WO2024019172A1 - Multilayer base film for vapor deposition and multilayer vapor deposited film - Google Patents

Multilayer base film for vapor deposition and multilayer vapor deposited film Download PDF

Info

Publication number
WO2024019172A1
WO2024019172A1 PCT/JP2023/026887 JP2023026887W WO2024019172A1 WO 2024019172 A1 WO2024019172 A1 WO 2024019172A1 JP 2023026887 W JP2023026887 W JP 2023026887W WO 2024019172 A1 WO2024019172 A1 WO 2024019172A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
resin composition
layer
mass
vapor deposition
Prior art date
Application number
PCT/JP2023/026887
Other languages
French (fr)
Japanese (ja)
Inventor
祐作 野本
公俊 中村
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2024019172A1 publication Critical patent/WO2024019172A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines

Definitions

  • the present invention relates to a laminated base film for vapor deposition, a metal-like sheet, and the like. More specifically, the present invention provides a laminated substrate film for vapor deposition, which is used to provide a vapor deposition layer on a layer made of a methacrylic copolymer, which has high heat resistance, low water absorption, high mechanical strength, and high wetting tension.
  • the present invention relates to a vapor-deposited laminated film having excellent adhesion to the vapor-deposited layer, which comprises the laminated base film for vapor-deposition and a vapor-deposited layer.
  • Methacrylic resin has excellent transparency, scratch resistance, and weather resistance.
  • Laminated films using methacrylic resin as the surface layer material are used in applications that require high appearance, surface strength, durability, etc., such as walls of houses, furniture, home appliances, electronic devices, and display devices.
  • a laminated film further provided with a metal vapor-deposited layer for the purpose of imparting functions such as design, scratch resistance, antistatic properties, electrical conductivity, and gas barrier properties.
  • Patent Document 1 discloses an acrylic resin using a heat-resistant acrylic resin as a base material obtained by copolymerizing methyl methacrylate units, maleic anhydride units, and aromatic vinyl compound units. We are proposing a type resin laminate. Copolymerization of maleic anhydride units improves adhesion, but the resulting laminate is brittle.
  • Patent Document 2 discloses a resin containing a copolymer of a styrene monomer and an alnicel cyanide on at least one surface of a thermoplastic resin layer (A) made of a resin composition (a) containing a methacrylic resin.
  • Patent Document 3 proposes a base film obtained by forming a glutarimide acrylic resin having a glutarimide structural unit and a methyl methacrylate structural unit to obtain a film, and then biaxially stretching the film. Although adhesion is improved by including the glutarimide structural unit, water absorption is high and dimensional stability is poor. As described above, there is room for consideration of methods for improving adhesion with the vapor deposited layer and achieving a high level of balance between heat resistance, flexibility, and dimensional stability.
  • the object of the present invention is to provide a laminated base film that has high heat resistance, flexibility, and dimensional stability, and that is used for providing a vapor deposition layer on at least one surface thereof, and a laminated base film that has high heat resistance, flexibility, and dimensional stability.
  • An object of the present invention is to provide a vapor-deposited laminated film comprising a layer.
  • R 1 is each independently a hydrogen atom or a methyl group
  • R 2 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aromatic It is an organic group containing a ring and having 6 to 15 carbon atoms.
  • a vapor-deposited laminated film characterized in that a vapor-deposited layer is provided on either side of the film.
  • a metal-like sheet comprising a thermoplastic resin sheet laminated on the vapor-deposited layer side surface of the vapor-deposited laminated film according to [7] or [8].
  • the metal-like sheet according to [9] wherein the vapor deposition layer and the thermoplastic resin sheet are laminated via an adhesive layer.
  • the metallic sheet according to [9] wherein the vapor deposited layer and the thermoplastic resin sheet are laminated by dry lamination.
  • a metal-like molded product characterized in that the vapor-deposited layer side surface of the vapor-deposited laminated film according to [7] or [8] is bonded to a molded product.
  • a metal-like molded product characterized in that the surface of the metal-like sheet according to [9] on which the thermoplastic resin sheet is laminated is bonded to a molded product.
  • a metal-like molded product characterized in that the surface of the metal-like sheet described in [10] on which the thermoplastic resin sheet is laminated is bonded to a molded product.
  • a metal-like molded product characterized in that the surface of the metal-like sheet according to [11] on which the thermoplastic resin sheet is laminated is bonded to a molded product.
  • the laminated substrate film for vapor deposition of the present invention has high heat resistance, flexibility, and dimensional stability.
  • the laminated substrate film for vapor deposition of the present invention can be suitably used in vapor deposition processes.
  • the laminated substrate film for vapor deposition of the present invention has high adhesion with the vapor deposition layer, and can be provided with high performance functions in various uses.
  • Metal-like sheets and metal-like molded products, which are an embodiment of the laminated substrate film for vapor deposition of the present invention, have an excellent metallic appearance and are therefore suitable for use in interior and exterior materials for vehicles, interior and exterior materials for electronic devices, and building materials. It is useful in the field of architecture and construction materials such as sizing and resin sashes, and as housing for home appliances.
  • the laminated substrate film for vapor deposition of the present invention is a film used for vapor deposition.
  • Vapor deposition includes physical vapor deposition and chemical vapor deposition.
  • the laminated substrate film for vapor deposition of the present invention may be produced by a conventionally known physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method. Among these, the vacuum evaporation method is preferably used.
  • the methacrylic resin composition (I) used in the laminated base film for vapor deposition of the present invention contains a methacrylic copolymer (a).
  • the methacrylic resin composition (I) contains a methacrylic copolymer (a) and a methacrylic resin.
  • the content of the methacrylic copolymer (a) in the methacrylic resin composition (I) is preferably 51% by mass or more, more preferably 65% by mass or more, and 80% by mass or more. is more preferable, particularly preferably 90% by mass or more, and may be composed only of the methacrylic copolymer (a).
  • the methacrylic copolymer (a) contains 5 to 73% by mass of methyl methacrylate units, 25 to 70% by mass of structural units (r), 1 to 48% by mass of ⁇ -methylstyrene units, and styrene. It contains 1 to 48% by mass of at least one selected from the group consisting of maleic anhydride units and maleic anhydride units, and 0 to 20% by mass of unsubstituted or N-substituted maleimide units.
  • the methacrylic copolymer (a) also includes those containing 0% by mass of unsubstituted or N-substituted maleimide units, ie, containing no unsubstituted or N-substituted maleimide units.
  • the methacrylic copolymer (a) used in the present invention may further contain other vinyl monomer units copolymerizable with methyl methacrylate.
  • the structural unit in a polymer means a repeating unit constituting the polymer or a unit obtained by derivatizing at least a portion of the repeating unit (for example, an unsubstituted or N-substituted glutarimide unit). do.
  • the term "structural unit" may be used to collectively refer to methyl methacrylate units, structural units (r), ⁇ -methylstyrene units, styrene units, and other vinyl monomer units. be.
  • the proportion of methyl methacrylate units is 5 to 73% by mass, preferably 6 to 70% by mass, and 6 to 60% by mass based on the total structural units. is more preferable, and even more preferably 6 to 50% by mass. From the viewpoint of transparency and heat decomposition resistance of the obtained methacrylic copolymer, it is preferable that the proportion of methyl methacrylate units is within the above range.
  • the proportion of ⁇ -methylstyrene units is 1 to 48% by mass, preferably 3 to 40% by mass, and 5 to 35% by mass based on the total structural units. % is more preferable, and 7 to 30% by mass is even more preferable.
  • the proportion of ⁇ -methylstyrene units is preferably within the above range from the viewpoint of suppressing the inhibition of the glutarimidation reaction due to oxidation and the dimensional stability of the laminated base film.
  • the proportion of styrene units or maleic anhydride units is 1 to 48% by mass, preferably 3 to 40% by mass, based on the total structural units. It is more preferably 35% by mass, and even more preferably 7% to 30% by mass.
  • the proportion of styrene units is within the above range from the viewpoint of suppressing this, the appearance of the laminated base film, and the like.
  • the proportion of maleic anhydride units is within the above range.
  • the total proportion of ⁇ -methylstyrene units and styrene units is preferably 2 to 40% by mass, and 5 to 35% by mass based on the total structural units. %, and even more preferably 10 to 30% by mass.
  • the total ratio of ⁇ -methylstyrene units and styrene units is within the above range, it is difficult to inhibit the glutarimidation reaction due to intramolecular cyclization of two adjacent structural units derived from (meth)acrylic acid, which will be described later.
  • the proportion of ⁇ -methylstyrene units is preferably 30 to 95% by mass, more preferably 35 to 90% by mass, based on the total proportion of ⁇ -methylstyrene units and styrene units, More preferably, it is 40 to 85% by mass.
  • the proportion of ⁇ -methylstyrene units is within the above range, the methacrylic copolymer used in the present invention has an excellent balance between heat resistance and low water absorption, and the resulting film has good dimensional stability.
  • the structural unit (r) is a structural unit having a ring structure in its main chain selected from the group consisting of N-substituted or unsubstituted glutarimide units.
  • the N-substituted or unsubstituted glutarimide unit is a unit having an N-substituted or unsubstituted 2,6-dioxopiperidinediyl structure.
  • Examples of the unit having an N-substituted or unsubstituted 2,6-dioxopiperidinediyl structure include a structural unit represented by formula (I).
  • R 1 is each independently a hydrogen atom or a methyl group, and preferably both R 1 are methyl groups.
  • R 2 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an organic group having 6 to 15 carbon atoms containing an aromatic ring, preferably a methyl group or an n-butyl group. , cyclohexyl group or benzyl group, more preferably methyl group, n-butyl group or cyclohexyl group, most preferably methyl group.
  • the structural unit (r) can be formed, for example, by an imide cyclization reaction in which an imidizing agent is added to a precursor polymer in an extruder, kneaded, and reacted.
  • the structural unit represented by formula (I) is formed by reacting the corresponding acid anhydride (IIa) with an imidizing agent represented by R 2 NH 2 as shown in scheme (i), for example.
  • it may be produced by an intramolecular cyclization reaction of a copolymer having a partial structure of formula (III). It is preferable to heat the structural unit represented by formula (III) to convert it into the structural unit represented by formula (I) by an intramolecular cyclization reaction.
  • the N-substituted or unsubstituted glutarimide unit can be prepared by the method described in WO2005/10838A1, JP2010-254742A, JP2008-273140A, JP2008-274187A, etc.
  • Ammonia, methylamine, ethylamine, diethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, tert-butylamine, n-hexylamine are added to two matching structural units derived from methyl methacrylate or glutaric anhydride units.
  • Amines containing aliphatic hydrocarbon groups such as aniline, toluidine, trichloroaniline, amines containing aromatic hydrocarbon groups such as N-methylbenzylamine, and alicyclic hydrocarbon groups such as cyclohexylamine, N-methylcyclohexylamine, etc. It can be obtained by reacting an imidizing agent such as amine, urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea. Among these, primary amines are essential, and secondary amines may be used in combination, with methylamine being preferred as the primary amine.
  • a part of the methyl methacrylate unit may be hydrolyzed to become a carboxyl group, and this carboxyl group is converted to the original methyl methacrylate unit by the esterification reaction treated with an esterification agent. It is preferable to return it.
  • the esterifying agent is not particularly limited as long as it can exhibit the effects of the present application, but dimethyl carbonate and the like can be suitably used.
  • tertiary amines such as trimethylamine, triethylamine, and tributylamine can also be used as a catalyst.
  • the proportion of the structural unit (r) is 25 to 70% by mass, preferably 30 to 68% by mass, and 35 to 65% by mass based on the total structural units. % is more preferable, and 40 to 60% by mass is even more preferable.
  • the structural unit (r ) is preferably within the above range.
  • the methacrylic copolymer (a) according to the present invention may contain an N-substituted or unsubstituted maleimide unit in addition to the structural unit (r) and the like.
  • the N-substituted or unsubstituted maleimide unit is a unit having an N-substituted or unsubstituted 2,5-pyrrolidinedione structure.
  • Examples of the unit having an N-substituted or unsubstituted 2,5-pyrrolidinedione structure include a structural unit represented by formula (VI).
  • R 10 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an organic group having 6 to 15 carbon atoms containing an aromatic ring.
  • the structural unit represented by formula (VI) can be obtained by a method of polymerizing a monomer mixture containing a monomer represented by formula (VI), or a reaction product obtained by polymerizing a monomer mixture containing maleic anhydride. It can be incorporated into the methacrylic copolymer by a reaction between maleic anhydride contained therein and an imidizing agent represented by R 3 NH 2 .
  • the N-substituted or unsubstituted maleimide unit can be prepared by the method described in Japanese Patent Publication No. 61-026924, Japanese Patent Publication No. 7-042332, Japanese Patent Application Publication No. 9-100322, Japanese Patent Application Publication No. 2001-329021, etc. is a maleic anhydride unit containing an aliphatic hydrocarbon group-containing amine such as ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, tert-butylamine, n-hexylamine, or aniline.
  • an aliphatic hydrocarbon group-containing amine such as ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, tert-butylamine, n-hexylamine, or aniline.
  • toluidine amines containing aromatic hydrocarbon groups such as trichloroaniline, amines containing alicyclic hydrocarbon groups such as cyclohexylamine, urea, 1,3-dimethylurea, 1,3-diethylurea, 1,3-dipropyl It can be obtained by reacting with an imidizing agent such as urea. Among these, methylamine is preferred.
  • the methacrylic copolymer (a) according to the present invention may contain a lactone ring unit as a structural unit derived from other vinyl monomer units.
  • >C in the formula means that carbon atom C has two bonds.
  • the ⁇ -valerolactonediyl structural unit includes a structural unit represented by formula (IV).
  • R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 20 carbon atoms, preferably a hydrogen atom or an organic group having 1 to 10 carbon atoms, more preferably a hydrogen atom or It is an organic group having 1 to 5 carbon atoms.
  • the organic group is not particularly limited as long as it has 1 to 20 carbon atoms, and includes, for example, a linear or branched alkyl group, a linear or branched aryl group, -OCOCH3 group, -CN group, etc. can be mentioned.
  • the organic group may also contain a heteroatom such as an oxygen atom.
  • R 6 and R 7 are preferably methyl groups, and R 8 is preferably a hydrogen atom.
  • the lactone ring unit can be obtained by the methods described in JP-A-2000-230016, JP-A 2001-151814, JP-A 2002-120326, JP-A 2002-254544, JP-A 2005-146084, etc.
  • it can be incorporated into a methacrylic copolymer by intramolecular cyclization of a structural unit derived from 2-(hydroxyalkyl)acrylate and a structural unit derived from methyl (meth)acrylate.
  • the methacrylic copolymer (I) according to the present invention may contain a glutaric anhydride unit as a structural unit derived from other vinyl monomer units.
  • the glutaric anhydride unit is a unit having a 2,6-dioxodihydropyrandiyl structure.
  • Examples of the unit having a 2,6-dioxodihydropyrandiyl structure include a structural unit represented by formula (V).
  • each R 9 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a methyl group.
  • a unit having a 2,6-dioxodihydropyrandiyl structure is derived from two adjacent (meth)acrylic acids by the method described in JP-A No. 2007-197703, JP-A No. 2010-96919, etc. It can be incorporated into methacrylic copolymers by intramolecular cyclization of structural units, intramolecular cyclization of structural units derived from (meth)acrylic acid and structural units derived from methyl (meth)acrylate, etc. can.
  • the methacrylic copolymer (a) according to the present invention may contain other vinyl monomer units copolymerizable with the methyl methacrylate unit.
  • Materials for the other vinyl monomer units can be selected as appropriate depending on the properties required of the methacrylic copolymer (a), including thermal stability, fluidity, chemical resistance, and optical properties. , if properties such as compatibility with other resins are particularly required, it may consist of acrylic acid ester monomer units, aromatic vinyl monomer units other than styrene and ⁇ -methylstyrene, and cyanide vinyl monomer units. At least one selected from the group is preferred.
  • At least one selected from the group consisting of methyl acrylate, ethyl acrylate, and acrylonitrile is preferred from the viewpoint of easy availability.
  • vinyl monomer units that can be copolymerized with methyl methacrylate include, for example, methacrylic acid amide units represented by the following formula (A), and 2-(hydroxyalkyl) units represented by the following formula (B). Also included are acrylic acid ester units and the like.
  • R 3 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an organic group having 6 to 15 carbon atoms containing an aromatic ring, preferably a hydrogen atom, A methyl group, n-butyl group, cyclohexyl group or benzyl group, more preferably a methyl group, n-butyl group or cyclohexyl group.
  • R 4 and R 5 are each independently a hydrogen atom or a carbon number of 1 to 20 is an organic group, preferably a hydrogen atom or an organic group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an organic group having 1 to 5 carbon atoms.
  • the organic group is an organic group having 1 to 20 carbon atoms. is not particularly limited, and includes, for example, a straight-chain or branched alkyl group, a straight-chain or branched aryl group, an -OCOCH3 group, a -CN group, etc.
  • the organic group does not contain a heteroatom such as an oxygen atom.
  • R4 is preferably a methyl group
  • R5 is preferably a hydrogen atom.
  • the proportion of other vinyl monomer units copolymerizable with methyl methacrylate units is preferably 0 to 20% by mass based on the total structural units. , more preferably 0 to 15% by weight, even more preferably 0 to 10% by weight.
  • a methacrylic copolymer in which the proportion of other vinyl monomer units copolymerizable with methyl methacrylate units exceeds 20% by mass has reduced heat resistance and rigidity. Note that the proportion of each monomer unit can be measured by 1 H-NMR, 13 C-NMR, infrared spectroscopy, or the like.
  • the methacrylic copolymer (a) according to the present invention has a weight average molecular weight (Mw) of preferably 40,000 to 250,000, more preferably 50,000 to 200,000, even more preferably 60,000 to 180,000.
  • Mw weight average molecular weight
  • the methacrylic resin composition (I) according to the present invention has excellent impact resistance.
  • Mw is 250,000 or less, the fluidity of the methacrylic resin composition (I) related to the present invention improves, and the moldability improves.
  • the weight average molecular weight (Mw) is a value calculated by converting a chromatogram measured by gel permeation chromatography into the molecular weight of standard polystyrene.
  • the methacrylic copolymer (a) related to the present invention preferably has a glass transition temperature of 135°C or higher, more preferably 140°C, and even more preferably 145°C, and although the upper limit is not particularly limited, it is preferable. is 170°C.
  • glass transition temperature (Tg) is measured in accordance with JIS K7121. Specifically, the DSC curve is measured under the conditions that the temperature is raised once to 250°C, then cooled to room temperature, and then the temperature is raised from room temperature to 250°C at a rate of 10°C/min. The midpoint obtained from the DSC curve measured during the second heating is determined as the "glass transition temperature (Tg)."
  • the methacrylic copolymer (a) according to the present invention preferably has a melt flow rate (hereinafter referred to as "MFR") in the range of 1.0 to 30 g/10 minutes.
  • MFR melt flow rate
  • the lower limit of this MFR is more preferably 1.5 g/10 minutes or more, and even more preferably 2.0 g/10 minutes.
  • the upper limit of the MFR is more preferably 25 g/10 minutes or less, and even more preferably 20 g/10 minutes or less.
  • the MFR of the methacrylic copolymer (a) in this specification is a value measured using a melt indexer at a temperature of 230° C. and a load of 3.8 kg in accordance with JIS K7210.
  • the saturated water absorption rate of the methacrylic copolymer (a) related to the present invention can be measured under the following conditions.
  • the methacrylic copolymer is press-molded into a sheet with a thickness of 1.0 mm.
  • a test piece of 50 mm x 50 mm is cut out from the center of the obtained press-formed sheet and dried in a dryer at 90° C. for 16 hours or more. After cooling the dried test piece to room temperature in a desiccator, the weight is measured to the nearest 0.1 mg, and this weight is defined as the initial weight W 0 .
  • the saturated weight WS is defined as the saturated weight WS .
  • the saturated water absorption rate can be calculated from equation (1).
  • the saturated water absorption rate is preferably 3.0% by mass or less, more preferably 2.7% by mass or less, even more preferably 2.5% by mass or less.
  • the methacrylic resin composition (I) according to the present invention may contain a methacrylic resin.
  • the content of methacrylic resin is preferably 1 to 49% by weight, more preferably 5 to 40% by weight, and even more preferably 10 to 30% by weight.
  • the methacrylic resin composition (I) according to the present invention has improved fluidity by containing a methacrylic resin.
  • the above-mentioned methacrylic resin is a resin containing a structural unit derived from methacrylic acid ester.
  • methacrylate esters include methyl methacrylate (hereinafter referred to as "MMA"), ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, Alkyl methacrylates such as pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, cyclomethacrylate Methacrylic acid cycloalkyl esters such as heptyl,
  • MMA ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert-butyl methacrylate are preferred. , MMA are most preferred.
  • Methacrylic acid esters can be used alone or in combination of two or more.
  • the content of structural units derived from methacrylic esters in the methacrylic resin is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and contains only structural units derived from methacrylic esters. Good too.
  • the lower limit of the syndiotacticity (rr) of the methacrylic resin is preferably 56% or more, more preferably 57% or more, and even more preferably 58% or more.
  • the methacrylic resin composition (I) according to the present invention has excellent heat resistance.
  • syndiotacticity (rr) in triad representation is a chain of three consecutive structural units (triad, triad). ) has two chains (diad) that are both racemo (denoted as rr).
  • a chain of structural units (diad) in a polymer molecule having the same configuration is called meso, and the opposite is called racemo, and is expressed as m and r, respectively.
  • the syndiotacticity (rr) (%) of methacrylic resin is determined by measuring the 1 H-NMR spectrum in deuterated chloroform at 30°C, and based on the spectrum, when tetramethylsilane (TMS) is set to 0 ppm, The area (Y) of the 0.6 to 0.95 ppm region and the area (Z) of the 0.6 to 1.35 ppm region can be measured and calculated using the formula: (Y/Z) x 100. .
  • the weight average molecular weight (hereinafter referred to as "Mw") of the methacrylic resin is preferably 40,000 to 500,000, more preferably 60,000 to 300,000, and even more preferably 80,000 to 200,000.
  • Mw weight average molecular weight
  • the methacrylic resin composition (I) according to the present invention has excellent mechanical strength, and when it is 500,000 or less, it has good fluidity.
  • the glass transition temperature of the methacrylic resin is preferably 100°C or higher, more preferably 105°C or higher, and even more preferably 110°C or higher. Since the glass transition temperature is 100° C. or higher, the methacrylic resin composition (I) according to the present invention has excellent heat resistance.
  • the saturated water absorption rate of the methacrylic resin in water at 23°C is preferably 2.5% by mass or less, more preferably 2.3% by mass or less, and even more preferably 2.1% by mass or less.
  • the saturated water absorption rate is 2.5% by mass or less, the methacrylic resin composition (I) according to the present invention has excellent moisture resistance, and warping of the laminate due to moisture absorption can be suppressed.
  • the MFR of the methacrylic resin is preferably in the range of 1 to 20 g/10 minutes.
  • the lower limit of the MFR is more preferably 1.2 g/10 minutes or more, and even more preferably 1.5 g/10 minutes or more.
  • the upper limit of the MFR is more preferably 15 g/10 minutes or less, and even more preferably 10 g/10 minutes or less.
  • the methacrylic resin composition (I) has a glass transition temperature of 135°C or higher, preferably 140°C, more preferably 145°C, and the upper limit is not particularly limited, but is preferably 170°C. Since the glass transition temperature is 135° C. or higher, the laminated base film for vapor deposition of the present invention has good dimensional stability.
  • the methacrylic resin composition (I) according to the present invention preferably has a melt flow rate (hereinafter referred to as "MFR") in the range of 1.0 to 30 g/10 minutes.
  • MFR melt flow rate
  • the lower limit of this MFR is more preferably 1.5 g/10 minutes or more, and even more preferably 2.0 g/10 minutes.
  • the upper limit of the MFR is more preferably 25 g/10 minutes or less, and even more preferably 20 g/10 minutes or less.
  • the methacrylic resin composition (I) according to the present invention has a saturated water absorption rate of preferably 3.0% by mass or less, more preferably 2.5% by mass or less, and still more preferably 2.0% by mass or less. Since the saturated water absorption is 3.0% by mass or less, the laminated base film for vapor deposition of the present invention has good dimensional stability.
  • the methacrylic resin composition (I) according to the present invention may contain a filler as necessary to the extent that the effects of the present invention are not impaired.
  • a filler include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate.
  • the amount of filler that can be contained in the resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.
  • the methacrylic resin composition (I) according to the present invention may contain other polymers as long as the effects of the present invention are not impaired.
  • Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymers, high-impact polystyrene, Styrenic resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; Methyl methacrylate-styrene copolymer; Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; Nylon 6, Nylon 66, polyamide elastomer Polyamides such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylid
  • Plastic elastomers examples include olefin rubbers such as IR, EPR, and EPDM.
  • the amount of other polymers that may be contained in the methacrylic resin composition (I) according to the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 0% by mass.
  • the methacrylic resin composition (I) according to the present invention includes antioxidants, thermal deterioration inhibitors, ultraviolet absorbers, light stabilizers, lubricants, mold release agents, polymers, etc., to the extent that the effects of the present invention are not impaired. It may contain additives such as processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes, matting agents, and phosphors.
  • additives may be used alone or in combination of two or more. Further, these additives may be added to the polymerization reaction solution when producing the methacrylic copolymer (a), or may be added to the produced methacrylic copolymer (a). may be added when preparing the methacrylic resin composition (I) related to the present invention.
  • the total amount of additives contained in the methacrylic resin composition (I) of the present invention is preferably 7% by mass based on the methacrylic resin composition (I) from the viewpoint of suppressing poor appearance of the molded article.
  • the content is more preferably 5% by mass or less, further preferably 4% by mass or less.
  • the method for preparing the methacrylic resin composition (I) of the present invention is not particularly limited.
  • a method in which methacrylic copolymer (a) is produced by polymerizing a monomer mixture containing methyl methacrylate etc. in the presence of methacrylic resin or a method in which methacrylic copolymer (a) and methacrylic resin are melt-kneaded.
  • methacrylic copolymer (a) and methacrylic resin are melt-kneaded.
  • other polymers and additives may be mixed as necessary, or the methacrylic copolymer (a) may be mixed with other polymers and additives and then mixed with the methacrylic resin.
  • the methacrylic resin may be mixed with other polymers and additives and then mixed with the methacrylic copolymer (a), or other methods may be used. Kneading can be carried out using a known mixing or kneading device, such as a kneader, extruder, mixing roll, Banbury mixer, or the like. Among these, a twin screw extruder is preferred.
  • the resin composition (T) used in the laminated base film for vapor deposition of the present invention contains a thermoplastic resin (b).
  • the thermoplastic resin (b) may be appropriately selected depending on the use of the metal-deposited laminated film obtained using the laminated substrate film for deposition of the present invention, and is not particularly limited. Examples include methacrylic resins, polyester resins, polycarbonate resins, polycyclic olefin resins, styrene resins such as ABS resins and AAS resins, polyvinylidene fluoride resins, and polycarbonate resins are preferred from the viewpoint of transparency and moldability.
  • the polycarbonate resin is preferably obtained by copolymerizing a dihydric phenol such as bisphenol A and a carbonate precursor.
  • the Mw of the polycarbonate resin is preferably in the range of 10,000 to 100,000, more preferably in the range of 20,000 to 70,000.
  • the laminated base film for vapor deposition of the present invention has excellent impact resistance and heat resistance, and when it is 100,000 or less, the polycarbonate resin has excellent moldability, and the present invention The productivity of laminated base film for vapor deposition can be increased.
  • the above-mentioned polycarbonate resin may be a commercially available product, such as "SD Polycarbonate (registered trademark)” manufactured by Sumika Polycarbonate Co., Ltd., “Iupilon/Novarex (registered trademark)” manufactured by Mitsubishi Engineering Plastics Co., Ltd., or manufactured by Idemitsu Kosan Co., Ltd. "Taflon (registered trademark)", “Panlite (registered trademark)” manufactured by Teijin Kasei Ltd., etc. can be suitably used.
  • the polycarbonate resin may contain other polymers as long as the effects of the present invention are not impaired.
  • other polymers the same ones as the methacrylic resin and other polymers that may be contained in the above-mentioned methacrylic resin composition (I) can be used. These other polymers may be used alone or in combination.
  • the content of these other polymers in the resin composition (T) is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less.
  • the resin composition (T) may contain various additives as necessary.
  • the same additives as those that may be contained in the above-mentioned methacrylic resin composition (I) can be used.
  • the content of these additives can be set as appropriate within a range that does not impair the effects of the present invention.
  • the content of antioxidant is 0.01 to 1 part by mass
  • the content of ultraviolet absorber is 0.01 to 1 part by mass per 100 parts by mass.
  • Content is 0.01 to 3 parts by mass
  • light stabilizer content is 0.01 to 3 parts by mass
  • lubricant content is 0.01 to 3 parts by mass
  • dye/pigment content is 0.01 to 3 parts by mass. 3 parts by mass is preferred.
  • the resin composition (T) used in the present invention preferably has a glass transition temperature of 120 to 160°C. Further, the resin composition (T) preferably has a glass transition temperature comparable to that of the methacrylic resin composition (I). Specifically, the absolute value of the difference between the glass transition temperature of the resin composition (T) and the glass transition temperature of the methacrylic resin composition (I)
  • is preferably 15°C or less, more preferably 10°C or less It is. When
  • the resin composition (T) used in the present invention preferably has a saturated water absorption rate of 0.1 to 1.0% by mass in water at 80°C. Further, the resin composition (T) preferably has a saturated water absorption rate comparable to that of the methacrylic resin composition (I). Specifically, the absolute value of the difference between the saturated water absorption of the resin composition (T) and the saturated water absorption of the methacrylic resin composition (I)
  • the MFR of the resin composition (T) used in the present invention is preferably in the range of 1 to 30 g/10 minutes, more preferably in the range of 3 to 20 g/10 minutes, and more preferably in the range of 5 to 10 g/10 minutes. More preferably, the range is within the range.
  • the MFR is in the range of 1 to 30 g/10 minutes, the stability of hot melt molding is good.
  • the MFR of the resin composition (T) in this specification is measured using a melt indexer at a temperature of 300° C. and under a load of 1.2 kg.
  • the laminated substrate film for vapor deposition of the present invention has a layer made of methacrylic resin composition (I) and a layer made of resin composition (T).
  • the laminated substrate film for vapor deposition of the present invention may have one layer each consisting of the methacrylic resin composition (I) and one layer consisting of the resin composition (T), or may have one layer each consisting of the methacrylic resin composition (I) and one layer consisting of the resin composition (T). It may each have a plurality of layers made of (I) and/or a plurality of layers made of resin composition (T).
  • the laminated substrate film for vapor deposition of the present invention has a layer made of another resin (another resin layer) in addition to the layer made of the methacrylic resin composition (I) and the layer made of the resin composition (T). You can leave it there.
  • the resin contained in the other resin layer include various thermoplastic resins other than the methacrylic resin composition (I) and the resin composition (T); thermosetting resins; energy ray-curing resins; and the like.
  • Examples of the other resin layers mentioned above include a scratch-resistant layer, an antistatic layer, an antifouling layer, a friction reduction layer, an antiglare layer, an antireflection layer, an adhesive layer, an impact strength imparting layer, an anchor layer, and the like.
  • the number of these other resin layers may be one or more. Furthermore, when there are a plurality of these other resin layers, they may be made of the same resin or different resins. In the laminated substrate film for vapor deposition of the present invention, there is no particular restriction on the order in which the other resin layers are arranged, and they may be on the surface or in the inner layer.
  • the thickness of the laminated base film for vapor deposition of the present invention is preferably in the range of 0.03 to 0.5 mm, and preferably in the range of 0.05 to 0.5 mm, from the viewpoint of manufacturing with high productivity while maintaining an excellent appearance. It is more preferably 4 mm, and even more preferably in the range of 0.07 to 0.3 mm.
  • the thickness of the layer made of methacrylic resin composition (I) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 0.01 to 0.1 mm, and preferably in the range of 0.015 to 0.09 mm. It is more preferably within the range of 0.02 to 0.08 mm. If the thickness is less than 0.01 mm, scratch resistance and weather resistance may be insufficient. Moreover, if it exceeds 0.1 mm, impact resistance may be insufficient.
  • the thickness of the layer made of the resin composition (T) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 0.02 to 0.4 mm, and preferably in the range of 0.035 to 0.31 mm. is more preferable, and even more preferably in the range of 0.08 to 0.27 mm. From the viewpoint of impact resistance and productivity, it is preferable that the thickness of the layer made of the resin composition (T) is within the above range.
  • the thickness of the layer made of methacrylic resin composition (I) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 2 to 20% of the thickness of the laminated substrate film for vapor deposition. , more preferably in the range of 3 to 17%, and even more preferably in the range of 4 to 15%. From the viewpoints of scratch resistance, weather resistance, and impact resistance, it is preferable that the thickness of the layer made of methacrylic resin composition (I) is within the above range.
  • the thickness of the layer made of the resin composition (T) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 80 to 98%, and 83 to 97% of the thickness of the laminate. It is more preferably within the range of 85% to 96%. From the viewpoint of impact resistance and weather resistance, it is preferable that the ratio of the thickness of the layer made of the resin composition (T) to the thickness of the laminated base material film for vapor deposition of the present invention is within the above range.
  • the lamination order of the laminated base film for vapor deposition of the present invention is (1)-(2); (1)-(2)-( 1); (2)-(1)-(2); (1)-(2)-(1)-(2)-(1); )-(2); (1)-(2)-(1); (1)-(2)-(1)-(2)-(1); at least one surface is made of a methacrylic resin composition. It is preferable that the layers are laminated to form a layer consisting of (I).
  • the lamination order of the laminate of the present invention is (1). -(2)-(3);(3)-(1)-(2);(3)-(1)-(2)-(3);(3)-(1)-(2)-( 1)-(3); (1)-(2)-(3)-(2)-(1); and the like.
  • (3) is an anchor layer
  • the lamination order of the laminated substrate film for vapor deposition of the present invention is (3') - (1) - (2); (3')-(1)-(2)-(3'), (3')-(1)-(2)-(1)-(3'), etc.
  • they are laminated to form an anchor layer.
  • the stacking order of the laminate of the present invention is (1)-(2)-(3)-(4); (4)-(3 )-(1)-(2);(4)-(3)-(1)-(2)-(3);(4)-(1)-(2)-(3);(4)- (3)-(1)-(2)-(3)-(4);(4)-(3)-(1)-(2)-(1)-(3)-(4); etc. Can be mentioned.
  • the laminated base film for vapor deposition of the present invention has a lamination order that is symmetrical in the thickness direction, and furthermore, the thickness of each layer is also symmetrical. It is more preferable to be present.
  • the total light transmittance of the laminated substrate film for vapor deposition of the present invention is preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more. Since the total light transmittance is 80% or more, the laminated base film for vapor deposition obtained by the present invention has excellent appearance quality.
  • the total light transmittance can be measured by a method according to JIS K7105.
  • the surface wetting tension of the layer made of methacrylic resin composition (I) is preferably 38 mN/m or more, more preferably 39 mN/m or more, and even more preferably 40 mN/m. That's all.
  • the surface wetting tension is at least 38 mN/m or more, the adhesive strength between the laminated substrate film for vapor deposition of the present invention and the vapor deposition layer is improved.
  • corona discharge treatment, ozone spraying, ultraviolet irradiation, flame treatment, chemical treatment, and other conventionally known surface treatments can be performed. Wetting tension can be measured by a method according to JIS K6768.
  • the lamination of the layer consisting of the methacrylic resin composition (I) and the layer consisting of the resin composition (T) is usually carried out by multilayer molding. It is preferable to do so.
  • multilayer molding include bonding methods such as multilayer extrusion molding, multilayer blow molding, multilayer press molding, multicolor injection molding, and insert injection molding, and multilayer extrusion molding is preferred from the viewpoint of productivity.
  • Methods for further laminating other resin layers include a method of multi-layer molding by the method described above together with a layer made of methacrylic resin composition (I) and a layer made of resin composition (T), a method of multilayer molding using the method described above, and a method of multi-layer molding with a layer made of methacrylic resin composition (I) and a layer made of resin composition (T); A method of applying another fluid resin to the surface of a layer consisting of composition (I) or a layer consisting of resin composition (T) and drying or curing it, consisting of a pre-prepared methacrylic resin composition (I). Examples include a method of bonding the layer or the surface of the resin composition (T) via an adhesive layer.
  • the method of multilayer extrusion molding is not particularly limited, and a known multilayer extrusion molding method used for manufacturing a multilayer laminate of thermoplastic resin can be preferably employed, and more preferably a flat T-die and polishing with a mirror-finished surface. It is formed by a device equipped with rolls.
  • the T-die method includes a feed block method in which methacrylic resin composition (I) and resin composition (T) in a heated and molten state are laminated before flowing into the T-die, and It is possible to adopt a multi-manifold method in which objects (T) are stacked inside a T die.
  • a multi-manifold method is preferable from the viewpoint of improving the smoothness of the interface between each layer constituting the laminated base material film for vapor deposition.
  • examples of the polishing roll in this case include a metal roll and an elastic roll having a metal thin film on the outer periphery (hereinafter sometimes referred to as metal elastic roll).
  • the metal roll is not particularly limited as long as it has high rigidity, and examples thereof include drilled rolls, spiral rolls, and the like.
  • the surface condition of the metal roll is not particularly limited, and may be, for example, a mirror surface, or may have a pattern, unevenness, or the like.
  • a metal elastic roll includes a substantially cylindrical rotatable shaft roll, a cylindrical metal thin film arranged to cover the outer peripheral surface of the shaft roll and in contact with a film-like object, and these shafts.
  • the shaft roll is not particularly limited, and is made of, for example, stainless steel.
  • the metal thin film is made of, for example, stainless steel, and preferably has a thickness of about 2 to 5 mm.
  • the metal thin film preferably has bendability, flexibility, etc., and preferably has a seamless structure without welded joints.
  • Elastic metal rolls with such metal thin films have excellent durability, and if the metal thin film is mirror-finished, they can be handled in the same way as ordinary mirror-finished rolls, and if the metal thin film is given a pattern or unevenness, It becomes a roll that can transfer the shape, so it is easy to use.
  • the methacrylic resin composition (I) and the resin composition (T) are preferably melt-filtered using a filter before and/or during multilayer molding.
  • a filter By performing multilayer molding using each melt-filtered resin composition, a laminate with few defects caused by foreign matter or gel can be obtained.
  • the filter material used, and it is selected appropriately depending on the operating temperature, viscosity, and filtration accuracy, such as nonwoven fabric made of glass fiber, etc.; phenol resin impregnated cellulose film; metal fiber nonwoven sintered film; metal powder sintered film. ; wire mesh; or a combination of these can be used.
  • the filtration accuracy of the filter is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the anchor layer will be described in detail as an example of a layer made of another resin composition.
  • the anchor layer is provided to improve the adhesion layer between the layer made of methacrylic resin composition (I) and the vapor deposited layer.
  • the anchor layer is not particularly limited.
  • the anchor layer may be any raw material that has good adhesion to the layer made of the methacrylic resin composition (I) and has good receptivity to the material constituting the vapor deposited layer, such as acrylic resin, nitrocellulose, etc. resins, polyurethane resins (including those cured with polyol resin as the main ingredient and isocyanate resin as the curing agent), acrylic urethane resins (including those cured with acrylic polyol resin as the main ingredient and isocyanate resin as the curing agent) polyester resins, styrene-maleic acid resins, chlorinated PP resins, etc.
  • the anchor layer contains an acrylic resin, since the resulting laminated film (laminated base film for vapor deposition, laminated film for vapor deposition) has better adhesion.
  • the acrylic resin is not particularly limited, and may be included in the category of the methacrylic resin described above.
  • the thickness of the anchor layer is preferably 0.1 to 3 ⁇ m. When the thickness of the anchor layer is within the above range, the laminated film has excellent adhesion between the layer made of the methacrylic resin composition (I) and the vapor deposited layer.
  • the anchor layer may be given a design by adding a colorant or a metal pigment. For example, by incorporating a yellow pigment as a colorant, the film can exhibit a golden appearance. The type and content of the colorant can be adjusted as appropriate depending on the desired metallic appearance. Further, the anchor layer may be provided with a function such as an antistatic effect by incorporating an antistatic agent. Furthermore, the anchor layer may be mixed with a curing agent having an isocyanate resin. By mixing a curing agent containing an isocyanate-based resin, the resulting laminated film can have further improved heat resistance, weather resistance, and water resistance.
  • the anchor layer is made of a methacrylic resin composition (I) using a roll coater or the like to apply a resin solution constituting the anchor layer dissolved in an appropriate solvent (for example, methyl ethyl ketone, toluene, ethyl acetate, etc.). It can be formed by applying a layer and then drying at about 80 to 100°C for 30 seconds to 1 minute.
  • an appropriate solvent for example, methyl ethyl ketone, toluene, ethyl acetate, etc.
  • the vapor-deposited laminated film of the present invention is a laminated base film for vapor deposition in which a layer made of a methacrylic resin composition (I) is laminated on one side of a layer made of a resin composition (T).
  • a vapor deposition layer is provided on one side of the laminated base material film for vapor deposition.
  • the vapor deposited layer is provided to impart various functions to the film.
  • Such functions include, for example, decoration, scratch resistance, antistatic, antifouling, friction reduction, antifogging, antiglare, antireflection, high light reflection, adhesiveness, impact resistance, antisticking, gas barrier, and transparent conductivity. can be mentioned.
  • the material constituting the vapor deposition layer is not particularly limited, and examples thereof include elemental metals, elemental metalloids, inorganic compounds, and organic compounds.
  • the inorganic compound oxides and oxynitrides of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta, etc. are preferable.
  • the organic compound an organic polymer compound is preferable.
  • One or more vapor deposition layers using at least one selected from these materials can be provided on one or both surfaces of the laminated base film for vapor deposition.
  • Deposited layers made of silicon oxide, silicon oxynitride, aluminum oxide, etc. have excellent light transmittance and are suitable for optical applications.
  • Polysiloxane is produced, for example, by introducing vapor obtained by heating and evaporating hexamethyldisiloxane into a parallel plate type plasma device using RF electrodes, and depositing it on a base film while causing a polymerization reaction in the plasma.
  • a vapor deposited layer made of polysiloxane can be easily made hydrophilic by oxygen plasma or the like, has good adhesion to an inorganic vapor deposited layer, and has excellent bending resistance.
  • Polypara-xylylene can be produced, for example, by heating and vaporizing di-para-xylylene in a high vacuum, and heating the vapor to 650° C. to 700° C. to thermally decompose the di-para-xylylene to generate radicals.
  • these radicals are introduced into a chamber in which a base film is installed, the radicals are adsorbed by the base film, and at the same time, radical polymerization proceeds to form a polyparaxylylene film.
  • a vapor deposited layer made of polyparaxylylene has excellent mechanical strength, thermal strength, chemical strength, etc.
  • the addition polymer is formed into a film by, for example, adding and polymerizing the monomers above in a vacuum and depositing them on a base film.
  • polyurea is preferred from the viewpoint of transparency, material cost, and the like.
  • a vapor deposited layer with a refractive index lower than that of the base film may be provided on the surface of the base film, or a vapor deposited layer with a high refractive index and a vapor deposited layer with a low refractive index may be provided on the surface of the base film. They are provided on the surface of the base film in this order.
  • a vapor deposited layer so dense that barrier target gas molecules such as water molecules and oxygen molecules cannot pass through is provided on the surface of the base film.
  • Materials constituting the gas barrier deposited layer include, for example, metal alloys consisting of elemental metals such as aluminum, nickel, chromium, iron, cobalt, zinc, gold, silver, copper, and combinations thereof; silicon, germanium, carbon (diamond), etc.; Elemental metalloids such as carbon-like carbon, graphite, etc.; oxides such as silicon oxide, aluminum oxide, magnesium oxide, indium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, zinc oxide, cerium oxide, hafnium oxide, barium oxide, etc.
  • nitrides such as silicon nitride, aluminum nitride, boron nitride, and magnesium nitride; carbides such as silicon carbide; oxide carbides; nitride carbides; oxynitrides; oxynitride carbides; sulfides.
  • an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium can be used.
  • the vapor-deposited layer containing indium has excellent moldability of the obtained film and is easily processed into various three-dimensional shapes, so it is also suitable for metallic decoration.
  • Indium may be included as an oxide or nitride. In addition to indium, it may also contain various nonmetals, metals, metal oxides, and metal nitrides.
  • the obtained vapor deposited layer can be analyzed using, for example, a surface analysis device such as a photoelectron spectrophotometer, an X-ray photoelectron spectrometer (XPS), or a secondary ion mass spectrometer (SIMS). These devices can perform analysis in the thickness direction of a deposited layer using ion etching.
  • a surface analysis device such as a photoelectron spectrophotometer, an X-ray photoelectron spectrometer (XPS), or a secondary ion mass spectrometer (SIMS). These devices can perform analysis in the thickness direction of a deposited layer using ion etching.
  • the thickness of the vapor deposited layer can be set depending on the function to be imparted, but is preferably 5 to 2000 nm, more preferably 10 to 1500 nm, still more preferably 20 to 1000 nm, and most preferably 30 to 500 nm. When the thickness of the vapor-deposited layer is within the above range, the vapor-deposited layer can easily achieve both its function, productivity, and moldability.
  • the vapor deposition layer can be formed by a known vapor deposition method.
  • Vapor deposition methods include physical vapor deposition methods (PVD methods) such as vacuum evaporation method, sputtering method, and ion plating method; chemical vapor deposition methods (CVD method) such as reduced pressure chemical vapor deposition method, catalytic chemical vapor deposition method, and plasma chemical vapor deposition method. can be mentioned.
  • PVD methods physical vapor deposition methods
  • CVD method chemical vapor deposition methods
  • the vacuum evaporation method is preferred because of its high productivity.
  • the vapor deposition conditions conventionally known conditions may be appropriately adopted based on the desired thickness of the vapor deposited layer.
  • the surface of the base film may be subjected to surface treatment within a range that does not impair the purpose of the present invention.
  • the surface treatment include discharge treatment methods such as low-temperature plasma treatment and corona discharge treatment; chemical treatment methods such as acid treatment, alkali treatment, and organic solvent treatment; and treatment methods by applying a primer paint. It seems that the electric discharge treatment method can increase the number of carbonyl groups, carboxyl groups, hydroxyl groups, etc., and the chemical treatment method can increase the number of polar groups such as amino groups, hydroxyl groups, carbonyl groups, etc.
  • the vapor-deposited laminated film of the present invention may further have a coating film on the surface of the vapor-deposited layer.
  • a coating film is a film formed by applying a coating composition, drying it as necessary, and curing it.
  • Various functions can be imparted by the coating film. Such functions include, for example, decoration, scratch resistance, antistatic, antifouling, friction reduction, antifogging, antiglare, antireflection, high light reflection, adhesiveness, impact resistance, antisticking, gas barrier, and transparent conductivity. can be mentioned.
  • There is no particular restriction on the method of applying the coating composition and for example, methods such as roll coating, gravure coating, knife coating, dip coating, curtain flow coating, spray coating, and bar coating can be used.
  • the metal-like sheet of the present invention is obtained by laminating a thermoplastic resin sheet as a backing material on the vapor-deposited layer side surface of the vapor-deposited laminated film of the present invention.
  • the resin constituting the thermoplastic resin sheet is not particularly limited, but examples include ABS (acrylonitrile-butadiene-styrene copolymer) resin, polycarbonate resin, methacrylic resin, polyvinyl chloride resin, polyurethane resin, polyester Examples include resins and polyolefin resins.
  • the thickness of the thermoplastic resin sheet is not particularly limited, and may be the thickness of the so-called film region. Specifically, the thickness of the thermoplastic resin sheet is usually 0.2 to 2 mm.
  • the vapor deposition layer and the thermoplastic resin sheet are preferably laminated with an adhesive layer interposed therebetween.
  • the presence of the adhesive layer provides good adhesion between the vapor deposited layer and the thermoplastic resin sheet, making it suitable for use as a metallic sheet.
  • the adhesive forming the adhesive layer may be appropriately selected so that it can withstand the heating temperature during molding and exhibits good adhesiveness depending on the type of metal vapor deposited layer or thermoplastic resin sheet. .
  • polyurethane type polyester type, polyethylene type, polyamide type, polyvinyl chloride type, polychloroprene type, carboxylated rubber type, thermoplastic styrene-butadiene rubber type, acrylic type, styrene type, cellulose type, alkyd type, polyacetic acid type.
  • Adhesives made of one or more resins such as vinyl, ethylene vinyl acetate copolymer, polyvinyl alcohol, epoxy, silicone, natural rubber, and synthetic rubber are used.
  • additives such as pigments, dyes, metal powders, mica, and the like may be added to these adhesives for the purpose of adjusting the color tone, taking into consideration the influence of metallic luster on the color tone.
  • the thickness of the adhesive layer is preferably 1 to 20 ⁇ m, more preferably 2 to 8 ⁇ m. If the thickness of the adhesive layer is less than 1 ⁇ m, the adhesive force may be insufficient. On the other hand, if it exceeds 20 ⁇ m, it will take a long time to dry the adhesive layer, which is preferable in terms of the process. It also tends to be disadvantageous in terms of cost. Furthermore, in the metallic sheet of the present invention, the metal vapor deposited layer and the thermoplastic resin sheet are preferably laminated by dry lamination.
  • the above-mentioned adhesive is made into a solution or emulsion state using a solvent as necessary, and this is coated by known means such as a gravure coater, reverse coater, die coater, knife coater, roll coater, etc. It may be applied to the metal vapor deposited layer, the thermoplastic resin sheet, or both, and dried as appropriate.
  • the metal-like molded product of the present invention is obtained by laminating the vapor-deposited laminated film or metal-like sheet of the present invention onto a molded product such that the surface opposite to the vapor-deposited layer side is placed on the front side.
  • the molded product to which the vapor-deposited laminated film or metal-like sheet is laminated is, for example, made of thermoplastic resin such as ABS resin, polycarbonate resin, methacrylic resin, polyvinyl chloride resin, polyurethane resin, polyester resin, or polyolefin resin. It is preferable that the thermoplastic resin such as ABS resin, polycarbonate resin, methacrylic resin, polyvinyl chloride resin, polyurethane resin, polyester resin, or polyolefin resin. It is preferable that the thermoplastic resin such as ABS resin, polycarbonate resin, methacrylic resin, polyvinyl chloride resin, polyurethane resin, polyester resin, or polyolefin resin. It is preferable that the thermoplastic resin such as ABS resin, polycarbonate resin,
  • the vapor deposition layer and the molded article are bonded together via an adhesive layer.
  • the presence of the adhesive layer provides good adhesion between the vapor deposited layer and the molded article.
  • the type of adhesive forming the adhesive layer and the thickness of the adhesive layer are the same as the adhesive layer in the metal-like sheet of the present invention, but the adhesive layer is usually sticky after drying. It is selected as appropriate so that it does not have.
  • Methods for obtaining the metal-like molded product of the present invention include film (sheet) in-mold molding, laminate injection press molding, film (sheet) insert molding, vacuum-pressure molding, TOM (Three Dimension Overlay Method) molding, and hot stamping. Examples include molding.
  • the film (sheet) insert injection molding method is advantageously employed.
  • a vapor-deposited laminated film or metal-like sheet is preformed by vacuum forming or pressure forming, then trimmed using a Thomson mold, etc., and then inserted into an injection mold.
  • This is a method in which an injection molded product is formed by injecting molten resin, and at the same time, a molded film or metal-like sheet is laminated to the molded product.
  • conventionally known techniques such as those described in, for example, JP-A-2005-254531 may be followed.
  • the vapor-deposited laminated film of the present invention can be used, for example, in the interior and exterior of automobiles, the interior and exterior of personal computers, the interior and exterior of mobile terminals, the interior and exterior of wearable terminals, the interior and exterior of solar cells, solar cell backsheets, light guide plates for liquid crystals, diffusion plates, backsheets, reflective Films for liquid crystal displays such as sheets, polarizer protective films and retardation films, information equipment fields such as surface protection films, optical communication fields such as optical fibers, optical switches, and optical connectors, automobile headlight and tail lamp lenses, inner lenses, Vehicle fields such as instrument covers, sunroofs, glazing, eyeglasses, contact lenses, endoscope lenses, road signs, bathroom equipment, flooring, road transparent plates, lenses for double glazing, lighting windows, carports, and lighting.
  • It can be used in the field of architecture and building materials such as lenses, lighting covers, and sizing for building materials, microwave cooking containers (tableware), housings for home appliances, toys, sunglasses, stationery, and solar light-concentrating films. It can also be used as an alternative to molded products using transfer sheets.
  • metal-like molded products formed from the vapor-deposited laminated film of the present invention can be used, for example, as metal-like signboards, metal-like interior and exterior parts for vehicles, metal-like home appliances, metal-like amusement products, and metal-like building materials. etc.
  • metal-like molded products are suitably used as interior and exterior members for metal-like vehicles.
  • the metallic interior and exterior members for vehicles are not particularly limited.
  • metal interior and exterior parts for vehicles include instrument panel garnishes and ornaments, audio panels, auto air conditioner panels, steering ornaments, door trim ornaments, power window switch bezels, operation knobs, switches, and various caps or covers.
  • radiator grilles include radiator grilles, pillar garnishes, back door ornaments, side mirror covers, outer panels, rear spoilers, inside or outside door handles, side visors, wheel covers, cowlings for motorcycles, etc.
  • the metal interior/exterior member for a vehicle of this embodiment is more suitable when applied to a steering wheel, a handle, etc.
  • each unit composition of precursor polymer The carbon ratio of the phenyl group of the ⁇ -methylstyrene unit, the carbonyl group of the methyl methacrylate unit, the phenyl group of the styrene unit, and the carbonyl group of the maleic anhydride unit was determined by 13C -NMR, and the composition of each unit was calculated from this. did.
  • the weight average molecular weight (Mw) of each resin obtained in the production example was determined by GPC (gel permeation chromatography).
  • a sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 ml of tetrahydrofuran.
  • the temperature of the column oven was set at 40° C., 20 ⁇ l of the sample solution was injected into the device at an eluent flow rate of 0.35 ml/min, and the chromatogram was measured.
  • Ten points of standard polystyrene having a molecular weight in the range of 400 to 5,000,000 were measured by GPC, and a calibration curve showing the relationship between retention time and molecular weight was created.
  • the Mw of the resin to be measured was determined based on this calibration curve.
  • the value corresponding to the molecular weight of standard polystyrene from the chromatogram measured by GPC was determined as the molecular weight of the copolymer.
  • Equipment Tosoh GPC equipment
  • Eluent Tetrahydrofuran Eluent flow rate: 0.35ml/min
  • each unit composition in methacrylic copolymer The ⁇ -methylstyrene unit and styrene unit had the same composition as each unit composition of the precursor polymer.
  • 1 H-NMR measurement of the methacrylic copolymer was performed using 1 H-NMR (manufactured by Bruker; trade name: ULTRA SHIELD 400 PLUS), and the imide units (glutarimide and maleimide) in the methacrylic copolymer were detected.
  • the content (mol%) of each monomer unit such as methyl methacrylate unit and aromatic vinyl ( ⁇ -methylstyrene and styrene) unit is determined, and the content (mol%) is calculated by calculating the content (mol%) of each monomer unit.
  • the molecular weight was used to convert into content (% by weight).
  • the imidization rate (R m ) of the acid anhydride was determined. From the amount of maleic anhydride (m) in the precursor polymer determined by 13C -NMR and the imidization rate (R m ), the value determined by the following formula was taken as the amount of maleic anhydride (M) in the methacrylic copolymer. .
  • Amount of maleic anhydride (M) m x (100-Rm)/100
  • M m x (100-Rm)/100
  • the ratio of glutarimide units to maleimide units in the methacrylic copolymer was determined from the absorption intensity of the peak derived from the carbonyl unit of maleimide.
  • the content of glutarimide units and maleimide units in the methacrylic copolymer was determined from the amount of imide units in the methacrylic copolymer determined by 1 H-NMR and the ratio of glutarimide units to maleimide units.
  • Total light transmittance Tt
  • the methacrylic resin composition obtained in the production example was press-molded to form a sheet with a thickness of 3 mm.
  • the total light transmittance of the press plate was measured using a haze meter (manufactured by Murakami Color Research Institute; trade name HM-150).
  • Glass transition temperature Tg
  • the methacrylic resin composition obtained in the production example was dissolved in chloroform and reprecipitated with methanol, and the precipitated resin was vacuum-dried at 100° C. for 12 hours or more.
  • the vacuum-dried resin was heated to 250°C in accordance with JIS K7121 using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 (product number)), then cooled to room temperature, and then cooled to room temperature.
  • the DSC curve was measured under conditions of increasing the temperature from 10°C to 200°C at a rate of 10°C/min.
  • the midpoint glass transition temperature determined from the DSC curve measured during the second temperature rise was defined as the glass transition temperature in the present invention.
  • thermogravimetric reduction temperature The methacrylic resin composition obtained in the production example was heated at a rate of 10°C/min in a nitrogen atmosphere using a thermogravimetric measuring device (manufactured by Shimadzu Corporation, TGA-50), and when the starting point was 200°C. The temperature at which the weight decreased by 1% was defined as the 1% thermoweight loss temperature.
  • a test piece with a thickness of 4 mm, a length of 80 mm, and a width of 10 mm was obtained by cutting the methacrylic resin composition obtained in the production example after press molding.
  • Each test piece was measured under the conditions of 23° C. and 50% relative humidity according to the method described in JIS K7111-1/1eU. The measurements were performed 10 times, and the average value was adopted as the Charpy impact value.
  • the methacrylic resin composition obtained in the production example was dissolved in chloroform and reprecipitated with methanol, and the precipitated resin was vacuum-dried at 100° C. for 12 hours or more.
  • the vacuum-dried resin was measured in accordance with JIS K7210 at 230° C. and a load of 3.8 kg.
  • the methacrylic resin composition obtained in the production example was press-molded to form a sheet with a thickness of 3 mm.
  • Wet tension was measured using a mixed liquid for wetting tension test (manufactured by Wako Pure Chemical Industries, Ltd.) under conditions of 23° C. and 50% relative humidity in accordance with JIS K6768.
  • the laminated base film for vapor deposition of Examples and Comparative Examples was cut into a rectangle with the long side parallel to the extrusion flow direction and the short side perpendicular to the extrusion flow direction, and the long side was 200 mm.
  • a test piece with a short side of 120 mm was prepared. Place the test piece on a surface plate so that both ends of the test piece are in contact with the surface plate (that is, the test piece has an upward convex shape), and use a gap gauge to measure the maximum gap between the test piece and the surface plate. was measured and used as the initial amount of warpage.
  • each test piece was left in a hot air dryer set at a temperature of 100°C for 1 hour, and then the test piece with its short side clipped was placed in an environmental testing machine set at a temperature of 85°C and a relative humidity of 85%. After hanging it and leaving it in that state for 72 hours, it was allowed to cool and control humidity for 120 hours in an environment of 23° C. and 50% relative humidity. As a result, all the test pieces were warped in an arch-like manner along the long sides of the test piece, with the layer made of methacrylic resin composition (I) on the outside and the layer made of resin composition (T) on the inside. occured.
  • the maximum value of the gap with the surface plate was measured and used as the amount of warpage under high temperature and high humidity.
  • the amount of change in warpage under high temperature and high humidity was calculated from the following formula, and the quality of dimensional stability was determined from the amount of change.
  • Amount of change in warpage under high temperature and high humidity Amount of warpage under high temperature and high humidity - Initial amount of warpage ⁇ : Amount of change in warpage under high temperature and high humidity is 10 mm or less ⁇ : Amount of change in warpage under high temperature and high humidity is 10 mm Larger but less than 20mm ⁇ : Warpage change amount under high temperature and high humidity is greater than 20mm
  • precursor polymer The precursor polymers (p-1) to (p-5) of this production example were produced by the following method.
  • Precursor polymer (p-1) to (p-2) In an autoclave equipped with a stirrer, 68.0 parts by mass of purified methyl methacrylate (MMA), 28.0 parts by mass of ⁇ -methylstyrene ( ⁇ MSt), 7.0 parts by mass of styrene (St), and 2,2'-azobis. 0.05 parts by mass of (2-methylpropionitrile) (AIBN) and 0.01 parts by mass of n-octylmercaptan (n-OM) were charged and uniformly dissolved to obtain a polymerization raw material.
  • MMA purified methyl methacrylate
  • ⁇ MSt ⁇ -methylstyrene
  • St 7.0 parts by mass of styrene
  • 2,2'-azobis 0.05 parts by mass of (2-methylpropionitrile) (AIBN) and 0.01 parts by mass of n
  • Nitrogen gas was blown into the reaction raw material to remove dissolved oxygen to 3 ppm.
  • the interior of the continuous flow tank reactor equipped with a brine cooling condenser was replaced with nitrogen gas.
  • the polymerization raw material was continuously fed into the tank reactor at a constant flow rate so that the average residence time was 3.0 hours, and bulk polymerization was carried out at a polymerization temperature of 140°C, and the precursor was removed from the tank reactor.
  • the liquid containing the polymer was continuously discharged. Note that the pressure inside the tank reactor was regulated by a pressure regulating valve connected to a brine cooling condenser.
  • the polymerization conversion rate reached the values shown in Table 1.
  • the liquid discharged from the reactor was heated to 210°C and supplied to a twin-screw extruder controlled at 230°C.
  • the twin-screw extruder volatile components mainly consisting of unreacted monomers were separated and removed, and the precursor polymer was extruded into strands.
  • the strand was cut with a pelletizer to obtain a precursor polymer (p-1).
  • the weight average molecular weight Mw of the obtained precursor polymer (p-1) was measured. The results are shown in Table 1.
  • Precursor polymer (p-3) In an autoclave with a stirrer, 60.0 parts by mass of purified methyl methacrylate (MMA), 25.0 parts by mass of ⁇ -methylstyrene ( ⁇ MSt), 15.0 parts by mass of maleic anhydride (Mah), 2,2' -0.005 parts by mass of azobis(2-methylpropionitrile) (AIBN) and 0.02 parts by mass of n-octylmercaptan (n-OM) were charged and uniformly dissolved to obtain a polymerization raw material. Nitrogen gas was blown into the reaction raw material to remove dissolved oxygen to 3 ppm. Next, the interior of the continuous flow tank reactor equipped with a brine cooling condenser was replaced with nitrogen gas.
  • MMA purified methyl methacrylate
  • ⁇ MSt ⁇ -methylstyrene
  • Mih maleic anhydride
  • AIBN 2,2' -0.005 parts by mass of azobis(2-methylpropionitrile)
  • the polymerization raw material was continuously fed into the tank reactor at a constant flow rate so that the average residence time was 2 hours, and bulk polymerization was carried out at a polymerization temperature of 130°C, and the precursor polymer was removed from the tank reactor.
  • the containing liquid was continuously discharged.
  • the pressure inside the tank reactor was regulated by a pressure regulating valve connected to a brine cooling condenser.
  • the polymerization conversion rate reached the values shown in Table 1.
  • the liquid discharged from the reactor was heated to 230°C and supplied to a twin-screw extruder controlled at 240°C. In the twin-screw extruder, volatile components mainly consisting of unreacted monomers were separated and removed, and the precursor polymer was extruded into strands.
  • the strand was cut with a pelletizer to obtain a precursor polymer (p-3).
  • the weight average molecular weight Mw of the obtained precursor polymer (p-3) was measured. The results are shown in Table 1.
  • Precursor polymer (p-4) In an autoclave equipped with a stirrer, 75.0 parts by mass of purified methyl methacrylate (MMA), 25.0 parts by mass of ⁇ -methylstyrene ( ⁇ MSt), and 2,2′-azobis(2-methylpropionitrile) (AIBN ) and 0.02 parts by mass of n-octylmercaptan (n-OM) were charged and uniformly dissolved to obtain a polymerization raw material. Nitrogen gas was blown into the reaction raw material to remove dissolved oxygen to 3 ppm. Next, the interior of the continuous flow tank reactor equipped with a brine cooling condenser was replaced with nitrogen gas.
  • MMA purified methyl methacrylate
  • ⁇ MSt ⁇ -methylstyrene
  • AIBN 2,2′-azobis(2-methylpropionitrile)
  • n-OM n-octylmercaptan
  • the polymerization raw material was continuously fed into the tank reactor at a constant flow rate so that the average residence time was 3 hours, and bulk polymerization was carried out at a polymerization temperature of 130°C, and the precursor polymer was removed from the tank reactor. Containing liquid was continuously discharged. Note that the pressure inside the tank reactor was regulated by a pressure regulating valve connected to a brine cooling condenser. The polymerization conversion rate reached the values shown in Table 1. Next, the liquid discharged from the reactor was heated to 230°C and supplied to a twin-screw extruder controlled at 240°C.
  • Precursor polymer (p-5) MS resin (copolymer of methyl methacrylate (MMA) and styrene (St)) was polymerized according to the method for producing copolymer (A) described in the [Examples] section of JP-A-2003-231785. did. By changing the mass ratio of MMA and St charged into the autoclave, a precursor polymer (p-5) containing 20% by mass of styrene monomer units was obtained. The weight average molecular weight Mw of the obtained precursor polymer (p-5) was measured. The results are shown in Table 1.
  • a twin-screw extruder (manufactured by Nippon Steel Corporation; trade name: TEX30 ⁇ -77AW-3V) consisting of a transport section, a melt-kneading section, a devolatilizing section, and a discharge section, and set at a screw rotation speed of 150 rpm and a temperature of 210 to 270°C.
  • the precursor polymer (p-1) was supplied to the transport section at a rate of 15 kg/hr, and in the melt-kneading section equipped with a kneading block, monomethylamine was mixed so as to have the content of structural units derived from glutarimide shown in Table 1.
  • the amount added was adjusted and injected from the additive supply port of the twin-screw extruder to cause the precursor polymer (p-1) and monomethylamine to react.
  • the melt-kneading section is mostly composed of kneading disks, and seal elements are attached to both ends of the kneading disks.
  • the devolatilization section by-products and excess monomethylamine were volatilized from the molten resin that had passed through the melt-kneading section and discharged through a plurality of vents.
  • the molten resin extruded as a strand from the die installed at the end of the discharge section of the twin-screw extruder is cooled in a water tank, and then cut with a pelletizer to obtain pellet-shaped methacrylic copolymer (a-1). Obtained.
  • the content of structural units derived from glutarimide in the methacrylic copolymer (a-1) was 53 wt%.
  • Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-1).
  • Example 2 A methacrylic copolymer (a-2) was obtained in the same manner as in Example 1, except that the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 70 wt%. .
  • Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-2).
  • Example 3 Methacryl was added in the same manner as in Example 1, except that the precursor polymer (p-2) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 38 wt%. A copolymer (a-3) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-3).
  • Example 5 Methacryl was added in the same manner as in Example 1, except that the precursor polymer (p-2) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 15 wt%. A copolymer (a-5) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-5).
  • Example 6 Methacryl was added in the same manner as in Example 1, except that the precursor polymer (p-4) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 30 wt%. A copolymer (a-8) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-8).
  • Methacryl was prepared in the same manner as in Example 1, except that the precursor polymer (p-5) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 48 wt%.
  • a copolymer (a-9) was obtained.
  • Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-9).
  • Example 1 Two types of resins, one for the layer consisting of the resin composition (T) and the other for the layer consisting of the methacrylic resin composition (I), were processed using separate 25 mm ⁇ vented single screw extruders (manufactured by GM ENGINEER JNG; VGM25). -28EX) and melted and kneaded, these resin compositions were introduced into a junction block and extruded using a multi-manifold die at an extrusion temperature of 25. Coextrusion was carried out at 0°C. The thickness of each layer was adjusted by adjusting the discharge amount of each resin composition.
  • the coextruded resin composition in a molten state is sandwiched between a first cooling roll and a second cooling roll that are adjacent to each other, and wound around the second cooling roll. It was cooled by sandwiching it between them and winding it around a third cooling roll.
  • the thermoplastic resin layer obtained after cooling was taken off by a pair of take-off rolls. Note that the layer made of methacrylic resin composition (I) was brought into contact with the third cooling roll. In this way, a two-layer laminated base film for vapor deposition was produced.
  • Table 3 shows the evaluation results of the laminated base material film for vapor deposition.
  • Examples 2 to 6 and Comparative Examples 1 to 7 The deposition method described in Examples 2 to 6 and Comparative Examples 1 to 7 was performed in the same manner as in Example 1, except that the resin composition (T) and methacrylic resin composition (I) listed in Table 3 were used. A laminated base film was manufactured. Table 3 shows the evaluation results of the laminated base material film for vapor deposition.
  • the laminated films obtained in Examples 1 to 6 had high total light transmittance, high Charpy impact strength, excellent fluidity, and a heat-resistant and low water absorption methacrylic resin composition (I-1 ) to (I-5) provides excellent appearance quality, dimensional stability, and flexibility. Furthermore, since the resin composition has high wet tension, the laminated film of the present invention has excellent adhesion to the vapor deposited layer. From the above, the laminated films of Examples 1 to 6 are suitable as substrates for vapor deposition. In contrast, laminated films using methacrylic resin compositions (I-6), (I-8), (I-9), and (I-12) that do not have sufficient heat resistance or low water absorption (comparison Examples 1, 3, 4, and 7) have poor dimensional stability.
  • laminated films (Comparative Examples 2, 3, 6 ), which tends to cause poor appearance. Furthermore, a laminate film using a methacrylic resin composition (I-6) with low wet tension (Comparative Example 1) and a laminate using a resin composition (I-10) with low Charpy impact strength (Comparative Example 5) In this case, the adhesion and flexibility with the vapor deposited layer are reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention addresses the problem of providing: a multilayer base film which has high heat resistance, high flexibility and high dimensional stability, and is used for the formation of a vapor deposited layer on at least one surface thereof; and a multilayer vapor deposited film which comprises the multilayer base film and a vapor deposited layer. The present invention provides a multilayer base film for vapor deposition, the multilayer base film comprising: a layer that is formed of a methacrylic resin composition (I) which has a glass transition temperature of 135°C or more, while containing a methacrylic copolymer (a) that comprises 5-73% by mass of a methyl methacrylate unit, 25-70% by mass of a structural unit (r) represented by formula (1), 1-48% by mass of an α-methylstyrene unit, 1-48% by mass of at least one unit that is selected from the group consisting of a styrene unit and a maleic acid anhydride unit, and 0-20% by mass of an unsubstituted or N-substituted maleimide unit; and a layer that is formed of a resin composition (T) which contains a thermoplastic resin (b). (In formula (I), R1 and R2 are as defined in the description.)

