WO2024019102A1 - Composite material carrying au nanocluster and manufacturing method for said composite material - Google Patents

Composite material carrying au nanocluster and manufacturing method for said composite material Download PDF

Info

Publication number
WO2024019102A1
WO2024019102A1 PCT/JP2023/026496 JP2023026496W WO2024019102A1 WO 2024019102 A1 WO2024019102 A1 WO 2024019102A1 JP 2023026496 W JP2023026496 W JP 2023026496W WO 2024019102 A1 WO2024019102 A1 WO 2024019102A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoclusters
carrier
composite material
ligand
cysteine
Prior art date
Application number
PCT/JP2023/026496
Other languages
French (fr)
Japanese (ja)
Inventor
寛 岸
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Publication of WO2024019102A1 publication Critical patent/WO2024019102A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Definitions

  • the present invention relates to a composite material in which nanoclusters made of Au are supported on a suitable carrier. Specifically, the present invention relates to a composite material in which nano-order Au nanoclusters are supported on a hydrophobic carrier via a predetermined ligand. Furthermore, the present invention relates to a method for producing a composite material in which Au nanoclusters can be supported in a highly dispersed manner on a hydrophobic carrier in an aqueous solution system.
  • metals When metals are made into nanoparticles, they exhibit various properties not found in bulk materials, such as photoresponsive properties (photoluminescence properties), fluorescence emission properties, and light scattering/reflection properties. Therefore, metal nanoparticles are being considered for application in various fields such as light emitting elements and fluorescent materials used in display devices and the like, and electrode and wiring materials for various electronic and semiconductor devices.
  • metal nanoparticles in addition to materials related to electrical and optical devices as mentioned above, they are also extremely effective as catalysts for various chemical reactions.
  • Making metal into fine particles increases the surface area of the metal, so by making the metal fine to the nano-order, its catalytic activity can be greatly improved.
  • These metal particles that have been made into nano-sized particles are called metal nanoclusters. Although there is no fixed definition, a nanocluster is usually a collection of several to several hundred metal atoms.
  • Metal nanoclusters are often synthesized in a wet manner (liquid phase), and their usage is generally in the form of a dispersion in which metal nanoclusters are dispersed in a solvent. Furthermore, a common method for synthesizing metal nanoclusters is to add a reducing agent and a ligand (organic ligand) to a solution of a metal salt. In this synthesis method, a ligand binds to a plurality of metal atoms generated by reduction, thereby forming particles in which metal atoms are clustered.
  • the ligand is sometimes referred to as a protective agent/dispersant, and has the effect of suppressing aggregation of clustered metal nanoparticles and maintaining a dispersed state.
  • the metal nanoclusters are utilized by applying a dispersion in which the metal nanoclusters are dispersed onto a carrier such as a catalyst, and then adsorbing the carrier by immersion, thereby adsorbing and fixing the metal nanoclusters onto the carrier.
  • the present invention relates to the application of nanoclusters made of Au (gold) among metal nanoclusters.
  • noble metals such as Au and Ag are metals that significantly exhibit localized surface plasmon resonance (SPR).
  • SPR surface plasmon resonance
  • Au is a metal that is chemically stable and has suitable electrical properties.
  • nano-order Au has a catalytic effect on various chemical reactions such as the oxidation reaction of carbon monoxide. For these reasons, Au nanoclusters are expected to be a precursor material that can contribute to improved performance in the various applications described above.
  • Au nanoclusters known so far include those in which Au atoms are clustered by applying phosphine, thiol-based organic ligands (thiolates), etc. as ligands.
  • Au nanoclusters with the thiolate glutathione (GSH) as a ligand are highly stable due to strong Au-S bonds, and are also hydrophilic and stably dispersed in aqueous solvents. It is known.
  • a common way of utilizing metal nanoclusters is to adsorb and support metal nanoclusters dispersed in a solvent on a carrier.
  • the reason for this is considered to be the difference in polarity (hydrophilicity and hydrophobicity) between the Au nanoclusters and the carrier.
  • polarity hydrophilicity and hydrophobicity
  • Au nanoclusters having glutathione as a ligand are hydrophilic and stable in aqueous solvents, they are difficult to be adsorbed and supported on hydrophobic carbon powder. Therefore, most of the Au nanoclusters remain in the solvent without being supported on the hydrophobic carrier. Many catalyst carriers and device substrates have hydrophobic surfaces. Even if Au nanoclusters can stably maintain their nanoparticle state in a solvent, their significance will be diminished if they cannot be supported on these carriers.
  • Au nanoclusters that can be dispersed in non-aqueous solvents such as organic solvents.
  • Au nanoclusters that can stably exist in organic solvents are also known.
  • Au nanoclusters having phenylethanethiol as a ligand as described in Non-Patent Document 2 are stable in the state of nanoparticles of about 1 nm in an organic solvent.
  • the present invention was made against the above background, and relates to a composite material in which Au nanoclusters, which are fine particles, are highly dispersed and supported on a hydrophobic carrier at an appropriate supporting density.
  • An object of the present invention is to clarify a method for supporting Au nanoclusters on a hydrophobic carrier while using an aqueous solvent, and to provide a method for manufacturing the above-mentioned composite material.
  • the present inventors first studied the behavior of Au clusters synthesized with various thiolate-based ligands including glutathione in an aqueous solvent. As a result, it was found that L-cysteine and L-cysteine derivatives having a predetermined residue can synthesize Au nanoclusters in an aqueous solvent without the action of a reducing agent. It was also confirmed that Au nanoclusters synthesized using these ligands have hydrophobicity. However, since Au nanoclusters have hydrophobicity, it is difficult to stably disperse them in an aqueous solvent. The Au nanoclusters made of L-cysteine and L-cysteine derivatives studied by the present inventors cause precipitation and precipitation due to aggregation and the like in a solvent after synthesis, and cannot maintain a stable dispersion state.
  • Au nanoclusters synthesized from L-cysteine and L-cysteine derivatives have good adsorption to hydrophobic carriers, and adsorption to the carrier takes precedence over aggregation of nanoclusters.
  • the present invention provides a composite material in which Au nanoclusters containing two or more Au atoms are supported on a carrier via a ligand, wherein at least the portion on which the Au nanoclusters are supported is hydrophobic. and the ligand is a composite material that is L-cysteine or an L-cysteine derivative with a non-polar residue.
  • Composite material supporting Au nanoclusters according to the present invention is composed of a carrier, Au nanoclusters supported on the carrier, and a ligand that binds the two.
  • the carrier is a member for supporting the Au nanoclusters in a dispersed state.
  • the carrier of the composite material according to the present invention is a carrier that has hydrophobicity at least in the portion on which the Au nanoclusters are supported. Hydrophobicity is a property that has a low affinity for water and is difficult to dissolve or mix with water.
  • the constituent material of the carrier include carbon, cellulose, nitrocellulose, hydrophobic polymers (fluororesin, acrylic, epoxy, polyethylene, polystyrene, polyvinyl chloride, etc.), metal nitrides, and the like. There are no particular limitations on the shape and dimensions of the carrier. Particulate carriers are often used in catalysts.
  • bulk carriers such as plate-shaped, sheet, and film-shaped carriers are sometimes used as carriers for material applications related to electrical and optical devices.
  • specific criteria for the hydrophobicity of the carrier can be set for each of the particulate carrier and the bulk carrier as follows.
  • the particulate carrier is a particulate or powdery solid with a particle size of 10 ⁇ m or less that can be dispersed in a solvent such as water.
  • a solvent such as water.
  • the R SP value obtained from pulsed NMR (TD-NMR) measurement is suitable.
  • the hydrophobicity of a carrier dispersed in an aqueous solvent can be evaluated by the magnitude of interaction between the carrier surface and solvent molecules. According to pulse NMR, it is possible to measure the relaxation time of a solvent having protons (H) in its molecules, such as water, and the shorter the relaxation time, the stronger the interaction between the carrier and the solvent.
  • the RSP value is determined by measuring the relaxation time in each state of a solvent only state and a state in which a particulate carrier is dispersed in a solvent.
  • the R SP value is calculated from the following formula, and the smaller the R SP value, the higher the hydrophobicity tends to be.
  • the hydrophobicity of the carrier used in the present invention is determined by measuring the relaxation time (transverse relaxation time (spin-spin relaxation time)) by pulsed NMR using water as the solvent and calculating the R SP value using the above formula. . At this time, it is preferable to judge hydrophobicity using a correction value (R SP /TSA: hereinafter referred to as R SP (c)) obtained by dividing the R SP value by the total surface area (TSA) of the carrier at the time of measurement.
  • R SP (c) correction value obtained by dividing the R SP value by the total surface area (TSA) of the carrier at the time of measurement.
  • a carrier having an R SP (c) value of 0.5 or less is defined as a hydrophobic carrier. Note that the total surface area (TSA) of the carrier during pulsed NMR measurement can be calculated using the following formula.
  • the BET specific surface area as the specific surface area SA of the carrier.
  • the present invention is intended to be applied to catalysts, and carbon particles or the like are often used as catalyst carriers. Carbon particles take various forms, such as a structure with countless fine pores on the surface and a hollow structure.
  • Application of the BET specific surface area is suitable for determining the specific surface area of these various forms of particulate carriers.
  • the BET specific surface area it is preferable to apply a value measured by a gas adsorption method, and it is preferable to apply a value measured by nitrogen gas.
  • the mass-to-volume ratio concentration of the carrier during pulse NMR measurement is preferably 0.1% or more (0.001 g/mL or more) and 10% or less (0.1 g/mL or less).
  • the bulk-like carrier is intended to exclude the above-mentioned particulate carriers, and is a plate-like, lump-like, or thin-film-like solid with a minimum size of 10 ⁇ m or more.
  • the hydrophobicity of a bulk carrier can be defined by the contact angle with water.
  • a hydrophobic carrier is one that has a contact angle with water of 90° or more. Note that for a bulk carrier whose minimum size is larger than that of a particulate carrier, it is sufficient that at least the surface portion supporting the Au nanoclusters has the above-mentioned hydrophobicity.
  • hydrophobic materials Materials other than the above-mentioned hydrophobic materials may be used as long as the surface on which the Au nanoclusters are supported is treated to impart hydrophobicity.
  • hydrophobic treatment include a treatment for modifying the carrier surface with a nonpolar functional group (alkyl group, etc.), a firing treatment in an inert atmosphere, and coating with the above-mentioned hydrophobic material.
  • Au nanocluster Au nanocluster is a particle containing a group of two or more Au atoms.
  • the particle size of the Au nanoclusters supported on the hydrophobic carrier in the composite material of the present invention is preferably 0.5 nm or more and 5 nm or less, more preferably 3 nm or less.
  • the particle size of the Au nanocluster can be obtained, for example, by calculating the average value by measuring the particle size of a plurality of particles based on an image observed by electron microscopy such as TEM.
  • the particle size in an observed image can be measured by image analysis in addition to visual observation.
  • the particle size distribution can also be analyzed by statistical calculation of the measured particle size.
  • particle diameter shall mean the maximum distance (diameter equivalent to a circumscribed circle) among the distances between any two points on the contour line of a particle.
  • the Au nanocluster may be composed only of Au atoms, but may also contain atoms of other elements.
  • atoms of elements that have a high bonding property with Au such as S (sulfur), O (oxygen), N (nitrogen), C (carbon), Cu (copper), and Ag (silver), stabilize the Au nanocluster. It may contribute to sexual activity and high activation. It is preferable that atoms other than Au be contained in an amount of 50% or less in terms of number of atoms.
  • the amount of Au nanoclusters supported (supporting density) in the present invention is adjusted depending on the use of the composite material. According to the supporting method according to the present invention described below, the amount of Au nanoclusters supported can be 0.1% by mass or more and 50% by mass or less based on the entire composite material such as a catalyst. be.
  • the ligand is an organic ligand that coordinates to the Au atoms in order to maintain the collective state of the clustered Au atoms.
  • the ligand acts as an aid for binding the Au nanoclusters to the hydrophobic carrier when the Au nanoclusters are synthesized.
  • the ligand of the present invention is L-cysteine and L-cysteine derivatives represented by the following formula.
  • R is a residue (substituent), and is hydrogen or a nonpolar residue. According to the studies of the present inventors, when L-cysteine in which R is hydrogen or an L-cysteine derivative in which R is a nonpolar residue coordinates to an Au atom in an aqueous solvent to form a nanocluster. , imparts hydrophobicity to the Au nanoclusters.
  • the nonpolar residue is an acyl group (acetyl group (CH 3 CO: Ac), ethylcarbonyl group (CH 3 CH 2 CO), linear or branched propylcarbonyl group (C 3 H 7 CO), linear or branched butyl carbonyl group (C 4 H 9 CO)), or carbon number 1 Alkoxycarbonyl group having ⁇ 4 aliphatic hydrocarbon chains (methoxycarbonyl group (CH 3 OCO), ethoxycarbonyl group (CH 3 CH 2 OCO), linear or branched propoxycarbonyl group (C 3 H 7 OCO), linear or branched butoxycarbonyl group (C 4 H 9 OCO)) are preferred.
  • acetyl group (CH 3 CO:Ac) isopropylcarbonyl group ((CH 3 ) 2 CHCO)
  • tert-butoxycarbonyl group ((CH 3 ) 3 COCO) are more preferred.
  • the non-polar residue when an L-cysteine derivative having a non-polar residue is applied as a ligand, the non-polar residue exhibits an anchoring effect to a hydrophobic carrier and has the effect of suppressing the movement of Au nanoclusters in a high-temperature environment. It is believed that there is. This effect suppresses the aggregation of Au nanoclusters and the resulting coarsening of the particles.
  • Particularly preferred ligands are L-cysteine, where R is hydrogen, and N-acetyl-L-cysteine, where R is an acetyl group. This is because these have a small molecular weight and can be easily decomposed and removed by heat.
  • the content of the ligand is preferably 0.1% by mass or more and 50% by mass or less based on the entire composite material such as the catalyst. More preferably, it is 20% by mass or less.
  • the ligand only needs to be bonded to at least a portion of the Au nanocluster, and does not need to be bonded to the entire surface or all Au atoms.
  • the presence of the ligand L-cysteine or an L-cysteine derivative in which R is a non-polar residue can be detected by gas chromatography-mass spectrometry (GC/MS), especially thermal decomposition-gas It can be qualitatively confirmed by chromatography-mass spectrometry (Py-GC/MS). Non-polar residues of L-cysteine derivatives can also be confirmed using this analytical method.
  • the aqueous solvent is the step of synthesizing Au nanoclusters in the aqueous solvent and supporting the Au nanoclusters on the carrier by adding the other of the Au source and the ligand, wherein the ligand is L-cysteine.
  • it is a method of producing an L-cysteine derivative having a nonpolar residue.
  • the subject matter is the synthesis of Au nanoclusters, and the loading on a carrier is based on the premise that the synthesis of Au nanoclusters has been completed.
  • the loading on the carrier is completed simultaneously with the synthesis of the Au nanoclusters or immediately after the synthesis of the Au nanoclusters.
  • a reaction system is formed in which either the Au source or the ligand and a carrier coexist, and the other of the Au source or the ligand is allowed to act on this reaction system to synthesize Au nanoclusters. and supported on a carrier.
  • the present invention differs from the prior art in the timing of synthesis and loading of Au nanoclusters.
  • a method for manufacturing a composite material based on this method of supporting Au nanoclusters will be explained.
  • a state in which the carrier is in contact with an aqueous solvent containing either the Au source or the ligand it is first necessary to form a state in which the carrier is in contact with an aqueous solvent containing either the Au source or the ligand.
