion of the refrigerant flowing into the vapor module flows into the compressor and the remainder flows into the outdoor exchanger.
  • the first heating mode is a non-vapor injection heating mode flowing into the heat exchanger.
  • a first expansion means that blocks the flow of the condensed refrigerant or expands and delivers the condensed refrigerant
  • a gas-liquid separator that separates the refrigerant delivered from the first expansion means into gas phase and liquid phase refrigerant
  • a second expansion means for passing or expanding the condensed refrigerant or expanding the liquid refrigerant separated in the gas-liquid separator according to the first heating mode or the second heating mode, and the control device is configured to control the first heating mode.
  • the flow of the refrigerant can be controlled to be maintained in the vapor injection module.
  • the control device When switching to the second heating mode after operating in the first heating mode for a predetermined time, the control device sets the control time of the first expansion means and the control time of the second expansion means to be the same, or sets the control time of the first expansion means to be the same or The control time of the first expansion means can be set after the control time of the expansion means.
  • the control device When switching to the first heating mode after operating in the second heating mode for a predetermined time, the control device sets the control timing of the first expansion means and the control timing of the second expansion means to be the same, or sets the control timing of the first expansion means to be the same, or The control point of the second expansion means can be set after the control point of the first expansion means.
  • the control device may be controlled in the first heating mode for a certain period of time or directly in the second heating mode depending on the pressure difference between the inlet and outlet pressures of the compressor.
  • the control device controls the second heating mode when the pressure difference between the inlet pressure and the outlet pressure of the compressor exceeds a predetermined reference pressure, and when the pressure difference is less than the predetermined reference pressure, the first heating mode It can be controlled in heating mode.
  • the first expansion means and the second expansion means in the vapor injection module are opened simultaneously or the first expansion means and the second expansion means are opened sequentially, Instantaneous high pressure generation can be suppressed, thereby improving the safety of the system.
  • noise and vibration caused by switching between the first expansion means and the second expansion means can be reduced.
  • FIG. 1 is a diagram showing a vapor injection heat pump system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the detailed configuration of the vapor injection module shown in FIG. 1.
  • Figure 3 is a diagram showing a method of operating a cooling mode according to an embodiment of the present invention.
  • Figure 4 is a diagram showing a method of operating a heating mode according to an embodiment of the present invention.
  • 5A to 5B are diagrams for explaining the operating principle of the heating mode.
  • FIG. 6 is a diagram showing a method of operating the first heating mode shown in FIG. 4.
  • FIG. 7 is a diagram showing a method of operating the second heating mode shown in FIG. 4.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining and replacing.
  • first, second, A, B, (a), and (b) may be used.
  • a component when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to that other component, but also is connected to that component. It can also include cases where other components are 'connected', 'combined', or 'connected' due to another component between them.
  • “above” or “below” refers not only to cases where two components are in direct contact with each other, but also to one This also includes cases where another component described above is formed or placed between two components.
  • “top (above) or bottom (bottom)” it can include not only the upward direction but also the downward direction based on one component.
  • Figure 1 is a diagram showing a vapor injection heat pump system according to an embodiment of the present invention
  • Figure 2 is a diagram showing the detailed configuration of the vapor injection module shown in Figure 1.
  • the vapor injection heat pump system includes a vapor injection module (1), a compressor (10), an indoor heat exchanger (20), a condenser (30), and an outdoor heat exchanger ( 40), a third expansion means 50, an evaporator 60, a fourth expansion means 70, a chiller 80, an accumulator 90, and a control device 2.
  • the compressor 10 is driven by receiving power from an engine (internal combustion engine) or a motor, sucks and compresses the refrigerant, and then discharges it to the condenser 30 in a high-temperature, high-pressure gaseous state.
  • engine internal combustion engine
  • a motor sucks and compresses the refrigerant, and then discharges it to the condenser 30 in a high-temperature, high-pressure gaseous state.
  • the condenser 30 functions as a condenser 30 in both the cooling mode and the heating mode.
  • the condenser 30 can condense the compressed refrigerant.
  • the refrigerant condensed in the condenser 30 moves along the first line 100 and is supplied to the vapor injection module 1.
  • the vapor injection module 1 includes a first line 100, a second line 200, a third line 300, a gas-liquid separator 400, a first expansion means 500, and a second expansion means 600. It can be included.
  • the first line 100 may be connected to the inlet 110 through which the refrigerant flows, providing a passage through which the refrigerant flows into the vapor injection module 1.
  • the first line 100 may have a circular pipe structure, and various pipe structures for moving the refrigerant may be used.
  • the gas-liquid separator 400 can receive refrigerant from the first expansion means 500 and separate it into gas phase and liquid phase refrigerant.
  • the gas-liquid separator 400 can move the separated gaseous refrigerant to the compressor 10 and move the liquid refrigerant to the third line 300.
  • the gas-liquid separator 400 may include a housing 410, an outflow passage 420, and a movement passage 430.
  • the housing 410 provides an internal space through which refrigerant flows.
  • the housing 410 has a cylindrical structure, and the inner wall may have an inclination. This slope has a radius that decreases toward the bottom, providing the effect of flow rate correction.
  • An outlet is disposed at the top of the housing 410, and a movement passage 430 may be formed at the bottom of the housing 410.
  • An outlet passage 420 is connected to the outlet, and gaseous refrigerant can move to the outlet through the outlet passage 420.
  • a second line 200 is connected to an upper area of the housing 410, and the second line 200 is arranged to discharge the refrigerant toward the side wall of the housing 410 to form a return flow.
  • the refrigerant discharged from the second line 200 descends while circling the side wall of the outflow passage 420.
  • the moving passage 430 provides a passage through which the liquefied refrigerant in the housing 410 moves toward the second expansion means 600 disposed in the third line 300.
  • a partition 440 may be disposed on one side of the moving passage 430 to prevent the refrigerant from scattering.
  • the partition 440 may be located in the center of the movement passage 430, that is, at the lower part of the outflow passage 420, and can prevent the refrigerant moving through this passage from scattering and flowing into the outflow passage 420.
  • the partition wall portion 440 may have a circular plate structure and may have a diameter larger than the diameter of the outflow passage 420.
  • the shape of the partition 440 is not limited, but is preferably formed larger than the cross-section of the outflow passage 420, and may be modified in various ways depending on the cross-sectional shape of the outflow passage 420.
  • a fixing part may be connected to the partition wall part 440 and fixed to the housing 410.
  • the fixing part may have a bar structure, and one side may be connected to the partition 440 and the other side may be fixed to the housing 410.
  • One side of the second line 200 may be connected to the first line 100, and the other side may be connected to an upper area of the gas-liquid separator 400.
  • the second line 200 provides a passage through which refrigerant moves, and a first expansion means 500 may be disposed in one area of the second line 200.
  • the first expansion means 500 may block the flow of condensed refrigerant, or expand the condensed refrigerant and deliver it to the gas-liquid separator 400, depending on the air conditioning mode.
  • the first expansion means 500 may include a first ball valve 510 that is disposed at the center of the second line 200 and rotates.
  • the first ball valve 510 may include a first inlet hole 511 and a first expansion groove 513 connected to the first inlet hole 511.
  • the refrigerant flowing into the first expansion means 500 moves through the first inlet hole 511 formed in the first ball valve 510, and expands while passing through the first expansion groove 513 to form the gas-liquid separator 400. ) can flow into the
  • the first expansion means 500 may be a 2-way expansion valve.
  • a driving part is connected to the first ball valve 510 and can rotate, and the refrigerant moving to the second line 200 can be moved or blocked through rotation of the first ball valve 510.
  • the third line 300 may be connected to the first line 100 and an area below the gas-liquid separator 400 to provide a passage through which refrigerant can move.
  • One side of the third line 300 is connected to the first line 100, and the other side is connected to the movement passage 430 of the gas-liquid separator 400 so that the refrigerant can move.
  • the second expansion means 600 may pass or expand the condensed refrigerant or expand the liquid refrigerant separated in the gas-liquid separator 400, depending on the air conditioning mode.
  • the second expansion means 600 is disposed on the third line 300 and controls the movement direction and expansion of the liquid refrigerant flowing through the first line 100 or separated from the gas-liquid separator 400. You can. When the first expansion means 500 blocks the flow of the condensed refrigerant, the second expansion means 600 may pass through or expand the condensed refrigerant.
  • the second expansion means 600 may be a 3/2-way expansion valve.
  • the 3/2-way expansion valve can control the direction of movement, expansion, and flow rate of the incoming refrigerant.
  • the second expansion means 600 includes a second inlet hole 611, a second outlet hole 613 connected to the second inlet hole 611, and a second expansion groove formed on one side of the second outlet hole 613. It may include a second ball valve 610 having (613a).
  • the second ball valve 610 is provided in a spherical shape and can be connected to a driving unit (not shown) to rotate.
  • the second ball valve 610 may be disposed inside the second expansion means 600.
  • the second ball valve 610 may have a second inlet hole 611 and a second outlet hole 613 connected to form a passage through which refrigerant moves.
  • the second inlet hole 611 and the second outlet hole 613 may be connected to have an angle of 90 degrees.
  • the angles of the second inlet hole 611 and the second outlet hole 613 are not limited and may be modified to various angles.
  • the second expansion groove 613a is connected to the end of the second outlet hole 613 to expand and move the refrigerant moving through the second outlet hole 613.
  • the second expansion groove 613a is provided in an elongated shape and can expand the refrigerant using pressure changes of the moving refrigerant.
  • the second ball valve 610 operates to move or expand the refrigerant.
  • the second ball valve 610 may operate to move or expand the refrigerant by changing the positions of the second inlet hole 611, the second outlet hole 613, and the second expansion groove 613a through rotation. .
  • the first expansion means 500 and the second expansion means 600 are electronic expansion valves, which, although not indicated by reference numerals, are equipped with an actuator (motor) for rotating each ball valve, and are adjusted according to the rotation angle of the actuator. Accordingly, the expansion amount or refrigerant flow amount can be controlled.
  • the indoor heat exchanger 20 can heat the room by exchanging heat with air conditioning wind using the heat of the refrigerant flowing in from the compressor 10.
  • the indoor heat exchanger 20 is disposed inside the air conditioning case C of the vehicle together with the evaporator 60, which will be described later, to heat the interior of the vehicle.
  • the outdoor heat exchanger 40 is an air-cooled heat exchanger along with a radiator and is installed on the front side of the vehicle engine room, and is arranged in a straight line in the direction of flow of air blown from the blower fan. Additionally, the outdoor heat exchanger 40 can exchange heat with low-temperature coolant discharged from the radiator.
  • the outdoor heat exchanger 40 may perform different roles depending on the air conditioning mode.
  • the outdoor heat exchanger 40 In the cooling mode, the outdoor heat exchanger 40 functions as a condenser 30, which is the same as the water-cooled condenser 30, and in the heating mode, it functions as an evaporator 60, which is opposite to the water-cooled condenser 30.
  • the third expansion means 50 is disposed on the inlet side of the evaporator 60 and can perform the functions of expansion, flow control, and opening and closing of the refrigerant.
  • the evaporator 60 is installed inside the air conditioning case (C), is placed in the refrigerant circulation line, and is supplied with the low-temperature, low-pressure refrigerant discharged from the third expansion means (50), and is supplied to the inside of the air conditioning case (C) through a blower. As the air flowing through passes through the evaporator 60, it exchanges heat with the low-temperature, low-pressure refrigerant inside the evaporator 60 and turns into cold air, which is then discharged into the vehicle interior to cool the interior of the vehicle. That is, the evaporator 60 functions as an evaporator 60 on the refrigerant circulation line.
  • the fourth expansion means 70 is connected in parallel with the third expansion means 50 and can perform the functions of expansion, flow control, and opening and closing of the circulating refrigerant.
  • the chiller 80 may be supplied with the low-temperature, low-pressure refrigerant discharged from the fourth expansion means 70 and exchange heat with the coolant moving through the coolant circulation line. Meanwhile, the cold coolant heat-exchanged in the chiller 80 may circulate through the coolant circulation line and exchange heat with the high-temperature battery.
  • the accumulator 90 is installed on the refrigerant circulation line at the inlet side of the compressor 10, where the refrigerant that has passed through the evaporator 60 and/or the chiller 80 joins, and separates the liquid refrigerant and the gaseous refrigerant to produce the gaseous refrigerant. Only the refrigerant is supplied to the compressor 10, and excess refrigerant can be stored.
  • the suction port of the compressor 10 is connected to the gaseous refrigerant outlet of the accumulator 90, and through this, it is possible to prevent liquid refrigerant from being sucked into the compressor 10.
  • the control device 2 can control the cooling mode and heating mode by controlling the vapor injection module 1.
  • the heating mode may include a first heating mode that is a non-vapor injection heating mode and a second heating mode that is a vapor injection heating mode.
  • control device 2 closes the first expansion means 500 of the vapor injection module to block the flow of condensed refrigerant, and opens the second expansion means 600 to allow the condensed refrigerant to pass. .
  • the control device 2 may be controlled or driven in the first heating mode or the second heating mode based on the pressure difference between the first pressure, which is the inlet pressure of the compressor, and the second pressure, which is the outlet pressure.
  • control device 2 may be driven in the first heating mode when the pressure difference between the first pressure and the second pressure exceeds a predetermined reference pressure.
  • control device 2 closes the first expansion means 500 to block the condensed refrigerant, and opens the second expansion means 600 to expand the condensed refrigerant.
  • the first heating mode after the first heating mode is operated for a certain period of time, it may be changed to the second heating mode.
  • the end time of the first heating mode and the start time of the second heating mode are set to be the same, or the end time of the first heating mode is set after the start time of the second heating mode. can be set.
  • control device 2 may be driven in the second heating mode when the pressure difference between the first pressure and the second pressure is less than or equal to a predetermined reference pressure.
  • control device 2 may open the first expansion means 500 to expand the condensed refrigerant and open the second expansion means 600 to expand the condensed refrigerant. After the second heating mode is operated for a certain period of time, it can be changed to the first heating mode.
  • the second heating mode after the second heating mode is operated for a certain period of time, it may be changed to the first heating mode.
  • the end time of the first heating mode and the start time of the second heating mode may be set to be the same, or the end time of the second heating mode may be set after the start time of the first heating mode.
  • Figure 3 is a diagram showing a method of operating a cooling mode according to an embodiment of the present invention.
  • the first expansion valve of the vapor injection module when operating in the cooling mode, the first expansion valve of the vapor injection module is closed to block the flow of condensed refrigerant (S310), and the second expansion valve is opened to allow the condensed refrigerant to pass (S320). ). That is, when the refrigerant flows in through the inlet 110, the movement of the refrigerant in the second line 200 connected to the first line 100 is blocked by the first expansion means 500.
  • the refrigerant whose movement to the second line 200 is blocked by the first expansion means 500 moves to the third line 300, and the second expansion means 600 moves through the third line 300.
  • the incoming refrigerant can be bypassed and moved to the refrigerant outlet.
  • Figure 4 is a diagram showing a method of operating a heating mode according to an embodiment of the present invention
  • Figures 5A to 5B are diagrams for explaining the operating principle of the heating mode
  • Figure 6 is a diagram showing the first heating mode shown in Figure 4. It is a diagram showing an operation method
  • FIG. 7 is a diagram showing the second heating mode operation method shown in FIG. 4.
  • the vapor injection heat pump system (hereinafter referred to as the heat pump system) according to an embodiment of the present invention uses the first pressure, which is the inlet side pressure of the compressor, when the heating mode is driven according to the user's operation.
  • the pressure and the second pressure which is the outlet pressure, can be measured (S410).
  • the heat pump system may calculate a pressure difference between the first pressure and the second pressure (S420) and compare the calculated pressure difference with a predetermined reference pressure (S430).
  • the reference pressure may be set to 2 bar, but is not necessarily limited to this.
  • the heat pump system may be driven in the first heating mode (S440).
  • the first expansion means 500 of the heat pump system blocks the condensed refrigerant, and the second expansion means 600 expands the condensed refrigerant. there is.
  • the second line 200 connected to the first line 100 is blocked from moving the refrigerant by the first expansion means 500. moves to the third line 300.
  • the second ball valve 610 of the second expansion means 600 blocks the refrigerant from flowing into the third line 300 from the gas-liquid separator 400, and the third line connected to the first line 100 ( 300) can be operated to allow refrigerant to flow in.
  • the refrigerant flowing into the second ball valve 610 may be expanded to low pressure through the second expansion groove 613a and then flow out.
  • the heat pump system may be driven in the second heating mode by operating the first heating mode for a predetermined time and then changing to the second heating mode (S450).
  • the predetermined time may be set to 60 seconds, but is not necessarily limited thereto.
  • the reason why the heating mode is operated for a predetermined time in the first heating mode and then changed to the second heating mode and operated in the second heating mode is to prevent liquid refrigerant from flowing into the suction port of the initial compressor. .
  • the first expansion means 500 expands the condensed refrigerant
  • the gas-liquid separator 400 separates the expanded refrigerant into gas phase and liquid phase, and then the gas phase is It is delivered to the compressor and the liquid phase is transferred to the second expansion means 600, and the second expansion means 600 can expand the condensed refrigerant.
  • the first expansion means 500 In the case of the second heating mode, when the refrigerant flows in through the inlet 110, the first expansion means 500 is opened and the refrigerant flows in, and the inflow refrigerant expands to medium pressure in the first expansion means 500 to become a gas-liquid. flows into the separator 400.
  • the first expansion means 500 expands the incoming refrigerant to medium pressure to reduce the load on the compressor and increase heat exchange efficiency in the evaporator.
  • the refrigerant flowing into the gas-liquid separator 400 circulates and descends along the side wall of the housing 410 of the gas-liquid separator 400, and the liquid refrigerant separated from the gas-liquid separator 400 flows through the connection passage to the third line (300). ), and the separated gaseous refrigerant can be discharged through the outflow passage 420.
  • the second ball valve 610 of the second expansion means 600 blocks the refrigerant from flowing from the first line 100 to the third line 300, and the third line connected to the gas-liquid separator 400 ( 300) can be operated to allow refrigerant to flow in.
  • the refrigerant flowing into the second ball valve 610 may be expanded to low pressure through the second expansion groove 613a and then flow out.
  • the second expansion means 600 may be opened before the first expansion means 500, and a momentary blocked section may occur. At this time, the high pressure suddenly increases. There are concerns that it will rise.
  • the first expansion means 500 and the second expansion means 600 are opened simultaneously by setting the control point at the same time, or the second expansion means 500 is opened after the control point of the first expansion means 500.
  • the control point of the means 600 can be set and opened sequentially. Through this method, the second expansion means 600 is not opened before the first expansion means 500.
  • the heat pump system can immediately operate the second heating mode as shown in FIG. 7 (S450).
  • the first expansion means 500 and the second expansion means 600 may be opened simultaneously or the first expansion means 500 and the second expansion means 600 may be opened sequentially.
  • the case of changing from the first heating mode to the second heating mode is described as an example, but it is not necessarily limited to this and the second heating mode may be changed from the first heating mode.
  • the first expansion means When changing from the second heating mode to the first heating mode, in the first heating mode, the first expansion means is closed and the second expansion means is open, so there may be a case where the first expansion means closes first and the refrigerant cannot flow momentarily. there is.
  • control timing of the first expansion means 500 and the second expansion means 600 are set to be the same and open simultaneously, or the first expansion means is performed after the control timing of the second expansion means 600.
  • the control point of the means 500 can be set and opened sequentially. In this way, the first expansion means 500 is closed after the second expansion means 600 is opened.
  • ' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA (field-programmable gate array) or ASIC, and the ' ⁇ unit' performs certain roles.
  • ' ⁇ part' is not limited to software or hardware.
  • the ' ⁇ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card.

