WO2024019140A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2024019140A1
WO2024019140A1 PCT/JP2023/026738 JP2023026738W WO2024019140A1 WO 2024019140 A1 WO2024019140 A1 WO 2024019140A1 JP 2023026738 W JP2023026738 W JP 2023026738W WO 2024019140 A1 WO2024019140 A1 WO 2024019140A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
monomer
composition
mass
Prior art date
Application number
PCT/JP2023/026738
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 三輪
仁希 西村
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2024019140A1 publication Critical patent/WO2024019140A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints

Definitions

  • the present invention relates to a composition.
  • silica particles have been usefully used because they can impart various properties such as scratch resistance to resin products.
  • silica particles are used in a hard coat layer for improving the surface hardness and scratch resistance of resin base materials and the like.
  • the hard coat layer can be formed by applying a composition containing silica to the monomer constituting the hard coat onto a resin base material and curing it, but the composition containing silica particles has an increased viscosity. It may be difficult to handle.
  • Patent Document 1 it is essential to reduce the viscosity by adding a solvent to a composition containing silica particles and a monomer.
  • the hard coat composition disclosed in Patent Document 1 has a problem in that productivity decreases because the solvent needs to be dried after being applied to the substrate.
  • a hard coat composition that does not contain a solvent is desired.
  • Patent Document 2 describes a silica particle-containing composition in which a viscous substance is mixed with silica particles whose 29 Si-solid NMR spectrum has a specific peak under solvent-free conditions, that is, silica particles with few residual silanol groups. things are disclosed.
  • compositions to which silica particles are added may increase in viscosity and be difficult to handle, and Patent Document 2 suppresses the increase in viscosity by using silica particles with fewer residual silanol groups.
  • An object of the present invention is to provide a composition containing silica particles and a monomer, the viscosity of which is reduced by a different means from Patent Document 2.
  • the viscosity of the composition can be significantly reduced by including a specific amount of ammonia, and have completed the present invention.
  • the invention is as follows. [1] A composition comprising silica particles (a), an ethylenically unsaturated group-containing monomer (b), and ammonia (c), A composition in which the amount of ammonia (c) in 100% by weight of the composition is 0.05 to 4.5% by weight. [2] The composition according to [1], wherein the composition does not contain a solvent or contains 3.0% by mass or less of a solvent based on 100% by mass of the composition.
  • the silica particles (a) are selected from the group consisting of an aryl group, a (meth)acryloyl group, an alkyl group, a vinyl group, a styryl group, an epoxy group, a mercapto group, an amino group, an isocyanate group, and a halogenated alkyl group.
  • the ethylenically unsaturated group-containing monomer (b) is A monomer having a urethane bond or a monomer having a (1-hydroxy,2-oxy)ethylene structure (b-1), A monomer having neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, the number of ethylenically unsaturated groups in one monomer molecule is 3 or more, and the concentration of ethylenically unsaturated groups is 4.
  • composition according to any one of [1] to [4], which is at least one selected from the following.
  • the ethylenically unsaturated group-containing monomer (b) is composed of at least one of monomer (b-1) and monomer (b-2), and monomer (b-3), or The composition according to [5], consisting only of (b-3). [7] The composition according to any one of [1] to [6], wherein the ethylenically unsaturated group-containing monomer (b) has a viscosity of 2000 mPa ⁇ s or less at a temperature of 25°C.
  • the viscosity of the silica particle-containing monomer composition can be reduced.
  • composition of the present invention includes silica particles (a), an ethylenically unsaturated group-containing monomer (b), and ammonia (c). Each will be explained below.
  • silica particles are preferably nanometer-order particles, and the average primary particle diameter is, for example, 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and, for example, 100 nm or less. It is preferably 90 nm or less, more preferably 70 nm or less (that is, 1 to 100 nm is preferable, 5 to 90 nm is more preferable, and even more preferably 10 to 70 nm).
  • the average primary particle diameter as shown in the examples described below, the arithmetic mean value of the diameters of 50 arbitrary particles observed with an electron microscope can be used.
  • the major axis may be measured as the diameter.
  • the average sphericity ratio of silica particles is determined by observing the silica particles with an electron microscope, measuring the major axis and minor axis of each silica particle, and calculating the sphericity ratio (major axis/minor axis). It can be determined by averaging the measured sphericity ratios, and the value is preferably 1.2 to 1, more preferably 1.1 to 1, and even more preferably 1.05 to 1.
  • the silica particles (a) may be surface-treated, and include aryl groups, (meth)acryloyl groups, alkyl groups, vinyl groups, styryl groups, epoxy groups, mercapto groups, amino groups, isocyanate groups, and halogenated alkyl groups. It is preferable that the surface be treated with a silane coupling agent containing at least one functional group selected from the group consisting of:
  • the silica particles (a) surface-treated with such a silane coupling agent have the above-mentioned functional groups on the surface.
  • the silica particles (a) are preferably surface-treated with a silane coupling agent containing at least a (meth)acryloyl group.
  • the silane coupling agent is preferably a compound in which a hydrolyzable group (a group that can form a silanol group by hydrolysis) and a functional group are bonded to a central silicon atom, such as phenyltrimethoxysilane, phenyltriethoxysilane, Aryl alkoxysilane compounds such as diphenyldimethoxysilane and diphenyldiethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxy (meth)acryloyl group-containing alkoxysilane compounds such as silane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxys
  • the concentration of silica particles (a) in 100% by mass of the composition is preferably 10% by mass or more and 70% by mass or less (ie, 10 to 70% by mass).
  • the silica particle concentration is more preferably 15% by mass or more, even more preferably 20% by mass or more, and more preferably 65% by mass or less, even more preferably 60% by mass or less (that is, 15 to 65% by mass is more preferred, 20% by mass or less is more preferable). ⁇ 60% by mass is more preferred).
  • the concentration of the surface-treated silica particles is preferably within the above range.
  • the concentration of the silica particles (a) in 100% by mass of the composition is preferably 20 to 70% by mass. , more preferably 30 to 70% by mass, and even more preferably 40 to 70% by mass.
  • the ethylenically unsaturated group-containing monomer (b) is composed of at least one of (b-1) and (b-2) and (b-3), based on 100% by mass of the composition, The concentration of the silica particles (a) is preferably 20 to 60% by mass.
  • Ethylenically unsaturated group-containing monomer (b) As the ethylenically unsaturated group-containing monomer (b), one type or two or more types can be used. Any crosslinking monomer having two or more in the molecule can be used.
  • Monofunctional monomers include (meth)acrylic acid ester; vinyl monomers such as N-vinyl-2-pyrrolidone (NVP); styrene, p-tert-butylstyrene, ⁇ -methylstyrene, m-methyl Styrenic monomers (styrenes) such as styrene, p-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, p-hydroxystyrene; Carboxy group-containing monomers such as (meth)acrylic acid; 2- Hydroxyl group-containing monomers such as hydroxyethyl (meth)acrylate (HEA), 3-hydroxy-2-hydroxypropyl (meth)acrylate, 3-phenoxy-2-hydroxypropyl (meth)acrylate; cyclic trimethylolpropane formal acrylate ( CTFA), etc.
  • VRP N-vinyl-2-pyrrolidone
  • the above (meth)acrylic acid esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate (BA), isobutyl (meth)acrylic acid alkyl esters such as (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate; (meth)acrylic acid cycloalkyl esters such as cyclohexyl (meth)acrylate (CHA); 2,4-dibromo-6-sec-butylphenyl (meth)acrylate, 2,4-dibromo-6-isopropylphenyl (meth)acrylate, phenyl (meth)acrylate, 2,4,6-tribromophenyl (meth) (meth)acrylic acid aryl esters
  • (meth)acrylic acid ester (meth)acrylic acid esters having an arylthiooxy group such as phenylthioethyl (meth)acrylate, 1-naphthylthioethyl (meth)acrylate, and 2-naphthylthioethyl (meth)acrylate;
  • Alkylene glycol mono(meth)acrylates such as methoxypolyethylene glycol(meth)acrylate and phenoxypolyethylene glycol(meth)acrylate;
  • Examples include (meth)acrylic acid esters having a glycidyl group such as glycidyl (meth)acrylate.
  • Monofunctional monomers include (meth)acrylic acid ester, N-vinyl-2-pyrrolidone (NVP), cyclic trimethylolpropane formal acrylate (CTFA), 2-hydroxyethyl (meth)acrylate (HEA), 3- Hydroxy-2-hydroxypropyl (meth)acrylate, 3-phenoxy-2-hydroxypropyl (meth)acrylate, or styrenic monomers (styrenes) are preferred, particularly n-butyl (meth)acrylate (BA), cyclohexyl (Meth)acrylate (CHA) or N-vinyl-2-pyrrolidone (NVP) is preferred.
  • crosslinkable monomers include tetramethylene glycol di(meth)acrylate, ethylene glycol di(meth)acrylate (EGDA), diethylene glycol di(meth)acrylate (DEGDA), triethylene glycol di(meth)acrylate (TEGDA), Tetraethylene glycol di(meth)acrylate (TeEGDA), polyethylene glycol di(meth)acrylate (PEGDA), propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate (DPGDA), tripropylene glycol di(meth)acrylate acrylate (TPGDA), polypropylene glycol di(meth)acrylate (PPGDA), 1,4-butanediol di(meth)acrylate (BDDA), polybutylene glycol di(meth)acrylate (PBGDA), 1,6-hexanediol diacrylate (meth)acrylate (HDDA) and other alkylene glycol poly(meth)acrylates; Neopen
  • Polyfunctional (meth)acrylates such as poly(meth)acrylates; Polyfunctional styrenic monomers such as divinylbenzene (DVB); Allyl ester monomers such as 2-(allyloxymethyl)methyl acrylate, 2-(allyloxymethyl)cyclohexyl acrylate, 2-(allyloxymethyl)acrylate derivatives; Polyfunctional allyl ester monomers such as diallyl phthalate, diallyl isophthalate, triallyl cyanurate, triallyl isocyanurate; 2-(2-vinyloxyethoxy)ethyl (meth)acrylate (VEEA); Urethane acrylate oligomers (for example, Shiko (registered trademark) series (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd.), CN series (manufactured by Sartomer), Unidic (registered trademark) series (manufactured by DIC Corporation), KAYARAD (registered trademark)
  • EBECRYL series (manufactured by Daicel Allnex Corporation), NK Oligo series (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Neopol series (manufactured by Nihon U-Pica Co., Ltd.), epoxy ester series (manufactured by Kyoeisha Chemical Co., Ltd.) Co., Ltd.));
  • acrylic resin acrylate oligomers eg, HA series (manufactured by Showa Denko Materials Co., Ltd.), EBECRYL series, and KRM series (all manufactured by Daicel Allnex Co., Ltd.)
  • the ethylenically unsaturated group-containing monomer (b) is used to include the above-mentioned oligomers.
  • crosslinkable monomers examples include 1,4-butanediol di(meth)acrylate (BDDA), 1,6-hexanediol di(meth)acrylate (HDDA), ethylene glycol di(meth)acrylate (EGDA), and diethylene glycol.
  • BDDA 1,4-butanediol di(meth)acrylate
  • HDDA 1,6-hexanediol di(meth)acrylate
  • EGDA ethylene glycol di(meth)acrylate
  • diethylene glycol di(meth)acrylate
  • the ethylenically unsaturated group-containing monomer (b) can be classified into any of the following (b-1) to (b-3).
  • Monomers classified as (b-1) or (b-2) are monomers with relatively high viscosity, and monomers classified as (b-3) are monomers with relatively low viscosity.
  • monomers having urethane bonds include urethane acrylate oligomers as described above.
  • the (1-hydroxy,2-oxy)ethylene structure is a structure formed by ring-opening polymerization of an epoxy group and a carboxyl group. Examples of monomers having such a structure include epoxy acrylate oligomers and acrylic resin acrylate oligomers.
  • Monomer (b-2) is a monomer having neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, the number of ethylenically unsaturated groups is 3 or more in one monomer molecule, and The monomer has an ethylenically unsaturated group concentration of 4.8 mmol/g or more.
  • one having the requirements of the monomer (b-2) can be selected from the above-mentioned crosslinkable monomers, such as trimethylolpropane tri(meth)acrylate (TMPTA), ethoxylated (3) Trimethylolpropane tri(meth)acrylate, ethoxylated (3) trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol hexa (meth)acrylate (DPHA-EO), ditrimethylolpropane tetra(meth)acrylate (DTMPTEA), dipentaerythritol hexa(meth)acrylate (DPHA), pentaerythritol tetra(meth)acrylate (PETTA), or ethoxylated pen
  • TMPTA trimethyl
  • Monomer (b-3) is a monomer that does not have a urethane bond or a (1-hydroxy,2-oxy)ethylene structure, and the number of ethylenically unsaturated groups in one molecule of the monomer is less than 3.
  • the monomer satisfies at least one of the requirements that the concentration of sexually unsaturated groups is less than 4.8 mmol/g.
  • one having the requirements of the monomer (b-3) can be selected from the above-mentioned monofunctional monomers and crosslinkable monomers, such as 2-(allyloxymethyl)acrylic acid.
  • Examples include methyl (AOMA), 1,4-butanediol di(meth)acrylate (BDDA), 1,6-hexanediol di(meth)acrylate (HDDA), or cyclic trimethylolpropane formal acrylate (CTFA). Applicable.
  • the ethylenically unsaturated group-containing monomer (b) only monomer (b-1), only monomer (b-2), or only monomer (b-3) may be used, or (b-1), (although two or more of b-2) and (b-3) may be used, from the viewpoint of ease of coating the composition of the present invention on a substrate, the ethylenically unsaturated group-containing monomer (b) is It is preferable to be composed of at least one of monomer (b-1) and monomer (b-2) and monomer (b-3), or only monomer (b-3).
  • the viscosity of the ethylenically unsaturated group-containing monomer (b) at a temperature of 25° C. is 2000 mPa ⁇ s or less.
  • the viscosity within the above range is satisfied in a mixed state of the two or more types of monomers (b).
  • the viscosity measurement of the monomer is carried out in two cases: (b-1) or (b-2), at least one of (b-1) and (b-2), and (b-3).
  • the sample volume is 0.2 mL
  • the rotor diameter is 1.9 cm
  • the rotation speed is 20 rpm
  • the range is "H".
  • the sample amount is 1.1 mL
  • the rotor diameter is 4.7 cm
  • the rotation speed is If the viscosity is 5 rpm, and the range is "M" when the viscosity is ⁇ 100 mPa ⁇ s, "2.5M” when the viscosity is 100 to 200 mPa ⁇ s, and “5M” when the viscosity is 200 mPa ⁇ s or more, good.
  • the viscosity of the ethylenically unsaturated group-containing monomer (b) at a temperature of 25° C. is preferably 1000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s or less, and the lower limit is not particularly limited, but for example, 0.5 mPa ⁇ s. It may be.
  • the composition of the present invention contains 0.05 to 4.5% by mass of ammonia (c) based on 100% by mass of the composition. When the composition contains ammonia (c) within the above range, an increase in the viscosity of the composition can be suppressed.
  • the content of ammonia (c) in 100% by mass of the composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.2% by mass or more. Further, it is preferably 3% by mass or less, more preferably 1.5% by mass or less. That is, the content of ammonia (c) in 100% by mass of the composition is preferably 0.05 to 3% by mass, more preferably 0.1 to 1.5% by mass, and 0.2 to 1.5% by mass. is even more preferable. If the amount of ammonia is excessive, problems such as odor, yellowing of the cured composition, and deterioration of the appearance of the cured composition are likely to occur.
  • the amount of ammonia (c) is 0.05% by mass or more based on 100% by mass of the composition, and 1% by mass or more.