  • a state in which the aqueous solvent and the carrier are in contact may be formed, or a solution in which either the Au source or the ligand is added to the aqueous solvent is prepared in advance, and this solution and the carrier are brought into contact. Also good.
  • the state in which the carrier is in contact with the aqueous solvent or solution is preferably formed by immersing part or all of the carrier in the aqueous solvent or solution.
  • the carrier As the carrier, the above-mentioned carrier having hydrophobicity is applied.
  • aqueous solvent in addition to pure water, a mixed solvent of water and a water-soluble polar solvent (alcohol, N-methylpyrrolidone, etc.) can be used.
  • the amount of the aqueous solvent is preferably 2 times or more and 1000 times or less relative to the weight of the carrier.
  • Au salts such as tetrachloride gold (III) acid, gold halide, and potassium gold (I) cyanide can be used.
  • the amount of the Au source added here is related to the amount of Au nanoclusters supported on the carrier, so the concentration of the Au source should not be limited. For example, when considering catalyst applications, it is possible to obtain the above-mentioned supporting density of Au nanoclusters by setting the Au source to 0.1% by mass or more and 50% by mass or less based on the carrier weight in terms of Au mass. can.
  • the ligand L-cysteine or an L-cysteine derivative having a nonpolar residue is added as described above.
  • the amount of the ligand added is preferably from 1 to 10 times the number of moles of Au ions on a molar basis, taking into consideration the amount of Au nanoclusters to be supported.
  • the ligand, L-cysteine, etc. also acts as a reducing agent, and if the amount is less than 1 time, Au ions may not be completely reduced.
  • the lack of ligand also reduces the stability of Au nanoclusters.
  • the amount of ligand is 10 times or more, the nanocluster synthesis efficiency will decrease because the Au atom will tend to be stabilized in a complex state in which the ligand is coordinated with the ligand.
  • Au nanoclusters are synthesized by adding the other of the Au source and the ligand.
  • L-cysteine or an L-cysteine derivative functions not only as a ligand but also as a reducing agent. Therefore, in the present invention, when the Au source and the ligand coexist in the reaction system without adding a reducing agent, the synthesis of Au nanoclusters starts and progresses at the same time. The synthesized Au nanoclusters are then adsorbed and supported on a hydrophobic carrier. This support of Au clusters progresses instantaneously to such an extent that they cannot be distinguished by visual observation at the same time as or after the synthesis of Au clusters.
  • the temperature conditions of the reaction system in the synthesis and support of the above Au nanoclusters are preferably 0° C. or higher and 50° C. or lower, and room temperature may also be used. Further, the reaction atmosphere may be either air atmosphere or inert gas atmosphere.
  • a composite material can be obtained by completing the synthesis of Au nanoclusters and supporting them on a hydrophobic carrier.
  • the carrier carrying Au nanoclusters may be recovered by drying or filtration, and may be washed, dried, and heat treated as necessary.
  • the heat treatment is performed to control the particle size by decomposing and removing excess ligands and by associating Au nanoclusters.
  • the atmosphere for the heat treatment is preferably an atmospheric atmosphere, a mixed gas atmosphere of oxygen gas and an inert gas, a reduced pressure atmosphere (preferably a reduced pressure atmosphere of 100 Pa or less), or an inert gas atmosphere.
  • the heat treatment temperature is preferably 100°C or more and 800°C or less, more preferably 120°C or more and 400°C or less.
  • the composite material according to the present invention is a composite material in which Au nanoclusters are supported on a hydrophobic carrier.
  • the composite material according to the present invention supports fine Au nanoclusters at a high density, and can effectively exhibit the unique characteristics of the Au nanoclusters.
  • the present invention also reveals a method for manufacturing a composite material by efficiently supporting Au nanoclusters in an aqueous solvent.
  • a composite material can be produced by supporting Au nanoclusters on a hydrophobic carrier without relying on organic solvents that are difficult to use from the viewpoint of environmental impact.
  • Au nanoclusters By forming Au into nanoclusters, it has catalytic activity not found in bulk.
  • Au nanoclusters have catalytic activity for the oxidation reaction of carbon monoxide, alcohol, and styrene, and the hydrogenation reaction of unsaturated ketones.
  • the present invention can be applied as a catalyst for these chemical reactions. Examples include carbon monoxide removal catalysts and exhaust gas purification catalysts for producing reformed hydrogen gas.
  • Au nanoclusters have catalytic activity for oxygen reduction reaction (ORR) as an electrode catalyst.
  • ORR oxygen reduction reaction
  • the present invention can also be used as an electrode catalyst for fuel cells.
  • FIG. 3 is a diagram comparing the MS spectra of the composite materials of Example 1 and Example 2 before heat treatment.
  • FIG. 3 is a diagram comparing the MS spectra of the composite materials of Example 1 and Example 2 after heat treatment.
  • FIG. 3 is a diagram comparing the MS spectra of the composite materials of Example 1 and Example 2 after heat treatment.
  • carbon powder was used as the hydrophobic carrier.
  • a composite material was manufactured using L-cysteine and N-acetyl-L-cysteine (hereinafter referred to as acetylcysteine) as ligands for synthesizing Au nanoclusters.
  • the carbon powder used in this embodiment has an average particle size of 40 nm and a BET specific surface area of 800 m 2 /g.
  • a slurry in which 0.1 g of this carbon powder was dispersed in 100 mL of pure water was used as a measurement sample, and analyzed by pulsed NMR to measure the R SP value.
  • the measurement was performed using a pulsed NMR device manufactured by Resonance Systems, Inc., using a measurement sample volume of 1 mL, a measurement temperature of 30°C, a resonance frequency of about 20 MHz, and a 1 H-NMR observation nucleus to measure the relaxation time (transverse relaxation time T 2 ) (CMPG law).
  • the R SP value of the carbon powder of this embodiment with respect to water was 0.28. Further, from the BET specific surface area (800 m 2 /g) of the carbon powder, the total surface area (TSA) of the carrier is 0.8 m 2 . Therefore, the TSA correction value R SP (c) of the carbon powder of this embodiment was 0.35, and it was determined that the carbon powder was a hydrophobic carrier.
  • Example 1 (ligand: L-cysteine (C)) : 1 g of the above carbon powder was added and dispersed in 100 mL of pure water as an aqueous solvent. In the aqueous solvent in which this carbon powder carrier was dispersed, 0.75 g (2.2 mmol of Au) of tetrachloride gold (III) acid as an Au source was dissolved.
  • reaction solution was filtered to recover the composite material and filtrate.
  • the recovered composite material was subjected to two types of treatment: one was dried under reduced pressure (100 Pa or less), and the other was heat-treated after drying at 150° C. for 4 hours under reduced pressure (100 Pa or less) to complete the composite material.
  • Example 2 Carbon powder was dispersed in the same amount of pure water as in Example 1, and 0.75 g (2.2 mmol of Au) of tetrachloride gold (III) acid, which is an Au source, was dissolved. After that, 20 mL of an aqueous solution containing 1.5 g (9.3 mmol) of acetylcysteine as a ligand was added to produce a composite material (Au(NAC)/C). Thereafter, the composite material was collected and heat treated at 150°C in the same manner as in Example 1.
  • Example 3 (Ligand: L-cysteine (C)):
  • the order of addition of the Au source and the ligand was reversed with respect to Example 1, and Au nanoclusters were synthesized and supported.
  • the Au nanocluster supported composite materials produced in Examples 1 to 3 were observed using STEM (JEM-ARM200F manufactured by JEOL Ltd.) immediately after production (before heat treatment) and after heat treatment. STEM images of each example are shown in FIG. In the state in which Au nanoclusters are supported, in both Examples 1 and 2, fine Au nanoclusters of around 1 nm are supported. When this was heat-treated at 150°C, slight aggregation occurred, resulting in Au nanoclusters of 1.0 nm (Example 1), 1.0 nm (Example 2), and 0.9 nm (Example 3). . The particle size of these nanoclusters was calculated by fitting a scattering curve obtained when measuring with a camera length of 600 mm using a small-angle X-ray scattering device (NANOPIX manufactured by Rigaku Co., Ltd.).
  • Example 1 and 2 were analyzed by pyrolysis GC/MS to confirm the presence of the ligand and to determine whether nonpolar residues could be identified.
  • Thermal decomposition GC/MS was performed using a device named 7890A/5975C manufactured by Agilent Technologies, and the components decomposed at a heating furnace temperature of 600°C were introduced into the GC, separated, and analyzed by MS.
  • MS spectra of the composite materials of Examples 1 to 3 before and after heat treatment are shown in FIGS. 2 to 4.
  • Comparative Example Next, as a comparative example for confirming the supporting efficiency of Au nanoclusters for Examples 1 to 3, Au nanoclusters were synthesized using glutathione as a ligand and supported on carbon powder. In order to keep the conditions the same, in this comparative example, Au nanoclusters were synthesized and supported in a solvent in which the carrier was dispersed, as described below.
  • the proportion of Au in the filtrate was 0.03% in Example 1 (Au(C)/C), 0.015% in Example 2, and 0.075% in Example 3. there were. From these results, it was confirmed that most of the charged Au source was supported on the carrier as Au nanoclusters. On the other hand, the proportion of Au in the filtrate of the comparative example was 32.8%, which was clearly higher than that of Examples 1 to 3, confirming that there was a considerable amount of Au that was not supported on the carrier. It was done. It can be seen that the Au nanoclusters synthesized using glutathione, which is a ligand in the comparative example, are water-soluble and difficult to support on a hydrophobic carbon powder carrier.
  • the catalytic reaction here is an oxidative decomposition reaction of hydrogen peroxide, and the catalytic activity is evaluated by the intensity of the absorbance of the resulting tetramethylbenzidine dimer.
  • Second embodiment In this embodiment, the same carbon powder as in the first embodiment (average particle size 40 nm, BET specific surface area 800 m 2 /g, R SP (c) 0.35) is used as the hydrophobic carrier, and Au Acetylcysteine (NAC) was applied as a ligand for synthesizing nanoclusters, and a composite material was manufactured under manufacturing conditions different from those of the first embodiment.
  • the same carbon powder as in the first embodiment average particle size 40 nm, BET specific surface area 800 m 2 /g, R SP (c) 0.35
  • Au Acetylcysteine (NAC) was applied as a ligand for synthesizing nanoclusters, and a composite material was manufactured under manufacturing conditions different from those of the first embodiment.
  • Example 4 (ligand: acetylcysteine (NAC)) : 4 g of carbon powder was added and dispersed in 400 mL of pure water, which is an aqueous solvent. After adding 6 g (37.2 mmol) of acetyl cysteine, which is a ligand, to the aqueous solvent in which this carbon powder carrier is dispersed, 20 mL of an aqueous solution in which 3 g (8.8 mmol Au) of tetrachloride gold (III) acid, which is an Au source, is dissolved is added. was added to produce a composite material (Au(NAC)/C). Thereafter, in the same manner as in Example 1, the composite material was collected and dried, and then heat-treated at 150° C. under reduced pressure (100 Pa or less) for 4 hours to complete the composite material.
  • Au(NAC)/C gold
  • Example 5 (Ligand: Acetylcysteine (NAC)) : Under the same conditions as Example 4, after adding the ligand (NAC) to the aqueous solvent in which the carbon powder is dispersed, the Au source (tetrachloride gold (III) acid) was added. A composite material (Au(NAC)/C) was manufactured by adding an aqueous solution of. After collecting and drying the composite material, the composite material was heat-treated at 400° C. for 4 hours under reduced pressure (100 Pa or less) to complete the composite material.
  • the Au nanocluster-supported composite materials produced in Examples 4 and 5 were observed using a TEM. TEM images of these composite materials are shown in FIG. As in the first embodiment, the particle sizes of Au nanoclusters in these Au nanocluster-supporting composite materials were measured using a small-angle X-ray scattering device, and the results were 0.8 nm (Example 4) and 4.3 nm (Example 4). 5). It was confirmed that the particle size of Au nanoclusters can be changed by adjusting the heat treatment temperature.
  • a composite material was manufactured by using carbon powder different from that in the first embodiment as a hydrophobic carrier and applying L-cysteine (C) as a ligand.
  • the carbon powder used in this embodiment has an average particle size of 40 nm and a BET specific surface area of 220 m 2 /g.
  • a slurry in which 1 g of this carbon powder was dispersed in 100 mL of pure water was used as a measurement sample, and analyzed by pulsed NMR to measure the RSP value.
  • the measurement was carried out using a pulse NMR device manufactured by Bruker, using a sample volume of 2 mL, a measurement temperature of 30° C., a resonance frequency of about 20 MHz, and a 1 H-NMR observation nucleus to measure the relaxation time (transverse relaxation time T 2 ).
  • the R SP value of the carbon powder of this embodiment with respect to water was 1.70. Since the total surface area (TSA) of the carrier was 4.4 m 2 , the R SP (c) of the carbon powder of this embodiment was 0.39, and it was determined to be a hydrophobic carrier.
  • Example 6 (ligand: L-cysteine (C)) : 4 g of carbon powder was added and dispersed in 80 mL of pure water, which is an aqueous solvent. After adding 4.8 g (37.2 mmol) of L-cysteine as a ligand to the aqueous solvent in which this carbon powder carrier is dispersed, 3 g (8.8 mmol of Au) of tetrachloride gold (III) acid as an Au source is dissolved. 20 mL of the aqueous solution was added to produce a composite material (Au(C)/C). Thereafter, in the same manner as in Example 1, the composite material was collected and dried, and then heat-treated at 150° C. under reduced pressure (100 Pa or less) for 4 hours to complete the composite material.
  • Example 7 (ligand: L-cysteine (C)): Under the same conditions as Example 6, after adding the ligand (C) to the aqueous solvent in which the carbon powder is dispersed, the Au source (tetrachloride gold (III) acid ) was added to produce a composite material (Au(C)/C). After collecting and drying the composite material, the composite material was heat-treated at 230° C. for 4 hours under reduced pressure (100 Pa or less) to complete the composite material.
  • the Au source tetrachloride gold (III) acid
  • the Au nanocluster-supported composite materials produced in Examples 6 and 7 were observed using a TEM. TEM images of these composite materials are shown in FIG.
  • the particle diameters of the Au nanoclusters in these Au nanocluster-supporting composite materials were measured using a small-angle X-ray scattering device, and the results were 0.7 nm (Example 6) and 2.0 nm (Example 6). 7).
  • a hydrophobic carrier different from that in the first embodiment was used, it was confirmed that a composite material supporting fine Au nanoclusters could be manufactured in the same manner as in the first embodiment.
  • the particle size of the Au nanoclusters could be changed by adjusting the heat treatment temperature.
  • the present invention relates to a composite material in which Au nanoclusters are supported on a hydrophobic carrier in a suitable state.
  • the present invention also reveals a method for supporting Au nanoclusters on a hydrophobic carrier in an aqueous solvent.
  • Au nanoclusters can be efficiently supported on a hydrophobic carrier such as carbon powder.
  • the composite material according to the present invention can have a high surface area by applying Au nanoclusters and can exhibit catalytic activity that bulk Au does not have. Therefore, the present invention can be expected to be used as a catalyst for chemical reactions such as oxidation reactions of carbon monoxide, electrode catalysts for fuel cells, and amplification materials for photocatalysts. In addition, the present invention can be expected to be applied to various devices that utilize quantum effects, surface plasmon resonance, optical properties, etc. of Au nanoclusters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a composite material formed by carrying Au nanoclusters, each containing two or more Au atoms, on carriers via ligands. In the present invention, hydrophobic bodies, such as carbon powder, are employed as the carriers and an L-cysteine or an L-cysteine derivative that has a nonpolar residue is employed as the ligands. Also, the present invention discloses a method for effectively carrying the Au nanoclusters on hydrophobic carriers. With the present invention, as a result of reacting an Au source and the L-cysteine or the like, serving as the ligands, in a state in which the hydrophobic carriers are dispersed in an aqueous solvent, Au nanocluster synthesis and carrying thereof on the hydrophobic carriers simultaneously proceed. With the present invention, it is possible to manufacture a composite material in which Au nanoclusters are carried on hydrophobic carriers in a highly dispersed manner.

