WO2024019042A1 - Method for producing foam blow molded body, and foam blow molded body - Google Patents
Method for producing foam blow molded body, and foam blow molded body Download PDFInfo
- Publication number
- WO2024019042A1 WO2024019042A1 PCT/JP2023/026245 JP2023026245W WO2024019042A1 WO 2024019042 A1 WO2024019042 A1 WO 2024019042A1 JP 2023026245 W JP2023026245 W JP 2023026245W WO 2024019042 A1 WO2024019042 A1 WO 2024019042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoplastic elastomer
- foam blow
- mass
- blow
- foam
- Prior art date
Links
- 239000006260 foam Substances 0.000 title claims abstract description 171
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- -1 polypropylene Polymers 0.000 claims abstract description 85
- 229920005989 resin Polymers 0.000 claims abstract description 79
- 239000011347 resin Substances 0.000 claims abstract description 79
- 229920001155 polypropylene Polymers 0.000 claims abstract description 77
- 239000004743 Polypropylene Substances 0.000 claims abstract description 75
- 229920005672 polyolefin resin Polymers 0.000 claims abstract description 75
- 229920005629 polypropylene homopolymer Polymers 0.000 claims abstract description 65
- 150000001336 alkenes Chemical class 0.000 claims abstract description 60
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229920002725 thermoplastic elastomer Polymers 0.000 claims abstract description 57
- 229920000642 polymer Polymers 0.000 claims abstract description 16
- 238000005187 foaming Methods 0.000 claims abstract description 14
- 238000000071 blow moulding Methods 0.000 claims abstract description 12
- 229920000428 triblock copolymer Polymers 0.000 claims abstract description 9
- 229920000098 polyolefin Polymers 0.000 claims abstract description 8
- 229920002397 thermoplastic olefin Polymers 0.000 claims description 39
- 238000002844 melting Methods 0.000 claims description 37
- 230000008018 melting Effects 0.000 claims description 37
- 239000000155 melt Substances 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 abstract description 28
- 239000000806 elastomer Substances 0.000 description 28
- 229920001971 elastomer Polymers 0.000 description 20
- 239000004604 Blowing Agent Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 229920001400 block copolymer Polymers 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 239000006229 carbon black Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 239000004088 foaming agent Substances 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- 229920006124 polyolefin elastomer Polymers 0.000 description 8
- 239000004594 Masterbatch (MB) Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000013518 molded foam Substances 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000000454 talc Substances 0.000 description 5
- 229910052623 talc Inorganic materials 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920003355 Novatec® Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001864 heat-flux differential scanning calorimetry Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- KJQMOGOKAYDMOR-UHFFFAOYSA-N CC(=C)C=C.CC(=C)C=C Chemical compound CC(=C)C=C.CC(=C)C=C KJQMOGOKAYDMOR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000034628 Celiac artery compression syndrome Diseases 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XOBKSJJDNFUZPF-UHFFFAOYSA-N Methoxyethane Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229920011250 Polypropylene Block Copolymer Polymers 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920006465 Styrenic thermoplastic elastomer Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- WXCZUWHSJWOTRV-UHFFFAOYSA-N but-1-ene;ethene Chemical compound C=C.CCC=C WXCZUWHSJWOTRV-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000569 multi-angle light scattering Methods 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920006285 olefinic elastomer Polymers 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920005633 polypropylene homopolymer resin Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N sec-butylidene Natural products CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/04—Extrusion blow-moulding
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
Definitions
- the present invention relates to a method for producing a blow-molded foam and a blow-molded foam.
- the foam blow molded article is obtained by shaping a foam parison formed from a foamable resin melt containing a base resin.
- foam blow molded products hollow molded products using polyolefin resin as a base resin are used in various applications, such as air conditioning ducts in automobiles, etc., from the viewpoint of light weight and the like.
- the air conditioning duct may be referred to as a duct.
- Patent Document 1 and Patent Document 2 disclose a technique of adding an elastomer to a polypropylene resin.
- Patent Document 1 and Patent Document 2 had the problem of further improving the cold impact resistance and rigidity of the foam blow-molded product. Moreover, the techniques of Patent Document 1 and Patent Document 2 had a problem in improving the surface smoothness on the inner surface of the hollow portion of the hollow foam blow-molded article.
- surface smoothness on the inner surface of the hollow portion of the hollow foam blow-molded object will be simply referred to as surface smoothness.
- One of the objects of the present invention is to provide a method for producing a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness, and to provide a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness. may be provided.
- the gist of the present invention is the inventions shown in the following (1) to (5).
- a method for producing a foamed blow-molded article which includes the step of blow-molding a foamed parison formed by foaming a mixed resin of a polyolefin resin (A) and an olefinic thermoplastic elastomer (B),
- the polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2)
- the mass ratio [(a1):(a2)] is 50:50 to 93:7
- the olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
- the amount of the olefin thermoplastic elastomer (B) based on 100 parts by mass of the polyolefin
- the melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less, The method for producing a foam blow-molded article according to (1) above.
- the linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less, The method for producing a foam blow-molded article according to (1) or (2) above.
- the melt flow rate (230° C., load 2.16 kg) of the olefin thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less, The method for producing a foam blow molded article according to any one of (1) to (3) above.
- the polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2)
- the mass ratio [(a1):(a2)] is 50:50 to 93:7
- the olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block
- the foamed blow-molded article has a blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) from 20 parts by mass to 40 parts by mass.
- the present invention may be the inventions described in the following (6) to (8).
- the melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less, The foam blow-molded article according to (5) above.
- the linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less, The foam blow molded article according to (5) or (6) above.
- the melt flow rate (230° C., load 2.16 kg) of the olefinic thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less, The foam blow molded article according to any one of (5) to (7) above.
- a method for producing a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness and a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness. Can be done.
- the manufacturing method according to the present invention is a method for manufacturing a foam blow-molded article including a blow molding step. An embodiment of the method for manufacturing a foam blow-molded article according to the present invention will be explained next.
- [1-1 Contents of manufacturing method] (Extrusion foaming process) Inside the extruder, the mixed resin and foaming agent are kneaded to obtain a foamable resin melt.
- the resulting foamable resin melt is extruded from a die connected to an extruder.
- As the die an annular die is usually used.
- a mold is placed directly below the die, and the foamable resin melt is extruded into the mold. At this time, a foamed parison is formed by foaming the foamable resin melt.
- the mold has a desired internal shape depending on the molded product to be obtained.
- the mold is usually a split mold.
- Pre-blow process Immediately after the extrusion foaming process, the foamed parison is in a softened state. The lower part of the softened foam parison is closed using a pinch device, and gas is blown into the foam parison to increase the internal pressure of the foam parison. At this time, the foam parison widens. During or after the pre-blowing process, the foamed parison is inserted into a mold.
- the blow molding process is a process in which gas is blown into the foamed parison while the foamed parison is sandwiched between molds. At this time, the outer surface of the foamed parison is pressed against the inner surface of the mold, and the foamed parison is shaped into a hollow shape. A foam blow-molded article is obtained through this step.
- the foam blow molded product for example, a hollow molded product can be obtained.
- an accumulator is provided between an extruder and a die, or in a die.
- the mixed resin for forming the foamable resin melt is a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
- the polyolefin resin (A) is a resin composition consisting of a branched homopolypropylene (a1) and a linear block polypropylene (a2).
- Branched homopolypropylene is homopolypropylene having a branched structure in its molecular structure.
- examples of the branched structure include a branched structural part in a molecular structure and a long chain structural part having a free end. Note that the branched structure can be confirmed using high temperature GPC-MALS measurement or the like.
- the melt flow rate of the branched homopolypropylene (a1) measured at 230° C. and a load of 2.16 kg is preferably 0.1 g/10 minutes to 15 g/10 minutes. If the melt flow rate is within the above range, the resin will have excellent fluidity during melting, and therefore the drawdown of the foamed parison will be further suppressed. From this viewpoint, the melt flow rate of the branched homopolypropylene (a1) is more preferably 0.5 g/10 minutes to 10 g/10 minutes, and still more preferably 1 g/10 minutes to 5 g/10 minutes.
- the melt flow rate (MFR) of the resin can be measured by a known method, for example, based on JIS K7210-1:2014 (Test Method A).
- the upper and lower limits in the combinations defining each numerical range shown as the numerical range of the melt flow rate of the branched homopolypropylene (a1) described above may be independently and arbitrarily combined.
- a combination defining a numerical range refers to a combination of an upper limit value and a lower limit value.
- the numerical range determined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. Therefore, the numerical range of the melt flow rate of the branched homopolypropylene (a1) is a numerical range that combines the upper and lower limits of the preferable numerical range, and the upper and lower limits of the more preferable numerical range. Good too.
- the numerical range for the melt flow rate of the branched homopolypropylene (a1) is, for example, any one of the group consisting of 0.1 g/10 minutes, 0.5 g/10 minutes, and 1 g/10 minutes.
- the lower limit is 15 g/10 minutes, 10 g/10 minutes, and 5 g/10 minutes. Therefore, for example, the numerical range of the melt flow rate may be 0.1 g/10 minutes to 10 g/10 minutes, 0.5 g/10 minutes to 5 g/10 minutes, or 1 g/10 minutes.
- the rate may be 10 minutes to 15 g/10 minutes.
- the melt tension at 230°C of the branched homopolypropylene (a1) is preferably 5 cN to 50 cN, more preferably 10 cN to 45 cN, and more preferably 25 cN to 40 cN, from the viewpoint of foamability in foam blow molding. Most preferably.
- the upper and lower limits shown in the combination of numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the melt tension at 230°C of the branched homopolypropylene (a1) is, for example, the lower limit is any one of the group consisting of 5 cN, 10 cN, and 25 cN, and the lower limit is any one of the group consisting of 50 cN, 45 cN, and 40 cN. A range with one of the upper limits can be listed.
- the melt tension (MT) of the branched homopolypropylene (a1) can be measured by a known method, for example, by Capillograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd.
- the melting point of the branched homopolypropylene (a1) is preferably 155°C to 165°C, more preferably 157°C to 162°C.
- the upper limit and lower limit shown in the combination of numerical ranges described above can be arbitrarily combined independently.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the melting point of the branched homopolypropylene (a1) is, for example, the lower limit is any one of the group consisting of 155°C and 157°C, and the lower limit is any one of the group consisting of 165°C and 162°C. A range with an upper limit of .
- the melting point can be measured in accordance with JIS K7121:2012 in the same manner as the melting point of the olefin thermoplastic elastomer (B) described below.
- Branched homopolypropylene (a1) has excellent foaming properties, so by having branched homopolypropylene (a1) in the polyolefin resin (A), it is possible to obtain a foam blow-molded product that is lightweight and has excellent surface smoothness. It becomes easier.
- examples of the branched homopolypropylene (a1) include those commercially available as HMS-polypropylene and UMS-polypropylene.
- examples of the branched homopolypropylene (a1) include branched homopolypropylene manufactured by Borealis (product name: WB130, WB135, WB140), branched homopolypropylene resin manufactured by Sun Allomer (product name: PF814), etc. .
- the linear block polypropylene (a2) is a block polypropylene having a linear molecular structure.
- block polypropylene include polymer mixtures obtained by polymerizing ethylene and one or more types of C3 to C10- ⁇ olefins ( ⁇ -olefins having 3 to 10 carbon atoms) in the presence of a propylene polymer.
- the linear block polypropylene (a2) includes impact-resistant polypropylene polymers defined by JIS K6921-1, and includes those generally commercially available as block polypropylene.
- the example of block polypropylene shown here is one example, and other examples are not excluded.
- the block polypropylene can be exemplified by a propylene/ethylene block copolymer. More specifically, the propylene/ethylene block copolymer includes a block copolymer containing a crystalline propylene block and an ethylene propylene random block.
- the bending elastic modulus of the linear block polypropylene (a2) is preferably 1000 MPa or more and 1500 MPa or less.
- a bending modulus of elasticity of the linear block polypropylene (a2) of 1000 MPa or more the rigidity of the foam blow-molded article can be more effectively improved, and the cushioning properties of the foam blow-molded article can be improved.
- the flexural modulus of the linear block polypropylene (a2) is 1100 MPa or more and 1400 MPa or less.
- the upper and lower limits shown in the combinations of the numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the bending elastic modulus of the linear homopolypropylene (a2) is, for example, the lower limit is any one of the group consisting of 1000 MPa and 1100 MPa, and the lower limit is any one of the group consisting of 1500 MPa and 1400 MPa.
- a range of upper limit values can be listed.
- the flexural modulus of linear block polypropylene (a2) can be measured based on JIS K7171:2016.
- the bending modulus of the resin itself of the linear block polypropylene (a2) is often smaller than that of the branched homopolypropylene (a1), but if the polyolefin resin (A) is the branched homopolypropylene (a1)
- the rigidity of the foam blow-molded article can be improved.
- the polyolefin resin (A) contains the linear block polypropylene (a2), it becomes easy to obtain a foam blow-molded product that is lightweight and has excellent surface smoothness.
- the melt flow rate of the linear block polypropylene (a2) measured at 230° C. and a load of 2.16 kg is preferably 1 g/10 minutes to 40 g/10 minutes. If the melt flow rate is within the above range, the mixed resin will have excellent fluidity when melted. From this viewpoint, the melt flow rate of the linear block polypropylene (a2) is preferably 2 g/10 minutes to 38 g/10 minutes, more preferably 10 g/10 minutes to 35 g/10 minutes, and even more preferably is 20g/10 minutes to 33g/10 minutes.
- the numerical range of the melt flow rate of the linear block polypropylene (a2) the upper and lower limits shown in the combination of numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the melt flow rate of linear block polypropylene (a2) is, for example, the lower limit of any one of the group consisting of 1 g/10 minutes, 2 g/10 minutes, 10 g/10 minutes, and 20 g/10 minutes. , and a range in which the upper limit is any one of the group consisting of 40 g/10 minutes, 38 g/10 minutes, 35 g/10 minutes, and 33 g/10 minutes.
- the melt flow rate (MFR) of the resin can be measured by a known method, for example, based on JIS K7210-1:2014 (Test Method A).
- the melting point of the linear block polypropylene (a2) is preferably 155°C to 169°C, preferably 158°C to 168°C.
- the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the melting point of the linear block polypropylene (a2) is, for example, the lower limit of any one of the group consisting of 155°C and 158°C, and the lower limit of any one of the group consisting of 169°C and 168°C. A range with one upper limit can be listed.
- the melting point can be measured in accordance with JIS K7121:2012 in the same manner as the melting point of the olefin thermoplastic elastomer (B) described below.
- the mass ratio [(a1):(a2)] of branched homopolypropylene (a1) and linear block polypropylene (a2) is preferably 50:50 to 93:7.
- the mass ratio [(a1):(a2)] is within the above numerical range, the foamability of the mixed resin is improved, the surface smoothness is improved, and the rigidity and cold impact resistance of the foam blow molded product are improved. The effect of this can be obtained.
- the mass ratio [(a1):(a2)] is preferably 70:30 to 92:8, more preferably 80:20 to 90:10. preferable.
- the upper limit ratio and lower limit ratio shown in the combination of numerical ranges described above can be independently and arbitrarily combined.
- the numerical range determined by arbitrarily combining the upper limit ratio and the lower limit ratio includes the upper limit ratio, the lower limit ratio, and the ratio between the upper limit ratio and the lower limit ratio. .
- the combination of each numerical range of mass ratio [(a1):(a2)] the case where the mass ratio of branched homopolypropylene (a1) is the smallest is taken as the lower limit ratio, and the ratio of branched homopolypropylene (a1) is the lowest.
- the case where the mass ratio is the largest is taken as the upper limit ratio.
- the numerical range of the mass ratio [(a1):(a2)] is 50:50 to 93:7, the lower limit ratio is 50:50 and the upper limit ratio is 93: It is 7.
- the numerical range of the mass ratio [(a1):(a2)] is, for example, one of the group consisting of 50:50, 70:30, and 80:20 as the lower limit ratio, and 93:7, A range whose upper limit is one of the group consisting of 92:8 and 90:10 can be mentioned.
- the olefinic thermoplastic elastomer (B) is a hydrogenated triblock copolymer consisting of a hard segment of a crystalline olefin polymer block and a soft segment of a conjugated diene compound polymer block.
- the triblock copolymer is preferably a block copolymer having a so-called ABA type structure (sandwich type).
- a as the block parts at both ends of the block copolymer having an ABA type structure is a polymer block of crystalline olefin, and the block parts sandwiched by A (the central block part) are polymer blocks of crystalline olefin.
- the olefinic thermoplastic elastomer (B) is a hydrogenated block copolymer having the above-mentioned structure, the impact resistance of the foamed blow-molded product is improved without inhibiting the foamability of the foamed Parisian material. can be done. Moreover, the effect of improving the surface smoothness of the foam blow-molded article can be exhibited.
- Examples of crystalline olefin polymers include ethylene polymers.
- Polymers of conjugated diene compounds include, in addition to polymers of ethylene and butylene, 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 1,3-pentadiene, 2,3-dimethyl-1, Examples include polymers such as 3-butadiene.
- the olefinic thermoplastic elastomer (B) is a triblock copolymer in which the block portions at both ends are blocks of ethylene polymer and the block portion in the center is a block of 1,3-butadiene polymer. Examples include hydrogenated substances.
- the olefinic thermoplastic elastomer (B) can be exemplified by a block copolymer of crystalline olefin, ethylene butylene, and crystalline olefin in a state after hydrogenation. Further, the olefin thermoplastic elastomer (B) does not contain polypropylene resins such as branched homopolypropylene (a1) and linear block polypropylene (a2).
- the melting point of the olefinic thermoplastic elastomer (B) is preferably 80°C or more and 110°C or less. If the melting point of the olefinic thermoplastic elastomer (B) is within the above range, it will have excellent foamability. From this viewpoint, the melting point of the olefinic thermoplastic elastomer (B) is more preferably 85°C or more and 105°C or less, and even more preferably 90°C or more and 100°C or less.
- the upper limit and lower limit shown in the combination of numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the melting point of the olefinic thermoplastic elastomer (B) is, for example, a lower limit of one of the group consisting of 80°C, 85°C and 90°C, and a lower limit of the group consisting of 110°C, 105°C and 100°C. A range with an upper limit of any one of the following can be mentioned.