  • the content is preferably .5% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less.
  • ammonia (c ) The amount is preferably 0.1% by mass or more and 1% by mass or less based on 100% by mass of the composition.
  • the amount of ammonia can be quantified by the calibration curve method (internal standard) using gas chromatography, as shown in the examples below.
  • the composition of the present invention may contain a polymerization initiator.
  • the polymerization initiator include photopolymerization initiators and thermal polymerization initiators, each of which may be used alone or in combination. Note that some photopolymerization initiators act as thermal polymerization initiators, and some thermal polymerization initiators act as photopolymerization initiators, so those that have both properties should be treated with light irradiation or heating. Accordingly, the active energy ray-curable resin composition can be cured.
  • photopolymerization initiators are preferred because they do not impart thermal history to the formed film, the substrate to which the active energy ray-curable resin composition is applied, and the like.
  • thermal polymerization initiator examples include 2,2'-azobis-(2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis-(2,4'- oil-soluble initiators such as dimethylvaleronitrile), benzoyl peroxide, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, tert-butylperoxy-2-ethylhexanoate, Persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; water-soluble peroxides such as hydrogen peroxide, and water-soluble azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, etc.
  • these thermal polymerization initiators may be used alone or in combination of two or more.
  • photopolymerization initiators include benzophenone, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, and oxyphenyl-acetic acid 2-[ 2-oxo-2-phenylacetoxyethoxy]-ethyl ester, oxyphenylacetic acid 2-[2-hydroxyethoxy]-ethyl ester, 1-hydroxycyclohexylphenyl ketone, 2,4,6-trimethylbenzoyl-diphenyl-phos Fin oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)2-hydroxy-2 -Methylpropan-1-one, 2-methyl-1-[4-(methylthio)phenyl]2-morpholinopropan-1-one, 2-morpholinopropan-1-one, iodonium, sulfonium salt,
  • the amount of the polymerization initiator is, for example, 1 part by mass or more and 25 parts by mass or less, based on 100 parts by mass of the ethylenically unsaturated group-containing monomer (b).
  • the composition of the present invention may contain a solvent in addition to the silica particles (a), the ethylenically unsaturated group-containing monomer (b), ammonia (c), and the preferably used polymerization initiator. Since the composition of the invention can exhibit a viscosity-reducing effect with a predetermined amount of ammonia, it is preferable that the composition does not contain a solvent or contains only a small amount of solvent. Therefore, the composition of the present invention preferably does not contain a solvent, or if it does contain a solvent, it is preferably 3.0% by mass or less, and 2.0% by mass based on 100% by mass of the composition. It is more preferable that it is below.
  • the amount of solvent contained is small because the load on the environment can be reduced. Furthermore, if the solvent is contained in excess of a certain amount, a drying process will be required, which will reduce productivity.In addition, if the drying process is omitted when the solvent is contained in more than a certain amount, the appearance of the cured product of the composition will deteriorate. There is a problem that the strength decreases. From this point of view as well, it is desirable that no solvent be included or that the amount of solvent be small.
  • the amount of solvent can be quantified by a calibration curve method (internal standard) using gas chromatography, as shown in the Examples below.
  • composition of the present invention may contain additives other than the silica particles (a), the ethylenically unsaturated group-containing monomer (b), the ammonia (c) polymerization initiator, and the solvent,
  • the content of other additives is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less based on 100% by mass of the composition.
  • Viscosity of Composition Since the composition of the present invention contains ammonia (c), an increase in viscosity is suppressed.
  • the ratio of the viscosity of the composition to the viscosity of the ethylenically unsaturated group-containing monomer (b) (if two or more types are used, the viscosity of the mixture) is preferably 90 or less, more preferably 70 or less, and 60 or less. More preferably, the lower limit is not particularly limited, but may be, for example, 3 or more, or 5 or more (that is, 90-3 is preferable, 70-5 is more preferable, and 60-5 is still more preferable). .
  • the viscosity of the composition can be measured by using the above-mentioned measuring method suitable for the ethylenically unsaturated group-containing monomer (b) depending on the type of the ethylenically unsaturated group-containing monomer (b) contained in the composition. Just use it as is.
  • the composition of the present invention can be prepared by a production method including a synthesis step (A) of silica particles (a) and a monomer substitution step (E).
  • the manufacturing method may further include a surface treatment step (B) between the step (A) and the step (E), or before the monomer substitution step (E) (and the surface treatment step (B)).
  • a surface treatment step (B) between the step (A) and the step (E), or before the monomer substitution step (E) (and the surface treatment step (B)).
  • an ultrafiltration step (C) and an ion exchange step (D) may be included after step (B).
  • Ammonia (c) contained in the composition of the present invention may be mixed at any stage.
  • Synthesis step (A) of silica particles (a) In the synthesis step (A) of silica particles (a) (hereinafter also simply referred to as step (A)), silica particles are produced by hydrolyzing and condensing alkoxysilane in the presence of a basic catalyst and water.
  • the alkoxysilane is a compound having an alkoxy group as a substituent on a silicon atom, and as a substituent on a silicon atom, in addition to the alkoxy group, an alkyl group having 2 to 6 carbon atoms or an aromatic group having 6 to 10 carbon atoms can be used as a substituent for the silicon atom. It may have a group hydrocarbon group. Furthermore, the hydrogen atom of the alkyl group may be substituted with a halogen atom, a vinyl group, a glycidyl group, a mercapto group, an amino group, or the like.
  • alkoxysilane examples include compounds in which an alkoxy group and an unsubstituted or substituted alkyl group are bonded to a silicon atom, and mono- to tetrafunctional alkoxysilanes can be used, particularly tetramethoxysilane, tetraethoxysilane, etc. Preferred are tetrafunctional alkoxysilanes.
  • the concentration of alkoxysilane is, for example, 0.1 mmol/g or more and 3 mmol/g or less.
  • the concentration of alkoxysilane in the reaction solution is within this range, the reaction rate can be easily controlled and the particle size can be made uniform.
  • the concentration of water in the reaction solution is preferably 2 mmol/g to 25 mmol/g based on the amount at the time of preparation (before the start of hydrolysis/condensation), and the molar ratio of water to alkoxysilane ( water/alkoxysilane) is preferably 4 to 10.
  • Examples of the basic catalyst include ammonias, amines, quaternary ammonium compounds, etc. Among them, ammonias, amines, etc. Preferably. From the viewpoint of both catalytic effect and ease of removal, ammonias are preferred, and ammonia is particularly preferred.
  • the concentration of the basic catalyst in the reaction solution is preferably 0.8 mmol/g to 2 mmol/g. Further, the total mass ratio of the basic catalyst and the basic catalyst and water (basic catalyst/(basic catalyst + water)) is preferably 0.2 or more and 0.32 or less.
  • a diluent When hydrolyzing and condensing alkoxysilane, a diluent may be further present.
  • the diluent is preferably a water-soluble organic solvent, and the water-soluble organic solvent is preferably an alcohol solvent, such as monools such as methanol, ethanol, propanol, isopropyl alcohol, n-butyl alcohol, t-butyl alcohol, or pentyl alcohol. More preferred, particularly methanol.
  • the diluent content in the reaction solution is preferably 40% by mass or more and 90% by mass or less. Moreover, it is preferable that the diluent is 120 parts by mass or more and 500 parts by mass or less with respect to a total of 100 parts by mass of alkoxysilane and water. However, since the amount of alcohol changes due to hydrolysis and condensation of the alkoxysilane, the amount of the diluent is based on the amount at the time of preparation (before the start of hydrolysis and condensation).
  • the reaction solution contains ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; paraffins such as isooctane and cyclohexane; ethers such as dioxane and diethyl ether; aromatic hydrocarbons such as benzene and toluene; etc.
  • Hydrophobic organic solvents may also be included. When using these hydrophobic organic solvents, a surfactant may be added to improve dispersibility.
  • the above components may be mixed in an appropriate order, but for example, after preparing a premixed solution in which components other than the alkoxysilane are mixed in advance, the alkoxysilane may be added to this premixed solution. Good too.
  • the reaction temperature is preferably 20 to 70°C, and the duration of hydrolysis and condensation is preferably 30 minutes to 100 hours.
  • step (B) The preferred manufacturing method of the present invention preferably includes a surface treatment step (B) (hereinafter also simply referred to as step (B)).
  • step (B) it is preferable to mix the above-mentioned silane coupling agent and the reaction solution obtained after hydrolysis and condensation of the alkoxysilane obtained in step (A).
  • step (B) it is preferable to add a silane coupling agent to the reaction solution after hydrolysis and condensation of the alkoxysilane obtained in step (A). It is preferable to add it.
  • the silane coupling agent is preferably used in an amount of about 1 to 30 parts by weight, preferably 7 to 15 parts by weight, based on 100 parts by weight of the alkoxysilane used in step (A). After mixing the entire amount of the silane coupling agent and the reaction solution of step (A), it is preferable to stir the mixture for about 10 to 30 hours, for example. Preferably, step (B) is carried out at a temperature of 30 to 60°C.
  • step (C) After step (A) or after step (B), it is preferable to perform an ultrafiltration step (C) (hereinafter also simply referred to as step (C)) of filtering with an ultrafiltration membrane.
  • step (C) water, basic catalyst, diluent added as necessary, ketones, etc. contained in the reaction solution after hydrolysis/condensation are removed, and the step (C) is performed.
  • the excess surface treatment agent that could not cover the silica particle surface in B) can be removed.
  • a dispersion medium such as an alcoholic solvent different from the dispersion medium (reaction solvent) of the reaction liquid may be added while filtering through an ultrafiltration membrane.
  • solvent substitution it is preferable to concentrate the silica particles (or surface-treated silica particles if surface-treated) to a concentration of about 5 to 20% by mass to form a silica particle dispersion.
  • step (D) Ion exchange process
  • step (D) Ion exchange step
  • cation exchange resins Conventionally known cation exchange resins can be used, and either a weakly acidic cation exchange resin or a strongly acidic cation exchange resin may be used.
  • Examples of weakly acidic cation exchange resins include Amberlite IRC-76 (manufactured by Organo Corporation), Diaion WK10, WK20 (manufactured by Mitsubishi Chemical Corporation), and Revachit CNP80 (manufactured by Bayer Corporation).
  • Examples of strong acidic cation exchange resins include Amberlyst 16, Amberlyte IR-120B (manufactured by Organo Corporation), Diaion PK-208, PK-228, PK-216, (manufactured by Mitsubishi Chemical Corporation), Examples include Duolite C-26, Duolite ES-26 (manufactured by Sumitomo Chemical Co., Ltd.), and MSC-1, 88 (manufactured by Dow Corporation).
  • step (E) In the monomer substitution step (E) (hereinafter also simply referred to as step (E)), the silica particle dispersion obtained in any of steps (A) to (D) and the ethylenically unsaturated group-containing monomer (b) and the dispersion medium contained in any one of steps (A) to (D) is distilled off.
  • the dispersion medium may be removed by solid-liquid separation means such as centrifugation or distillation under reduced pressure, thereby removing the dispersion medium contained in any of steps (A) to (D). , is replaced by the ethylenically unsaturated group-containing monomer (b).
  • the conditions for distilling off the dispersion medium in step (E) are not particularly limited, but for example, the temperature may be 20 to 60°C, the pressure may be 1 to 400 hPa, and the time may be 1 to 60 hours.
  • ammonia (c) contained in the composition of the present invention may be ammonia used as a base catalyst in step (A), or may be ammonia used as a base catalyst in step (B) to step (E). It may also be by mixing.
  • the amount of ammonia (c) depends on the amount of ammonia mixed in any of steps (A) to (E), the pH before monomer mixing in step (E), the implementation conditions of step (E), etc. Can be adjusted.
  • the pH before monomer mixing in step (E) is preferably 5.5 to 11.5.
  • composition of the present invention can suppress an increase in viscosity, it can be used in adhesive materials, dental materials, optical members, coating materials (for hard coats, anti-glare), nanocomposite materials, abrasives, nanoimprints, ink jets, etc. It is useful as a coating composition for forming precise microstructures such as resists.
  • Measurement method Calibration curve method (internal standard) Column length: 30m Column inner diameter: 0.45mm Capillary inner membrane thickness: 0.85 ⁇ m Carrier gas: Helium Column temperature: Hold at 40°C for 2 minutes, raise the temperature to 180°C at 10°C/min, raise the temperature to 230°C at 50°C/min, hold at 230°C for 10 minutes Inlet temperature: 230°C Detector temperature: BID (230°C) Detection substance and time example: ammonia (0.4 min), anisole (6.6 min)
  • Example 1 Step 1A Particle synthesis step 16,500 g of methanol, 4,200 g of water, and 2,000 g of 25% aqueous ammonia were placed in a 50 L SUS container equipped with a stirrer, a dropping port, and a thermometer, and the mixture was stirred for 30 minutes to obtain a uniform mixed solution.
  • the temperature of the above mixed solution was adjusted to 49 to 51° C., and while stirring, 5700 g of tetramethyl orthosilicate (TMOS) was added dropwise from the dropping port over 90 minutes. After the dropwise addition was completed, stirring was continued for 30 minutes while maintaining the above liquid temperature to obtain an alcoholic solution suspension of silica particles (suspension 1A).
  • TMOS tetramethyl orthosilicate
  • Step 1B Surface treatment step The temperature of the suspension 1A obtained in the previous step was raised to 50° C. while stirring again, and while maintaining the liquid temperature and stirring, 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., 660 g of KBM-503) was added dropwise from the dropping port over 120 minutes. After the dropwise addition was completed, stirring was continued for 15 hours while maintaining the above liquid temperature to obtain an alcoholic solution suspension (suspension 1B) of silica particles having methacrylic groups on the particle surface.
  • 3-methacryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., 660 g of KBM-503
  • Step 1C Ultrafiltration step The suspension 1B obtained in the above step B is filtered with methanol at room temperature using a commercially available ultrafiltration membrane equipped with a ceramic tubular ultrafiltration membrane with a molecular weight cutoff of about 10,000. By replacing the solvent with appropriate addition and concentrating until the SiO 2 concentration was about 11%, a methanol suspension (suspension 1C) of silica particles having a pH of 9.3 and a methacrylic group on the particle surface was obtained. .
  • Step 1D Ion exchange process Suspension 1C is passed through a column filled with hydrogen type strongly acidic cation exchange resin Amberlite IR-120B (manufactured by Organo) at room temperature at a space velocity of 3 per hour. By passing through the solution at a high speed, a methanol suspension (suspension 1D) of silica particles having a methacrylic group having a pH of 6.1 was obtained.
  • Amberlite IR-120B manufactured by Organo
  • Step 1E Monomer Substitution Step Weigh 1800 g of a methanol suspension of silica particles having methacrylic groups (Suspension 1D), and add the same amount of 1,6-hexanediol diacrylate (HDDA) (monomer (b) as the silica particles contained). -3)) was added and the solvent was distilled off using a rotary evaporator to obtain an HDDA dispersion of silica particles having methacrylic groups (dispersion 1E).
  • HDDA 1,6-hexanediol diacrylate
  • Suspensions 2D (Example 2) and 3D (Example 3) were obtained in the same manner as in 1, and HDDA dispersions 2E (Example 2) and 3E (Example 3) of silica particles having methacrylic groups were obtained.
  • Example 4 HDDA dispersion 4E (suspension 3D) of silica particles having methacrylic groups was prepared in the same manner as in Example 3, except that the time for distilling off the solvent of the methanol suspension (suspension 3D) of silica particles having methacrylic groups was changed. Example 4) was obtained.
  • the average sphericity ratio of the silica particles was in the range of 1.05 to 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The objective of the present invention is to provide a composition containing silica particles and a monomer, said composition having reduced viscosity. The composition contains silica particles (a), an ethylenically unsaturated group-containing monomer (b), and ammonia (c), wherein the quantity of ammonia (c) for 100 mass% of the composition is from 0.05 to 4.5 mass%.