Abstract

Disclosed are a vapor injection heat pump system and an operation method thereof, according to an embodiment. The operation method of the vapor injection heat pump system formed of a compressor, an indoor heat exchanger, a vapor injection module, an outdoor heat exchanger, and an evaporator, comprises a step of performing control in one of a first heating mode that is a non-vapor injection heating mode in which a refrigerant introduced into the vapor injection module flows into the outdoor heat exchanger, and a second heating mode that is a vapor injection heating mode, in which a part of the refrigerant introduced into the vapor module flows into the compressor and the remainder flows into the outdoor exchanger, wherein in the control step, when the first heating mode is changed to the second heating mode or the second heating mode is changed to the first heating mode, the flow of the refrigerant is maintained in the vapor injection module.

Description

베이퍼 인젝션 히트펌프 시스템 및 이의 운영 방법Vapor injection heat pump system and its operating method
실시예는 베이퍼 인젝션 히트펌프 시스템 및 이의 운영 방법에 관한 것이다.The embodiment relates to a vapor injection heat pump system and method of operating the same.
환경 친화적인 산업 발전 및 화석원료를 대체하는 에너지원의 개발 기조아래, 근래 자동차 산업에서 가장 주목받는 분야는 전기자동차와 하이브리드 자동차가 있다. 이들 전기자동차와 하이브리드 자동차에는 배터리가 장착되어 구동력을 제공하는데, 주행 운전뿐만 아니라 냉난방 시에도 배터리를 이용한다.Under the trend of environmentally friendly industrial development and the development of energy sources that replace fossil raw materials, the areas that have recently attracted the most attention in the automobile industry are electric vehicles and hybrid vehicles. These electric and hybrid vehicles are equipped with batteries to provide driving power, and the batteries are used not only for driving but also for cooling and heating.
배터리를 이용하여 구동력을 제공하는 차량에서, 냉난방 시 배터리가 열원으로 사용된다는 것은 그만큼 주행거리가 감소된다는 것을 의미하는데, 위 문제를 극복하기 위하여 종래부터 가정용 냉난방장치로 널리 활용된 히트펌프 시스템을 자동차에 적용하는 방법이 제안되었다.In vehicles that provide driving force using batteries, the fact that the battery is used as a heat source during cooling and heating means that the driving distance is reduced accordingly. To overcome the above problem, a heat pump system, which has been widely used as a home air conditioning and heating system, is used in automobiles. A method of application was proposed.
히트펌프란 저온의 열을 흡수하여 흡수된 열을 고온으로 이동시키는 것을 말한다. 일 예로서의 히트펌프는 액체 냉매가 증발기 내에서 증발하고 주위에서 열을 빼앗아 기체가 되며, 다시 응축기에 의해 주위에 열을 방출하면서 액화되는 사이클을 가진다. 이를 전기자동차 또는 하이브리드 자동차에 적용하면, 종래 일반적인 공조케이스에 부족한 열원을 확보할 수 있는 장점이 있다.A heat pump is a device that absorbs heat at low temperatures and moves the absorbed heat to high temperatures. As an example, a heat pump has a cycle in which a liquid refrigerant evaporates in an evaporator, takes heat from the surroundings, becomes a gas, and then liquefies while releasing heat to the surroundings through a condenser. Applying this to an electric vehicle or hybrid vehicle has the advantage of securing a heat source that is insufficient in a conventional air conditioning case.
이러한 히트펌프 시스템은 난방 부하에 따라 제1 난방 모드와 제2 난방 모드로 작동될 수 있다. 이때, 냉매 밸브 전환에 따른 소음이 발생할 수 있고, 빠른 유속의 이상 상태의 냉매가 기액 분리기 벽면을 가격한 후 아래 방향으로 내벽을 회전하며 기상과 액상이 분리되는 과정에서 진동이 증가하게 된다.This heat pump system may operate in a first heating mode and a second heating mode depending on the heating load. At this time, noise may occur due to the refrigerant valve switching, and the abnormal refrigerant at a high flow rate hits the wall of the gas-liquid separator and then rotates the inner wall in the downward direction, increasing vibration in the process of separating the gas phase and the liquid phase.
실시예는, 베이퍼 인젝션 히트펌프 시스템 및 이의 운영 방법을 제공할 수 있다.Embodiments may provide a vapor injection heat pump system and a method of operating the same.
본 발명의 실시예에 따른 압축기, 실내열교환기, 베이퍼 인젝션 모듈, 실외열교환기, 증발기로 이루어진 베이퍼 인젝션 히트펌프 시스템의 운영 방법은 상기 베이퍼 인젝션 모듈로 유입된 냉매가 상기 실외열교환기로 유입되는 비베이퍼 인젝션 난방 모드인 제1 난방 모드와, 상기 베이퍼 모듈로 유입된 냉매의 일부는 상기 압축기로 유입되고 나머지는 상기 실외교환기로 유입되는 베이퍼 인젝션 난방 모드인 제2 난방 모드 중 어느 하나로 제어되는 단계를 포함하고, 상기 제어되는 단계는 상기 제1 난방 모드에서 상기 제2 난방 모드로 변경되거나 상기 제2 난방 모드에서 상기 제1 난방 모드로 변경되는 경우, 상기 베이퍼 인젝션 모듈에서 상기 냉매의 흐름이 유지될 수 있다.A method of operating a vapor injection heat pump system consisting of a compressor, an indoor heat exchanger, a vapor injection module, an outdoor heat exchanger, and an evaporator according to an embodiment of the present invention is a method of operating a vapor injection heat pump system in which the refrigerant flowing into the vapor injection module flows into the outdoor heat exchanger. It includes a step of being controlled in one of a first heating mode, which is an injection heating mode, and a second heating mode, which is a vapor injection heating mode, in which a part of the refrigerant flowing into the vapor module flows into the compressor and the remainder flows into the outdoor exchanger. And, in the controlled step, when changing from the first heating mode to the second heating mode or from the second heating mode to the first heating mode, the flow of the refrigerant can be maintained in the vapor injection module. there is.
상기 제어되는 단계는 상기 제2 난방 모드의 시작 시점이 상기 제1 난방 모드의 종료 시점보다 빠르지 않게 설정될 수 있다.The controlled step may be set so that the start time of the second heating mode is not earlier than the end time of the first heating mode.
상기 제어되는 단계는 상기 제1 난방 모드의 종료 시점과 상기 제2 난방 모드의 시작 시점이 동일하게 설정되거나 상기 제2 난방 모드의 시작 시점 후에 상기 제1 난방 모드의 종료 시점이 설정될 수 있다.In the controlled step, the end time of the first heating mode and the start time of the second heating mode may be set to be the same, or the end time of the first heating mode may be set after the start time of the second heating mode.
상기 제어되는 단계는 상기 제2 난방 모드로 제어되는 경우, 상기 제2 난방 모드를 미리 정해진 시간 동안 구동한 후 상기 제1 난방 모드로 변경되고, 상기 제1 난방 모드의 시작 시점이 상기 제2 난방 모드의 종료 시점보다 빠르지 않게 설정될 수 있다.When the controlled step is controlled in the second heating mode, the second heating mode is operated for a predetermined time and then changed to the first heating mode, and the starting point of the first heating mode is the second heating mode. It can be set no earlier than the end point of the mode.
상기 제어되는 단계는 상기 제1 난방 모드의 종료 시점과 상기 제2 난방 모드의 시작 시점이 동일하게 설정되거나 상기 제1 난방 모드의 시작 시점 후에 상기 제2 난방 모드의 종료 시점이 설정될 수 있다.In the controlled step, the end time of the first heating mode and the start time of the second heating mode may be set to be the same, or the end time of the second heating mode may be set after the start time of the first heating mode.
상기 제어되는 단계는 상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이에 따라 상기 제1 난방 모드로 일정 시간 제어된 후 상기 제2 난방 모드로 제어되거나, 상기 제2 난방 모드로 바로 제어될 수 있다.The controlled step may be controlled in the first heating mode for a certain period of time and then controlled in the second heating mode according to the pressure difference between the inlet pressure and outlet pressure of the compressor, or may be controlled directly in the second heating mode. there is.
상기 제어되는 단계는 상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이가 미리 정해진 기준 압력을 초과한 경우 상기 제2 난방 모드로 제어되고, 상기 압력 차이가 상기 미리 정해진 기준 압력 이하인 경우, 상기 제1 난방 모드로 제어될 수 있다.The controlled step is controlled to the second heating mode when the pressure difference between the inlet pressure and the outlet pressure of the compressor exceeds a predetermined reference pressure, and when the pressure difference is less than or equal to the predetermined reference pressure, the second heating mode is controlled. 1 Can be controlled in heating mode.
본 발명의 실시예에 따른 압축기, 실내열교환기, 베이퍼 인젝션 모듈, 실외열교환기, 증발기, 제어 장치로 이루어진 베이퍼 인젝션 히트펌프 시스템에서, 상기 베이퍼 인젝션 모듈은 상기 베이퍼 인젝션 모듈로 유입된 냉매가 상기 실외열교환기로 유입되는 비베이퍼 인젝션 난방 모드인 제1 난방 모드 또는 상기 베이퍼 모듈로 유입된 냉매의 일부는 상기 압축기로 유입되고 나머지는 상기 실외교환기로 유입되는 베이퍼 인젝션 난방 모드인 제2 난방 모드에 따라 응축된 냉매의 흐름을 차단하거나 상기 응축된 냉매를 팽창시켜 전달하는 제1 팽창수단; 상기 제1 팽창수단으로부터 전달 받은 냉매를 기상과 액상의 냉매로 분리하는 기액분리기; 및 상기 제1 난방 모드 또는 상기 제2 난방 모드에 따라 응축된 냉매를 통과 또는 팽창시키거나 상기 기액분리기에서 분리된 액상의 냉매를 팽창시키는 제2 팽창수단을 포함하고, 상기 제어 장치는 상기 제1 난방 모드 또는 상기 제2 난방 모드에 따라 상기 제1 팽창수단과 상기 제2 팽창수단을 제어하고, 상기 제1 난방 모드에서 상기 제2 난방 모드로 변경되거나 상기 제2 난방 모드에서 상기 제1 난방 모드로 변경되는 경우, 상기 베이퍼 인젝션 모듈에서 상기 냉매의 흐름이 유지되도록 제어할 수 있다.In the vapor injection heat pump system consisting of a compressor, an indoor heat exchanger, a vapor injection module, an outdoor heat exchanger, an evaporator, and a control device according to an embodiment of the present invention, the vapor injection module is used to cool the refrigerant flowing into the vapor injection module to the outdoor A portion of the refrigerant flowing into the vapor module flows into the compressor and the remainder flows into the outdoor exchanger. The first heating mode is a non-vapor injection heating mode flowing into the heat exchanger. a first expansion means that blocks the flow of the condensed refrigerant or expands and delivers the condensed refrigerant; a gas-liquid separator that separates the refrigerant delivered from the first expansion means into gas phase and liquid phase refrigerant; and a second expansion means for passing or expanding the condensed refrigerant or expanding the liquid refrigerant separated in the gas-liquid separator according to the first heating mode or the second heating mode, and the control device is configured to control the first heating mode. Controlling the first expansion means and the second expansion means according to the heating mode or the second heating mode, changing from the first heating mode to the second heating mode or changing from the second heating mode to the first heating mode When changed to , the flow of the refrigerant can be controlled to be maintained in the vapor injection module.