- the melting point of the olefinic thermoplastic elastomer (B) can be specified as the melting peak temperature measured based on heat flux differential scanning calorimetry described in JIS K7121:2012.
- "(2) When measuring the melting temperature after a certain heat treatment” is adopted as the conditioning of the test piece used for heat flux differential scanning calorimetry, and the heating rate and cooling rate are both 10 Adopt °C/min.
- the apex temperature of the melting peak with the largest area is taken as the melting point.
- the upper limit of the flexural modulus of the olefinic thermoplastic elastomer (B) is preferably 50 MPa.
- the olefinic thermoplastic elastomer (B) has a flexural modulus of 50 MPa or less, the olefinic thermoplastic elastomer (B) can effectively exhibit its physical properties as an elastomer.
- the lower limit of the flexural modulus of the olefinic thermoplastic elastomer (B) is preferably approximately 1 Ma.
- the flexural modulus of the olefinic thermoplastic elastomer (B) is 1 MPa or more and 50 MPa or less.
- the flexural modulus of the olefinic thermoplastic elastomer (B) is within the above numerical range, it becomes easy to obtain the effect of further improving cold impact resistance as a foam blow-molded article.
- the flexural modulus of the olefin thermoplastic elastomer (B) is more preferably 3 MPa or more and 30 MPa or less, and even more preferably 5 MPa or more and 25 MPa or less.
- the upper and lower limits shown in the combinations of the numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the flexural modulus of the olefinic thermoplastic elastomer (B) is, for example, a lower limit of any one of the group consisting of 1 MPa, 3 MPa, and 5 MPa, and one of the group consisting of 50 MPa, 30 MPa, and 25 MPa. A range with one upper limit can be listed.
- the flexural modulus of the olefinic thermoplastic elastomer (B) can be measured based on JIS K7171:2016.
- MFR Melt flow rate (MFR) of olefinic thermoplastic elastomer
- MFR 230°C, load 2.16 kg
- the MFR (230°C, load 2.16 kg) of the olefin thermoplastic elastomer (B) is preferably 1 g/10 minutes or more and 10 g/10 minutes or less, and 1.5 g/10 minutes or more and 5 g/10 minutes or less. It is even more preferable that there be.
- the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of MFR of the olefin thermoplastic elastomer (B) is, for example, the lower limit is any one of the group consisting of 1 g/10 minutes and 1.5 g/10 minutes, and 10 g/10 minutes and 5 g/10 minutes. A range having an upper limit of any one of the group consisting of 10 minutes can be mentioned.
- the MFR (g/10 min (230° C.)) of the olefinic thermoplastic elastomer (B) is determined based on, for example, JIS K7210-1:2014 (Test Method A). As the measurement conditions, conditions of 230° C. and a load of 2.16 kg may be adopted.
- the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is 20 parts by mass or more and 40 parts by mass or less.
- the blending amount of the olefin thermoplastic elastomer (B) is preferably 22 parts by mass or more and 35 parts by mass or less, more preferably 23 parts by mass or more and 30 parts by mass or less.
- the mass ratio of the olefin thermoplastic elastomer (B) to the branched homopolypropylene (a1) in the polyolefin resin (A) is preferably 0.2 to 0.5, more preferably 0.25 to 0. More preferably, it is 35. Furthermore, the mass ratio of the olefin thermoplastic elastomer (B) to the linear block polypropylene (a2) in the polyolefin resin (A) is preferably 1.0 to 2.5, preferably 1.2 to 2. More preferably, it is .3. When the mass ratio of the olefinic thermoplastic elastomer (B) to the branched homopolypropylene (a1) is within the above range, it becomes easy to exhibit impact resistance.
- the mass ratio of the olefinic thermoplastic elastomer (B) to the branched homopolypropylene (a1) is calculated from It is the value (divided value) divided by the blending amount (parts by mass) of homopolypropylene (a1).
- the mass ratio of the olefinic thermoplastic elastomer (B) to the branched linear block polypropylene (a2) is determined by (the amount (parts by mass) of the olefinic thermoplastic elastomer (B) used in the mixed resin) This is the value divided by the blending amount (parts by mass) of the chain block polypropylene (a2).
- the olefin with respect to the branched homopolypropylene (a1) in the polyolefin resin (A) At least one numerical range selected from the numerical range of the mass ratio of the thermoplastic elastomer (B) and the numerical range of the mass ratio of the olefinic thermoplastic elastomer (B) to the branched homopolypropylene (a2) is as described above. However, it is preferable that the numerical ranges of both types satisfy the above-mentioned numerical values.
- the numerical range of the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is such that the upper limit and lower limit shown in the combination of the numerical ranges described above are independently arbitrary. It is possible to combine
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is, for example, the lower limit of any one of the group consisting of 20 parts by mass, 22 parts by mass, and 23 parts by mass. and the upper limit is any one of the group consisting of 40 parts by mass, 35 parts by mass, and 30 parts by mass.
- the upper and lower limits shown in the combinations of numerical ranges described above can be independently and arbitrarily combined.
- the numerical range determined by arbitrarily combining the upper limit and the lower limit includes the upper limit, the lower limit, and the value between the upper limit and the lower limit.
- the numerical range of the mass ratio of the olefin thermoplastic elastomer (B) to the branched homopolypropylene (a1) in the polyolefin resin (A) is, for example, any one of the group consisting of 0.2 and 0.25. A range can be mentioned in which the lower limit is 0.5 and the upper limit is one of the group consisting of 0.5 and 0.35.
- blowing agent examples include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, isohexane, and cyclohexane; chlorinated hydrocarbons such as methyl chloride and ethyl chloride; - Fluorinated hydrocarbons such as tetrafluoroethane and 1,1-difluoroethane; aliphatic ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether; aliphatic alcohols such as methyl alcohol and ethyl alcohol; and dialkyl such as dimethyl carbonate and diethyl carbonate.
- aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, isohexane, and cyclohexane
- chlorinated hydrocarbons such as
- Examples include organic physical blowing agents such as carbonate, inorganic physical blowing agents such as carbon dioxide, nitrogen, air, and water, and chemical blowing agents such as sodium bicarbonate, sodium citrate, and azodicarbonamide. These blowing agents may be used alone or in combination.
- an inorganic physical blowing agent among the above-mentioned blowing agents, it is more preferable to use an inorganic physical blowing agent containing carbon dioxide, and it is even more preferable to use a physical blowing agent consisting only of carbon dioxide. preferable.
- a blowing agent containing carbon dioxide when used as a physical blowing agent, it is preferable to blend carbon dioxide in an amount of 20 mol% to 100 mol% with respect to 100 mol% of the physical blowing agent, and preferably 50 mol% to 100 mol%. %, more preferably 70 mol% to 100 mol%.
- carbon dioxide content is within the above range, it is possible to easily obtain a foam blow-molded article with a small cell diameter and a high closed cell ratio.
- the amount of the physical blowing agent added is preferably 0.05 mol to 0.8 mol, more preferably 0.1 mol to 0.5 mol per 1 kg of mixed resin.
- thermoplastic resins such as polystyrene resins and polyolefin resins other than the polyolefin resin (A), and thermoplastic elastomers (TPE) other than the olefin thermoplastic elastomer (B) can be blended. .
- polyolefin resins other than the polyolefin resin (A) biomass polyolefin resins, ASR-derived polyolefin resins, and mass balance polyolefin resins can also be used.
- the amount of other resins is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). More preferably, it is 10 parts by mass or less, particularly preferably 5 parts by mass or less.
- additives When producing a foam blow-molded article, various additives may be added to the mixed resin in addition to the above-described foaming agent.
- additives include flame retardants, fluidity regulators, ultraviolet absorbers, conductivity imparting agents, antistatic agents, colorants, heat stabilizers, antioxidants, inorganic fillers, and pigments.
- the amount of the additive added is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, based on a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B), More preferably, it is 3 parts by mass or less.
- the above additives inhibit the effects of the present invention on polyolefin resin (A), olefin thermoplastic elastomer (B), branched homopolypropylene (a1), and linear block polypropylene (a2). It can be added to the extent that it does not.
- the amount added is preferably based on 100 parts by mass of each of the polyolefin resin (A), the olefin thermoplastic elastomer (B), the branched homopolypropylene (a1), and the linear block polypropylene (a2). , preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less.
- carbon black may be added to the mixed resin as an additive.
- the content of carbon black in the mixed resin is preferably 0.1 parts by mass or more and 2 parts by mass or less, based on a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B), and more preferably Preferably it is 0.3 parts by mass or more and 1 part by mass or less.
- Examples of carbon black include gas furnace black, oil furnace black, acetylene black, channel black, roller black, thermal black, Ketjen black, and the like.
- the total carbon black content of the mixed resin is a value that includes carbon black in the recovered raw material.
- the numerical range of the physical foaming agent mentioned above for the mixed resin and the numerical range of various additives such as carbon black the upper and lower limits shown in the combination of the numerical ranges described above can be independently combined arbitrarily. Is possible.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the recovered raw material preferably contains a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
- A polyolefin resin
- B olefin thermoplastic elastomer
- the mixed resin constituting the foam blow-molded product
- the blending amount of polyolefin resin (A) and olefin thermoplastic elastomer (B) inside is determined as a value including the polyolefin resin (A) and olefin thermoplastic elastomer (B) contained in the recovered raw material. .
- the numerical range is the same as that described above for the polyolefin resin (A) and the olefin thermoplastic elastomer (B) that constitute the mixed resin that constitutes the foam blow molded article.
- Foam blow-molded articles using polypropylene resins are particularly excellent in terms of heat resistance and light weight, and can be suitably employed, for example, in ducts installed in vehicles such as automobiles.
- foam blow-molded articles that are preferably used in such applications to have improved cold impact resistance.
- a specific polypropylene resin polyolefin resin (A)
- a specific elastomer olefin thermoplastic elastomer (B)
- the foamability of the polyolefin resin (A) constituting the foamable resin melt is not significantly inhibited, so the foam blow molded product The possibility of deterioration of the surface smoothness can be suppressed.
- branched homopolypropylene but also linear polypropylene blocks are used in a specific range as the polyolefin resin, thereby suppressing the possibility of a decrease in rigidity of the foam blow-molded product due to the use of an elastomer.
- a foam blow-molded product with excellent rigidity can be obtained.
- foam blow-molded products are required to have various apparent densities depending on various conditions such as usage.
- a specific polypropylene resin and a specific elastomer are used in a specific blending ratio, so that surface smoothness can be maintained even under conditions for obtaining various apparent densities. It is possible to obtain an excellent foam blow-molded article (excellent inner surface smoothness).
- the attributes such as the apparent density, closed cell ratio, and flexural modulus of the foam blow molded product obtained by applying the method for producing a foam blow molded product according to the present invention, see [2. Foamed blow-molded article].
- the foam blow molded article according to the present invention is a foam molded article of a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
- the foam blow-molded article according to the present invention can be obtained by the above-described method for producing a foam blow-molded article. That is, the foam blow-molded article is produced by the above-mentioned [1. [Method for producing a foamed blow-molded article]], it can be obtained by performing an extrusion foaming process, a blow molding process, a blow molding process, etc. In addition, each process is described above [1. Since it is the same as that described in [Method for producing foam blow-molded article], the explanation will be omitted.
- the polyolefin resin (A) blended into the mixed resin used in the foam blow-molded article according to the present invention is composed of branched homopolypropylene (a1) and linear block polypropylene (a2) in a predetermined mass ratio [(a1) :(a2)].
- the structure and physical properties (melt flow rate, melting point, flexural modulus, etc.) of the branched homopolypropylene (a1) and the linear block polypropylene (a2) and the mass ratio [(a1):(a2)] are [1 .. Since it is the same as that described in [Method for producing foam blow-molded article], the explanation will be omitted.
- the polyolefin resin (A) biomass-derived polypropylene or polypropylene produced by a mass balance method can be used.
- the shape of the foam blow molded product is not particularly limited, but if it is a hollow molded product, the foam blow molded product can be easily used, for example, as an air conditioning duct provided in a vehicle or the like.
- the closed cell ratio of the foam blow-molded product is preferably 65% or more, and more preferably 70% or more.
- a test piece is prepared by cutting a roughly flat part of the foam blow-molded article into a 25 mm x 25 mm x flat part wall thickness. A plurality of test pieces are stacked so that the total thickness is closest to 20 mm to form a test piece for measurement.
- the true volume Vx of the measurement specimen was measured using an air comparison hydrometer model 930 manufactured by Toshiba Beckman Corporation, and the following formula (Equation (1)) ) to calculate the closed cell ratio S (%).
- the above measurement is performed using five test pieces for measurement, and the arithmetic mean value thereof is taken as the closed cell ratio of the foam blow-molded article.
- Vx The true volume (cm 3 ) of the test piece measured by the above method, which corresponds to the sum of the volume of the resin constituting the foam blow-molded product and the total volume of the cells in the closed cell portion within the test piece.
- Va apparent volume of the test piece (cm 3 ) calculated from the outer dimensions of the test piece used for measurement
- W total mass (g) of the test piece used in the measurement
- ⁇ density (g/cm 3 ) of the resin constituting the foam blow-molded product. It is.
- the foam blow-molded article has an apparent density of 100 kg/m 3 or more and 450 kg/m 3 or less.
- the apparent density of the foam blow-molded product is preferably 120 kg/m 3 or more and 400 kg/m 3 or less, and 130 kg/m 3 or more and 350 kg/m 3 or less. It is more preferably 3 or less, and even more preferably 150 kg/m 3 or more and 250 kg/m 3 or less.
- the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the apparent density of the foam blow-molded product is, for example, a lower limit of any one of the group consisting of 100 kg/m 3 , 120 kg/m 3 , 130 kg/m 3 and 150 kg/m 3 , and 450 kg/m 3 3 , 400 kg/m 3 , 350 kg/m 3 and 250 kg/m 3 as the upper limit.
- the flexural modulus (MPa) of the foam blow-molded product is preferably 140 MPa or more and 250 MPa or less.
- the flexural modulus of the foam blow-molded article is more preferably 150 MPa or more and 200 MPa or less.
- the numerical range of the flexural modulus of the foam blow-molded article the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined.
- the numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
- the numerical range of the flexural modulus of the foam blow-molded product is, for example, the lower limit is any one of the group consisting of 140 MPa and 150 MPa, and the upper limit is any one of the group consisting of 250 MPa and 200 MPa. I can list a range.
- the flexural modulus of the blow-molded foam can be determined by cutting out a sample from a flat portion of the blow-molded foam and measuring the flexural modulus of the sample piece based on JIS K7171:2016.
- the foam blow-molded article according to the present invention can be obtained from the above-mentioned [1. Similar to what was explained in [Method for producing foam blow molded article], a specific polypropylene resin (polyolefin resin (A)) and a specific elastomer (olefin thermoplastic elastomer (B)) are blended in a specific range. Because it is a foamed molded product made from a mixed resin, it has excellent cold impact resistance and rigidity. In addition, the foam blow-molded article is made of a specific elastomer and has excellent surface smoothness.
- polyolefin resin (A) not only branched homopolypropylene but also linear polypropylene blocks are used in a specific range, thereby suppressing the decrease in rigidity of the foam blow-molded product due to the use of elastomer. It is being Therefore, the foam blow molded article according to the present invention has excellent rigidity.
- foam blow-molded products are required to have various apparent densities depending on various conditions such as usage.
- a specific polypropylene resin and a specific elastomer are used in a specific range, and the foam blow molded article has excellent surface smoothness even when the apparent density of the foam blow molded article is varied. can be obtained.
- the above-mentioned cold impact resistance of the foam blow-molded article can be determined by the following (-10°C falling ball test).
- the above-mentioned -10°C falling ball test may be performed again. preferable.
- the MFR (g/10 min (230°C, load 2.16 kg)) and flexural modulus (MPa) of the polyolefin resin and elastomer are as described above for the polyolefin resin (A) and the olefin thermoplastic elastomer (B). It can be identified by applying a method similar to the method described above. Regarding the melting points (° C.) of the branched homopolypropylene (a1) and the elastomer described later, the method described above for the olefinic thermoplastic elastomer (B) is used to specify the respective melting points.
- the crystallization temperature (° C.) of the branched homopolypropylene (a1) and the elastomer is measured using a heat flux differential scanning calorimeter based on JIS K 7121:1987.
- the peak temperature of the crystallization peak with the highest peak height is taken as the crystallization temperature.
- the trade name "WB140” manufactured by Borealis was prepared (melt tension (230°C): 36 cN, melting point 159°C, crystallization temperature 129°C).
- WB140 melting tension (230°C): 36 cN, melting point 159°C, crystallization temperature 129°C.
- Tables 2, 3, and 4 the prepared branched homopolypropylene is abbreviated as WB140.
- linear block polypropylene (a2) those shown in L-PP1 to L-PP3 in Table 1 were prepared.
- L-PP1 is a copolymer of propylene and ethylene (propylene-ethylene copolymer) (manufactured by Nippon Polypro Co., Ltd., trade name "Novatec (trademark) PP (model number BC03GS)").
- the propylene-ethylene copolymer of L-PP1 is a Ziegler-catalyzed copolymer (MFR is 30 g/10 min).
- L-PP2 is a polypropylene block copolymer manufactured by Nippon Polypropylene Co., Ltd. under the trade name "Novatec PP (model number BC6DRF)" (MFR is 2.5 g/10 minutes).
- L-PP3 is a propylene block copolymer (manufactured by Sun Allomer Co., Ltd., trade name "Qualia (trademark) (model number CM688A)”) containing an ethylene- ⁇ -olefin copolymer (MFR is 15 g/10 minutes).
- MFR ethylene- ⁇ -olefin copolymer
- the MFR of the propylene block copolymer of L-PP3 is 9.5 g/10 minutes.
- the linear homopolypropylene was prepared under the trade name "Prime Polypro (trademark) (model number J106G)" manufactured by Prime Polymer Co., Ltd. In Table 4, the prepared linear homopolypropylene is abbreviated as J106G.
- olefin elastomers shown in EL1 to EL4 and styrene elastomers shown in EL5 were prepared.
- EL1 is a hydrogenated triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block.
- EL1 is a hydrogenated block copolymer in which the block portions at both ends are ethylene polymer blocks and the central block portion is a polymer block of a conjugated diene compound (manufactured by JSR Corporation, product name: Dynalon (trademark)).