Description

Auナノクラスターが担持された複合材料及び該複合材料の製造方法Composite material supporting Au nanoclusters and method for producing the composite material
 本発明は、Auからなるナノクラスターが適宜の担体に担持された複合材料に関する。詳しくは、疎水性を有する担体に、ナノオーダーのAuナノクラスターを所定のリガンドを介して担持した複合材料に関する。更に、本発明は、水溶液系で疎水性の担体にAuナノクラスターを高分散で担持することができる複合材料の製造方法に関する。 The present invention relates to a composite material in which nanoclusters made of Au are supported on a suitable carrier. Specifically, the present invention relates to a composite material in which nano-order Au nanoclusters are supported on a hydrophobic carrier via a predetermined ligand. Furthermore, the present invention relates to a method for producing a composite material in which Au nanoclusters can be supported in a highly dispersed manner on a hydrophobic carrier in an aqueous solution system.
 金属はナノオーダーにまで微粒子化することで、光応答特性(フォトルミネッセンス特性)、蛍光発光特性、光散乱・反射特性等のバルク体にはない様々な特性を示す。そのため、金属ナノ粒子は、ディスプレイ装置等に適用される発光素子・蛍光物質や、各種電子・半導体デバイスの電極・配線材料等の様々な分野への応用が検討されている。 When metals are made into nanoparticles, they exhibit various properties not found in bulk materials, such as photoresponsive properties (photoluminescence properties), fluorescence emission properties, and light scattering/reflection properties. Therefore, metal nanoparticles are being considered for application in various fields such as light emitting elements and fluorescent materials used in display devices and the like, and electrode and wiring materials for various electronic and semiconductor devices.
 また、金属ナノ粒子の応用範囲としては、上記のような電気・光学デバイス関連の素材の他、各種化学反応用の触媒についても極めて有効である。金属の微粒子化は金属表面積を増大させることから、ナノオーダーにまで微細にすることで、その触媒活性は大きく向上する。こうしたナノオーダーにまで微粒子化された金属粒子は、金属ナノクラスターと称される。ナノクラスターとは、確定した定義はないが、通常、数個から数百個の金属原子の集合である。 Furthermore, as for the range of applications of metal nanoparticles, in addition to materials related to electrical and optical devices as mentioned above, they are also extremely effective as catalysts for various chemical reactions. Making metal into fine particles increases the surface area of the metal, so by making the metal fine to the nano-order, its catalytic activity can be greatly improved. These metal particles that have been made into nano-sized particles are called metal nanoclusters. Although there is no fixed definition, a nanocluster is usually a collection of several to several hundred metal atoms.
 金属ナノクラスターは、湿式(液相)での合成例が多く、その利用形態も溶媒中に金属ナノクラスターを分散させた分散液の状態が用いられることが一般的である。また、金属ナノクラスターの合成方法としては、金属塩の溶液に還元剤とリガンド(有機配位子)を添加する方法が一般的である。この合成方法では、還元により生成する複数の金属原子にリガンドが結合することで、金属原子がクラスター化した粒子を形成する。リガンドは、保護剤・分散剤と称されることもあり、クラスター化した金属ナノ粒子の凝集を抑制して分散状態を維持する作用を有する。そして、金属ナノクラスターの利用形態としては、金属ナノクラスターが分散する分散液を触媒等の担体へ塗布・浸漬吸着して、金属ナノクラスターを担体に吸着固定している。 Metal nanoclusters are often synthesized in a wet manner (liquid phase), and their usage is generally in the form of a dispersion in which metal nanoclusters are dispersed in a solvent. Furthermore, a common method for synthesizing metal nanoclusters is to add a reducing agent and a ligand (organic ligand) to a solution of a metal salt. In this synthesis method, a ligand binds to a plurality of metal atoms generated by reduction, thereby forming particles in which metal atoms are clustered. The ligand is sometimes referred to as a protective agent/dispersant, and has the effect of suppressing aggregation of clustered metal nanoparticles and maintaining a dispersed state. The metal nanoclusters are utilized by applying a dispersion in which the metal nanoclusters are dispersed onto a carrier such as a catalyst, and then adsorbing the carrier by immersion, thereby adsorbing and fixing the metal nanoclusters onto the carrier.
 本発明は、金属ナノクラスターの中でもAu(金)で構成されるナノクラスターの応用に関する。AuやAg等の貴金属は、上述した特性に加えて、局在表面プラズモン共鳴(SPR)を顕著に発現する金属である。そして、Auは、化学的に安定な金属であると共に好適な電気的特性を有する金属である。更に、Auはバルクの状態では触媒活性を示さないが、ナノオーダーのAuは一酸化炭素の酸化反応等の各種化学反応への触媒作用を有する。こうしたことから、Auナノクラスターは、上記した各種用途における性能向上に寄与し得る前駆材料として期待されている。 The present invention relates to the application of nanoclusters made of Au (gold) among metal nanoclusters. In addition to the above-mentioned properties, noble metals such as Au and Ag are metals that significantly exhibit localized surface plasmon resonance (SPR). Further, Au is a metal that is chemically stable and has suitable electrical properties. Further, although Au does not exhibit catalytic activity in a bulk state, nano-order Au has a catalytic effect on various chemical reactions such as the oxidation reaction of carbon monoxide. For these reasons, Au nanoclusters are expected to be a precursor material that can contribute to improved performance in the various applications described above.
 これまで知られているAuナノクラスターとしては、ホスフィンやチオール系有機配位子(チオラート)等をリガンドとして適用してAu原子をクラスター化したものが挙げられる。特に、チオラートであるグルタチオン(GSH)をリガンドとするAuナノクラスターは、強固なAu-S結合により安定性が高いことに加え、親水性を有し水系溶媒に対して安定して分散状態を有することが知られている。 Examples of Au nanoclusters known so far include those in which Au atoms are clustered by applying phosphine, thiol-based organic ligands (thiolates), etc. as ligands. In particular, Au nanoclusters with the thiolate glutathione (GSH) as a ligand are highly stable due to strong Au-S bonds, and are also hydrophilic and stably dispersed in aqueous solvents. It is known.
特開2019-513184号公報Japanese Patent Application Publication No. 2019-513184 特開2007-45791号公報Japanese Patent Application Publication No. 2007-45791
 上述のとおり、金属ナノクラスターの利用形態としては、溶媒に分散させた金属ナノクラスターを担体に吸着・担持させることが一般的である。このとき、高活性な触媒や高特性なデバイスを製造するためには、溶媒中で分散した金属ナノクラスターを担体に効率よく移動させ担持する必要がある。Auナノクラスターの利用形態も同様であるので、上記した従来法で合成されたAuナノクラスターの分散液を担体に担持させることが必要となる。 As mentioned above, a common way of utilizing metal nanoclusters is to adsorb and support metal nanoclusters dispersed in a solvent on a carrier. At this time, in order to manufacture highly active catalysts and devices with high characteristics, it is necessary to efficiently transfer and support metal nanoclusters dispersed in a solvent onto a carrier. Since the usage pattern of Au nanoclusters is also similar, it is necessary to support a dispersion of Au nanoclusters synthesized by the above-described conventional method on a carrier.
 しかしながら、本発明者等の検討によれば、従来のAuナノクラスターの分散液は、担体の種類によっては十分な効率で担持できない場合がある。例えば触媒担体としてよく用いられているカーボン粉末に、上記したグルタチオンをリガンドとするAuナノクラスターの分散液を担持させたとき、Auナノクラスターが担体に吸着されることなく多くが溶媒中に残留することがある。 However, according to studies by the present inventors, conventional dispersions of Au nanoclusters may not be able to be supported with sufficient efficiency depending on the type of carrier. For example, when a dispersion of Au nanoclusters with glutathione as a ligand is supported on carbon powder, which is often used as a catalyst carrier, many of the Au nanoclusters remain in the solvent without being adsorbed to the carrier. Sometimes.
 その要因について考察するに、Auナノクラスターと担体との極性(親水性と疎水性)の相違にあると考えられる。上記した例で説明すると、グルタチオンをリガンドとするAuナノクラスターは、親水性であり水系溶媒中で安定であるため、疎水性のカーボン粉末への吸着担持が進行し難い。そのため、Auナノクラスターの多くが疎水性担体に担持されることなく溶媒に残留することとなる。触媒担体やデバイス基板には、表面が疎水性となっているものは多い。溶媒中で安定してナノ粒子の状態を維持できるAuナノクラスターであっても、これら担体への担持ができなければその意義は薄れる。 The reason for this is considered to be the difference in polarity (hydrophilicity and hydrophobicity) between the Au nanoclusters and the carrier. To explain using the above example, since Au nanoclusters having glutathione as a ligand are hydrophilic and stable in aqueous solvents, they are difficult to be adsorbed and supported on hydrophobic carbon powder. Therefore, most of the Au nanoclusters remain in the solvent without being supported on the hydrophobic carrier. Many catalyst carriers and device substrates have hydrophobic surfaces. Even if Au nanoclusters can stably maintain their nanoparticle state in a solvent, their significance will be diminished if they cannot be supported on these carriers.
 担持が困難となる要因が担体の疎水性にあるとすれば、有機溶媒のような非水系溶媒中で分散可能なAuナノクラスターを利用するという対応もある。事実、有機溶媒中で安定して存在できるAuナノクラスターも知られている。例えば、非特許文献2に記載されているようなフェニルエタンチオールをリガンドとするAuナノクラスターは、有機溶媒中で1nm程度のナノ粒子の状態で安定することが報告されている。しかしながら、有機溶媒による担持工程を触媒等の製造現場に適用するには、使用時の作業環境の管理、廃液処理等による環境負荷への配慮が必要となり、その対策は容易ではない。 If the reason why it is difficult to support is the hydrophobicity of the carrier, one solution is to use Au nanoclusters that can be dispersed in non-aqueous solvents such as organic solvents. In fact, Au nanoclusters that can stably exist in organic solvents are also known. For example, it has been reported that Au nanoclusters having phenylethanethiol as a ligand as described in Non-Patent Document 2 are stable in the state of nanoparticles of about 1 nm in an organic solvent. However, in order to apply the supporting process using an organic solvent to manufacturing sites for catalysts, etc., it is necessary to manage the working environment during use, treat waste liquid, etc. and take into consideration the environmental burden, which is not an easy measure.
 このように、Auナノクラスターに関する検討は、その合成に関する例は多いものの、合成されたAuナノクラスターを担体に担持するプロセスを考慮する検討例は少ない。しかし、Auナノクラスターを触媒等の機能材料へ応用するには、その効率的な担持方法の検討も重要である。 As described above, although there are many studies regarding Au nanoclusters related to their synthesis, there are few studies that consider the process of supporting synthesized Au nanoclusters on a carrier. However, in order to apply Au nanoclusters to functional materials such as catalysts, it is also important to consider efficient methods of supporting them.
 本発明は、上記のような背景の下になされたものであり、疎水性の担体に微小粒子であるAuナノクラスターが適宜の担持密度で高分散に担持された複合材料に関する。本発明では、水系溶媒を使用しながら、Auナノクラスターを疎水性の担体に担持する担持方法を明らかにし、前記の複合材料を製造する方法を提供することを目的とする。 The present invention was made against the above background, and relates to a composite material in which Au nanoclusters, which are fine particles, are highly dispersed and supported on a hydrophobic carrier at an appropriate supporting density. An object of the present invention is to clarify a method for supporting Au nanoclusters on a hydrophobic carrier while using an aqueous solvent, and to provide a method for manufacturing the above-mentioned composite material.
 本発明者等は、上記課題解決のための検討のため、まず、水系溶媒において、グルタチオンを含む各種のチオラート系のリガンドで合成されるAuクラスターの挙動について検討した。その結果、L-システイン及び所定の残基を有するL-システイン誘導体は、水系溶媒中で還元剤を作用させることなくAuナノクラスターを合成できることを見出した。そして、これらのリガンドにより合成されるAuナノクラスターは、疎水性を有することを確認した。但し、Auナノクラスターが疎水性を有するということは、水系溶媒中で安定的に分散することは困難である。本発明者等が検討したL-システイン及びL-システイン誘導体によるAuナノクラスターは、合成後に溶媒中で凝集等による沈殿・析出を生じさせて安定した分散状態を維持できない。 In order to study how to solve the above problem, the present inventors first studied the behavior of Au clusters synthesized with various thiolate-based ligands including glutathione in an aqueous solvent. As a result, it was found that L-cysteine and L-cysteine derivatives having a predetermined residue can synthesize Au nanoclusters in an aqueous solvent without the action of a reducing agent. It was also confirmed that Au nanoclusters synthesized using these ligands have hydrophobicity. However, since Au nanoclusters have hydrophobicity, it is difficult to stably disperse them in an aqueous solvent. The Au nanoclusters made of L-cysteine and L-cysteine derivatives studied by the present inventors cause precipitation and precipitation due to aggregation and the like in a solvent after synthesis, and cannot maintain a stable dispersion state.
 Auナノクラスターが水系溶媒中で疎水性を有するとしても、合成後の分散状態が不安定であると、この溶液を疎水性担体への担持に供することは困難である。そこで、本発明者等は更なる検討・考察を行った結果、上記リガンドとAu源(Auイオン)とが反応してAuナノクラスターが合成される時点で水系溶媒中に疎水性の担体が存在していれば、合成と同時にAuナノクラスターが担体に吸着担持可能であることを見出した。これは、L-システイン及びL-システイン誘導体により合成されるAuナノクラスターは疎水性担体への吸着性が良好であり、担体への吸着がナノクラスター相互の凝集に優先されるためと考えられる。 Even if Au nanoclusters have hydrophobicity in an aqueous solvent, if the dispersion state after synthesis is unstable, it is difficult to support this solution on a hydrophobic carrier. Therefore, as a result of further study and consideration, the present inventors found that a hydrophobic carrier exists in the aqueous solvent at the time when the above-mentioned ligand reacts with the Au source (Au ion) to synthesize Au nanoclusters. It has been found that Au nanoclusters can be adsorbed and supported on a carrier at the same time as synthesis. This is thought to be because Au nanoclusters synthesized from L-cysteine and L-cysteine derivatives have good adsorption to hydrophobic carriers, and adsorption to the carrier takes precedence over aggregation of nanoclusters.