상기 제어 장치는 상기 제1 난방 모드로 미리 정해진 시간 동안 구동 후 상기 제2 난방 모드로 전환 시, 상기 제1 팽창수단의 제어 시점과 상기 제2 팽창수단의 제어 시점을 동일하게 설정하거나 상기 제2 팽창수단의 제어 시점 후에 상기 제1 팽창수단의 제어 시점을 설정할 수 있다.When switching to the second heating mode after operating in the first heating mode for a predetermined time, the control device sets the control time of the first expansion means and the control time of the second expansion means to be the same, or sets the control time of the first expansion means to be the same or The control time of the first expansion means can be set after the control time of the expansion means.
상기 제어 장치는 상기 제2 난방 모드로 미리 정해진 시간 동안 구동한 후 상기 제1 난방 모드로 전환 시, 상기 제1 팽창수단의 제어 시점과 상기 제2 팽창수단의 제어 시점을 동일하게 설정하거나 상기 제1 팽창수단의 제어 시점 후에 상기 제2 팽창수단의 제어 시점을 설정할 수 있다.When switching to the first heating mode after operating in the second heating mode for a predetermined time, the control device sets the control timing of the first expansion means and the control timing of the second expansion means to be the same, or sets the control timing of the first expansion means to be the same, or The control point of the second expansion means can be set after the control point of the first expansion means.
상기 제어 장치는 상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이에 따라 상기 제1 난방 모드로 일정 시간 제어되거나 상기 제2 난방 모드로 바로 제어될 수 있다.The control device may be controlled in the first heating mode for a certain period of time or directly in the second heating mode depending on the pressure difference between the inlet and outlet pressures of the compressor.
상기 제어장치는 상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이가 미리 정해진 기준 압력을 초과한 경우 상기 제2 난방 모드로 제어하고, 상기 압력 차이가 상기 미리 정해진 기준 압력 이하인 경우, 상기 제1 난방 모드로 제어할 수 있다.The control device controls the second heating mode when the pressure difference between the inlet pressure and the outlet pressure of the compressor exceeds a predetermined reference pressure, and when the pressure difference is less than the predetermined reference pressure, the first heating mode It can be controlled in heating mode.
실시예에 따르면, 제1 난방 모드에서 제2 난방 모드로의 변경 시 베이퍼 인젝션 모듈 내 제1 팽창수단과 제2 팽창수단을 동시에 개방하거나 제1 팽창수단과 제2 팽창수단을 순차적으로 개방시킴으로써, 순간적인 고압 발생을 억제할 수 있고, 이로 인해 시스템의 안전성이 향상될 수 있다.According to the embodiment, when changing from the first heating mode to the second heating mode, the first expansion means and the second expansion means in the vapor injection module are opened simultaneously or the first expansion means and the second expansion means are opened sequentially, Instantaneous high pressure generation can be suppressed, thereby improving the safety of the system.
실시예에 따르면, 제1 팽창수단과 제2 팽창수단의 전환에 따른 소음 및 진동을 감소시킬 수 있다.According to the embodiment, noise and vibration caused by switching between the first expansion means and the second expansion means can be reduced.
도 1은 본 발명의 실시예에 따른 베이퍼 인젝션 히트펌프 시스템을 나타내는 도면이다.1 is a diagram showing a vapor injection heat pump system according to an embodiment of the present invention.
도 2는 도 1에 도시된 베이퍼 인젝션 모듈의 상세한 구성을 나타내는 도면이다.FIG. 2 is a diagram showing the detailed configuration of the vapor injection module shown in FIG. 1.
도 3은 본 발명의 실시예에 따른 냉방 모드의 운영 방법을 나타내는 도면이다.Figure 3 is a diagram showing a method of operating a cooling mode according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 난방 모드의 운영 방법을 나타내는 도면이다.Figure 4 is a diagram showing a method of operating a heating mode according to an embodiment of the present invention.
도 5a 내지 도 5b는 난방 모드의 운영 원리를 설명하기 위한 도면들이다.5A to 5B are diagrams for explaining the operating principle of the heating mode.
도 6은 도 4에 도시된 제1 난방 모드 운영 방법을 나타내는 도면이다.FIG. 6 is a diagram showing a method of operating the first heating mode shown in FIG. 4.
도 7은 도 4에 도시된 제2 난방 모드 운영 방법을 나타내는 도면이다.FIG. 7 is a diagram showing a method of operating the second heating mode shown in FIG. 4.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.However, the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining and replacing.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention, unless explicitly specifically defined and described, are generally understood by those skilled in the art to which the present invention pertains. It can be interpreted as meaning, and the meaning of commonly used terms, such as terms defined in a dictionary, can be interpreted by considering the contextual meaning of the related technology.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.Additionally, the terms used in the embodiments of the present invention are for describing the embodiments and are not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In this specification, the singular may also include the plural unless specifically stated in the phrase, and when described as “at least one (or more than one) of A and B and C”, it is combined with A, B, and C. It can contain one or more of all possible combinations.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.Additionally, when describing the components of an embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.These terms are only used to distinguish the component from other components, and are not limited to the essence, sequence, or order of the component.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.And, when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to that other component, but also is connected to that component. It can also include cases where other components are 'connected', 'combined', or 'connected' due to another component between them.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.Additionally, when described as being formed or disposed “above” or “below” each component, “above” or “below” refers not only to cases where two components are in direct contact with each other, but also to one This also includes cases where another component described above is formed or placed between two components. In addition, when expressed as “top (above) or bottom (bottom)”, it can include not only the upward direction but also the downward direction based on one component.
도 1은 본 발명의 실시예에 따른 베이퍼 인젝션 히트펌프 시스템을 나타내는 도면이고, 도 2는 도 1에 도시된 베이퍼 인젝션 모듈의 상세한 구성을 나타내는 도면이다.Figure 1 is a diagram showing a vapor injection heat pump system according to an embodiment of the present invention, and Figure 2 is a diagram showing the detailed configuration of the vapor injection module shown in Figure 1.
도 1 내지 도 2를 참조하면, 본 발명의 실시예에 따른 베이퍼 인젝션 히트펌프 시스템은 베이퍼 인젝션 모듈(1), 압축기(10), 실내열교환기(20), 응축기(30), 실외열교환기(40), 제3 팽창수단(50), 증발기(60), 제4 팽창수단(70), 칠러(80), 어큐뮬레이터(90) 및 제어 장치(2)를 포함할 수 있다.Referring to Figures 1 and 2, the vapor injection heat pump system according to an embodiment of the present invention includes a vapor injection module (1), a compressor (10), an indoor heat exchanger (20), a condenser (30), and an outdoor heat exchanger ( 40), a third expansion means 50, an evaporator 60, a fourth expansion means 70, a chiller 80, an accumulator 90, and a control device 2.
압축기(10)는 엔진(내연기관) 또는 모터 등으로부터 동력을 전달받아 구동하면서 냉매를 흡입하여 압축한 후 고온 고압의 기체 상태로 응축기(30) 측에 배출하게 된다.The compressor 10 is driven by receiving power from an engine (internal combustion engine) or a motor, sucks and compresses the refrigerant, and then discharges it to the condenser 30 in a high-temperature, high-pressure gaseous state.
응축기(30)는 냉방모드 및 난방모드 시 모두 응축기(30) 역할을 하게 된다. 응축기(30)는 압축된 냉매를 응축할 수 있다. 응축기(30)에 응축된 냉매는 제1 라인(100)을 따라 이동하여 베이퍼 인젝션 모듈(1)로 공급된다.The condenser 30 functions as a condenser 30 in both the cooling mode and the heating mode. The condenser 30 can condense the compressed refrigerant. The refrigerant condensed in the condenser 30 moves along the first line 100 and is supplied to the vapor injection module 1.
베이퍼 인젝션 모듈(1)은 제1 라인(100), 제2 라인(200), 제3 라인(300), 기액분리기(400), 제1 팽창수단(500) 및 제2 팽창수단(600)을 포함할 수 있다.The vapor injection module 1 includes a first line 100, a second line 200, a third line 300, a gas-liquid separator 400, a first expansion means 500, and a second expansion means 600. It can be included.
제1 라인(100)은 냉매가 유입되는 유입구(110)와 연결되어 냉매가 베이퍼 인젝션 모듈(1)로 유입되는 통로를 제공할 수 있다. 일예로, 제1 라인(100)은 원형의 관구조를 구비할 수 있으며, 냉매가 이동하기 위한 다양한 관 구조가 사용될 수 있다.The first line 100 may be connected to the inlet 110 through which the refrigerant flows, providing a passage through which the refrigerant flows into the vapor injection module 1. For example, the first line 100 may have a circular pipe structure, and various pipe structures for moving the refrigerant may be used.
기액분리기(400)는 제1 팽창수단(500)으로부터 냉매를 전달받아 기상과 액상의 냉매로 분리할 수 있다. 기액분리기(400)는 분리된 기상 냉매를 압축기(10)로 이동시키며, 액상의 냉매를 제3 라인(300)으로 이동시킬 수 있다.The gas-liquid separator 400 can receive refrigerant from the first expansion means 500 and separate it into gas phase and liquid phase refrigerant. The gas-liquid separator 400 can move the separated gaseous refrigerant to the compressor 10 and move the liquid refrigerant to the third line 300.
기액분리기(400)는 하우징(410), 유출통로(420) 및 이동통로(430)를 포함할 수 있다.The gas-liquid separator 400 may include a housing 410, an outflow passage 420, and a movement passage 430.
하우징(410)은 냉매가 유동하는 내부공간을 제공한다. 하우징(410)은 원통구조로 마련되며, 내벽은 경사를 가질 수 있다. 이러한 경사는 하부로 갈수록 반경이 줄어 유속 보정의 효과를 구비할 수 있다. 하우징(410)의 상부에는 유출구가 배치되며, 하우징(410)의 하부에는 이동통로(430)가 형성될 수 있다.The housing 410 provides an internal space through which refrigerant flows. The housing 410 has a cylindrical structure, and the inner wall may have an inclination. This slope has a radius that decreases toward the bottom, providing the effect of flow rate correction. An outlet is disposed at the top of the housing 410, and a movement passage 430 may be formed at the bottom of the housing 410.