Description

蒸着用積層基材フィルム、および蒸着積層フィルムLaminated base film for vapor deposition and laminated film for vapor deposition
 本発明は、蒸着用積層基材フィルムおよび金属調シートなどに関する。より詳細に、本発明は、耐熱性が高く、吸水性が低く、力学強度、ぬれ張力が大きい、メタクリル系共重合体からなる層に蒸着層を設けるために用いられる蒸着用積層基材フィルムおよび該蒸着用積層基材フィルムと蒸着層とを有してなる、蒸着層との密着性などに優れる蒸着積層フィルムに関する。 The present invention relates to a laminated base film for vapor deposition, a metal-like sheet, and the like. More specifically, the present invention provides a laminated substrate film for vapor deposition, which is used to provide a vapor deposition layer on a layer made of a methacrylic copolymer, which has high heat resistance, low water absorption, high mechanical strength, and high wetting tension. The present invention relates to a vapor-deposited laminated film having excellent adhesion to the vapor-deposited layer, which comprises the laminated base film for vapor-deposition and a vapor-deposited layer.
 メタクリル樹脂は透明性、耐擦傷性、耐候性などに優れる。メタクリル樹脂を表層材料に用いた積層フィルムは、家屋の壁、家具、家電製品、電子機器、表示装置等の外観、表面強度、耐久性などの要求が高い用途に使用される。かかる用途において、意匠性、耐擦傷性、帯電防止性、導電性、ガスバリア性等の機能付与を目的に、金属蒸着層を更に設けた積層フィルムが求められている。 Methacrylic resin has excellent transparency, scratch resistance, and weather resistance. Laminated films using methacrylic resin as the surface layer material are used in applications that require high appearance, surface strength, durability, etc., such as walls of houses, furniture, home appliances, electronic devices, and display devices. In such applications, there is a demand for a laminated film further provided with a metal vapor-deposited layer for the purpose of imparting functions such as design, scratch resistance, antistatic properties, electrical conductivity, and gas barrier properties.
 しかし、一般的に、メタクリル樹脂層を表層材料に用いた積層フィルムに蒸着層を設けた場合、メタクリル樹脂層と蒸着層との密着性が非常に悪いため、使用することが困難である。メタクリル樹脂層と蒸着層との密着性を向上させるために、有機系のアンカー層を予め形成させることもあるが、メタクリル樹脂層とアンカー層の材料特性の違いからメタクリル樹脂とアンカー層との剥離が起こる場合がある。 However, in general, when a vapor deposited layer is provided on a laminated film using a methacrylic resin layer as a surface layer material, it is difficult to use it because the adhesion between the methacrylic resin layer and the vapor deposited layer is very poor. In order to improve the adhesion between the methacrylic resin layer and the vapor deposited layer, an organic anchor layer is sometimes formed in advance, but due to the difference in material properties between the methacrylic resin layer and the anchor layer, separation between the methacrylic resin and the anchor layer may occur. may occur.
 蒸着層との密着性を向上させるため、特許文献1は、メタクリル酸メチル単位、無水マレイン酸単位、芳香族ビニル化合物単位を共重合して得られる耐熱性アクリル系樹脂を基材に用いたアクリル系樹脂積層体を提案している。無水マレイン酸単位の共重合により密着性は向上するが、得られる積層体は脆い。特許文献2は、メタクリル樹脂を含有する樹脂組成物(a)からなる熱可塑性樹脂層(A)の少なくとも一方の面に、スチレン系単量体とシアン化アルニケルとの共重合体を含有する樹脂組成物(b1)からなるスチレン系樹脂層(B1)が積層されてなる金属直接蒸着用積層フィルムを提案している。シアン化アルニケルの共重合により密着性は向上するが、耐熱性が不足する。また、特許文献3は、グルタルイミド構造単位とメタクリル酸メチル構造単位とを有するグルタルイミドアクリル樹脂を形成しフィルムを得、それを二軸延伸してなる基材フィルムを提案している。グルタルイミド構造単位を含むことで密着性は向上するが、吸水性が高く寸法安定性が悪い。
 以上のように、蒸着層との密着性を向上させ、耐熱性、可撓性、寸法安定性を高いレベルでバランスさせる手法に関しては検討の余地があった。
In order to improve the adhesion with the vapor deposition layer, Patent Document 1 discloses an acrylic resin using a heat-resistant acrylic resin as a base material obtained by copolymerizing methyl methacrylate units, maleic anhydride units, and aromatic vinyl compound units. We are proposing a type resin laminate. Copolymerization of maleic anhydride units improves adhesion, but the resulting laminate is brittle. Patent Document 2 discloses a resin containing a copolymer of a styrene monomer and an alnicel cyanide on at least one surface of a thermoplastic resin layer (A) made of a resin composition (a) containing a methacrylic resin. A laminated film for direct metal deposition is proposed, in which a styrene resin layer (B1) made of a composition (b1) is laminated. Although copolymerization of alnickel cyanide improves adhesion, heat resistance is insufficient. Further, Patent Document 3 proposes a base film obtained by forming a glutarimide acrylic resin having a glutarimide structural unit and a methyl methacrylate structural unit to obtain a film, and then biaxially stretching the film. Although adhesion is improved by including the glutarimide structural unit, water absorption is high and dimensional stability is poor.
As described above, there is room for consideration of methods for improving adhesion with the vapor deposited layer and achieving a high level of balance between heat resistance, flexibility, and dimensional stability.
特開2008―94064号公報Japanese Patent Application Publication No. 2008-94064 特開2011―143584号公報Japanese Patent Application Publication No. 2011-143584 特開平6―256537号公報Japanese Patent Application Publication No. 6-256537
 上記事情を鑑み、本発明の目的は、耐熱性、可撓性、寸法安定性が高い、その少なくとも一方の面に蒸着層を設けるために用いられる積層基材フィルムおよび該積層基材フィルムと蒸着層とを有してなる、蒸着積層フィルムを提供することにある。 In view of the above circumstances, the object of the present invention is to provide a laminated base film that has high heat resistance, flexibility, and dimensional stability, and that is used for providing a vapor deposition layer on at least one surface thereof, and a laminated base film that has high heat resistance, flexibility, and dimensional stability. An object of the present invention is to provide a vapor-deposited laminated film comprising a layer.
前記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。
[1]
 メタクリル酸メチル単位5~73質量%と、下記式(1)で表される構造単位(r)25~70質量%と、α-メチルスチレン単位1~48質量%と、スチレン単位及びマレイン酸無水物単位からなる群より選択される少なくとも一種1~48質量%と、無置換またはN-置換マレイミド単位0~20質量%とを有するメタクリル系共重合体(a)を含有し、且つガラス転移温度が135℃以上である、メタクリル系樹脂組成物(I)からなる層;と、熱可塑性樹脂(b)を含有する樹脂組成物(T)からなる層;と、を備える蒸着用積層基材フィルム。
Figure JPOXMLDOC01-appb-C000002
 (式(I)中、Rは、それぞれ独立に、水素原子またはメチル基であり、Rは、水素原子、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または芳香環を含む炭素数6~15の有機基である。)
[2]
 メタクリル系樹脂組成物(I)のガラス転移温度が145℃以上である、[1]に記載の蒸着用積層基材フィルム。
[3]
 メタクリル系樹脂組成物(I)の飽和吸水率が3.0質量%以下である、[1]に記載の蒸着用積層基材フィルム。
[4]
 熱可塑性樹脂(b)がポリカーボネート樹脂である[1]に記載の蒸着用積層基材フィルム。
[5]
 メタクリル系樹脂組成物(I)からなる層と樹脂組成物(T)からなる層とが共押出成形体である[1]に記載の蒸着用積層基材フィルム。
[6]
 メタクリル系樹脂組成物(I)からなる層にアンカー層が積層されてなる[1]に記載の蒸着用積層基材フィルム。
[7]
 [1]に記載の蒸着用積層基材フィルムのうち、樹脂組成物(T)からなる層の一方の面にメタクリル系樹脂組成物(I)からなる層が積層されてなる蒸着用積層基材フィルムに対し、メタクリル系樹脂組成物(I)からなる層側の面に蒸着層が設けられていることを特徴とする蒸着積層フィルム。
[8]
 [1]に記載の蒸着用積層基材フィルムのうち、樹脂組成物(T)からなる層の両方の面にメタクリル系樹脂組成物(I)からなる層が積層されてなる蒸着用積層基材フィルムに対し、いずれか一方の面に蒸着層が設けられていることを特徴とする蒸着積層フィルム