- 6200P'' (30% by mass of ethylene-derived components in the block copolymer, 70% by mass of 1,3-butadiene-derived components, hydrogenation rate (hydrogenation rate) of 98% or more, melting point 97°C, crystallization A temperature of 64° C.) was prepared.
- EL1 corresponds to the olefin thermoplastic elastomer (B).
- EL2 is a metallocene propylene-ethylene copolymer (manufactured by ExxonMobil, trade name "Vistamax (trademark) 6202, melting point 102°C”).
- EL3 is RPTO (Reactor TPO (Thermoplastic Olefinic Elastomer)) (manufactured by Basell Corporation, trade name “Cataroy (model number Q100F)", melting point 143°C, crystallization temperature 96°C).
- RPTO is a propylene-based random block copolymer that is sequentially polymerized using a Ziegler catalyst.
- EL4 is an ethylene butene block copolymer (manufactured by Mitsui Chemicals, Inc., trade name "Tafmer (trademark) (model number DF605)", melting point 50° C. or lower).
- EL5 is a hydrogenated styrenic thermoplastic elastomer obtained by hydrogenating the double bonds of a block copolymer made of styrene and butadiene (manufactured by Asahi Kasei Corporation, product name: "Tuftec (trademark) (model number H1041)”)
- Examples 1 to 5 Comparative Examples 1 to 9 (Extrusion foaming process) Polyolefin resins and elastomers of the types and amounts (mass%) shown in Table 2 (Examples 1 to 5), Table 3 (Comparative Examples 1 to 4), and Table 4 (Comparative Examples 5 to 9), and additions described below.
- the agent was supplied to an extruder with a diameter of 65 mm, and melted and kneaded in the extruder to obtain a resin melt. Furthermore, carbon dioxide (CO 2 ) was pressurized as a foaming agent into the extruder and kneaded with the resin melt to obtain a foamable resin melt.
- the foamable resin melt was charged into an accumulator connected to an extruder.
- the foamable resin melt was extruded into a normal pressure region through an annular die placed at the tip of an accumulator and foamed, thereby forming a cylindrical foamed parison.
- Pre-blow process A two-part mold was placed directly below the annular die, and a cylindrical foam parison formed in the extrusion foaming process was placed between the molds. Furthermore, after the opening of the foamed parison is closed below the mold using a pinch, pre-blow air is blown into the foamed parison, and the two-part mold is further closed, allowing foaming to occur in the mold. The parison was pinched.
- Blow air is blown from a blow pin into the inside of the foamed parison sandwiched between the molds, and the air is sucked through holes provided in the mold to reduce the pressure in the space between the outer surface of the foamed parison and the inner surface of the mold. This pressed the outer surface of the foamed parison against the inner surface of the mold. The foamed parison was then shaped to correspond to the inner surface of the mold. After shaping and cooling, the mold, which is a mold, was opened, the molded product was taken out, and burrs and pockets were removed. As a result, a foam blow-molded article was obtained.
- the obtained foam blow molded article was formed into a hollow shape, and was formed into a shape corresponding to a duct having a generally rectangular cylindrical cross section and a maximum length of 650 mm and a maximum width of 180 mm.
- the hollow portion of the foam blow-molded product may be particularly referred to as the hollow portion.
- the mixed resin contains 0.9 parts by mass of carbon black and 2 parts by mass of talc as additives for a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). They were added as carbon black masterbatch (45% masterbatch (MB)) and talc masterbatch (20% masterbatch (MB)).
- the carbon black masterbatch is manufactured by B&Tech Corporation and has a trade name of "PP Black Master Batch, BT920F-JSJ".
- the talc masterbatch is manufactured by Matsumura Sangyo and has the trade name "High Filler #12" (talc concentration 20% by mass, median diameter 7.5 ⁇ m). Note that talc can function as a bubble regulator.
- the amount of blowing agent injected (mol/kg) is as shown in Table 2, Table 3, and Table 4. Note that the amount of blowing agent injected shown in Tables 2, 3, and 4 is the amount (mol/kg) per 1 kg of the mixed resin of polyolefin resin and elastomer.
- the apparent density, closed cell ratio, and flexural modulus of the foam blow-molded product were measured by the methods described above.
- the thickness of the foam blow-molded article indicates the average thickness of the foam blow-molded article, and is a value measured by the following method. Vertical cross sections with respect to the longitudinal direction of the foam blow-molded article are obtained at five parts in total, including the longitudinal center portion, the vicinity of both longitudinal end portions, and the intermediate portion between the center portion and both end portions. The thickness (wall thickness) of the foam blow-molded product was measured at 6 points equally spaced in the circumferential direction of each vertical cross section, and the maximum and minimum values were excluded from the obtained thickness measurements at 30 points. The arithmetic mean value of was taken as the average thickness of the foam blow-molded product.
- the cold impact resistance of the foam blow-molded product was evaluated by performing a -10°C falling ball test (1.5 m, 1 kg).
- Example 2 For each Example and Comparative Example, 10 samples were prepared as foam blow-molded bodies for conducting a -10°C falling ball test, and each sample was used to evaluate the cold impact resistance of the foam blow-molded bodies. The number of samples with a result of A or B (number of good samples) was counted. The results are shown in Tables 2, 3 and 4.
- the surface smoothness of the foam blow-molded article refers to the smoothness of the inner surface of the hollow portion of the foam blow-molded article.
- the surface smoothness of the foam blow-molded article was measured by cutting out a flat part of the hollow part of the hollow foam blow-molding article and visually observing the inner surface of the foam blow-molded article in the flat part.
- the surface smoothness of the foam blow-molded product was measured according to the following criteria.
- the column for surface smoothness includes the number of recognized unevenness formation locations in addition to the above evaluation results.
- the number of unevenness formation locations was 0 (that is, no unevenness was observed on the inner surface).
- Comparative Examples 1 and 2 the blending ratio of polyolefin resin and elastomer in the mixed resin was changed compared to Example 2, and as shown in Table 3, the impact resistance and surface required for the foam blow-molded product were improved. It was not possible to achieve both smoothness and smoothness.
- Comparative Examples 3 to 6 the type of elastomer was changed compared to Example 1, etc., and as shown in Tables 3 and 4, the impact resistance and surface smoothness required for foam blow-molded products were improved. It was not possible to achieve both.
- Comparative Example 7 and Comparative Example 8 the blending amount of linear block polypropylene (a) was changed compared to Example 1, etc., and as shown in Table 4, the impact resistance required for the foam blow molded product was improved. It was not possible to achieve both surface smoothness and surface smoothness. Furthermore, in Comparative Examples 7 and 8, as shown in Table 4, the values of the flexural modulus were lower than those of Examples 1 to 5, and the rigidity of the foam blow-molded products was insufficient.
- the manufacturing method and examples of the present invention described above are merely examples, and the present invention is not limited thereto.
- various attributes of the branched homopolypropylene (a1) may be combined.
- the branched homopolypropylene (a1) may have a specific melt tension and a specific melting point. The same applies not only to the branched homopolypropylene (a1) but also to the linear block polypropylene (a2), the olefin thermoplastic elastomer (B), and the recovered raw material.
- the combinations listed here are just examples and are not limited thereto.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Abstract
The present invention provides a method for producing a foam blow molded body, the method comprising a step for blow molding a foamed parison that is obtained by foaming a mixed resin of a polyolefin resin (A) and an olefin-based thermoplastic elastomer (B). With respect to this method for producing a foam blow molded body, the polyolefin resin (A) is composed of a branched homopolypropylene (a1) and a linear block polypropylene (a2); the mass ratio ((a1):(a2)) of the branched homopolypropylene (a1) to the linear block polypropylene (a2) is 50:50 to 93:7; the olefin-based thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer that is composed of a crystalline olefin polymer block and a polymer block of a conjugated diene compound; and the added amount of the olefin-based thermoplastic elastomer (B) relative to 100 parts by mass of the polyolefin resin (A) is 20 parts by mass to 40 parts by mass in the mixed resin.
Description
本発明は、発泡ブロー成形体の製造方法、及び発泡ブロー成形体に関する。
TECHNICAL FIELD The present invention relates to a method for producing a blow-molded foam and a blow-molded foam.
発泡ブロー成形体は、基材樹脂を含む発泡性樹脂溶融物から形成された発泡パリソンを賦形して得られる。発泡ブロー成形体の中でも、ポリオレフィン系樹脂を基材樹脂として用いた中空状の成形体は、軽量性等の観点から、例えば、自動車等における空調ダクト等の様々な用途で使用されている。以下、空調ダクトをダクトと称呼することがある。
The foam blow molded article is obtained by shaping a foam parison formed from a foamable resin melt containing a base resin. Among foam blow molded products, hollow molded products using polyolefin resin as a base resin are used in various applications, such as air conditioning ducts in automobiles, etc., from the viewpoint of light weight and the like. Hereinafter, the air conditioning duct may be referred to as a duct.
近年、発泡ブロー成形体は、軽量性を有し、且つ、耐寒衝撃性を有することが求められている。なお、耐寒衝撃性は、低温時における発泡ブロー成形体の耐衝撃性を指す。発泡ブロー成形体の耐寒衝撃性を向上させるために、特許文献1及び特許文献2には、ポリプロピレン系樹脂に対してエラストマーを添加する技術が開示されている。
In recent years, foam blow-molded bodies are required to be lightweight and have cold impact resistance. Note that the cold impact resistance refers to the impact resistance of the foam blow-molded article at low temperatures. In order to improve the cold impact resistance of a foam blow molded article, Patent Document 1 and Patent Document 2 disclose a technique of adding an elastomer to a polypropylene resin.
特許文献1及び特許文献2に開示された技術は、発泡ブロー成形体の耐寒衝撃性や剛性の点でさらに改善する課題を有していた。また、特許文献1及び特許文献2の技術は、中空状の発泡ブロー成形体の中空部分の内側面における表面平滑性を向上させる点で課題を有していた。以下、明示しない限り、中空状の発泡ブロー成形体の中空部分の内側面における表面平滑性は、単に、表面平滑性と称呼される。
The techniques disclosed in Patent Document 1 and Patent Document 2 had the problem of further improving the cold impact resistance and rigidity of the foam blow-molded product. Moreover, the techniques of Patent Document 1 and Patent Document 2 had a problem in improving the surface smoothness on the inner surface of the hollow portion of the hollow foam blow-molded article. Hereinafter, unless specified otherwise, the surface smoothness on the inner surface of the hollow portion of the hollow foam blow-molded object will be simply referred to as surface smoothness.
本発明の目的の一つには、耐寒衝撃性と剛性と表面平滑性とに優れた発泡ブロー成形体の製造方法、及び耐寒衝撃性と剛性と表面平滑性とに優れた発泡ブロー成形体を提供することがある。
One of the objects of the present invention is to provide a method for producing a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness, and to provide a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness. may be provided.
本発明は、次の(1)から(5)に示す発明を要旨とする。
The gist of the present invention is the inventions shown in the following (1) to (5).
(1)ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂を発泡させた発泡パリソンをブロー成形する工程を含む発泡ブロー成形体の製造方法であって、
前記ポリオレフィン系樹脂(A)が、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなり、且つ、前記分岐状ホモポリプロピレン(a1)と前記直鎖状ブロックポリプロピレン(a2)との質量比[(a1):(a2)]が、50:50~93:7であり、
前記オレフィン系熱可塑性エラストマー(B)が、結晶性オレフィン重合体ブロックと共役ジエン化合物の重合体ブロックからなるトリブロック共重合体の水素添加物であり、
前記混合樹脂においては、前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である、発泡ブロー成形体の製造方法。
(2)前記オレフィン系熱可塑性エラストマー(B)の融点が80℃以上100℃以下である、
上記(1)に記載の発泡ブロー成形体の製造方法。
(3)前記直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上1500MPa以下である、
上記(1)又は(2)に記載の発泡ブロー成形体の製造方法。
(4)前記オレフィン系熱可塑性エラストマー(B)のメルトフローレイト(230℃、荷重2.16kg)が1g/10min以上10g/10min以下である、
上記(1)から(3)のいずれかに記載の発泡ブロー成形体の製造方法。
(5)ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂の発泡ブロー成形体であって、
前記ポリオレフィン系樹脂(A)が、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなり、且つ、前記分岐状ホモポリプロピレン(a1)と前記直鎖状ブロックポリプロピレン(a2)との質量比[(a1):(a2)]が、50:50~93:7であり、
前記オレフィン系熱可塑性エラストマー(B)が、結晶性オレフィン重合体ブロックと共役ジエン化合物の重合体ブロックからなるトリブロック共重合体の水素添加物であり、
前記混合樹脂においては、前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である、発泡ブロー成形体。 (1) A method for producing a foamed blow-molded article, which includes the step of blow-molding a foamed parison formed by foaming a mixed resin of a polyolefin resin (A) and an olefinic thermoplastic elastomer (B),
The polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2) The mass ratio [(a1):(a2)] is 50:50 to 93:7,
The olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
In the mixed resin, the amount of the olefin thermoplastic elastomer (B) based on 100 parts by mass of the polyolefin resin (A) is 20 parts by mass or more and 40 parts by mass or less.
(2) The melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less,
The method for producing a foam blow-molded article according to (1) above.
(3) The linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less,
The method for producing a foam blow-molded article according to (1) or (2) above.
(4) The melt flow rate (230° C., load 2.16 kg) of the olefin thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less,
The method for producing a foam blow molded article according to any one of (1) to (3) above.
(5) A foam blow-molded product of a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B),
The polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2) The mass ratio [(a1):(a2)] is 50:50 to 93:7,
The olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
In the mixed resin, the foamed blow-molded article has a blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) from 20 parts by mass to 40 parts by mass.
前記ポリオレフィン系樹脂(A)が、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなり、且つ、前記分岐状ホモポリプロピレン(a1)と前記直鎖状ブロックポリプロピレン(a2)との質量比[(a1):(a2)]が、50:50~93:7であり、
前記オレフィン系熱可塑性エラストマー(B)が、結晶性オレフィン重合体ブロックと共役ジエン化合物の重合体ブロックからなるトリブロック共重合体の水素添加物であり、
前記混合樹脂においては、前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である、発泡ブロー成形体の製造方法。
(2)前記オレフィン系熱可塑性エラストマー(B)の融点が80℃以上100℃以下である、
上記(1)に記載の発泡ブロー成形体の製造方法。
(3)前記直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上1500MPa以下である、
上記(1)又は(2)に記載の発泡ブロー成形体の製造方法。
(4)前記オレフィン系熱可塑性エラストマー(B)のメルトフローレイト(230℃、荷重2.16kg)が1g/10min以上10g/10min以下である、
上記(1)から(3)のいずれかに記載の発泡ブロー成形体の製造方法。
(5)ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂の発泡ブロー成形体であって、
前記ポリオレフィン系樹脂(A)が、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなり、且つ、前記分岐状ホモポリプロピレン(a1)と前記直鎖状ブロックポリプロピレン(a2)との質量比[(a1):(a2)]が、50:50~93:7であり、
前記オレフィン系熱可塑性エラストマー(B)が、結晶性オレフィン重合体ブロックと共役ジエン化合物の重合体ブロックからなるトリブロック共重合体の水素添加物であり、
前記混合樹脂においては、前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である、発泡ブロー成形体。 (1) A method for producing a foamed blow-molded article, which includes the step of blow-molding a foamed parison formed by foaming a mixed resin of a polyolefin resin (A) and an olefinic thermoplastic elastomer (B),
The polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2) The mass ratio [(a1):(a2)] is 50:50 to 93:7,
The olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
In the mixed resin, the amount of the olefin thermoplastic elastomer (B) based on 100 parts by mass of the polyolefin resin (A) is 20 parts by mass or more and 40 parts by mass or less.
(2) The melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less,
The method for producing a foam blow-molded article according to (1) above.
(3) The linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less,
The method for producing a foam blow-molded article according to (1) or (2) above.
(4) The melt flow rate (230° C., load 2.16 kg) of the olefin thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less,
The method for producing a foam blow molded article according to any one of (1) to (3) above.
(5) A foam blow-molded product of a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B),
The polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2) The mass ratio [(a1):(a2)] is 50:50 to 93:7,
The olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
In the mixed resin, the foamed blow-molded article has a blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) from 20 parts by mass to 40 parts by mass.
また、本発明は、次の(6)から(8)に記載する発明であってもよい。
Furthermore, the present invention may be the inventions described in the following (6) to (8).
(6)オレフィン系熱可塑性エラストマー(B)の融点が80℃以上100℃以下である、
上記(5)に記載の発泡ブロー成形体。
(7)前記直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上1500MPa以下である、
上記(5)又は(6)に記載の発泡ブロー成形体。
(8)前記オレフィン系熱可塑性エラストマー(B)のメルトフローレイト(230℃、荷重2.16kg)が1g/10min以上10g/10min以下である、
上記(5)から(7)のいずれか1つに記載の発泡ブロー成形体。 (6) The melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less,
The foam blow-molded article according to (5) above.
(7) The linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less,
The foam blow molded article according to (5) or (6) above.
(8) The melt flow rate (230° C., load 2.16 kg) of the olefinic thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less,
The foam blow molded article according to any one of (5) to (7) above.
上記(5)に記載の発泡ブロー成形体。
(7)前記直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上1500MPa以下である、
上記(5)又は(6)に記載の発泡ブロー成形体。
(8)前記オレフィン系熱可塑性エラストマー(B)のメルトフローレイト(230℃、荷重2.16kg)が1g/10min以上10g/10min以下である、
上記(5)から(7)のいずれか1つに記載の発泡ブロー成形体。 (6) The melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less,
The foam blow-molded article according to (5) above.
(7) The linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less,
The foam blow molded article according to (5) or (6) above.
(8) The melt flow rate (230° C., load 2.16 kg) of the olefinic thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less,
The foam blow molded article according to any one of (5) to (7) above.
本発明によれば、耐寒衝撃性と剛性と表面平滑性とに優れた発泡ブロー成形体の製造方法、及び、耐寒衝撃性と剛性と表面平滑性とに優れた発泡ブロー成形体を提供することができる。
According to the present invention, there is provided a method for producing a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness, and a foam blow-molded article having excellent cold impact resistance, rigidity, and surface smoothness. Can be done.
本発明について、1.発泡ブロー成形体の製造方法、2.発泡ブロー成形体の順に説明する。なお、本発明は、以下に説明する実施の形態等に限定されない。
About the present invention: 1. A method for producing a foam blow molded article, 2. Explanation will be given in order of the foam blow molded article. Note that the present invention is not limited to the embodiments described below.