 そして、本発明者等は、上記のようにAuナノクラスターを、合成と同時に疎水性担体に担持した複合材料の構成及び特性を検討した結果、この複合材料は、疎水性担体にAuナノクラスターが高密度・高分散で担持されていることを確認し本発明に想到した。 As a result of studying the structure and characteristics of a composite material in which Au nanoclusters are supported on a hydrophobic carrier at the same time as described above, the present inventors found that this composite material has Au nanoclusters supported on a hydrophobic carrier. After confirming that it was supported at high density and high dispersion, we came up with the present invention.
 即ち、本発明は、2以上のAu原子を含むAuナノクラスターがリガンドを介して担体に担持されてなる複合材料であって、前記担体は、少なくとも前記Auナノクラスターが担持される部分が疎水性であり、前記リガンドは、L-システイン又は非極性残基を有するL-システイン誘導体である複合材料である。 That is, the present invention provides a composite material in which Au nanoclusters containing two or more Au atoms are supported on a carrier via a ligand, wherein at least the portion on which the Au nanoclusters are supported is hydrophobic. and the ligand is a composite material that is L-cysteine or an L-cysteine derivative with a non-polar residue.
 以下、本発明に係るAuナノクラスター担持の複合材料の構成と、疎水性担体へのAuナノクラスターの担持方法に基づく複合材料の製造方法について説明する。 Hereinafter, the structure of the composite material supporting Au nanoclusters according to the present invention and the method for manufacturing the composite material based on the method of supporting Au nanoclusters on a hydrophobic carrier will be explained.
(A)本発明に係るAuナノクラスター担持の複合材料
 本発明に係る複合材料は、担体と担体上に担持されたAuナノクラスターと両者を結合させるリガンドとにより構成される。
(A) Composite material supporting Au nanoclusters according to the present invention The composite material according to the present invention is composed of a carrier, Au nanoclusters supported on the carrier, and a ligand that binds the two.
(A-1)疎水性担体
 担体は、Auナノクラスターを分散状態で支持するための部材である。本発明に係る複合材料の担体は、少なくともAuナノクラスターが担持される部分において疎水性を有する担体である。疎水性とは、水に対する親和性が低く、水に対して溶解又は混和し難い性質である。担体の構成材料としては、カーボン、セルロース、ニトロセルロース、疎水性ポリマー(フッ素樹脂、アクリル、エポキシ、ポリエチレン、ポリスチレン、ポリ塩化ビニル等)、金属窒化物等が挙げられる。担体の形状・寸法については、特に制限はない。触媒においては粒子状の担体が使用されることが多い。また、電気・光学デバイス関連の素材用途の担体としては、板状やシート・フィルム状等のバルク状の担体が使用されることがある。本発明において、担体の疎水性の具体的な基準は、以下のように、粒子状担体又はバルク状担体のそれぞれについて設定することができる。
(A-1) Hydrophobic carrier The carrier is a member for supporting the Au nanoclusters in a dispersed state. The carrier of the composite material according to the present invention is a carrier that has hydrophobicity at least in the portion on which the Au nanoclusters are supported. Hydrophobicity is a property that has a low affinity for water and is difficult to dissolve or mix with water. Examples of the constituent material of the carrier include carbon, cellulose, nitrocellulose, hydrophobic polymers (fluororesin, acrylic, epoxy, polyethylene, polystyrene, polyvinyl chloride, etc.), metal nitrides, and the like. There are no particular limitations on the shape and dimensions of the carrier. Particulate carriers are often used in catalysts. In addition, bulk carriers such as plate-shaped, sheet, and film-shaped carriers are sometimes used as carriers for material applications related to electrical and optical devices. In the present invention, specific criteria for the hydrophobicity of the carrier can be set for each of the particulate carrier and the bulk carrier as follows.
(i)粒子状担体
 粒子状担体は、水等の溶媒に分散可能な粒径10μm以下の粒子状又は粉末状の固体である。粒子状担体について疎水性を判定するための指標としては、パルスNMR(TD-NMR)の計測から求められるRSP値が好適である。水系溶媒中に分散する担体の疎水性は、担体表面と溶媒分子との相互作用の大小によって評価することができる。パルスNMRによれば、水等の分子中にプロトン(H)を有する溶媒の緩和時間が計測可能であり、この緩和時間が短い程、担体と溶媒との相互作用が強いことを示す。パルスNMRによる疎水性の判定では、溶媒のみの状態及び溶媒に粒子状担体を分散させた状態のそれぞれの状態における緩和時間を計測してRSP値を求める。RSP値は、下記の計算式から算出され、RSP値が小さいほど疎水性が高い傾向にある。
(i) Particulate carrier The particulate carrier is a particulate or powdery solid with a particle size of 10 μm or less that can be dispersed in a solvent such as water. As an index for determining the hydrophobicity of a particulate carrier, the R SP value obtained from pulsed NMR (TD-NMR) measurement is suitable. The hydrophobicity of a carrier dispersed in an aqueous solvent can be evaluated by the magnitude of interaction between the carrier surface and solvent molecules. According to pulse NMR, it is possible to measure the relaxation time of a solvent having protons (H) in its molecules, such as water, and the shorter the relaxation time, the stronger the interaction between the carrier and the solvent. In determining hydrophobicity by pulsed NMR, the RSP value is determined by measuring the relaxation time in each state of a solvent only state and a state in which a particulate carrier is dispersed in a solvent. The R SP value is calculated from the following formula, and the smaller the R SP value, the higher the hydrophobicity tends to be.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
本発明で使用される担体の疎水性は、溶媒を水としたパルスNMRで緩和時間(横緩和時間(スピン-スピン緩和時間))を計測し、上記式によりRSP値を求めて判定される。このとき、RSP値を計測時の担体の総表面積(TSA)で除した補正値(RSP/TSA:以下、RSP(c)とする)にて疎水性の判定をするのが好ましい。そして、本発明においては、RSP(c)の値が0.5以下の担体を疎水性担体とする。尚、パルスNMR計測時の担体の総表面積(TSA)は、下記式で算出できる。 The hydrophobicity of the carrier used in the present invention is determined by measuring the relaxation time (transverse relaxation time (spin-spin relaxation time)) by pulsed NMR using water as the solvent and calculating the R SP value using the above formula. . At this time, it is preferable to judge hydrophobicity using a correction value (R SP /TSA: hereinafter referred to as R SP (c)) obtained by dividing the R SP value by the total surface area (TSA) of the carrier at the time of measurement. In the present invention, a carrier having an R SP (c) value of 0.5 or less is defined as a hydrophobic carrier. Note that the total surface area (TSA) of the carrier during pulsed NMR measurement can be calculated using the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式において、担体の比表面積SAとしてはBET比表面積を適用するのが好ましい。本発明は触媒への適用が想定されており、触媒の担体としてカーボン粒子等が良く用いられる。カーボン粒子は、表面に無数の微細細孔を有する構造や中空構造といった様々な形態をとる。それら様々な形態の粒子状担体の比表面積を定める上でBET比表面積の適用が好適である。尚、BET比表面積は、ガス吸着法により測定される値を適用するのが好ましく、窒素ガスにより測定される値を適用することが好ましい。また、パルスNMRの計測時の担体の質量対容量比濃度は、0.1%以上(0.001g/mL以上)10%以下(0.1g/mL以下)とするのが好ましい。 In the above formula, it is preferable to apply the BET specific surface area as the specific surface area SA of the carrier. The present invention is intended to be applied to catalysts, and carbon particles or the like are often used as catalyst carriers. Carbon particles take various forms, such as a structure with countless fine pores on the surface and a hollow structure. Application of the BET specific surface area is suitable for determining the specific surface area of these various forms of particulate carriers. For the BET specific surface area, it is preferable to apply a value measured by a gas adsorption method, and it is preferable to apply a value measured by nitrogen gas. Further, the mass-to-volume ratio concentration of the carrier during pulse NMR measurement is preferably 0.1% or more (0.001 g/mL or more) and 10% or less (0.1 g/mL or less).
(ii)バルク状担体
 バルク状担体とは、上記の粒子状担体を除く趣旨であり、最小サイズが10μm以上の板状・塊状・薄膜状の固体である。バルク状担体の疎水性は、水との接触角で規定することができる。本発明においては、水との接触角が90°以上となるものを疎水性の担体とする。尚、最小サイズが粒子状担体より大きいバルク状担体については、少なくとも、Auナノクラスターを担持する表面部分が上記疎水性を有していれば良い。上記した疎水性の材料以外の材料であっても、Auナノクラスターの担持面について、疎水性を付与する処理がなされていれば良い。疎水化処理としては、担体表面に非極性官能基(アルキル基等)を修飾する処理や不活性雰囲気下での焼成処理の他、上記した疎水性材料によるコーティングが挙げられる。
(ii) Bulk-like carrier The bulk-like carrier is intended to exclude the above-mentioned particulate carriers, and is a plate-like, lump-like, or thin-film-like solid with a minimum size of 10 μm or more. The hydrophobicity of a bulk carrier can be defined by the contact angle with water. In the present invention, a hydrophobic carrier is one that has a contact angle with water of 90° or more. Note that for a bulk carrier whose minimum size is larger than that of a particulate carrier, it is sufficient that at least the surface portion supporting the Au nanoclusters has the above-mentioned hydrophobicity. Materials other than the above-mentioned hydrophobic materials may be used as long as the surface on which the Au nanoclusters are supported is treated to impart hydrophobicity. Examples of the hydrophobic treatment include a treatment for modifying the carrier surface with a nonpolar functional group (alkyl group, etc.), a firing treatment in an inert atmosphere, and coating with the above-mentioned hydrophobic material.
(A-2)Auナノクラスター
 Auナノクラスターとは、2以上のAu原子の集団を含む粒子である。本発明の複合材料で疎水性担体上に担持されたAuナノクラスターは、粒径0.5nm以上5nm以下であることが好ましく、3nm以下がより好ましい。Auナノクラスターの粒径は、例えば、TEM等の電子顕微鏡観察による観察像に基づき、複数の粒子の粒子径を測定することで平均値を算出して得ることができる。観察像における粒径の測定は、目視の他に画像解析によって測定できる。また、粒径分布についても、測定した粒子径について統計計算によって解析できる。尚、粒径分布を測定する関係から、100個以上の粒子を任意に選択して粒子径を測定しておくことが好ましい。また、「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離(外接円相当径)を意味するものとする。
(A-2) Au nanocluster Au nanocluster is a particle containing a group of two or more Au atoms. The particle size of the Au nanoclusters supported on the hydrophobic carrier in the composite material of the present invention is preferably 0.5 nm or more and 5 nm or less, more preferably 3 nm or less. The particle size of the Au nanocluster can be obtained, for example, by calculating the average value by measuring the particle size of a plurality of particles based on an image observed by electron microscopy such as TEM. The particle size in an observed image can be measured by image analysis in addition to visual observation. Furthermore, the particle size distribution can also be analyzed by statistical calculation of the measured particle size. In addition, from the viewpoint of measuring the particle size distribution, it is preferable to arbitrarily select 100 or more particles and measure the particle size. Furthermore, the term "particle diameter" shall mean the maximum distance (diameter equivalent to a circumscribed circle) among the distances between any two points on the contour line of a particle.
 また、Auナノクラスターは、Au原子のみで構成されていても良いが、他元素の原子を含んでいても良い。例えば、S(硫黄)、O(酸素)、N(窒素)、C(炭素)、Cu(銅)、Ag(銀)等のAuとの結合性が高い元素の原子は、Auナノクラスターの安定性や高活性化等に寄与することがある。こうしたAu以外の原子は、原子数で50%以下含まれることが好ましい。 Furthermore, the Au nanocluster may be composed only of Au atoms, but may also contain atoms of other elements. For example, atoms of elements that have a high bonding property with Au, such as S (sulfur), O (oxygen), N (nitrogen), C (carbon), Cu (copper), and Ag (silver), stabilize the Au nanocluster. It may contribute to sexual activity and high activation. It is preferable that atoms other than Au be contained in an amount of 50% or less in terms of number of atoms.
 本発明におけるAuナノクラスターの担持量(担持密度)は、複合材料の用途に応じて調整される。後述する本発明に係る担持方法に依れば、Auナノクラスターの担持量は、触媒等の複合材料の全体に対して質量基準で0.1質量%以上50質量%以下とすることが可能である。 The amount of Au nanoclusters supported (supporting density) in the present invention is adjusted depending on the use of the composite material. According to the supporting method according to the present invention described below, the amount of Au nanoclusters supported can be 0.1% by mass or more and 50% by mass or less based on the entire composite material such as a catalyst. be.
(A-3)リガンド(L-システイン及びL-システイン誘導体)
 リガンドは、クラスターとなったAu原子群の集合状態を維持するためにAu原子に配位する有機配位子である。また、本発明においては、リガンドは、Auナノクラスターが合成されたときに、Auナノクラスターを疎水性担体に結合するための補助として作用する。本発明のリガンドは、下記式で表されるL-システイン及びL-システイン誘導体である。
(A-3) Ligand (L-cysteine and L-cysteine derivative)
The ligand is an organic ligand that coordinates to the Au atoms in order to maintain the collective state of the clustered Au atoms. In addition, in the present invention, the ligand acts as an aid for binding the Au nanoclusters to the hydrophobic carrier when the Au nanoclusters are synthesized. The ligand of the present invention is L-cysteine and L-cysteine derivatives represented by the following formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式において、Rは残基(置換基)であり、水素又は非極性残基である。本発明者等の検討によれば、Rが水素となるL-システイン又はRが非極性残基となるL-システイン誘導体は、水性溶媒中でAu原子に配位してナノクラスターを形成するとき、Auナノクラスターに疎水性を付与する。 In the above formula, R is a residue (substituent), and is hydrogen or a nonpolar residue. According to the studies of the present inventors, when L-cysteine in which R is hydrogen or an L-cysteine derivative in which R is a nonpolar residue coordinates to an Au atom in an aqueous solvent to form a nanocluster. , imparts hydrophobicity to the Au nanoclusters.