Description

組成物Composition
 本発明は、組成物に関する。 The present invention relates to a composition.
 従来、シリカ粒子は樹脂製品の耐擦傷性等の様々な特性を付与することができるため、有用に用いられている。一例として、樹脂基材等の表面硬度や耐擦傷性を改善するためのハードコート層にシリカ粒子が用いられている。ハードコート層は、ハードコートを構成するモノマーにシリカを添加した組成物を、樹脂基材等に塗布して硬化させることで形成できるが、シリカ粒子を添加した組成物は、粘度が上昇して取り扱いが難しくなる場合がある。 Conventionally, silica particles have been usefully used because they can impart various properties such as scratch resistance to resin products. As an example, silica particles are used in a hard coat layer for improving the surface hardness and scratch resistance of resin base materials and the like. The hard coat layer can be formed by applying a composition containing silica to the monomer constituting the hard coat onto a resin base material and curing it, but the composition containing silica particles has an increased viscosity. It may be difficult to handle.
 例えば、特許文献1では、シリカ粒子とモノマーを含む組成物に、溶剤を添加することで減粘することが必須となっている。しかしながら、特許文献1に開示されるようなハードコート用組成物は、基材への塗布後に溶剤の乾燥が必要となるため生産性が低下するという問題がある。また、環境への配慮の観点からも、溶剤を含有しないハードコート用組成物が望まれている。 For example, in Patent Document 1, it is essential to reduce the viscosity by adding a solvent to a composition containing silica particles and a monomer. However, the hard coat composition disclosed in Patent Document 1 has a problem in that productivity decreases because the solvent needs to be dried after being applied to the substrate. Furthermore, from the viewpoint of environmental considerations, a hard coat composition that does not contain a solvent is desired.
 上記した溶剤使用の課題を解決するため、溶剤を含まない組成物が提案されている。例えば、特許文献2には、無溶剤条件下で、29Si-固体NMRスペクトルが特定のピークを有しているシリカ粒子、すなわち残存シラノール基が少ないシリカ粒子と粘性物質を混合したシリカ粒子含有組成物が開示されている。 In order to solve the problems of using solvents described above, compositions that do not contain solvents have been proposed. For example, Patent Document 2 describes a silica particle-containing composition in which a viscous substance is mixed with silica particles whose 29 Si-solid NMR spectrum has a specific peak under solvent-free conditions, that is, silica particles with few residual silanol groups. things are disclosed.
特開2017-48300号公報JP2017-48300A 特開2018-16502号公報Unexamined Japanese Patent Publication No. 2018-16502
 上述の通り、シリカ粒子を添加した組成物は粘度が上昇して取り扱いが難しい場合があり、特許文献2では残存シラノール基が少ないシリカ粒子を用いることで粘度の増大を抑制している。 As mentioned above, compositions to which silica particles are added may increase in viscosity and be difficult to handle, and Patent Document 2 suppresses the increase in viscosity by using silica particles with fewer residual silanol groups.
 本発明は、シリカ粒子とモノマーを含む組成物であって、特許文献2とは異なる手段で、粘度が低減された組成物を提供することを目的とする。 An object of the present invention is to provide a composition containing silica particles and a monomer, the viscosity of which is reduced by a different means from Patent Document 2.
 本発明者らが鋭意検討した結果、特定量のアンモニアを含ませることで組成物の粘度を大きく低下させることができることを見出し、本発明を完成させた。本発明は以下の通りである。
[1]シリカ粒子(a)と、エチレン性不飽和基含有モノマー(b)と、アンモニア(c)を含む組成物であって、
 組成物100質量%中のアンモニア(c)の量は、0.05~4.5質量%である組成物。
[2]前記組成物に溶剤が含まれていないか、又は組成物100質量%中、3.0質量%以下の溶剤が含まれている[1]に記載の組成物。
[3]組成物100質量%中のシリカ粒子(a)の濃度は、10質量%以上、70質量%以下である[1]または[2]に記載の組成物。
[4]前記シリカ粒子(a)は、アリール基、(メタ)アクリロイル基、アルキル基、ビニル基、スチリル基、エポキシ基、メルカプト基、アミノ基、イソシアネート基、及びハロゲン化アルキル基よりなる群から選択される少なくとも1種の基を含むシランカップリング剤で表面処理されている[1]~[3]のいずれかに記載の組成物。
[5]前記エチレン性不飽和基含有モノマー(b)が、
 ウレタン結合を有するモノマー又は(1-ヒドロキシ,2-オキシ)エチレン構造を有するモノマー(b-1)、
 ウレタン結合及び(1-ヒドロキシ,2-オキシ)エチレン構造のいずれも有していないモノマーであって、エチレン性不飽和基数がモノマー1分子中3以上であり、かつエチレン性不飽和基濃度が4.8mmol/g以上であるモノマー(b-2)、及び
 ウレタン結合及び(1-ヒドロキシ,2-オキシ)エチレン構造のいずれも有していないモノマーであって、エチレン性不飽和基数がモノマー1分子中3未満であるという要件及びエチレン性不飽和基濃度が4.8mmol/g未満であるという要件の少なくとも一方を満たすモノマー(b-3)
 から選ばれる少なくとも1種である[1]~[4]のいずれかに記載の組成物。
[6]前記エチレン性不飽和基含有モノマー(b)は、モノマー(b-1)及びモノマー(b-2)の少なくとも1種と、モノマー(b-3)とで構成されるか、またはモノマー(b-3)のみで構成される[5]に記載の組成物。
[7]前記エチレン性不飽和基含有モノマー(b)の温度25℃での粘度が2000mPa・s以下である[1]~[6]のいずれかに記載の組成物。
As a result of extensive studies, the present inventors have found that the viscosity of the composition can be significantly reduced by including a specific amount of ammonia, and have completed the present invention. The invention is as follows.
[1] A composition comprising silica particles (a), an ethylenically unsaturated group-containing monomer (b), and ammonia (c),
A composition in which the amount of ammonia (c) in 100% by weight of the composition is 0.05 to 4.5% by weight.
[2] The composition according to [1], wherein the composition does not contain a solvent or contains 3.0% by mass or less of a solvent based on 100% by mass of the composition.
[3] The composition according to [1] or [2], wherein the concentration of the silica particles (a) in 100% by mass of the composition is 10% by mass or more and 70% by mass or less.
[4] The silica particles (a) are selected from the group consisting of an aryl group, a (meth)acryloyl group, an alkyl group, a vinyl group, a styryl group, an epoxy group, a mercapto group, an amino group, an isocyanate group, and a halogenated alkyl group. The composition according to any one of [1] to [3], which is surface-treated with a silane coupling agent containing at least one selected group.
[5] The ethylenically unsaturated group-containing monomer (b) is
A monomer having a urethane bond or a monomer having a (1-hydroxy,2-oxy)ethylene structure (b-1),
A monomer having neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, the number of ethylenically unsaturated groups in one monomer molecule is 3 or more, and the concentration of ethylenically unsaturated groups is 4. .8 mmol/g or more, and a monomer that has neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, and the number of ethylenically unsaturated groups in one molecule of the monomer A monomer (b-3) that satisfies at least one of the requirements that the concentration of ethylenically unsaturated groups is less than 3 and the ethylenically unsaturated group concentration is less than 4.8 mmol/g.
The composition according to any one of [1] to [4], which is at least one selected from the following.
[6] The ethylenically unsaturated group-containing monomer (b) is composed of at least one of monomer (b-1) and monomer (b-2), and monomer (b-3), or The composition according to [5], consisting only of (b-3).
[7] The composition according to any one of [1] to [6], wherein the ethylenically unsaturated group-containing monomer (b) has a viscosity of 2000 mPa·s or less at a temperature of 25°C.
 本発明によれば、アンモニアを所定量含んでいるため、シリカ粒子含有モノマー組成物の粘度を低減することができる。 According to the present invention, since it contains a predetermined amount of ammonia, the viscosity of the silica particle-containing monomer composition can be reduced.
 本発明の組成物は、シリカ粒子(a)と、エチレン性不飽和基含有モノマー(b)と、アンモニア(c)と、を含む。以下、それぞれについて説明する。 The composition of the present invention includes silica particles (a), an ethylenically unsaturated group-containing monomer (b), and ammonia (c). Each will be explained below.
 1.組成物
 1-1.シリカ粒子(a)
 シリカ粒子(a)は、ナノメートルオーダーの粒子であることが好ましく、平均一次粒子径は、例えば1nm以上であり、好ましくは5nm以上であり、より好ましくは10nm以上であり、また例えば100nm以下であり、好ましくは90nm以下であり、より好ましくは70nm以下である(すなわち、1~100nmが好ましく、5~90nmがより好ましく、10~70nmが更に好ましい)。平均一次粒子径は、後述する実施例で示す通り、電子顕微鏡で観察し、任意の粒子50個について測定した直径の算術平均値を用いることができる。なお、シリカ粒子の形状が略球状でない場合には、直径として長径を測定すればよい。シリカ粒子の平均球形比は、シリカ粒子を電子顕微鏡で観察し、1個のシリカ粒子について長径と短径とを測定して球形比(長径/短径)を算出し、50個のシリカ粒子について測定した球形比を平均することにより求めることができ、その値は1.2~1が好ましく、1.1~1がより好ましく、1.05~1が更に好ましい。
1. Composition 1-1. Silica particles (a)
The silica particles (a) are preferably nanometer-order particles, and the average primary particle diameter is, for example, 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and, for example, 100 nm or less. It is preferably 90 nm or less, more preferably 70 nm or less (that is, 1 to 100 nm is preferable, 5 to 90 nm is more preferable, and even more preferably 10 to 70 nm). As the average primary particle diameter, as shown in the examples described below, the arithmetic mean value of the diameters of 50 arbitrary particles observed with an electron microscope can be used. Note that if the shape of the silica particles is not approximately spherical, the major axis may be measured as the diameter. The average sphericity ratio of silica particles is determined by observing the silica particles with an electron microscope, measuring the major axis and minor axis of each silica particle, and calculating the sphericity ratio (major axis/minor axis). It can be determined by averaging the measured sphericity ratios, and the value is preferably 1.2 to 1, more preferably 1.1 to 1, and even more preferably 1.05 to 1.
 シリカ粒子(a)は表面処理されていてもよく、アリール基、(メタ)アクリロイル基、アルキル基、ビニル基、スチリル基、エポキシ基、メルカプト基、アミノ基、イソシアネート基、及びハロゲン化アルキル基よりなる群から選択される少なくとも1種の官能基を含むシランカップリング剤で表面処理されていることが好ましい。このようなシランカップリング剤で表面処理されたシリカ粒子(a)は、表面に前記官能基を有する。シリカ粒子(a)は、少なくとも(メタ)アクリロイル基を含むシランカップリング剤で表面処理されていることが好ましい。 The silica particles (a) may be surface-treated, and include aryl groups, (meth)acryloyl groups, alkyl groups, vinyl groups, styryl groups, epoxy groups, mercapto groups, amino groups, isocyanate groups, and halogenated alkyl groups. It is preferable that the surface be treated with a silane coupling agent containing at least one functional group selected from the group consisting of: The silica particles (a) surface-treated with such a silane coupling agent have the above-mentioned functional groups on the surface. The silica particles (a) are preferably surface-treated with a silane coupling agent containing at least a (meth)acryloyl group.
 前記シランカップリング剤は、中心ケイ素原子に加水分解性基(加水分解によりシラノール基を形成しうる基)及び官能基が結合した化合物であることが好ましく、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のアリールアルコキシシラン化合物;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロイル基含有アルコキシシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン等のアルキルアルコキシシラン化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルアルコキシシラン化合物;p-スチリルトリメトキシシラン等のスチリルアルコキシシラン化合物;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基含有アルコキシシラン;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有アルコキシシラン化合物;3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有アルコキシシラン化合物;3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等の塩化アルキルアルコキシシラン化合物や、トリフルオロプロピルトリメトキシシラン等のフッ化アルキルアルコキシシラン化合物などのハロゲン化アルキルアルコキシシラン化合物;等が挙げられる。シランカップリング剤は1種のみ用いてもよいし、2種以上併用してもよい。 The silane coupling agent is preferably a compound in which a hydrolyzable group (a group that can form a silanol group by hydrolysis) and a functional group are bonded to a central silicon atom, such as phenyltrimethoxysilane, phenyltriethoxysilane, Aryl alkoxysilane compounds such as diphenyldimethoxysilane and diphenyldiethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxy (meth)acryloyl group-containing alkoxysilane compounds such as silane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Alkyl alkoxysilane compounds such as trimethylmethoxysilane, trimethylethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane; vinyltrimethoxysilane, vinyl Vinyl alkoxysilane compounds such as triethoxysilane; styryl alkoxy silane compounds such as p-styryltrimethoxysilane; 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Epoxy group-containing alkoxysilanes such as glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxy Mercapto group-containing alkoxysilane compounds such as silane; 3-(2-aminoethylamino)propyltrimethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Amino group-containing alkoxysilane compounds such as triethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane; 3-isocyanatepropyltriethoxy Alkoxysilane compounds containing isocyanate groups such as silane; chlorinated alkylalkoxysilane compounds such as 3-chloropropylmethyldimethoxysilane and 3-chloropropyltrimethoxysilane; Examples include halogenated alkyl alkoxysilane compounds; and the like. One type of silane coupling agent may be used, or two or more types may be used in combination.
 組成物100質量%中のシリカ粒子(a)の濃度は、10質量%以上、70質量%以下(すなわち10~70質量%)であることが好ましい。シリカ粒子濃度は、15質量%以上がより好ましく、20質量%以上が更に好ましく、また65質量%以下がより好ましく、60質量%以下が更に好ましい(すなわち、15~65質量%がより好ましく、20~60質量%が更に好ましい)。シリカ粒子(a)が表面処理されている場合には、表面処理されたシリカ粒子の濃度が前記範囲になることが好ましい。 The concentration of silica particles (a) in 100% by mass of the composition is preferably 10% by mass or more and 70% by mass or less (ie, 10 to 70% by mass). The silica particle concentration is more preferably 15% by mass or more, even more preferably 20% by mass or more, and more preferably 65% by mass or less, even more preferably 60% by mass or less (that is, 15 to 65% by mass is more preferred, 20% by mass or less is more preferable). ~60% by mass is more preferred). When the silica particles (a) are surface-treated, the concentration of the surface-treated silica particles is preferably within the above range.
 特に、エチレン性不飽和基含有モノマー(b)が(b-3)のみで構成される場合には、組成物100質量%中のシリカ粒子(a)の濃度は、20~70質量%が好ましく、30~70質量%がより好ましく、40~70質量%が更に好ましい。
 また、エチレン性不飽和基含有モノマー(b)が(b-1)及び(b-2)の少なくとも1種と、(b-3)とで構成される場合には、組成物100質量%中のシリカ粒子(a)の濃度は、20~60質量%が好ましい。
In particular, when the ethylenically unsaturated group-containing monomer (b) is composed only of (b-3), the concentration of the silica particles (a) in 100% by mass of the composition is preferably 20 to 70% by mass. , more preferably 30 to 70% by mass, and even more preferably 40 to 70% by mass.
In addition, when the ethylenically unsaturated group-containing monomer (b) is composed of at least one of (b-1) and (b-2) and (b-3), based on 100% by mass of the composition, The concentration of the silica particles (a) is preferably 20 to 60% by mass.