[1 発泡ブロー成形体の製造方法]
本発明にかかる製造方法は、ブロー成形工程を有する発泡ブロー成形体の製造方法である。本発明にかかる発泡ブロー成形体の製造方法の一実施例について説明を続ける。 [1 Method for producing foam blow molded product]
The manufacturing method according to the present invention is a method for manufacturing a foam blow-molded article including a blow molding step. An embodiment of the method for manufacturing a foam blow-molded article according to the present invention will be explained next.
本発明にかかる製造方法は、ブロー成形工程を有する発泡ブロー成形体の製造方法である。本発明にかかる発泡ブロー成形体の製造方法の一実施例について説明を続ける。 [1 Method for producing foam blow molded product]
The manufacturing method according to the present invention is a method for manufacturing a foam blow-molded article including a blow molding step. An embodiment of the method for manufacturing a foam blow-molded article according to the present invention will be explained next.
[1-1 製造方法の内容]
(押出発泡工程)
押出機の内部において、混合樹脂及び発泡剤が混練されることにより発泡性樹脂溶融物を得る。得られた発泡性樹脂溶融物は、押出機に繋げられたダイから押し出される。ダイとしては、通常、環状ダイが用いられる。ダイの直下には成形型が配置されており、発泡性樹脂溶融物は、成形型の内部に押し出される。このとき、発泡性樹脂溶融物が発泡することにより発泡パリソンが形成される。なお、成形型は、得ようとする成形体に応じた所望の内部形状を有する。成形型は、通常、分割型の金型となっている。 [1-1 Contents of manufacturing method]
(Extrusion foaming process)
Inside the extruder, the mixed resin and foaming agent are kneaded to obtain a foamable resin melt. The resulting foamable resin melt is extruded from a die connected to an extruder. As the die, an annular die is usually used. A mold is placed directly below the die, and the foamable resin melt is extruded into the mold. At this time, a foamed parison is formed by foaming the foamable resin melt. Note that the mold has a desired internal shape depending on the molded product to be obtained. The mold is usually a split mold.
(押出発泡工程)
押出機の内部において、混合樹脂及び発泡剤が混練されることにより発泡性樹脂溶融物を得る。得られた発泡性樹脂溶融物は、押出機に繋げられたダイから押し出される。ダイとしては、通常、環状ダイが用いられる。ダイの直下には成形型が配置されており、発泡性樹脂溶融物は、成形型の内部に押し出される。このとき、発泡性樹脂溶融物が発泡することにより発泡パリソンが形成される。なお、成形型は、得ようとする成形体に応じた所望の内部形状を有する。成形型は、通常、分割型の金型となっている。 [1-1 Contents of manufacturing method]
(Extrusion foaming process)
Inside the extruder, the mixed resin and foaming agent are kneaded to obtain a foamable resin melt. The resulting foamable resin melt is extruded from a die connected to an extruder. As the die, an annular die is usually used. A mold is placed directly below the die, and the foamable resin melt is extruded into the mold. At this time, a foamed parison is formed by foaming the foamable resin melt. Note that the mold has a desired internal shape depending on the molded product to be obtained. The mold is usually a split mold.
(プリブロー工程)
押出発泡工程直後、発泡パリソンは軟化状態にある。ピンチ装置などを用いて軟化状態の発泡パリソンの下部を閉鎖し、発泡パリソンの内部に気体を吹き込むことで発泡パリソンの内部圧力を高める。このとき発泡パリソンが拡幅する。プリブロー工程の段階で又はプリブロー工程の後に、発泡パリソンが成形型に挟み込まれる。 (Pre-blow process)
Immediately after the extrusion foaming process, the foamed parison is in a softened state. The lower part of the softened foam parison is closed using a pinch device, and gas is blown into the foam parison to increase the internal pressure of the foam parison. At this time, the foam parison widens. During or after the pre-blowing process, the foamed parison is inserted into a mold.
押出発泡工程直後、発泡パリソンは軟化状態にある。ピンチ装置などを用いて軟化状態の発泡パリソンの下部を閉鎖し、発泡パリソンの内部に気体を吹き込むことで発泡パリソンの内部圧力を高める。このとき発泡パリソンが拡幅する。プリブロー工程の段階で又はプリブロー工程の後に、発泡パリソンが成形型に挟み込まれる。 (Pre-blow process)
Immediately after the extrusion foaming process, the foamed parison is in a softened state. The lower part of the softened foam parison is closed using a pinch device, and gas is blown into the foam parison to increase the internal pressure of the foam parison. At this time, the foam parison widens. During or after the pre-blowing process, the foamed parison is inserted into a mold.
(ブロー成形工程)
ブロー成形工程は、発泡パリソンを成形型に挟み込んだ状態で発泡パリソンの内部に気体を吹き込む工程である。このとき発泡パリソンの外表面が成形型の内面に押し付けられ、発泡パリソンが中空状に賦形される。この工程により発泡ブロー成形体が得られる。発泡ブロー成形体としては、例えば中空状の成形体が得られる。なお、発泡ブロー成形体の製造方法においては、アキュームレーターが押出機とダイとの間、またはダイに設けられることが好ましい。 (Blow molding process)
The blow molding process is a process in which gas is blown into the foamed parison while the foamed parison is sandwiched between molds. At this time, the outer surface of the foamed parison is pressed against the inner surface of the mold, and the foamed parison is shaped into a hollow shape. A foam blow-molded article is obtained through this step. As the foam blow molded product, for example, a hollow molded product can be obtained. In addition, in the manufacturing method of a foam blow-molded object, it is preferable that an accumulator is provided between an extruder and a die, or in a die.
ブロー成形工程は、発泡パリソンを成形型に挟み込んだ状態で発泡パリソンの内部に気体を吹き込む工程である。このとき発泡パリソンの外表面が成形型の内面に押し付けられ、発泡パリソンが中空状に賦形される。この工程により発泡ブロー成形体が得られる。発泡ブロー成形体としては、例えば中空状の成形体が得られる。なお、発泡ブロー成形体の製造方法においては、アキュームレーターが押出機とダイとの間、またはダイに設けられることが好ましい。 (Blow molding process)
The blow molding process is a process in which gas is blown into the foamed parison while the foamed parison is sandwiched between molds. At this time, the outer surface of the foamed parison is pressed against the inner surface of the mold, and the foamed parison is shaped into a hollow shape. A foam blow-molded article is obtained through this step. As the foam blow molded product, for example, a hollow molded product can be obtained. In addition, in the manufacturing method of a foam blow-molded object, it is preferable that an accumulator is provided between an extruder and a die, or in a die.
(混合樹脂の構成)
発泡性樹脂溶融物を形成するための混合樹脂は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂である。 (Composition of mixed resin)
The mixed resin for forming the foamable resin melt is a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
発泡性樹脂溶融物を形成するための混合樹脂は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂である。 (Composition of mixed resin)
The mixed resin for forming the foamable resin melt is a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
(ポリオレフィン系樹脂)
ポリオレフィン系樹脂(A)は、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなる樹脂組成物である。 (Polyolefin resin)
The polyolefin resin (A) is a resin composition consisting of a branched homopolypropylene (a1) and a linear block polypropylene (a2).
ポリオレフィン系樹脂(A)は、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなる樹脂組成物である。 (Polyolefin resin)
The polyolefin resin (A) is a resin composition consisting of a branched homopolypropylene (a1) and a linear block polypropylene (a2).
(分岐状ホモポリプロピレン)
分岐状ホモポリプロピレン(a1)は、分子構造中に分岐構造を有するホモポリプロピレンである。分岐構造としては、分子構造中における枝分かれした構造部分、且つ長鎖状構造部分で自由末端を有する構造部分を、例示することができる。なお、分岐構造は高温GPC-MALS測定等を用いて確認することができる。 (branched homopolypropylene)
Branched homopolypropylene (a1) is homopolypropylene having a branched structure in its molecular structure. Examples of the branched structure include a branched structural part in a molecular structure and a long chain structural part having a free end. Note that the branched structure can be confirmed using high temperature GPC-MALS measurement or the like.
分岐状ホモポリプロピレン(a1)は、分子構造中に分岐構造を有するホモポリプロピレンである。分岐構造としては、分子構造中における枝分かれした構造部分、且つ長鎖状構造部分で自由末端を有する構造部分を、例示することができる。なお、分岐構造は高温GPC-MALS測定等を用いて確認することができる。 (branched homopolypropylene)
Branched homopolypropylene (a1) is homopolypropylene having a branched structure in its molecular structure. Examples of the branched structure include a branched structural part in a molecular structure and a long chain structural part having a free end. Note that the branched structure can be confirmed using high temperature GPC-MALS measurement or the like.
分岐状ホモポリプロピレン(a1)の230℃、荷重2.16kgの条件にて測定されるメルトフローレイトは0.1g/10分~15g/10分であることが好ましい。前記メルトフローレイトが上記範囲内であれば、樹脂の溶融時の流動性に優れることから、発泡パリソンのドローダウンがより抑制される。かかる観点から、分岐状ホモポリプロピレン(a1)のメルトフローレイトは、より好ましくは0.5g/10分~10g/10分であり、さらに好ましくは1g/10分~5g/10分である。なお、前記樹脂のメルトフローレイト(MFR)は、公知の方法で計測することができ、たとえば、JIS K7210-1:2014(試験方法A法)に基づき測定することができる。上記した分岐状ホモポリプロピレン(a1)のメルトフローレイトの数値範囲として示したそれぞれの数値範囲を規定する組み合わせにおける上限値及び下限値は、それぞれ独立して任意に組み合わされてよい。本明細書において、数値範囲を規定する組み合わせとは、上限値と下限値の組み合わせを示す。なお、上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。したがって、分岐状ホモポリプロピレン(a1)のメルトフローレイトの数値範囲は、好ましい数値範囲の上限及び下限を示す数値、及び、さらに好ましい数値範囲の上限及び下限を示す数値を組み合わせた数値範囲とされてもよい。具体的には、分岐状ホモポリプロピレン(a1)のメルトフローレイトについての数値範囲は、例えば、0.1g/10分、0.5g/10分、及び1g/10分からなる群のいずれか1つを下限値とし、且つ15g/10分、10g/10分、及び5g/10分からなる群のいずれか1つを上限値とする範囲を挙げることができる。したがって、例えば、メルトフローレイトの数値範囲は、0.1g/10分~10g/10分とされてもよく、0.5g/10分~5g/10分とされてもよく、また、1g/10分~15g/10分とされてもよい。
The melt flow rate of the branched homopolypropylene (a1) measured at 230° C. and a load of 2.16 kg is preferably 0.1 g/10 minutes to 15 g/10 minutes. If the melt flow rate is within the above range, the resin will have excellent fluidity during melting, and therefore the drawdown of the foamed parison will be further suppressed. From this viewpoint, the melt flow rate of the branched homopolypropylene (a1) is more preferably 0.5 g/10 minutes to 10 g/10 minutes, and still more preferably 1 g/10 minutes to 5 g/10 minutes. The melt flow rate (MFR) of the resin can be measured by a known method, for example, based on JIS K7210-1:2014 (Test Method A). The upper and lower limits in the combinations defining each numerical range shown as the numerical range of the melt flow rate of the branched homopolypropylene (a1) described above may be independently and arbitrarily combined. In this specification, a combination defining a numerical range refers to a combination of an upper limit value and a lower limit value. Note that the numerical range determined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. Therefore, the numerical range of the melt flow rate of the branched homopolypropylene (a1) is a numerical range that combines the upper and lower limits of the preferable numerical range, and the upper and lower limits of the more preferable numerical range. Good too. Specifically, the numerical range for the melt flow rate of the branched homopolypropylene (a1) is, for example, any one of the group consisting of 0.1 g/10 minutes, 0.5 g/10 minutes, and 1 g/10 minutes. The lower limit is 15 g/10 minutes, 10 g/10 minutes, and 5 g/10 minutes. Therefore, for example, the numerical range of the melt flow rate may be 0.1 g/10 minutes to 10 g/10 minutes, 0.5 g/10 minutes to 5 g/10 minutes, or 1 g/10 minutes. The rate may be 10 minutes to 15 g/10 minutes.
また、分岐状ホモポリプロピレン(a1)の230℃の溶融張力は、発泡ブロー成形における発泡性の観点から、5cN~50cNであることが好ましく、10cN~45cNであることがさらに好ましく、25cN~40cNであることが最も好ましい。分岐状ホモポリプロピレン(a1)の溶融張力の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。分岐状ホモポリプロピレン(a1)の230℃の溶融張力の数値範囲は、例えば、5cN、10cN、及び25cNからなる群のいずれか1つを下限値とし、且つ50cN、45cN、及び40cNからなる群のいずれか1つを上限値とする範囲を挙げることができる。分岐状ホモポリプロピレン(a1)の溶融張力(MT)は、公知の方法で計測することができ、たとえば、株式会社東洋精機製作所製のキャピログラフ1Dによって測定することができる。
Further, the melt tension at 230°C of the branched homopolypropylene (a1) is preferably 5 cN to 50 cN, more preferably 10 cN to 45 cN, and more preferably 25 cN to 40 cN, from the viewpoint of foamability in foam blow molding. Most preferably. Regarding the numerical range of the melt tension of the branched homopolypropylene (a1), the upper and lower limits shown in the combination of numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the melt tension at 230°C of the branched homopolypropylene (a1) is, for example, the lower limit is any one of the group consisting of 5 cN, 10 cN, and 25 cN, and the lower limit is any one of the group consisting of 50 cN, 45 cN, and 40 cN. A range with one of the upper limits can be listed. The melt tension (MT) of the branched homopolypropylene (a1) can be measured by a known method, for example, by Capillograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd.
分岐状ホモポリプロピレン(a1)の融点は、好ましくは155℃~165℃であり、より好ましくは157℃~162℃である。分岐状ホモポリプロピレン(a1)の融点の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。分岐状ホモポリプロピレン(a1)の融点の数値範囲は、例えば、155℃、及び157℃からなる群のいずれか1つを下限値とし、且つ165℃、及び162℃からなる群のいずれか1つを上限値とする範囲を挙げることができる。前記融点は、JIS K7121:2012に基づき、後述するオレフィン系熱可塑性エラストマー(B)の融点と同様に測定することができる。
The melting point of the branched homopolypropylene (a1) is preferably 155°C to 165°C, more preferably 157°C to 162°C. Regarding the numerical range of the melting point of the branched homopolypropylene (a1), the upper limit and lower limit shown in the combination of numerical ranges described above can be arbitrarily combined independently. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the melting point of the branched homopolypropylene (a1) is, for example, the lower limit is any one of the group consisting of 155°C and 157°C, and the lower limit is any one of the group consisting of 165°C and 162°C. A range with an upper limit of . The melting point can be measured in accordance with JIS K7121:2012 in the same manner as the melting point of the olefin thermoplastic elastomer (B) described below.
分岐状ホモポリプロピレン(a1)は、発泡性に優れるため、ポリオレフィン系樹脂(A)が分岐状ホモポリプロピレン(a1)を有することで、軽量性と表面平滑性に優れる発泡ブロー成形体を得ることが容易となる。具体的には、分岐状ホモポリプロピレン(a1)としては、HMS-ポリプロピレンやUMS-ポリプロピレンとして市販されているものを挙げることができる。また、分岐状ホモポリプロピレン(a1)としては、ボレアリス社製の分岐状ホモポリプロピレン(商品名:WB130、WB135、WB140)、サンアロマー社製の分岐状ホモポリプロピレン樹脂(商品名:PF814)等が挙げられる。
Branched homopolypropylene (a1) has excellent foaming properties, so by having branched homopolypropylene (a1) in the polyolefin resin (A), it is possible to obtain a foam blow-molded product that is lightweight and has excellent surface smoothness. It becomes easier. Specifically, examples of the branched homopolypropylene (a1) include those commercially available as HMS-polypropylene and UMS-polypropylene. Further, examples of the branched homopolypropylene (a1) include branched homopolypropylene manufactured by Borealis (product name: WB130, WB135, WB140), branched homopolypropylene resin manufactured by Sun Allomer (product name: PF814), etc. .
(直鎖状ブロックポリプロピレン)
直鎖状ブロックポリプロピレン(a2)は、直鎖状の分子構造を有するブロックポリプロピレンである。ブロックポリプロピレンとしては、プロピレン重合体の存在下、エチレンと1種類以上のC3~C10-αオレフィン(炭素数が3から10のα-オレフィン)を重合して得た重合混合物が挙げられる。また、直鎖状ブロックポリプロピレン(a2)はJIS K6921-1で規定される耐衝撃性ポリプロピレンポリマーを含み、一般にブロックポリプロピレンとして市販されているものを含む。ただし、ここに示すブロックポリプロピレンの例は一例であり、他の例を排除するものではない。具体的には、ブロックポリプロピレンは、プロピレン・エチレンブロック共重合体を例示することができる。さらに具体的には、プロピレン・エチレンブロック共重合体は、結晶性のプロピレンブロックと、エチレンプロピレンランダムブロックを含有するブロック共重合体が挙げられる。 (Linear block polypropylene)
The linear block polypropylene (a2) is a block polypropylene having a linear molecular structure. Examples of block polypropylene include polymer mixtures obtained by polymerizing ethylene and one or more types of C3 to C10-α olefins (α-olefins having 3 to 10 carbon atoms) in the presence of a propylene polymer. Furthermore, the linear block polypropylene (a2) includes impact-resistant polypropylene polymers defined by JIS K6921-1, and includes those generally commercially available as block polypropylene. However, the example of block polypropylene shown here is one example, and other examples are not excluded. Specifically, the block polypropylene can be exemplified by a propylene/ethylene block copolymer. More specifically, the propylene/ethylene block copolymer includes a block copolymer containing a crystalline propylene block and an ethylene propylene random block.