[9]
 [7]又は[8]に記載の蒸着積層フィルムの蒸着層側の面に、熱可塑性樹脂シートが積層されてなることを特徴とする金属調シート。
[10]
 蒸着層と熱可塑性樹脂シートとは接着剤層を介して積層されている[9]に記載の金属調シート。
[11]
 蒸着層と熱可塑性樹脂シートとがドライラミネートにより積層されてなる[9]に記載の金属調シート。
[12]
 [7]又は[8]に記載の蒸着積層フィルムの蒸着層側の面が、成形品に貼合されてなることを特徴とする金属調成形品。
[13]
 [9]に記載の金属調シートの熱可塑性樹脂シートが積層された面が、成形品に貼合されてなることを特徴とする金属調成形品。
[14]
 [10]に記載の金属調シートの熱可塑性樹脂シートが積層された面が、成形品に貼合されてなることを特徴とする金属調成形品。
[15]
 [11]に記載の金属調シートの熱可塑性樹脂シートが積層された面が、成形品に貼合されてなることを特徴とする金属調成形品。
As a result of studies to achieve the above object, the present invention including the following embodiments has been completed.
[1]
5 to 73% by mass of methyl methacrylate units, 25 to 70% by mass of structural units (r) represented by the following formula (1), 1 to 48% by mass of α-methylstyrene units, styrene units and maleic anhydride. methacrylic copolymer (a) having 1 to 48% by mass of at least one selected from the group consisting of physical units and 0 to 20% by mass of unsubstituted or N-substituted maleimide units, and having a glass transition temperature a layer made of a methacrylic resin composition (I) having a temperature of 135° C. or higher; and a layer made of a resin composition (T) containing a thermoplastic resin (b); .
Figure JPOXMLDOC01-appb-C000002
(In formula (I), R 1 is each independently a hydrogen atom or a methyl group, and R 2 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aromatic It is an organic group containing a ring and having 6 to 15 carbon atoms.)
[2]
The laminated substrate film for vapor deposition according to [1], wherein the methacrylic resin composition (I) has a glass transition temperature of 145°C or higher.
[3]
The laminated substrate film for vapor deposition according to [1], wherein the methacrylic resin composition (I) has a saturated water absorption of 3.0% by mass or less.
[4]
The laminated substrate film for vapor deposition according to [1], wherein the thermoplastic resin (b) is a polycarbonate resin.
[5]
The laminated base material film for vapor deposition according to [1], wherein the layer consisting of the methacrylic resin composition (I) and the layer consisting of the resin composition (T) are coextruded products.
[6]
The laminated substrate film for vapor deposition according to [1], wherein an anchor layer is laminated on a layer made of methacrylic resin composition (I).
[7]
Among the laminated base material films for vapor deposition according to [1], a laminated base material for vapor deposition in which a layer made of methacrylic resin composition (I) is laminated on one side of a layer made of resin composition (T). A vapor-deposited laminated film characterized in that a vapor-deposited layer is provided on the surface of the film on the side of the layer made of methacrylic resin composition (I).
[8]
Among the laminated base material films for vapor deposition according to [1], a laminated base material for vapor deposition in which layers made of methacrylic resin composition (I) are laminated on both sides of a layer made of resin composition (T). A vapor-deposited laminated film characterized in that a vapor-deposited layer is provided on either side of the film.
[9]
A metal-like sheet comprising a thermoplastic resin sheet laminated on the vapor-deposited layer side surface of the vapor-deposited laminated film according to [7] or [8].
[10]
The metal-like sheet according to [9], wherein the vapor deposition layer and the thermoplastic resin sheet are laminated via an adhesive layer.
[11]
The metallic sheet according to [9], wherein the vapor deposited layer and the thermoplastic resin sheet are laminated by dry lamination.
[12]
A metal-like molded product, characterized in that the vapor-deposited layer side surface of the vapor-deposited laminated film according to [7] or [8] is bonded to a molded product.
[13]
A metal-like molded product, characterized in that the surface of the metal-like sheet according to [9] on which the thermoplastic resin sheet is laminated is bonded to a molded product.
[14]
A metal-like molded product, characterized in that the surface of the metal-like sheet described in [10] on which the thermoplastic resin sheet is laminated is bonded to a molded product.
[15]
A metal-like molded product, characterized in that the surface of the metal-like sheet according to [11] on which the thermoplastic resin sheet is laminated is bonded to a molded product.
 本発明の蒸着用積層基材フィルムは、耐熱性、可撓性、寸法安定性が高い。本発明の蒸着用積層基材フィルムは、蒸着プロセスに好適に用いることができる。
 本発明の蒸着用積層基材フィルムは、蒸着層との密着性が高く、種々の用途において高性能の機能付与が可能となる。本発明の蒸着用積層基材フィルムの一実施形態である金属調シートや金属調成形品においては、金属調の優れた外観を有するため、車輛内外装材、電子機器の内外装材、建材用サイジング、樹脂サッシなどの建築・建材分野、家電製品のハウジングなどとして有用である。
The laminated substrate film for vapor deposition of the present invention has high heat resistance, flexibility, and dimensional stability. The laminated substrate film for vapor deposition of the present invention can be suitably used in vapor deposition processes.
The laminated substrate film for vapor deposition of the present invention has high adhesion with the vapor deposition layer, and can be provided with high performance functions in various uses. Metal-like sheets and metal-like molded products, which are an embodiment of the laminated substrate film for vapor deposition of the present invention, have an excellent metallic appearance and are therefore suitable for use in interior and exterior materials for vehicles, interior and exterior materials for electronic devices, and building materials. It is useful in the field of architecture and construction materials such as sizing and resin sashes, and as housing for home appliances.
 本明細書において、単数形(a, an, the等)は、本明細書で別途明示がある場合又は文脈上明らかに矛盾する場合を除き、単数と複数を含むものとする。
 本発明の蒸着用積層基材フィルムは、蒸着に用いられるフィルムである。蒸着には、物理蒸着と化学蒸着とがある。本発明の蒸着用積層基材フィルムは、従来公知の真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、または化学蒸着法等を適宜採用し得る。これらの中でも真空蒸着法が好ましい方法として用いられる。
As used herein, the singular forms (a, an, the, etc.) shall include both the singular and the plural unless the context clearly dictates otherwise.
The laminated substrate film for vapor deposition of the present invention is a film used for vapor deposition. Vapor deposition includes physical vapor deposition and chemical vapor deposition. The laminated substrate film for vapor deposition of the present invention may be produced by a conventionally known physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method. Among these, the vacuum evaporation method is preferably used.
本発明の蒸着用積層基材フィルムに用いるメタクリル系樹脂組成物(I)は、メタクリル系共重合体(a)を含有する。1つの好ましい実施形態において、メタクリル系樹脂組成物(I)は、メタクリル系共重合体(a)と、メタクリル樹脂を含有する。メタクリル系樹脂組成物(I)中のメタクリル系共重合体(a)の含有量は51質量%以上であることが好ましく、65質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましく、メタクリル系共重合体(a)のみから構成されてもよい。 The methacrylic resin composition (I) used in the laminated base film for vapor deposition of the present invention contains a methacrylic copolymer (a). In one preferred embodiment, the methacrylic resin composition (I) contains a methacrylic copolymer (a) and a methacrylic resin. The content of the methacrylic copolymer (a) in the methacrylic resin composition (I) is preferably 51% by mass or more, more preferably 65% by mass or more, and 80% by mass or more. is more preferable, particularly preferably 90% by mass or more, and may be composed only of the methacrylic copolymer (a).
[メタクリル系共重合体(a)]
 本発明に関わるメタクリル系共重合体(a)は、メタクリル酸メチル単位5~73質量%と、構造単位(r)25~70質量%と、α-メチルスチレン単位1~48質量%と、スチレン単位及びマレイン酸無水物単位からなる群より選択される少なくとも一種1~48質量%と、無置換またはN-置換マレイミド単位0~20質量%とを、含有する。上記のようにメタクリル系共重合体(a)には無置換またはN-置換マレイミド単位が0質量%、すなわち無置換またはN-置換マレイミド単位を含まないものも包含される。本発明に用いるメタクリル系共重合体(a)は、さらにメタクリル酸メチルに共重合可能なその他のビニル系単量体単位を含んでもよい。本発明において重合体中の構造単位とは、重合体を構成する繰り返し単位又は当該繰り返し単位の少なくとも一部を誘導体化してなる単位(例えば、無置換若しくはN-置換グルタルイミド単位)のことを意味する。また、本明細書においては、用語「構造単位」をメタクリル酸メチル単位、構造単位(r)、α-メチルスチレン単位、スチレン単位、及びその他のビニル系単量体単位を総称して用いる場合もある。
[Methacrylic copolymer (a)]
The methacrylic copolymer (a) according to the present invention contains 5 to 73% by mass of methyl methacrylate units, 25 to 70% by mass of structural units (r), 1 to 48% by mass of α-methylstyrene units, and styrene. It contains 1 to 48% by mass of at least one selected from the group consisting of maleic anhydride units and maleic anhydride units, and 0 to 20% by mass of unsubstituted or N-substituted maleimide units. As mentioned above, the methacrylic copolymer (a) also includes those containing 0% by mass of unsubstituted or N-substituted maleimide units, ie, containing no unsubstituted or N-substituted maleimide units. The methacrylic copolymer (a) used in the present invention may further contain other vinyl monomer units copolymerizable with methyl methacrylate. In the present invention, the structural unit in a polymer means a repeating unit constituting the polymer or a unit obtained by derivatizing at least a portion of the repeating unit (for example, an unsubstituted or N-substituted glutarimide unit). do. In addition, in this specification, the term "structural unit" may be used to collectively refer to methyl methacrylate units, structural units (r), α-methylstyrene units, styrene units, and other vinyl monomer units. be.
 本発明に関わるメタクリル系共重合体(a)は、メタクリル酸メチル単位の割合が、全構造単位に対して、5~73質量%であり、6~70質量%が好ましく、6~60質量%がより好ましく、6~50質量%がさらに好ましい。得られるメタクリル系共重合体の透明性及び耐熱分解性の観点から、メタクリル酸メチル単位の割合が上記範囲であることが好ましい。 In the methacrylic copolymer (a) according to the present invention, the proportion of methyl methacrylate units is 5 to 73% by mass, preferably 6 to 70% by mass, and 6 to 60% by mass based on the total structural units. is more preferable, and even more preferably 6 to 50% by mass. From the viewpoint of transparency and heat decomposition resistance of the obtained methacrylic copolymer, it is preferable that the proportion of methyl methacrylate units is within the above range.
 本発明に関わるメタクリル系共重合体(a)は、α-メチルスチレン単位の割合が、全構造単位に対して、1~48質量%であり、3~40質量%が好ましく、5~35質量%がより好ましく、7~30質量%がさらに好ましい。得られるメタクリル系共重合体の耐熱性、剛性、耐熱分解性の観点、生産性(重合性)の観点、さらに、後記の隣り合う二つの(メタ)アクリル酸に由来する構造単位の分子内環化によるグルタルイミド化反応の阻害を抑制する観点、積層基材フィルムの寸法安定性の観点等から、α-メチルスチレン単位の割合が上記範囲であることが好ましい。 In the methacrylic copolymer (a) according to the present invention, the proportion of α-methylstyrene units is 1 to 48% by mass, preferably 3 to 40% by mass, and 5 to 35% by mass based on the total structural units. % is more preferable, and 7 to 30% by mass is even more preferable. The heat resistance, rigidity, heat decomposition resistance, productivity (polymerizability) of the resulting methacrylic copolymer, and the intramolecular rings of structural units derived from two adjacent (meth)acrylic acids described below. The proportion of α-methylstyrene units is preferably within the above range from the viewpoint of suppressing the inhibition of the glutarimidation reaction due to oxidation and the dimensional stability of the laminated base film.
 本発明に関わるメタクリル系共重合体(a)は、スチレン単位またはマレイン酸無水物単位の割合が、全構造単位に対して、1~48質量%であり、3~40質量%が好ましく、5~35質量%がより好ましく、7~30質量%がさらに好ましい。得られるメタクリル系共重合体の耐熱分解性、流動性、耐熱性の観点、さらに、後記の隣り合う二つの(メタ)アクリル酸に由来する構造単位の分子内環化によるグルタルイミド化反応の阻害を抑制する観点、積層基材フィルムの外観の観点等から、スチレン単位の割合が上記範囲であることが好ましい。得られるメタクリル系共重合体の耐熱分解性、流動性の観点、さらに、後記の隣り合う二つの(メタ)アクリル酸に由来する構造単位の分子内環化によるグルタルイミド化反応の阻害を抑制する観点、積層基材フィルムの外観の観点等から、マレイン酸無水物単位の割合が上記範囲であることが好ましい。本発明においては、生産性のより優れるスチレン単位を含むことが好ましい。 In the methacrylic copolymer (a) according to the present invention, the proportion of styrene units or maleic anhydride units is 1 to 48% by mass, preferably 3 to 40% by mass, based on the total structural units. It is more preferably 35% by mass, and even more preferably 7% to 30% by mass. In terms of heat decomposition resistance, fluidity, and heat resistance of the resulting methacrylic copolymer, as well as inhibition of the glutarimidization reaction due to intramolecular cyclization of structural units derived from two adjacent (meth)acrylic acids as described below. It is preferable that the proportion of styrene units is within the above range from the viewpoint of suppressing this, the appearance of the laminated base film, and the like. From the viewpoint of heat decomposition resistance and fluidity of the resulting methacrylic copolymer, and furthermore, suppressing inhibition of the glutarimidization reaction due to intramolecular cyclization of structural units derived from two adjacent (meth)acrylic acids described below. From the viewpoint of the appearance of the laminated base film, etc., it is preferable that the proportion of maleic anhydride units is within the above range. In the present invention, it is preferable to include a styrene unit which has better productivity.
 本発明に関わるメタクリル系共重合体(a)は、α-メチルスチレン単位とスチレン単位との合計割合が、全構造単位に対して、2~40質量%であることが好ましく、5~35質量%であることがより好ましく、10~30質量%であることがさらに好ましい。α -メチルスチレン単位とスチレン単位との合計割合が上記範囲にあると、後記の隣り合う二つの(メタ)アクリル酸に由来する構造単位の分子内環化によるグルタルイミド化反応を阻害し難い。また、α-メチルスチレン単位の割合が、α-メチルスチレン単位とスチレン単位との合計割合に対して、30~95質量%であることが好ましく、35~90質量%であることがより好ましく、40~85質量%であることがさらに好ましい。α-メチルスチレン単位の割合が上記範囲にあると、本発明に用いるメタクリル系共重合体は耐熱性と低吸水性のバランスが優れるため、得られるフィルムの寸法安定性が良好である。 In the methacrylic copolymer (a) according to the present invention, the total proportion of α-methylstyrene units and styrene units is preferably 2 to 40% by mass, and 5 to 35% by mass based on the total structural units. %, and even more preferably 10 to 30% by mass. When the total ratio of α -methylstyrene units and styrene units is within the above range, it is difficult to inhibit the glutarimidation reaction due to intramolecular cyclization of two adjacent structural units derived from (meth)acrylic acid, which will be described later. Further, the proportion of α-methylstyrene units is preferably 30 to 95% by mass, more preferably 35 to 90% by mass, based on the total proportion of α-methylstyrene units and styrene units, More preferably, it is 40 to 85% by mass. When the proportion of α-methylstyrene units is within the above range, the methacrylic copolymer used in the present invention has an excellent balance between heat resistance and low water absorption, and the resulting film has good dimensional stability.
 構造単位(r)は、N-置換若しくは無置換グルタルイミド単位からなる群より選ばれる環構造を主鎖に有する構造単位である。 The structural unit (r) is a structural unit having a ring structure in its main chain selected from the group consisting of N-substituted or unsubstituted glutarimide units.
 N-置換若しくは無置換グルタルイミド単位は、N-置換若しくは無置換2,6-ジオキソピペリジンジイル構造を有する単位である。N-置換若しくは無置換2,6-ジオキソピペリジンジイル構造を有する単位としては、式(I)で表される構造単位を挙げることができる。 The N-substituted or unsubstituted glutarimide unit is a unit having an N-substituted or unsubstituted 2,6-dioxopiperidinediyl structure. Examples of the unit having an N-substituted or unsubstituted 2,6-dioxopiperidinediyl structure include a structural unit represented by formula (I).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Rはそれぞれ独立に水素原子またはメチル基であり、2つのRがともにメチル基であるのが好ましい。Rは水素原子または炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または芳香環を含む炭素数6~15の有機基であり、好ましくはメチル基、n-ブチル基、シクロヘキシル基またはベンジル基であり、より好ましくはメチル基、n-ブチル基、またはシクロヘキシル基であり、最も好ましくはメチル基である。
 また、構造単位(r)は、例えば、押出機において前駆体ポリマーにイミド化剤を加えて混練、反応させるイミド環化反応等により形成することができる。好ましい実施形態において、式(I)で表される構造単位は、例えばスキーム(i)で示されるように対応する酸無水物(IIa)とRNHで表されるイミド化剤の反応により生成してもよく、式(III)の部分構造を有する共重合体の分子内環化反応により生成してもよい。分子内環化反応により式(III)で表される構造単位を式(I)で表される構造単位に変換するために加熱することが好ましい。
 スキーム(i)
In formula (I), R 1 is each independently a hydrogen atom or a methyl group, and preferably both R 1 are methyl groups. R 2 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an organic group having 6 to 15 carbon atoms containing an aromatic ring, preferably a methyl group or an n-butyl group. , cyclohexyl group or benzyl group, more preferably methyl group, n-butyl group or cyclohexyl group, most preferably methyl group.
Further, the structural unit (r) can be formed, for example, by an imide cyclization reaction in which an imidizing agent is added to a precursor polymer in an extruder, kneaded, and reacted. In a preferred embodiment, the structural unit represented by formula (I) is formed by reacting the corresponding acid anhydride (IIa) with an imidizing agent represented by R 2 NH 2 as shown in scheme (i), for example. Alternatively, it may be produced by an intramolecular cyclization reaction of a copolymer having a partial structure of formula (III). It is preferable to heat the structural unit represented by formula (III) to convert it into the structural unit represented by formula (I) by an intramolecular cyclization reaction.
Scheme (i)
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは前記に定義される通りである 。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 are as defined above.)
 N-置換若しくは無置換グルタルイミド単位は、WO2005/10838A1、特開2010-254742号公報、特開2008-273140号公報、特開2008-274187号公報などに記載の方法、具体的には、隣り合う二つのメタクリル酸メチルに由来する構造単位または無水グルタル酸単位に 、アンモニア、メチルアミン、エチルアミン、ジエチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、tert-ブチルアミン、n-ヘキシルアミン等の脂肪族炭化水素基含有アミン、アニリン、トルイジン、トリクロロアニリン、N-メチルベンジルアミン等の芳香族炭化水素基含有アミン、シクロヘキシルアミン、N-メチルシクロヘキシルアミン等などの脂環式炭化水素基含有アミン、尿素、1,3-ジメチル尿素、1,3-ジエチル尿素、1,3-ジプロピル尿素などのイミド化剤を反応させることによって得ることができる。これらの中で、1級アミンは必須であり2級アミンを併用してもよく、1級アミンとしてはメチルアミンが好ましい。このイミド化反応の際に、メタクリル酸メチル単位の一部が加水分解されてカルボキシル基になることがあり、このカルボキシル基は、エステル化剤で処理するエステル化反応で元のメタクリル酸メチル単位に戻すことが好ましい。エステル化剤としては、本願の効果を発揮できる範囲であれば特に制限はされないが、好適にはジメチルカーボネート等を使用することができる。また、エステル化剤に加えて、トリメチルアミン、トリエチルアミン、トリブチルアミン等の3級アミンを、触媒として併用することもできる。 The N-substituted or unsubstituted glutarimide unit can be prepared by the method described in WO2005/10838A1, JP2010-254742A, JP2008-273140A, JP2008-274187A, etc. Ammonia, methylamine, ethylamine, diethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, tert-butylamine, n-hexylamine are added to two matching structural units derived from methyl methacrylate or glutaric anhydride units. Amines containing aliphatic hydrocarbon groups such as aniline, toluidine, trichloroaniline, amines containing aromatic hydrocarbon groups such as N-methylbenzylamine, and alicyclic hydrocarbon groups such as cyclohexylamine, N-methylcyclohexylamine, etc. It can be obtained by reacting an imidizing agent such as amine, urea, 1,3-dimethylurea, 1,3-diethylurea, and 1,3-dipropylurea. Among these, primary amines are essential, and secondary amines may be used in combination, with methylamine being preferred as the primary amine. During this imidization reaction, a part of the methyl methacrylate unit may be hydrolyzed to become a carboxyl group, and this carboxyl group is converted to the original methyl methacrylate unit by the esterification reaction treated with an esterification agent. It is preferable to return it. The esterifying agent is not particularly limited as long as it can exhibit the effects of the present application, but dimethyl carbonate and the like can be suitably used. In addition to the esterifying agent, tertiary amines such as trimethylamine, triethylamine, and tributylamine can also be used as a catalyst.
 本発明に関わるメタクリル系共重合体(a)は、構造単位(r)の割合が、全構造単位に対して、25~70質量%であり、30~68質量%が好ましく、35~65質量%がより好ましく、40~60質量%がさらに好ましい。得られるメタクリル系共重合体の耐熱性、耐熱分解性、低吸水性、成形加工性の観点、さらに積層基材フィルムの寸法安定性、蒸着層との密着性の観点等から、構造単位(r)の割合が上記範囲であることが好ましい。 In the methacrylic copolymer (a) according to the present invention, the proportion of the structural unit (r) is 25 to 70% by mass, preferably 30 to 68% by mass, and 35 to 65% by mass based on the total structural units. % is more preferable, and 40 to 60% by mass is even more preferable. The structural unit (r ) is preferably within the above range.
 本発明に関わるメタクリル系共重合体(a)は、構造単位(r)等の他に、N-置換若しくは無置換マレイミド単位を含んでもよい。N-置換若しくは無置換マレイミド単位は、N-置換若しくは無置換2,5-ピロリジンジオン構造を有する単位である。
  N-置換若しくは無置換2,5-ピロリジンジオン構造を有する単位としては、式(VI)で表される構造単位を挙げることができる。
The methacrylic copolymer (a) according to the present invention may contain an N-substituted or unsubstituted maleimide unit in addition to the structural unit (r) and the like. The N-substituted or unsubstituted maleimide unit is a unit having an N-substituted or unsubstituted 2,5-pyrrolidinedione structure.
Examples of the unit having an N-substituted or unsubstituted 2,5-pyrrolidinedione structure include a structural unit represented by formula (VI).
Figure JPOXMLDOC01-appb-C000005
(式(VI)中、R10は、水素原子、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または芳香環を含む炭素数6~15の有機基である。)
 式(VI)で表される構造単位は、式(VI)で表される単量体を含む単量体混合物を重合する方法、マレイン酸無水物を含む単量体混合物を重合した反応生成物中のマレイン酸無水物単とRNHで表されるイミド化剤の反応等によって、メタクリル系共重合体に含有させることができる。
Figure JPOXMLDOC01-appb-C000005
(In formula (VI), R 10 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an organic group having 6 to 15 carbon atoms containing an aromatic ring.)
The structural unit represented by formula (VI) can be obtained by a method of polymerizing a monomer mixture containing a monomer represented by formula (VI), or a reaction product obtained by polymerizing a monomer mixture containing maleic anhydride. It can be incorporated into the methacrylic copolymer by a reaction between maleic anhydride contained therein and an imidizing agent represented by R 3 NH 2 .
 N-置換若しくは無置換マレイミド単位は、特公昭61-026924号公報、特公平7-042332号公報、特開平9-100322号公報、特開2001-329021号公報などに記載の方法、具体的には、マレイン酸無水物単位に、アンモニア、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、tert-ブチルアミン、n-ヘキシルアミン等の脂肪族炭化水素基含有アミン、アニリン、トルイジン、トリクロロアニリン等の芳香族炭化水素基含有アミン、シクロヘキシルアミン等などの脂環式炭化水素基含有アミン、尿素、1,3-ジメチル尿素、1,3-ジエチル尿素、1,3-ジプロピル尿素などのイミド化剤を反応させることによって得ることができる。これらの中で、メチルアミンが好ましい。 The N-substituted or unsubstituted maleimide unit can be prepared by the method described in Japanese Patent Publication No. 61-026924, Japanese Patent Publication No. 7-042332, Japanese Patent Application Publication No. 9-100322, Japanese Patent Application Publication No. 2001-329021, etc. is a maleic anhydride unit containing an aliphatic hydrocarbon group-containing amine such as ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, tert-butylamine, n-hexylamine, or aniline. , toluidine, amines containing aromatic hydrocarbon groups such as trichloroaniline, amines containing alicyclic hydrocarbon groups such as cyclohexylamine, urea, 1,3-dimethylurea, 1,3-diethylurea, 1,3-dipropyl It can be obtained by reacting with an imidizing agent such as urea. Among these, methylamine is preferred.
 本発明に関わるメタクリル系共重合体(a)は、構造単位(r)等の他に、その他のビニル系単量体単位から誘導される構造単位として、ラクトン環単位を含んでも良い。ラクトン環単位は、>CH-O-C(=O)-基を環構造に含む構造単位である。>CH-O-C(=O)-基を環構造に含む構造単位は、環構成元素の数が好ましくは、4~8個、より好ましくは5~6個、最も好ましくは6個である。>CH-O-C(=O)-基を環構造に含む構造単位としては、β-プロピオラクトンジイル構造単位、γ-ブチロラクトンジイル構造単位、δ-バレロラクトンジイル構造単位などのラクトンジイル構造単位を挙げることができる。>CH-O-C(=O)-基を環構造に含む構造単位は、例えば、ヒドロキシ基およびエステル基を有する重合体を、ヒドロキシ基およびエステル基による分子内環化によって得ることができる。なお、式中の「>C」は炭素原子Cに結合手が2つあることを意味する。 In addition to the structural unit (r), the methacrylic copolymer (a) according to the present invention may contain a lactone ring unit as a structural unit derived from other vinyl monomer units. The lactone ring unit is a structural unit containing a >CH-O-C(=O)- group in its ring structure. >The structural unit containing a CH-O-C(=O)- group in its ring structure preferably has 4 to 8 ring constituent elements, more preferably 5 to 6, and most preferably 6. . >Structural units containing a CH-O-C(=O)- group in the ring structure include lactone diyl structures such as β-propiolactone diyl structural units, γ-butyrolactone diyl structural units, and δ-valerolactone diyl structural units. Can list units. A structural unit containing a >CH-O-C(=O)- group in its ring structure can be obtained, for example, by intramolecular cyclization of a polymer having a hydroxy group and an ester group using a hydroxy group and an ester group. In addition, ">C" in the formula means that carbon atom C has two bonds.
 例えば、δ-バレロラクトンジイル構造単位としては、式(IV)で表される構造単位を挙げることができる。 For example, the δ-valerolactonediyl structural unit includes a structural unit represented by formula (IV).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(IV)中、R、RおよびRはそれぞれ独立に水素原子または炭素数1~20の有機基、好ましくは水素原子または炭素数1~10の有機基、より好ましくは水素原子または炭素数1~5の有機基である。ここで、有機基は、炭素数1~20であれば、特に限定されず、例えば、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアリール基、-OCOCH基、-CN基等が挙げられる。有機基は酸素原子などのヘテロ原子を含んでいてもよい。RおよびRはメチル基であるのが好ましく、Rは水素原子であるのが好ましい。 In formula (IV), R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group having 1 to 20 carbon atoms, preferably a hydrogen atom or an organic group having 1 to 10 carbon atoms, more preferably a hydrogen atom or It is an organic group having 1 to 5 carbon atoms. Here, the organic group is not particularly limited as long as it has 1 to 20 carbon atoms, and includes, for example, a linear or branched alkyl group, a linear or branched aryl group, -OCOCH3 group, -CN group, etc. can be mentioned. The organic group may also contain a heteroatom such as an oxygen atom. R 6 and R 7 are preferably methyl groups, and R 8 is preferably a hydrogen atom.
 ラクトン環単位は、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報などに記載の方法、例えば、2-(ヒドロキシアルキル)アクリル酸エステルに由来する構造単位と(メタ)アクリル酸メチルに由来する構造単位との分子内環化などによって、メタクリル系共重合体に含有させることができる。 The lactone ring unit can be obtained by the methods described in JP-A-2000-230016, JP-A 2001-151814, JP-A 2002-120326, JP-A 2002-254544, JP-A 2005-146084, etc. For example, it can be incorporated into a methacrylic copolymer by intramolecular cyclization of a structural unit derived from 2-(hydroxyalkyl)acrylate and a structural unit derived from methyl (meth)acrylate.
 本発明に関わるメタクリル系共重合体(I)は、構造単位(r)等の他に、その他のビニル系単量体単位から誘導される構造単位として、無水グルタル酸単位を含んでも良い。無水グルタル酸単位は、2,6-ジオキソジヒドロピランジイル構造を有する単位である。2,6-ジオキソジヒドロピランジイル構造を有する単位としては、式(V)で表される構造単位を挙げることができる。 In addition to the structural unit (r), the methacrylic copolymer (I) according to the present invention may contain a glutaric anhydride unit as a structural unit derived from other vinyl monomer units. The glutaric anhydride unit is a unit having a 2,6-dioxodihydropyrandiyl structure. Examples of the unit having a 2,6-dioxodihydropyrandiyl structure include a structural unit represented by formula (V).
Figure JPOXMLDOC01-appb-C000007
 式(V)中、Rはそれぞれ独立に水素原子または炭素数1~5のアルキル基であり、メチル基であるのが好ましい。
Figure JPOXMLDOC01-appb-C000007
In formula (V), each R 9 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a methyl group.
 2,6-ジオキソジヒドロピランジイル構造を有する単位は、特開2007-197703号公報、特開2010-96919号公報などに記載の方法、例えば、隣り合う二つの(メタ)アクリル酸に由来する構造単位の分子内環化、(メタ)アクリル酸に由来する構造単位と(メタ)アクリル酸メチルに由来する構造単位とのの分子内環化などによって、メタクリル系共重合体に含有させることができる。 A unit having a 2,6-dioxodihydropyrandiyl structure is derived from two adjacent (meth)acrylic acids by the method described in JP-A No. 2007-197703, JP-A No. 2010-96919, etc. It can be incorporated into methacrylic copolymers by intramolecular cyclization of structural units, intramolecular cyclization of structural units derived from (meth)acrylic acid and structural units derived from methyl (meth)acrylate, etc. can.
 本発明に関わるメタクリル系共重合体(a)は、メタクリル酸メチル単位と共重合可能なその他のビニル系単量体単位を含んでもよい。 前記その他のビニル系単量体単位は、メタクリル系共重合体(a)に求められる特性に応じて、適宜材料を選択することができるが、熱安定性、流動性、耐薬品性、光学性、他樹脂との相溶性等の特性が特に必要な場合は、アクリル酸エステル単量体単位、スチレンおよびα-メチルスチレンを除く芳香族ビニル単量体単位ならびにシアン化ビニル単量体単位からなる群より選ばれる少なくとも一種が好適である。 The methacrylic copolymer (a) according to the present invention may contain other vinyl monomer units copolymerizable with the methyl methacrylate unit. Materials for the other vinyl monomer units can be selected as appropriate depending on the properties required of the methacrylic copolymer (a), including thermal stability, fluidity, chemical resistance, and optical properties. , if properties such as compatibility with other resins are particularly required, it may consist of acrylic acid ester monomer units, aromatic vinyl monomer units other than styrene and α-methylstyrene, and cyanide vinyl monomer units. At least one selected from the group is preferred.
 上述の単量体単位を構成する単量体の中でも、アクリル酸メチル、アクリル酸エチル、アクリロニトリルからなる群より選ばれる少なくとも1種が、入手のしやすさの観点から、好ましい。 Among the monomers constituting the above-mentioned monomer units, at least one selected from the group consisting of methyl acrylate, ethyl acrylate, and acrylonitrile is preferred from the viewpoint of easy availability.
 メタクリル酸メチルに共重合可能なその他のビニル系単量体単位としては、例えば、下記式(A)で表されるメタクリル酸アミド単位、下記式(B)で表される2-(ヒドロキシアルキル)アクリル酸エステル単位等も挙げられる。 Other vinyl monomer units that can be copolymerized with methyl methacrylate include, for example, methacrylic acid amide units represented by the following formula (A), and 2-(hydroxyalkyl) units represented by the following formula (B). Also included are acrylic acid ester units and the like.
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または芳香環を含む炭素数6~15の有機基であり、好ましくは水素原子、メチル基、n-ブチル基、シクロヘキシル基またはベンジル基であり、より好ましくはメチル基、n-ブチル基、またはシクロヘキシル基である。RおよびRはそれぞれ独立に水素原子または炭素数1~20の有機基、好ましくは水素原子または炭素数1~10の有機基、より好ましくは水素原子または炭素数1~5の有機基である。ここで、有機基は、炭素数1~20であれば、特に限定されず、例えば、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアリール基、-OCOCH基、-CN基等が挙げられる。有機基は酸素原子などのヘテロ原子を含んでいてもよい。Rはメチル基であるのが好ましく、Rは水素原子であるのが好ましい。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 3 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an organic group having 6 to 15 carbon atoms containing an aromatic ring, preferably a hydrogen atom, A methyl group, n-butyl group, cyclohexyl group or benzyl group, more preferably a methyl group, n-butyl group or cyclohexyl group. R 4 and R 5 are each independently a hydrogen atom or a carbon number of 1 to 20 is an organic group, preferably a hydrogen atom or an organic group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an organic group having 1 to 5 carbon atoms.Here, the organic group is an organic group having 1 to 20 carbon atoms. is not particularly limited, and includes, for example, a straight-chain or branched alkyl group, a straight-chain or branched aryl group, an -OCOCH3 group, a -CN group, etc.The organic group does not contain a heteroatom such as an oxygen atom. ( R4 is preferably a methyl group, and R5 is preferably a hydrogen atom.)
 本発明に関わるメタクリル系共重合体(a)は、メタクリル酸メチル単位と共重合可能なその他のビニル系単量体単位等の割合が、全構造単位に対して、好ましくは0~20質量%、より好ましくは0~15質量%、さらに好ましくは0~10質量%である。 メタクリル酸メチル単位と共重合可能なその他のビニル系単量体単位の割合が20質量%を超えるメタクリル系共重合体は、耐熱性、剛性が低下する。なお、各単量体単位の割合は、H-NMR、13C-NMR、赤外分光法などによって測定することができる。 In the methacrylic copolymer (a) according to the present invention, the proportion of other vinyl monomer units copolymerizable with methyl methacrylate units is preferably 0 to 20% by mass based on the total structural units. , more preferably 0 to 15% by weight, even more preferably 0 to 10% by weight. A methacrylic copolymer in which the proportion of other vinyl monomer units copolymerizable with methyl methacrylate units exceeds 20% by mass has reduced heat resistance and rigidity. Note that the proportion of each monomer unit can be measured by 1 H-NMR, 13 C-NMR, infrared spectroscopy, or the like.
 本発明に関わるメタクリル系共重合体(a)は、重量平均分子量(Mw)が、好ましくは40,000~250,000、より好ましくは50,000~200,000、さらに好ましくは60,000~180,000である。Mwが40,000以上であると、本発明に関わるメタクリル系樹脂組成物(I)は耐衝撃性が優れる。Mwが250,000以下であると、本発明に関わるメタクリル系樹脂組成物(I)の流動性が向上し、成形加工性が向上する。 The methacrylic copolymer (a) according to the present invention has a weight average molecular weight (Mw) of preferably 40,000 to 250,000, more preferably 50,000 to 200,000, even more preferably 60,000 to 180,000. When Mw is 40,000 or more, the methacrylic resin composition (I) according to the present invention has excellent impact resistance. When Mw is 250,000 or less, the fluidity of the methacrylic resin composition (I) related to the present invention improves, and the moldability improves.
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィーで測定されるクロマトグラムを標準ポリスチレンの分子量に換算して算出される値である。 The weight average molecular weight (Mw) is a value calculated by converting a chromatogram measured by gel permeation chromatography into the molecular weight of standard polystyrene.
 本発明に関わるメタクリル系共重合体(a)は、ガラス転移温度が135℃以上であることが好ましく、より好ましくは140℃、さらに好ましくは145℃であり、上限として、特に制限されないが、好ましくは170℃である。
 本明細書において、「ガラス転移温度(Tg)」は、JIS K7121に準拠して測定する。具体的には、250℃まで一度昇温し、次いで室温まで冷却し、その後、室温から250℃までを10℃/分で昇温させる条件にてDSC曲線を測定する。2回目の昇温時に測定されるDSC曲線から求められる中間点を「ガラス転移温度(Tg)」として求める。
The methacrylic copolymer (a) related to the present invention preferably has a glass transition temperature of 135°C or higher, more preferably 140°C, and even more preferably 145°C, and although the upper limit is not particularly limited, it is preferable. is 170°C.
In this specification, "glass transition temperature (Tg)" is measured in accordance with JIS K7121. Specifically, the DSC curve is measured under the conditions that the temperature is raised once to 250°C, then cooled to room temperature, and then the temperature is raised from room temperature to 250°C at a rate of 10°C/min. The midpoint obtained from the DSC curve measured during the second heating is determined as the "glass transition temperature (Tg)."
 本発明に関わるメタクリル系共重合体(a)は、メルトフローレート(以下、「MFR」と称する)が、1.0~30g/10分の範囲であることが好ましい。かかるMFRの下限値は1.5g/10分以上であることがより好ましく、2.0g/10分であることがさらに好ましい。また、かかるMFRの上限値は25g/10分以下であることがより好ましく、20g/10分以下であることがさらに好ましい。MFRが1.0~30g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書におけるメタアクリル系共重合体(a)のMFRとは、JIS K7210に準拠し、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。 The methacrylic copolymer (a) according to the present invention preferably has a melt flow rate (hereinafter referred to as "MFR") in the range of 1.0 to 30 g/10 minutes. The lower limit of this MFR is more preferably 1.5 g/10 minutes or more, and even more preferably 2.0 g/10 minutes. Further, the upper limit of the MFR is more preferably 25 g/10 minutes or less, and even more preferably 20 g/10 minutes or less. When the MFR is in the range of 1.0 to 30 g/10 minutes, the stability of hot melt molding is good. The MFR of the methacrylic copolymer (a) in this specification is a value measured using a melt indexer at a temperature of 230° C. and a load of 3.8 kg in accordance with JIS K7210.