 1-2.エチレン性不飽和基含有モノマー(b)
 エチレン性不飽和基含有モノマー(b)としては、1種又は2種以上用いることができ、エチレン性不飽和基を1分子中に一つ有する単官能単量体及びエチレン性不飽和基を1分子中に二つ以上有する架橋性単量体のいずれも用いることができる。
1-2. Ethylenically unsaturated group-containing monomer (b)
As the ethylenically unsaturated group-containing monomer (b), one type or two or more types can be used. Any crosslinking monomer having two or more in the molecule can be used.
 単官能単量体としては、(メタ)アクリル酸エステル;N-ビニル-2-ピロリドン(NVP)等のビニル系単量体;スチレン、p-tert-ブチルスチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-クロロスチレン、p-クロロメチルスチレン、p-ヒドロキシスチレン等のスチレン系単量体(スチレン類);(メタ)アクリル酸等のカルボキシ基含有単量体;2-ヒドロキシエチル(メタ)アクリレート(HEA)、3-ヒドロキシ-2-ヒドロキシプロピル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート等の水酸基含有単量体;環状トリメチロールプロパンホルマールアクリレート(CTFA)等が挙げられる。 Monofunctional monomers include (meth)acrylic acid ester; vinyl monomers such as N-vinyl-2-pyrrolidone (NVP); styrene, p-tert-butylstyrene, α-methylstyrene, m-methyl Styrenic monomers (styrenes) such as styrene, p-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, p-hydroxystyrene; Carboxy group-containing monomers such as (meth)acrylic acid; 2- Hydroxyl group-containing monomers such as hydroxyethyl (meth)acrylate (HEA), 3-hydroxy-2-hydroxypropyl (meth)acrylate, 3-phenoxy-2-hydroxypropyl (meth)acrylate; cyclic trimethylolpropane formal acrylate ( CTFA), etc.
 上記の(メタ)アクリル酸エステルとしては、具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート(BA)、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;
 シクロヘキシル(メタ)アクリレート(CHA)等の(メタ)アクリル酸シクロアルキルエステル;
 2,4-ジブロモ-6-sec-ブチルフェニル(メタ)アクリレート、2,4-ジブロモ-6-イソプロピルフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,6-トリブロモフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート等の(メタ)アクリル酸アリールエステル;
 ベンジル(メタ)アクリレート、ペンタブロモベンジル(メタ)アクリレート等の(メタ)アクリル酸アラルキルエステル;
 フェノキシエチル(メタ)アクリレート、フェノキシ-2-メチルエチル(メタ)アクリレート、2,4,6-トリブロモフェノキシエチル(メタ)アクリレート、2,4-ジブロモフェノキシエチル(メタ)アクリレート、2-ブロモフェノキシエチル(メタ)アクリレート、1-ナフチルオキシエチル(メタ)アクリレート、2-ナフチルオキシエチル(メタ)アクリレート、フェノキシ-2-メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート等のアリールオキシ単位を有する(メタ)アクリル酸エステル;
 フェニルチオエチル(メタ)アクリレート、1-ナフチルチオエチル(メタ)アクリレート、2-ナフチルチオエチル(メタ)アクリレート等のアリールチオオキシ基を有する(メタ)アクリル酸エステル;
 メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート等のアルキレングリコールモノ(メタ)アクリレート;
 グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリル酸エステル等が挙げられる。
Specifically, the above (meth)acrylic acid esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate (BA), isobutyl (meth)acrylic acid alkyl esters such as (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate;
(meth)acrylic acid cycloalkyl esters such as cyclohexyl (meth)acrylate (CHA);
2,4-dibromo-6-sec-butylphenyl (meth)acrylate, 2,4-dibromo-6-isopropylphenyl (meth)acrylate, phenyl (meth)acrylate, 2,4,6-tribromophenyl (meth) (meth)acrylic acid aryl esters such as acrylate and pentabromophenyl (meth)acrylate;
(meth)acrylic acid aralkyl esters such as benzyl (meth)acrylate and pentabromobenzyl (meth)acrylate;
Phenoxyethyl (meth)acrylate, phenoxy-2-methylethyl (meth)acrylate, 2,4,6-tribromophenoxyethyl (meth)acrylate, 2,4-dibromophenoxyethyl (meth)acrylate, 2-bromophenoxyethyl Contains aryloxy units such as (meth)acrylate, 1-naphthyloxyethyl (meth)acrylate, 2-naphthyloxyethyl (meth)acrylate, phenoxy-2-methylethyl (meth)acrylate, phenoxyethoxyethyl (meth)acrylate, etc. (meth)acrylic acid ester;
(meth)acrylic acid esters having an arylthiooxy group such as phenylthioethyl (meth)acrylate, 1-naphthylthioethyl (meth)acrylate, and 2-naphthylthioethyl (meth)acrylate;
Alkylene glycol mono(meth)acrylates such as methoxypolyethylene glycol(meth)acrylate and phenoxypolyethylene glycol(meth)acrylate;
Examples include (meth)acrylic acid esters having a glycidyl group such as glycidyl (meth)acrylate.
 単官能単量体としては、(メタ)アクリル酸エステル、N-ビニル-2-ピロリドン(NVP)、環状トリメチロールプロパンホルマールアクリレート(CTFA)、2-ヒドロキシエチル(メタ)アクリレート(HEA)、3-ヒドロキシ-2-ヒドロキシプロピル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、又はスチレン系単量体(スチレン類)が好ましく、特にn-ブチル(メタ)アクリレート(BA)、シクロヘキシル(メタ)アクリレート(CHA)又はN-ビニル-2-ピロリドン(NVP)が好ましい。 Monofunctional monomers include (meth)acrylic acid ester, N-vinyl-2-pyrrolidone (NVP), cyclic trimethylolpropane formal acrylate (CTFA), 2-hydroxyethyl (meth)acrylate (HEA), 3- Hydroxy-2-hydroxypropyl (meth)acrylate, 3-phenoxy-2-hydroxypropyl (meth)acrylate, or styrenic monomers (styrenes) are preferred, particularly n-butyl (meth)acrylate (BA), cyclohexyl (Meth)acrylate (CHA) or N-vinyl-2-pyrrolidone (NVP) is preferred.
 架橋性単量体としては、テトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート(EGDA)、ジエチレングリコールジ(メタ)アクリレート(DEGDA)、トリエチレングリコールジ(メタ)アクリレート(TEGDA)、テトラエチレングリコールジ(メタ)アクリレート(TeEGDA)、ポリエチレングリコールジ(メタ)アクリレート(PEGDA)、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリプロピレングリコールジ(メタ)アクリレート(TPGDA)、ポリプロピレングリコールジ(メタ)アクリレート(PPGDA)、1,4-ブタンジオールジ(メタ)アクリレート(BDDA)、ポリブチレングリコールジ(メタ)アクリレート(PBGDA)、1,6-ヘキサンジオールジ(メタ)アクリレート(HDDA)等のアルキレングリコールポリ(メタ)アクリレート;
 ネオペンチルグリコールジ(メタ)アクリレート(NPGDA)、ジネオペンチルグリコールジ(メタ)アクリレート(DNPGDA)等のネオペンチルグリコールポリ(メタ)アクリレート;
 トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、エトキシ化(3)トリメチロールプロパントリ(メタ)アクリレート(TMPTA-EO)、プロポキシ化(3)トリメチロールプロパントリ(メタ)アクリレート(TMPTA-PO)、ジトリメチロールプロパンテトラ(メタ)アクリレート等のトリメチロールプロパンポリ(メタ)アクリレート;
 グリセリルトリ(メタ)アクリレート、エトキシ化グリセリルトリ(メタ)アクリレート等のグリセリルポリ(メタ)アクリレート;
 ペンタエリスリトールトリ(メタ)アクリレート(PETA)、ペンタエリスリトールテトラ(メタ)アクリレート(PETTA)、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-EO)、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-PO)、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート(PETTA-EO)、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート(PETTA-PO)、ジトリメチロールプロパンテトラ(メタ)アクリレート(DTMPTEA)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-EO)、プロポキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-PO)等のペンタエリスリトールポリ(メタ)アクリレート等の多官能(メタ)アクリレート;
 ジビニルベンゼン(DVB)等の多官能スチレン系単量体;
 2-(アリルオキシメチル)アクリル酸メチル、2-(アリルオキシメチル)アクリル酸シクロヘキシル、2-(アリルオキシメチル)アクリル酸エステル誘導体等のアリルエステル系単量体;
 ジアリルフタレート、ジアリルイソフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等の多官能アリルエステル系単量体;
 2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート(VEEA);
 ウレタンアクリレートオリゴマー(例えば、紫光(登録商標)シリーズ(日本合成化学工業(株)製)、CNシリーズ(サートマー社製)、ユニディック(登録商標)シリーズ(DIC(株)製)、KAYARAD(登録商標) UX シリーズ(日本化薬(株)製)等);
 エポキシアクリレートオリゴマー(例えばEBECRYLシリーズ(ダイセル・オルネクス(株)製)、NKオリゴシリーズ(新中村化学工業(株)製)、ネオポールシリーズ(日本ユピカ(株)製)、エポキシエステルシリーズ(共栄社化学(株)製));
 アクリル樹脂アクリレートオリゴマー(例えばHAシリーズ(昭和電工マテリアルズ(株)製)、EBECRYLシリーズ及びKRMシリーズ(いずれも、ダイセル・オルネクス(株)製))等が挙げられる。
 なお、エチレン性不飽和基含有モノマー(b)には、上記したようなオリゴマーも含む意味で用いる。
Examples of crosslinkable monomers include tetramethylene glycol di(meth)acrylate, ethylene glycol di(meth)acrylate (EGDA), diethylene glycol di(meth)acrylate (DEGDA), triethylene glycol di(meth)acrylate (TEGDA), Tetraethylene glycol di(meth)acrylate (TeEGDA), polyethylene glycol di(meth)acrylate (PEGDA), propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate (DPGDA), tripropylene glycol di(meth)acrylate acrylate (TPGDA), polypropylene glycol di(meth)acrylate (PPGDA), 1,4-butanediol di(meth)acrylate (BDDA), polybutylene glycol di(meth)acrylate (PBGDA), 1,6-hexanediol diacrylate (meth)acrylate (HDDA) and other alkylene glycol poly(meth)acrylates;
Neopentyl glycol poly(meth)acrylates such as neopentyl glycol di(meth)acrylate (NPGDA) and dineopentyl glycol di(meth)acrylate (DNPGDA);
Trimethylolpropane tri(meth)acrylate (TMPTA), ethoxylated (3) trimethylolpropane tri(meth)acrylate (TMPTA-EO), propoxylated (3) trimethylolpropane tri(meth)acrylate (TMPTA-PO), Trimethylolpropane poly(meth)acrylate such as ditrimethylolpropane tetra(meth)acrylate;
Glyceryl poly(meth)acrylates such as glyceryl tri(meth)acrylate and ethoxylated glyceryl tri(meth)acrylate;
Pentaerythritol tri(meth)acrylate (PETA), Pentaerythritol tetra(meth)acrylate (PETTA), Ethoxylated pentaerythritol tri(meth)acrylate (PETA-EO), Propoxylated pentaerythritol tri(meth)acrylate (PETA-PO) ), ethoxylated pentaerythritol tetra(meth)acrylate (PETTA-EO), propoxylated pentaerythritol tetra(meth)acrylate (PETTA-PO), ditrimethylolpropane tetra(meth)acrylate (DTMPTEA), dipentaerythritol penta(meth)acrylate ) acrylate, dipentaerythritol hexa(meth)acrylate (DPHA), ethoxylated dipentaerythritol hexa(meth)acrylate (DPHA-EO), propoxylated dipentaerythritol hexa(meth)acrylate (DPHA-PO), etc. Polyfunctional (meth)acrylates such as poly(meth)acrylates;
Polyfunctional styrenic monomers such as divinylbenzene (DVB);
Allyl ester monomers such as 2-(allyloxymethyl)methyl acrylate, 2-(allyloxymethyl)cyclohexyl acrylate, 2-(allyloxymethyl)acrylate derivatives;
Polyfunctional allyl ester monomers such as diallyl phthalate, diallyl isophthalate, triallyl cyanurate, triallyl isocyanurate;
2-(2-vinyloxyethoxy)ethyl (meth)acrylate (VEEA);
Urethane acrylate oligomers (for example, Shiko (registered trademark) series (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd.), CN series (manufactured by Sartomer), Unidic (registered trademark) series (manufactured by DIC Corporation), KAYARAD (registered trademark) ) UX series (manufactured by Nippon Kayaku Co., Ltd.);
Epoxy acrylate oligomers (e.g. EBECRYL series (manufactured by Daicel Allnex Corporation), NK Oligo series (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), Neopol series (manufactured by Nihon U-Pica Co., Ltd.), epoxy ester series (manufactured by Kyoeisha Chemical Co., Ltd.) Co., Ltd.));
Examples include acrylic resin acrylate oligomers (eg, HA series (manufactured by Showa Denko Materials Co., Ltd.), EBECRYL series, and KRM series (all manufactured by Daicel Allnex Co., Ltd.)).
In addition, the ethylenically unsaturated group-containing monomer (b) is used to include the above-mentioned oligomers.