 上記式におけるRが非極性残基であるとき、非極性残基は、炭素数1~4の脂肪族炭化水素鎖を有するアシル基(アセチル基(CHCO:Ac)、エチルカルボニル基(CHCHCO)、直鎖状又は分枝鎖状のプロピルカルボニル基(CCO)、直鎖状又は分枝鎖状のブチルカルボニル基(CCO))又は炭素数1~4の脂肪族炭化水素鎖を有するアルコキシカルボニル基(メトキシカルボニル基(CHOCO)、エトキシカルボニル基(CHCHOCO)、直鎖状又は分枝鎖状のプロポキシカルボニル基(COCO)、直鎖状又は分枝鎖状のブトキシカルボニル基(COCO))が好ましい。これらの中でもアセチル基(CHCO:Ac)、イソプロピルカルボニル基((CHCHCO)、tert-ブトキシカルボニル基((CHCOCO)がより好ましい。 When R in the above formula is a nonpolar residue, the nonpolar residue is an acyl group (acetyl group (CH 3 CO: Ac), ethylcarbonyl group (CH 3 CH 2 CO), linear or branched propylcarbonyl group (C 3 H 7 CO), linear or branched butyl carbonyl group (C 4 H 9 CO)), or carbon number 1 Alkoxycarbonyl group having ~4 aliphatic hydrocarbon chains (methoxycarbonyl group (CH 3 OCO), ethoxycarbonyl group (CH 3 CH 2 OCO), linear or branched propoxycarbonyl group (C 3 H 7 OCO), linear or branched butoxycarbonyl group (C 4 H 9 OCO)) are preferred. Among these, acetyl group (CH 3 CO:Ac), isopropylcarbonyl group ((CH 3 ) 2 CHCO), and tert-butoxycarbonyl group ((CH 3 ) 3 COCO) are more preferred.
 また、リガンドとして非極性残基を有するL-システイン誘導体が適用されるとき、非極性残基は疎水性担体へのアンカー効果を発揮し、高温環境下におけるAuナノクラスターの移動を抑制する作用があると考えられる。この作用は、Auナノクラスターの凝集及びそれによる粒子の粗大化を抑制することとなる。 Furthermore, when an L-cysteine derivative having a non-polar residue is applied as a ligand, the non-polar residue exhibits an anchoring effect to a hydrophobic carrier and has the effect of suppressing the movement of Au nanoclusters in a high-temperature environment. It is believed that there is. This effect suppresses the aggregation of Au nanoclusters and the resulting coarsening of the particles.
 そして、特に好ましいリガンドは、Rが水素であるL-システインと、Rがアセチル基であるN-アセチル-L-システインである。これらは分子量が小さく、熱による分解除去が容易なためである。 Particularly preferred ligands are L-cysteine, where R is hydrogen, and N-acetyl-L-cysteine, where R is an acetyl group. This is because these have a small molecular weight and can be easily decomposed and removed by heat.
 本発明に係る複合材料において、リガンドの含有量は、触媒等の複合材料の全体に対して質量基準で0.1質量%以上50質量%以下が好ましい。より好ましくは、20質量%以下のものである。 In the composite material according to the present invention, the content of the ligand is preferably 0.1% by mass or more and 50% by mass or less based on the entire composite material such as the catalyst. More preferably, it is 20% by mass or less.
 リガンドは、Auナノクラスターの少なくとも一部に結合していれば良く、全面或いは全てのAu原子に結合している必要はない。また、本発明に係る複合材料について、リガンドであるL-システイン又はRが非極性残基となるL-システイン誘導体の存在は、ガスクロマトグラフィー質量分析法(GC/MS)、特に熱分解-ガスクロマトグラフィー質量分析法(Py-GC/MS)により定性的に確認することができる。L-システイン誘導体の非極性残基についても、この分析方法で確認可能である。 The ligand only needs to be bonded to at least a portion of the Au nanocluster, and does not need to be bonded to the entire surface or all Au atoms. In addition, regarding the composite material according to the present invention, the presence of the ligand L-cysteine or an L-cysteine derivative in which R is a non-polar residue can be detected by gas chromatography-mass spectrometry (GC/MS), especially thermal decomposition-gas It can be qualitatively confirmed by chromatography-mass spectrometry (Py-GC/MS). Non-polar residues of L-cysteine derivatives can also be confirmed using this analytical method.
(B)本発明に係る複合材料の製造方法(Auナノクラスターの担持方法)
 次に、本発明に係るAuナノクラスター担持の複合材料の製造方法について説明する。上述したように、本発明は、L-システイン又は所定残基を有するL-システイン誘導体をリガンドとすることで、疎水性のAuナノクラスターを合成し、この合成と同時にAuナノクラスターを疎水性担体に担持することで製造される。Auナノクラスターの合成と担持とを同時に発生させ進行させるためには、合成反応の起点となるAu源とリガンドとの接触時点で反応系である水系溶媒内に担体を共存させることを要する。
(B) Method for manufacturing a composite material according to the present invention (method for supporting Au nanoclusters)
Next, a method for manufacturing a composite material supporting Au nanoclusters according to the present invention will be explained. As described above, the present invention synthesizes hydrophobic Au nanoclusters by using L-cysteine or an L-cysteine derivative having a predetermined residue as a ligand, and simultaneously transfers the Au nanoclusters to a hydrophobic carrier. It is produced by supporting on. In order to simultaneously generate and advance the synthesis and support of Au nanoclusters, it is necessary to coexist the carrier in the aqueous solvent that is the reaction system at the time of contact between the Au source and the ligand, which is the starting point of the synthesis reaction.
 即ち、本発明に係るAuナノクラスター担持の複合材料の製造方法は、担体の少なくとも一部にAu源及びリガンドのいずれか一方を含む水系溶媒が接触している状態を形成した後、前記水系溶媒に、前記Au源及び前記リガンドの他方を添加することにより、前記水系溶媒中でAuナノクラスターを合成すると共に前記Auナノクラスターを前記担体に担持する工程とを含み、前記リガンドは、L-システイン又は非極性残基を有するL-システイン誘導体とする方法である。 That is, in the method for producing a composite material supporting Au nanoclusters according to the present invention, after forming a state in which at least a portion of the support is in contact with an aqueous solvent containing either an Au source or a ligand, the aqueous solvent is the step of synthesizing Au nanoclusters in the aqueous solvent and supporting the Au nanoclusters on the carrier by adding the other of the Au source and the ligand, wherein the ligand is L-cysteine. Alternatively, it is a method of producing an L-cysteine derivative having a nonpolar residue.
 これまでの金属ナノクラスター(Auナノクラスター)に関する検討例は、Auナノクラスターの合成が主題事項であり、担体への担持はAuナノクラスターの合成が完了していることを前提としている。これに対して本発明は、Auナノクラスターの合成と同時に、若しくは、Auナノクラスターの合成後瞬時に担体への担持を完了させる。本発明では、Auナノクラスターの合成前に、Au源又はリガンドのいずれか一方と担体が共存する反応系を形成し、ここにAu源又はリガンドの他方を作用させることでAuナノクラスターを合成すると共に担体に担持する。こうしたAuナノクラスターの合成と担持のタイミングにおいて、本発明は従来技術と相違する。以下、このAuナノクラスターの担持方法に基づく複合材料の製造方法について説明する。 In the examples of studies regarding metal nanoclusters (Au nanoclusters) so far, the subject matter is the synthesis of Au nanoclusters, and the loading on a carrier is based on the premise that the synthesis of Au nanoclusters has been completed. In contrast, in the present invention, the loading on the carrier is completed simultaneously with the synthesis of the Au nanoclusters or immediately after the synthesis of the Au nanoclusters. In the present invention, before synthesizing Au nanoclusters, a reaction system is formed in which either the Au source or the ligand and a carrier coexist, and the other of the Au source or the ligand is allowed to act on this reaction system to synthesize Au nanoclusters. and supported on a carrier. The present invention differs from the prior art in the timing of synthesis and loading of Au nanoclusters. Hereinafter, a method for manufacturing a composite material based on this method of supporting Au nanoclusters will be explained.
 本発明では、まず、Au源及びリガンドのいずれか一方を含む水系溶媒と担体とが接触している状態を形成することが必要となる。この工程では、水系溶媒と担体とが接触した状態を形成しても良いし、予め、水系溶媒にAu源及びリガンドのいずれかを添加した溶液を作成し、この溶液と担体とを接触させても良い。水系溶媒又は溶液と担体とが接触した状態の形成は、水系溶媒又は溶液に担体の一部又は全部を浸漬するのが好ましい。その後のAu源及びリガンドの他方を添加することで開始されるAuナノクラスター合成反応を均一に進行させるためには十分な量の溶媒が必要だからである。但し、Auナノクラスターの合成反応を生じさせることが可能な状態を維持できるのであれば、担体上に水系溶媒又は溶液を滴下・塗布しても良い。担体は、上記した疎水性を有する担体が適用される。 In the present invention, it is first necessary to form a state in which the carrier is in contact with an aqueous solvent containing either the Au source or the ligand. In this step, a state in which the aqueous solvent and the carrier are in contact may be formed, or a solution in which either the Au source or the ligand is added to the aqueous solvent is prepared in advance, and this solution and the carrier are brought into contact. Also good. The state in which the carrier is in contact with the aqueous solvent or solution is preferably formed by immersing part or all of the carrier in the aqueous solvent or solution. This is because a sufficient amount of solvent is required in order to uniformly proceed with the subsequent Au nanocluster synthesis reaction that is started by adding the other of the Au source and the ligand. However, an aqueous solvent or solution may be dropped/coated onto the carrier as long as a state in which the Au nanocluster synthesis reaction can occur can be maintained. As the carrier, the above-mentioned carrier having hydrophobicity is applied.
 水系溶媒は、純水の他、水と水に可溶な極性溶媒(アルコール、N-メチルピロリドン等)との混合溶媒が適用できる。水系溶媒の量は、担体の重量に対して2倍以上1000倍以下とするのが好ましい。 As the aqueous solvent, in addition to pure water, a mixed solvent of water and a water-soluble polar solvent (alcohol, N-methylpyrrolidone, etc.) can be used. The amount of the aqueous solvent is preferably 2 times or more and 1000 times or less relative to the weight of the carrier.
 Au源は、テトラクロリド金(III)酸、ハロゲン化金、シアン化金(I)カリウム等のAu塩が適用できる。ここでのAu源の添加量(水系溶媒中のAu濃度)は、担体へ担持されるAuナノクラスターの担持量に関連するので、Au源の濃度は制限されるべきではない。例えば、触媒用途を考慮したときには、Au源は、Auの質量換算で担体重量に対して0.1質量%以上50質量%以下とすることで、上述したAuナノクラスターの担持密度を得ることができる。 As the Au source, Au salts such as tetrachloride gold (III) acid, gold halide, and potassium gold (I) cyanide can be used. The amount of the Au source added here (Au concentration in the aqueous solvent) is related to the amount of Au nanoclusters supported on the carrier, so the concentration of the Au source should not be limited. For example, when considering catalyst applications, it is possible to obtain the above-mentioned supporting density of Au nanoclusters by setting the Au source to 0.1% by mass or more and 50% by mass or less based on the carrier weight in terms of Au mass. can.
 リガンドは、上記のとおり、L-システイン又は非極性残基を有するL-システイン誘導体を添加する。リガンドの添加量は、担持予定のAuナノクラスターの担持量を考慮し、モル基準でAuイオンのモル数に対して1倍量以上10倍量以下とするとするのが好ましい。リガンドであるL-システイン等は、還元剤としての作用もあり、1倍量未満ではAuイオンが完全に還元されない場合がある。また、リガンドの不足は、Auナノクラスターの安定性も低下する。一方、10倍量以上のリガンドがあると、Au原子にリガンドが配位した錯体の状態で安定化する傾向が生じてナノクラスターの合成効率が低下する。 As the ligand, L-cysteine or an L-cysteine derivative having a nonpolar residue is added as described above. The amount of the ligand added is preferably from 1 to 10 times the number of moles of Au ions on a molar basis, taking into consideration the amount of Au nanoclusters to be supported. The ligand, L-cysteine, etc. also acts as a reducing agent, and if the amount is less than 1 time, Au ions may not be completely reduced. The lack of ligand also reduces the stability of Au nanoclusters. On the other hand, if the amount of ligand is 10 times or more, the nanocluster synthesis efficiency will decrease because the Au atom will tend to be stabilized in a complex state in which the ligand is coordinated with the ligand.
 そして、上記のAu源及びリガンドのいずれか一方を添加した水系溶媒と担体とを接触させた後、Au源及びリガンドの他方を添加することでAuナノクラスターが合成される。このとき、L-システイン又はL-システイン誘導体は、リガンドとしての機能に加えて還元剤としても作用する。そのため、本発明では、還元剤を添加することなく、反応系内にAu源とリガンドが共存した状態になると、それと同時にAuナノクラスターの合成が開始・進行する。そして、合成したAuナノクラスターは、疎水性の担体に吸着・担持される。このAuクラスターの担持は、Auクラスターの合成と同時又は合成後に肉眼観察で区別できない程度に瞬時に進行する。 Then, after bringing the carrier into contact with the aqueous solvent to which either one of the Au source and the ligand is added, Au nanoclusters are synthesized by adding the other of the Au source and the ligand. At this time, L-cysteine or an L-cysteine derivative functions not only as a ligand but also as a reducing agent. Therefore, in the present invention, when the Au source and the ligand coexist in the reaction system without adding a reducing agent, the synthesis of Au nanoclusters starts and progresses at the same time. The synthesized Au nanoclusters are then adsorbed and supported on a hydrophobic carrier. This support of Au clusters progresses instantaneously to such an extent that they cannot be distinguished by visual observation at the same time as or after the synthesis of Au clusters.
 以上のAuナノクラスターの合成と担持における反応系の温度条件としては、0℃以上50℃以下で行うことが好ましく、常温でも良い。また、反応雰囲気は大気雰囲気、不活性ガス雰囲気のいずれでも良い。 The temperature conditions of the reaction system in the synthesis and support of the above Au nanoclusters are preferably 0° C. or higher and 50° C. or lower, and room temperature may also be used. Further, the reaction atmosphere may be either air atmosphere or inert gas atmosphere.
 Auナノクラスターの合成と疎水性担体への担持が完了して複合材料を得ることができる。Auナノクラスターが担持された担体については、乾固又は濾過により回収し、必要に応じて洗浄、乾燥処理、熱処理を行って良い。熱処理は、過剰のリガンドの分解除去やAuナノクラスターを会合させて粒子径を制御するために行われる。熱処理の雰囲気は、大気雰囲気又は酸素ガスと不活性ガスの混合ガス雰囲気の他、減圧雰囲気(100Pa以下の減圧雰囲気が好ましい)や不活性ガス雰囲気とすることが好ましい。また、熱処理温度は、100℃以上800℃以下とするのが好ましく、120℃以上400℃以下がより好ましい。 A composite material can be obtained by completing the synthesis of Au nanoclusters and supporting them on a hydrophobic carrier. The carrier carrying Au nanoclusters may be recovered by drying or filtration, and may be washed, dried, and heat treated as necessary. The heat treatment is performed to control the particle size by decomposing and removing excess ligands and by associating Au nanoclusters. The atmosphere for the heat treatment is preferably an atmospheric atmosphere, a mixed gas atmosphere of oxygen gas and an inert gas, a reduced pressure atmosphere (preferably a reduced pressure atmosphere of 100 Pa or less), or an inert gas atmosphere. Further, the heat treatment temperature is preferably 100°C or more and 800°C or less, more preferably 120°C or more and 400°C or less.