유출구에는 유출통로(420)가 연결되며, 유출통로(420)를 통해 기상 냉매가 유출구로 이동할 수 있다.An outlet passage 420 is connected to the outlet, and gaseous refrigerant can move to the outlet through the outlet passage 420.
하우징(410)의 상측 일영역에는 제2 라인(200)이 연결되며, 제2 라인(200)은 냉매가 하우징(410)의 측벽을 향하여 토출되도록 배치되어 회류를 형성할 수 있다. 제2 라인(200)에서 토출되는 냉매는 유출통로(420)의 측벽을 선회하면서 하강한다.A second line 200 is connected to an upper area of the housing 410, and the second line 200 is arranged to discharge the refrigerant toward the side wall of the housing 410 to form a return flow. The refrigerant discharged from the second line 200 descends while circling the side wall of the outflow passage 420.
이동통로(430)는 하우징(410)에서 액화된 냉매가 제3 라인(300)에 배치되는 제2 팽창수단(600)을 향해 이동하는 통로를 제공한다. 이동통로(430)의 일측에는 냉매의 비산을 방지하는 격벽부(440)가 배치될 수 있다.The moving passage 430 provides a passage through which the liquefied refrigerant in the housing 410 moves toward the second expansion means 600 disposed in the third line 300. A partition 440 may be disposed on one side of the moving passage 430 to prevent the refrigerant from scattering.
격벽부(440)는 이동통로(430)의 중심부, 즉 유출통로(420)의 하부에 위치할 수 있으며, 이통통로를 이동하는 냉매가 비산되어 유출통로(420)로 유입되는 것을 방지할 수 있다. 일예로, 격벽부(440)는 원형의 판구조를 구비할 수 있으며, 유출통로(420)의 직경보다 큰 직경을 가질 수 있다. 격벽부(440)의 형상은 제한이 없으나, 유출통로(420)의 단면보다 크게 형성되는 것이 바람직하며, 유출통로(420)의 단면의 형상에 따라 다양하게 변형실시될 수 있다.The partition 440 may be located in the center of the movement passage 430, that is, at the lower part of the outflow passage 420, and can prevent the refrigerant moving through this passage from scattering and flowing into the outflow passage 420. . For example, the partition wall portion 440 may have a circular plate structure and may have a diameter larger than the diameter of the outflow passage 420. The shape of the partition 440 is not limited, but is preferably formed larger than the cross-section of the outflow passage 420, and may be modified in various ways depending on the cross-sectional shape of the outflow passage 420.
또한, 격벽부(440)에는 고정부가 연결되어 하우징(410)에 고정될 수 있다. 일예로, 고정부는 막대구조를 구비하며, 일측이 격벽부(440)에 연결되며, 타측이 하우징(410)에 고정되는 구조로 고정될 수 있다.Additionally, a fixing part may be connected to the partition wall part 440 and fixed to the housing 410. For example, the fixing part may have a bar structure, and one side may be connected to the partition 440 and the other side may be fixed to the housing 410.
제2 라인(200)은 일측이 제1 라인(100)에 연결되며, 타측은 기액분리기(400)의 상측 일영역에 연결될 수 있다. 제2 라인(200)은 냉매가 이동하는 통로를 제공하며, 제2 라인(200)의 일영역에는 제1 팽창수단(500)이 배치될 수 있다.One side of the second line 200 may be connected to the first line 100, and the other side may be connected to an upper area of the gas-liquid separator 400. The second line 200 provides a passage through which refrigerant moves, and a first expansion means 500 may be disposed in one area of the second line 200.
제1 팽창수단(500)은 공조모드에 따라 응축된 냉매의 흐름을 차단하거나, 응축된 냉매를 팽창시켜 기액분리기(400)로 전달할 수 있다. 제1 팽창수단(500)은 제2 라인(200)의 중심에 배치되어 회전하는 제1 볼밸브(510)를 포함할 수 있다. 제1 볼밸브(510)는 제1 유입홀(511), 제1 유입홀(511)에 연결되는 제1 팽창홈(513)을 포함할 수 있다.The first expansion means 500 may block the flow of condensed refrigerant, or expand the condensed refrigerant and deliver it to the gas-liquid separator 400, depending on the air conditioning mode. The first expansion means 500 may include a first ball valve 510 that is disposed at the center of the second line 200 and rotates. The first ball valve 510 may include a first inlet hole 511 and a first expansion groove 513 connected to the first inlet hole 511.
제1 팽창수단(500)으로 유입되는 냉매는 제1 볼밸브(510)에 형성되는 제1 유입홀(511)을 통해 이동하며, 제1 팽창홈(513)을 지나면서 팽창되어 기액분리기(400)로 유입될 수 있다.The refrigerant flowing into the first expansion means 500 moves through the first inlet hole 511 formed in the first ball valve 510, and expands while passing through the first expansion groove 513 to form the gas-liquid separator 400. ) can flow into the
제1 팽창수단(500)은 2-way 팽창밸브가 사용될 수 있다.The first expansion means 500 may be a 2-way expansion valve.
제1 볼밸브(510)에는 구동부가 연결되어 회전할 수 있으며, 제1 볼밸브(510)의 회전을 통해 제2 라인(200)으로 이동하는 냉매를 이동시키거나 차단할 수 있다.A driving part is connected to the first ball valve 510 and can rotate, and the refrigerant moving to the second line 200 can be moved or blocked through rotation of the first ball valve 510.
제3 라인(300)은 제1 라인(100)과 기액분리기(400)의 하측의 일영역에 연결되어 냉매가 이동할 수 있는 통로를 제공할 수 있다. 제3 라인(300)의 일측은 제1 라인(100)과 연결되며, 타측은 기액분리기(400)의 이동통로(430)와 연결되어 냉매가 이동할 수 있다.The third line 300 may be connected to the first line 100 and an area below the gas-liquid separator 400 to provide a passage through which refrigerant can move. One side of the third line 300 is connected to the first line 100, and the other side is connected to the movement passage 430 of the gas-liquid separator 400 so that the refrigerant can move.
제2 팽창수단(600)은 공조모드에 따라 응축된 냉매를 통과 또는 팽창시키거나, 기액분리기(400)에서 분리된 액상의 냉매를 팽창시킬 수 있다.The second expansion means 600 may pass or expand the condensed refrigerant or expand the liquid refrigerant separated in the gas-liquid separator 400, depending on the air conditioning mode.
제2 팽창수단(600)은 제3 라인(300)상에 배치되어 제1 라인(100)을 통해 유입되거나, 기액분리기(400)에서 분리되어 유입되는 액상 냉매의 이동방향 및 팽창여부를 제어할 수 있다. 제2 팽창수단(600)은 제1 팽창수단(500)이 응축된 냉매를 흐름을 차단하는 경우, 응축된 냉매를 통과 또는 팽창할 수 있다.The second expansion means 600 is disposed on the third line 300 and controls the movement direction and expansion of the liquid refrigerant flowing through the first line 100 or separated from the gas-liquid separator 400. You can. When the first expansion means 500 blocks the flow of the condensed refrigerant, the second expansion means 600 may pass through or expand the condensed refrigerant.
제2 팽창수단(600)은 3/2-way 팽창밸브가 사용될 수 있다. 3/2-way 팽창밸브는 유입되는 냉매의 이동방향, 팽창여부 및 유량제어기능을 수행할 수 있다.The second expansion means 600 may be a 3/2-way expansion valve. The 3/2-way expansion valve can control the direction of movement, expansion, and flow rate of the incoming refrigerant.
제2 팽창수단(600)은 제2 유입홀(611), 제2 유입홀(611)과 연결되는 제2 유출홀(613) 및 제2 유출홀(613)의 일측에 형성되는 제2 팽창홈(613a)을 구비하는 제2 볼밸브(610)를 포함할 수 있다.The second expansion means 600 includes a second inlet hole 611, a second outlet hole 613 connected to the second inlet hole 611, and a second expansion groove formed on one side of the second outlet hole 613. It may include a second ball valve 610 having (613a).
제2 볼밸브(610)의 구 형상으로 마련되며, 구동부(미도시)에 연결되어 회전할 수 있다. 제2 볼밸브(610)는 제2 팽창수단(600)의 내부에 배치될 수 있다.The second ball valve 610 is provided in a spherical shape and can be connected to a driving unit (not shown) to rotate. The second ball valve 610 may be disposed inside the second expansion means 600.
제2 볼밸브(610)는 제2 유입홀(611)과 제2 유출홀(613)이 연결되어 냉매가 이동하는 통로를 형성할 수 있다. 일예로, 제2 유입홀(611)과 제2 유출홀(613)은 90도의 각도를 가지도록 연결될 수 있다. 다만, 제2 유입홀(611)과 제2 유출홀(613)의 각도는 한정되지 않으며 다양한 각도로 변형실시될 수 있다.The second ball valve 610 may have a second inlet hole 611 and a second outlet hole 613 connected to form a passage through which refrigerant moves. For example, the second inlet hole 611 and the second outlet hole 613 may be connected to have an angle of 90 degrees. However, the angles of the second inlet hole 611 and the second outlet hole 613 are not limited and may be modified to various angles.
제2 팽창홈(613a)은 제2 유출홀(613)의 단부와 연결되도록 연결되어 제2 유출홀(613)을 통해 이동하는 냉매를 팽창시켜 이동시킬 수 있다. 일실시예로, 제2 팽창홈(613a)은 세장형으로 구비되어 이동하는 냉매의 압력변화를 이용하여 냉매를 팽창시킬 수 있다.The second expansion groove 613a is connected to the end of the second outlet hole 613 to expand and move the refrigerant moving through the second outlet hole 613. In one embodiment, the second expansion groove 613a is provided in an elongated shape and can expand the refrigerant using pressure changes of the moving refrigerant.
제2 볼밸브(610)는 냉매를 이동시키거나 팽창하도록 동작한다. 제2 볼밸브(610)는 회전을 통해 제2 유입홀(611), 제2 유출홀(613) 및 제2 팽창홈(613a)의 위치를 변경시켜 냉매를 이동시키거나 팽창하도록 동작할 수 있다.The second ball valve 610 operates to move or expand the refrigerant. The second ball valve 610 may operate to move or expand the refrigerant by changing the positions of the second inlet hole 611, the second outlet hole 613, and the second expansion groove 613a through rotation. .
제1 팽창수단(500)과 제2 팽창수단(600)은 전자식 팽창밸브로서, 도면부호로 표시하지는 않았으나, 각각의 볼밸브를 회전시키기 위한 액츄에이터(모터)를 구비하고 있으며, 액츄에이터의 회전 각도에 따라 팽창량 또는 냉매 유동량을 제어할 수 있다.The first expansion means 500 and the second expansion means 600 are electronic expansion valves, which, although not indicated by reference numerals, are equipped with an actuator (motor) for rotating each ball valve, and are adjusted according to the rotation angle of the actuator. Accordingly, the expansion amount or refrigerant flow amount can be controlled.
실내열교환기(20)는 압축기(10)에서 유입되는 냉매의 열을 이용하여 공조풍과 열교환시켜 실내를 난방할 수 있다. 실내열교환기(20)는 후술할 증발기(60)와 함께 차량의 공조케이스(C) 내부에 배치되어 차량의 실내를 난방할 수 있다.The indoor heat exchanger 20 can heat the room by exchanging heat with air conditioning wind using the heat of the refrigerant flowing in from the compressor 10. The indoor heat exchanger 20 is disposed inside the air conditioning case C of the vehicle together with the evaporator 60, which will be described later, to heat the interior of the vehicle.
실외열교환기(40)는 라디에이터와 함께 공냉식 열교환기로 차량 엔진룸의 전방측에 설치되며, 송풍팬으로부터 송풍되는 공기의 유동방향으로 일직선상에 배치된다. 또한 실외열교환기(40)는 라디에이터에서 배출되는 저온의 냉각수와 열교환될 수 있다.The outdoor heat exchanger 40 is an air-cooled heat exchanger along with a radiator and is installed on the front side of the vehicle engine room, and is arranged in a straight line in the direction of flow of air blown from the blower fan. Additionally, the outdoor heat exchanger 40 can exchange heat with low-temperature coolant discharged from the radiator.