 本発明に関わるメタクリル系共重合体(a)の飽和吸水率の測定は下記の条件で行うことができる。メタクリル系共重合体をプレス成形により、厚さ1.0mmのシートに成形する。得られたプレス成形シートの中央部から、50mm×50mmの試験片を切り出し、90℃の乾燥機で、16時間以上乾燥する。乾燥後の試験片をデシケータ内で、室温まで冷却した後、0.1mgまで重量を測定し、その重量を初期重量Wとする。23℃の蒸留水に試験片を浸漬し、24時間浸漬後,試験片を水から取り出し,表面の水分を清浄で乾いた布又はフィルター紙ですべて拭き取る。水から取り出して1分以内に,再度試験片を 0.1mgまで測る。試験片を再び浸漬し,24時間後に再び上記と同じ方法で重量を測定する。試験片の重量変化率が、Wの0.02%以内になった時の重量を、飽和重量Wとする。式(1)から飽和吸水率を算出することができる。 The saturated water absorption rate of the methacrylic copolymer (a) related to the present invention can be measured under the following conditions. The methacrylic copolymer is press-molded into a sheet with a thickness of 1.0 mm. A test piece of 50 mm x 50 mm is cut out from the center of the obtained press-formed sheet and dried in a dryer at 90° C. for 16 hours or more. After cooling the dried test piece to room temperature in a desiccator, the weight is measured to the nearest 0.1 mg, and this weight is defined as the initial weight W 0 . Immerse the test piece in distilled water at 23°C. After 24 hours of immersion, remove the test piece from the water and wipe off all moisture on the surface with a clean, dry cloth or filter paper. Weigh the test piece again to the nearest 0.1 mg within 1 minute after removing it from the water. The specimen is immersed again and weighed again in the same manner as above after 24 hours. The weight when the weight change rate of the test piece is within 0.02% of W 0 is defined as the saturated weight WS . The saturated water absorption rate can be calculated from equation (1).
Figure JPOXMLDOC01-appb-M000009
 飽和吸水率は、好ましくは3.0質量%以下、より好ましくは2.7質量%以下、さらに好ましくは2.5質量%以下である。
Figure JPOXMLDOC01-appb-M000009
The saturated water absorption rate is preferably 3.0% by mass or less, more preferably 2.7% by mass or less, even more preferably 2.5% by mass or less.
[メタクリル樹脂]
 本発明に関わるメタクリル系樹脂組成物(I)はメタクリル樹脂を含んでもよい。メタクリル樹脂の含有量は1~49質量%であることが好ましく、5~40質量%であることがより好ましく、10~30質量%であることがさらに好ましい。本発明に関わるメタクリル系樹脂組成物(I)は、メタクリル樹脂を含むことで流動性が改良される。
[Methacrylic resin]
The methacrylic resin composition (I) according to the present invention may contain a methacrylic resin. The content of methacrylic resin is preferably 1 to 49% by weight, more preferably 5 to 40% by weight, and even more preferably 10 to 30% by weight. The methacrylic resin composition (I) according to the present invention has improved fluidity by containing a methacrylic resin.
 上記メタクリル樹脂は、メタクリル酸エステルに由来する構造単位を含む樹脂である。かかるメタクリル酸エステルとしては、メタクリル酸メチル(以下、「MMA」と称する)、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシルなどのメタクリル酸アルキルエステル;メタクリル酸1-メチルシクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸シクロオクチル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イルなどのメタクリル酸シクロアルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸ベンジルなどのメタクリル酸アラルキルエステル;などが挙げられ、入手性の観点から、MMA、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、およびメタクリル酸tert-ブチルが好ましく、MMAが最も好ましい。メタクリル酸エステルは1種又は2種以上を組み合わせて使用することができる。メタクリル樹脂におけるメタクリル酸エステルに由来する構造単位の含有量は90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、メタクリル酸エステルに由来する構造単位のみであってもよい。 The above-mentioned methacrylic resin is a resin containing a structural unit derived from methacrylic acid ester. Such methacrylate esters include methyl methacrylate (hereinafter referred to as "MMA"), ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, Alkyl methacrylates such as pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, cyclomethacrylate Methacrylic acid cycloalkyl esters such as heptyl, cyclooctyl methacrylate, tricyclo[5.2.1.0 2,6 ]dec-8-yl methacrylate; methacrylic acid aryl esters such as phenyl methacrylate; benzyl methacrylate, etc. From the viewpoint of availability, MMA, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert-butyl methacrylate are preferred. , MMA are most preferred. Methacrylic acid esters can be used alone or in combination of two or more. The content of structural units derived from methacrylic esters in the methacrylic resin is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, and contains only structural units derived from methacrylic esters. Good too.
 メタクリル樹脂は、三連子表示のシンジオタクティシティ(rr)の下限が、56%以上であることが好ましく、57%以上であることがより好ましく、58%以上であることがさらに好ましい。かかる構造の含有量の下限値が56%以上であることで、本発明に関わるメタクリル系樹脂組成物(I)は耐熱性に優れるものとなる。 The lower limit of the syndiotacticity (rr) of the methacrylic resin is preferably 56% or more, more preferably 57% or more, and even more preferably 58% or more. When the lower limit of the content of such a structure is 56% or more, the methacrylic resin composition (I) according to the present invention has excellent heat resistance.
ここで、三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称することがある。)は連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
 メタクリル樹脂のシンジオタクティシティ(rr)(%)は、重水素化クロロホルム中、30℃で、H-NMRスペクトルを測定し、そのスペクトルからテトラメチルシラン(TMS)を0ppmとした際の、0.6~0.95ppmの領域の面積(Y)と0.6~1.35ppmの領域の面積(Z)とを計測し、式:(Y/Z)×100にて算出することができる。
Here, syndiotacticity (rr) in triad representation (hereinafter sometimes simply referred to as "syndiotacticity (rr)") is a chain of three consecutive structural units (triad, triad). ) has two chains (diad) that are both racemo (denoted as rr). In addition, a chain of structural units (diad) in a polymer molecule having the same configuration is called meso, and the opposite is called racemo, and is expressed as m and r, respectively.
The syndiotacticity (rr) (%) of methacrylic resin is determined by measuring the 1 H-NMR spectrum in deuterated chloroform at 30°C, and based on the spectrum, when tetramethylsilane (TMS) is set to 0 ppm, The area (Y) of the 0.6 to 0.95 ppm region and the area (Z) of the 0.6 to 1.35 ppm region can be measured and calculated using the formula: (Y/Z) x 100. .
 メタクリル樹脂の重量平均分子量(以下、「Mw」と称する)は40,000~500,000が好ましく、60,000~300,000がより好ましく、80,000~200,000がさらに好ましい。かかるMwが40,000以上であることで、本発明に関わるメタクリル系樹脂組成物(I)は、力学強度に優れるものとなり、500,000以下であることで、流動性が良好となる。 The weight average molecular weight (hereinafter referred to as "Mw") of the methacrylic resin is preferably 40,000 to 500,000, more preferably 60,000 to 300,000, and even more preferably 80,000 to 200,000. When the Mw is 40,000 or more, the methacrylic resin composition (I) according to the present invention has excellent mechanical strength, and when it is 500,000 or less, it has good fluidity.
 メタクリル樹脂のガラス転移温度は、100℃以上であることが好ましく、105℃以上であることがより好ましく、110℃以上であることがさらに好ましい。かかるガラス転移温度が100℃以上であることで、本発明に関わるメタクリル系樹脂組成物(I)は、耐熱性に優れるものとなる。 The glass transition temperature of the methacrylic resin is preferably 100°C or higher, more preferably 105°C or higher, and even more preferably 110°C or higher. Since the glass transition temperature is 100° C. or higher, the methacrylic resin composition (I) according to the present invention has excellent heat resistance.
 メタクリル樹脂の23℃水中における飽和吸水率は、2.5質量%以下であることが好ましく、2.3質量%以下であることがより好ましく、2.1質量%以下であることがさらに好ましい。かかる飽和吸水率が2.5質量%以下であることで、本発明に関わるメタクリル系樹脂組成物(I)は、耐湿性に優れるものとなり、吸湿に起因する積層体の反りが抑制できる。 The saturated water absorption rate of the methacrylic resin in water at 23°C is preferably 2.5% by mass or less, more preferably 2.3% by mass or less, and even more preferably 2.1% by mass or less. When the saturated water absorption rate is 2.5% by mass or less, the methacrylic resin composition (I) according to the present invention has excellent moisture resistance, and warping of the laminate due to moisture absorption can be suppressed.
 メタクリル樹脂のMFRは1~20g/10分の範囲であることが好ましい。かかるMFRの下限値は1.2g/10分以上であることがより好ましく、1.5g/10分以上であることがさらに好ましい。また、かかるMFRの上限値は15g/10分以下であることがより好ましく、10g/10分以下であることがさらに好ましい。MFRが1~10g/20分の範囲にあると、加熱溶融成形の安定性が良好である。 The MFR of the methacrylic resin is preferably in the range of 1 to 20 g/10 minutes. The lower limit of the MFR is more preferably 1.2 g/10 minutes or more, and even more preferably 1.5 g/10 minutes or more. Further, the upper limit of the MFR is more preferably 15 g/10 minutes or less, and even more preferably 10 g/10 minutes or less. When the MFR is in the range of 1 to 10 g/20 minutes, the stability of hot melt molding is good.
[メタクリル系樹脂組成物(I)]
 本発明に関わるメタクリル系樹脂組成物(I)は、ガラス転移温度が135℃以上、好ましくは140℃、より好ましくは145℃であり、上限として、特に制限されないが、好ましくは170℃である。ガラス転移温度が135℃以上であることで、本発明の蒸着用積層基材フィルムは寸法安定性が良好である。
[Methacrylic resin composition (I)]
The methacrylic resin composition (I) according to the present invention has a glass transition temperature of 135°C or higher, preferably 140°C, more preferably 145°C, and the upper limit is not particularly limited, but is preferably 170°C. Since the glass transition temperature is 135° C. or higher, the laminated base film for vapor deposition of the present invention has good dimensional stability.
 本発明に関わるメタクリル系樹脂組成物(I)は、メルトフローレート(以下、「MFR」と称する)が、1.0~30g/10分の範囲であることが好ましい。かかるMFRの下限値は1.5g/10分以上であることがより好ましく、2.0g/10分であることがさらに好ましい。また、かかるMFRの上限値は25g/10分以下であることがより好ましく、20g/10分以下であることがさらに好ましい。MFRが1.0~30g/10分の範囲にあると、加熱溶融成形の安定性が良好である。 The methacrylic resin composition (I) according to the present invention preferably has a melt flow rate (hereinafter referred to as "MFR") in the range of 1.0 to 30 g/10 minutes. The lower limit of this MFR is more preferably 1.5 g/10 minutes or more, and even more preferably 2.0 g/10 minutes. Further, the upper limit of the MFR is more preferably 25 g/10 minutes or less, and even more preferably 20 g/10 minutes or less. When the MFR is in the range of 1.0 to 30 g/10 minutes, the stability of hot melt molding is good.
 本発明に関わるメタクリル系樹脂組成物(I)は、飽和吸水率が、好ましくは3.0質量%以下、より好ましくは2.5質量%以下、さらに好ましくは2.0質量%以下である。飽和吸水率が3.0質量%以下であることで、本発明の蒸着用積層基材フィルムは寸法安定性が良好である。 The methacrylic resin composition (I) according to the present invention has a saturated water absorption rate of preferably 3.0% by mass or less, more preferably 2.5% by mass or less, and still more preferably 2.0% by mass or less. Since the saturated water absorption is 3.0% by mass or less, the laminated base film for vapor deposition of the present invention has good dimensional stability.
 本発明に関わるメタクリル系樹脂組成物(I)は、本発明の効果を損なわない範囲で、必要に応じてフィラーを含んでいてもよい。フィラーとしては、炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、炭酸マグネシウムなどを挙げることができる。本発明の樹脂組成物に含有し得るフィラーの量は、好ましくは3質量%以下、より好ましくは1.5質量%以下である。 The methacrylic resin composition (I) according to the present invention may contain a filler as necessary to the extent that the effects of the present invention are not impaired. Examples of fillers include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate. The amount of filler that can be contained in the resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.
 本発明に関わるメタクリル系樹脂組成物(I)は、本発明の効果を損なわない範囲で、他の重合体を含んでいてもよい。他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン-無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メチルメタクリレート-スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、フェノキシ樹脂、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、シリコーン変性樹脂;シリコーンゴム;アクリル系多層共重合体エラストマー;メチルメタクリレート重合体ブロック‐アクリル酸n-ブチル重合体ブロックのジブロック共重合体、トリブロック共重合体などのアクリル系熱可塑性エラストマー;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどを挙げることができる。 本発明に関わるメタクリル系樹脂組成物(I)に含有され得る他の重合体の量は、好ましくは10質量%以下、より好ましくは5質量%以下、最も好ましくは0質量%である。 The methacrylic resin composition (I) according to the present invention may contain other polymers as long as the effects of the present invention are not impaired. Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymers, high-impact polystyrene, Styrenic resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; Methyl methacrylate-styrene copolymer; Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; Nylon 6, Nylon 66, polyamide elastomer Polyamides such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, polyurethane, phenoxy resin, modified polyphenylene ether, polyphenylene sulfide, silicone modified resin; silicone rubber; acrylic Multilayer copolymer elastomer; acrylic thermoplastic elastomer such as diblock copolymer or triblock copolymer of methyl methacrylate polymer block and n-butyl acrylate polymer block; styrene thermoplastic elastomer such as SEPS, SEBS, SIS, etc. Plastic elastomers; examples include olefin rubbers such as IR, EPR, and EPDM. The amount of other polymers that may be contained in the methacrylic resin composition (I) according to the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 0% by mass.
 本発明に関わるメタクリル系樹脂組成物(I)には、本発明の効果を損なわない範囲で、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、蛍光体などの添加剤を含有していてもよい。 The methacrylic resin composition (I) according to the present invention includes antioxidants, thermal deterioration inhibitors, ultraviolet absorbers, light stabilizers, lubricants, mold release agents, polymers, etc., to the extent that the effects of the present invention are not impaired. It may contain additives such as processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes, matting agents, and phosphors.
 これらの添加剤は、1種を単独でまたは2種以上を組み合わせて用いてもよい。また、これらの添加剤は、メタクリル系共重合体(a)を製造する際の重合反応液に添加してもよいし、製造されたメタクリル系共重合体(a)に添加してもよいし、本発明に関わるメタクリル系樹脂組成物(I)を調製する際に添加してもよい。本発明のメタクリル系樹脂組成物(I)に含有される添加剤の合計量は、成形体の外観不良を抑制する観点から、メタクリル系樹脂組成物(I)に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。 These additives may be used alone or in combination of two or more. Further, these additives may be added to the polymerization reaction solution when producing the methacrylic copolymer (a), or may be added to the produced methacrylic copolymer (a). may be added when preparing the methacrylic resin composition (I) related to the present invention. The total amount of additives contained in the methacrylic resin composition (I) of the present invention is preferably 7% by mass based on the methacrylic resin composition (I) from the viewpoint of suppressing poor appearance of the molded article. The content is more preferably 5% by mass or less, further preferably 4% by mass or less.
 本発明のメタクリル系樹脂組成物(I)の調製方法は特に限定されない。例えば、メタクリル樹脂の存在下にメタクリル酸メチル等を含む単量体混合物を重合してメタクリル系共重合体(a)を生成させる方法や、メタクリル系共重合体(a)およびメタクリル樹脂を溶融混練する方法を挙げることができる。溶融混練の際に、必要に応じて他の重合体や添加剤を混合してもよいし、メタクリル系共重合体(a)を他の重合体および添加剤と混合した後にメタクリル樹脂と混合してもよいし、メタクリル樹脂を他の重合体および添加剤と混合した後にメタクリル系共重合体(a)と混合してもよいし、その他の方法でもよい。混練は、例えば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合装置または混練装置を使用して行なうことができる。これらのうち、二軸押出機が好ましい。 The method for preparing the methacrylic resin composition (I) of the present invention is not particularly limited. For example, a method in which methacrylic copolymer (a) is produced by polymerizing a monomer mixture containing methyl methacrylate etc. in the presence of methacrylic resin, or a method in which methacrylic copolymer (a) and methacrylic resin are melt-kneaded. Here are some ways to do it. During melt-kneading, other polymers and additives may be mixed as necessary, or the methacrylic copolymer (a) may be mixed with other polymers and additives and then mixed with the methacrylic resin. Alternatively, the methacrylic resin may be mixed with other polymers and additives and then mixed with the methacrylic copolymer (a), or other methods may be used. Kneading can be carried out using a known mixing or kneading device, such as a kneader, extruder, mixing roll, Banbury mixer, or the like. Among these, a twin screw extruder is preferred.
[樹脂組成物(T)]
 本発明の蒸着用積層基材フィルムに用いる樹脂組成物(T)は、熱可塑性樹脂(b)を含有する。熱可塑性樹脂(b)は、本発明蒸着用積層基材フィルムを用いて得た金属蒸着積層フィルムの用途に応じて適宜選択すればよく、特に限定されない。例えば、メタクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ環状オレフィン樹脂、ABS樹脂、AAS樹脂等のスチレン系樹脂、ポリフッ化ビニリデン樹脂などが挙げられ、透明性や成形性の観点から、ポリカーボネート樹脂が好ましい。
[Resin composition (T)]
The resin composition (T) used in the laminated base film for vapor deposition of the present invention contains a thermoplastic resin (b). The thermoplastic resin (b) may be appropriately selected depending on the use of the metal-deposited laminated film obtained using the laminated substrate film for deposition of the present invention, and is not particularly limited. Examples include methacrylic resins, polyester resins, polycarbonate resins, polycyclic olefin resins, styrene resins such as ABS resins and AAS resins, polyvinylidene fluoride resins, and polycarbonate resins are preferred from the viewpoint of transparency and moldability.
 ポリカーボネート樹脂は、好適にはビスフェノールAなどの二価フェノールとカーボネート前駆体とを共重合して得られる。 The polycarbonate resin is preferably obtained by copolymerizing a dihydric phenol such as bisphenol A and a carbonate precursor.
 上記ポリカーボネート樹脂のMwは10,000~100,000の範囲が好ましく、20,000~70,000の範囲であることがより好ましい。かかるMwが10,000以上であることで本発明の蒸着用積層基材フィルムは耐衝撃性、耐熱性に優れ、100,000以下であることで、ポリカーボネート樹脂は成形加工性に優れ、本発明の蒸着用積層基材フィルムの生産性を高められる。 The Mw of the polycarbonate resin is preferably in the range of 10,000 to 100,000, more preferably in the range of 20,000 to 70,000. When the Mw is 10,000 or more, the laminated base film for vapor deposition of the present invention has excellent impact resistance and heat resistance, and when it is 100,000 or less, the polycarbonate resin has excellent moldability, and the present invention The productivity of laminated base film for vapor deposition can be increased.
 上記ポリカーボネート樹脂は、市販品を用いてもよく、例えば、住化ポリカーボネート社「SDポリカ(登録商標)」、三菱エンジニアリングプラスチック株式会社製「ユーピロン/ノバレックス(登録商標)」、出光興産株式会社製「タフロン(登録商標)」、帝人化成株式会社製「パンライト(登録商標)」などが好適に使用できる。 The above-mentioned polycarbonate resin may be a commercially available product, such as "SD Polycarbonate (registered trademark)" manufactured by Sumika Polycarbonate Co., Ltd., "Iupilon/Novarex (registered trademark)" manufactured by Mitsubishi Engineering Plastics Co., Ltd., or manufactured by Idemitsu Kosan Co., Ltd. "Taflon (registered trademark)", "Panlite (registered trademark)" manufactured by Teijin Kasei Ltd., etc. can be suitably used.
 上記ポリカーボネート樹脂は、本発明の効果を損なわない範囲で、他の重合体を含有していてもよい。かかる他の重合体としては、メタクリル樹脂、前記したメタクリル系樹脂組成物(I)が含有していてもよい他の重合体と同様のものを用いることができる。これら他の重合体は1種を単独で用いても、複数種を併用してもよい。
 樹脂組成物(T)におけるこれら他の重合体の含有量は15質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
The polycarbonate resin may contain other polymers as long as the effects of the present invention are not impaired. As such other polymers, the same ones as the methacrylic resin and other polymers that may be contained in the above-mentioned methacrylic resin composition (I) can be used. These other polymers may be used alone or in combination.
The content of these other polymers in the resin composition (T) is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less.
 上記樹脂組成物(T)は、必要に応じて各種添加剤を含有していてもよい。添加剤としては、前記したメタクリル系樹脂組成物(I)が含有していてもよい添加剤と同様のものを用いることができる。これら添加剤の含有量は本発明の効果を損なわない範囲で適宜設定でき、ポリカーボネートの場合、100質量部に対して、酸化防止剤の含有量は0.01~1質量部、紫外線吸収剤の含有量は0.01~3質量部、光安定剤の含有量は0.01~3質量部、滑剤の含有量は0.01~3質量部、染料・顔料の含有量は0.01~3質量部が好ましい。 The resin composition (T) may contain various additives as necessary. As the additive, the same additives as those that may be contained in the above-mentioned methacrylic resin composition (I) can be used. The content of these additives can be set as appropriate within a range that does not impair the effects of the present invention. In the case of polycarbonate, the content of antioxidant is 0.01 to 1 part by mass, and the content of ultraviolet absorber is 0.01 to 1 part by mass per 100 parts by mass. Content is 0.01 to 3 parts by mass, light stabilizer content is 0.01 to 3 parts by mass, lubricant content is 0.01 to 3 parts by mass, dye/pigment content is 0.01 to 3 parts by mass. 3 parts by mass is preferred.
 本発明に用いられる樹脂組成物(T)は、ガラス転移温度が120~160℃であることが好ましい。また、樹脂組成物(T)は、そのガラス転移温度が、メタクリル系樹脂組成物(I)のガラス転移温度と同程度であることが好ましい。具体的に、樹脂組成物(T)のガラス転移温度とメタクリル系樹脂組成物(I)のガラス転移温度との差の絶対値| ΔTg|は、好ましくは15℃以下、より好ましくは10℃以下である。|ΔTg|が15℃以下であると、蒸着用積層基材フィルムの高温高湿下での反りの発生を抑制する効果がより高くなる。 The resin composition (T) used in the present invention preferably has a glass transition temperature of 120 to 160°C. Further, the resin composition (T) preferably has a glass transition temperature comparable to that of the methacrylic resin composition (I). Specifically, the absolute value of the difference between the glass transition temperature of the resin composition (T) and the glass transition temperature of the methacrylic resin composition (I) |ΔTg| is preferably 15°C or less, more preferably 10°C or less It is. When |ΔTg| is 15° C. or less, the effect of suppressing the occurrence of warpage of the laminated base material film for vapor deposition under high temperature and high humidity becomes higher.
 本発明に用いられる樹脂組成物(T)は、80℃水中における飽和吸水率が0.1~1.0質量%であることが好ましい。また、樹脂組成物(T)は、その飽和吸水率が、メタクリル系樹脂組成物(I)の飽和吸水率と同程度であることが好ましい。具体的に、樹脂組成物(T)の飽和吸水率とメタクリル系樹脂組成物(I)の飽和吸水率との差の絶対値|Δ飽和吸水率|は、好ましくは4.5質量%以下、より好ましくは4.0質量%以下である。両樹脂の飽和吸水率差が4.5質量%以下であると、積層体の高温高湿下での反りの発生を抑制する効果がより高くなる。 The resin composition (T) used in the present invention preferably has a saturated water absorption rate of 0.1 to 1.0% by mass in water at 80°C. Further, the resin composition (T) preferably has a saturated water absorption rate comparable to that of the methacrylic resin composition (I). Specifically, the absolute value of the difference between the saturated water absorption of the resin composition (T) and the saturated water absorption of the methacrylic resin composition (I) |Δ saturated water absorption | is preferably 4.5% by mass or less, More preferably, it is 4.0% by mass or less. When the difference in saturated water absorption between the two resins is 4.5% by mass or less, the effect of suppressing the occurrence of warping of the laminate under high temperature and high humidity becomes higher.
 本発明に用いられる樹脂組成物(T)のMFRは1~30g/10分の範囲であるのが好ましく、3~20g/10分の範囲であるのがより好ましく、5~10g/10分の範囲であるのがさらに好ましい。MFRが1~30g/10分の範囲にあると、加熱溶融成形の安定性が良好である。
 なお、本明細書における樹脂組成物(T)のMFRとは、メルトインデクサーを用いて、温度300℃、1.2kg荷重下の条件で測定したものである。
The MFR of the resin composition (T) used in the present invention is preferably in the range of 1 to 30 g/10 minutes, more preferably in the range of 3 to 20 g/10 minutes, and more preferably in the range of 5 to 10 g/10 minutes. More preferably, the range is within the range. When the MFR is in the range of 1 to 30 g/10 minutes, the stability of hot melt molding is good.
Note that the MFR of the resin composition (T) in this specification is measured using a melt indexer at a temperature of 300° C. and under a load of 1.2 kg.
[蒸着用積層基材フィルム]
 本発明の蒸着用積層基材フィルムは、メタクリル系樹脂組成物(I)からなる層および樹脂組成物(T)からなる層を有する。本発明の蒸着用積層基材フィルムは、メタクリル系樹脂組成物(I)からなる層および樹脂組成物(T)からなる層をいずれも1層ずつ有してもよいし、メタクリル系樹脂組成物(I)からなる層および/または樹脂組成物(T)からなる層を、それぞれ複数有していてもよい。
[Laminated base film for vapor deposition]
The laminated substrate film for vapor deposition of the present invention has a layer made of methacrylic resin composition (I) and a layer made of resin composition (T). The laminated substrate film for vapor deposition of the present invention may have one layer each consisting of the methacrylic resin composition (I) and one layer consisting of the resin composition (T), or may have one layer each consisting of the methacrylic resin composition (I) and one layer consisting of the resin composition (T). It may each have a plurality of layers made of (I) and/or a plurality of layers made of resin composition (T).
 本発明の蒸着用積層基材フィルムは、メタクリル系樹脂組成物(I)からなる層および樹脂組成物(T)からなる層以外に、他の樹脂からなる層(他の樹脂層)を有していてもよい。かかる他の樹脂層に含まれる樹脂としては、メタクリル系樹脂組成物(I)および樹脂組成物(T)以外の各種熱可塑性樹脂;熱硬化樹脂;エネルギー線硬化樹脂;等が挙げられる。 The laminated substrate film for vapor deposition of the present invention has a layer made of another resin (another resin layer) in addition to the layer made of the methacrylic resin composition (I) and the layer made of the resin composition (T). You can leave it there. Examples of the resin contained in the other resin layer include various thermoplastic resins other than the methacrylic resin composition (I) and the resin composition (T); thermosetting resins; energy ray-curing resins; and the like.
 上記した他の樹脂層として、耐擦傷性層、帯電防止層、防汚層、摩擦低減層、防眩層、反射防止層、粘着層、衝撃強度付与層、アンカー層などが挙げられる。 Examples of the other resin layers mentioned above include a scratch-resistant layer, an antistatic layer, an antifouling layer, a friction reduction layer, an antiglare layer, an antireflection layer, an adhesive layer, an impact strength imparting layer, an anchor layer, and the like.
 これら他の樹脂層は1層であっても、複数であってもよい。またこれら他の樹脂層が複数ある場合、互いに同じ樹脂からなっていても、異なる樹脂からなっていてもよい。本発明の蒸着用積層基材フィルムにおいて、かかる他の樹脂層の配置順序には特に制限はなく
、表面であっても、内層であってもよい。
The number of these other resin layers may be one or more. Furthermore, when there are a plurality of these other resin layers, they may be made of the same resin or different resins. In the laminated substrate film for vapor deposition of the present invention, there is no particular restriction on the order in which the other resin layers are arranged, and they may be on the surface or in the inner layer.
 本発明の蒸着用積層基材フィルムの厚さは、優れた外観を維持しつつ生産性よく製造する観点から、0.03~0.5mmの範囲であることが好ましく、0.05~0.4mmであることがより好ましく、0.07~0.3mmの範囲であることがさらに好ましい。 The thickness of the laminated base film for vapor deposition of the present invention is preferably in the range of 0.03 to 0.5 mm, and preferably in the range of 0.05 to 0.5 mm, from the viewpoint of manufacturing with high productivity while maintaining an excellent appearance. It is more preferably 4 mm, and even more preferably in the range of 0.07 to 0.3 mm.
 本発明の蒸着用積層基材フィルムにおけるメタクリル系樹脂組成物(I)からなる層の厚さは0.01~0.1mmの範囲であることが好ましく、0.015~0.09mmの範囲であることがより好ましく、0.02~0.08mmの範囲であることがさらに好ましい。かかる厚さが0.01mm未満であると耐擦傷性及び耐候性が不足する場合がある。また0.1mmを超えると耐衝撃性が不足する場合がある。 The thickness of the layer made of methacrylic resin composition (I) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 0.01 to 0.1 mm, and preferably in the range of 0.015 to 0.09 mm. It is more preferably within the range of 0.02 to 0.08 mm. If the thickness is less than 0.01 mm, scratch resistance and weather resistance may be insufficient. Moreover, if it exceeds 0.1 mm, impact resistance may be insufficient.
 本発明の蒸着用積層基材フィルムにおける樹脂組成物(T)からなる層の厚さは0.02~0.4mmの範囲であることが好ましく、0.035~0.31mmの範囲であることがより好ましく、0.08~0.27mmの範囲であることがさらに好ましい。耐衝撃性及び生産性の観点から、樹脂組成物(T)からなる層の厚さが上記範囲にあることが好ましい。 The thickness of the layer made of the resin composition (T) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 0.02 to 0.4 mm, and preferably in the range of 0.035 to 0.31 mm. is more preferable, and even more preferably in the range of 0.08 to 0.27 mm. From the viewpoint of impact resistance and productivity, it is preferable that the thickness of the layer made of the resin composition (T) is within the above range.
 本発明の蒸着用積層基材フィルムにおけるメタクリル系樹脂組成物(I)からなる層の厚さは、蒸着用積層基材フィルムの厚さに対して、2~20%の範囲であることが好ましく、3~17%の範囲であることがより好ましく、4~15%の範囲であることがさらに好ましい。擦傷性、耐候性及び耐衝撃性の観点から、メタクリル系樹脂組成物(I)からなる層の厚さが上記範囲にあることが好ましい。 The thickness of the layer made of methacrylic resin composition (I) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 2 to 20% of the thickness of the laminated substrate film for vapor deposition. , more preferably in the range of 3 to 17%, and even more preferably in the range of 4 to 15%. From the viewpoints of scratch resistance, weather resistance, and impact resistance, it is preferable that the thickness of the layer made of methacrylic resin composition (I) is within the above range.
 本発明の蒸着用積層基材フィルムにおける樹脂組成物(T)からなる層の厚さは、積層体の厚さに対して、80~98%の範囲であることが好ましく、83~97%の範囲であることがより好ましく、85~96%の範囲であることがさらに好ましい。耐衝撃性及び耐候性の観点から、本発明の蒸着用積層基材フィルムの厚さに対する樹脂組成物(T)からなる層の厚さの比率が上記範囲にあることが好ましい。 The thickness of the layer made of the resin composition (T) in the laminated substrate film for vapor deposition of the present invention is preferably in the range of 80 to 98%, and 83 to 97% of the thickness of the laminate. It is more preferably within the range of 85% to 96%. From the viewpoint of impact resistance and weather resistance, it is preferable that the ratio of the thickness of the layer made of the resin composition (T) to the thickness of the laminated base material film for vapor deposition of the present invention is within the above range.
 本発明の蒸着用積層基材フィルムがメタクリル系樹脂組成物(I)からなる層および樹脂組成物(T)からなる層のみを有する場合、メタクリル系樹脂組成物(I)からなる層を(1)、樹脂組成物(T)からなる層を(2)と表記すると、本発明蒸着用積層基材フィルムの積層順序としては、(1)-(2);(1)-(2)-(1);(2)-(1)-(2);(1)-(2)-(1)-(2)-(1);などが挙げられ、耐擦傷性を高める観点から、(1)-(2);(1)-(2)-(1);(1)-(2)-(1)-(2)-(1);など、少なくとも一方の表面がメタクリル系樹脂組成物(I)からなる層となるように積層されていることが好ましい。 When the laminated substrate film for vapor deposition of the present invention has only a layer consisting of the methacrylic resin composition (I) and a layer consisting of the resin composition (T), the layer consisting of the methacrylic resin composition (I) is ), and the layer consisting of the resin composition (T) is expressed as (2), then the lamination order of the laminated base film for vapor deposition of the present invention is (1)-(2); (1)-(2)-( 1); (2)-(1)-(2); (1)-(2)-(1)-(2)-(1); )-(2); (1)-(2)-(1); (1)-(2)-(1)-(2)-(1); at least one surface is made of a methacrylic resin composition. It is preferable that the layers are laminated to form a layer consisting of (I).
 また、本発明の蒸着用積層基材フィルムが他の樹脂層を有する場合には、かかる他の樹脂層を(3)と表記した場合、本発明の積層体の積層順序としては、(1)-(2)-(3);(3)-(1)-(2);(3)-(1)-(2)-(3);(3)-(1)-(2)-(1)-(3);(1)-(2)-(3)-(2)-(1);などが挙げられる。 例えば(3)が、アンカー層である場合、かかる本発明の本発明の蒸着用積層基材フィルムの積層順序は、アンカー層を(3’)と表記すると、(3’)-(1)-(2);(3’)-(1)-(2)-(3’)、(3’)-(1)-(2)-(1)-(3’)など、少なくとも一方の表面がアンカー層となるように積層されていることが好ましい。 Furthermore, when the laminated substrate film for vapor deposition of the present invention has another resin layer, and this other resin layer is expressed as (3), the lamination order of the laminate of the present invention is (1). -(2)-(3);(3)-(1)-(2);(3)-(1)-(2)-(3);(3)-(1)-(2)-( 1)-(3); (1)-(2)-(3)-(2)-(1); and the like. For example, when (3) is an anchor layer, the lamination order of the laminated substrate film for vapor deposition of the present invention is (3') - (1) - (2); (3')-(1)-(2)-(3'), (3')-(1)-(2)-(1)-(3'), etc. Preferably, they are laminated to form an anchor layer.
 また、本発明の蒸着用積層基材フィルムが(3)に加えて、さらに(3)とは異なる他の樹脂層を有する場合には、かかる(3)とは異なる他の樹脂層を(4)と表記した場合、本発明の積層体の積層順序としては、(1)-(2)-(3)-(4);(4)-(3
 )-(1)-(2);(4)-(3)-(1)-(2)-(3);(4)-(1)-(2)-(3);(4)-(3)-(1)-(2)-(3)-(4);(4)-(3)-(1)-(2)-(1)-(3)-(4);などが挙げられる。
In addition to (3), when the laminated substrate film for vapor deposition of the present invention has another resin layer different from (3), the other resin layer different from (3) may be added to (4). ), the stacking order of the laminate of the present invention is (1)-(2)-(3)-(4); (4)-(3
)-(1)-(2);(4)-(3)-(1)-(2)-(3);(4)-(1)-(2)-(3);(4)- (3)-(1)-(2)-(3)-(4);(4)-(3)-(1)-(2)-(1)-(3)-(4); etc. Can be mentioned.
 高温高湿下における反りの発生を抑制する観点から、本発明の蒸着用積層基材フィルムは厚さ方向に対称となるような積層順序とすることが好ましく、さらに各層の厚さも対称となっていることがより好ましい。 From the viewpoint of suppressing the occurrence of warpage under high temperature and high humidity conditions, it is preferable that the laminated base film for vapor deposition of the present invention has a lamination order that is symmetrical in the thickness direction, and furthermore, the thickness of each layer is also symmetrical. It is more preferable to be present.
 本発明の蒸着用積層基材フィルムの全光線透過率は80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。全光線透過率が80%以上であることにより、本発明で得られる蒸着用積層基材フィルムは外観品位に優れる。全光線透過率はJIS  K7105に準じた方法で測定することができる。 The total light transmittance of the laminated substrate film for vapor deposition of the present invention is preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more. Since the total light transmittance is 80% or more, the laminated base film for vapor deposition obtained by the present invention has excellent appearance quality. The total light transmittance can be measured by a method according to JIS K7105.
 本発明の蒸着用積層基材フィルムは、メタクリル系樹脂組成物(I)からなる層の表面のぬれ張力が、好ましくは38mN/m以上、より好ましくは39mN/m以上、さらに好ましくは40mN/m以上である。表面のぬれ張力が少なくとも38mN/m以上であると、本発明の蒸着用積層基材フィルムと蒸着層との接着強度が向上する。表面のぬれ張力を調整するために、例えば、コロナ放電処理、オゾン吹き付け、紫外線照射、火炎処理、化学薬品処理、その他の従来公知の表面処理を施すことができる。ぬれ張力はJIS  K6768に準じた方法で測定することができる。 In the laminated substrate film for vapor deposition of the present invention, the surface wetting tension of the layer made of methacrylic resin composition (I) is preferably 38 mN/m or more, more preferably 39 mN/m or more, and even more preferably 40 mN/m. That's all. When the surface wetting tension is at least 38 mN/m or more, the adhesive strength between the laminated substrate film for vapor deposition of the present invention and the vapor deposition layer is improved. In order to adjust the wetting tension of the surface, for example, corona discharge treatment, ozone spraying, ultraviolet irradiation, flame treatment, chemical treatment, and other conventionally known surface treatments can be performed. Wetting tension can be measured by a method according to JIS K6768.
 本発明の蒸着用積層基材フィルムの製造方法に特に制限はないが、メタクリル系樹脂組成物(I)からなる層と樹脂組成物(T)からなる層との積層は、通常、多層成形によって行うことが好ましい。多層成形としては、多層押出成形、多層ブロー成形、多層プレス成形、多色射出成形、インサート射出成形等の貼合成形法などが挙げられ、生産性の観点から多層押出成形が好ましい。 Although there are no particular limitations on the method for producing the laminated substrate film for vapor deposition of the present invention, the lamination of the layer consisting of the methacrylic resin composition (I) and the layer consisting of the resin composition (T) is usually carried out by multilayer molding. It is preferable to do so. Examples of multilayer molding include bonding methods such as multilayer extrusion molding, multilayer blow molding, multilayer press molding, multicolor injection molding, and insert injection molding, and multilayer extrusion molding is preferred from the viewpoint of productivity.