 以上説明したように、本発明に係る複合材料は、疎水性担体にAuナノクラスターが担持された複合材料である。本発明に係る複合材料は、微細なAuナノクラスターが高密度で担持されており、Auナノクラスターが有する特異な特性を効果的に発揮することができる。 As explained above, the composite material according to the present invention is a composite material in which Au nanoclusters are supported on a hydrophobic carrier. The composite material according to the present invention supports fine Au nanoclusters at a high density, and can effectively exhibit the unique characteristics of the Au nanoclusters.
 そして、本発明は、水系溶媒中でAuナノクラスターを効率的に担持して複合材料を製造する方法を明らかにする。本発明によれば、環境負荷等の観点から使用し難い有機溶媒に依らずに、Auナノクラスターを疎水性担体に担持して複合材料を製造することができる。 The present invention also reveals a method for manufacturing a composite material by efficiently supporting Au nanoclusters in an aqueous solvent. According to the present invention, a composite material can be produced by supporting Au nanoclusters on a hydrophobic carrier without relying on organic solvents that are difficult to use from the viewpoint of environmental impact.
 Auはナノクラスターとすることで、バルク体にはない触媒活性を有する。Auナノクラスターは、一酸化炭素、アルコール、スチレンの酸化反応や不飽和ケトンの水素化反応に対する触媒活性を有する。本発明は、これらの化学反応の触媒として適用できる。例えば、改質水素ガス生成のための一酸化炭素除去触媒や排ガス浄化触媒等が挙げられる。また、Auナノクラスターは、電極触媒として酸素還元反応(ORR)の触媒活性を有する。本発明は、燃料電池の電極触媒にもすることができる。 By forming Au into nanoclusters, it has catalytic activity not found in bulk. Au nanoclusters have catalytic activity for the oxidation reaction of carbon monoxide, alcohol, and styrene, and the hydrogenation reaction of unsaturated ketones. The present invention can be applied as a catalyst for these chemical reactions. Examples include carbon monoxide removal catalysts and exhaust gas purification catalysts for producing reformed hydrogen gas. Moreover, Au nanoclusters have catalytic activity for oxygen reduction reaction (ORR) as an electrode catalyst. The present invention can also be used as an electrode catalyst for fuel cells.
実施例1~実施例3のAuナノクラスターが担持された複合材料のTEM像。TEM images of composite materials on which Au nanoclusters of Examples 1 to 3 are supported. 実施例1のAuナノクラスター(Au(C)/C)が担持された複合材料の熱処理前後のMSスペクトル。MS spectra of the composite material supporting Au nanoclusters (Au(C)/C) of Example 1 before and after heat treatment. 実施例2のAuナノクラスター(Au(NAC)/C)が担持された複合材料の熱処理前後のMSスペクトル。MS spectra of the composite material supporting Au nanoclusters (Au(NAC)/C) of Example 2 before and after heat treatment. 実施例3のAuナノクラスター(Au(C)/C)が担持された複合材料の熱処理前後のMSスペクトル。MS spectra of the composite material supporting Au nanoclusters (Au(C)/C) of Example 3 before and after heat treatment. 実施例1と実施例2の複合材料の熱処理前のMSスペクトルを対比する図。FIG. 3 is a diagram comparing the MS spectra of the composite materials of Example 1 and Example 2 before heat treatment. 実施例1と実施例2複合材料の熱処理後のMSスペクトルを対比する図。FIG. 3 is a diagram comparing the MS spectra of the composite materials of Example 1 and Example 2 after heat treatment. 実施例4、実施例5のAuナノクラスターが担持された複合材料のTEM像。TEM images of composite materials supporting Au nanoclusters of Examples 4 and 5. 実施例6、実施例7のAuナノクラスターが担持された複合材料のTEM像。TEM images of composite materials supporting Au nanoclusters of Examples 6 and 7.
第1実施形態:以下、本発明の実施形態について説明する。本実施形態では、疎水性担体としてカーボン粉末を用いた。また、Auナノクラスターを合成するリガンドとして、L-システインとN-アセチル-L-システイン(以下、アセチルシステインと称する)を適用して複合材料を製造した。 First Embodiment : Hereinafter, an embodiment of the present invention will be described. In this embodiment, carbon powder was used as the hydrophobic carrier. In addition, a composite material was manufactured using L-cysteine and N-acetyl-L-cysteine (hereinafter referred to as acetylcysteine) as ligands for synthesizing Au nanoclusters.
 本実施形態で使用したカーボン粉末は、平均粒径40nm、BET比表面積800m/gである。このカーボン粉末0.1gを純水100mLに分散させたスラリーを計測サンプルとし、パルスNMRで分析してRSP値を計測した。計測は、レゾナンス・システムズ社製パルスNMR装置により、計測サンプル量1mL、測定温度30℃で共鳴周波数約20MHz、観測核をH-NMRとして緩和時間(横緩和時間T)を測定した(CMPG法)。 The carbon powder used in this embodiment has an average particle size of 40 nm and a BET specific surface area of 800 m 2 /g. A slurry in which 0.1 g of this carbon powder was dispersed in 100 mL of pure water was used as a measurement sample, and analyzed by pulsed NMR to measure the R SP value. The measurement was performed using a pulsed NMR device manufactured by Resonance Systems, Inc., using a measurement sample volume of 1 mL, a measurement temperature of 30°C, a resonance frequency of about 20 MHz, and a 1 H-NMR observation nucleus to measure the relaxation time (transverse relaxation time T 2 ) (CMPG law).
 本実施形態のカーボン粉末の水に対するRSP値は、0.28であった。また、カーボン粉末のBET比表面積(800m/g)から、担体の総表面積(TSA)は0.8mとなる。よって、本実施形態のカーボン粉末のTSAによる補正値RSP(c)は0.35であり、疎水性担体と判定された。 The R SP value of the carbon powder of this embodiment with respect to water was 0.28. Further, from the BET specific surface area (800 m 2 /g) of the carbon powder, the total surface area (TSA) of the carrier is 0.8 m 2 . Therefore, the TSA correction value R SP (c) of the carbon powder of this embodiment was 0.35, and it was determined that the carbon powder was a hydrophobic carrier.
実施例1(リガンド:L-システイン(C)):水系溶媒として純水100mLに、上記のカーボン粉末を1g添加して分散させた。このカーボン粉末担体が分散する水系溶媒に、Au源としてテトラクロリド金(III)酸を0.75g(Au2.2mmol)を溶解させた。 Example 1 (ligand: L-cysteine (C)) : 1 g of the above carbon powder was added and dispersed in 100 mL of pure water as an aqueous solvent. In the aqueous solvent in which this carbon powder carrier was dispersed, 0.75 g (2.2 mmol of Au) of tetrachloride gold (III) acid as an Au source was dissolved.
 そして、担体が分散したAu水溶液に、リガンドであるL-システイン1.2g(9.3mmol)を溶解させた水溶液20mLを添加してAuナノクラスターを合成すると同時にカーボン粉末に担持させて複合材料(Au(C)/C)を製造した。以上の操作の雰囲気温度は、大気雰囲気下室温(25℃)とした。 Then, 20 mL of an aqueous solution in which 1.2 g (9.3 mmol) of L-cysteine, a ligand, was dissolved was added to the Au aqueous solution in which the carrier was dispersed to synthesize Au nanoclusters, which were simultaneously supported on carbon powder to form a composite material ( Au(C)/C) was produced. The ambient temperature in the above operations was set to room temperature (25° C.) in an air atmosphere.
 Auナノクラスターをカーボン粉末に担持した後、反応液を濾過して複合材料と濾液回収した。回収した複合材料は、減圧下(100Pa以下)で乾燥させたもの、乾燥後減圧下(100Pa以下)150℃で4時間加熱処理しての2種の処理を行い、複合材料を完成させた。 After supporting Au nanoclusters on carbon powder, the reaction solution was filtered to recover the composite material and filtrate. The recovered composite material was subjected to two types of treatment: one was dried under reduced pressure (100 Pa or less), and the other was heat-treated after drying at 150° C. for 4 hours under reduced pressure (100 Pa or less) to complete the composite material.
実施例2(リガンド:アセチルシステイン(NAC)):実施例1と同量の純水にカーボン粉末を分散させ、Au源であるテトラクロリド金(III)酸を0.75g(Au2.2mmol)溶解させた後、リガンドとしてアセチルシステイン1.5g(9.3mmol)を溶解させた水溶液20mL添加して複合材料(Au(NAC)/C)を製造した。その後、実施例1と同様に複合材料を回収して150℃で熱処理をした。 Example 2 (ligand: acetylcysteine (NAC)) : Carbon powder was dispersed in the same amount of pure water as in Example 1, and 0.75 g (2.2 mmol of Au) of tetrachloride gold (III) acid, which is an Au source, was dissolved. After that, 20 mL of an aqueous solution containing 1.5 g (9.3 mmol) of acetylcysteine as a ligand was added to produce a composite material (Au(NAC)/C). Thereafter, the composite material was collected and heat treated at 150°C in the same manner as in Example 1.
実施例3(リガンド:L-システイン(C)):この実施例は、実施例1に対して、Au源とリガンドの添加順序を逆にして、Auナノクラスターを合成・担持した。実施例1と同量の純水にカーボン粉末を分散させ、リガンドであるL-システイン1.2g(9.3mmol)を添加した後、Au源であるテトラクロリド金(III)酸を0.75g(Au2.2mmol)溶解させた水溶液20mLを添加して複合材料(Au(C)/C)を製造した。その後、実施例1と同様に複合材料を回収して150℃で熱処理をした。 Example 3 (Ligand: L-cysteine (C)) : In this example, the order of addition of the Au source and the ligand was reversed with respect to Example 1, and Au nanoclusters were synthesized and supported. After dispersing carbon powder in the same amount of pure water as in Example 1 and adding 1.2 g (9.3 mmol) of L-cysteine as a ligand, 0.75 g of tetrachloride gold (III) acid as an Au source was added. (2.2 mmol of Au) was added to produce a composite material (Au(C)/C). Thereafter, the composite material was collected and heat treated at 150°C in the same manner as in Example 1.
 実施例1~実施例3で製造したAuナノクラスター担持複合材料について、製造直後(熱処理前)と熱処理後のSTEM(日本電子株式会社製JEM-ARM200F)にて観察した。各実施例のSTEM像を図1に示す。Auナノクラスターを担持した状態では、実施例1、2はいずれも1nm前後の微細なAuナノクラスターが担持されている。そして、これを150℃で熱処理すると、わずかに凝集が生じ、1.0nm(実施例1)、1.0nm(実施例2)、0.9nm(実施例3)のAuナノクラスターとなっている。尚、これらのナノクラスターの粒径は、小角エックス線散乱装置(株式会社リガク製NANOPIX)を用いてカメラ長600mmで測定した際に得られた散乱曲線にフィッティング処理を行って算出した。 The Au nanocluster supported composite materials produced in Examples 1 to 3 were observed using STEM (JEM-ARM200F manufactured by JEOL Ltd.) immediately after production (before heat treatment) and after heat treatment. STEM images of each example are shown in FIG. In the state in which Au nanoclusters are supported, in both Examples 1 and 2, fine Au nanoclusters of around 1 nm are supported. When this was heat-treated at 150°C, slight aggregation occurred, resulting in Au nanoclusters of 1.0 nm (Example 1), 1.0 nm (Example 2), and 0.9 nm (Example 3). . The particle size of these nanoclusters was calculated by fitting a scattering curve obtained when measuring with a camera length of 600 mm using a small-angle X-ray scattering device (NANOPIX manufactured by Rigaku Co., Ltd.).
 次に、実施例1、2の複合材料を熱分解GC/MSで分析し、リガンドの存在の確認と非極性残基の識別可否を行うこととした。熱分解GC/MSは、装置名アジレントテクノロジー社製7890A/5975Cにより、加熱炉温度600℃で分解した成分をGCに導入して分離してMSで分析した。分析結果として、実施例1~実施例3の熱処理前後の複合材料のMSスペクトルを図2~図4に示す。また、リガンドが異なる実施例1と実施例2のMSスペクトルの対比を図5、6に示す。 Next, the composite materials of Examples 1 and 2 were analyzed by pyrolysis GC/MS to confirm the presence of the ligand and to determine whether nonpolar residues could be identified. Thermal decomposition GC/MS was performed using a device named 7890A/5975C manufactured by Agilent Technologies, and the components decomposed at a heating furnace temperature of 600°C were introduced into the GC, separated, and analyzed by MS. As analysis results, MS spectra of the composite materials of Examples 1 to 3 before and after heat treatment are shown in FIGS. 2 to 4. Furthermore, a comparison of the MS spectra of Example 1 and Example 2 using different ligands is shown in FIGS. 5 and 6.
 図2~図4から、実施例1~実施例3のいずれにおいても、L-システイン由来のピークが検出され、当該ピークは150℃での熱処理後でも検出されていることから、リガンドであるL-システイン及びL-システイン誘導体の存在を確認することができる。また、実施例1と実施例3は、Au源及びリガンドの混合の順序が異なるがスペクトルに相違はないことから、溶媒及び担体との混合順でAuナノクラスターの構造は共通していると推定される。更に、図5、6から、実施例1、2のリガンドの相違である非極性残基に由来する酢酸、アセトアミドのピークがみられることから、L-システイン誘導体の種類の同定も可能である。 From FIGS. 2 to 4, a peak derived from L-cysteine was detected in all of Examples 1 to 3, and this peak was detected even after heat treatment at 150°C. - The presence of cysteine and L-cysteine derivatives can be confirmed. In addition, since there is no difference in the spectra between Examples 1 and 3 although the order of mixing the Au source and the ligand is different, it is assumed that the structure of the Au nanoclusters is the same depending on the order of mixing with the solvent and carrier. be done. Furthermore, since FIGS. 5 and 6 show acetic acid and acetamide peaks derived from non-polar residues, which are different between the ligands of Examples 1 and 2, it is possible to identify the type of L-cysteine derivative.
比較例:次に、実施例1~実施例3についてAuナノクラスターの担持効率を確認するための比較例として、リガンドとしてグルタチオンを適用してAuナノクラスターを合成してカーボン粉末に担持した。条件を同じとするため、この比較例では、以下のとおり、担体が分散する溶媒中でAuナノクラスターを合成・担持した。 Comparative Example : Next, as a comparative example for confirming the supporting efficiency of Au nanoclusters for Examples 1 to 3, Au nanoclusters were synthesized using glutathione as a ligand and supported on carbon powder. In order to keep the conditions the same, in this comparative example, Au nanoclusters were synthesized and supported in a solvent in which the carrier was dispersed, as described below.