또한, 실외열교환기(40)는 공조모드에 따라 다른 역할을 수행할 수 있다. 실외열교환기(40)는 냉방모드 시, 수냉식 응축기(30)와 동일한 응축기(30) 역할을 하게 되고, 난방모드 시에는 수냉식 응축기(30)와 상반되는 증발기(60) 역할을 하게 된다.Additionally, the outdoor heat exchanger 40 may perform different roles depending on the air conditioning mode. In the cooling mode, the outdoor heat exchanger 40 functions as a condenser 30, which is the same as the water-cooled condenser 30, and in the heating mode, it functions as an evaporator 60, which is opposite to the water-cooled condenser 30.
제3 팽창수단(50)은 증발기(60)의 입구측에 배치되어 냉매의 팽창, 유량 제어 및 개폐의 기능을 수행할 수 있다.The third expansion means 50 is disposed on the inlet side of the evaporator 60 and can perform the functions of expansion, flow control, and opening and closing of the refrigerant.
증발기(60)는 공조케이스(C)의 내부에 설치되고, 냉매 순환라인에 배치되어 제3 팽창수단(50)에서 배출된 저온저압의 냉매가 공급되고, 블로어를 통해 공조케이스(C)의 내부를 유동하는 공기가 증발기(60)를 통과하는 과정에서 증발기(60) 내부의 저온 저압의 냉매와 열교환하여 냉풍으로 바뀐 뒤, 차량 실내로 토출되어 차실내를 냉방하게 된다. 즉 증발기(60)는 냉매 순환라인 상에서 증발기(60) 역할을 한다.The evaporator 60 is installed inside the air conditioning case (C), is placed in the refrigerant circulation line, and is supplied with the low-temperature, low-pressure refrigerant discharged from the third expansion means (50), and is supplied to the inside of the air conditioning case (C) through a blower. As the air flowing through passes through the evaporator 60, it exchanges heat with the low-temperature, low-pressure refrigerant inside the evaporator 60 and turns into cold air, which is then discharged into the vehicle interior to cool the interior of the vehicle. That is, the evaporator 60 functions as an evaporator 60 on the refrigerant circulation line.
제4 팽창수단(70)은 제3 팽창수단(50)과 병렬로 연결되며, 순환되는 냉매의 팽창, 유량 제어 및 개폐의 기능을 수행할 수 있다.The fourth expansion means 70 is connected in parallel with the third expansion means 50 and can perform the functions of expansion, flow control, and opening and closing of the circulating refrigerant.
칠러(80)는 제4 팽창수단(70)에서 배출된 저온 저압의 냉매가 공급되어 냉각수 순환라인을 이동하는 냉각수와 열교환될 수 있다. 한편, 칠러(80)에서 열교환된 차가운 냉각수는 냉각수 순환라인을 순환하여 고온의 배터리와 열교환될 수 있다.The chiller 80 may be supplied with the low-temperature, low-pressure refrigerant discharged from the fourth expansion means 70 and exchange heat with the coolant moving through the coolant circulation line. Meanwhile, the cold coolant heat-exchanged in the chiller 80 may circulate through the coolant circulation line and exchange heat with the high-temperature battery.
어큐뮬레이터(90)는 압축기(10)의 입구 측 냉매 순환라인 상에 설치되어 증발기(60) 및/또는 칠러(80)를 경유한 냉매가 합류되며, 냉매 중 액상 냉매와 기상 냉매를 분리하여 기상 냉매만 압축기(10)로 공급하며, 잉여 냉매를 저장할 수 있다.The accumulator 90 is installed on the refrigerant circulation line at the inlet side of the compressor 10, where the refrigerant that has passed through the evaporator 60 and/or the chiller 80 joins, and separates the liquid refrigerant and the gaseous refrigerant to produce the gaseous refrigerant. Only the refrigerant is supplied to the compressor 10, and excess refrigerant can be stored.
어큐뮬레이터(90)의 기상 냉매 출구에는 압축기(10)의 흡입포트가 연결되어 있으며, 이를 통해 압축기(10)에 액상의 냉매가 흡입되는 것을 방지할 수 있다.The suction port of the compressor 10 is connected to the gaseous refrigerant outlet of the accumulator 90, and through this, it is possible to prevent liquid refrigerant from being sucked into the compressor 10.
제어 장치(2)는 베이퍼 인젝션 모듈(1)을 제어하여 냉방 모드와 난방 모드를 제어할 수 있다. 난방 모드는 비베이퍼 인젝션(non-vapor injection) 난방 모드인 제1 난방 모드와 베이퍼 인젝션(vapor injection) 난방 모드인 제2 난방 모드를 포함할 수 있다.The control device 2 can control the cooling mode and heating mode by controlling the vapor injection module 1. The heating mode may include a first heating mode that is a non-vapor injection heating mode and a second heating mode that is a vapor injection heating mode.
냉방 모드에서, 제어 장치(2)는 베이퍼 인젝션 모듈의 제1 팽창 수단(500)을 닫아 응축된 냉매의 흐름을 차단하고, 제2 팽창수단(600)을 개방하여 응측된 냉매를 통과시킬 수 있다.In the cooling mode, the control device 2 closes the first expansion means 500 of the vapor injection module to block the flow of condensed refrigerant, and opens the second expansion means 600 to allow the condensed refrigerant to pass. .
제어 장치(2)는 압축기의 입구측 압력인 제1 압력과 출구측 압력인 제2 압력 간의 압력 차이를 기초로 제1 난방 모드 또는 제2 난방 모드로 제어 또는 구동할 수 있다.The control device 2 may be controlled or driven in the first heating mode or the second heating mode based on the pressure difference between the first pressure, which is the inlet pressure of the compressor, and the second pressure, which is the outlet pressure.
그 일예로, 제어 장치(2)는 제1 압력과 제2 압력 간의 압력 차이가 미리 정해진 기준 압력을 초과한 경우 제1 난방 모드로 구동할 수 있다.As an example, the control device 2 may be driven in the first heating mode when the pressure difference between the first pressure and the second pressure exceeds a predetermined reference pressure.
제1 난방모드에서, 제어 장치(2)는 제1 팽창수단(500)을 닫아 응축된 냉매를 차단하고, 제2 팽창수단(600)을 개방하여 응축된 냉매를 팽창시킬 수 있다.In the first heating mode, the control device 2 closes the first expansion means 500 to block the condensed refrigerant, and opens the second expansion means 600 to expand the condensed refrigerant.
그리고 제1 난방모드가 일정 시간 구동된 후 제2 난방모드로 변경될 수 있다. 이때, 베이퍼 인젝션 모듈에서 냉매의 흐름이 막히지 않고 유지되도록, 제1 난방 모드의 종료 시점과 제2 난방 모드의 시작 시점을 동일하게 설정하거나 제2 난방 모드의 시작 시점 후에 제1 난방 모드의 종료 시점을 설정할 수 있다.And after the first heating mode is operated for a certain period of time, it may be changed to the second heating mode. At this time, so that the flow of refrigerant in the vapor injection module is maintained without being blocked, the end time of the first heating mode and the start time of the second heating mode are set to be the same, or the end time of the first heating mode is set after the start time of the second heating mode. can be set.
다른 예로, 제어 장치(2)는 제1 압력과 제2 압력 간의 압력 차이가 미리 정해진 기준 압력의 이하인 경우 제2 난방 모드로 구동할 수 있다.As another example, the control device 2 may be driven in the second heating mode when the pressure difference between the first pressure and the second pressure is less than or equal to a predetermined reference pressure.
제2 난방모드에서, 제어 장치(2)는 제1 팽창수단(500)을 개방하여 응축된 냉매를 팽창시키고, 제2 팽창수단(600)을 개방하여 응축된 냉매를 팽창시킬 수 있다. 제2 난방모드가 일정 시간 구동된 후 제1 난방모드로 변경할 수 있다.In the second heating mode, the control device 2 may open the first expansion means 500 to expand the condensed refrigerant and open the second expansion means 600 to expand the condensed refrigerant. After the second heating mode is operated for a certain period of time, it can be changed to the first heating mode.
그리고 제2 난방모드가 일정 시간 구동된 후 제1 난방모드로 변경될 수 있다. 이때, 제1 난방 모드의 종료 시점과 제2 난방 모드의 시작 시점을 동일하게 설정하거나 제1 난방 모드의 시작 시점 후에 제2 난방 모드의 종료 시점을 설정할 수 있다.And after the second heating mode is operated for a certain period of time, it may be changed to the first heating mode. At this time, the end time of the first heating mode and the start time of the second heating mode may be set to be the same, or the end time of the second heating mode may be set after the start time of the first heating mode.
도 3은 본 발명의 실시예에 따른 냉방 모드의 운영 방법을 나타내는 도면이다.Figure 3 is a diagram showing a method of operating a cooling mode according to an embodiment of the present invention.
도 3을 참조하면, 냉방 모드 작동 시, 베이퍼 인젝션 모듈의 제1 팽창 밸브가 닫혀 응축된 냉매의 흐름을 차단하고(S310), 제2 팽창 밸브가 개방되어 응측된 냉매를 통과시킬 수 있다(S320). 즉, 냉매가 유입구(110)를 통해 유입되면, 제1 라인(100)과 연결되는 제2 라인(200)은 제1 팽창수단(500)에 의해 냉매의 이동이 차단된다.Referring to FIG. 3, when operating in the cooling mode, the first expansion valve of the vapor injection module is closed to block the flow of condensed refrigerant (S310), and the second expansion valve is opened to allow the condensed refrigerant to pass (S320). ). That is, when the refrigerant flows in through the inlet 110, the movement of the refrigerant in the second line 200 connected to the first line 100 is blocked by the first expansion means 500.
제1 팽창수단(500)에 의해 제2 라인(200)으로의 이동이 차단된 냉매는 제3 라인(300)으로 이동하게 되고, 제2 팽창수단(600)이 제3 라인(300)을 통해 유입되는 냉매를 바이패스(bypass)하여 냉매출구로 이동시킬 수 있다.The refrigerant whose movement to the second line 200 is blocked by the first expansion means 500 moves to the third line 300, and the second expansion means 600 moves through the third line 300. The incoming refrigerant can be bypassed and moved to the refrigerant outlet.
도 4는 본 발명의 실시예에 따른 난방 모드의 운영 방법을 나타내는 도면이고, 도 5a 내지 도 5b는 난방 모드의 운영 원리를 설명하기 위한 도면들이고, 도 6은 도 4에 도시된 제1 난방 모드 운영 방법을 나타내는 도면이고, 도 7은 도 4에 도시된 제2 난방 모드 운영 방법을 나타내는 도면이다.Figure 4 is a diagram showing a method of operating a heating mode according to an embodiment of the present invention, Figures 5A to 5B are diagrams for explaining the operating principle of the heating mode, and Figure 6 is a diagram showing the first heating mode shown in Figure 4. It is a diagram showing an operation method, and FIG. 7 is a diagram showing the second heating mode operation method shown in FIG. 4.
도 4 내지 도 7을 참조하면, 본 발명의 실시예에 따른 베이퍼 인젝션 히트펌프 시스템(이하 히트펌프 시스템이라고 한다)은 사용자의 조작에 따라 난방 모드가 구동되는 경우, 압축기의 입구측 압력인 제1 압력과 출구측 압력인 제2 압력을 측정할 수 있다(S410).Referring to FIGS. 4 to 7, the vapor injection heat pump system (hereinafter referred to as the heat pump system) according to an embodiment of the present invention uses the first pressure, which is the inlet side pressure of the compressor, when the heating mode is driven according to the user's operation. The pressure and the second pressure, which is the outlet pressure, can be measured (S410).
히트펌프 시스템은 제1 압력과 제2 압력 간의 압력 차이를 산출하고(S420), 산출된 압력 차이와 미리 정해진 기준 압력을 비교할 수 있다(S430). 예를 들면, 기준 압력은 2bar로 설정될 수 있지만 반드시 이에 한정되지 않는다.The heat pump system may calculate a pressure difference between the first pressure and the second pressure (S420) and compare the calculated pressure difference with a predetermined reference pressure (S430). For example, the reference pressure may be set to 2 bar, but is not necessarily limited to this.