直鎖状ブロックポリプロピレン(a2)は、直鎖状の分子構造を有するブロックポリプロピレンである。ブロックポリプロピレンとしては、プロピレン重合体の存在下、エチレンと1種類以上のC3~C10-αオレフィン(炭素数が3から10のα-オレフィン)を重合して得た重合混合物が挙げられる。また、直鎖状ブロックポリプロピレン(a2)はJIS K6921-1で規定される耐衝撃性ポリプロピレンポリマーを含み、一般にブロックポリプロピレンとして市販されているものを含む。ただし、ここに示すブロックポリプロピレンの例は一例であり、他の例を排除するものではない。具体的には、ブロックポリプロピレンは、プロピレン・エチレンブロック共重合体を例示することができる。さらに具体的には、プロピレン・エチレンブロック共重合体は、結晶性のプロピレンブロックと、エチレンプロピレンランダムブロックを含有するブロック共重合体が挙げられる。 (Linear block polypropylene)
The linear block polypropylene (a2) is a block polypropylene having a linear molecular structure. Examples of block polypropylene include polymer mixtures obtained by polymerizing ethylene and one or more types of C3 to C10-α olefins (α-olefins having 3 to 10 carbon atoms) in the presence of a propylene polymer. Furthermore, the linear block polypropylene (a2) includes impact-resistant polypropylene polymers defined by JIS K6921-1, and includes those generally commercially available as block polypropylene. However, the example of block polypropylene shown here is one example, and other examples are not excluded. Specifically, the block polypropylene can be exemplified by a propylene/ethylene block copolymer. More specifically, the propylene/ethylene block copolymer includes a block copolymer containing a crystalline propylene block and an ethylene propylene random block.
(直鎖状ブロックポリプロピレンの曲げ弾性率)
直鎖状ブロックポリプロピレン(a2)の曲げ弾性率は、1000MPa以上1500MPa以下であることが好ましい。直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上であることで、発泡ブロー成形体の剛性をより効果的に向上させるとともに、発泡ブロー成形体の緩衝性を向上させることができる。この観点からは、直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1100MPa以上1400MPa以下であることがより好ましい。直鎖状ブロックポリプロピレン(a2)の曲げ弾性率の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。直鎖状ホモポリプロピレン(a2)の曲げ弾性率の数値範囲は、例えば、1000MPa、及び1100MPaからなる群のいずれか1つを下限値とし、且つ1500MPa、及び1400MPaからなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Bending modulus of linear block polypropylene)
The bending elastic modulus of the linear block polypropylene (a2) is preferably 1000 MPa or more and 1500 MPa or less. By having a bending modulus of elasticity of the linear block polypropylene (a2) of 1000 MPa or more, the rigidity of the foam blow-molded article can be more effectively improved, and the cushioning properties of the foam blow-molded article can be improved. From this viewpoint, it is more preferable that the flexural modulus of the linear block polypropylene (a2) is 1100 MPa or more and 1400 MPa or less. Regarding the numerical range of the bending elastic modulus of the linear block polypropylene (a2), the upper and lower limits shown in the combinations of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the bending elastic modulus of the linear homopolypropylene (a2) is, for example, the lower limit is any one of the group consisting of 1000 MPa and 1100 MPa, and the lower limit is any one of the group consisting of 1500 MPa and 1400 MPa. A range of upper limit values can be listed.
直鎖状ブロックポリプロピレン(a2)の曲げ弾性率は、1000MPa以上1500MPa以下であることが好ましい。直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上であることで、発泡ブロー成形体の剛性をより効果的に向上させるとともに、発泡ブロー成形体の緩衝性を向上させることができる。この観点からは、直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1100MPa以上1400MPa以下であることがより好ましい。直鎖状ブロックポリプロピレン(a2)の曲げ弾性率の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。直鎖状ホモポリプロピレン(a2)の曲げ弾性率の数値範囲は、例えば、1000MPa、及び1100MPaからなる群のいずれか1つを下限値とし、且つ1500MPa、及び1400MPaからなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Bending modulus of linear block polypropylene)
The bending elastic modulus of the linear block polypropylene (a2) is preferably 1000 MPa or more and 1500 MPa or less. By having a bending modulus of elasticity of the linear block polypropylene (a2) of 1000 MPa or more, the rigidity of the foam blow-molded article can be more effectively improved, and the cushioning properties of the foam blow-molded article can be improved. From this viewpoint, it is more preferable that the flexural modulus of the linear block polypropylene (a2) is 1100 MPa or more and 1400 MPa or less. Regarding the numerical range of the bending elastic modulus of the linear block polypropylene (a2), the upper and lower limits shown in the combinations of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the bending elastic modulus of the linear homopolypropylene (a2) is, for example, the lower limit is any one of the group consisting of 1000 MPa and 1100 MPa, and the lower limit is any one of the group consisting of 1500 MPa and 1400 MPa. A range of upper limit values can be listed.
(曲げ弾性率の測定)
直鎖状ブロックポリプロピレン(a2)の曲げ弾性率は、JIS K7171:2016に基づき測定することができる。 (Measurement of flexural modulus)
The flexural modulus of linear block polypropylene (a2) can be measured based on JIS K7171:2016.
直鎖状ブロックポリプロピレン(a2)の曲げ弾性率は、JIS K7171:2016に基づき測定することができる。 (Measurement of flexural modulus)
The flexural modulus of linear block polypropylene (a2) can be measured based on JIS K7171:2016.
直鎖状ブロックポリプロピレン(a2)の樹脂自体の曲げ弾性率は、一般的に、分岐状ホモポリプロピレン(a1)よりも小さい場合が多いが、ポリオレフィン系樹脂(A)が分岐状ホモポリプロピレン(a1)のみならず、直鎖状ブロックポリプロピレン(a2)を含むことで、発泡ブロー成形体の剛性を向上させることができる。また、ポリオレフィン系樹脂(A)が直鎖状ブロックポリプロピレン(a2)を有することで、軽量性が良好で且つ表面平滑性に優れる発泡ブロー成形体を得ることが容易となる。
Generally, the bending modulus of the resin itself of the linear block polypropylene (a2) is often smaller than that of the branched homopolypropylene (a1), but if the polyolefin resin (A) is the branched homopolypropylene (a1) In addition, by including the linear block polypropylene (a2), the rigidity of the foam blow-molded article can be improved. Further, since the polyolefin resin (A) contains the linear block polypropylene (a2), it becomes easy to obtain a foam blow-molded product that is lightweight and has excellent surface smoothness.
直鎖状ブロックポリプロピレン(a2)の230℃、荷重2.16kgの条件にて測定されるメルトフローレイトは1g/10分~40g/10分であることが好ましい。前記メルトフローレイトが上記範囲内であれば、混合樹脂の溶融時の流動性に優れるものとなる。かかる観点から、直鎖状ブロックポリプロピレン(a2)のメルトフローレイトは、好ましくは2g/10分~38g/10分であり、さらに好ましくは、10g/10分~35g/10分であり、さらに好ましくは20g/10分~33g/10分である。直鎖状ブロックポリプロピレン(a2)のメルトフローレイトの数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。直鎖状ブロックポリプロピレン(a2)のメルトフローレイトの数値範囲は、例えば、1g/10分、2g/10分、10g/10分、及び20g/10分からなる群のいずれか1つを下限値とし、且つ40g/10分、38g/10分、35g/10分、及び33g/10分からなる群のいずれか1つを上限値とする範囲を挙げることができる。なお、前記樹脂のメルトフローレイト(MFR)は、公知の方法で計測することができ、たとえば、JIS K7210-1:2014(試験方法A法)に基づき測定することができる。
The melt flow rate of the linear block polypropylene (a2) measured at 230° C. and a load of 2.16 kg is preferably 1 g/10 minutes to 40 g/10 minutes. If the melt flow rate is within the above range, the mixed resin will have excellent fluidity when melted. From this viewpoint, the melt flow rate of the linear block polypropylene (a2) is preferably 2 g/10 minutes to 38 g/10 minutes, more preferably 10 g/10 minutes to 35 g/10 minutes, and even more preferably is 20g/10 minutes to 33g/10 minutes. Regarding the numerical range of the melt flow rate of the linear block polypropylene (a2), the upper and lower limits shown in the combination of numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the melt flow rate of linear block polypropylene (a2) is, for example, the lower limit of any one of the group consisting of 1 g/10 minutes, 2 g/10 minutes, 10 g/10 minutes, and 20 g/10 minutes. , and a range in which the upper limit is any one of the group consisting of 40 g/10 minutes, 38 g/10 minutes, 35 g/10 minutes, and 33 g/10 minutes. The melt flow rate (MFR) of the resin can be measured by a known method, for example, based on JIS K7210-1:2014 (Test Method A).
直鎖状ブロックポリプロピレン(a2)の融点は、好ましくは155℃~169℃であり、好ましくは、158℃~168℃である。直鎖状ブロックポリプロピレン(a2)の融点の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。直鎖状ブロックポリプロピレン(a2)の融点の数値範囲は、例えば、155℃、及び158℃からなる群のいずれか1つを下限値とし、且つ169℃、及び168℃からなる群のいずれか1つを上限値とする範囲を挙げることができる。前記融点は、JIS K7121:2012に基づき、後述するオレフィン系熱可塑性エラストマー(B)の融点と同様に測定することができる。
The melting point of the linear block polypropylene (a2) is preferably 155°C to 169°C, preferably 158°C to 168°C. Regarding the numerical range of the melting point of the linear block polypropylene (a2), the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the melting point of the linear block polypropylene (a2) is, for example, the lower limit of any one of the group consisting of 155°C and 158°C, and the lower limit of any one of the group consisting of 169°C and 168°C. A range with one upper limit can be listed. The melting point can be measured in accordance with JIS K7121:2012 in the same manner as the melting point of the olefin thermoplastic elastomer (B) described below.
(質量比[(a1):(a2)])
前記混合樹脂では、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)の質量比[(a1):(a2)]が、50:50~93:7であることが好ましい。質量比[(a1):(a2)]が上記した数値の範囲にあることで、混合樹脂の発泡性が向上して表面平滑性が向上すると共に発泡ブロー成形体の剛性、耐寒衝撃性を良好とする効果が得られる。なお、この効果をさらに向上させる観点からは、質量比[(a1):(a2)]が70:30~92:8であることが好ましく、さらには80:20~90:10であることが好ましい。質量比[(a1):(a2)]の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限となる比率とおよび下限となる比率は独立して任意に組み合わせることが可能である。上限となる比率及び下限となる比率を任意に組み合わせることで定められる数値範囲には、上限となる比率、下限となる比率、及び上限となる比率と下限となる比率との間の比率が含まれる。ただし、質量比[(a1):(a2)]のそれぞれの数値範囲の組み合わせにおいて分岐状ホモポリプロピレン(a1)の質量比率が最も小さい場合を下限となる比率とし、分岐状ホモポリプロピレン(a1)の質量比率が最も大きい場合を上限となる比率とする。例えば、質量比[(a1):(a2)]の数値範囲が、50:50~93:7である場合には、下限となる比率は、50:50であり、上限となる比率は93:7である。質量比[(a1):(a2)]の数値範囲は、例えば、50:50、70:30、及び80:20からなる群のいずれか1つを下限となる比率とし、且つ93:7、92:8及び90:10からなる群のいずれか1つを上限となる値とする範囲を挙げることができる。 (Mass ratio [(a1):(a2)])
In the mixed resin, the mass ratio [(a1):(a2)] of branched homopolypropylene (a1) and linear block polypropylene (a2) is preferably 50:50 to 93:7. When the mass ratio [(a1):(a2)] is within the above numerical range, the foamability of the mixed resin is improved, the surface smoothness is improved, and the rigidity and cold impact resistance of the foam blow molded product are improved. The effect of this can be obtained. In addition, from the viewpoint of further improving this effect, the mass ratio [(a1):(a2)] is preferably 70:30 to 92:8, more preferably 80:20 to 90:10. preferable. In the numerical range of the mass ratio [(a1):(a2)], the upper limit ratio and lower limit ratio shown in the combination of numerical ranges described above can be independently and arbitrarily combined. The numerical range determined by arbitrarily combining the upper limit ratio and the lower limit ratio includes the upper limit ratio, the lower limit ratio, and the ratio between the upper limit ratio and the lower limit ratio. . However, in the combination of each numerical range of mass ratio [(a1):(a2)], the case where the mass ratio of branched homopolypropylene (a1) is the smallest is taken as the lower limit ratio, and the ratio of branched homopolypropylene (a1) is the lowest. The case where the mass ratio is the largest is taken as the upper limit ratio. For example, if the numerical range of the mass ratio [(a1):(a2)] is 50:50 to 93:7, the lower limit ratio is 50:50 and the upper limit ratio is 93: It is 7. The numerical range of the mass ratio [(a1):(a2)] is, for example, one of the group consisting of 50:50, 70:30, and 80:20 as the lower limit ratio, and 93:7, A range whose upper limit is one of the group consisting of 92:8 and 90:10 can be mentioned.
前記混合樹脂では、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)の質量比[(a1):(a2)]が、50:50~93:7であることが好ましい。質量比[(a1):(a2)]が上記した数値の範囲にあることで、混合樹脂の発泡性が向上して表面平滑性が向上すると共に発泡ブロー成形体の剛性、耐寒衝撃性を良好とする効果が得られる。なお、この効果をさらに向上させる観点からは、質量比[(a1):(a2)]が70:30~92:8であることが好ましく、さらには80:20~90:10であることが好ましい。質量比[(a1):(a2)]の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限となる比率とおよび下限となる比率は独立して任意に組み合わせることが可能である。上限となる比率及び下限となる比率を任意に組み合わせることで定められる数値範囲には、上限となる比率、下限となる比率、及び上限となる比率と下限となる比率との間の比率が含まれる。ただし、質量比[(a1):(a2)]のそれぞれの数値範囲の組み合わせにおいて分岐状ホモポリプロピレン(a1)の質量比率が最も小さい場合を下限となる比率とし、分岐状ホモポリプロピレン(a1)の質量比率が最も大きい場合を上限となる比率とする。例えば、質量比[(a1):(a2)]の数値範囲が、50:50~93:7である場合には、下限となる比率は、50:50であり、上限となる比率は93:7である。質量比[(a1):(a2)]の数値範囲は、例えば、50:50、70:30、及び80:20からなる群のいずれか1つを下限となる比率とし、且つ93:7、92:8及び90:10からなる群のいずれか1つを上限となる値とする範囲を挙げることができる。 (Mass ratio [(a1):(a2)])
In the mixed resin, the mass ratio [(a1):(a2)] of branched homopolypropylene (a1) and linear block polypropylene (a2) is preferably 50:50 to 93:7. When the mass ratio [(a1):(a2)] is within the above numerical range, the foamability of the mixed resin is improved, the surface smoothness is improved, and the rigidity and cold impact resistance of the foam blow molded product are improved. The effect of this can be obtained. In addition, from the viewpoint of further improving this effect, the mass ratio [(a1):(a2)] is preferably 70:30 to 92:8, more preferably 80:20 to 90:10. preferable. In the numerical range of the mass ratio [(a1):(a2)], the upper limit ratio and lower limit ratio shown in the combination of numerical ranges described above can be independently and arbitrarily combined. The numerical range determined by arbitrarily combining the upper limit ratio and the lower limit ratio includes the upper limit ratio, the lower limit ratio, and the ratio between the upper limit ratio and the lower limit ratio. . However, in the combination of each numerical range of mass ratio [(a1):(a2)], the case where the mass ratio of branched homopolypropylene (a1) is the smallest is taken as the lower limit ratio, and the ratio of branched homopolypropylene (a1) is the lowest. The case where the mass ratio is the largest is taken as the upper limit ratio. For example, if the numerical range of the mass ratio [(a1):(a2)] is 50:50 to 93:7, the lower limit ratio is 50:50 and the upper limit ratio is 93: It is 7. The numerical range of the mass ratio [(a1):(a2)] is, for example, one of the group consisting of 50:50, 70:30, and 80:20 as the lower limit ratio, and 93:7, A range whose upper limit is one of the group consisting of 92:8 and 90:10 can be mentioned.
(オレフィン系熱可塑性エラストマー)
オレフィン系熱可塑性エラストマー(B)は、結晶性オレフィンの重合体ブロックのハードセグメントと共役ジエン化合物の重合体ブロックのソフトセグメントからなるトリブロック共重合体の水素添加物である。トリブロック共重合体は、いわゆるA-B-A型の構造(サンドイッチ型)となるブロック共重合体であることが好適である。このとき、A-B-A型の構造となるブロック共重合体のうち両端のブロック部としてのAは、結晶性オレフィンの重合体ブロックであり、Aで挟まれたブロック部(中央のブロック部)としてのBは、共役ジエン化合物の重合体ブロックであることが好ましい。オレフィン系熱可塑性エラストマー(B)が上記したような構造を有するブロック共重合体の水素添加物であることで、発泡パリ孫の発泡性を阻害せずに発泡ブロー成形体の耐衝撃性を向上させることができる。また、発泡ブロー成形体の表面平滑性が向上するという効果を発揮させることができる。 (Olefin thermoplastic elastomer)
The olefinic thermoplastic elastomer (B) is a hydrogenated triblock copolymer consisting of a hard segment of a crystalline olefin polymer block and a soft segment of a conjugated diene compound polymer block. The triblock copolymer is preferably a block copolymer having a so-called ABA type structure (sandwich type). At this time, A as the block parts at both ends of the block copolymer having an ABA type structure is a polymer block of crystalline olefin, and the block parts sandwiched by A (the central block part) are polymer blocks of crystalline olefin. ) is preferably a polymer block of a conjugated diene compound. Since the olefinic thermoplastic elastomer (B) is a hydrogenated block copolymer having the above-mentioned structure, the impact resistance of the foamed blow-molded product is improved without inhibiting the foamability of the foamed Parisian material. can be done. Moreover, the effect of improving the surface smoothness of the foam blow-molded article can be exhibited.
オレフィン系熱可塑性エラストマー(B)は、結晶性オレフィンの重合体ブロックのハードセグメントと共役ジエン化合物の重合体ブロックのソフトセグメントからなるトリブロック共重合体の水素添加物である。トリブロック共重合体は、いわゆるA-B-A型の構造(サンドイッチ型)となるブロック共重合体であることが好適である。このとき、A-B-A型の構造となるブロック共重合体のうち両端のブロック部としてのAは、結晶性オレフィンの重合体ブロックであり、Aで挟まれたブロック部(中央のブロック部)としてのBは、共役ジエン化合物の重合体ブロックであることが好ましい。オレフィン系熱可塑性エラストマー(B)が上記したような構造を有するブロック共重合体の水素添加物であることで、発泡パリ孫の発泡性を阻害せずに発泡ブロー成形体の耐衝撃性を向上させることができる。また、発泡ブロー成形体の表面平滑性が向上するという効果を発揮させることができる。 (Olefin thermoplastic elastomer)
The olefinic thermoplastic elastomer (B) is a hydrogenated triblock copolymer consisting of a hard segment of a crystalline olefin polymer block and a soft segment of a conjugated diene compound polymer block. The triblock copolymer is preferably a block copolymer having a so-called ABA type structure (sandwich type). At this time, A as the block parts at both ends of the block copolymer having an ABA type structure is a polymer block of crystalline olefin, and the block parts sandwiched by A (the central block part) are polymer blocks of crystalline olefin. ) is preferably a polymer block of a conjugated diene compound. Since the olefinic thermoplastic elastomer (B) is a hydrogenated block copolymer having the above-mentioned structure, the impact resistance of the foamed blow-molded product is improved without inhibiting the foamability of the foamed Parisian material. can be done. Moreover, the effect of improving the surface smoothness of the foam blow-molded article can be exhibited.