 架橋性単量体としては、1,4-ブタンジオールジ(メタ)アクリレート(BDDA)、1,6-ヘキサンジオールジ(メタ)アクリレート(HDDA)、エチレングリコールジ(メタ)アクリレート(EGDA)、ジエチレングリコールジ(メタ)アクリレート(DEGDA)、トリエチレングリコールジ(メタ)アクリレート(TEGDA)、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリプロピレングリコールジ(メタ)アクリレート(TPGDA)、テトラエチレングリコールジ(メタ)アクリレート(TeEGDA)、ポリエチレングリコールジ(メタ)アクリレート(PEGDA)、ポリプロピレングリコールジ(メタ)アクリレート(PPGDA)、ポリブチレングリコールジ(メタ)アクリレート(PBGDA)、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、エトキシ化(3)トリメチロールプロパントリ(メタ)アクリレート(TMPTA-EO)、プロポキシ化(3)トリメチロールプロパントリ(メタ)アクリレート(TMPTA-PO)、ペンタエリスリトールトリ(メタ)アクリレート(PETA)、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-EO)、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-PO)、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート(PETTA-EO)、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート(PETTA-PO)、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-EO)、プロポキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-PO)、ジトリメチロールプロパンテトラ(メタ)アクリレート(DTMPTEA)、2-(アリルオキシメチル)アクリル酸メチル、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート(VEEA)、ネオペンチルグリコールジ(メタ)アクリレート(NPGDA)、又はジネオペンチルグリコールジ(メタ)アクリレート(DNPGDA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)、ペンタエリスリトールテトラ(メタ)アクリレート(PETTA)、ウレタンアクリレートオリゴマー、ジビニルベンゼン(DVB)、ジアリルフタレート、又はジアリルイソフタレート、2-(アリルオキシメチル)アクリル酸シクロヘキシル、2-(アリルオキシメチル)アクリル酸エステル誘導体が好ましく、1,4-ブタンジオールジ(メタ)アクリレート(BDDA)、1,6-ヘキサンジオールジ(メタ)アクリレート(HDDA)、エチレングリコールジ(メタ)アクリレート(EGDA)、ジエチレングリコールジ(メタ)アクリレート(DEGDA)、トリエチレングリコールジ(メタ)アクリレート(TEGDA)、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリプロピレングリコールジ(メタ)アクリレート(TPGDA)、テトラエチレングリコールジ(メタ)アクリレート(TeEGDA)、ポリエチレングリコールジ(メタ)アクリレート(PEGDA)、ポリプロピレングリコールジ(メタ)アクリレート(PPGDA)、ポリブチレングリコールジ(メタ)アクリレート(PBGDA)、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、エトキシ化(3)トリメチロールプロパントリ(メタ)アクリレート(TMPTA-EO)、プロポキシ化(3)トリメチロールプロパントリ(メタ)アクリレート(TMPTA-PO)、ペンタエリスリトールトリ(メタ)アクリレート(PETA)、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-EO)、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-PO)、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート(PETTA-EO)、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート(PETTA-PO)、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-EO)、プロポキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-PO)、ジトリメチロールプロパンテトラ(メタ)アクリレート(DTMPTEA)、2-(アリルオキシメチル)アクリル酸メチル、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレートが特に好ましい。 Examples of crosslinkable monomers include 1,4-butanediol di(meth)acrylate (BDDA), 1,6-hexanediol di(meth)acrylate (HDDA), ethylene glycol di(meth)acrylate (EGDA), and diethylene glycol. Di(meth)acrylate (DEGDA), triethylene glycol di(meth)acrylate (TEGDA), dipropylene glycol di(meth)acrylate (DPGDA), tripropylene glycol di(meth)acrylate (TPGDA), tetraethylene glycol di(meth)acrylate (TPGDA), meth)acrylate (TeEGDA), polyethylene glycol di(meth)acrylate (PEGDA), polypropylene glycol di(meth)acrylate (PPGDA), polybutylene glycol di(meth)acrylate (PBGDA), tetramethylene glycol di(meth)acrylate, Trimethylolpropane tri(meth)acrylate (TMPTA), ethoxylated (3) trimethylolpropane tri(meth)acrylate (TMPTA-EO), propoxylated (3) trimethylolpropane tri(meth)acrylate (TMPTA-PO), Pentaerythritol tri(meth)acrylate (PETA), Ethoxylated pentaerythritol tri(meth)acrylate (PETA-EO), Propoxylated pentaerythritol tri(meth)acrylate (PETA-PO), Ethoxylated pentaerythritol tetra(meth)acrylate (PETTA-EO), propoxylated pentaerythritol tetra(meth)acrylate (PETTA-PO), ethoxylated dipentaerythritol hexa(meth)acrylate (DPHA-EO), propoxylated dipentaerythritol hexa(meth)acrylate (DPHA- PO), ditrimethylolpropane tetra(meth)acrylate (DTMPTEA), methyl 2-(allyloxymethyl)acrylate, 2-(2-vinyloxyethoxy)ethyl(meth)acrylate (VEEA), neopentyl glycol di(meth)acrylate ) acrylate (NPGDA), or dineopentyl glycol di(meth)acrylate (DNPGDA), dipentaerythritol hexa(meth)acrylate (DPHA), pentaerythritol tetra(meth)acrylate (PETTA), urethane acrylate oligomer, divinylbenzene ( DVB), diallyl phthalate, or diallyl isophthalate, cyclohexyl 2-(allyloxymethyl)acrylate, 2-(allyloxymethyl)acrylic acid ester derivatives are preferred, and 1,4-butanediol di(meth)acrylate (BDDA) , 1,6-hexanediol di(meth)acrylate (HDDA), ethylene glycol di(meth)acrylate (EGDA), diethylene glycol di(meth)acrylate (DEGDA), triethylene glycol di(meth)acrylate (TEGDA), Propylene glycol di(meth)acrylate (DPGDA), tripropylene glycol di(meth)acrylate (TPGDA), tetraethylene glycol di(meth)acrylate (TeEGDA), polyethylene glycol di(meth)acrylate (PEGDA), polypropylene glycol di(meth)acrylate ( meth)acrylate (PPGDA), polybutylene glycol di(meth)acrylate (PBGDA), tetramethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate (TMPTA), ethoxylated (3) trimethylolpropane tri( meth)acrylate (TMPTA-EO), propoxylated (3) trimethylolpropane tri(meth)acrylate (TMPTA-PO), pentaerythritol tri(meth)acrylate (PETA), ethoxylated pentaerythritol tri(meth)acrylate (PETA) -EO), propoxylated pentaerythritol tri(meth)acrylate (PETA-PO), ethoxylated pentaerythritol tetra(meth)acrylate (PETTA-EO), propoxylated pentaerythritol tetra(meth)acrylate (PETTA-PO), ethoxy oxidized dipentaerythritol hexa(meth)acrylate (DPHA-EO), propoxylated dipentaerythritol hexa(meth)acrylate (DPHA-PO), ditrimethylolpropane tetra(meth)acrylate (DTMPTEA), 2-(allyloxymethyl) Particularly preferred are methyl acrylate and 2-(2-vinyloxyethoxy)ethyl (meth)acrylate.
 エチレン性不飽和基含有モノマー(b)は、下記(b-1)~(b-3)のいずれかに分類することができる。(b-1)又は(b-2)に分類されるモノマーは、比較的粘度の高いモノマーであり、(b-3)に分類されるモノマーは、比較的粘度の低いモノマーである。 The ethylenically unsaturated group-containing monomer (b) can be classified into any of the following (b-1) to (b-3). Monomers classified as (b-1) or (b-2) are monomers with relatively high viscosity, and monomers classified as (b-3) are monomers with relatively low viscosity.
 モノマー(b-1)は、ウレタン結合(-O-C(=O)NH-)又は(1-ヒドロキシ,2-オキシ)エチレン構造(-O-CH-C(OH)-構造)を有するモノマーである。
 ウレタン結合を有するモノマーとしては、上記したようなウレタンアクリレートオリゴマーが挙げられる。
 (1-ヒドロキシ,2-オキシ)エチレン構造は、エポキシ基とカルボキシル基の開環重合によって形成される構造である。このような構造を有するモノマーとしては、エポキシアクリレートオリゴマー、アクリル樹脂アクリレートオリゴマーなどが挙げられる。
Monomer (b-1) has a urethane bond (-OC(=O)NH-) or a (1-hydroxy,2-oxy)ethylene structure (-O-CH 2 -C(OH)- structure) It is a monomer.
Examples of monomers having urethane bonds include urethane acrylate oligomers as described above.
The (1-hydroxy,2-oxy)ethylene structure is a structure formed by ring-opening polymerization of an epoxy group and a carboxyl group. Examples of monomers having such a structure include epoxy acrylate oligomers and acrylic resin acrylate oligomers.
 モノマー(b-2)は、ウレタン結合及び(1-ヒドロキシ,2-オキシ)エチレン構造のいずれも有していないモノマーであって、エチレン性不飽和基数がモノマー1分子中3以上であり、かつエチレン性不飽和基濃度が4.8mmol/g以上であるモノマーである。
 モノマー(b-2)としては、上述した架橋性単量体からモノマー(b-2)の要件を有するものを選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート(TMPTA)、エトキシ化(3)トリメチロールプロパントリ(メタ)アクリレート、エトキシ化(3)トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA-EO)、ジトリメチロールプロパンテトラ(メタ)アクリレート(DTMPTEA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)、ペンタエリスリトールテトラ(メタ)アクリレート(PETTA)、又はエトキシ化ペンタエリスリトールトリ(メタ)アクリレート(PETA-EO)などがこれに該当する。
Monomer (b-2) is a monomer having neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, the number of ethylenically unsaturated groups is 3 or more in one monomer molecule, and The monomer has an ethylenically unsaturated group concentration of 4.8 mmol/g or more.
As the monomer (b-2), one having the requirements of the monomer (b-2) can be selected from the above-mentioned crosslinkable monomers, such as trimethylolpropane tri(meth)acrylate (TMPTA), ethoxylated (3) Trimethylolpropane tri(meth)acrylate, ethoxylated (3) trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol hexa (meth)acrylate (DPHA-EO), ditrimethylolpropane tetra(meth)acrylate (DTMPTEA), dipentaerythritol hexa(meth)acrylate (DPHA), pentaerythritol tetra(meth)acrylate (PETTA), or ethoxylated pentaerythritol This includes tri(meth)acrylate (PETA-EO) and the like.
 モノマー(b-3)は、ウレタン結合及び(1-ヒドロキシ,2-オキシ)エチレン構造を有していないモノマーであって、エチレン性不飽和基数がモノマー1分子中3未満であるという要件及びエチレン性不飽和基濃度が4.8mmol/g未満であるという要件の少なくとも一方を満たすモノマーである。
 モノマー(b-3)として、上述した単官能単量体及び架橋性単量体からモノマー(b-3)の要件を有するものを選択することができ、例えば2-(アリルオキシメチル)アクリル酸メチル(AOMA)、1,4-ブタンジオールジ(メタ)アクリレート(BDDA)、1,6-ヘキサンジオールジ(メタ)アクリレート(HDDA)、又は環状トリメチロールプロパンホルマールアクリレート(CTFA)、などがこれに該当する。
Monomer (b-3) is a monomer that does not have a urethane bond or a (1-hydroxy,2-oxy)ethylene structure, and the number of ethylenically unsaturated groups in one molecule of the monomer is less than 3. The monomer satisfies at least one of the requirements that the concentration of sexually unsaturated groups is less than 4.8 mmol/g.
As the monomer (b-3), one having the requirements of the monomer (b-3) can be selected from the above-mentioned monofunctional monomers and crosslinkable monomers, such as 2-(allyloxymethyl)acrylic acid. Examples include methyl (AOMA), 1,4-butanediol di(meth)acrylate (BDDA), 1,6-hexanediol di(meth)acrylate (HDDA), or cyclic trimethylolpropane formal acrylate (CTFA). Applicable.
 エチレン性不飽和基含有モノマー(b)は、モノマー(b-1)のみ、モノマー(b-2)のみ、又はモノマー(b-3)のみを用いてもよいし、(b-1)、(b-2)及び(b-3)の2以上を用いてもよいが、本発明の組成物を基材に塗工しやすいという観点から、前記エチレン性不飽和基含有モノマー(b)は、モノマー(b-1)及びモノマー(b-2)の少なくとも1種と、モノマー(b-3)とで構成されるか、またはモノマー(b-3)のみで構成されることが好ましい。 As the ethylenically unsaturated group-containing monomer (b), only monomer (b-1), only monomer (b-2), or only monomer (b-3) may be used, or (b-1), ( Although two or more of b-2) and (b-3) may be used, from the viewpoint of ease of coating the composition of the present invention on a substrate, the ethylenically unsaturated group-containing monomer (b) is It is preferable to be composed of at least one of monomer (b-1) and monomer (b-2) and monomer (b-3), or only monomer (b-3).
 本発明の組成物を基材に塗工しやすいという観点からは、前記エチレン性不飽和基含有モノマー(b)の温度25℃での粘度が2000mPa・s以下であることも好ましい。エチレン性不飽和基含有モノマー(b)として2種以上用いる場合には、2種以上のモノマー(b)を混合した状態で、前記範囲の粘度を満たすことが好ましい。
 なお、モノマーの粘度測定は、(b-1)又は(b-2)に該当するモノマーを用いる場合と、(b-1)及び(b-2)の少なくとも1種と、(b-3)を用いる場合には、東機産業(株)製、TVE-22Hを用い、サンプル量0.2mL、ローター径が直径1.9cmで、回転速度が20rpm、レンジ“H”である条件で測定すればよい。また、(b-3)に該当するモノマーのみを用いる場合には、東機産業(株)製、TV-100ELを用い、サンプル量1.1mL、ローター径が直径4.7cmであり、回転速度が5rpm、またレンジは粘度が~100mPa・sのときは“M”、100~200mPa・sのときは“2.5M”、200mPa・s以上のときは“5M”である条件で測定すればよい。
From the viewpoint of ease of coating the composition of the present invention on a substrate, it is also preferable that the viscosity of the ethylenically unsaturated group-containing monomer (b) at a temperature of 25° C. is 2000 mPa·s or less. When two or more types of ethylenically unsaturated group-containing monomers (b) are used, it is preferable that the viscosity within the above range is satisfied in a mixed state of the two or more types of monomers (b).
In addition, the viscosity measurement of the monomer is carried out in two cases: (b-1) or (b-2), at least one of (b-1) and (b-2), and (b-3). When using TVE-22H manufactured by Toki Sangyo Co., Ltd., the sample volume is 0.2 mL, the rotor diameter is 1.9 cm, the rotation speed is 20 rpm, and the range is "H". Bye. In addition, when using only the monomer corresponding to (b-3), use TV-100EL manufactured by Toki Sangyo Co., Ltd., the sample amount is 1.1 mL, the rotor diameter is 4.7 cm, and the rotation speed is If the viscosity is 5 rpm, and the range is "M" when the viscosity is ~100 mPa・s, "2.5M" when the viscosity is 100 to 200 mPa・s, and "5M" when the viscosity is 200 mPa・s or more, good.
 前記エチレン性不飽和基含有モノマー(b)の温度25℃での粘度は、1000mPa・s以下が好ましく、より好ましくは500mPa・s以下であり、下限は特に限定されないが、例えば0.5mPa・sであってもよい。 The viscosity of the ethylenically unsaturated group-containing monomer (b) at a temperature of 25° C. is preferably 1000 mPa·s or less, more preferably 500 mPa·s or less, and the lower limit is not particularly limited, but for example, 0.5 mPa·s. It may be.
 1-3.アンモニア(c)
 本発明の組成物は、アンモニア(c)を組成物100質量%中、0.05~4.5質量%含む。組成物が前記範囲のアンモニア(c)を含むことで、組成物の粘度の上昇を抑制することができる。
1-3. Ammonia (c)
The composition of the present invention contains 0.05 to 4.5% by mass of ammonia (c) based on 100% by mass of the composition. When the composition contains ammonia (c) within the above range, an increase in the viscosity of the composition can be suppressed.
 アンモニア(c)の組成物100質量%中の含有量は、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましい。また3質量%以下が好ましく、1.5質量%以下がより好ましい。すなわち、アンモニア(c)の組成物100質量%中の含有量は、0.05~3質量%が好ましく、0.1~1.5質量%がより好ましく、0.2~1.5質量%が更に好ましい。アンモニア量が過剰になると、臭気、硬化組成物の黄変、硬化組成物の外観悪化の問題が生じやすくなる。 The content of ammonia (c) in 100% by mass of the composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.2% by mass or more. Further, it is preferably 3% by mass or less, more preferably 1.5% by mass or less. That is, the content of ammonia (c) in 100% by mass of the composition is preferably 0.05 to 3% by mass, more preferably 0.1 to 1.5% by mass, and 0.2 to 1.5% by mass. is even more preferable. If the amount of ammonia is excessive, problems such as odor, yellowing of the cured composition, and deterioration of the appearance of the cured composition are likely to occur.
 エチレン性不飽和基含有モノマー(b)が、モノマー(b-3)のみで構成される場合には、アンモニア(c)量は、組成物100質量%に対して0.05質量%以上、1.5質量%以下が好ましく、0.05質量%以上、0.5質量%以下がより好ましい。また、エチレン性不飽和基含有モノマー(b)が、モノマー(b-1)及び(b-2)の少なくとも1種と、モノマー(b-3)とで構成される場合には、アンモニア(c)量は、組成物100質量%に対して0.1質量%以上、1質量%以下が好ましい。 When the ethylenically unsaturated group-containing monomer (b) is composed only of the monomer (b-3), the amount of ammonia (c) is 0.05% by mass or more based on 100% by mass of the composition, and 1% by mass or more. The content is preferably .5% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less. Furthermore, when the ethylenically unsaturated group-containing monomer (b) is composed of at least one of the monomers (b-1) and (b-2) and the monomer (b-3), ammonia (c ) The amount is preferably 0.1% by mass or more and 1% by mass or less based on 100% by mass of the composition.
 アンモニア量は、後記する実施例で示す通り、ガスクロマトグラフィーを用いて、検量線法(内部標準)により定量することができる。 The amount of ammonia can be quantified by the calibration curve method (internal standard) using gas chromatography, as shown in the examples below.