히트펌프 시스템은 산출된 압력 차이가 미리 정해진 기준 압력보다 크면, 제1 난방 모드로 구동될 수 있다(S440).If the calculated pressure difference is greater than a predetermined reference pressure, the heat pump system may be driven in the first heating mode (S440).
도 5a 및 도 6과 같이 제1 난방 모드를 구동하는 경우, 히트펌프 시스템은 제1 팽창수단(500)은 응축된 냉매를 차단하고, 제2 팽창수단(600)은 응축된 냉매를 팽창시킬 수 있다.When operating the first heating mode as shown in FIGS. 5A and 6, the first expansion means 500 of the heat pump system blocks the condensed refrigerant, and the second expansion means 600 expands the condensed refrigerant. there is.
제1 난방 모드의 경우 냉매가 유입구(110)를 통해 유입되면, 제1 라인(100)과 연결되는 제2 라인(200)은 제1 팽창수단(500)에 의해 냉매의 이동이 차단되며, 냉매는 제3 라인(300)으로 이동하게 된다.In the case of the first heating mode, when the refrigerant flows in through the inlet 110, the second line 200 connected to the first line 100 is blocked from moving the refrigerant by the first expansion means 500. moves to the third line 300.
제2 팽창수단(600)의 제2 볼밸브(610)는 기액분리기(400)에서 제3 라인(300)으로 냉매가 유입되는 것을 차단하며, 제1 라인(100)과 연결되는 제3 라인(300)으로 냉매가 유입되도록 동작할 수 있다. 제2 볼밸브(610)로 유입되는 냉매는 제2 팽창홈(613a)을 통해 저압으로 팽창되어 유출될 수 있다.The second ball valve 610 of the second expansion means 600 blocks the refrigerant from flowing into the third line 300 from the gas-liquid separator 400, and the third line connected to the first line 100 ( 300) can be operated to allow refrigerant to flow in. The refrigerant flowing into the second ball valve 610 may be expanded to low pressure through the second expansion groove 613a and then flow out.
히트펌프 시스템은 제1 난방 모드를 미리 정해진 시간 동안 구동한 후 제2 난방 모드로 변경하여 제2 난방 모드로 구동될 수 있다(S450). 예를 들면, 미리 정해진 시간은 60초로 설정될 수 있지만 반드시 이에 한정되지 않는다.The heat pump system may be driven in the second heating mode by operating the first heating mode for a predetermined time and then changing to the second heating mode (S450). For example, the predetermined time may be set to 60 seconds, but is not necessarily limited thereto.
이렇게 난방 모드 구동 시 제1 난방 모드로 미리 정해진 시간 동안 구동된 후 제2 난방 모드로 변경하여 제2 난방 모드로 구동되는 이유는 초기 압축기의 흡입 포트로 액상의 냉매가 유입되는 것을 방지하기 위함이다.The reason why the heating mode is operated for a predetermined time in the first heating mode and then changed to the second heating mode and operated in the second heating mode is to prevent liquid refrigerant from flowing into the suction port of the initial compressor. .
도 5b 및 도 6과 같이 제2 난방 모드로 변경하는 경우, 제1 팽창수단(500)은 응축된 냉매를 팽창시키고, 기액분리기(400)는 팽창된 냉매를 기상과 액상으로 분리한 후 기상은 압축기로 전달하고 액상은 제2 팽창수단(600)으로 전달하며, 제2 팽창수단(600)은 응축된 냉매를 팽창시킬 수 있다.When changing to the second heating mode as shown in FIGS. 5B and 6, the first expansion means 500 expands the condensed refrigerant, and the gas-liquid separator 400 separates the expanded refrigerant into gas phase and liquid phase, and then the gas phase is It is delivered to the compressor and the liquid phase is transferred to the second expansion means 600, and the second expansion means 600 can expand the condensed refrigerant.
제2 난방 모드의 경우 냉매가 유입구(110)를 통해 유입되면, 제1 팽창수단(500)이 개방되어 냉매가 유입되며, 유입되는 냉매는 제1 팽창수단(500)에서 중압으로 팽창을 하여 기액분리기(400)로 유입된다. 제1 팽창수단(500)은 유입되는 냉매를 중압으로 팽창하여 압축기에 걸리는 부하를 감소할 수 있으며, 증발기에서 열교환 효율을 증대할 수 있다.In the case of the second heating mode, when the refrigerant flows in through the inlet 110, the first expansion means 500 is opened and the refrigerant flows in, and the inflow refrigerant expands to medium pressure in the first expansion means 500 to become a gas-liquid. flows into the separator 400. The first expansion means 500 expands the incoming refrigerant to medium pressure to reduce the load on the compressor and increase heat exchange efficiency in the evaporator.
기액분리기(400)로 유입되는 냉매는 기액분리기(400)의 하우징(410)의 측벽을 타고 회류하여 하강하게 되며, 기액분리기(400)에서 분리되는 액상 냉매는 연결통로를 통해 제3 라인(300)으로 이동하게 되며, 분리된 기상 냉매는 유출통로(420)를 통해 배출될 수 있다.The refrigerant flowing into the gas-liquid separator 400 circulates and descends along the side wall of the housing 410 of the gas-liquid separator 400, and the liquid refrigerant separated from the gas-liquid separator 400 flows through the connection passage to the third line (300). ), and the separated gaseous refrigerant can be discharged through the outflow passage 420.
제2 팽창수단(600)의 제2 볼밸브(610)는 제1 라인(100)에서 제3 라인(300)으로 냉매가 유입되는 것을 차단하며, 기액분리기(400)와 연결되는 제3 라인(300)으로 냉매가 유입되도록 동작할 수 있다. 제2 볼밸브(610)로 유입되는 냉매는 제2 팽창홈(613a)을 통해 저압으로 팽창되어 유출될 수 있다.The second ball valve 610 of the second expansion means 600 blocks the refrigerant from flowing from the first line 100 to the third line 300, and the third line connected to the gas-liquid separator 400 ( 300) can be operated to allow refrigerant to flow in. The refrigerant flowing into the second ball valve 610 may be expanded to low pressure through the second expansion groove 613a and then flow out.
이와 같이 제2 난방 모드에서 제1 팽창수단(500)과 제2 팽창수단(600)을 순차적으로 지나면서 냉매의 팽창압을 조절하여 효율을 증대할 수 있다.In this way, efficiency can be increased by adjusting the expansion pressure of the refrigerant as it sequentially passes through the first expansion means 500 and the second expansion means 600 in the second heating mode.
이때, 제1 난방 모드에서 제2 난방 모드로의 변경 시 제1 팽창수단(500)보다 제2 팽창수단(600)이 먼저 개방될 수 있어 순간적으로 막히는 구간이 발생할 수 있는데, 이때, 고압이 급격히 상승할 우려가 있다.At this time, when changing from the first heating mode to the second heating mode, the second expansion means 600 may be opened before the first expansion means 500, and a momentary blocked section may occur. At this time, the high pressure suddenly increases. There are concerns that it will rise.
따라서 이러한 문제점을 해결하기 위해 실시예에서는 제1 팽창수단(500)과 제2 팽창수단(600)을 제어 시점을 동일하게 설정하여 동시에 개방하거나 제1 팽창수단(500)의 제어 시점 후에 제2 팽창수단(600)의 제어 시점을 설정하여 순차적으로 개방시킬 수 있다. 이러한 방식을 통해 제2 팽창수단(600)은 제1 팽창수단(500)보다 먼저 개방되지 않는다.Therefore, in order to solve this problem, in the embodiment, the first expansion means 500 and the second expansion means 600 are opened simultaneously by setting the control point at the same time, or the second expansion means 500 is opened after the control point of the first expansion means 500. The control point of the means 600 can be set and opened sequentially. Through this method, the second expansion means 600 is not opened before the first expansion means 500.
반면, 히트펌프 시스템은 산출된 압력 차이가 미리 정해진 기준 압력보다 작으면 도 7과 같이 바로 제2 난방 모드를 구동될 수 있다(S450).On the other hand, if the calculated pressure difference is smaller than the predetermined reference pressure, the heat pump system can immediately operate the second heating mode as shown in FIG. 7 (S450).
제2 난방 모드에서, 제1 팽창수단(500)과 제2 팽창수단(600)을 동시에 개방하거나 제1 팽창수단(500)과 제2 팽창수단(600)을 순차적으로 개방시킬 수 있다.In the second heating mode, the first expansion means 500 and the second expansion means 600 may be opened simultaneously or the first expansion means 500 and the second expansion means 600 may be opened sequentially.
한편, 여기서는 제1 난방 모드에서 제2 난방 모드로 변경되는 경우를 일 예로 설명하고 있지만 반드시 이에 한정되지 않고 제2 난방 모드에서 제1 난방 모드로 변경될 수 있다.Meanwhile, here, the case of changing from the first heating mode to the second heating mode is described as an example, but it is not necessarily limited to this and the second heating mode may be changed from the first heating mode.
제2 난방 모드에서 제1 난방 모드로 변경하는 경우, 제1 난방 모드에서 제1 팽창수단은 닫히고 제2 팽창수단은 개방되기 때문에 제1 팽창수단이 먼저 닫혀 순간적으로 냉매가 흐르지 못하는 경우가 발생할 수 있다.When changing from the second heating mode to the first heating mode, in the first heating mode, the first expansion means is closed and the second expansion means is open, so there may be a case where the first expansion means closes first and the refrigerant cannot flow momentarily. there is.
따라서 이러한 문제점을 해결하기 위해 실시예에서는 제1 팽창수단(500)과 제2 팽창수단(600)의 제어 시점을 동일하게 설정하여 동시에 개방하거나 제2 팽창수단(600)의 제어 시점 후에 제1 팽창수단(500)의 제어 시점을 설정하여 순차적으로 개방시킬 수 있다. 이러한 방식을 통해 제1 팽창수단(500)은 제2 팽창수단(600)의 개방 이후에 닫히게 된다.Therefore, in order to solve this problem, in the embodiment, the control timing of the first expansion means 500 and the second expansion means 600 are set to be the same and open simultaneously, or the first expansion means is performed after the control timing of the second expansion means 600. The control point of the means 500 can be set and opened sequentially. In this way, the first expansion means 500 is closed after the second expansion means 600 is opened.
본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-programmable gate array) 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.The term '~unit' used in this embodiment refers to software or hardware components such as FPGA (field-programmable gate array) or ASIC, and the '~unit' performs certain roles. However, '~part' is not limited to software or hardware. The '~ part' may be configured to reside in an addressable storage medium and may be configured to reproduce on one or more processors. Therefore, as an example, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided within the components and 'parts' may be combined into a smaller number of components and 'parts' or may be further separated into additional components and 'parts'. Additionally, components and 'parts' may be implemented to regenerate one or more CPUs within a device or a secure multimedia card.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present invention has been described above with reference to preferred embodiments, those skilled in the art may make various modifications and changes to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can do it.