結晶性オレフィンの重合体は、エチレンの重合体等を例示することができる。共役ジエン化合物の重合体は、エチレンとブチレンの重合体の他、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエンなどの重合体が挙げられる。
Examples of crystalline olefin polymers include ethylene polymers. Polymers of conjugated diene compounds include, in addition to polymers of ethylene and butylene, 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 1,3-pentadiene, 2,3-dimethyl-1, Examples include polymers such as 3-butadiene.
オレフィン系熱可塑性エラストマー(B)は、具体的には、両端のブロック部をエチレン重合体のブロックとし、中央のブロック部を1,3-ブタジエンの重合体のブロックとするトリブロック共重合体の水素添加物等を挙げることができる。オレフィン系熱可塑性エラストマー(B)は、水素添加後の状態で、結晶性オレフィン・エチレンブチレン・結晶性オレフィンのブロック共重合体を例示することができる。また、オレフィン系熱可塑性エラストマー(B)には、分岐状ホモポリプロピレン(a1)、直鎖状ブロックポリプロピレン(a2)などのポリプロピレン系樹脂は含まれない。
Specifically, the olefinic thermoplastic elastomer (B) is a triblock copolymer in which the block portions at both ends are blocks of ethylene polymer and the block portion in the center is a block of 1,3-butadiene polymer. Examples include hydrogenated substances. The olefinic thermoplastic elastomer (B) can be exemplified by a block copolymer of crystalline olefin, ethylene butylene, and crystalline olefin in a state after hydrogenation. Further, the olefin thermoplastic elastomer (B) does not contain polypropylene resins such as branched homopolypropylene (a1) and linear block polypropylene (a2).
(オレフィン系熱可塑性エラストマーの融点)
オレフィン系熱可塑性エラストマー(B)の融点は、80℃以上110℃以下であることが好ましい。オレフィン系熱可塑性エラストマー(B)の融点が上記範囲であれば、発泡性に優れるものとなる。この観点からは、オレフィン系熱可塑性エラストマー(B)の融点が85℃以上105℃以下であることがより好ましく、90℃以上100℃以下であることがさらに好ましい。オレフィン系熱可塑性エラストマー(B)の融点の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。オレフィン系熱可塑性エラストマー(B)の融点の数値範囲は、例えば、80℃、85℃及び90℃からなる群のいずれか1つを下限値とし、且つ110℃、105℃及び100℃からなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Melting point of olefinic thermoplastic elastomer)
The melting point of the olefinic thermoplastic elastomer (B) is preferably 80°C or more and 110°C or less. If the melting point of the olefinic thermoplastic elastomer (B) is within the above range, it will have excellent foamability. From this viewpoint, the melting point of the olefinic thermoplastic elastomer (B) is more preferably 85°C or more and 105°C or less, and even more preferably 90°C or more and 100°C or less. Regarding the numerical range of the melting point of the olefinic thermoplastic elastomer (B), the upper limit and lower limit shown in the combination of numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the melting point of the olefinic thermoplastic elastomer (B) is, for example, a lower limit of one of the group consisting of 80°C, 85°C and 90°C, and a lower limit of the group consisting of 110°C, 105°C and 100°C. A range with an upper limit of any one of the following can be mentioned.
オレフィン系熱可塑性エラストマー(B)の融点は、80℃以上110℃以下であることが好ましい。オレフィン系熱可塑性エラストマー(B)の融点が上記範囲であれば、発泡性に優れるものとなる。この観点からは、オレフィン系熱可塑性エラストマー(B)の融点が85℃以上105℃以下であることがより好ましく、90℃以上100℃以下であることがさらに好ましい。オレフィン系熱可塑性エラストマー(B)の融点の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。オレフィン系熱可塑性エラストマー(B)の融点の数値範囲は、例えば、80℃、85℃及び90℃からなる群のいずれか1つを下限値とし、且つ110℃、105℃及び100℃からなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Melting point of olefinic thermoplastic elastomer)
The melting point of the olefinic thermoplastic elastomer (B) is preferably 80°C or more and 110°C or less. If the melting point of the olefinic thermoplastic elastomer (B) is within the above range, it will have excellent foamability. From this viewpoint, the melting point of the olefinic thermoplastic elastomer (B) is more preferably 85°C or more and 105°C or less, and even more preferably 90°C or more and 100°C or less. Regarding the numerical range of the melting point of the olefinic thermoplastic elastomer (B), the upper limit and lower limit shown in the combination of numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the melting point of the olefinic thermoplastic elastomer (B) is, for example, a lower limit of one of the group consisting of 80°C, 85°C and 90°C, and a lower limit of the group consisting of 110°C, 105°C and 100°C. A range with an upper limit of any one of the following can be mentioned.
(融点の測定方法)
オレフィン系熱可塑性エラストマー(B)の融点は、JIS K7121:2012に記載の熱流束示差走査熱量測定に基づき測定された融解ピーク温度として特定することができる。なお、熱流束示差走査熱量測定に用いられる試験片の状態調節としては「(2)一定の熱処理を行なった後、融解温度を測定する場合」を採用し、加熱速度及び冷却速度としては共に10℃/分を採用する。DSC曲線に複数の融解ピークが表れる場合は、最も面積の大きな融解ピークの頂点温度を融点とする。 (Method of measuring melting point)
The melting point of the olefinic thermoplastic elastomer (B) can be specified as the melting peak temperature measured based on heat flux differential scanning calorimetry described in JIS K7121:2012. In addition, "(2) When measuring the melting temperature after a certain heat treatment" is adopted as the conditioning of the test piece used for heat flux differential scanning calorimetry, and the heating rate and cooling rate are both 10 Adopt °C/min. When multiple melting peaks appear on the DSC curve, the apex temperature of the melting peak with the largest area is taken as the melting point.
オレフィン系熱可塑性エラストマー(B)の融点は、JIS K7121:2012に記載の熱流束示差走査熱量測定に基づき測定された融解ピーク温度として特定することができる。なお、熱流束示差走査熱量測定に用いられる試験片の状態調節としては「(2)一定の熱処理を行なった後、融解温度を測定する場合」を採用し、加熱速度及び冷却速度としては共に10℃/分を採用する。DSC曲線に複数の融解ピークが表れる場合は、最も面積の大きな融解ピークの頂点温度を融点とする。 (Method of measuring melting point)
The melting point of the olefinic thermoplastic elastomer (B) can be specified as the melting peak temperature measured based on heat flux differential scanning calorimetry described in JIS K7121:2012. In addition, "(2) When measuring the melting temperature after a certain heat treatment" is adopted as the conditioning of the test piece used for heat flux differential scanning calorimetry, and the heating rate and cooling rate are both 10 Adopt °C/min. When multiple melting peaks appear on the DSC curve, the apex temperature of the melting peak with the largest area is taken as the melting point.
(オレフィン系熱可塑性エラストマーの曲げ弾性率)
オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の上限については、50MPaであることが好ましい。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が50MPa以下であることで、オレフィン系熱可塑性エラストマー(B)はエラストマーとしての物性を効果的に発揮することができる。また、オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の下限については、おおむね1Maであることが好ましい。すなわち、オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が1MPa以上50MPa以下であることが好ましい。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が上記の数値範囲にあることで、発泡ブロー成形体として耐寒衝撃性をさらに向上させる効果を得ることが容易となる。この効果をより高める観点からは、オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が3MPa以上30MPa以下であることがより好ましく、5MPa以上25MPa以下であることがさらに好ましい。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の数値範囲は、例えば、1MPa、3MPa及び5MPaからなる群のいずれか1つを下限値とし、且つ50MPa、30MPa及び25MPaからなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Flexural modulus of olefinic thermoplastic elastomer)
The upper limit of the flexural modulus of the olefinic thermoplastic elastomer (B) is preferably 50 MPa. When the olefinic thermoplastic elastomer (B) has a flexural modulus of 50 MPa or less, the olefinic thermoplastic elastomer (B) can effectively exhibit its physical properties as an elastomer. Further, the lower limit of the flexural modulus of the olefinic thermoplastic elastomer (B) is preferably approximately 1 Ma. That is, it is preferable that the flexural modulus of the olefinic thermoplastic elastomer (B) is 1 MPa or more and 50 MPa or less. When the flexural modulus of the olefinic thermoplastic elastomer (B) is within the above numerical range, it becomes easy to obtain the effect of further improving cold impact resistance as a foam blow-molded article. From the viewpoint of further enhancing this effect, the flexural modulus of the olefin thermoplastic elastomer (B) is more preferably 3 MPa or more and 30 MPa or less, and even more preferably 5 MPa or more and 25 MPa or less. Regarding the numerical range of the flexural modulus of the olefinic thermoplastic elastomer (B), the upper and lower limits shown in the combinations of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the flexural modulus of the olefinic thermoplastic elastomer (B) is, for example, a lower limit of any one of the group consisting of 1 MPa, 3 MPa, and 5 MPa, and one of the group consisting of 50 MPa, 30 MPa, and 25 MPa. A range with one upper limit can be listed.
オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の上限については、50MPaであることが好ましい。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が50MPa以下であることで、オレフィン系熱可塑性エラストマー(B)はエラストマーとしての物性を効果的に発揮することができる。また、オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の下限については、おおむね1Maであることが好ましい。すなわち、オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が1MPa以上50MPa以下であることが好ましい。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が上記の数値範囲にあることで、発泡ブロー成形体として耐寒衝撃性をさらに向上させる効果を得ることが容易となる。この効果をより高める観点からは、オレフィン系熱可塑性エラストマー(B)の曲げ弾性率が3MPa以上30MPa以下であることがより好ましく、5MPa以上25MPa以下であることがさらに好ましい。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。オレフィン系熱可塑性エラストマー(B)の曲げ弾性率の数値範囲は、例えば、1MPa、3MPa及び5MPaからなる群のいずれか1つを下限値とし、且つ50MPa、30MPa及び25MPaからなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Flexural modulus of olefinic thermoplastic elastomer)
The upper limit of the flexural modulus of the olefinic thermoplastic elastomer (B) is preferably 50 MPa. When the olefinic thermoplastic elastomer (B) has a flexural modulus of 50 MPa or less, the olefinic thermoplastic elastomer (B) can effectively exhibit its physical properties as an elastomer. Further, the lower limit of the flexural modulus of the olefinic thermoplastic elastomer (B) is preferably approximately 1 Ma. That is, it is preferable that the flexural modulus of the olefinic thermoplastic elastomer (B) is 1 MPa or more and 50 MPa or less. When the flexural modulus of the olefinic thermoplastic elastomer (B) is within the above numerical range, it becomes easy to obtain the effect of further improving cold impact resistance as a foam blow-molded article. From the viewpoint of further enhancing this effect, the flexural modulus of the olefin thermoplastic elastomer (B) is more preferably 3 MPa or more and 30 MPa or less, and even more preferably 5 MPa or more and 25 MPa or less. Regarding the numerical range of the flexural modulus of the olefinic thermoplastic elastomer (B), the upper and lower limits shown in the combinations of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the flexural modulus of the olefinic thermoplastic elastomer (B) is, for example, a lower limit of any one of the group consisting of 1 MPa, 3 MPa, and 5 MPa, and one of the group consisting of 50 MPa, 30 MPa, and 25 MPa. A range with one upper limit can be listed.
(曲げ弾性率の測定)
オレフィン系熱可塑性エラストマー(B)の曲げ弾性率は、JIS K7171:2016に基づき測定することができる。 (Measurement of flexural modulus)
The flexural modulus of the olefinic thermoplastic elastomer (B) can be measured based on JIS K7171:2016.
オレフィン系熱可塑性エラストマー(B)の曲げ弾性率は、JIS K7171:2016に基づき測定することができる。 (Measurement of flexural modulus)
The flexural modulus of the olefinic thermoplastic elastomer (B) can be measured based on JIS K7171:2016.
(オレフィン系熱可塑性エラストマーのメルトフローレイト(MFR))
オレフィン系熱可塑性エラストマー(B)のMFR(230℃、荷重2.16kg)は、1g/10分以上10g/10分以下であることが好ましく、1.5g/10分以上5g/10分以下であることがさらに好ましい。オレフィン系熱可塑性エラストマー(B)のMFRの数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。オレフィン系熱可塑性エラストマー(B)のMFRの数値範囲は、例えば、1g/10分、及び1.5g/10分からなる群のいずれか1つを下限値とし、且つ10g/10分、及び5g/10分からなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Melt flow rate (MFR) of olefinic thermoplastic elastomer)
The MFR (230°C, load 2.16 kg) of the olefin thermoplastic elastomer (B) is preferably 1 g/10 minutes or more and 10 g/10 minutes or less, and 1.5 g/10 minutes or more and 5 g/10 minutes or less. It is even more preferable that there be. Regarding the numerical range of MFR of the olefinic thermoplastic elastomer (B), the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of MFR of the olefin thermoplastic elastomer (B) is, for example, the lower limit is any one of the group consisting of 1 g/10 minutes and 1.5 g/10 minutes, and 10 g/10 minutes and 5 g/10 minutes. A range having an upper limit of any one of the group consisting of 10 minutes can be mentioned.
オレフィン系熱可塑性エラストマー(B)のMFR(230℃、荷重2.16kg)は、1g/10分以上10g/10分以下であることが好ましく、1.5g/10分以上5g/10分以下であることがさらに好ましい。オレフィン系熱可塑性エラストマー(B)のMFRの数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。オレフィン系熱可塑性エラストマー(B)のMFRの数値範囲は、例えば、1g/10分、及び1.5g/10分からなる群のいずれか1つを下限値とし、且つ10g/10分、及び5g/10分からなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Melt flow rate (MFR) of olefinic thermoplastic elastomer)
The MFR (230°C, load 2.16 kg) of the olefin thermoplastic elastomer (B) is preferably 1 g/10 minutes or more and 10 g/10 minutes or less, and 1.5 g/10 minutes or more and 5 g/10 minutes or less. It is even more preferable that there be. Regarding the numerical range of MFR of the olefinic thermoplastic elastomer (B), the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of MFR of the olefin thermoplastic elastomer (B) is, for example, the lower limit is any one of the group consisting of 1 g/10 minutes and 1.5 g/10 minutes, and 10 g/10 minutes and 5 g/10 minutes. A range having an upper limit of any one of the group consisting of 10 minutes can be mentioned.
(MFRの測定)
オレフィン系熱可塑性エラストマー(B)のMFR(g/10min(230℃))は、例えばJIS K7210-1:2014(試験方法A法)に基づき求められる。測定条件としては、230℃、荷重2.16kgの条件が採用されてよい。 (Measurement of MFR)
The MFR (g/10 min (230° C.)) of the olefinic thermoplastic elastomer (B) is determined based on, for example, JIS K7210-1:2014 (Test Method A). As the measurement conditions, conditions of 230° C. and a load of 2.16 kg may be adopted.
オレフィン系熱可塑性エラストマー(B)のMFR(g/10min(230℃))は、例えばJIS K7210-1:2014(試験方法A法)に基づき求められる。測定条件としては、230℃、荷重2.16kgの条件が採用されてよい。 (Measurement of MFR)
The MFR (g/10 min (230° C.)) of the olefinic thermoplastic elastomer (B) is determined based on, for example, JIS K7210-1:2014 (Test Method A). As the measurement conditions, conditions of 230° C. and a load of 2.16 kg may be adopted.
(混合樹脂の各成分の配合割合)
前記混合樹脂においては、ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である。ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量が上記範囲であることで、発泡ブロー成形体に求められる耐衝撃性と表面平滑性の両立を実現させることが容易となる。上記観点から、オレフィン系熱可塑性エラストマー(B)の配合量は、22質量部以上35質量部以下が好ましく、23質量部以上30質量部以下がより好ましい。 (Blending ratio of each component of mixed resin)
In the mixed resin, the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is 20 parts by mass or more and 40 parts by mass or less. By setting the blending amount of the olefin thermoplastic elastomer (B) to 100 parts by mass of the polyolefin resin (A) within the above range, it is possible to achieve both the impact resistance and surface smoothness required for a foam blow molded article. It becomes easier. From the above viewpoint, the blending amount of the olefinic thermoplastic elastomer (B) is preferably 22 parts by mass or more and 35 parts by mass or less, more preferably 23 parts by mass or more and 30 parts by mass or less.
前記混合樹脂においては、ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である。ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量が上記範囲であることで、発泡ブロー成形体に求められる耐衝撃性と表面平滑性の両立を実現させることが容易となる。上記観点から、オレフィン系熱可塑性エラストマー(B)の配合量は、22質量部以上35質量部以下が好ましく、23質量部以上30質量部以下がより好ましい。 (Blending ratio of each component of mixed resin)
In the mixed resin, the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is 20 parts by mass or more and 40 parts by mass or less. By setting the blending amount of the olefin thermoplastic elastomer (B) to 100 parts by mass of the polyolefin resin (A) within the above range, it is possible to achieve both the impact resistance and surface smoothness required for a foam blow molded article. It becomes easier. From the above viewpoint, the blending amount of the olefinic thermoplastic elastomer (B) is preferably 22 parts by mass or more and 35 parts by mass or less, more preferably 23 parts by mass or more and 30 parts by mass or less.