 1-4.重合開始剤
 本発明の組成物は、重合開始剤を含んでいてもよい。重合開始剤としては、例えば、光重合開始剤、熱重合開始剤などが挙げられ、それぞれ単独で用いてもよく、併用してもよい。なお、光重合開始剤のなかには熱重合開始剤として作用するものがあり、また、熱重合開始剤のなかには光重合開始剤として作用するものがあるので、両性質を有するものは、光照射または加熱により、活性エネルギー線硬化型樹脂組成物を硬化させることができる。重合開始剤のなかでは、形成された被膜、活性エネルギー線硬化型樹脂組成物が適用される基材などに熱履歴を与えないことから、光重合開始剤が好ましい。
1-4. Polymerization initiator The composition of the present invention may contain a polymerization initiator. Examples of the polymerization initiator include photopolymerization initiators and thermal polymerization initiators, each of which may be used alone or in combination. Note that some photopolymerization initiators act as thermal polymerization initiators, and some thermal polymerization initiators act as photopolymerization initiators, so those that have both properties should be treated with light irradiation or heating. Accordingly, the active energy ray-curable resin composition can be cured. Among the polymerization initiators, photopolymerization initiators are preferred because they do not impart thermal history to the formed film, the substrate to which the active energy ray-curable resin composition is applied, and the like.
 熱重合開始剤としては、例えば、2,2’-アゾビス-(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-(2,4’-ジメチルバレロニトリル)、ベンゾイルパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、tert-ブチルパーオキシ-2-エチルヘキサノエートなどの油溶性開始剤、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウムなどの過硫酸塩;過酸化水素などの水溶性過酸化物、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩などの水溶性アゾ化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの熱重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of the thermal polymerization initiator include 2,2'-azobis-(2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis-(2,4'- oil-soluble initiators such as dimethylvaleronitrile), benzoyl peroxide, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, tert-butylperoxy-2-ethylhexanoate, Persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; water-soluble peroxides such as hydrogen peroxide, and water-soluble azo compounds such as 2,2'-azobis(2-amidinopropane) dihydrochloride, etc. However, the present invention is not limited to these examples. These thermal polymerization initiators may be used alone or in combination of two or more.
 光重合開始剤としては、例えば、ベンゾフェノン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オキシフェニル-アセチックアシッド2-[2-オキソ-2-フェニルアセトキシエトキシ]-エチルエステル、オキシフェニルアセチックアシッド2-[2-ヒドロキシエトキシ]-エチルエステル、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]2-モルホリノプロパン-1-オン、2-モルホリノプロパン-1-オン、ヨードニウム、スルホニウム塩、ジアゾニウム塩、(4-メチルフェニル[4-(2-メチルプロピル)フェニル])-ヘキサフルオロフォスフェート、ジエチルチオキサントン、イソプロピルチオキサントンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの光重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of photopolymerization initiators include benzophenone, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, and oxyphenyl-acetic acid 2-[ 2-oxo-2-phenylacetoxyethoxy]-ethyl ester, oxyphenylacetic acid 2-[2-hydroxyethoxy]-ethyl ester, 1-hydroxycyclohexylphenyl ketone, 2,4,6-trimethylbenzoyl-diphenyl-phos Fin oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)2-hydroxy-2 -Methylpropan-1-one, 2-methyl-1-[4-(methylthio)phenyl]2-morpholinopropan-1-one, 2-morpholinopropan-1-one, iodonium, sulfonium salt, diazonium salt, (4 -methylphenyl[4-(2-methylpropyl)phenyl])-hexafluorophosphate, diethylthioxanthone, isopropylthioxanthone and the like, but the present invention is not limited to these examples. These photopolymerization initiators may be used alone or in combination of two or more.
 重合開始剤の量は、エチレン性不飽和基含有モノマー(b)100質量部に対して、例えば1質量部以上、25質量部以下である。 The amount of the polymerization initiator is, for example, 1 part by mass or more and 25 parts by mass or less, based on 100 parts by mass of the ethylenically unsaturated group-containing monomer (b).
 1-5.その他成分
 本発明の組成物は、シリカ粒子(a)、エチレン性不飽和基含有モノマー(b)、アンモニア(c)及び好ましく用いられる重合開始剤以外に、溶剤を含んでいてもよいが、本発明の組成物は所定量のアンモニアにより粘度低減効果を発揮することができるため、溶剤は含まれていないか、含まれていても少量であることが好ましい。従って、本発明の組成物には、溶剤が含まれていないか、または含まれている場合には組成物100質量%中、3.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましい。溶剤が含まれていない、又は含まれる溶剤量が少ないことは、環境への負荷が低減できる点で好ましい。また溶剤が所定以上含まれていると、乾燥工程が必要になり生産性が低下する他、溶剤が所定以上含まれている場合に乾燥工程を省略すると、組成物の硬化物の外観が悪化したり強度が低下するという不具合がある。このような観点からも溶剤が含まれていない又は溶剤量が少ないことは望ましい。
 溶剤量は、後記する実施例で示す通り、ガスクロマトグラフィーを用いて、検量線法(内部標準)により定量することができる。
1-5. Other components The composition of the present invention may contain a solvent in addition to the silica particles (a), the ethylenically unsaturated group-containing monomer (b), ammonia (c), and the preferably used polymerization initiator. Since the composition of the invention can exhibit a viscosity-reducing effect with a predetermined amount of ammonia, it is preferable that the composition does not contain a solvent or contains only a small amount of solvent. Therefore, the composition of the present invention preferably does not contain a solvent, or if it does contain a solvent, it is preferably 3.0% by mass or less, and 2.0% by mass based on 100% by mass of the composition. It is more preferable that it is below. It is preferable that no solvent is contained or that the amount of solvent contained is small because the load on the environment can be reduced. Furthermore, if the solvent is contained in excess of a certain amount, a drying process will be required, which will reduce productivity.In addition, if the drying process is omitted when the solvent is contained in more than a certain amount, the appearance of the cured product of the composition will deteriorate. There is a problem that the strength decreases. From this point of view as well, it is desirable that no solvent be included or that the amount of solvent be small.
The amount of solvent can be quantified by a calibration curve method (internal standard) using gas chromatography, as shown in the Examples below.
 また、本発明の組成物は、シリカ粒子(a)、エチレン性不飽和基含有モノマー(b)、アンモニア(c)重合開始剤、溶剤以外の他の添加剤が含まれていてもよいが、他の添加剤は、組成物100質量%中、3質量%以下が好ましく、2質量%以下がより好ましく、更に好ましくは1質量%以下である。 Further, the composition of the present invention may contain additives other than the silica particles (a), the ethylenically unsaturated group-containing monomer (b), the ammonia (c) polymerization initiator, and the solvent, The content of other additives is preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less based on 100% by mass of the composition.
 1-6.組成物の粘度
 本発明の組成物は、アンモニア(c)が含まれているため、粘度の上昇が抑制されている。エチレン性不飽和基含有モノマー(b)の粘度(2種以上用いている場合には、混合物の粘度)に対する組成物の粘度の比は、90以下が好ましく、70以下がより好ましく、60以下が更に好ましく、下限は特に限定されないが、例えば3以上であってもよいし、5以上であってもよい(すなわち、90~3が好ましく、70~5がより好ましく、60~5が更に好ましい)。なお、組成物の粘度の測定は、組成物に含まれるエチレン性不飽和基含有モノマー(b)の種類に応じて、そのエチレン性不飽和基含有モノマー(b)に適した上述の測定方法をそのまま採用すればよい。
1-6. Viscosity of Composition Since the composition of the present invention contains ammonia (c), an increase in viscosity is suppressed. The ratio of the viscosity of the composition to the viscosity of the ethylenically unsaturated group-containing monomer (b) (if two or more types are used, the viscosity of the mixture) is preferably 90 or less, more preferably 70 or less, and 60 or less. More preferably, the lower limit is not particularly limited, but may be, for example, 3 or more, or 5 or more (that is, 90-3 is preferable, 70-5 is more preferable, and 60-5 is still more preferable). . The viscosity of the composition can be measured by using the above-mentioned measuring method suitable for the ethylenically unsaturated group-containing monomer (b) depending on the type of the ethylenically unsaturated group-containing monomer (b) contained in the composition. Just use it as is.
 2.製造方法
 本発明の組成物は、シリカ粒子(a)の合成工程(A)、及びモノマー置換工程(E)を含む製造方法により調製できる。該製造方法は、工程(A)と工程(E)の間に、更に表面処理工程(B)を含んでいてもよいし、モノマー置換工程(E)の前(、かつ表面処理工程(B)を含む場合には、工程(B)の後)に、限外ろ過工程(C)及びイオン交換工程(D)を含んでいてもよい。本発明の組成物が含むアンモニア(c)は、いずれの段階で混合されてもよい。
2. Production method The composition of the present invention can be prepared by a production method including a synthesis step (A) of silica particles (a) and a monomer substitution step (E). The manufacturing method may further include a surface treatment step (B) between the step (A) and the step (E), or before the monomer substitution step (E) (and the surface treatment step (B)). In the case of including step (B), an ultrafiltration step (C) and an ion exchange step (D) may be included after step (B). Ammonia (c) contained in the composition of the present invention may be mixed at any stage.
 2-1.シリカ粒子(a)の合成工程(A)
 シリカ粒子(a)の合成工程(A)(以下、単に工程(A)ともいう)では、アルコキシシランを塩基性触媒、及び水の存在下で加水分解縮合することによりシリカ粒子を製造する。
2-1. Synthesis step (A) of silica particles (a)
In the synthesis step (A) of silica particles (a) (hereinafter also simply referred to as step (A)), silica particles are produced by hydrolyzing and condensing alkoxysilane in the presence of a basic catalyst and water.
 前記アルコキシシランは、ケイ素原子の置換基としてアルコキシ基を有する化合物であり、ケイ素原子の置換基として、アルコキシ基の他に、炭素数2~6のアルキル基、又は、炭素数6~10の芳香族炭化水素基を有していてもよい。また、前記アルキル基の水素原子は、ハロゲン原子、ビニル基、グリシジル基、メルカプト基、アミノ基等で置換されていてもよい。 The alkoxysilane is a compound having an alkoxy group as a substituent on a silicon atom, and as a substituent on a silicon atom, in addition to the alkoxy group, an alkyl group having 2 to 6 carbon atoms or an aromatic group having 6 to 10 carbon atoms can be used as a substituent for the silicon atom. It may have a group hydrocarbon group. Furthermore, the hydrogen atom of the alkyl group may be substituted with a halogen atom, a vinyl group, a glycidyl group, a mercapto group, an amino group, or the like.
 アルコキシシランとしては、アルコキシ基と、無置換又は置換アルキル基がケイ素原子に結合した化合物を挙げることができ、1~4官能のアルコキシシランを用いることができ、特にテトラメトキシシラン、テトラエトキシシラン等の4官能性アルコキシシランが好ましい。 Examples of the alkoxysilane include compounds in which an alkoxy group and an unsubstituted or substituted alkyl group are bonded to a silicon atom, and mono- to tetrafunctional alkoxysilanes can be used, particularly tetramethoxysilane, tetraethoxysilane, etc. Preferred are tetrafunctional alkoxysilanes.
 アルコキシシランを加水分解・縮合する反応液中、アルコキシシランの濃度は、例えば0.1mmol/g以上であり、3mmol/g以下である。反応液中、アルコキシシランの濃度がこの範囲にあると、反応速度の制御が容易となり、粒子径を均一にすることができる。 In the reaction solution for hydrolyzing and condensing alkoxysilane, the concentration of alkoxysilane is, for example, 0.1 mmol/g or more and 3 mmol/g or less. When the concentration of alkoxysilane in the reaction solution is within this range, the reaction rate can be easily controlled and the particle size can be made uniform.
 また、前記反応液中、水の濃度は、仕込み時(加水分解・縮合の開始前)の量を基準として、2mmol/g~25mmol/gであることが好ましく、水とアルコキシシランのモル比(水/アルコキシシラン)は、4~10が好ましい。 In addition, the concentration of water in the reaction solution is preferably 2 mmol/g to 25 mmol/g based on the amount at the time of preparation (before the start of hydrolysis/condensation), and the molar ratio of water to alkoxysilane ( water/alkoxysilane) is preferably 4 to 10.
 前記塩基性触媒としては、アンモニア類、アミン類、第4級アンモニウム化合物等が挙げられ、中でも、粒子径の制御が容易である観点及び得られるシリカ粒子の純度を高める観点から、アンモニア類、アミン類が好ましい。触媒効果と除去容易性を兼ね備える観点からは、アンモニア類が好ましく、アンモニアが特に好ましい。 Examples of the basic catalyst include ammonias, amines, quaternary ammonium compounds, etc. Among them, ammonias, amines, etc. Preferably. From the viewpoint of both catalytic effect and ease of removal, ammonias are preferred, and ammonia is particularly preferred.
 反応液中、塩基性触媒の濃度は、0.8mmol/g~2mmol/gであることが好ましい。また、塩基性触媒と、塩基性触媒と水との合計の質量比(塩基性触媒/(塩基性触媒+水))は、0.2以上であり、0.32以下であることが好ましい。 The concentration of the basic catalyst in the reaction solution is preferably 0.8 mmol/g to 2 mmol/g. Further, the total mass ratio of the basic catalyst and the basic catalyst and water (basic catalyst/(basic catalyst + water)) is preferably 0.2 or more and 0.32 or less.
 アルコキシシランを加水分解・縮合する際には、さらに希釈剤を共存させてもよい。希釈剤としては水溶性有機溶媒が好ましく、水溶性有機溶媒としては、アルコール溶媒が好ましく、メタノール、エタノール、プロパノール、イソプロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、ペンチルアルコール等のモノオール類がより好ましく、特にメタノールが好ましい。 When hydrolyzing and condensing alkoxysilane, a diluent may be further present. The diluent is preferably a water-soluble organic solvent, and the water-soluble organic solvent is preferably an alcohol solvent, such as monools such as methanol, ethanol, propanol, isopropyl alcohol, n-butyl alcohol, t-butyl alcohol, or pentyl alcohol. More preferred, particularly methanol.
 反応液中、希釈剤は、40質量%以上、90質量%以下であることが好ましい。また、希釈剤は、アルコキシシランと水の合計100質量部に対して、120質量部以上、500質量部以下であることが好ましい。ただし、アルコキシシランの加水分解・縮合により、アルコールの量が変化するので、前記希釈剤の量は、仕込み時(加水分解・縮合の開始前)の量を基準とする。 The diluent content in the reaction solution is preferably 40% by mass or more and 90% by mass or less. Moreover, it is preferable that the diluent is 120 parts by mass or more and 500 parts by mass or less with respect to a total of 100 parts by mass of alkoxysilane and water. However, since the amount of alcohol changes due to hydrolysis and condensation of the alkoxysilane, the amount of the diluent is based on the amount at the time of preparation (before the start of hydrolysis and condensation).
 反応液には、アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類;イソオクタン、シクロヘキサン等のパラフィン類;ジオキサン、ジエチルエーテル、等のエーテル類;ベンゼン、トルエン等の芳香族炭化水素類;等の疎水性有機溶媒が含まれていてもよい。これらの疎水性有機溶媒を用いる場合、分散性を向上させるため界面活性剤を添加してもよい。 The reaction solution contains ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; paraffins such as isooctane and cyclohexane; ethers such as dioxane and diethyl ether; aromatic hydrocarbons such as benzene and toluene; etc. Hydrophobic organic solvents may also be included. When using these hydrophobic organic solvents, a surfactant may be added to improve dispersibility.