Claims (12)

  1. 압축기, 실내열교환기, 베이퍼 인젝션 모듈, 실외열교환기, 증발기로 이루어진 베이퍼 인젝션 히트펌프 시스템의 운영 방법에 있어서,In the operating method of a vapor injection heat pump system consisting of a compressor, an indoor heat exchanger, a vapor injection module, an outdoor heat exchanger, and an evaporator,
    상기 베이퍼 인젝션 모듈로 유입된 냉매가 상기 실외열교환기로 유입되는 비베이퍼 인젝션 난방 모드인 제1 난방 모드와, 상기 베이퍼 모듈로 유입된 냉매의 일부는 상기 압축기로 유입되고 나머지는 상기 실외교환기로 유입되는 베이퍼 인젝션 난방 모드인 제2 난방 모드 중 어느 하나로 제어되는 단계를 포함하고,A first heating mode, which is a non-vapor injection heating mode in which the refrigerant flowing into the vapor injection module flows into the outdoor heat exchanger, and a portion of the refrigerant flowing into the vapor module flows into the compressor and the remainder flows into the outdoor exchanger. A step controlled by one of a second heating mode that is a vapor injection heating mode,
    상기 제어되는 단계는,The controlled steps are,
    상기 제1 난방 모드에서 상기 제2 난방 모드로 변경되거나 상기 제2 난방 모드에서 상기 제1 난방 모드로 변경되는 경우, 상기 베이퍼 인젝션 모듈에서 상기 냉매의 흐름이 유지되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.Operation of a vapor injection heat pump system in which the flow of the refrigerant is maintained in the vapor injection module when changing from the first heating mode to the second heating mode or from the second heating mode to the first heating mode. method.
  2. 제1항에 있어서,According to paragraph 1,
    상기 제어되는 단계는,The controlled steps are,
    상기 제2 난방 모드의 시작 시점이 상기 제1 난방 모드의 종료 시점보다 빠르지 않게 설정되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.A method of operating a vapor injection heat pump system, wherein the start time of the second heating mode is set no earlier than the end time of the first heating mode.
  3. 제1항에 있어서,According to paragraph 1,
    상기 제어되는 단계는,The controlled steps are,
    상기 제1 난방 모드의 종료 시점과 상기 제2 난방 모드의 시작 시점이 동일하게 설정되거나 상기 제2 난방 모드의 시작 시점 후에 상기 제1 난방 모드의 종료 시점이 설정되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.Operation of a vapor injection heat pump system in which the end time of the first heating mode and the start time of the second heating mode are set to be the same or the end time of the first heating mode is set after the start time of the second heating mode. method.
  4. 제1항에 있어서,According to paragraph 1,
    상기 제어되는 단계는,The controlled steps are,
    상기 제2 난방 모드로 제어되는 경우, 상기 제2 난방 모드를 미리 정해진 시간 동안 구동한 후 상기 제1 난방 모드로 변경되고,When controlled in the second heating mode, the second heating mode is operated for a predetermined time and then changed to the first heating mode,
    상기 제1 난방 모드의 시작 시점이 상기 제2 난방 모드의 종료 시점보다 빠르지 않게 설정되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.A method of operating a vapor injection heat pump system, wherein the start time of the first heating mode is set no earlier than the end time of the second heating mode.
  5. 제3항에 있어서,According to paragraph 3,
    상기 제어되는 단계는,The controlled steps are,
    상기 제1 난방 모드의 종료 시점과 상기 제2 난방 모드의 시작 시점이 동일하게 설정되거나 상기 제1 난방 모드의 시작 시점 후에 상기 제2 난방 모드의 종료 시점이 설정되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.Operation of a vapor injection heat pump system in which the end time of the first heating mode and the start time of the second heating mode are set to be the same or the end time of the second heating mode is set after the start time of the first heating mode. method.
  6. 제1항에 있어서,According to paragraph 1,
    상기 제어되는 단계는,The controlled steps are,
    상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이에 따라 상기 제1 난방 모드로 일정 시간 제어된 후 상기 제2 난방 모드로 제어되거나, 상기 제2 난방 모드로 바로 제어되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.A vapor injection heat pump system that is controlled in the first heating mode for a certain period of time and then controlled in the second heating mode, or directly controlled in the second heating mode, depending on the pressure difference between the inlet pressure and the outlet pressure of the compressor. operating method.
  7. 제6항에 있어서,According to clause 6,
    상기 제어되는 단계는,The controlled steps are,
    상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이가 미리 정해진 기준 압력을 초과한 경우 상기 제2 난방 모드로 제어되고,Controlled to the second heating mode when the pressure difference between the inlet pressure and the outlet pressure of the compressor exceeds a predetermined reference pressure,
    상기 압력 차이가 상기 미리 정해진 기준 압력 이하인 경우, 상기 제1 난방 모드로 제어되는, 베이퍼 인젝션 히트펌프 시스템의 운영 방법.When the pressure difference is less than or equal to the predetermined reference pressure, the method of operating a vapor injection heat pump system is controlled in the first heating mode.
  8. 압축기, 실내열교환기, 베이퍼 인젝션 모듈, 실외열교환기, 증발기, 제어 장치로 이루어진 베이퍼 인젝션 히트펌프 시스템에서, 상기 베이퍼 인젝션 모듈은In the vapor injection heat pump system consisting of a compressor, indoor heat exchanger, vapor injection module, outdoor heat exchanger, evaporator, and control device, the vapor injection module is
    상기 베이퍼 인젝션 모듈로 유입된 냉매가 상기 실외열교환기로 유입되는 비베이퍼 인젝션 난방 모드인 제1 난방 모드 또는 상기 베이퍼 모듈로 유입된 냉매의 일부는 상기 압축기로 유입되고 나머지는 상기 실외교환기로 유입되는 베이퍼 인젝션 난방 모드인 제2 난방 모드에 따라 응축된 냉매의 흐름을 차단하거나 상기 응축된 냉매를 팽창시켜 전달하는 제1 팽창수단;A first heating mode, which is a non-vapor injection heating mode in which the refrigerant introduced into the vapor injection module flows into the outdoor heat exchanger, or a portion of the refrigerant introduced into the vapor module flows into the compressor and the remainder flows into the outdoor heat exchanger. a first expansion means that blocks the flow of condensed refrigerant or expands and delivers the condensed refrigerant according to the second heating mode, which is an injection heating mode;
    상기 제1 팽창수단으로부터 전달 받은 냉매를 기상과 액상의 냉매로 분리하는 기액분리기; 및a gas-liquid separator that separates the refrigerant delivered from the first expansion means into gas phase and liquid phase refrigerant; and
    상기 제1 난방 모드 또는 상기 제2 난방 모드에 따라 응축된 냉매를 통과 또는 팽창시키거나 상기 기액분리기에서 분리된 액상의 냉매를 팽창시키는 제2 팽창수단을 포함하고,It includes a second expansion means for passing or expanding the condensed refrigerant according to the first heating mode or the second heating mode or expanding the liquid refrigerant separated in the gas-liquid separator,
    상기 제어 장치는,The control device is,
    상기 제1 난방 모드 또는 상기 제2 난방 모드에 따라 상기 제1 팽창수단과 상기 제2 팽창수단을 제어하고,Controlling the first expansion means and the second expansion means according to the first heating mode or the second heating mode,
    상기 제1 난방 모드에서 상기 제2 난방 모드로 변경되거나 상기 제2 난방 모드에서 상기 제1 난방 모드로 변경되는 경우, 상기 베이퍼 인젝션 모듈에서 상기 냉매의 흐름이 유지되도록 제어하는, 베이퍼 인젝션 히트펌프 시스템.A vapor injection heat pump system that controls the flow of the refrigerant to be maintained in the vapor injection module when changing from the first heating mode to the second heating mode or from the second heating mode to the first heating mode. .
  9. 제8항에 있어서,According to clause 8,
    상기 제어 장치는,The control device is,
    상기 제1 난방 모드로 미리 정해진 시간 동안 구동 후 상기 제2 난방 모드로 변경 시, 상기 제1 팽창수단의 제어 시점과 상기 제2 팽창수단의 제어 시점을 동일하게 설정하거나 상기 제2 팽창수단의 제어 시점 후에 상기 제1 팽창수단의 제어 시점을 설정하는, 베이퍼 인젝션 히트펌프 시스템.When changing to the second heating mode after operating in the first heating mode for a predetermined time, the control time of the first expansion means and the control time of the second expansion means are set to be the same, or the control time of the second expansion means is set to be the same. A vapor injection heat pump system that sets the control point of the first expansion means after the point in time.
  10. 제8항에 있어서,According to clause 8,
    상기 제어 장치는,The control device is,
    상기 제2 난방 모드로 미리 정해진 시간 동안 구동한 후 상기 제1 난방 모드로 변경 시, 상기 제1 팽창수단의 제어 시점과 상기 제2 팽창수단의 제어 시점을 동일하게 설정하거나 상기 제1 팽창수단의 제어 시점 후에 상기 제2 팽창수단의 제어 시점을 설정하는, 베이퍼 인젝션 히트펌프 시스템.When changing to the first heating mode after operating in the second heating mode for a predetermined time, the control timing of the first expansion means and the control timing of the second expansion means are set to be the same, or the control timing of the first expansion means is set to be the same. A vapor injection heat pump system that sets the control point of the second expansion means after the control point.
  11. 제8항에 있어서,According to clause 8,
    상기 제어 장치는,The control device is,
    상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이에 따라 상기 제1 난방 모드로 일정 시간 제어되거나 상기 제2 난방 모드로 바로 제어되는, 베이퍼 인젝션 히트펌프 시스템.A vapor injection heat pump system that is controlled for a certain period of time in the first heating mode or directly controlled in the second heating mode depending on the pressure difference between the inlet pressure and the outlet pressure of the compressor.
  12. 제11항에 있어서,According to clause 11,
    상기 제어장치는,The control device is,
    상기 압축기의 입구측 압력과 출구측 압력 간의 압력 차이가 미리 정해진 기준 압력을 초과한 경우 상기 제2 난방 모드로 제어하고,Controlling to the second heating mode when the pressure difference between the inlet pressure and the outlet pressure of the compressor exceeds a predetermined reference pressure,
    상기 압력 차이가 상기 미리 정해진 기준 압력 이하인 경우, 상기 제1 난방 모드로 제어하는, 베이퍼 인젝션 히트펌프 시스템.When the pressure difference is less than or equal to the predetermined reference pressure, the vapor injection heat pump system is controlled to the first heating mode.
PCT/KR2023/008447 2022-07-18 2023-06-19 Vapor injection heat pump system and operation method thereof WO2024019333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0087930 2022-07-18
KR1020220087930A KR20240010791A (en) 2022-07-18 2022-07-18 Heater controller of manual control type and operating method thereof