 他の樹脂層をさらに積層する方法としては、メタクリル系樹脂組成物(I)からなる層およびは樹脂組成物(T)からなる層とともに前記した方法で多層成形する方法、あらかじめ作製したメタクリル系樹脂組成物(I)からなる層または樹脂組成物(T)からなる層の表面に流動性の他の樹脂を塗布して乾燥または硬化する方法、あらかじめ作製したメタクリル系樹脂組成物(I)からなる層または樹脂組成物(T)の表面に粘着層を介して貼り合わせる方法等が挙げられる。 Methods for further laminating other resin layers include a method of multi-layer molding by the method described above together with a layer made of methacrylic resin composition (I) and a layer made of resin composition (T), a method of multilayer molding using the method described above, and a method of multi-layer molding with a layer made of methacrylic resin composition (I) and a layer made of resin composition (T); A method of applying another fluid resin to the surface of a layer consisting of composition (I) or a layer consisting of resin composition (T) and drying or curing it, consisting of a pre-prepared methacrylic resin composition (I). Examples include a method of bonding the layer or the surface of the resin composition (T) via an adhesive layer.
 多層押出成形の方法は特に限定されず、熱可塑性樹脂の多層積層体の製造に用いられる公知の多層押出成形法を好ましく採用でき、より好適にはフラットなTダイと表面が鏡面仕上げされたポリシングロールを備えた装置によって成形される。
  この場合のTダイの方式としては、加熱溶融状態のメタクリル系樹脂組成物(I)および樹脂組成物(T)をTダイ流入前に積層するフィードブロック方式、樹脂組成物(I)および樹脂組成物(T)をTダイ内部で積層されるマルチマニホールド方式などを採用できる。蒸着用積層基材フィルムを構成する各層間の界面の平滑性を高める観点から、マルチマニホールド方式が好ましい。
The method of multilayer extrusion molding is not particularly limited, and a known multilayer extrusion molding method used for manufacturing a multilayer laminate of thermoplastic resin can be preferably employed, and more preferably a flat T-die and polishing with a mirror-finished surface. It is formed by a device equipped with rolls.
In this case, the T-die method includes a feed block method in which methacrylic resin composition (I) and resin composition (T) in a heated and molten state are laminated before flowing into the T-die, and It is possible to adopt a multi-manifold method in which objects (T) are stacked inside a T die. A multi-manifold method is preferable from the viewpoint of improving the smoothness of the interface between each layer constituting the laminated base material film for vapor deposition.
 また、この場合のポリシングロールとしては、金属ロールや外周部に金属製薄膜を備えた弾性ロール(以下、金属弾性ロールという場合がある。)などが挙げられる。金属ロールとしては、高剛性であれば特に限定されず、例えば、ドリルドロール、スパイラルロール等が挙げられる。金属ロールの表面状態は、特に限定されず、例えば、鏡面であってもよく、模様や凹凸等があってもよい。 金属弾性ロールは、例えば、略円柱状の回転自在に設けられた軸ロールと、この軸ロールの外周面を覆うように配置され、フィルム状物に接触する円筒形の金属製薄膜と、これら軸ロールおよび金属製薄膜の間に封入された流体とからなり、流体により金属弾性ロールは弾性を示す。軸ロールは、特に限定されず、例えば、ステンレス鋼等からなる。金属製薄膜は、例えば、ステンレス鋼などからなり、その厚みは2~5mm程度であるのが好ましい。金属製薄膜は、屈曲性や可撓性等を有しているのが好ましく、溶接継ぎ部のないシームレス構造であるのが好ましい。このような金属製薄膜を備えた金属弾性ロールは、耐久性に優れると共に、金属製薄膜を鏡面化すれば通常の鏡面ロールと同様の取り扱いができ、金属製薄膜に模様や凹凸を付与すればその形状を転写できるロールになるので、使い勝手がよい。 In addition, examples of the polishing roll in this case include a metal roll and an elastic roll having a metal thin film on the outer periphery (hereinafter sometimes referred to as metal elastic roll). The metal roll is not particularly limited as long as it has high rigidity, and examples thereof include drilled rolls, spiral rolls, and the like. The surface condition of the metal roll is not particularly limited, and may be, for example, a mirror surface, or may have a pattern, unevenness, or the like. For example, a metal elastic roll includes a substantially cylindrical rotatable shaft roll, a cylindrical metal thin film arranged to cover the outer peripheral surface of the shaft roll and in contact with a film-like object, and these shafts. It consists of a roll and a fluid sealed between a thin metal film, and the fluid causes the metal elastic roll to exhibit elasticity. The shaft roll is not particularly limited, and is made of, for example, stainless steel. The metal thin film is made of, for example, stainless steel, and preferably has a thickness of about 2 to 5 mm. The metal thin film preferably has bendability, flexibility, etc., and preferably has a seamless structure without welded joints. Elastic metal rolls with such metal thin films have excellent durability, and if the metal thin film is mirror-finished, they can be handled in the same way as ordinary mirror-finished rolls, and if the metal thin film is given a pattern or unevenness, It becomes a roll that can transfer the shape, so it is easy to use.
 メタクリル系樹脂組成物(I)および樹脂組成物(T)は、多層成形前および/又は多層成形時に、フィルターにより溶融濾過することが好ましい。溶融濾過した各樹脂組成物を用いて多層成形することにより、異物やゲルに起因する欠点の少ない積層体が得られる。使用されるフィルターの濾材に特に限定はなく、使用温度、粘度、濾過精度により適宜選択され、例えばグラスファイバー等からなる不織布;フェノール樹脂含浸セルロースフィルム;金属繊維不織布焼結フィルム;金属粉末焼結フィルム;金網;あるいはこれらを組み合わせて用いることができる。中でも耐熱性および耐久性の観点から金属繊維不織布焼結フィルムを複数枚積層して用いることが好ましい。 The methacrylic resin composition (I) and the resin composition (T) are preferably melt-filtered using a filter before and/or during multilayer molding. By performing multilayer molding using each melt-filtered resin composition, a laminate with few defects caused by foreign matter or gel can be obtained. There are no particular limitations on the filter material used, and it is selected appropriately depending on the operating temperature, viscosity, and filtration accuracy, such as nonwoven fabric made of glass fiber, etc.; phenol resin impregnated cellulose film; metal fiber nonwoven sintered film; metal powder sintered film. ; wire mesh; or a combination of these can be used. Among these, from the viewpoint of heat resistance and durability, it is preferable to use a plurality of laminated metal fiber nonwoven sintered films.
 前記フィルターの濾過精度に特に制限はないが、30μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。 There is no particular limit to the filtration accuracy of the filter, but it is preferably 30 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less.
 以下、他の樹脂組成物からなる層の1例として、アンカー層について詳細に説明する。アンカー層は、メタクリル系樹脂組成物(I)からなる層と蒸着層との密着層を向上させるために設けられる。 Hereinafter, the anchor layer will be described in detail as an example of a layer made of another resin composition. The anchor layer is provided to improve the adhesion layer between the layer made of methacrylic resin composition (I) and the vapor deposited layer.
 アンカー層は、特に限定されない。一例を挙げると、アンカー層は、メタクリル系樹脂組成物(I)からなる層との密着性がよく、かつ、蒸着層構成材料の受理性がよい原料であればよく、アクリル系樹脂、ニトロセルロース系樹脂、ポリウレタン系樹脂(ポリオール樹脂を主剤とし、イソシアネート系樹脂を硬化剤として硬化させたものを含む)、アクリルウレタン系樹脂(アクリルポリオール樹脂を主剤とし、イソシアネート系樹脂を硬化剤として硬化させたものを含む)、ポリエステル系樹脂、スチレン-マレイン酸系樹脂、塩素化PP系樹脂等である。これらの中でも、アンカー層は、得られる積層フィルム(蒸着用積層基材フィルム、蒸着積層フィルム)の密着性がより優れる点から、アクリル系樹脂を含むことが好ましい。 The anchor layer is not particularly limited. For example, the anchor layer may be any raw material that has good adhesion to the layer made of the methacrylic resin composition (I) and has good receptivity to the material constituting the vapor deposited layer, such as acrylic resin, nitrocellulose, etc. resins, polyurethane resins (including those cured with polyol resin as the main ingredient and isocyanate resin as the curing agent), acrylic urethane resins (including those cured with acrylic polyol resin as the main ingredient and isocyanate resin as the curing agent) polyester resins, styrene-maleic acid resins, chlorinated PP resins, etc. Among these, it is preferable that the anchor layer contains an acrylic resin, since the resulting laminated film (laminated base film for vapor deposition, laminated film for vapor deposition) has better adhesion.
 アクリル系樹脂は特に限定されず、前記したメタクリル樹脂の範疇に含まれるものであってもよい。アンカー層の厚みは、0.1~3μmが好ましい。アンカー層は厚みが上記範囲であることにより、積層フィルムは、メタクリル系樹脂組成物(I)からなる層と蒸着層との密着性が優れる。 The acrylic resin is not particularly limited, and may be included in the category of the methacrylic resin described above. The thickness of the anchor layer is preferably 0.1 to 3 μm. When the thickness of the anchor layer is within the above range, the laminated film has excellent adhesion between the layer made of the methacrylic resin composition (I) and the vapor deposited layer.
 アンカー層は、着色剤や金属顔料が付与されることにより、意匠性が付与されてもよい。たとえば、着色剤としてイエロー顔料が配合されることにより、フィルムは、金色の外観を表現し得る。着色剤の種類や含有量は、所望する金属調の外観に応じて適宜調整され得る。また、アンカー層は、帯電防止剤が配合されることにより、帯電防止効果などの機能が付与されてもよい。さらに、アンカー層は、イソシアネート系樹脂を有する硬化剤が混合されてもよい。イソシアネート系樹脂を有する硬化剤が混合されることにより、得られる積層フィルムは、耐熱性、耐候性、耐水性がより向上し得る。 The anchor layer may be given a design by adding a colorant or a metal pigment. For example, by incorporating a yellow pigment as a colorant, the film can exhibit a golden appearance. The type and content of the colorant can be adjusted as appropriate depending on the desired metallic appearance. Further, the anchor layer may be provided with a function such as an antistatic effect by incorporating an antistatic agent. Furthermore, the anchor layer may be mixed with a curing agent having an isocyanate resin. By mixing a curing agent containing an isocyanate-based resin, the resulting laminated film can have further improved heat resistance, weather resistance, and water resistance.
 アンカー層を形成する方法は特に限定されない。一例を挙げると、アンカー層は、ロールコーター等を用いて、適宜溶剤(たとえばメチルエチルケトン、トルエン、酢酸エチル等)に溶解したアンカー層を構成する樹脂溶液を、メタクリル系樹脂組成物(I)からなる層に塗布し、次いで80~100℃程度で30秒から1分乾燥することにより形成し得る。 The method of forming the anchor layer is not particularly limited. For example, the anchor layer is made of a methacrylic resin composition (I) using a roll coater or the like to apply a resin solution constituting the anchor layer dissolved in an appropriate solvent (for example, methyl ethyl ketone, toluene, ethyl acetate, etc.). It can be formed by applying a layer and then drying at about 80 to 100°C for 30 seconds to 1 minute.
[蒸着積層フィルム]
 本発明の蒸着積層フィルムは、樹脂組成物(T)からなる層の一方の面にメタクリル系樹脂組成物(I)からなる層が積層されてなる蒸着用積層基材フィルムに対し、メタクリル系樹脂組成物(I)からなる層;側の面に蒸着層が設けられたもの、または、樹脂組成物(T)からなる層の両方の面にメタクリル系樹脂組成物(I)からなる層が積層されてなる蒸着用積層基材フィルムに対し、いずれか一方の面に蒸着層が設けられたものである。
[Vapour-deposited laminated film]
The vapor-deposited laminated film of the present invention is a laminated base film for vapor deposition in which a layer made of a methacrylic resin composition (I) is laminated on one side of a layer made of a resin composition (T). A layer made of composition (I); a vapor-deposited layer is provided on the side surface, or a layer made of methacrylic resin composition (I) is laminated on both sides of a layer made of resin composition (T). A vapor deposition layer is provided on one side of the laminated base material film for vapor deposition.
 蒸着層は、フィルムに各機能を付与するために設けられる。係る機能としては、例えば、加飾、耐擦傷、帯電防止、防汚、摩擦低減、防曇、防眩、光反射防止、高光反射、粘着性、耐衝撃、スティッキング防止、ガスバリア、透明導電などを挙げることができる。 The vapor deposited layer is provided to impart various functions to the film. Such functions include, for example, decoration, scratch resistance, antistatic, antifouling, friction reduction, antifogging, antiglare, antireflection, high light reflection, adhesiveness, impact resistance, antisticking, gas barrier, and transparent conductivity. can be mentioned.
 蒸着層を構成する材料としては、特に限定されず、元素金属(エレメンタルメタル)、元素半金属(エレメンタルメタロイド)、無機化合物、有機化合物などを挙げることができる。無機化合物としては、Si、Al、In、Sn、Zn、Ti、Cu、Ce、Ta等の酸化物および酸化窒化物が好ましい。有機化合物としては、有機高分子化合物が好ましい。また、ポリシロキサン;ポリパラキシリレン;ポリウレタン(ジイソシアナート/グリコール)、ポリ尿素(ジイソシアナート/ジアミン)、ポリチオ尿素(ジチオイソシアナート/ジアミン)、ポリチオエーテルウレタン(ビスエチレンウレタン/ジチオール)、ポリイミン(ビスエポキシ/第一アミン)、ポリペプチドアミド(ビスアゾラクトン/ジアミン)、ポリアミド(ジオレフィン/ジアミド)などの付加重合体、アクリレートポリマーなどを用いることができる。
 これら材料から選ばれる少なくとも1つを用いた蒸着層を蒸着用積層基材フィルムの片面または両面に1層または2層以上設けることができる。
The material constituting the vapor deposition layer is not particularly limited, and examples thereof include elemental metals, elemental metalloids, inorganic compounds, and organic compounds. As the inorganic compound, oxides and oxynitrides of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta, etc. are preferable. As the organic compound, an organic polymer compound is preferable. Also, polysiloxane; polyparaxylylene; polyurethane (diisocyanate/glycol), polyurea (diisocyanate/diamine), polythiourea (dithioisocyanate/diamine), polythioether urethane (bisethylene urethane/dithiol), Addition polymers such as polyimine (bisepoxy/primary amine), polypeptide amide (bisazolactone/diamine), polyamide (diolefin/diamide), acrylate polymers, and the like can be used.
One or more vapor deposition layers using at least one selected from these materials can be provided on one or both surfaces of the laminated base film for vapor deposition.
 酸化珪素、酸化窒化珪素、酸化アルミニウムなどからなる蒸着層は、光線透過性に優れ、光学用途に適している。 Deposited layers made of silicon oxide, silicon oxynitride, aluminum oxide, etc. have excellent light transmittance and are suitable for optical applications.
 ポリシロキサンは、例えば、RF電極を用いた平行平板型のプラズマ装置にヘキサメチルジシロキサンを加熱蒸発させた蒸気を導入し、プラズマ中で重合反応させながら基材フィルム上に堆積させて製膜する。ポリシロキサンからなる蒸着層は、酸素プラズマ等で容易に親水化でき、無機蒸着層との密着性が良好であり、且つ曲げ耐性に優れる。 Polysiloxane is produced, for example, by introducing vapor obtained by heating and evaporating hexamethyldisiloxane into a parallel plate type plasma device using RF electrodes, and depositing it on a base film while causing a polymerization reaction in the plasma. . A vapor deposited layer made of polysiloxane can be easily made hydrophilic by oxygen plasma or the like, has good adhesion to an inorganic vapor deposited layer, and has excellent bending resistance.
 ポリパラキシリレンは、例えば、高真空中でジパラキシリレンを加熱蒸発させ、この蒸気を650℃~700℃に加熱してジパラキシリレンを熱分解させてラジカルを発生させる。このラジカルを基材フィルムの設置されたチャンバー内に導くと、ラジカルが基材フィルムに吸着され、同時にラジカル重合が進行して、ポリパラキシリレンの膜を形成できる。ポリパラキシリレンからなる蒸着層は、機械的強度、熱的強度、化学的強度などに優れる。 Polypara-xylylene can be produced, for example, by heating and vaporizing di-para-xylylene in a high vacuum, and heating the vapor to 650° C. to 700° C. to thermally decompose the di-para-xylylene to generate radicals. When these radicals are introduced into a chamber in which a base film is installed, the radicals are adsorbed by the base film, and at the same time, radical polymerization proceeds to form a polyparaxylylene film. A vapor deposited layer made of polyparaxylylene has excellent mechanical strength, thermal strength, chemical strength, etc.
 付加重合体は、例えば、真空中でモノマー上記を付加重合させながら基材フィルムに堆積させて製膜する。付加重合体のうち、透明性や材料コスト等の観点から、ポリ尿素が好ましい。 The addition polymer is formed into a film by, for example, adding and polymerizing the monomers above in a vacuum and depositing them on a base film. Among the addition polymers, polyurea is preferred from the viewpoint of transparency, material cost, and the like.
 光反射防止機能を付与するために、例えば、基材フィルムの屈折率よりも低い屈折率の蒸着層を基材フィルム表面に設けるか、または高い屈折率の蒸着層と低い屈折率の蒸着層をこの順で基材フィルム表面に設ける。 In order to provide an anti-reflection function, for example, a vapor deposited layer with a refractive index lower than that of the base film may be provided on the surface of the base film, or a vapor deposited layer with a high refractive index and a vapor deposited layer with a low refractive index may be provided on the surface of the base film. They are provided on the surface of the base film in this order.
 ガスバリア機能を付与するために、例えば、水分子、酸素分子などのバリア対象ガス分子が透過できないほどの緻密な蒸着層(ガスバリア性蒸着層)を基材フィルム表面に設ける。ガスバリア性蒸着層を構成する材料としては、例えば、アルミニウム、ニッケル、クロム、鉄、コバルト、亜鉛、金、銀、銅等の元素メタルやそれらの組み合わせからなるメタルアロイ;珪素、ゲルマニウム、炭素(ダイヤモンドライクカーボン、黒鉛など)等の元素メタロイド;酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化インジウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化亜鉛、酸化セリウム、酸化ハフニウム、酸化バリウム等の酸化物;窒化珪素、窒化アルミニウム、窒化ホウ素、窒化マグネシウム等の窒化物;炭化珪素等の炭化物;酸化炭化物;窒化炭化物;酸化窒化物;酸化窒化炭化物;硫化物等を挙げることができる。 In order to provide a gas barrier function, for example, a vapor deposited layer (gas barrier vapor deposited layer) so dense that barrier target gas molecules such as water molecules and oxygen molecules cannot pass through is provided on the surface of the base film. Materials constituting the gas barrier deposited layer include, for example, metal alloys consisting of elemental metals such as aluminum, nickel, chromium, iron, cobalt, zinc, gold, silver, copper, and combinations thereof; silicon, germanium, carbon (diamond), etc.; Elemental metalloids such as carbon-like carbon, graphite, etc.; oxides such as silicon oxide, aluminum oxide, magnesium oxide, indium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, zinc oxide, cerium oxide, hafnium oxide, barium oxide, etc. nitrides such as silicon nitride, aluminum nitride, boron nitride, and magnesium nitride; carbides such as silicon carbide; oxide carbides; nitride carbides; oxynitrides; oxynitride carbides; sulfides.
 透明導電機能を付与するために、例えば、スズ、ゲルマニウム、亜鉛、ガリウム、マグネシウムのうち少なくとも1種類を含む酸化インジウム膜を利用することができる。 In order to provide a transparent conductive function, for example, an indium oxide film containing at least one of tin, germanium, zinc, gallium, and magnesium can be used.
 インジウムを含む蒸着層は、得られるフィルムの成形加工性が優れ、種々の三次元形状に加工されやすいため、金属調加飾にも適している。インジウムは、酸化物、窒化物として含まれてもよい。また、インジウムの他、各種非金属、金属、金属酸化物および金属窒化物を含んでもよい。 The vapor-deposited layer containing indium has excellent moldability of the obtained film and is easily processed into various three-dimensional shapes, so it is also suitable for metallic decoration. Indium may be included as an oxide or nitride. In addition to indium, it may also contain various nonmetals, metals, metal oxides, and metal nitrides.
 なお、得られた蒸着層の分析は、例えば、光電子分光光度計、X線光電子分光装置(XPS)、二次イオン質量分析装置(SIMS)等の表面分析装置を用いて行うことができる。これらの装置はイオンエッチングによって蒸着層の厚さ方向での分析を行うことができる。 Note that the obtained vapor deposited layer can be analyzed using, for example, a surface analysis device such as a photoelectron spectrophotometer, an X-ray photoelectron spectrometer (XPS), or a secondary ion mass spectrometer (SIMS). These devices can perform analysis in the thickness direction of a deposited layer using ion etching.
 蒸着層の厚さは、付与させる機能に応じて設定することができるが、好ましくは5~2000nm、より好ましくは10~1500nm、さらに好ましくは20~1000nm、最も好ましくは30~500nmである。蒸着層の厚みが上記範囲内であることにより、蒸着層は、その機能と生産性および成形性とが両立されやすい。 The thickness of the vapor deposited layer can be set depending on the function to be imparted, but is preferably 5 to 2000 nm, more preferably 10 to 1500 nm, still more preferably 20 to 1000 nm, and most preferably 30 to 500 nm. When the thickness of the vapor-deposited layer is within the above range, the vapor-deposited layer can easily achieve both its function, productivity, and moldability.
 蒸着層は、公知の蒸着法によって形成することができる。蒸着法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法);減圧化学蒸着法、触媒化学蒸着法、プラズマ化学蒸着法等の化学蒸着法(CVD法)を挙げることができる。
 これらの中でも、生産性が高いという理由により、真空蒸着法が好ましい。蒸着条件は、所望する蒸着層の厚みに基づいて、従来公知の条件が適宜採用され得る。
The vapor deposition layer can be formed by a known vapor deposition method. Vapor deposition methods include physical vapor deposition methods (PVD methods) such as vacuum evaporation method, sputtering method, and ion plating method; chemical vapor deposition methods (CVD method) such as reduced pressure chemical vapor deposition method, catalytic chemical vapor deposition method, and plasma chemical vapor deposition method. can be mentioned.
Among these, the vacuum evaporation method is preferred because of its high productivity. As the vapor deposition conditions, conventionally known conditions may be appropriately adopted based on the desired thickness of the vapor deposited layer.
 蒸着を行う前に、本発明の目的を損なわない範囲で、基材フィルムの表面に表面処理を施してもよい。表面処理としては、例えば、低温プラズマ処理、コロナ放電処理等の放電処理法;酸処理、アルカリ処理、有機溶剤処理などの化学薬品処理法;プライマー塗料の塗布による処理法などを挙げることができる。放電処理法によってカルボニル基、カルボキシル基、水酸基などを増加させることができるようであり、化学薬品処理法によって、アミノ基、水酸基、カルボニル基などの極性基を増加させることができるようである。 Before performing vapor deposition, the surface of the base film may be subjected to surface treatment within a range that does not impair the purpose of the present invention. Examples of the surface treatment include discharge treatment methods such as low-temperature plasma treatment and corona discharge treatment; chemical treatment methods such as acid treatment, alkali treatment, and organic solvent treatment; and treatment methods by applying a primer paint. It seems that the electric discharge treatment method can increase the number of carbonyl groups, carboxyl groups, hydroxyl groups, etc., and the chemical treatment method can increase the number of polar groups such as amino groups, hydroxyl groups, carbonyl groups, etc.
 本発明の蒸着積層フィルムは、蒸着層表面に、塗布膜をさらに有してもよい。塗布膜とは、塗料組成物を塗布し、必要に応じて乾燥させ、硬化させて成る膜である。塗布膜によって、各種機能を付与することができる。係る機能としては、例えば、加飾、耐擦傷、帯電防止、防汚、摩擦低減、防曇、防眩、光反射防止、高光反射、粘着性、耐衝撃、スティッキング防止、ガスバリア、透明導電などを挙げることができる。塗料組成物の塗布の仕方に特に制限はなく、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、カーテンフローコート、スプレーコート、バーコート等の方法を用いる事ができる。 The vapor-deposited laminated film of the present invention may further have a coating film on the surface of the vapor-deposited layer. A coating film is a film formed by applying a coating composition, drying it as necessary, and curing it. Various functions can be imparted by the coating film. Such functions include, for example, decoration, scratch resistance, antistatic, antifouling, friction reduction, antifogging, antiglare, antireflection, high light reflection, adhesiveness, impact resistance, antisticking, gas barrier, and transparent conductivity. can be mentioned. There is no particular restriction on the method of applying the coating composition, and for example, methods such as roll coating, gravure coating, knife coating, dip coating, curtain flow coating, spray coating, and bar coating can be used.
 本発明の金属調シートは、本発明の蒸着積層フィルムの蒸着層側の面に、バッキング材として熱可塑性樹脂シートが積層されてなるものである。ここで、熱可塑性樹脂シートを構成する樹脂としては、特に制限はないが、例えば、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)樹脂、ポリカーボネート樹脂、メタクリル樹脂、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂などが挙げられる。また、前記熱可塑性樹脂シートの厚さとしては、特に制限はなく、いわいるフィルム領域の厚さであってもよい。具体的には、前記熱可塑性樹脂シートの厚さは、通常0.2~2mmである。 The metal-like sheet of the present invention is obtained by laminating a thermoplastic resin sheet as a backing material on the vapor-deposited layer side surface of the vapor-deposited laminated film of the present invention. Here, the resin constituting the thermoplastic resin sheet is not particularly limited, but examples include ABS (acrylonitrile-butadiene-styrene copolymer) resin, polycarbonate resin, methacrylic resin, polyvinyl chloride resin, polyurethane resin, polyester Examples include resins and polyolefin resins. Further, the thickness of the thermoplastic resin sheet is not particularly limited, and may be the thickness of the so-called film region. Specifically, the thickness of the thermoplastic resin sheet is usually 0.2 to 2 mm.
 本発明の金属調シートにおいて、蒸着層と熱可塑性樹脂シートとは接着剤層を介して積層されていることが好ましい。接着剤層が存在することにより、蒸着層と熱可塑性樹脂シートとの間に良好な密着性が得られ、金属調シートとして好適に用いることができる。
 前記接着剤層を形成する接着剤は、成形時の加熱温度に耐えうるものであり、かつ金属蒸着層や熱可塑性樹脂シートの種類に応じて良好な接着性を発揮するよう適宜選択すればよい。例えば、ポリウレタン系、ポリエステル系、ポリエチレン系、ポリアミド系、ポリ塩化ビニル系、ポリクロロプレン系、カルボキシル化ゴム系、熱可塑性スチレン-ブタジエンゴム系、アクリル系、スチレン系、セルロース系、アルキド系、ポリ酢酸ビニル系、エチレン酢酸ビニル共重合体系、ポリビニルアルコール系、エポキシ系、シリコーン系、天然ゴム、合成ゴムなどの各樹脂の1種または2種以上からなる接着剤が用いられる。なお、これら接着剤には、金属光沢の色調への影響を考慮し、色調を調整する目的で、顔料、染料、金属粉やマイカ等の添加物などを添加してもよい。
In the metallic sheet of the present invention, the vapor deposition layer and the thermoplastic resin sheet are preferably laminated with an adhesive layer interposed therebetween. The presence of the adhesive layer provides good adhesion between the vapor deposited layer and the thermoplastic resin sheet, making it suitable for use as a metallic sheet.
The adhesive forming the adhesive layer may be appropriately selected so that it can withstand the heating temperature during molding and exhibits good adhesiveness depending on the type of metal vapor deposited layer or thermoplastic resin sheet. . For example, polyurethane type, polyester type, polyethylene type, polyamide type, polyvinyl chloride type, polychloroprene type, carboxylated rubber type, thermoplastic styrene-butadiene rubber type, acrylic type, styrene type, cellulose type, alkyd type, polyacetic acid type. Adhesives made of one or more resins such as vinyl, ethylene vinyl acetate copolymer, polyvinyl alcohol, epoxy, silicone, natural rubber, and synthetic rubber are used. Note that additives such as pigments, dyes, metal powders, mica, and the like may be added to these adhesives for the purpose of adjusting the color tone, taking into consideration the influence of metallic luster on the color tone.
 前記接着剤層の厚さは、1~20μmが好ましく、2~8μmであることがより好ましい。接着剤層の厚さが、1μm未満であると、接着力が不充分となる場合があり、一方、20μmを超えると、接着剤層の乾燥に長時間を要することになるので、工程上好ましくなく、コスト的にも不利になる傾向がある。
 さらに、本発明の金属調シートにおいて、金属蒸着層と熱可塑性樹脂シートとは、ドライラミネートにより積層されていることが好ましい。具体的には、例えば、上述した接着剤を必要に応じて溶剤を用いて溶液あるいはエマルジョンの状態とし、これを、グラビアコーター、リバースコーター、ダイコーター、ナイフコーター、ロールコーター等の公知の手段により、金属蒸着層或いは熱可塑性樹脂シートに、又は両者に塗布し、適宜乾燥を施すようにすればよい。
The thickness of the adhesive layer is preferably 1 to 20 μm, more preferably 2 to 8 μm. If the thickness of the adhesive layer is less than 1 μm, the adhesive force may be insufficient. On the other hand, if it exceeds 20 μm, it will take a long time to dry the adhesive layer, which is preferable in terms of the process. It also tends to be disadvantageous in terms of cost.
Furthermore, in the metallic sheet of the present invention, the metal vapor deposited layer and the thermoplastic resin sheet are preferably laminated by dry lamination. Specifically, for example, the above-mentioned adhesive is made into a solution or emulsion state using a solvent as necessary, and this is coated by known means such as a gravure coater, reverse coater, die coater, knife coater, roll coater, etc. It may be applied to the metal vapor deposited layer, the thermoplastic resin sheet, or both, and dried as appropriate.
 本発明の金属調成形品は、本発明の蒸着積層フィルムもしくは金属調シートを、蒸着層側とは反対側の面が表側に配置されるように、成形品に貼合されたものである。ここで、蒸着積層フィルムもしくは金属調シートを貼合する成形品としては、例えば、ABS樹脂、ポリカーボネート樹脂、メタクリル樹脂、ポリ塩化ビニル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂などの熱可塑性樹脂で形成されたものが好適である。 The metal-like molded product of the present invention is obtained by laminating the vapor-deposited laminated film or metal-like sheet of the present invention onto a molded product such that the surface opposite to the vapor-deposited layer side is placed on the front side. Here, the molded product to which the vapor-deposited laminated film or metal-like sheet is laminated is, for example, made of thermoplastic resin such as ABS resin, polycarbonate resin, methacrylic resin, polyvinyl chloride resin, polyurethane resin, polyester resin, or polyolefin resin. It is preferable that the
 本発明の金属調成形品において、蒸着層と成形品とは接着剤層を介して貼合されていることが好ましい。接着剤層が存在することにより、蒸着層と成形品との間に良好な密着性が得られる。ここで、接着剤層を形成する接着剤の種類や接着剤層の厚さに関しては、本発明の金属調シートにおける接着剤層と同様であるが、通常、乾燥後の接着剤層が粘着性を有さないよう適宜選択される。 In the metal-like molded article of the present invention, it is preferable that the vapor deposition layer and the molded article are bonded together via an adhesive layer. The presence of the adhesive layer provides good adhesion between the vapor deposited layer and the molded article. Here, the type of adhesive forming the adhesive layer and the thickness of the adhesive layer are the same as the adhesive layer in the metal-like sheet of the present invention, but the adhesive layer is usually sticky after drying. It is selected as appropriate so that it does not have.
 本発明の金属調成形品を得るための方法としては、フィルム(シート)インモールド成形、ラミネートインジェクションプレス成形、フィルム(シート)インサート成形、真空圧空成形、TOM(Three dimension Overlay Method)成形、ホットスタンプ成形などがあげられる。その中でも、フィルム(シート)インサート射出成形法が有利に採用される。フィルム(シート)インサート射出成形法は、蒸着積層フィルムや金属調シートを真空成形や圧空成形などにより予備成形してから、トムソン型などでトリミングした後、射出成形金型内に挿入し、そこへ溶融樹脂を射出することにより、射出成形品を形成すると同時に、その成形品に成形フィルムや金属調シートを貼合する方法である。フィルム(シート)インサート射出成形法のさらなる詳細については、例えば、特開2005-254531号公報などに記載されているような従来公知の技術に従えばよい。 Methods for obtaining the metal-like molded product of the present invention include film (sheet) in-mold molding, laminate injection press molding, film (sheet) insert molding, vacuum-pressure molding, TOM (Three Dimension Overlay Method) molding, and hot stamping. Examples include molding. Among these, the film (sheet) insert injection molding method is advantageously employed. In the film (sheet) insert injection molding method, a vapor-deposited laminated film or metal-like sheet is preformed by vacuum forming or pressure forming, then trimmed using a Thomson mold, etc., and then inserted into an injection mold. This is a method in which an injection molded product is formed by injecting molten resin, and at the same time, a molded film or metal-like sheet is laminated to the molded product. For further details of the film (sheet) insert injection molding method, conventionally known techniques such as those described in, for example, JP-A-2005-254531 may be followed.
 本発明の蒸着積層フィルムは、例えば、自動車内外装、パソコン内外装、モバイル端末内外装、ウェアラブル端末内外装、太陽電池内外装、太陽電池バックシート、液晶用導光板、拡散板、バックシート、反射シート、偏光子保護フィルムや位相差フィルムなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライトやテールランプレンズ、インナーレンズ、計器カバー、サンルーフ、グレージング、などの車両分野、眼鏡やコンタクトレンズ、内視鏡用レンズ、道路標識、浴室設備、床材、道路透光板、ペアガラス用レンズ、採光窓やカーポート、照明用レンズや照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具、太陽の集光フィルムなどに使用可能である。また転写泊シートを使用した成形品の代替用途としても使用出来る。 The vapor-deposited laminated film of the present invention can be used, for example, in the interior and exterior of automobiles, the interior and exterior of personal computers, the interior and exterior of mobile terminals, the interior and exterior of wearable terminals, the interior and exterior of solar cells, solar cell backsheets, light guide plates for liquid crystals, diffusion plates, backsheets, reflective Films for liquid crystal displays such as sheets, polarizer protective films and retardation films, information equipment fields such as surface protection films, optical communication fields such as optical fibers, optical switches, and optical connectors, automobile headlight and tail lamp lenses, inner lenses, Vehicle fields such as instrument covers, sunroofs, glazing, eyeglasses, contact lenses, endoscope lenses, road signs, bathroom equipment, flooring, road transparent plates, lenses for double glazing, lighting windows, carports, and lighting. It can be used in the field of architecture and building materials such as lenses, lighting covers, and sizing for building materials, microwave cooking containers (tableware), housings for home appliances, toys, sunglasses, stationery, and solar light-concentrating films. It can also be used as an alternative to molded products using transfer sheets.
 他方、本発明の蒸着積層フィルムを成形した金属調成形品は、例えば、金属調成形品は、金属調看板、金属調車両用内外装部材、金属調家電、金属調アミューズメント用製品、金属調建材等である。これらの中でも、金属調成形品は、金属調車両用内外装部材として好適に用いられる。金属調車両用内外装部材は特に限定されない。一例を挙げると、金属調車両用内外装部材は、インストルメントパネルガーニッシュおよびオーナメント、オーディオパネル、オートエアコンパネル、ステアリングオーナメント、ドアトリムオーナメント、パワーウィンドウスイッチベゼル、操作系ノブ、スイッチおよびキャップもしくはカバー各種、ラジエーターグリル、ピラーガーニッシュ、バックドアオーナメント、サイドミラーカバー、アウターパネル、リアスポイラー、インサイドもしくはアウトサイドドアハンドル、サイドバイザー、ホイールカバー、二輪自動車用カウリング等である。これらの中でも、本実施形態の金属調車両用内外装部材は、ステアリングやハンドル等に適用される場合においてより好適である。 On the other hand, metal-like molded products formed from the vapor-deposited laminated film of the present invention can be used, for example, as metal-like signboards, metal-like interior and exterior parts for vehicles, metal-like home appliances, metal-like amusement products, and metal-like building materials. etc. Among these, metal-like molded products are suitably used as interior and exterior members for metal-like vehicles. The metallic interior and exterior members for vehicles are not particularly limited. For example, metal interior and exterior parts for vehicles include instrument panel garnishes and ornaments, audio panels, auto air conditioner panels, steering ornaments, door trim ornaments, power window switch bezels, operation knobs, switches, and various caps or covers. These include radiator grilles, pillar garnishes, back door ornaments, side mirror covers, outer panels, rear spoilers, inside or outside door handles, side visors, wheel covers, cowlings for motorcycles, etc. Among these, the metal interior/exterior member for a vehicle of this embodiment is more suitable when applied to a steering wheel, a handle, etc.
 以下に実施例および比較例を示して本発明をより具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
 物性等の測定は以下の方法によって実施した。
(重合転化率)
島津製作所社製ガスクロマトグラフGC-14Aに、カラムとしてGL Sciences Inc.製INERTCAP1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、下記の条件にて分析を行い、それに基づいて算出した。
  injection温度=250℃
  detector温度=250℃
  温度条件:60℃で5分間保持→10℃/分で250℃まで昇温→250℃で10分間保持
The present invention will be explained in more detail by showing Examples and Comparative Examples below. However, the present invention is not limited to these examples.
Measurements of physical properties etc. were carried out by the following methods.
(Polymerization conversion rate)
A GL Sciences Inc. gas chromatograph GC-14A manufactured by Shimadzu Corporation was used as a column. INERT CAP1 (df = 0.4 μm, 0.25 mm ID x 60 m) was connected and analyzed under the following conditions, and calculations were made based on the results.
Injection temperature = 250℃
Detector temperature = 250℃
Temperature conditions: Hold at 60°C for 5 minutes → Increase temperature to 250°C at 10°C/min → Hold at 250°C for 10 minutes
(前駆体ポリマーの各単位組成)
 13C-NMRによりα-メチルスチレン単位のフェニル基とメタクリル酸メチル単位のカルボニル基とスチレン単位のフェニル基とマレイン酸無水物単位のカルボニル基とのカーボン比を求め、これによって各単位組成を算出した。
(Each unit composition of precursor polymer)
The carbon ratio of the phenyl group of the α-methylstyrene unit, the carbonyl group of the methyl methacrylate unit, the phenyl group of the styrene unit, and the carbonyl group of the maleic anhydride unit was determined by 13C -NMR, and the composition of each unit was calculated from this. did.
(重量平均分子量)
 製造例で得られた各樹脂の重量平均分子量(Mw)は、GPC(ゲル・パーミエイション・クロマトグラフィー)法により求めた。測定対象樹脂4mgをテトラヒドロフラン5mlに溶解させて試料溶液を調整した。カラムオーブンの温度を40℃に設定し、溶離液流量0.35ml/分で、試料溶液20μlを装置内に注入して、クロマトグラムを測定した。分子量が400~5,000,000の範囲内にある標準ポリスチレン10点をGPC測定し、保持時間と分子量との関係を示す検量線を作成した。この検量線に基づいて測定対象樹脂のMwを決定した。GPCにより測定されたクロマトグラムから標準ポリスチレンの分子量に相当する値を共重合体の分子量とした。
 装置:東ソー社製GPC装置HLC-8320
 分離カラム:東ソー社製のTSKguardcolumSuperHZ-HとTSKgelHZM-MとTSKgelSuperHZ4000とを直列に連結
 溶離剤:テトラヒドロフラン
 溶離剤流量:0.35ml/分
 カラム温度:40℃
 検出方法:示差屈折率(RI)
(Weight average molecular weight)