 上記各成分は、適当な順で混合してもよいが、例えば、アルコキシシラン以外の成分を予め混合した予備混合液を調製した後、この予備混合液にアルコキシシランを添加することによって混合してもよい。 The above components may be mixed in an appropriate order, but for example, after preparing a premixed solution in which components other than the alkoxysilane are mixed in advance, the alkoxysilane may be added to this premixed solution. Good too.
 アルコキシシランを加水分解・縮合する際、反応温度は、20~70℃が好ましく、加水分解・縮合継続時間は、30分~100時間であることが好ましい。 When hydrolyzing and condensing alkoxysilane, the reaction temperature is preferably 20 to 70°C, and the duration of hydrolysis and condensation is preferably 30 minutes to 100 hours.
 2-2.表面処理工程(B)
 本発明の好ましい製造方法は、表面処理工程(B)(以下、単に工程(B)ともいう)を有していることが好ましい。工程(B)では、上述のシランカップリング剤と、前記工程(A)で得られるアルコキシシランの加水分解・縮合後の反応液とを混合することが好ましい。混合に際しては、工程(A)で得られるアルコキシシランの加水分解・縮合後の反応液に、シランカップリング剤を添加することが好ましく、特に滴下するなどしてシランカップリング剤を複数回に分けて添加することが好ましい。
2-2. Surface treatment process (B)
The preferred manufacturing method of the present invention preferably includes a surface treatment step (B) (hereinafter also simply referred to as step (B)). In step (B), it is preferable to mix the above-mentioned silane coupling agent and the reaction solution obtained after hydrolysis and condensation of the alkoxysilane obtained in step (A). When mixing, it is preferable to add a silane coupling agent to the reaction solution after hydrolysis and condensation of the alkoxysilane obtained in step (A). It is preferable to add it.
 シランカップリング剤は、工程(A)で用いたアルコキシシランの量(仕込み量)100質量部に対して、1~30質量部程度、好ましくは7~15質量部用いることが好ましい。シランカップリング剤の全量と、工程(A)の前記反応液を混合した後は、例えば10~30時間程度撹拌することが好ましい。工程(B)は30~60℃の温度で行われることが好ましい。 The silane coupling agent is preferably used in an amount of about 1 to 30 parts by weight, preferably 7 to 15 parts by weight, based on 100 parts by weight of the alkoxysilane used in step (A). After mixing the entire amount of the silane coupling agent and the reaction solution of step (A), it is preferable to stir the mixture for about 10 to 30 hours, for example. Preferably, step (B) is carried out at a temperature of 30 to 60°C.
 2-3.限外ろ過工程(C)
 工程(A)の後、又は工程(B)の後、限外ろ過膜によりろ過する限外ろ過工程(C)(以下、単に工程(C)ともいう)を行うことが好ましい。工程(C)を行うことで、加水分解・縮合後の反応液に含まれていた水、塩基性触媒や必要に応じて添加される希釈剤、ケトン類等が除去されると共に、前記工程(B)でシリカ粒子表面を被覆することができなかった余剰の表面処理剤を除去することができる。工程(C)において、限外ろ過膜によりろ過しながら、前記反応液の分散媒(反応溶媒)とは異なるアルコール系溶媒等の分散媒を添加してもよい。溶媒置換では、シリカ粒子(表面処理されている場合には、表面処理シリカ粒子)の濃度が5~20質量%程度になるまで濃縮して、シリカ粒子分散体とすることが好ましい。
2-3. Ultrafiltration process (C)
After step (A) or after step (B), it is preferable to perform an ultrafiltration step (C) (hereinafter also simply referred to as step (C)) of filtering with an ultrafiltration membrane. By performing step (C), water, basic catalyst, diluent added as necessary, ketones, etc. contained in the reaction solution after hydrolysis/condensation are removed, and the step (C) is performed. The excess surface treatment agent that could not cover the silica particle surface in B) can be removed. In step (C), a dispersion medium such as an alcoholic solvent different from the dispersion medium (reaction solvent) of the reaction liquid may be added while filtering through an ultrafiltration membrane. In the solvent substitution, it is preferable to concentrate the silica particles (or surface-treated silica particles if surface-treated) to a concentration of about 5 to 20% by mass to form a silica particle dispersion.
 2-4.イオン交換工程(D)
 工程(C)後のシリカ粒子分散体に、更に陽イオン交換樹脂で処理するイオン交換工程(D)(以下、単に工程(D)ともいう)を行うことが好ましく、工程(D)により粒子表面に吸着した塩基性触媒などを除去できる。陽イオン交換樹脂は、従来公知のものを使用可能であり、弱酸性陽イオン交換樹脂、強酸性陽イオン交換樹脂のいずれを用いてもよい。弱酸性陽イオン交換樹脂としては、例えばアンバーライトIRC-76(オルガノ(株)製)、ダイヤイオンWK10、WK20(三菱化学(株)製)、レバチットCNP80(バイエル(株)製)等が挙げられる。強酸性陽イオン交換樹脂としては、例えばアンバーリスト16、アンバーライトIR-120B(オルガノ(株)製)、ダイヤイオンPK-208、PK-228、PK-216、(三菱化学(株)製)、デュオライトC-26、デュオライトES-26(住友化学(株)製)、MSC-1、88(ダウ社製)などが挙げられる。
2-4. Ion exchange process (D)
It is preferable that the silica particle dispersion after step (C) is further subjected to an ion exchange step (D) (hereinafter simply referred to as step (D)) in which the silica particle dispersion is treated with a cation exchange resin. It can remove basic catalysts etc. adsorbed on. Conventionally known cation exchange resins can be used, and either a weakly acidic cation exchange resin or a strongly acidic cation exchange resin may be used. Examples of weakly acidic cation exchange resins include Amberlite IRC-76 (manufactured by Organo Corporation), Diaion WK10, WK20 (manufactured by Mitsubishi Chemical Corporation), and Revachit CNP80 (manufactured by Bayer Corporation). . Examples of strong acidic cation exchange resins include Amberlyst 16, Amberlyte IR-120B (manufactured by Organo Corporation), Diaion PK-208, PK-228, PK-216, (manufactured by Mitsubishi Chemical Corporation), Examples include Duolite C-26, Duolite ES-26 (manufactured by Sumitomo Chemical Co., Ltd.), and MSC-1, 88 (manufactured by Dow Corporation).
 2-5.モノマー置換工程(E)
 モノマー置換工程(E)(以下、単に工程(E)ともいう)では、工程(A)~工程(D)のいずれかで得られるシリカ粒子分散体と、エチレン性不飽和基含有モノマー(b)とを混合し、工程(A)~工程(D)のいずれかに含まれる分散媒を留去する。分散媒の留去は、遠心分離や、減圧蒸留などによる溶媒留去などの固液分離手段によって除去すればよく、これによって工程(A)~工程(D)のいずれかに含まれる分散媒が、エチレン性不飽和基含有モノマー(b)に置き換えられる。工程(E)において分散媒を留去する条件は特に限定されないが、例えば、温度は20~60℃、圧力は1~400hPa、時間は1~60時間とすればよい。
2-5. Monomer substitution step (E)
In the monomer substitution step (E) (hereinafter also simply referred to as step (E)), the silica particle dispersion obtained in any of steps (A) to (D) and the ethylenically unsaturated group-containing monomer (b) and the dispersion medium contained in any one of steps (A) to (D) is distilled off. The dispersion medium may be removed by solid-liquid separation means such as centrifugation or distillation under reduced pressure, thereby removing the dispersion medium contained in any of steps (A) to (D). , is replaced by the ethylenically unsaturated group-containing monomer (b). The conditions for distilling off the dispersion medium in step (E) are not particularly limited, but for example, the temperature may be 20 to 60°C, the pressure may be 1 to 400 hPa, and the time may be 1 to 60 hours.
 また、本発明の組成物が含むアンモニア(c)は、工程(A)の塩基触媒としてのアンモニアであってもよいし、工程(B)~工程(E)の少なくともいずれかの工程でアンモニアを混合することによるものであってもよい。アンモニア(c)の量は、工程(A)~(E)のいずれかの段階で混合されるアンモニアの混合量、工程(E)におけるモノマー混合前のpH、工程(E)の実施条件などにより調整することができる。工程(E)におけるモノマー混合前のpHは、5.5~11.5であることが好ましい。 Further, the ammonia (c) contained in the composition of the present invention may be ammonia used as a base catalyst in step (A), or may be ammonia used as a base catalyst in step (B) to step (E). It may also be by mixing. The amount of ammonia (c) depends on the amount of ammonia mixed in any of steps (A) to (E), the pH before monomer mixing in step (E), the implementation conditions of step (E), etc. Can be adjusted. The pH before monomer mixing in step (E) is preferably 5.5 to 11.5.
 本発明の組成物は、粘度の上昇を抑制することができるため、接着材料、歯科用材料、光学部材、コーティング材料(ハードコート用、アンチグレア用)、ナノコンポジット材料、研磨材、ナノインプリント、インクジェット、レジスト等の精密微細構造を形成する用途等のコーティング組成物として有用である。 Since the composition of the present invention can suppress an increase in viscosity, it can be used in adhesive materials, dental materials, optical members, coating materials (for hard coats, anti-glare), nanocomposite materials, abrasives, nanoimprints, ink jets, etc. It is useful as a coating composition for forming precise microstructures such as resists.
 本願は、2022年7月22日に出願された日本国特許出願第2022-117481号に基づく優先権の利益を主張するものである。2022年7月22日に出願された日本国特許出願第2022-117481号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2022-117481 filed on July 22, 2022. The entire contents of the specification of Japanese Patent Application No. 2022-117481 filed on July 22, 2022 are incorporated by reference into this application.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples. The present invention is not limited by the following examples, and it is of course possible to carry out the present invention with appropriate changes within the scope of the above and below gist, and any of these may fall within the technical scope of the present invention. Included in the range.
 下記実施例及び比較例を以下の方法で評価した。 The following examples and comparative examples were evaluated by the following method.
 (1)シリカ粒子の粒子径の測定
 シリカ粒子を、日本電子(株)製走査型電子顕微鏡JSM-7600Fで撮影し、撮影したSEM像から任意の粒子50個について、直径(長径)をノギスで測定し、50個の直径の算術平均値を平均一次粒子径とした。また、1個のシリカ粒子について長径と短径とを測定して球形比(長径/短径)を算出し、50個のシリカ粒子について測定した球形比を平均することにより平均球形比を求めた。なお走査型電子顕微鏡での写真撮影において、写真1枚の視野の中に粒子が50~100個となるように測定倍率を設定して行った。
(1) Measurement of particle diameter of silica particles Silica particles were photographed using a scanning electron microscope JSM-7600F manufactured by JEOL Ltd., and the diameter (longer axis) of 50 arbitrary particles from the photographed SEM image was measured using a caliper. The arithmetic mean value of 50 diameters was taken as the average primary particle diameter. In addition, the sphericity ratio (major axis/breadth axis) was calculated by measuring the major axis and minor axis of one silica particle, and the average spherical ratio was determined by averaging the spherical ratios measured for 50 silica particles. . Note that when taking photographs with a scanning electron microscope, the measurement magnification was set so that 50 to 100 particles were found in the field of view of one photograph.
 (2)モノマーの粘度測定
 上記(b-3)に該当するモノマーを下記の方法で測定した。サンプルを所定量ステージの上にのせ、下記条件のもと、回転開始から1分後の粘度を記録した。
 装置:東機産業(株)製、TV-100EL
 測定温度:25℃
 ローター径:直径4.7cm
 回転速度:5rpm
 レンジ:M(~100mPa・s)
     2.5M(100~200mPa・s)
     5M(200~mPa・s)
 サンプル量:1.1mL
(2) Measurement of viscosity of monomer The monomer corresponding to (b-3) above was measured by the following method. A predetermined amount of the sample was placed on the stage, and the viscosity was recorded 1 minute after the start of rotation under the following conditions.
Equipment: Manufactured by Toki Sangyo Co., Ltd., TV-100EL
Measurement temperature: 25℃
Rotor diameter: 4.7cm in diameter
Rotation speed: 5rpm
Range: M (~100mPa・s)
2.5M (100-200mPa・s)
5M (200~mPa・s)
Sample amount: 1.1mL
 (3)シリカ粒子のモノマー分散体の粘度測定
 シリカ粒子のモノマー分散体の粘度は、粘度の値に応じて、(2)と同様の手法で測定した。
(3) Viscosity measurement of monomer dispersion of silica particles The viscosity of the monomer dispersion of silica particles was measured according to the viscosity value using the same method as in (2).
 (4)アンモニア含有量の測定方法
 ガラスバイアルに分散体1g、アニソール(内部標準物質)0.02g、アセトニトリル4g秤量することで測定用サンプルを得た。孔径0.45μmのシリンジフィルターでサンプルをろ過後、ガスクロマトグラフィー(GC:NexisGC-2030(島津製作所(株)製、カラム:DB-WAX(アジレント・テクノロジー(株)製)によりアンモニア量を分析した。
 測定法:検量線法(内部標準)
 カラム長:30m
 カラム内径:0.45mm
 キャピラリー内膜厚:0.85μm
 キャリアガス:ヘリウム
 カラム温度:40℃2分保持、10℃/minで180℃まで昇温、50℃/minで230℃まで昇温、230℃で10分保持
 注入口温度:230℃
 検出器温度:BID(230℃)
 検出物質と時間例:アンモニア(0.4min),アニソール(6.6min)
(4) Method for measuring ammonia content A sample for measurement was obtained by weighing 1 g of the dispersion, 0.02 g of anisole (internal standard substance), and 4 g of acetonitrile into a glass vial. After filtering the sample with a syringe filter with a pore size of 0.45 μm, the amount of ammonia was analyzed by gas chromatography (GC: Nexis GC-2030 (manufactured by Shimadzu Corporation), column: DB-WAX (manufactured by Agilent Technologies). .
Measurement method: Calibration curve method (internal standard)
Column length: 30m
Column inner diameter: 0.45mm
Capillary inner membrane thickness: 0.85μm
Carrier gas: Helium Column temperature: Hold at 40°C for 2 minutes, raise the temperature to 180°C at 10°C/min, raise the temperature to 230°C at 50°C/min, hold at 230°C for 10 minutes Inlet temperature: 230°C
Detector temperature: BID (230℃)
Detection substance and time example: ammonia (0.4 min), anisole (6.6 min)
 (5)溶剤(メタノール)含有量の測定方法
 ガラスバイアルに分散体0.2g、内部標準物質としてのジエチレングリコールジエチルエーテル0.02gをn-ブタノール5gと混合した。混合液を孔径0.45μmのフィルターで濾過し、濾液中の溶媒の含有量を、ガスクロマトグラフィーを用いて検量線法(内部標準)によって決定した。ガスクロマトグラフィーの条件は以下の通りとした。
 装置:GC-2014(島津製作所(株)製)
 カラム:キャピラリーカラムInertCap Pure-WAX(ジーエルサイエンス社製、カラム長:30m、カラム内径:0.25mm、キャピラリー内膜厚:0.25μm)
 キャリアガス:ヘリウム
 カラム温度 :50℃で5分間保持、10℃/分で昇温、240℃で6分間保持
 注入口温度 :280℃
 検出器温度 :280℃(FID)
 検出される物質と保持時間例:メタノール(2.5分)、ジエチレングリコールジエチルエーテル(12.3分)
(5) Method for measuring solvent (methanol) content In a glass vial, 0.2 g of the dispersion and 0.02 g of diethylene glycol diethyl ether as an internal standard were mixed with 5 g of n-butanol. The mixed solution was filtered through a filter with a pore size of 0.45 μm, and the content of the solvent in the filtrate was determined by a calibration curve method (internal standard) using gas chromatography. The conditions for gas chromatography were as follows.