Publications (1)

Publication Number Publication Date
WO2024019333A1 true WO2024019333A1 (en) 2024-01-25

Family

ID=89618115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008447 WO2024019333A1 (en) 2022-07-18 2023-06-19 Vapor injection heat pump system and operation method thereof

Country Status (2)

Country Link
KR (1) KR20240010791A (en)
WO (1) WO2024019333A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137779A (en) * 2014-01-21 2015-07-30 株式会社デンソー heat pump cycle
KR20160066180A (en) * 2014-12-02 2016-06-10 현대자동차주식회사 Heat pump system for electric car and method for controlling for the same
KR102039173B1 (en) * 2017-09-19 2019-10-31 에스트라오토모티브시스템 주식회사 Heat Pump For a Vehicle
KR20220009707A (en) * 2020-07-16 2022-01-25 한온시스템 주식회사 Vapor injection module and heat pump system using the same
KR20220032285A (en) * 2020-09-07 2022-03-15 한온시스템 주식회사 Vapor injection module and heat pump system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137779A (en) * 2014-01-21 2015-07-30 株式会社デンソー heat pump cycle
KR20160066180A (en) * 2014-12-02 2016-06-10 현대자동차주식회사 Heat pump system for electric car and method for controlling for the same
KR102039173B1 (en) * 2017-09-19 2019-10-31 에스트라오토모티브시스템 주식회사 Heat Pump For a Vehicle
KR20220009707A (en) * 2020-07-16 2022-01-25 한온시스템 주식회사 Vapor injection module and heat pump system using the same
KR20220032285A (en) * 2020-09-07 2022-03-15 한온시스템 주식회사 Vapor injection module and heat pump system using the same

Also Published As

Publication number Publication date
KR20240010791A (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2014175589A1 (en) Heat pump system for vehicle
WO2018155886A1 (en) Vehicle heat pump system
WO2022014900A1 (en) Vapor injection module and heat pump system using same
WO2016182165A1 (en) Air conditioning system
WO2018124789A1 (en) Heat pump for automobile
WO2017126836A1 (en) Vehicle air-conditioning system
WO2015046834A1 (en) Air conditioner
WO2015111913A1 (en) Automotive air conditioning system
WO2016036079A1 (en) Heat pump system for vehicle
KR102612458B1 (en) Vapor injection module and heat pump system using the same
KR20190002878A (en) Centralized energy module for vehicle
WO2011004969A4 (en) Air conditioner
WO2022050586A1 (en) Vapor injection module and heat pump system using same
KR20210126361A (en) Vapor injection heat pump system
WO2024019333A1 (en) Vapor injection heat pump system and operation method thereof
WO2024019334A1 (en) Vapor injection heat pump system and method for operating same
WO2019098794A1 (en) Outdoor unit of gas heat pump system
KR102326343B1 (en) Heat pump system for vehicle
KR102069160B1 (en) Outdoor unit of gas heat-pump system
WO2018182303A1 (en) Heat pump including refrigerant storage means
WO2023128365A1 (en) 3-way valve and heat pump system using same
WO2023068645A1 (en) Cooling/heating vapor injection system and vapor injection system module used therein
WO2023132659A1 (en) Manifold refrigerant module
WO2024014737A1 (en) Manifold fluid module integrated with gas-liquid separator
WO2013027907A1 (en) Air-cooled heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843186

Country of ref document: EP

Kind code of ref document: A1