The weight average molecular weight (Mw) of each resin obtained in the production example was determined by GPC (gel permeation chromatography). A sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 ml of tetrahydrofuran. The temperature of the column oven was set at 40° C., 20 μl of the sample solution was injected into the device at an eluent flow rate of 0.35 ml/min, and the chromatogram was measured. Ten points of standard polystyrene having a molecular weight in the range of 400 to 5,000,000 were measured by GPC, and a calibration curve showing the relationship between retention time and molecular weight was created. The Mw of the resin to be measured was determined based on this calibration curve. The value corresponding to the molecular weight of standard polystyrene from the chromatogram measured by GPC was determined as the molecular weight of the copolymer.
Equipment: Tosoh GPC equipment HLC-8320
Separation column: TSKguardcolumSuperHZ-H manufactured by Tosoh Corporation, TSKgelHZM-M, and TSKgelSuperHZ4000 are connected in series Eluent: Tetrahydrofuran Eluent flow rate: 0.35ml/min Column temperature: 40°C
Detection method: Differential refractive index (RI)
(メタクリル系共重合体中の各単位組成)
α-メチルスチレン単位とスチレン単位は前駆体ポリマーの各単位組成と同組成とした。
H-NMR(Bruker社製;商品名ULTRA SHIELD 400 PLUS)を用いて、メタクリル系共重合体のH-NMR測定を行い、メタクリル系共重合体中のイミド単位(グルタルイミドとマレイミド)、メタクリル酸メチル単位、芳香族ビニル(α-メチルスチレンとスチレン)単位などの各単量体単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各単量体単位の分子量を使用して含有量(重量%)に換算した。また、赤外分光光度計を用いて、1700cm-1付近のマレイミドのカルボニル単位に由来するピークの吸収強度と、1780cm-1付近のマレイン酸無水物のカルボニルに由来するピークの吸収強度とからマレイン酸無水物のイミド化率(R)を求めた。13C-NMRで求めた前駆体ポリマーのマレイン酸無水物量(m)とイミド化率(R)より、次式で求めた値をメタクリル共重合体中のマレイン酸無水物量(M)とした。
 マレイン酸無水物量(M)=m×(100-Rm)/100さらに、赤外分光光度計を用いて、1685cm-1付近のグルタルイミドのカルボニルに由来するピークの吸収強度と、1700cm-1付近のマレイミドのカルボニル単位に由来するピークの吸収強度とから、メタクリル系共重合体中におけるグルタルイミド単位とマレイミド単位との比率を求めた。H-NMRで求めたメタクリル系共重合体中のイミド単位量とグルタルイミド単位とマレイミド単位との比率から、メタクリル共重合体中のグルタルイミド単位とマレイミド単位の含有量を求めた。
(Each unit composition in methacrylic copolymer)
The α-methylstyrene unit and styrene unit had the same composition as each unit composition of the precursor polymer.
1 H-NMR measurement of the methacrylic copolymer was performed using 1 H-NMR (manufactured by Bruker; trade name: ULTRA SHIELD 400 PLUS), and the imide units (glutarimide and maleimide) in the methacrylic copolymer were detected. The content (mol%) of each monomer unit such as methyl methacrylate unit and aromatic vinyl (α-methylstyrene and styrene) unit is determined, and the content (mol%) is calculated by calculating the content (mol%) of each monomer unit. The molecular weight was used to convert into content (% by weight). In addition, using an infrared spectrophotometer, we determined the absorption intensity of the peak derived from the carbonyl unit of maleimide near 1700 cm -1 and the absorption intensity of the peak derived from the carbonyl unit of maleic anhydride near 1780 cm -1 . The imidization rate (R m ) of the acid anhydride was determined. From the amount of maleic anhydride (m) in the precursor polymer determined by 13C -NMR and the imidization rate (R m ), the value determined by the following formula was taken as the amount of maleic anhydride (M) in the methacrylic copolymer. .
Amount of maleic anhydride (M) = m x (100-Rm)/100 Furthermore, using an infrared spectrophotometer, the absorption intensity of the peak derived from the carbonyl of glutarimide near 1685 cm -1 and the peak absorption intensity near 1700 cm -1 The ratio of glutarimide units to maleimide units in the methacrylic copolymer was determined from the absorption intensity of the peak derived from the carbonyl unit of maleimide. The content of glutarimide units and maleimide units in the methacrylic copolymer was determined from the amount of imide units in the methacrylic copolymer determined by 1 H-NMR and the ratio of glutarimide units to maleimide units.
(全光線透過率;Tt)
 製造例で得られたメタクリル系樹脂組成物をプレス成形することで、厚さ3mmのシートを成形した。JIS K7361-1に準じて、ヘイズメータ(村上色彩研究所製;商品名HM-150)を用いて上記プレス板の全光線透過率を測定した。
(Total light transmittance; Tt)
The methacrylic resin composition obtained in the production example was press-molded to form a sheet with a thickness of 3 mm. According to JIS K7361-1, the total light transmittance of the press plate was measured using a haze meter (manufactured by Murakami Color Research Institute; trade name HM-150).
(ガラス転移温度;Tg)
 製造例で得られたメタクリル系樹脂組成物をクロロホルムに溶解し、メタノールにて再沈殿させたのち、沈殿した樹脂を100℃で12時間以上真空乾燥した。真空乾燥した樹脂をJIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC-50(品番))を用いて、250℃まで一度昇温し、次いで室温まで冷却し、その後、室温から200℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(Glass transition temperature; Tg)
The methacrylic resin composition obtained in the production example was dissolved in chloroform and reprecipitated with methanol, and the precipitated resin was vacuum-dried at 100° C. for 12 hours or more. The vacuum-dried resin was heated to 250°C in accordance with JIS K7121 using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-50 (product number)), then cooled to room temperature, and then cooled to room temperature. The DSC curve was measured under conditions of increasing the temperature from 10°C to 200°C at a rate of 10°C/min. The midpoint glass transition temperature determined from the DSC curve measured during the second temperature rise was defined as the glass transition temperature in the present invention.
(1%熱重量減少温度)
 製造例で得られたメタクリル系樹脂組成物を熱重量測定装置(島津製作所製、TGA-50)を用いて、窒素雰囲気下、10℃/minで昇温し、200℃を起点とした際において1%重量減少した時点での温度を、1%熱重量減少温度とした。
(1% thermogravimetric reduction temperature)
The methacrylic resin composition obtained in the production example was heated at a rate of 10°C/min in a nitrogen atmosphere using a thermogravimetric measuring device (manufactured by Shimadzu Corporation, TGA-50), and when the starting point was 200°C. The temperature at which the weight decreased by 1% was defined as the 1% thermoweight loss temperature.
(飽和吸水率)
 製造例で得られたメタクリル系樹脂組成物をプレス成形後に切削加工することで、厚さ3mm、一辺50mmの正方形の試験片を得た。温度80℃、5mmHgの条件下において試験片を24時間真空乾燥させた。次いで、試験片をデシケータ中で放冷した。デシケータから試験片を取り出して直ぐに質量(初期質量)を測定した。次いで該試験片を23 ℃の蒸留水に浸漬した。試験片を水から取り出し、表面に付着した水を拭き取って質量を測定した。質量変化がなくなるまで蒸留水への浸漬、質量測定を繰り返した。質量変化がなくなったときの質量(吸水質量)と、初期質量とから、下式によって飽和吸水率を算出した。
 飽和吸水率(%)=[(吸水質量-初期質量)/初期質量]×100
(saturated water absorption rate)
The methacrylic resin composition obtained in the production example was press-molded and then cut to obtain a square test piece with a thickness of 3 mm and a side of 50 mm. The test piece was vacuum-dried for 24 hours under conditions of a temperature of 80° C. and 5 mmHg. The test piece was then allowed to cool in a desiccator. The mass (initial mass) of the test piece was measured immediately after taking it out from the desiccator. The test piece was then immersed in distilled water at 23°C. The test piece was taken out of the water, the water adhering to the surface was wiped off, and the mass was measured. Immersion in distilled water and mass measurement were repeated until there was no change in mass. The saturated water absorption rate was calculated from the mass (water absorption mass) when there was no change in mass and the initial mass using the following formula.
Saturated water absorption rate (%) = [(absorbed mass - initial mass) / initial mass] x 100
(ノッチ無しシャルピー衝撃強度)
 製造例で得られたメタクリル系樹脂組成物をプレス成形後に切削加工することで、厚さ4mm、長さ80mm、幅10mmの試験片を得た。各試験片を23℃、相対湿度50%の条件において、JIS K7111-1/1eUに記載された方法に準拠した方法で測定した。10回の測定を行い、その平均値をシャルピー衝撃値として採用した。
(Charpy impact strength without notch)
A test piece with a thickness of 4 mm, a length of 80 mm, and a width of 10 mm was obtained by cutting the methacrylic resin composition obtained in the production example after press molding. Each test piece was measured under the conditions of 23° C. and 50% relative humidity according to the method described in JIS K7111-1/1eU. The measurements were performed 10 times, and the average value was adopted as the Charpy impact value.
(メルトフローレート;MFR)
 製造例で得られたメタクリル系樹脂組成物をクロロホルムに溶解し、メタノールにて再沈殿させたのち、沈殿した樹脂を100℃で12時間以上真空乾燥した。真空乾燥した樹脂をJIS  K7210に準拠して、230℃、3.8kg荷重の条件で測定した。
(Melt flow rate; MFR)
The methacrylic resin composition obtained in the production example was dissolved in chloroform and reprecipitated with methanol, and the precipitated resin was vacuum-dried at 100° C. for 12 hours or more. The vacuum-dried resin was measured in accordance with JIS K7210 at 230° C. and a load of 3.8 kg.
(ぬれ張力)
 製造例で得られたメタクリル系樹脂組成物をプレス成形することで、厚さ3mmのシートを成形した。ぬれ張力試験用混合液(和光純薬工業社製)を使用して、23℃、相対湿度50%の条件において、JIS K6768に準拠して、ぬれ張力を測定した。
(Wetting tension)
The methacrylic resin composition obtained in the production example was press-molded to form a sheet with a thickness of 3 mm. Wet tension was measured using a mixed liquid for wetting tension test (manufactured by Wako Pure Chemical Industries, Ltd.) under conditions of 23° C. and 50% relative humidity in accordance with JIS K6768.
(外観)
 実施例および比較例の蒸着用積層基材フィルムの外観を目視で観察した。透明性、流動不良による流れ模様、樹脂の熱分解による発泡の有無で外観の良否を判断した。
 ◎:透明、流れ模様、発泡なし
 ×:不透明、流れ模様、発泡あり
(exterior)
The appearance of the laminated base film for vapor deposition of Examples and Comparative Examples was visually observed. The quality of the appearance was judged based on transparency, flow pattern due to poor flow, and presence or absence of foaming due to thermal decomposition of the resin.
◎: Transparent, flowing pattern, no foaming ×: Opaque, flowing pattern, foaming
(寸法安定性)
 実施例および比較例の蒸着用積層基材フィルムを押出流れ方向に対して平行な方向が長辺、押出流れ方向に対して垂直な方向が短辺となるように長方形に切り出して、長辺200mm、短辺120mmの試験片を作製した。定盤上に、試験片の両末端部が定盤に接するように(すなわち試験片が上向きの凸状となるように)置き、隙間ゲージを用いて試験片と定盤との隙間の最大値を測定し、初期の反り量とした。
 次いで、各試験片を温度100℃に設定した熱風乾燥機内に1時間放置した後、温度85℃、相対湿度85%に設定した環境試験機の中に短辺側をクリップで止めた試験片を吊り下げ、その状態で72時間放置した後、23℃、相対湿度50%環境下で120時間、放冷・調湿した。その結果、すべての試験片は、試験片の長辺に沿って、メタクリル系樹脂組成物(I)からなる層を外側、樹脂組成物(T)からなる層を内側にして弓状の反りを生じた。定盤上に、かかる弓状の反りを生じた試験片の両末端部が定盤に接するように(すなわち試験片が上向きの凸状となるように)置き、隙間ゲージを用いて試験片と定盤との隙間の最大値を測定し、高温高湿下での反り量とした。下記の式から高温高湿下での反り変化量を算出し、その変化量から寸法安定性の良否を判断した。
 高温高湿下での反り変化量 = 高温高湿下での反り量 ― 初期の反り量
 ◎:高温高湿下での反り変化量が10mm以下
 〇:高温高湿下での反り変化量が10mmより大きいが20mm未満
 ×:高温高湿下での反り変化量が20mmより大きい
(dimensional stability)
The laminated base film for vapor deposition of Examples and Comparative Examples was cut into a rectangle with the long side parallel to the extrusion flow direction and the short side perpendicular to the extrusion flow direction, and the long side was 200 mm. A test piece with a short side of 120 mm was prepared. Place the test piece on a surface plate so that both ends of the test piece are in contact with the surface plate (that is, the test piece has an upward convex shape), and use a gap gauge to measure the maximum gap between the test piece and the surface plate. was measured and used as the initial amount of warpage.
Next, each test piece was left in a hot air dryer set at a temperature of 100°C for 1 hour, and then the test piece with its short side clipped was placed in an environmental testing machine set at a temperature of 85°C and a relative humidity of 85%. After hanging it and leaving it in that state for 72 hours, it was allowed to cool and control humidity for 120 hours in an environment of 23° C. and 50% relative humidity. As a result, all the test pieces were warped in an arch-like manner along the long sides of the test piece, with the layer made of methacrylic resin composition (I) on the outside and the layer made of resin composition (T) on the inside. occured. Place the bowed test piece on a surface plate so that both ends are in contact with the surface plate (that is, the test piece has an upward convex shape), and use a feeler gauge to connect the test piece to the surface plate. The maximum value of the gap with the surface plate was measured and used as the amount of warpage under high temperature and high humidity. The amount of change in warpage under high temperature and high humidity was calculated from the following formula, and the quality of dimensional stability was determined from the amount of change.
Amount of change in warpage under high temperature and high humidity = Amount of warpage under high temperature and high humidity - Initial amount of warpage ◎: Amount of change in warpage under high temperature and high humidity is 10 mm or less ○: Amount of change in warpage under high temperature and high humidity is 10 mm Larger but less than 20mm ×: Warpage change amount under high temperature and high humidity is greater than 20mm
(柔軟性)
 実施例および比較例の蒸着用積層基材フィルムをメタクリル系樹脂組成物(I)からなる層側から二つ折りにし、フィルムの折り目もしくは破断箇所周辺におけるクラックの有無を目視にて確認し、下記の基準で評価した。
 ◎:クラックが全く認められない
 〇:無視できる程度の微小クラックがわずかに認められる
 ×:クラックが認められる
(Flexibility)
The laminated substrate films for vapor deposition of Examples and Comparative Examples were folded in half from the layer side consisting of methacrylic resin composition (I), and the presence or absence of cracks around the folds or breakage points of the film was visually confirmed, and the following It was evaluated based on the criteria.
◎: No cracks observed at all ○: Slightly negligible microcracks observed ×: Cracks observed
(蒸着層との密着性)
 実施例および比較例の蒸着用積層基材フィルムのメタクリル系樹脂組成物(I)からなる層側に、SRC-10-D(日本真空技術社製)を使用して、4.5×10‐5Torrでアルミニウム、スズ、インジウムの3種類の金属を真空蒸着した。蒸着したアルミニウム、スズ、インジウムの膜厚は500~1500オングストロームの範囲になるように設定した。蒸着面側にカッターナイフによって1cm面積中に100個の碁盤目状の切れ込みを付け、セロテープ(登録商標)剥離テストで評価した。
 〇:蒸着層に剥離が認められない、または10マス未満の剥離が認められる
 ×:蒸着層に10マス以上の剥離が認められる
(Adhesion with vapor deposited layer)
SRC-10-D (manufactured by Nippon Shinku Gijutsu Co., Ltd.) was used on the layer side of the methacrylic resin composition (I) of the laminated base film for vapor deposition of Examples and Comparative Examples, and 4.5 × 10 - Three types of metals, aluminum, tin, and indium, were vacuum-deposited at 5 Torr. The thickness of the deposited aluminum, tin, and indium was set to be in the range of 500 to 1500 angstroms. On the vapor deposition surface side, 100 incisions were made in a 1 cm 2 area in a grid pattern using a cutter knife, and evaluation was made using a Sellotape (registered trademark) peel test.
〇: No peeling is observed in the vapor deposited layer, or peeling of less than 10 squares is observed. ×: Peeling of 10 squares or more is observed in the vapor deposited layer.
<各種材料例>
 本発明に関わるメタクリル系共重合体(a)、スチレン-無水マレイン酸共重合体、メタクリル樹脂、樹脂組成物(T)について、下記に示す材料を用いた。
メタクリル系共重合体(a-6):ポリプラ・エボニック株式会社製PLEXIMID TT50 (Mw=76,000、MMA/N-メチルグルタルイミド=30%/70%、Tg=151℃、飽和吸水率=3.8%)
メタクリル系共重合体(a-7):ポリプラ・エボニック株式会社製PLEXIGLAS hw55 Clear (Mw=141,000、MMA/スチレン/無水マレイン酸=74%/15%/9%、Tg=121℃、飽和吸水率=2.2%)
スチレン-無水マレイン酸共重合体:POLYSCOPE社製XIRAN 3500 (Mw=80,000、スチレン/無水マレイン酸=74%/26%、Tg=160℃、飽和吸水率=0.3%)
メタクリル樹脂:株式会社クラレ製パラペット HR(Mw=90,000、MMA/MA=99.3%/0.7%、Tg=117℃、飽和吸水率=2.0%)
樹脂組成物(T-1):住化ポリカーボネート社製SDポリカ 300シリーズ (Mw=50,000、Tg=150℃、飽和吸水率=0.3%)
樹脂組成物(T-2):株式会社クラレ製パラペット GR-F
<Examples of various materials>
The following materials were used for the methacrylic copolymer (a), styrene-maleic anhydride copolymer, methacrylic resin, and resin composition (T) related to the present invention.
Methacrylic copolymer (a-6): PLEXIMID TT50 manufactured by Polypla Evonik Co., Ltd. (Mw = 76,000, MMA/N-methylglutarimide = 30%/70%, Tg = 151°C, saturated water absorption rate = 3 .8%)
Methacrylic copolymer (a-7): PLEXIGLAS hw55 Clear manufactured by Polypla Evonik Co., Ltd. (Mw = 141,000, MMA/styrene/maleic anhydride = 74%/15%/9%, Tg = 121°C, saturated Water absorption rate = 2.2%)
Styrene-maleic anhydride copolymer: XIRAN 3500 manufactured by POLYSCOPE (Mw=80,000, styrene/maleic anhydride=74%/26%, Tg=160°C, saturated water absorption rate=0.3%)
Methacrylic resin: Parapet HR manufactured by Kuraray Co., Ltd. (Mw=90,000, MMA/MA=99.3%/0.7%, Tg=117°C, saturated water absorption rate=2.0%)
Resin composition (T-1): SD Polycarbonate 300 series manufactured by Sumika Polycarbonate Co., Ltd. (Mw=50,000, Tg=150°C, saturated water absorption rate=0.3%)
Resin composition (T-2): Parapet GR-F manufactured by Kuraray Co., Ltd.
(製造例:前駆体ポリマー)
 本製造例の前駆体ポリマーは(p‐1)~(p‐5)は、以下の方法で製造した。
前駆体ポリマー(p‐1)~(p‐2)
 撹拌機付オートクレーブに、精製されたメタクリル酸メチル(MMA)68.0質量部、α-メチルスチレン(αMSt)28.0質量部、スチレン(St)7.0質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)0.05質量部およびn-オクチルメルカプタン(n-OM)0.01質量部を仕込み、均一に溶解させて重合原料を得た。窒素ガスを反応原料に吹き込み、溶存酸素3ppmまで除去した。次いで、ブライン冷却凝縮器を備えた連続流通式槽型反応器内を窒素ガスで置換した。重合原料を、平均滞留時間3.0時間となるように一定流量で、前記の槽型反応器内に連続的に供給し、重合温度140℃にて塊状重合させ、槽型反応器から前駆体ポリマーを含む液を連続的に排出した。なお、槽型反応器内の圧力は、ブライン冷却凝縮器に接続された圧力調整弁によって調整した。重合転化率は表1に記載の値になった。次いで、反応器から排出された液を210℃に加温し、230℃に制御された二軸押出機に供給した。該二軸押出機において未反応単量体を主成分とする揮発分を分離除去して、前駆体ポリマーをストランドにして押し出した。該ストランドをペレタイザーでカットし、前駆体ポリマー(p-1)を得た。得られた前駆体ポリマー(p-1)の重量平均分子量Mwを測定した。その結果を表1に示す。また、精製されたメタクリル酸メチル(MMA)77.5質量部、α-メチルスチレン(αMSt)17.5質量部、スチレン(St)5.0質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)0.04質量部およびn-オクチルメルカプタン(n-OM)0.053質量部を用い、平均滞留時間を2.5時間に変更した以外、上記前駆体ポリマー(p-1)の製法と同様にして、前駆体ポリマー(p-2)を得た。前駆体ポリマー(p-2)の重合転化率及び重量平均分子量Mwも表1に示す。
(Production example: precursor polymer)
The precursor polymers (p-1) to (p-5) of this production example were produced by the following method.
Precursor polymer (p-1) to (p-2)
In an autoclave equipped with a stirrer, 68.0 parts by mass of purified methyl methacrylate (MMA), 28.0 parts by mass of α-methylstyrene (αMSt), 7.0 parts by mass of styrene (St), and 2,2'-azobis. 0.05 parts by mass of (2-methylpropionitrile) (AIBN) and 0.01 parts by mass of n-octylmercaptan (n-OM) were charged and uniformly dissolved to obtain a polymerization raw material. Nitrogen gas was blown into the reaction raw material to remove dissolved oxygen to 3 ppm. Next, the interior of the continuous flow tank reactor equipped with a brine cooling condenser was replaced with nitrogen gas. The polymerization raw material was continuously fed into the tank reactor at a constant flow rate so that the average residence time was 3.0 hours, and bulk polymerization was carried out at a polymerization temperature of 140°C, and the precursor was removed from the tank reactor. The liquid containing the polymer was continuously discharged. Note that the pressure inside the tank reactor was regulated by a pressure regulating valve connected to a brine cooling condenser. The polymerization conversion rate reached the values shown in Table 1. Next, the liquid discharged from the reactor was heated to 210°C and supplied to a twin-screw extruder controlled at 230°C. In the twin-screw extruder, volatile components mainly consisting of unreacted monomers were separated and removed, and the precursor polymer was extruded into strands. The strand was cut with a pelletizer to obtain a precursor polymer (p-1). The weight average molecular weight Mw of the obtained precursor polymer (p-1) was measured. The results are shown in Table 1. In addition, 77.5 parts by mass of purified methyl methacrylate (MMA), 17.5 parts by mass of α-methylstyrene (αMSt), 5.0 parts by mass of styrene (St), 2,2'-azobis(2-methyl The above precursor polymer (p- A precursor polymer (p-2) was obtained in the same manner as in 1). Table 1 also shows the polymerization conversion rate and weight average molecular weight Mw of the precursor polymer (p-2).
前駆体ポリマー(p‐3)
 撹拌機付オートクレーブに、精製されたメタクリル酸メチル(MMA)60.0質量部、α-メチルスチレン(αMSt)25.0質量部、無水マレイン酸(Mah)15.0質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)0.005質量部およびn-オクチルメルカプタン(n-OM)0.02質量部を仕込み、均一に溶解させて重合原料を得た。窒素ガスを反応原料に吹き込み、溶存酸素3ppmまで除去した。次いで、ブライン冷却凝縮器を備えた連続流通式槽型反応器内を窒素ガスで置換した。重合原料を、平均滞留時間2時間となるように一定流量で、前記の槽型反応器内に連続的に供給し、重合温度130℃にて塊状重合させ、槽型反応器から前駆体ポリマーを含む液を連続的に排出した。なお、槽型反応器内の圧力は、ブライン冷却凝縮器に接続された圧力調整弁によって調整した。重合転化率は表1に記載の値になった。次いで、反応器から排出された液を230℃に加温し、240℃に制御された二軸押出機に供給した。該二軸押出機において未反応単量体を主成分とする揮発分を分離除去して、前駆体ポリマーをストランドにして押し出した。該ストランドをペレタイザーでカットし、前駆体ポリマー(p-3)を得た。得られた前駆体ポリマー(p-3)の重量平均分子量Mwを測定した。
 その結果を表1に示す。
Precursor polymer (p-3)
In an autoclave with a stirrer, 60.0 parts by mass of purified methyl methacrylate (MMA), 25.0 parts by mass of α-methylstyrene (αMSt), 15.0 parts by mass of maleic anhydride (Mah), 2,2' -0.005 parts by mass of azobis(2-methylpropionitrile) (AIBN) and 0.02 parts by mass of n-octylmercaptan (n-OM) were charged and uniformly dissolved to obtain a polymerization raw material. Nitrogen gas was blown into the reaction raw material to remove dissolved oxygen to 3 ppm. Next, the interior of the continuous flow tank reactor equipped with a brine cooling condenser was replaced with nitrogen gas. The polymerization raw material was continuously fed into the tank reactor at a constant flow rate so that the average residence time was 2 hours, and bulk polymerization was carried out at a polymerization temperature of 130°C, and the precursor polymer was removed from the tank reactor. The containing liquid was continuously discharged. Note that the pressure inside the tank reactor was regulated by a pressure regulating valve connected to a brine cooling condenser. The polymerization conversion rate reached the values shown in Table 1. Next, the liquid discharged from the reactor was heated to 230°C and supplied to a twin-screw extruder controlled at 240°C. In the twin-screw extruder, volatile components mainly consisting of unreacted monomers were separated and removed, and the precursor polymer was extruded into strands. The strand was cut with a pelletizer to obtain a precursor polymer (p-3). The weight average molecular weight Mw of the obtained precursor polymer (p-3) was measured.
The results are shown in Table 1.
前駆体ポリマー(p‐4)
 撹拌機付オートクレーブに、精製されたメタクリル酸メチル(MMA)75.0質量部、α-メチルスチレン(αMSt)25.0質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(AIBN)0.004質量部およびn-オクチルメルカプタン(n-OM)0.02質量部を仕込み、均一に溶解させて重合原料を得た。窒素ガスを反応原料に吹き込み、溶存酸素3ppmまで除去した。次いで、ブライン冷却凝縮器を備えた連続流通式槽型反応器内を窒素ガスで置換した。重合原料を、平均滞留時間3時間となるように一定流量で、前記の槽型反応器内に連続的に供給し、重合温度130℃にて塊状重合させ、槽型反応器から前駆体ポリマーを含む液を連続的に排出した。なお、槽型反応器内の圧力は、ブライン冷却凝縮器に接続された圧力調整弁によって調整した。重合転化率は表1に記載の値になった。次いで、反応器から排出された液を230℃に加温し、240℃に制御された二軸押出機に供給した。該二軸押出機において未反応単量体を主成分とする揮発分を分離除去して、前駆体ポリマーをストランドにして押し出した。該ストランドをペレタイザーでカットし、前駆体ポリマー(p-4)を得た。得られた前駆体ポリマー(p-4)の重量平均分子量Mwを測定した。その結果を表1に示す。
Precursor polymer (p-4)
In an autoclave equipped with a stirrer, 75.0 parts by mass of purified methyl methacrylate (MMA), 25.0 parts by mass of α-methylstyrene (αMSt), and 2,2′-azobis(2-methylpropionitrile) (AIBN ) and 0.02 parts by mass of n-octylmercaptan (n-OM) were charged and uniformly dissolved to obtain a polymerization raw material. Nitrogen gas was blown into the reaction raw material to remove dissolved oxygen to 3 ppm. Next, the interior of the continuous flow tank reactor equipped with a brine cooling condenser was replaced with nitrogen gas. The polymerization raw material was continuously fed into the tank reactor at a constant flow rate so that the average residence time was 3 hours, and bulk polymerization was carried out at a polymerization temperature of 130°C, and the precursor polymer was removed from the tank reactor. Containing liquid was continuously discharged. Note that the pressure inside the tank reactor was regulated by a pressure regulating valve connected to a brine cooling condenser. The polymerization conversion rate reached the values shown in Table 1. Next, the liquid discharged from the reactor was heated to 230°C and supplied to a twin-screw extruder controlled at 240°C. In the twin-screw extruder, volatile components mainly consisting of unreacted monomers were separated and removed, and the precursor polymer was extruded into strands. The strand was cut with a pelletizer to obtain a precursor polymer (p-4). The weight average molecular weight Mw of the obtained precursor polymer (p-4) was measured. The results are shown in Table 1.
前駆体ポリマー(p‐5)
 特開2003-231785号公報の[実施例]の項に記載の共重合体(A)の製造方法に従って、MS樹脂(メタクリル酸メチル(MMA)とスチレン(St)との共重合体)を重合した。オートクレーブ内に仕込むMMAとStの質量比を変えて、スチレン単量体単位の含有量20質量%の前駆体ポリマー(p-5)を得た。得られた前駆体ポリマー(p-5)の重量平均分子量Mwを測定した。その結果を表1に示す。
Precursor polymer (p-5)
MS resin (copolymer of methyl methacrylate (MMA) and styrene (St)) was polymerized according to the method for producing copolymer (A) described in the [Examples] section of JP-A-2003-231785. did. By changing the mass ratio of MMA and St charged into the autoclave, a precursor polymer (p-5) containing 20% by mass of styrene monomer units was obtained. The weight average molecular weight Mw of the obtained precursor polymer (p-5) was measured. The results are shown in Table 1.
<製造例1>
 輸送部、溶融混練部、脱揮部および排出部からなり且つスクリュー回転数150rpmおよび温度210~270℃に設定された二軸押出機(日本製鋼社製;商品名TEX30 α‐77AW-3V)の輸送部に前駆体ポリマー(p-1)を15kg/hrで供給し、ニーディングブロックの設置された溶融混練部においてモノメチルアミンを表1のグルタルイミドに由来する構造単位の含有量になるように添加量を調整し二軸押出機の添加剤供給口から注入し、前駆体ポリマー(p-1)とモノメチルアミンとを反応させた。なお、溶融混練部は、殆どがニーディングディスクから構成され、その両端にシールエレメントが装着されている。脱揮部において、副生成物および過剰のモノメチルアミンを、溶融混練部を通過した溶融樹脂から揮発させ、複数のベントを通して排出した。
  二軸押出機の排出部の末端に設けられたダイスからストランドとして押し出された溶融樹脂を、水槽で冷却し、その後、ペレタイザーでカットしてペレット状のメタクリル系共重合体(a-1)を得た。メタクリル系共重合体(a-1)中のグルタルイミドに由来する構造単位の含有量は53wt%であった。メタクリル系共重合体(a-1)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 1>
A twin-screw extruder (manufactured by Nippon Steel Corporation; trade name: TEX30 α-77AW-3V) consisting of a transport section, a melt-kneading section, a devolatilizing section, and a discharge section, and set at a screw rotation speed of 150 rpm and a temperature of 210 to 270°C. The precursor polymer (p-1) was supplied to the transport section at a rate of 15 kg/hr, and in the melt-kneading section equipped with a kneading block, monomethylamine was mixed so as to have the content of structural units derived from glutarimide shown in Table 1. The amount added was adjusted and injected from the additive supply port of the twin-screw extruder to cause the precursor polymer (p-1) and monomethylamine to react. The melt-kneading section is mostly composed of kneading disks, and seal elements are attached to both ends of the kneading disks. In the devolatilization section, by-products and excess monomethylamine were volatilized from the molten resin that had passed through the melt-kneading section and discharged through a plurality of vents.
The molten resin extruded as a strand from the die installed at the end of the discharge section of the twin-screw extruder is cooled in a water tank, and then cut with a pelletizer to obtain pellet-shaped methacrylic copolymer (a-1). Obtained. The content of structural units derived from glutarimide in the methacrylic copolymer (a-1) was 53 wt%. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-1).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<製造例2>
 モノメチルアミンの添加量をグルタルイミドに由来する構造単位の含有量が70wt%になるように変更したこと以外は、実施例1と同じ方法で、メタクリル系共重合体(a-2)を得た。メタクリル系共重合体(a-2)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 2>
A methacrylic copolymer (a-2) was obtained in the same manner as in Example 1, except that the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 70 wt%. . Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-2).
<製造例3>
 前駆体ポリマー(p-2)を使用し、モノメチルアミンの添加量をグルタルイミドに由来する構造単位の含有量が38wt%になるように変更したこと以外は、実施例1と同じ方法で、メタクリル系共重合体(a-3)を得た。メタクリル系共重合体(a-3)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 3>
Methacryl was added in the same manner as in Example 1, except that the precursor polymer (p-2) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 38 wt%. A copolymer (a-3) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-3).
<製造例4>
 前駆体ポリマー(p-3)を使用し、モノメチルアミンの添加量をグルタルイミドに由来する構造単位の含有量が25wt%、マレイミドに由来する構造単位の含有量が15wt%になるように変更したこと以外は、実施例1と同じ方法で、メタクリル系共重合体(a-4)を得た。メタクリル系共重合体(a-4)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 4>
Using the precursor polymer (p-3), the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 25 wt% and the content of structural units derived from maleimide was 15 wt%. A methacrylic copolymer (a-4) was obtained in the same manner as in Example 1 except for the above. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-4).
<製造例5>
 前駆体ポリマー(p-2)を使用し、モノメチルアミンの添加量をグルタルイミドに由来する構造単位の含有量が15wt%になるように変更したこと以外は、実施例1と同じ方法で、メタクリル系共重合体(a-5)を得た。メタクリル系共重合体(a-5)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 5>
Methacryl was added in the same manner as in Example 1, except that the precursor polymer (p-2) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 15 wt%. A copolymer (a-5) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-5).
<製造例6>
 前駆体ポリマー(p-4)を使用し、モノメチルアミンの添加量をグルタルイミドに由来する構造単位の含有量が30wt%になるように変更したこと以外は、実施例1と同じ方法で、メタクリル系共重合体(a-8)を得た。メタクリル系共重合体(a-8)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 6>
Methacryl was added in the same manner as in Example 1, except that the precursor polymer (p-4) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 30 wt%. A copolymer (a-8) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-8).
<製造例7>
 前駆体ポリマー(p-5)を使用し、モノメチルアミンの添加量をグルタルイミドに由来する構造単位の含有量が48wt%になるように変更したこと以外は、実施例1と同じ方法で、メタクリル系共重合体(a-9)を得た。メタクリル系共重合体(a-9)の組成と重量平均分子量Mwを表1に示す。
<Manufacture example 7>
Methacryl was prepared in the same manner as in Example 1, except that the precursor polymer (p-5) was used and the amount of monomethylamine added was changed so that the content of structural units derived from glutarimide was 48 wt%. A copolymer (a-9) was obtained. Table 1 shows the composition and weight average molecular weight Mw of the methacrylic copolymer (a-9).
<製造例8>
 メタクリル系共重合体(a‐1)を軸径20mmの二軸押出機で250℃にて溶融混練し、押出して、メタクリル系樹脂組成物(I-1)を得た。評価結果を表2に示す。
<Manufacture example 8>
The methacrylic copolymer (a-1) was melt-kneaded at 250°C using a twin-screw extruder with a shaft diameter of 20 mm and extruded to obtain a methacrylic resin composition (I-1). The evaluation results are shown in Table 2.
<製造例9~19>
  表2に記載した処方以外は製造例6と同じ方法で、メタクリル系樹脂組成物(I-2)~(I-12)を得た。評価結果を表2に示す。
<Production Examples 9 to 19>
Methacrylic resin compositions (I-2) to (I-12) were obtained in the same manner as in Production Example 6 except for the formulations listed in Table 2. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例1>
 樹脂組成物(T)からなる層用とメタクリル系樹脂組成物(I)からなる層用の2種類の樹脂をそれぞれ、別の25mmΦベント式単軸押出機(G.M.ENGINEERJNG社製;VGM25-28EX)のホッパーに投入し、溶融混練した後、これらの樹脂組成物をジャンクションブロックに導入し、マルチマニホールドダイを用いて押出温度25
 0℃で共押出した。各樹脂組成物の吐出量を調整することで、各層の厚みを調整した。次いで、溶融状態の共押出された樹脂組成物を、互いに隣接する第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛け、第2冷却ロールと第3冷却ロールとの間に挟み込み、第3冷却ロールに巻き掛けることにより冷却した。冷却後に得られた熱可塑性樹脂層を一対の引取りロールによって引き取った。なお、第3冷却ロールにメタクリル系樹脂組成物(I)からなる層が接するようにした。このようにして、2層構造の蒸着用積層基材フィルムを製造した。かかる蒸着用積層基材フィルムの評価結果を表3に示す。
<Example 1>
Two types of resins, one for the layer consisting of the resin composition (T) and the other for the layer consisting of the methacrylic resin composition (I), were processed using separate 25 mmΦ vented single screw extruders (manufactured by GM ENGINEER JNG; VGM25). -28EX) and melted and kneaded, these resin compositions were introduced into a junction block and extruded using a multi-manifold die at an extrusion temperature of 25.
Coextrusion was carried out at 0°C. The thickness of each layer was adjusted by adjusting the discharge amount of each resin composition. Next, the coextruded resin composition in a molten state is sandwiched between a first cooling roll and a second cooling roll that are adjacent to each other, and wound around the second cooling roll. It was cooled by sandwiching it between them and winding it around a third cooling roll. The thermoplastic resin layer obtained after cooling was taken off by a pair of take-off rolls. Note that the layer made of methacrylic resin composition (I) was brought into contact with the third cooling roll. In this way, a two-layer laminated base film for vapor deposition was produced. Table 3 shows the evaluation results of the laminated base material film for vapor deposition.
<実施例2~6、比較例1~7>
 表3に記載した樹脂組成物(T)およびメタクリル系樹脂組成物(I)を用いた以外は、実施例1と同じ方法で、実施例2~6および比較例1~7に記載の蒸着用積層基材フィルムを製造した。かかる蒸着用積層基材フィルムの評価結果を表3に示す。
<Examples 2 to 6, Comparative Examples 1 to 7>
The deposition method described in Examples 2 to 6 and Comparative Examples 1 to 7 was performed in the same manner as in Example 1, except that the resin composition (T) and methacrylic resin composition (I) listed in Table 3 were used. A laminated base film was manufactured. Table 3 shows the evaluation results of the laminated base material film for vapor deposition.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表3が示すように、実施例1~6で得られた積層フィルムは、全光線透過率、シャルピー衝撃強度が高く、流動性に優れ、耐熱低吸水性のメタクリル系樹脂組成物(I-1)~(I-5)を用いることで、外観品位、寸法安定性、柔軟性に優れる。さらに、該樹脂組成物は、濡れ張力が高いことから、本発明の積層フィルムは蒸着層との密着性に優れるものとなる。以上から、実施例1~6の積層フィルムは蒸着用基材として好適である。
 これに対して、耐熱性や低吸水性が十分ではないメタクリル系樹脂組成物(I-6)、(I-8)、(I-9)、(I-12)を用いた積層フィルム(比較例1,3,4,7)は寸法安定性が悪化する。また、全光線透過率や流動性や耐熱分解性が低いメタクリル系樹脂組成物(I-7)、(I-8)、(I-11)を用いた積層フィルム(比較例2,3,6)、外観不良を生じやすい。さらに、濡れ張力が低いメタクリル系樹脂組成物(I-6)を用いた積層フィルム(比較例1)やシャルピー衝撃強度が低い樹脂組成物(I-10)を用いた積層体(比較例5)は、蒸着層との密着性や柔軟性が低下する。 
As shown in Table 3, the laminated films obtained in Examples 1 to 6 had high total light transmittance, high Charpy impact strength, excellent fluidity, and a heat-resistant and low water absorption methacrylic resin composition (I-1 ) to (I-5) provides excellent appearance quality, dimensional stability, and flexibility. Furthermore, since the resin composition has high wet tension, the laminated film of the present invention has excellent adhesion to the vapor deposited layer. From the above, the laminated films of Examples 1 to 6 are suitable as substrates for vapor deposition.
In contrast, laminated films using methacrylic resin compositions (I-6), (I-8), (I-9), and (I-12) that do not have sufficient heat resistance or low water absorption (comparison Examples 1, 3, 4, and 7) have poor dimensional stability. In addition, laminated films (Comparative Examples 2, 3, 6 ), which tends to cause poor appearance. Furthermore, a laminate film using a methacrylic resin composition (I-6) with low wet tension (Comparative Example 1) and a laminate using a resin composition (I-10) with low Charpy impact strength (Comparative Example 5) In this case, the adhesion and flexibility with the vapor deposited layer are reduced.