Equipment: GC-2014 (manufactured by Shimadzu Corporation)
Column: Capillary column InertCap Pure-WAX (manufactured by GL Sciences, column length: 30 m, column inner diameter: 0.25 mm, capillary inner film thickness: 0.25 μm)
Carrier gas: Helium Column temperature: Hold at 50°C for 5 minutes, raise temperature at 10°C/min, hold at 240°C for 6 minutes Inlet temperature: 280°C
Detector temperature: 280℃ (FID)
Examples of detected substances and retention times: methanol (2.5 minutes), diethylene glycol diethyl ether (12.3 minutes)
 (6)モノマー置換前pHの測定方法
 ガラスバイアルに分散体1g、水1gを秤量し、均一化して測定用サンプルを得た。取得した測定用サンプルのpHを、試験紙(Johnson TEST PAPERS社製Comparator Strips)を用いて測定した。
(6) Method for measuring pH before monomer replacement 1 g of the dispersion and 1 g of water were weighed into a glass vial and homogenized to obtain a sample for measurement. The pH of the obtained measurement sample was measured using test paper (Comparator Strips manufactured by Johnson TEST PAPERS).
 実施例1
 工程1A 粒子合成工程
 攪拌機、滴下口、温度計を備えた50LのSUS製容器にメタノール16500g、水4200g、25%アンモニア水2000g、30分間撹拌することで均一な混合溶液を得た。上記混合溶液の液温を49~51℃に調整し撹拌しながら、テトラメチルオルトシリケート(TMOS)5700gを滴下口から90分間かけて滴下した。滴下終了後も引き続き上記液温を維持しながら30分間攪拌を行うことで、シリカ粒子のアルコール性溶液懸濁体(懸濁体1A)を得た。
Example 1
Step 1A Particle synthesis step 16,500 g of methanol, 4,200 g of water, and 2,000 g of 25% aqueous ammonia were placed in a 50 L SUS container equipped with a stirrer, a dropping port, and a thermometer, and the mixture was stirred for 30 minutes to obtain a uniform mixed solution. The temperature of the above mixed solution was adjusted to 49 to 51° C., and while stirring, 5700 g of tetramethyl orthosilicate (TMOS) was added dropwise from the dropping port over 90 minutes. After the dropwise addition was completed, stirring was continued for 30 minutes while maintaining the above liquid temperature to obtain an alcoholic solution suspension of silica particles (suspension 1A).
 工程1B 表面処理工程
 前記工程で得られた懸濁体1Aを再び攪拌しながら50℃へ昇温し、液温および攪拌を維持しながら、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業製、KBM-503)660gを滴下口から120分間かけて滴下した。滴下終了後も引き続き上記液温を維持しながら15時間攪拌を行うことで、粒子表面にメタクリル基を有するシリカ粒子のアルコール性溶液懸濁体(懸濁体1B)を得た。
Step 1B Surface treatment step The temperature of the suspension 1A obtained in the previous step was raised to 50° C. while stirring again, and while maintaining the liquid temperature and stirring, 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., 660 g of KBM-503) was added dropwise from the dropping port over 120 minutes. After the dropwise addition was completed, stirring was continued for 15 hours while maintaining the above liquid temperature to obtain an alcoholic solution suspension (suspension 1B) of silica particles having methacrylic groups on the particle surface.
 工程1C 限外ろ過工程
 前記工程Bで得られた懸濁体1Bを、分画分子量約10000のセラミック製管状限外ろ過膜が装着された市販の限外ろ過膜を用いて、室温でメタノールを適宜加えながら溶媒置換を行い、SiO濃度が約11%になるまで濃縮することで、pH9.3、粒子表面にメタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体1C)を得た。
Step 1C: Ultrafiltration step The suspension 1B obtained in the above step B is filtered with methanol at room temperature using a commercially available ultrafiltration membrane equipped with a ceramic tubular ultrafiltration membrane with a molecular weight cutoff of about 10,000. By replacing the solvent with appropriate addition and concentrating until the SiO 2 concentration was about 11%, a methanol suspension (suspension 1C) of silica particles having a pH of 9.3 and a methacrylic group on the particle surface was obtained. .
 工程1D イオン交換工程
 懸濁体1Cを、水素型強酸性陽イオン交換樹脂アンバーライトIR-120B(オルガノ社製)を充填したカラムに、室温条件下、1時間あたりの空間速度が3の通液速度で通過させることで、pH6.1のメタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体1D)を得た。
Step 1D Ion exchange process Suspension 1C is passed through a column filled with hydrogen type strongly acidic cation exchange resin Amberlite IR-120B (manufactured by Organo) at room temperature at a space velocity of 3 per hour. By passing through the solution at a high speed, a methanol suspension (suspension 1D) of silica particles having a methacrylic group having a pH of 6.1 was obtained.
 工程1E モノマー置換工程
 メタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体1D)を1800g秤量し、含まれるシリカ粒子と同量の1,6-ヘキサンジオールジアクリレート(HDDA)(モノマー(b-3))を添加し、ロータリーエバポレーターで溶媒を留去することによりメタクリル基を有するシリカ粒子のHDDA分散体(分散体1E)を得た。
Step 1E Monomer Substitution Step Weigh 1800 g of a methanol suspension of silica particles having methacrylic groups (Suspension 1D), and add the same amount of 1,6-hexanediol diacrylate (HDDA) (monomer (b) as the silica particles contained). -3)) was added and the solvent was distilled off using a rotary evaporator to obtain an HDDA dispersion of silica particles having methacrylic groups (dispersion 1E).
 実施例2、3
 工程1C及び工程1Dの少なくともいずれかの実施を省略してメタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体1D)のpHをそれぞれ9.3、10.8に変更する以外は実施例1と同様にして懸濁体2D(実施例2)、3D(実施例3)を得て、メタクリル基を有するシリカ粒子のHDDA分散体2E(実施例2)、3E(実施例3)を得た。
Examples 2 and 3
Example except that at least one of Step 1C and Step 1D was omitted and the pH of the methanol suspension of methacrylic group-containing silica particles (suspension 1D) was changed to 9.3 and 10.8, respectively. Suspensions 2D (Example 2) and 3D (Example 3) were obtained in the same manner as in 1, and HDDA dispersions 2E (Example 2) and 3E (Example 3) of silica particles having methacrylic groups were obtained. Ta.
 実施例4
 メタクリル基を有するシリカ粒子のメタノール懸濁体(懸濁体3D)の溶媒を留去する時間を変更したこと以外は実施例3と同様にして、メタクリル基を有するシリカ粒子のHDDA分散体4E(実施例4)を得た。
Example 4
HDDA dispersion 4E (suspension 3D) of silica particles having methacrylic groups was prepared in the same manner as in Example 3, except that the time for distilling off the solvent of the methanol suspension (suspension 3D) of silica particles having methacrylic groups was changed. Example 4) was obtained.
 比較例1
 実施例1の工程1Dでの1時間あたりの空間速度を2に変更した以外は、同様の操作を行った。
Comparative example 1
The same operation was performed except that the hourly space velocity in Step 1D of Example 1 was changed to 2.
 実施例及び比較例を、上記(1)~(6)に従って評価した結果を下記表1に示す。 The results of the evaluation of Examples and Comparative Examples according to (1) to (6) above are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、実施例1~4のいずれについても、シリカ粒子の平均球形比は1.05~1の範囲であった。 Note that in all of Examples 1 to 4, the average sphericity ratio of the silica particles was in the range of 1.05 to 1.

Claims (7)

  1.  シリカ粒子(a)と、エチレン性不飽和基含有モノマー(b)と、アンモニア(c)を含む組成物であって、
     組成物100質量%中のアンモニア(c)の量は、0.05~4.5質量%である組成物。
    A composition comprising silica particles (a), an ethylenically unsaturated group-containing monomer (b), and ammonia (c),
    A composition in which the amount of ammonia (c) in 100% by weight of the composition is 0.05 to 4.5% by weight.
  2.  前記組成物に溶剤が含まれていないか、又は組成物100質量%中、3.0質量%以下の溶剤が含まれている請求項1に記載の組成物。 The composition according to claim 1, wherein the composition does not contain a solvent or contains 3.0% by mass or less of a solvent based on 100% by mass of the composition.
  3.  組成物100質量%中のシリカ粒子(a)の濃度は、10質量%以上、70質量%以下である請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the concentration of the silica particles (a) in 100% by mass of the composition is 10% by mass or more and 70% by mass or less.
  4.  前記シリカ粒子(a)は、アリール基、(メタ)アクリロイル基、アルキル基、ビニル基、スチリル基、エポキシ基、メルカプト基、アミノ基、イソシアネート基、及びハロゲン化アルキル基よりなる群から選択される少なくとも1種の基を含むシランカップリング剤で表面処理されている請求項1または2に記載の組成物。 The silica particles (a) are selected from the group consisting of aryl groups, (meth)acryloyl groups, alkyl groups, vinyl groups, styryl groups, epoxy groups, mercapto groups, amino groups, isocyanate groups, and halogenated alkyl groups. The composition according to claim 1 or 2, which is surface-treated with a silane coupling agent containing at least one group.
  5.  前記エチレン性不飽和基含有モノマー(b)が、
     ウレタン結合を有するモノマー又は(1-ヒドロキシ,2-オキシ)エチレン構造を有するモノマー(b-1)、
     ウレタン結合及び(1-ヒドロキシ,2-オキシ)エチレン構造のいずれも有していないモノマーであって、エチレン性不飽和基数がモノマー1分子中3以上であり、かつエチレン性不飽和基濃度が4.8mmol/g以上であるモノマー(b-2)、及び
     ウレタン結合及び(1-ヒドロキシ,2-オキシ)エチレン構造のいずれも有していないモノマーであって、エチレン性不飽和基数がモノマー1分子中3未満であるという要件及びエチレン性不飽和基濃度が4.8mmol/g未満であるという要件の少なくとも一方を満たすモノマー(b-3)
     から選ばれる少なくとも1種である請求項1または2に記載の組成物。
    The ethylenically unsaturated group-containing monomer (b) is
    A monomer having a urethane bond or a monomer having a (1-hydroxy,2-oxy)ethylene structure (b-1),
    A monomer having neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, the number of ethylenically unsaturated groups in one monomer molecule is 3 or more, and the concentration of ethylenically unsaturated groups is 4. .8 mmol/g or more, and a monomer that has neither a urethane bond nor a (1-hydroxy,2-oxy)ethylene structure, and the number of ethylenically unsaturated groups in one molecule of the monomer A monomer (b-3) that satisfies at least one of the requirements that the concentration of ethylenically unsaturated groups is less than 3 and the ethylenically unsaturated group concentration is less than 4.8 mmol/g.
    The composition according to claim 1 or 2, which is at least one selected from the following.
  6.  前記エチレン性不飽和基含有モノマー(b)は、モノマー(b-1)及びモノマー(b-2)の少なくとも1種と、モノマー(b-3)とで構成されるか、またはモノマー(b-3)のみで構成される請求項5に記載の組成物。 The ethylenically unsaturated group-containing monomer (b) is composed of at least one of monomer (b-1) and monomer (b-2), and monomer (b-3), or monomer (b- 6. The composition according to claim 5, comprising only 3).
  7.  前記エチレン性不飽和基含有モノマー(b)の温度25℃での粘度が2000mPa・s以下である請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the ethylenically unsaturated group-containing monomer (b) has a viscosity of 2000 mPa·s or less at a temperature of 25°C.
PCT/JP2023/026738 2022-07-22 2023-07-21 Composition WO2024019140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022117481 2022-07-22
JP2022-117481 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024019140A1 true WO2024019140A1 (en) 2024-01-25

Family

ID=89617889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026738 WO2024019140A1 (en) 2022-07-22 2023-07-21 Composition

Country Status (1)

Country Link
WO (1) WO2024019140A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275306A (en) * 1991-03-01 1992-09-30 Kawasaki Steel Corp Resin beads containing fine particle size zilica
JP2011237802A (en) * 2003-08-28 2011-11-24 Dainippon Printing Co Ltd Production method for antireflection laminate
JP2016190769A (en) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 Method for producing silica particle
WO2018186468A1 (en) * 2017-04-06 2018-10-11 株式会社日本触媒 Silica particles
JP2020015829A (en) * 2018-07-26 2020-01-30 ナトコ株式会社 Aqueous resin composition and coated film
JP2020059624A (en) * 2018-10-10 2020-04-16 株式会社日本触媒 Surface-treated silica particles, dispersion and resin composition comprising the same, and cured product of resin composition
JP2021031587A (en) * 2019-08-23 2021-03-01 株式会社日本触媒 Method for producing (meth) acrylic resin and (meth) acrylic resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275306A (en) * 1991-03-01 1992-09-30 Kawasaki Steel Corp Resin beads containing fine particle size zilica
JP2011237802A (en) * 2003-08-28 2011-11-24 Dainippon Printing Co Ltd Production method for antireflection laminate
JP2016190769A (en) * 2015-03-31 2016-11-10 日揮触媒化成株式会社 Method for producing silica particle
WO2018186468A1 (en) * 2017-04-06 2018-10-11 株式会社日本触媒 Silica particles
JP2020015829A (en) * 2018-07-26 2020-01-30 ナトコ株式会社 Aqueous resin composition and coated film
JP2020059624A (en) * 2018-10-10 2020-04-16 株式会社日本触媒 Surface-treated silica particles, dispersion and resin composition comprising the same, and cured product of resin composition
JP2021031587A (en) * 2019-08-23 2021-03-01 株式会社日本触媒 Method for producing (meth) acrylic resin and (meth) acrylic resin

Similar Documents

Publication Publication Date Title
US11214492B2 (en) Silica particles
TWI536101B (en) A photo-hardened nanoimprint composition, a method of forming the pattern of the composition, and a copying tool for a nanoimprint of the hardened body having the composition
JP2008138165A (en) Photocuring hard coating agent and resin molding having hard coating film made of photocuring hard coating agent
JP5614968B2 (en) Hydrophobic core-shell silica particles, hollow silica particles and methods for producing them
JP2008543984A (en) Curable composition and article having protective layer obtained thereby
JP2013173871A (en) Composition, antistatic coating agent, and antistatic laminate
JP2010083744A (en) Silica particle dispersion and method for producing the same
JP5584989B2 (en) Surface-modified silica particles and active energy ray-curable resin composition using the same
WO2020101030A1 (en) Resin composition and optical fiber
WO2018235816A1 (en) Photocurable resin composition, cured coating film, substrate with cured coating film, method for producing same, and virus inactivation method
EP0460560A2 (en) Polymerizable silica sol, adamantane derivative for use in the sol and cured resin prepared using the same
JP2007171555A (en) Hard coat film and optical functional film, optical lens and optical component
WO2024019140A1 (en) Composition
JP6749325B2 (en) Adhesive composition, paper treatment agent or fiber treatment agent, coating composition and coating method
JP7333225B2 (en) Method for producing (meth)acrylic resin and (meth)acrylic resin
JP7254475B2 (en) Surface-treated silica particles, dispersions and resin compositions containing the same, and cured products of resin compositions
WO2024019139A1 (en) Composition
JP4655614B2 (en) Magnesium fluoride particle organosol, method for producing the same, and paint using the same
JPH04254406A (en) Polymerizable silica sol and its admantane derivative and hardened resin thereof
WO2022124202A1 (en) Composition, curable composition, and cured product
WO2011077710A1 (en) Antibacterial agent and production method thereof
JP5605305B2 (en) Polymerizable fluorine surface-modified silica particles and active energy ray-curable composition using the same
JP2010126670A (en) Active energy beam-curing type resin composition
JP7469746B2 (en) Photocurable composition
JP7245691B2 (en) Resin particles and method for producing resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843063

Country of ref document: EP

Kind code of ref document: A1