また、ポリオレフィン系樹脂(A)中の分岐状ホモポリプロピレン(a1)に対するオレフィン系熱可塑性エラストマー(B)の質量比は、0.2~0.5であることが好ましく、0.25~0.35であることがより好ましい。また、ポリオレフィン系樹脂(A)中の直鎖状ブロックポリプロピレン(a2)に対するレフィン系熱可塑性エラストマー(B)の質量比は、1.0~2.5であることが好ましく、1.2~2.3であることがより好ましい。分岐状ホモポリプロピレン(a1)に対するオレフィン系熱可塑性エラストマー(B)の質量比が上記範囲であることで、耐衝撃性を発揮することが容易となる。なお、分岐状ホモポリプロピレン(a1)に対するオレフィン系熱可塑性エラストマー(B)の質量比は、前記混合樹脂に使用される(オレフィン系熱可塑性エラストマー(B)の配合量(質量部))を(分岐状ホモポリプロピレン(a1)の配合量(質量部))で除した値(割り算した値)である。分直鎖状ブロックポリプロピレン(a2)に対するオレフィン系熱可塑性エラストマー(B)の質量比は、前記混合樹脂に使用される(オレフィン系熱可塑性エラストマー(B)の配合量(質量部))を(直鎖状ブロックポリプロピレン(a2)の配合量(質量部))で除した値(割り算した値)である。
Further, the mass ratio of the olefin thermoplastic elastomer (B) to the branched homopolypropylene (a1) in the polyolefin resin (A) is preferably 0.2 to 0.5, more preferably 0.25 to 0. More preferably, it is 35. Furthermore, the mass ratio of the olefin thermoplastic elastomer (B) to the linear block polypropylene (a2) in the polyolefin resin (A) is preferably 1.0 to 2.5, preferably 1.2 to 2. More preferably, it is .3. When the mass ratio of the olefinic thermoplastic elastomer (B) to the branched homopolypropylene (a1) is within the above range, it becomes easy to exhibit impact resistance. The mass ratio of the olefinic thermoplastic elastomer (B) to the branched homopolypropylene (a1) is calculated from It is the value (divided value) divided by the blending amount (parts by mass) of homopolypropylene (a1). The mass ratio of the olefinic thermoplastic elastomer (B) to the branched linear block polypropylene (a2) is determined by (the amount (parts by mass) of the olefinic thermoplastic elastomer (B) used in the mixed resin) This is the value divided by the blending amount (parts by mass) of the chain block polypropylene (a2).
前記混合樹脂では、ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量の数値範囲の他に、ポリオレフィン系樹脂(A)中の分岐状ホモポリプロピレン(a1)に対するオレフィン系熱可塑性エラストマー(B)の質量比の数値範囲、及び、分岐状ホモポリプロピレン(a2)に対するオレフィン系熱可塑性エラストマー(B)の質量比の数値範囲から選ばれた少なくとも1種類の数値範囲が上記した数値を満たされていればよいが、2種類のいずれについても数値範囲が上記した数値を満たしていることが好ましい。
In the mixed resin, in addition to the numerical range of the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A), the olefin with respect to the branched homopolypropylene (a1) in the polyolefin resin (A) At least one numerical range selected from the numerical range of the mass ratio of the thermoplastic elastomer (B) and the numerical range of the mass ratio of the olefinic thermoplastic elastomer (B) to the branched homopolypropylene (a2) is as described above. However, it is preferable that the numerical ranges of both types satisfy the above-mentioned numerical values.
なお、ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。ポリオレフィン系樹脂(A)100質量部に対するオレフィン系熱可塑性エラストマー(B)の配合量の数値範囲は、例えば、20質量部、22質量部及び23質量部からなる群のいずれか1つを下限値とし、且つ40質量部、35質量部及び30質量部からなる群のいずれか1つを上限値とする範囲を挙げることができる。ポリオレフィン系樹脂(A)中の分岐状ホモポリプロピレン(a1)に対するオレフィン系熱可塑性エラストマー(B)の質量比の数値範囲、及び、分岐状ホモポリプロピレン(a2)に対するオレフィン系熱可塑性エラストマー(B)の質量比の数値範囲についても、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。これについても上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。ポリオレフィン系樹脂(A)中の分岐状ホモポリプロピレン(a1)に対するオレフィン系熱可塑性エラストマー(B)の質量比の数値範囲は、例えば、0.2、及び0.25からなる群のいずれか1つを下限値とし、且つ0.5、及び0.35からなる群のいずれか1つを上限値とする範囲を挙げることができる。
In addition, the numerical range of the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is such that the upper limit and lower limit shown in the combination of the numerical ranges described above are independently arbitrary. It is possible to combine The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) is, for example, the lower limit of any one of the group consisting of 20 parts by mass, 22 parts by mass, and 23 parts by mass. and the upper limit is any one of the group consisting of 40 parts by mass, 35 parts by mass, and 30 parts by mass. The numerical range of the mass ratio of the olefin thermoplastic elastomer (B) to the branched homopolypropylene (a1) in the polyolefin resin (A), and the mass ratio of the olefin thermoplastic elastomer (B) to the branched homopolypropylene (a2) Regarding the numerical range of the mass ratio, the upper and lower limits shown in the combinations of numerical ranges described above can be independently and arbitrarily combined. Also in this case, the numerical range determined by arbitrarily combining the upper limit and the lower limit includes the upper limit, the lower limit, and the value between the upper limit and the lower limit. The numerical range of the mass ratio of the olefin thermoplastic elastomer (B) to the branched homopolypropylene (a1) in the polyolefin resin (A) is, for example, any one of the group consisting of 0.2 and 0.25. A range can be mentioned in which the lower limit is 0.5 and the upper limit is one of the group consisting of 0.5 and 0.35.
(混合樹脂の他の添加物)
発泡ブロー成形体を製造する際、上記したように混合樹脂と発泡剤が混錬される。物理発泡剤としては、次に示すようなものを挙げることができる。 (Other additives in mixed resin)
When producing a foam blow-molded article, the mixed resin and the blowing agent are kneaded as described above. Examples of the physical foaming agent include those shown below.
発泡ブロー成形体を製造する際、上記したように混合樹脂と発泡剤が混錬される。物理発泡剤としては、次に示すようなものを挙げることができる。 (Other additives in mixed resin)
When producing a foam blow-molded article, the mixed resin and the blowing agent are kneaded as described above. Examples of the physical foaming agent include those shown below.
(発泡剤)
発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、イソヘキサン、シクロヘキサン等の脂肪族炭化水素、塩化メチル、塩化エチル等の塩化炭化水素、1,1,1,2-テトラフロロエタン、1,1-ジフロロエタン等のフッ化炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等の脂肪族エーテル、メチルアルコール、エチルアルコール等の脂肪族アルコール、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネートなどの有機系物理発泡剤、二酸化炭素、窒素、空気、水等の無機系物理発泡剤、炭酸水素ナトリウム、クエン酸ナトリウム、アゾジカルボンアミド等の化学発泡剤が挙げられる。これらの発泡剤は、単独で又は混合して用いられる。 (foaming agent)
Examples of the blowing agent include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, isohexane, and cyclohexane; chlorinated hydrocarbons such as methyl chloride and ethyl chloride; - Fluorinated hydrocarbons such as tetrafluoroethane and 1,1-difluoroethane; aliphatic ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether; aliphatic alcohols such as methyl alcohol and ethyl alcohol; and dialkyl such as dimethyl carbonate and diethyl carbonate. Examples include organic physical blowing agents such as carbonate, inorganic physical blowing agents such as carbon dioxide, nitrogen, air, and water, and chemical blowing agents such as sodium bicarbonate, sodium citrate, and azodicarbonamide. These blowing agents may be used alone or in combination.
発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、イソヘキサン、シクロヘキサン等の脂肪族炭化水素、塩化メチル、塩化エチル等の塩化炭化水素、1,1,1,2-テトラフロロエタン、1,1-ジフロロエタン等のフッ化炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等の脂肪族エーテル、メチルアルコール、エチルアルコール等の脂肪族アルコール、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネートなどの有機系物理発泡剤、二酸化炭素、窒素、空気、水等の無機系物理発泡剤、炭酸水素ナトリウム、クエン酸ナトリウム、アゾジカルボンアミド等の化学発泡剤が挙げられる。これらの発泡剤は、単独で又は混合して用いられる。 (foaming agent)
Examples of the blowing agent include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, isohexane, and cyclohexane; chlorinated hydrocarbons such as methyl chloride and ethyl chloride; - Fluorinated hydrocarbons such as tetrafluoroethane and 1,1-difluoroethane; aliphatic ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether; aliphatic alcohols such as methyl alcohol and ethyl alcohol; and dialkyl such as dimethyl carbonate and diethyl carbonate. Examples include organic physical blowing agents such as carbonate, inorganic physical blowing agents such as carbon dioxide, nitrogen, air, and water, and chemical blowing agents such as sodium bicarbonate, sodium citrate, and azodicarbonamide. These blowing agents may be used alone or in combination.
無機系物理発泡剤を用いて発泡パリソンを形成すると、発泡性樹脂溶融物の発泡が早期に完了し、発泡パリソンを構成する樹脂中に発泡剤が殆ど或いは全く残存しなくなる。したがって、発泡パリソンを構成する樹脂が可塑化されることがなく、発泡パリソンのドローダウンが防止される。その結果、有機系物理発泡剤を使用して得られたものと比較すると、ブロー成形性に優れた発泡パリソンが得られる。この観点から、前記した発泡剤の中でも無機系物理発泡剤を用いることが好ましく、二酸化炭素を含む無機系物理発泡剤を用いることがより好ましく、二酸化炭素のみからなる物理発泡剤を用いることがさらに好ましい。
When a foamed parison is formed using an inorganic physical foaming agent, foaming of the foamable resin melt is completed early, and little or no foaming agent remains in the resin constituting the foamed parison. Therefore, the resin constituting the foamed parison is not plasticized, and drawdown of the foamed parison is prevented. As a result, a foamed parison with excellent blow moldability can be obtained compared to that obtained using an organic physical foaming agent. From this point of view, it is preferable to use an inorganic physical blowing agent among the above-mentioned blowing agents, it is more preferable to use an inorganic physical blowing agent containing carbon dioxide, and it is even more preferable to use a physical blowing agent consisting only of carbon dioxide. preferable.
本発明において、物理発泡剤として二酸化炭素を含む発泡剤を使用する場合、二酸化炭素を物理発泡剤100モル%に対して20モル%~100モル%配合することが好ましく、50モル%~100モル%配合することがより好ましく、70モル%~100モル%配合することがさらに好ましい。二酸化炭素の含有量が前記範囲内であると、気泡径が小さく、かつ独立気泡率が高い発泡ブロー成形体を容易に得ることができる。
In the present invention, when a blowing agent containing carbon dioxide is used as a physical blowing agent, it is preferable to blend carbon dioxide in an amount of 20 mol% to 100 mol% with respect to 100 mol% of the physical blowing agent, and preferably 50 mol% to 100 mol%. %, more preferably 70 mol% to 100 mol%. When the carbon dioxide content is within the above range, it is possible to easily obtain a foam blow-molded article with a small cell diameter and a high closed cell ratio.
物理発泡剤の添加量は、混合樹脂1kg当たり0.05モル~0.8モルであることが好ましく、0.1モル~0.5モルであることがより好ましい。
The amount of the physical blowing agent added is preferably 0.05 mol to 0.8 mol, more preferably 0.1 mol to 0.5 mol per 1 kg of mixed resin.
(その他の樹脂)
混合樹脂には、ポリオレフィン系樹脂(A)及びオレフィン系熱可塑性エラストマー(B)とは異なるその他の樹脂を、本発明の目的効果を阻害しない範囲で、配合することができる。その他の樹脂としては、ポリスチレン系樹脂、ポリオレフィン系樹脂(A)以外のポリオレフィン系樹脂等の熱可塑性樹脂や、オレフィン系熱可塑性エラストマー(B)以外の熱可塑性エラストマー(TPE)を配合することができる。また、ポリオレフィン系樹脂(A)以外のポリオレフィン系樹脂として、バイオマスポリオレフィン系樹脂、ASR由来のポリオレフィン系樹脂、マスバランスポリオレフィン系樹脂を用いることもできる。その他の樹脂の配合量は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の合計100質量部に対して好ましくは30質量部以下であり、より好ましくは20質量部以下であり、更に好ましくは10質量部以下であり、特に好ましくは5質量部以下である。 (Other resins)
Other resins different from the polyolefin resin (A) and the olefin thermoplastic elastomer (B) can be blended into the mixed resin within a range that does not impede the objective effects of the present invention. As other resins, thermoplastic resins such as polystyrene resins and polyolefin resins other than the polyolefin resin (A), and thermoplastic elastomers (TPE) other than the olefin thermoplastic elastomer (B) can be blended. . Furthermore, as polyolefin resins other than the polyolefin resin (A), biomass polyolefin resins, ASR-derived polyolefin resins, and mass balance polyolefin resins can also be used. The amount of other resins is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). More preferably, it is 10 parts by mass or less, particularly preferably 5 parts by mass or less.
混合樹脂には、ポリオレフィン系樹脂(A)及びオレフィン系熱可塑性エラストマー(B)とは異なるその他の樹脂を、本発明の目的効果を阻害しない範囲で、配合することができる。その他の樹脂としては、ポリスチレン系樹脂、ポリオレフィン系樹脂(A)以外のポリオレフィン系樹脂等の熱可塑性樹脂や、オレフィン系熱可塑性エラストマー(B)以外の熱可塑性エラストマー(TPE)を配合することができる。また、ポリオレフィン系樹脂(A)以外のポリオレフィン系樹脂として、バイオマスポリオレフィン系樹脂、ASR由来のポリオレフィン系樹脂、マスバランスポリオレフィン系樹脂を用いることもできる。その他の樹脂の配合量は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の合計100質量部に対して好ましくは30質量部以下であり、より好ましくは20質量部以下であり、更に好ましくは10質量部以下であり、特に好ましくは5質量部以下である。 (Other resins)
Other resins different from the polyolefin resin (A) and the olefin thermoplastic elastomer (B) can be blended into the mixed resin within a range that does not impede the objective effects of the present invention. As other resins, thermoplastic resins such as polystyrene resins and polyolefin resins other than the polyolefin resin (A), and thermoplastic elastomers (TPE) other than the olefin thermoplastic elastomer (B) can be blended. . Furthermore, as polyolefin resins other than the polyolefin resin (A), biomass polyolefin resins, ASR-derived polyolefin resins, and mass balance polyolefin resins can also be used. The amount of other resins is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). More preferably, it is 10 parts by mass or less, particularly preferably 5 parts by mass or less.
(各種の添加剤)
発泡ブロー成形体を製造する際、混合樹脂には、上記した発泡剤の他に各種の添加剤が添加されてよい。添加剤としては、難燃剤、流動調整剤、紫外線吸収剤、導電性付与剤、帯電防止剤、着色剤、熱安定剤、酸化防止剤、無機充填剤、顔料などを例示することができる。上記添加剤の配合量は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の合計100質量部に対して好ましくは10質量部以下であり、より好ましくは5質量部以下であり、更に好ましくは3質量部以下である。また、上記の添加剤は、ポリオレフィン系樹脂(A)、オレフィン系熱可塑性エラストマー(B)、分岐状ホモポリプロピレン(a1)、及び直鎖状ブロックポリプロピレン(a2)に、本発明の作用効果を阻害しない範囲で添加させることができる。その添加量は、好ましくは、前記ポリオレフィン系樹脂(A)、オレフィン系熱可塑性エラストマー(B)、分岐状ホモポリプロピレン(a1)、及び直鎖状ブロックポリプロピレン(a2)のそれぞれ100質量部に対して、好ましくは10質量部以下であり、より好ましくは5質量部以下であり、更に好ましくは3質量部以下である。 (Various additives)
When producing a foam blow-molded article, various additives may be added to the mixed resin in addition to the above-described foaming agent. Examples of additives include flame retardants, fluidity regulators, ultraviolet absorbers, conductivity imparting agents, antistatic agents, colorants, heat stabilizers, antioxidants, inorganic fillers, and pigments. The amount of the additive added is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, based on a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B), More preferably, it is 3 parts by mass or less. In addition, the above additives inhibit the effects of the present invention on polyolefin resin (A), olefin thermoplastic elastomer (B), branched homopolypropylene (a1), and linear block polypropylene (a2). It can be added to the extent that it does not. The amount added is preferably based on 100 parts by mass of each of the polyolefin resin (A), the olefin thermoplastic elastomer (B), the branched homopolypropylene (a1), and the linear block polypropylene (a2). , preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less.
発泡ブロー成形体を製造する際、混合樹脂には、上記した発泡剤の他に各種の添加剤が添加されてよい。添加剤としては、難燃剤、流動調整剤、紫外線吸収剤、導電性付与剤、帯電防止剤、着色剤、熱安定剤、酸化防止剤、無機充填剤、顔料などを例示することができる。上記添加剤の配合量は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の合計100質量部に対して好ましくは10質量部以下であり、より好ましくは5質量部以下であり、更に好ましくは3質量部以下である。また、上記の添加剤は、ポリオレフィン系樹脂(A)、オレフィン系熱可塑性エラストマー(B)、分岐状ホモポリプロピレン(a1)、及び直鎖状ブロックポリプロピレン(a2)に、本発明の作用効果を阻害しない範囲で添加させることができる。その添加量は、好ましくは、前記ポリオレフィン系樹脂(A)、オレフィン系熱可塑性エラストマー(B)、分岐状ホモポリプロピレン(a1)、及び直鎖状ブロックポリプロピレン(a2)のそれぞれ100質量部に対して、好ましくは10質量部以下であり、より好ましくは5質量部以下であり、更に好ましくは3質量部以下である。 (Various additives)
When producing a foam blow-molded article, various additives may be added to the mixed resin in addition to the above-described foaming agent. Examples of additives include flame retardants, fluidity regulators, ultraviolet absorbers, conductivity imparting agents, antistatic agents, colorants, heat stabilizers, antioxidants, inorganic fillers, and pigments. The amount of the additive added is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, based on a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B), More preferably, it is 3 parts by mass or less. In addition, the above additives inhibit the effects of the present invention on polyolefin resin (A), olefin thermoplastic elastomer (B), branched homopolypropylene (a1), and linear block polypropylene (a2). It can be added to the extent that it does not. The amount added is preferably based on 100 parts by mass of each of the polyolefin resin (A), the olefin thermoplastic elastomer (B), the branched homopolypropylene (a1), and the linear block polypropylene (a2). , preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less.