Claims (15)

  1.  メタクリル酸メチル単位5~73質量%と、下記式(1)で表される構造単位(r)25~70質量%と、α-メチルスチレン単位1~48質量%と、スチレン単位及びマレイン酸無水物単位からなる群より選択される少なくとも一種1~48質量%と、無置換またはN-置換マレイミド単位0~20質量%とを有するメタクリル系共重合体(a)を含有し、且つガラス転移温度が135℃以上である、メタクリル系樹脂組成物(I)からなる層;と、熱可塑性樹脂(b)を含有する樹脂組成物(T)からなる層;と、を備える蒸着用積層基材フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは、それぞれ独立に、水素原子またはメチル基であり、Rは、水素原子、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または芳香環を含む炭素数6~15の有機基である。)
    5 to 73% by mass of methyl methacrylate units, 25 to 70% by mass of structural units (r) represented by the following formula (1), 1 to 48% by mass of α-methylstyrene units, styrene units and maleic anhydride. methacrylic copolymer (a) having 1 to 48% by mass of at least one selected from the group consisting of physical units and 0 to 20% by mass of unsubstituted or N-substituted maleimide units, and having a glass transition temperature a layer made of a methacrylic resin composition (I) having a temperature of 135° C. or higher; and a layer made of a resin composition (T) containing a thermoplastic resin (b); .
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), R 1 is each independently a hydrogen atom or a methyl group, and R 2 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aromatic It is an organic group containing a ring and having 6 to 15 carbon atoms.)
  2.  メタクリル系樹脂組成物(I)のガラス転移温度が145℃以上である、請求項1に記載の蒸着用積層基材フィルム。 The laminated substrate film for vapor deposition according to claim 1, wherein the methacrylic resin composition (I) has a glass transition temperature of 145°C or higher.
  3.  メタクリル系樹脂組成物(I)の飽和吸水率が3.0質量%以下である、請求項1に記載の蒸着用積層基材フィルム。 The laminated substrate film for vapor deposition according to claim 1, wherein the methacrylic resin composition (I) has a saturated water absorption of 3.0% by mass or less.
  4.  熱可塑性樹脂(b)がポリカーボネート樹脂である請求項1に記載の蒸着用積層基材フィルム。 The laminated base material film for vapor deposition according to claim 1, wherein the thermoplastic resin (b) is a polycarbonate resin.
  5.  メタクリル系樹脂組成物(I)からなる層と樹脂組成物(T)からなる層とが共押出成形体である請求項1に記載の蒸着用積層基材フィルム。 The laminated base material film for vapor deposition according to claim 1, wherein the layer consisting of the methacrylic resin composition (I) and the layer consisting of the resin composition (T) are coextruded products.
  6.  メタクリル系樹脂組成物(I)からなる層にアンカー層が積層されてなる請求項1に記載の蒸着用積層基材フィルム。 The laminated substrate film for vapor deposition according to claim 1, wherein an anchor layer is laminated on a layer made of methacrylic resin composition (I).
  7.  請求項1に記載の蒸着用積層基材フィルムのうち、樹脂組成物(T)からなる層の一方の面にメタクリル系樹脂組成物(I)からなる層が積層されてなる蒸着用積層基材フィルムに対し、メタクリル系樹脂組成物(I)からなる層側の面に蒸着層が設けられていることを特徴とする蒸着積層フィルム。 Among the laminated base material films for vapor deposition according to claim 1, a laminated base material for vapor deposition in which a layer made of methacrylic resin composition (I) is laminated on one side of a layer made of resin composition (T). A vapor-deposited laminated film characterized in that a vapor-deposited layer is provided on the surface of the film on the side of the layer made of methacrylic resin composition (I).
  8.  請求項1に記載の蒸着用積層基材フィルムのうち、樹脂組成物(T)からなる層の両方の面にメタクリル系樹脂組成物(I)からなる層が積層されてなる蒸着用積層基材フィルムに対し、いずれか一方の面に蒸着層が設けられていることを特徴とする蒸着積層フィルム。 Among the laminated base material films for vapor deposition according to claim 1, a laminated base material for vapor deposition in which layers made of methacrylic resin composition (I) are laminated on both sides of a layer made of resin composition (T). A vapor-deposited laminated film characterized in that a vapor-deposited layer is provided on either side of the film.
  9.  請求項7又は8に記載の蒸着積層フィルムの蒸着層側の面に、熱可塑性樹脂シートが積層されてなることを特徴とする金属調シート。 A metal-like sheet comprising a thermoplastic resin sheet laminated on the vapor-deposited layer side surface of the vapor-deposited laminated film according to claim 7 or 8.
  10.  蒸着層と熱可塑性樹脂シートとは接着剤層を介して積層されている請求項9に記載の金属調シート。 The metal-like sheet according to claim 9, wherein the vapor deposition layer and the thermoplastic resin sheet are laminated via an adhesive layer.
  11.  蒸着層と熱可塑性樹脂シートとがドライラミネートにより積層されてなる請求項9に記載の金属調シート。 The metallic sheet according to claim 9, wherein the vapor deposited layer and the thermoplastic resin sheet are laminated by dry lamination.
  12.  請求項7又は請求項8に記載の蒸着積層フィルムの蒸着層側の面が、成形品に貼合されてなることを特徴とする金属調成形品。 A metal-like molded product, characterized in that the surface of the vapor-deposited laminated film according to claim 7 or claim 8 on the vapor-deposited layer side is bonded to a molded product.
  13.  請求項9に記載の金属調シートの熱可塑性樹脂シートが積層された面が、成形品に貼合されてなることを特徴とする金属調成形品。 A metal-like molded product, characterized in that the surface of the metal-like sheet according to claim 9 on which the thermoplastic resin sheet is laminated is bonded to a molded product.
  14.  請求項10に記載の金属調シートの熱可塑性樹脂シートが積層された面が、成形品に貼合されてなることを特徴とする金属調成形品。 A metal-like molded product, characterized in that the surface of the metal-like sheet according to claim 10 on which the thermoplastic resin sheet is laminated is bonded to a molded product.
  15.  請求項11に記載の金属調シートの熱可塑性樹脂シートが積層された面が、成形品に貼合されてなることを特徴とする金属調成形品。 A metal-like molded product, characterized in that the surface of the metal-like sheet according to claim 11 on which the thermoplastic resin sheet is laminated is bonded to a molded product.
PCT/JP2023/026887 2022-07-21 2023-07-21 Multilayer base film for vapor deposition and multilayer vapor deposited film WO2024019172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-116712 2022-07-21
JP2022116712 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024019172A1 true WO2024019172A1 (en) 2024-01-25