 実施例1と同量のカーボン粉末が分散する純水に、Au源としてテトラクロリド金(III)酸を0.75g(Au2.2mmol)溶解させた水溶液に、グルタチオンを2.85g(9.3mol)を溶解させた水溶液20mLを添加した。グルタチオン添加後、複合材料を回収し、実施例1と同様に150℃で熱処理した。 2.85 g (9.3 mol) of glutathione was added to an aqueous solution in which 0.75 g (2.2 mmol of Au) of tetrachloride gold (III) acid as an Au source was dissolved in pure water in which the same amount of carbon powder as in Example 1 was dispersed. ) was added to the mixture. After adding glutathione, the composite material was collected and heat treated at 150° C. in the same manner as in Example 1.
[Auナノクラスターの担持効率の検討]
 上記比較例のAuナノクラスター担持複合材料を製造したところで、実施例1~実施例3と比較例について、Auナノクラスターを担持した後の反応液中に残存するAuナノクラスターの残存量について検討した。この検討は、Auナノクラスター担持後の反応液から複合材料を回収した後の濾液についてICP-OES(ICP発光分光分析:株式会社島津製作所製ICPE-9820)で分析し、濾液中のAu量を測定した。そして、濾液中のAu量の仕込み量(Auナノクラスター合成前に溶媒に添加したAu量)に対する割合(%)を算出した。
[Study of supporting efficiency of Au nanoclusters]
After producing the Au nanocluster-supported composite material of the above comparative example, the amount of remaining Au nanoclusters remaining in the reaction solution after supporting the Au nanoclusters was investigated for Examples 1 to 3 and the comparative example. . In this study, the filtrate after recovering the composite material from the reaction solution after supporting Au nanoclusters was analyzed by ICP-OES (ICP emission spectrometry: ICPE-9820 manufactured by Shimadzu Corporation), and the amount of Au in the filtrate was determined. It was measured. Then, the ratio (%) of the amount of Au in the filtrate to the charged amount (the amount of Au added to the solvent before synthesis of Au nanoclusters) was calculated.
 この検討結果から、濾液中のAuの割合は、実施例1(Au(C)/C)で0.03%、実施例2で0.015%であり、実施例3で0.075%であった。これらの結果から、仕込み量の殆どのAu源がAuナノクラスターとして担体に担持されていることが確認された。一方、比較例の濾液中のAuの割合は、32.8%と実施例1~実施例3に対して明確に高い割合であり、担体に担持されなかったAuが相当にあったことが確認された。比較例のリガンドであるグルタチオンによって合成されるAuナノクラスターは、水溶性であり疎水性のカーボン粉末担体に担持が困難であることが分かる。 From this study result, the proportion of Au in the filtrate was 0.03% in Example 1 (Au(C)/C), 0.015% in Example 2, and 0.075% in Example 3. there were. From these results, it was confirmed that most of the charged Au source was supported on the carrier as Au nanoclusters. On the other hand, the proportion of Au in the filtrate of the comparative example was 32.8%, which was clearly higher than that of Examples 1 to 3, confirming that there was a considerable amount of Au that was not supported on the carrier. It was done. It can be seen that the Au nanoclusters synthesized using glutathione, which is a ligand in the comparative example, are water-soluble and difficult to support on a hydrophobic carbon powder carrier.
[触媒活性の評価]
 次に、実施例1~実施例3のAuナノクラスター担持複合材料について、触媒活性の評価試験を行った。活性評価試験では、熱処理後の各実施例及び比較例の触媒(複合材料)を10mg採取し、それぞれにテトラメチルベンジジン溶液(SeraCare Life Sciences Inc.(KPL)製)2mLと30%過酸化水素水0.1mLを加え、室温(25℃)で1分間攪拌した。その後、反応停止液として1M塩酸4mLを投入し、反応液を0.45μmフィルターに通して触媒粉末を除去した後、吸光光度計(日本分光株式会社製V-770DS)にて波長452nmにおける吸光度を測定した。ここでの触媒反応は過酸化水素の酸化分解反応が適用され、触媒活性は生じたテトラメチルベンジジン二量体の吸光度の強さで評価される。
[Evaluation of catalyst activity]
Next, the Au nanocluster-supported composite materials of Examples 1 to 3 were tested to evaluate their catalytic activity. In the activity evaluation test, 10 mg of the catalysts (composite materials) of each example and comparative example were collected after heat treatment, and 2 mL of tetramethylbenzidine solution (manufactured by SeraCare Life Sciences Inc. (KPL)) and 30% hydrogen peroxide solution were added to each sample. 0.1 mL was added and stirred at room temperature (25°C) for 1 minute. After that, 4 mL of 1M hydrochloric acid was added as a reaction stop solution, and the reaction solution was passed through a 0.45 μm filter to remove catalyst powder, and the absorbance at a wavelength of 452 nm was measured using an absorption photometer (V-770DS manufactured by JASCO Corporation). It was measured. The catalytic reaction here is an oxidative decomposition reaction of hydrogen peroxide, and the catalytic activity is evaluated by the intensity of the absorbance of the resulting tetramethylbenzidine dimer.
 評価試験の結果は、吸光度の強さは実施例1(Au(C)/C)で2.26、実施例2(Au(NAC)/C)で1.97、実施例3(Au(C)/C)で1.95であり、各実施例は、同等の酸化触媒活性を示すことが確認できた。 As a result of the evaluation test, the absorbance intensity was 2.26 in Example 1 (Au(C)/C), 1.97 in Example 2 (Au(NAC)/C), and 1.97 in Example 3 (Au(C)/C). )/C) was 1.95, and it was confirmed that each Example exhibited equivalent oxidation catalytic activity.
第2実施形態:本実施形態では、疎水性担体として第1実施形態と同じカーボン粉末(平均粒径40nm、BET比表面積800m/g、RSP(c)0.35)を用いると共に、Auナノクラスターを合成するリガンドとしてアセチルシステイン(NAC)を適用し、第1実施形態と異なる製造条件で複合材料を製造した。 Second embodiment : In this embodiment, the same carbon powder as in the first embodiment (average particle size 40 nm, BET specific surface area 800 m 2 /g, R SP (c) 0.35) is used as the hydrophobic carrier, and Au Acetylcysteine (NAC) was applied as a ligand for synthesizing nanoclusters, and a composite material was manufactured under manufacturing conditions different from those of the first embodiment.
実施例4(リガンド:アセチルシステイン(NAC)):水系溶媒である純水400mLに、カーボン粉末を4g添加して分散させた。このカーボン粉末担体が分散する水系溶媒に、リガンドであるアセチルシステイン6g(37.2mmol)を添加した後、Au源であるテトラクロリド金(III)酸を3g(Au8.8mmol)溶解させた水溶液20mLを添加して複合材料(Au(NAC)/C)を製造した。その後、実施例1と同様にして、複合材料を回収して乾燥させた後、減圧下(100Pa以下)150℃で4時間加熱処理して複合材料を完成させた。 Example 4 (ligand: acetylcysteine (NAC)) : 4 g of carbon powder was added and dispersed in 400 mL of pure water, which is an aqueous solvent. After adding 6 g (37.2 mmol) of acetyl cysteine, which is a ligand, to the aqueous solvent in which this carbon powder carrier is dispersed, 20 mL of an aqueous solution in which 3 g (8.8 mmol Au) of tetrachloride gold (III) acid, which is an Au source, is dissolved is added. was added to produce a composite material (Au(NAC)/C). Thereafter, in the same manner as in Example 1, the composite material was collected and dried, and then heat-treated at 150° C. under reduced pressure (100 Pa or less) for 4 hours to complete the composite material.
実施例5(リガンド:アセチルシステイン(NAC)):実施例4と同じ条件にて、カーボン粉末が分散する水系溶媒にリガンド(NAC)を添加した後、Au源(テトラクロリド金(III)酸)の水溶液を添加して複合材料(Au(NAC)/C)を製造した。そして、複合材料を回収及び乾燥後、減圧下(100Pa以下)400℃で4時間加熱処理して複合材料を完成させた。 Example 5 (Ligand: Acetylcysteine (NAC)) : Under the same conditions as Example 4, after adding the ligand (NAC) to the aqueous solvent in which the carbon powder is dispersed, the Au source (tetrachloride gold (III) acid) was added. A composite material (Au(NAC)/C) was manufactured by adding an aqueous solution of. After collecting and drying the composite material, the composite material was heat-treated at 400° C. for 4 hours under reduced pressure (100 Pa or less) to complete the composite material.
 実施例4、5で製造したAuナノクラスター担持複合材料をTEMにて観察した。これらの複合材料のTEM像を図7に示す。第1実施形態と同様にして、これらのAuナノクラスター担持複合材料におけるAuナノクラスターの粒径を小角エックス線散乱装置にて測定した結果、0.8nm(実施例4)、4.3nm(実施例5)であった。熱処理温度の調整によりAuナノクラスターの粒径を変更できることが確認された。 The Au nanocluster-supported composite materials produced in Examples 4 and 5 were observed using a TEM. TEM images of these composite materials are shown in FIG. As in the first embodiment, the particle sizes of Au nanoclusters in these Au nanocluster-supporting composite materials were measured using a small-angle X-ray scattering device, and the results were 0.8 nm (Example 4) and 4.3 nm (Example 4). 5). It was confirmed that the particle size of Au nanoclusters can be changed by adjusting the heat treatment temperature.
第3実施形態:本実施形態では、疎水性担体として第1実施形態と異なるカーボン粉末を用いると共に、リガンドとしてL-システイン(C)を適用して複合材料を製造した。 Third Embodiment : In this embodiment, a composite material was manufactured by using carbon powder different from that in the first embodiment as a hydrophobic carrier and applying L-cysteine (C) as a ligand.
 本実施形態で使用したカーボン粉末は、平均粒径40nm、BET比表面積220m/gである。このカーボン粉末1gを純水100mLに分散させたスラリーを計測サンプルとし、パルスNMRで分析してRSP値を計測した。計測は、ブルカー社製パルスNMR装置により、計測サンプル量2mL、測定温度30℃で共鳴周波数約20MHz、観測核をH-NMRとして緩和時間(横緩和時間T)を測定した。本実施形態のカーボン粉末の水に対するRSP値は、1.70であった。担体の総表面積(TSA)は4.4mであるので、本実施形態のカーボン粉末のRSP(c)は0.39となり、疎水性担体と判定された。 The carbon powder used in this embodiment has an average particle size of 40 nm and a BET specific surface area of 220 m 2 /g. A slurry in which 1 g of this carbon powder was dispersed in 100 mL of pure water was used as a measurement sample, and analyzed by pulsed NMR to measure the RSP value. The measurement was carried out using a pulse NMR device manufactured by Bruker, using a sample volume of 2 mL, a measurement temperature of 30° C., a resonance frequency of about 20 MHz, and a 1 H-NMR observation nucleus to measure the relaxation time (transverse relaxation time T 2 ). The R SP value of the carbon powder of this embodiment with respect to water was 1.70. Since the total surface area (TSA) of the carrier was 4.4 m 2 , the R SP (c) of the carbon powder of this embodiment was 0.39, and it was determined to be a hydrophobic carrier.
実施例6(リガンド:L-システイン(C)):水系溶媒である純水80mLに、カーボン粉末を4g添加して分散させた。このカーボン粉末担体が分散する水系溶媒に、リガンドであるL-システイン4.8g(37.2mmol)を添加した後、Au源であるテトラクロリド金(III)酸を3g(Au8.8mmol)溶解させた水溶液20mLを添加して複合材料(Au(C)/C)を製造した。その後、実施例1と同様にして、複合材料を回収して乾燥させた後、減圧下(100Pa以下)150℃で4時間加熱処理して複合材料を完成させた。 Example 6 (ligand: L-cysteine (C)) : 4 g of carbon powder was added and dispersed in 80 mL of pure water, which is an aqueous solvent. After adding 4.8 g (37.2 mmol) of L-cysteine as a ligand to the aqueous solvent in which this carbon powder carrier is dispersed, 3 g (8.8 mmol of Au) of tetrachloride gold (III) acid as an Au source is dissolved. 20 mL of the aqueous solution was added to produce a composite material (Au(C)/C). Thereafter, in the same manner as in Example 1, the composite material was collected and dried, and then heat-treated at 150° C. under reduced pressure (100 Pa or less) for 4 hours to complete the composite material.
実施例7(リガンド:L-システイン(C)):実施例6と同じ条件にて、カーボン粉末が分散する水系溶媒にリガンド(C)を添加した後、Au源(テトラクロリド金(III)酸)の水溶液を添加して複合材料(Au(C)/C)を製造した。そして、複合材料を回収及び乾燥後、減圧下(100Pa以下)230℃で4時間加熱処理して複合材料を完成させた。 Example 7 (ligand: L-cysteine (C)) : Under the same conditions as Example 6, after adding the ligand (C) to the aqueous solvent in which the carbon powder is dispersed, the Au source (tetrachloride gold (III) acid ) was added to produce a composite material (Au(C)/C). After collecting and drying the composite material, the composite material was heat-treated at 230° C. for 4 hours under reduced pressure (100 Pa or less) to complete the composite material.
 実施例6、7で製造したAuナノクラスター担持複合材料をTEMにて観察した。これらの複合材料のTEM像を図8に示す。第1実施形態と同様にして、これらのAuナノクラスター担持複合材料におけるAuナノクラスターの粒径を小角エックス線散乱装置にて測定した結果、0.7nm(実施例6)、2.0nm(実施例7)であった。本実施形態では、第1実施形態と異なる疎水性担体を適用したが、第1実施形態と同様に微細なAuナノクラスターが担持された複合材料を製造できることが確認された。また、本実施形態においても、熱処理温度の調整によりAuナノクラスターの粒径を変更できることが確認された。 The Au nanocluster-supported composite materials produced in Examples 6 and 7 were observed using a TEM. TEM images of these composite materials are shown in FIG. As in the first embodiment, the particle diameters of the Au nanoclusters in these Au nanocluster-supporting composite materials were measured using a small-angle X-ray scattering device, and the results were 0.7 nm (Example 6) and 2.0 nm (Example 6). 7). In this embodiment, although a hydrophobic carrier different from that in the first embodiment was used, it was confirmed that a composite material supporting fine Au nanoclusters could be manufactured in the same manner as in the first embodiment. Furthermore, in this embodiment as well, it was confirmed that the particle size of the Au nanoclusters could be changed by adjusting the heat treatment temperature.
 以上説明したように、本発明は、疎水性担体にAuナノクラスターが好適な状態で担持された複合材料に関する。また、本発明は、水系溶媒中でAuナノクラスターを疎水性担体に担持する方法を明らかにする。本発明によれば、カーボン粉末等の疎水性担体に対して効率的にAuナノクラスターを担持できる。 As explained above, the present invention relates to a composite material in which Au nanoclusters are supported on a hydrophobic carrier in a suitable state. The present invention also reveals a method for supporting Au nanoclusters on a hydrophobic carrier in an aqueous solvent. According to the present invention, Au nanoclusters can be efficiently supported on a hydrophobic carrier such as carbon powder.
 本発明に係る複合材料は、Auナノクラスターの適用による高表面積化やバルクのAuが有しない触媒活性を発揮することができる。これにより本発明は、一酸化炭素等の酸化反応等の化学反応用の触媒や燃料電池等の電極触媒、光触媒の増幅材料といった触媒としての利用が期待できる。この他、本発明は、Auナノクラスターによる量子効果、表面プラズモン共鳴、光学特性等を利用した各種のデバイスへ応用が期待できる。
 