Family

ID=89617963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026887 WO2024019172A1 (en) 2022-07-21 2023-07-21 Multilayer base film for vapor deposition and multilayer vapor deposited film

Country Status (1)

Country Link
WO (1) WO2024019172A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203348A (en) * 2008-02-28 2009-09-10 Kaneka Corp Resin composition, film and polarizing plate
JP2020015905A (en) * 2018-07-13 2020-01-30 旭化成株式会社 Methacrylic resin, molded body, optical component or automobile component
WO2020217767A1 (en) * 2019-04-23 2020-10-29 住友化学株式会社 Multilayer body and method for producing multilayer body
WO2021193922A1 (en) * 2020-03-26 2021-09-30 株式会社クラレ Acrylic composition and molded article
WO2021235393A1 (en) * 2020-05-19 2021-11-25 株式会社クラレ Methacrylic copolymer for reverse wavelength dispersive retardation film, composition, film, method for manufacturing film, and laminate
JP2022072382A (en) * 2020-10-29 2022-05-17 株式会社クラレ Methacrylic based copolymer, composition, molding, film, method for manufacturing sheet, and laminate
JP2022102178A (en) * 2020-12-25 2022-07-07 株式会社クラレ Resin composition including methacrylic based copolymer, molding and film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203348A (en) * 2008-02-28 2009-09-10 Kaneka Corp Resin composition, film and polarizing plate
JP2020015905A (en) * 2018-07-13 2020-01-30 旭化成株式会社 Methacrylic resin, molded body, optical component or automobile component
WO2020217767A1 (en) * 2019-04-23 2020-10-29 住友化学株式会社 Multilayer body and method for producing multilayer body
WO2021193922A1 (en) * 2020-03-26 2021-09-30 株式会社クラレ Acrylic composition and molded article
WO2021235393A1 (en) * 2020-05-19 2021-11-25 株式会社クラレ Methacrylic copolymer for reverse wavelength dispersive retardation film, composition, film, method for manufacturing film, and laminate
JP2022072382A (en) * 2020-10-29 2022-05-17 株式会社クラレ Methacrylic based copolymer, composition, molding, film, method for manufacturing sheet, and laminate
JP2022102178A (en) * 2020-12-25 2022-07-07 株式会社クラレ Resin composition including methacrylic based copolymer, molding and film

Similar Documents

Publication Publication Date Title
KR101885386B1 (en) Synthetic resin laminate
KR101888708B1 (en) Decorative sheet and decorative molded product
KR102394025B1 (en) Methacrylic resin or methacrylic resin composition
US20070212548A1 (en) Glazing system with high glass transition temperature decorative ink
EP2851197B1 (en) Synthetic resin laminate
WO2018003788A1 (en) Molded body comprising acrylic resin composition
KR20070070207A (en) Matt acrylic resin filmy product for thermoforming, process for production thereof, and laminates comprising the product
KR20160090793A (en) Acrylic resin film
CN101184614A (en) Metallized films and articles containing the same
KR102338971B1 (en) Laminate body
JP6661463B2 (en) Laminated body and manufacturing method thereof, molded body, polarizer protective film, and polarizing plate
WO2015079867A1 (en) Transparent resin laminate
WO2016157913A1 (en) Process for producing stretched acrylic-resin film
EP3695965A1 (en) Surface-modified film for automotive interior/exterior components
WO2017200032A1 (en) Methacrylic resin composition and molded body
KR20170031154A (en) Synthetic resin laminate
JP6543179B2 (en) Method of manufacturing molded body
EP0675156A1 (en) Adhesion of polyurethane liner to stretched acrylic substrates
WO2019065912A1 (en) Multilayer film and decorative molded body of fiber-reinforced resin
JP3802041B1 (en) Laminate for producing nameplates that can prevent fluctuations in reflected light
CN111526989A (en) Polyvinylidene fluoride-acrylate and thermoplastic polyurethane multilayer protective film
WO2024019172A1 (en) Multilayer base film for vapor deposition and multilayer vapor deposited film
KR102477318B1 (en) Multi-layer film and molded article having the same
WO2024019169A1 (en) Base film for vapor deposition, and vapor deposition film
WO2019198827A1 (en) Multilayer film and molded body provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843095

Country of ref document: EP

Kind code of ref document: A1