The composite material according to the present invention can have a high surface area by applying Au nanoclusters and can exhibit catalytic activity that bulk Au does not have. Therefore, the present invention can be expected to be used as a catalyst for chemical reactions such as oxidation reactions of carbon monoxide, electrode catalysts for fuel cells, and amplification materials for photocatalysts. In addition, the present invention can be expected to be applied to various devices that utilize quantum effects, surface plasmon resonance, optical properties, etc. of Au nanoclusters.

Claims (6)

  1.  2以上のAu原子を含むAuナノクラスターがリガンドを介して担体に担持されてなる複合材料であって、
     前記担体は、少なくとも前記Auナノクラスターが担持される部分が疎水性であり、
     前記リガンドは、L-システイン又は非極性残基を有するL-システイン誘導体である複合材料。
    A composite material in which Au nanoclusters containing two or more Au atoms are supported on a carrier via a ligand,
    The support is hydrophobic at least in a portion on which the Au nanoclusters are supported,
    A composite material, wherein the ligand is L-cysteine or an L-cysteine derivative having a nonpolar residue.
  2.  リガンドは、前記非極性残基としてアセチル基、イソブチル基、tert-ブトキシカルボニル基のいずれかを有するL-システイン誘導体である請求項1記載の複合材料。 The composite material according to claim 1, wherein the ligand is an L-cysteine derivative having any one of an acetyl group, an isobutyl group, and a tert-butoxycarbonyl group as the nonpolar residue.
  3.  担体は粒子状担体であり、前記粒子状担体は、溶媒を水とするパルスNMR測定により求められたRSP値を前記粒子状担体の総表面積で補正したRSP(c)の値が0.5以下である請求項1又は請求項2記載の複合材料。 The carrier is a particulate carrier, and the particulate carrier has an R SP (c) value of 0.000, which is obtained by correcting the R SP value determined by pulse NMR measurement using water as a solvent by the total surface area of the particulate carrier. 3. The composite material according to claim 1 or claim 2, which has a molecular weight of 5 or less.
  4.  担体はバルク状担体であり、前記バルク状担体は、水に対する接触角が90°以上である請求項1又は請求項2記載の複合材料。 The composite material according to claim 1 or 2, wherein the carrier is a bulk carrier, and the bulk carrier has a contact angle with water of 90° or more.
  5.  担体の材質は、カーボン、セルロース、ニトロセルロース、疎水性ポリマー、金属窒化物、疎水化処理材料である請求項1又は請求項2記載の複合材料。 The composite material according to claim 1 or 2, wherein the material of the carrier is carbon, cellulose, nitrocellulose, hydrophobic polymer, metal nitride, or hydrophobized material.
  6.  請求項1又は請求項2記載の複合材料の製造方法であって、
     担体の少なくとも一部にAu源及びリガンドのいずれか一方を含む水系溶媒が接触している状態を形成した後、
     前記水系溶媒に、前記Au源及び前記リガンドの他方を添加することにより、前記水系溶媒中でAuナノクラスターを合成すると共に前記Auナノクラスターを前記担体に担持する工程と、を含み、
     前記リガンドは、L-システイン又は非極性残基を有するL-システイン誘導体である複合材料の製造方法。

     
    A method for producing a composite material according to claim 1 or 2, comprising:
    After forming a state in which at least a portion of the carrier is in contact with an aqueous solvent containing either an Au source or a ligand,
    adding the other of the Au source and the ligand to the aqueous solvent, thereby synthesizing Au nanoclusters in the aqueous solvent and supporting the Au nanoclusters on the carrier;
    The method for producing a composite material, wherein the ligand is L-cysteine or an L-cysteine derivative having a nonpolar residue.

PCT/JP2023/026496 2022-07-22 2023-07-20 Composite material carrying au nanocluster and manufacturing method for said composite material WO2024019102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116792 2022-07-22
JP2022-116792 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024019102A1 true WO2024019102A1 (en) 2024-01-25

Family

ID=89617855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026496 WO2024019102A1 (en) 2022-07-22 2023-07-20 Composite material carrying au nanocluster and manufacturing method for said composite material

Country Status (1)

Country Link
WO (1) WO2024019102A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770523A (en) * 2005-10-14 2006-05-10 北京工业大学 Platinum bimetal electrode catalyst using cysteine as coupling layer and its preparing method
CN102426868A (en) * 2011-09-05 2012-04-25 湖南大学 Water-soluble graphene-noble-metal nano-composite and preparation method and application thereof
CN107855133A (en) * 2016-09-22 2018-03-30 中国科学院大连化学物理研究所 A kind of method for preparing support type little particle Au catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770523A (en) * 2005-10-14 2006-05-10 北京工业大学 Platinum bimetal electrode catalyst using cysteine as coupling layer and its preparing method
CN102426868A (en) * 2011-09-05 2012-04-25 湖南大学 Water-soluble graphene-noble-metal nano-composite and preparation method and application thereof
CN107855133A (en) * 2016-09-22 2018-03-30 中国科学院大连化学物理研究所 A kind of method for preparing support type little particle Au catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG ZONGHUA, GUO HUIJUN, GUI RIJUN, JIN HUI, XIA JIANFEI, ZHANG FEIFEI: "Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes", SENSORS AND ACTUATORS B: CHEMICAL, ELSEVIER BV, NL, vol. 255, 1 February 2018 (2018-02-01), NL , pages 2069 - 2077, XP093131727, ISSN: 0925-4005, DOI: 10.1016/j.snb.2017.09.010 *

Similar Documents

Publication Publication Date Title
Bharath et al. Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors
WO2016158806A1 (en) Novel composite of iron compound and graphene oxide
Stellwagen et al. Ligand control in thiol stabilized Au 38 clusters
Cao et al. In situ growth of Au nanoparticles on Fe 2 O 3 nanocrystals for catalytic applications
Zhang et al. Self-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties
KR100688428B1 (en) Fabrication method of catalytic materials and electrode material with metal nanoparticles dispersed colloid
JP5586337B2 (en) Nitrogen-containing carbon material
CN110586953A (en) High yield preparation of two-dimensional copper nanosheets
Sannegowda et al. Stable nano-sized copper and its oxide particles using cobalt tetraamino phthalocyanine as a stabilizer; application to electrochemical activity
Hong et al. An effective amino acid-assisted growth of ultrafine palladium nanocatalysts toward superior synergistic catalysis for hydrogen generation from formic acid
WO2024019102A1 (en) Composite material carrying au nanocluster and manufacturing method for said composite material
Romero et al. Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis
JP6731755B2 (en) Dispersion of metal-containing particles, method for producing the same, and catalyst prepared using the dispersion
CN111961009A (en) Mercaptotriazole @ gold and silver bimetallic nanocluster for mercury ion detection and preparation method and application thereof
KR20220053583A (en) Materials comprising carbon-embedded nickel nanoparticles, methods for their preparation and use as heterogeneous catalysts
CA3149140A1 (en) Materials comprising carbon-embedded cobalt nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
Isaeva et al. Photolysis of Solutions of Palladium (II) Complex Compounds with Organic Acids
US11267712B2 (en) Tuning products selectivity of CO2 reduction reaction with surface ligands
CN115318309B (en) Nickel sulfide selectively modified bismuth vanadate photocatalyst and preparation method and application thereof
KR20220056181A (en) Materials comprising carbon-embedded iron nanoparticles, methods for their preparation, and use as heterogeneous catalysts
JP2023031635A (en) Carbon dioxide reduction photocatalyst particle
JP2023031587A (en) Manufacturing method of carbon dioxide reduction photocatalyst particle
Liu et al. Synthesis of core-shell nanostructured SiO2/TiO2 photocatalysts via atomic layer deposition in a fluidized bed with central tube
JP2022137741A (en) Photocatalyst particle for carbon dioxide reduction
Alshammari Heterogeneous catalysis using supported metal nanoparticles for environmental applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843025

Country of ref document: EP

Kind code of ref document: A1