また、混合樹脂には、添加剤としてカーボンブラックが添加されてよい。混合樹脂におけるカーボンブラックの含有量は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の合計100質量部に対して0.1質量部以上2質量部以下であることが好ましく、より好ましくは0.3質量部以上1質量部以下である。カーボンブラックとしては、ガスファーネスブラック、オイルファーネスブラック、アセチレンブラック、チャンネルブラック、ローラーブラック、サーマルブラック、ケッチェンブラック等が挙げられる。なお、発泡ブロー成形体を製造する際に、カーボンブラックを含む回収原料を原料の一部として用いる場合、混合樹脂のカーボンブラックの総含有量は回収原料中のカーボンブラックを含む値である。混合樹脂について上述した物理発泡剤の数値範囲や、カーボンブラック等の各種の添加剤の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。
Additionally, carbon black may be added to the mixed resin as an additive. The content of carbon black in the mixed resin is preferably 0.1 parts by mass or more and 2 parts by mass or less, based on a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B), and more preferably Preferably it is 0.3 parts by mass or more and 1 part by mass or less. Examples of carbon black include gas furnace black, oil furnace black, acetylene black, channel black, roller black, thermal black, Ketjen black, and the like. Note that when a recovered raw material containing carbon black is used as part of the raw material when producing a foam blow-molded article, the total carbon black content of the mixed resin is a value that includes carbon black in the recovered raw material. Regarding the numerical range of the physical foaming agent mentioned above for the mixed resin and the numerical range of various additives such as carbon black, the upper and lower limits shown in the combination of the numerical ranges described above can be independently combined arbitrarily. Is possible. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value.
(回収材(回収原料)の使用)
本発明の発泡ブロー成形体を製造する際には、バリや寸法ズレなどが生じた不良成形品などが発生することが起こりうる。これらのバリや不良成形品は、回収原料として用いることができる。回収原料は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)を含むものであることが好ましい。そして、本発明にかかる発泡ブロー成形体の製造方法では、回収原料を含む発泡性樹脂溶融物が形成され、その発泡性樹脂溶融物を発泡させた発泡パリソンにより発泡ブロー成形体が形成されてよい。なお、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)を含む回収原料が発泡性樹脂溶融物を形成する際の原料の一部として用いられる場合、発泡ブロー成形体を構成する混合樹脂中のポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の配合量とは、前記回収原料に含まれるポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)を含む値として定められる。回収原料に含まれるポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の物性等の属性に関する数値範囲、及び、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の配合量の数値範囲は、発泡ブロー成形体を構成する混合樹脂を構成するポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)について上述したことと同様である。 (Use of recovered materials (recovered raw materials))
When producing the foam blow-molded article of the present invention, defective molded articles with burrs, dimensional deviations, etc. may occur. These burrs and defective molded products can be used as recovered raw materials. The recovered raw material preferably contains a polyolefin resin (A) and an olefin thermoplastic elastomer (B). In the method for producing a foam blow-molded article according to the present invention, a foamable resin melt containing recovered raw materials is formed, and a foamed blow-molded article may be formed from a foam parison made by foaming the foamable resin melt. . In addition, when the recovered raw material containing the polyolefin resin (A) and the olefin thermoplastic elastomer (B) is used as part of the raw materials for forming a foamable resin melt, the mixed resin constituting the foam blow-molded product The blending amount of polyolefin resin (A) and olefin thermoplastic elastomer (B) inside is determined as a value including the polyolefin resin (A) and olefin thermoplastic elastomer (B) contained in the recovered raw material. . Numerical ranges regarding attributes such as physical properties of the polyolefin resin (A) and the olefin thermoplastic elastomer (B) contained in the recovered raw materials, and the blending amount of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). The numerical range is the same as that described above for the polyolefin resin (A) and the olefin thermoplastic elastomer (B) that constitute the mixed resin that constitutes the foam blow molded article.
本発明の発泡ブロー成形体を製造する際には、バリや寸法ズレなどが生じた不良成形品などが発生することが起こりうる。これらのバリや不良成形品は、回収原料として用いることができる。回収原料は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)を含むものであることが好ましい。そして、本発明にかかる発泡ブロー成形体の製造方法では、回収原料を含む発泡性樹脂溶融物が形成され、その発泡性樹脂溶融物を発泡させた発泡パリソンにより発泡ブロー成形体が形成されてよい。なお、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)を含む回収原料が発泡性樹脂溶融物を形成する際の原料の一部として用いられる場合、発泡ブロー成形体を構成する混合樹脂中のポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の配合量とは、前記回収原料に含まれるポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)を含む値として定められる。回収原料に含まれるポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の物性等の属性に関する数値範囲、及び、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の配合量の数値範囲は、発泡ブロー成形体を構成する混合樹脂を構成するポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)について上述したことと同様である。 (Use of recovered materials (recovered raw materials))
When producing the foam blow-molded article of the present invention, defective molded articles with burrs, dimensional deviations, etc. may occur. These burrs and defective molded products can be used as recovered raw materials. The recovered raw material preferably contains a polyolefin resin (A) and an olefin thermoplastic elastomer (B). In the method for producing a foam blow-molded article according to the present invention, a foamable resin melt containing recovered raw materials is formed, and a foamed blow-molded article may be formed from a foam parison made by foaming the foamable resin melt. . In addition, when the recovered raw material containing the polyolefin resin (A) and the olefin thermoplastic elastomer (B) is used as part of the raw materials for forming a foamable resin melt, the mixed resin constituting the foam blow-molded product The blending amount of polyolefin resin (A) and olefin thermoplastic elastomer (B) inside is determined as a value including the polyolefin resin (A) and olefin thermoplastic elastomer (B) contained in the recovered raw material. . Numerical ranges regarding attributes such as physical properties of the polyolefin resin (A) and the olefin thermoplastic elastomer (B) contained in the recovered raw materials, and the blending amount of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). The numerical range is the same as that described above for the polyolefin resin (A) and the olefin thermoplastic elastomer (B) that constitute the mixed resin that constitutes the foam blow molded article.
[1-2 発泡ブロー成形体の製造方法による効果]
発泡ブロー成形体においてポリプロピレン系樹脂を用いたものは、耐熱性と軽量性の観点で特に優れるものとなり、例えば自動車等の車両に搭載されるダクトの用途で好適に採用することができる。このような用途で好適に用いられる発泡ブロー成形体については、近年、耐寒衝撃性を向上させたものがさらに要請されている。 [1-2 Effects of the manufacturing method of foam blow molded product]
Foam blow-molded articles using polypropylene resins are particularly excellent in terms of heat resistance and light weight, and can be suitably employed, for example, in ducts installed in vehicles such as automobiles. In recent years, there has been a growing demand for foam blow-molded articles that are preferably used in such applications to have improved cold impact resistance.
発泡ブロー成形体においてポリプロピレン系樹脂を用いたものは、耐熱性と軽量性の観点で特に優れるものとなり、例えば自動車等の車両に搭載されるダクトの用途で好適に採用することができる。このような用途で好適に用いられる発泡ブロー成形体については、近年、耐寒衝撃性を向上させたものがさらに要請されている。 [1-2 Effects of the manufacturing method of foam blow molded product]
Foam blow-molded articles using polypropylene resins are particularly excellent in terms of heat resistance and light weight, and can be suitably employed, for example, in ducts installed in vehicles such as automobiles. In recent years, there has been a growing demand for foam blow-molded articles that are preferably used in such applications to have improved cold impact resistance.
しかしながら、発泡ブロー成形体の耐寒衝撃性を向上させるために、ポリプロピレン系樹脂にエラストマーを添加すると、発泡ブロー成形体の剛性が低下する虞が高まる。発泡ブロー成形体がダクトとして使用された場合、発泡ブロー成形体の剛性が低下すると、空気等の気体がダクト内を通過する際にダクト内の負圧になることよって、ダクトを形成している発泡ブロー成形体の表面部分がやや内側に湾曲する虞を生じる。
However, when an elastomer is added to the polypropylene resin in order to improve the cold impact resistance of the foam blow-molded product, there is an increased possibility that the rigidity of the foam blow-molded product will decrease. When a foam blow molded product is used as a duct, if the rigidity of the foam blow molded product decreases, the duct will be formed due to negative pressure inside the duct when gas such as air passes through the duct. There is a possibility that the surface portion of the foam blow-molded product may curve slightly inward.
また、発泡ブロー成形体を中空状に形成してダクトとして用いる場合、ダクトの空気抵抗抑制や通気音(風切り音)抑制の観点から、発泡ブロー成形体の中空部分の内側表面の表面平滑性の向上が求められている。
In addition, when forming a foam blow molded product into a hollow shape and using it as a duct, from the viewpoint of suppressing the air resistance of the duct and suppressing ventilation noise (wind noise), it is necessary to improve the surface smoothness of the inner surface of the hollow part of the foam blow molding. Improvement is required.
本発明にかかる発泡ブロー成形体の製造方法によれば、特定のポリプロピレン系樹脂(ポリオレフィン系樹脂(A))と特定のエラストマー(オレフィン系熱可塑性エラストマー(B))とが特定の範囲で用いられることで、耐寒衝撃性と剛性の両方に優れた発泡ブロー成形体を得ることができる。また、発泡ブロー成形体の製造方法において上述したような特定のエラストマーを用いることで、発泡性樹脂溶融物を構成しているポリオレフィン樹脂(A)の発泡性が大きく阻害されないので、発泡ブロー成形体の表面平滑性が悪化する虞を抑制することができる。
According to the method for producing a foam blow molded article according to the present invention, a specific polypropylene resin (polyolefin resin (A)) and a specific elastomer (olefin thermoplastic elastomer (B)) are used within a specific range. By doing so, it is possible to obtain a foam blow-molded article having excellent both cold impact resistance and rigidity. In addition, by using the specific elastomer as described above in the method for producing a foam blow molded product, the foamability of the polyolefin resin (A) constituting the foamable resin melt is not significantly inhibited, so the foam blow molded product The possibility of deterioration of the surface smoothness can be suppressed.
また、ポリオレフィン系樹脂として、分岐状ホモポリプロピレンのみならず直鎖状ポリプロピレンブロックが特定の範囲で併用されていることで、エラストマーを用いたことによる発泡ブロー成形体の剛性の低下の虞を抑えることができ、剛性に優れた発泡ブロー成形体が得られる。
In addition, not only branched homopolypropylene but also linear polypropylene blocks are used in a specific range as the polyolefin resin, thereby suppressing the possibility of a decrease in rigidity of the foam blow-molded product due to the use of an elastomer. A foam blow-molded product with excellent rigidity can be obtained.
また、発泡ブロー成形体としては、用途等の様々な条件に応じて様々な見掛け密度のものが求められる。本発明にかかる発泡ブロー成形体の製造方法によれば、特定のポリプロピレン系樹脂と特定のエラストマーとが特定の配合割合の範囲で用いられることで、様々な見掛け密度を得る条件でも表面平滑性に優れた(内側表面平滑性に優れた)発泡ブロー成形体を得ることができる。本発明にかかる発泡ブロー成形体の製造方法を適用することによって得られる発泡ブロー成型体に関する見掛け密度、独立気泡率、曲げ弾性率などの属性については[2.発泡ブロー成形体]において述べる。
Additionally, foam blow-molded products are required to have various apparent densities depending on various conditions such as usage. According to the method for producing a foam blow molded article according to the present invention, a specific polypropylene resin and a specific elastomer are used in a specific blending ratio, so that surface smoothness can be maintained even under conditions for obtaining various apparent densities. It is possible to obtain an excellent foam blow-molded article (excellent inner surface smoothness). Regarding the attributes such as the apparent density, closed cell ratio, and flexural modulus of the foam blow molded product obtained by applying the method for producing a foam blow molded product according to the present invention, see [2. Foamed blow-molded article].
次に、本発明にかかる発泡ブロー成形体について述べる。
Next, the foam blow molded article according to the present invention will be described.
[2.発泡ブロー成形体]
[2-1 発泡ブロー成形体の構成]
本発明にかかる発泡ブロー成形体は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂の発泡成形体である。 [2. Foam blow molded product]
[2-1 Configuration of foam blow molded product]
The foam blow molded article according to the present invention is a foam molded article of a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
[2-1 発泡ブロー成形体の構成]
本発明にかかる発泡ブロー成形体は、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂の発泡成形体である。 [2. Foam blow molded product]
[2-1 Configuration of foam blow molded product]
The foam blow molded article according to the present invention is a foam molded article of a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B).
本発明にかかる発泡ブロー成形体は、上記した発泡ブロー成形体の製造方法により得ることができる。すなわち、発泡ブロー成形体は、上記[1.発泡ブロー成形体の製造方法]で述べたことと同様に、押出発泡工程、ブリブロー工程、及びブロー成形工程等を行うことで得ることができる。なお、それぞれの工程は上記した[1.発泡ブロー成形体の製造方法]で述べたことと同じであるから説明を省略する。
The foam blow-molded article according to the present invention can be obtained by the above-described method for producing a foam blow-molded article. That is, the foam blow-molded article is produced by the above-mentioned [1. [Method for producing a foamed blow-molded article]], it can be obtained by performing an extrusion foaming process, a blow molding process, a blow molding process, etc. In addition, each process is described above [1. Since it is the same as that described in [Method for producing foam blow-molded article], the explanation will be omitted.
本発明にかかる発泡ブロー成形体に用いられる混合樹脂に配合されるポリオレフィン系樹脂(A)は、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)を所定の質量比[(a1):(a2)]で含むものである。分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)の構造や物性(メルトフローレイト、融点、及び曲げ弾性率等)及び、質量比[(a1):(a2)]は、[1.発泡ブロー成形体の製造方法]で述べたことと同じであるから説明を省略する。なお、ポリオレフィン系樹脂(A)として、バイオマス由来のポリプロピレンや、マスバランス方式によるポリプロピレンを用いることができる。
The polyolefin resin (A) blended into the mixed resin used in the foam blow-molded article according to the present invention is composed of branched homopolypropylene (a1) and linear block polypropylene (a2) in a predetermined mass ratio [(a1) :(a2)]. The structure and physical properties (melt flow rate, melting point, flexural modulus, etc.) of the branched homopolypropylene (a1) and the linear block polypropylene (a2) and the mass ratio [(a1):(a2)] are [1 .. Since it is the same as that described in [Method for producing foam blow-molded article], the explanation will be omitted. Note that as the polyolefin resin (A), biomass-derived polypropylene or polypropylene produced by a mass balance method can be used.
また、発泡ブロー成形体に用いられる混合樹脂に配合されるオレフィン系熱可塑性エラストマー(B)の構造や物性(メルトフローレイト、融点等)、及び混合樹脂においての前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量についても、[1.発泡ブロー成形体の製造方法]で述べたことと同じであるから説明を省略する。
In addition, the structure and physical properties (melt flow rate, melting point, etc.) of the olefin thermoplastic elastomer (B) blended into the mixed resin used in the foam blow molded article, and the 100 mass of the polyolefin resin (A) in the mixed resin. Regarding the amount of the olefinic thermoplastic elastomer (B) based on [1. Since it is the same as that described in [Method for producing foam blow-molded article], the explanation will be omitted.
(発泡ブロー成形体の形状)
発泡ブロー成形体の形状は、特に限定されないが、中空状の成形体であると、例えば車両等に設けられる空調用のダクトとして発泡ブロー成形体を利用することが容易となる。 (Shape of foam blow molded product)
The shape of the foam blow molded product is not particularly limited, but if it is a hollow molded product, the foam blow molded product can be easily used, for example, as an air conditioning duct provided in a vehicle or the like.
発泡ブロー成形体の形状は、特に限定されないが、中空状の成形体であると、例えば車両等に設けられる空調用のダクトとして発泡ブロー成形体を利用することが容易となる。 (Shape of foam blow molded product)
The shape of the foam blow molded product is not particularly limited, but if it is a hollow molded product, the foam blow molded product can be easily used, for example, as an air conditioning duct provided in a vehicle or the like.
(独立気泡率)
発泡ブロー成形体の独立気泡率は、外観性を向上させる観点からは、65%以上であることが好ましく、70%以上であることがより好ましい。 (closed cell ratio)
From the viewpoint of improving the appearance, the closed cell ratio of the foam blow-molded product is preferably 65% or more, and more preferably 70% or more.
発泡ブロー成形体の独立気泡率は、外観性を向上させる観点からは、65%以上であることが好ましく、70%以上であることがより好ましい。 (closed cell ratio)
From the viewpoint of improving the appearance, the closed cell ratio of the foam blow-molded product is preferably 65% or more, and more preferably 70% or more.
(独立気泡率の測定)
発泡ブロー成形体のおおむね平坦部から25mm×25mm×平坦部の肉厚みに切断した試験片を作製する。厚みの総和が20mmに最も近づくように試験片を複数枚重ねて測定用試験片とする。次に、ASTM-D2856-70の手順Cに従って、東芝ベックマン株式会社の空気比較式比重計930型等を使用して測定用試験片の真の体積Vxを測定し、下記数式(式(1))により独立気泡率S(%)を計算する。上記測定を、5個の測定用試験片を用いて行い、その算術平均値を発泡ブロー成形体の独立気泡率とする。 (Measurement of closed cell ratio)
A test piece is prepared by cutting a roughly flat part of the foam blow-molded article into a 25 mm x 25 mm x flat part wall thickness. A plurality of test pieces are stacked so that the total thickness is closest to 20 mm to form a test piece for measurement. Next, in accordance with Procedure C of ASTM-D2856-70, the true volume Vx of the measurement specimen was measured using an air comparison hydrometer model 930 manufactured by Toshiba Beckman Corporation, and the following formula (Equation (1)) ) to calculate the closed cell ratio S (%). The above measurement is performed using five test pieces for measurement, and the arithmetic mean value thereof is taken as the closed cell ratio of the foam blow-molded article.
発泡ブロー成形体のおおむね平坦部から25mm×25mm×平坦部の肉厚みに切断した試験片を作製する。厚みの総和が20mmに最も近づくように試験片を複数枚重ねて測定用試験片とする。次に、ASTM-D2856-70の手順Cに従って、東芝ベックマン株式会社の空気比較式比重計930型等を使用して測定用試験片の真の体積Vxを測定し、下記数式(式(1))により独立気泡率S(%)を計算する。上記測定を、5個の測定用試験片を用いて行い、その算術平均値を発泡ブロー成形体の独立気泡率とする。 (Measurement of closed cell ratio)
A test piece is prepared by cutting a roughly flat part of the foam blow-molded article into a 25 mm x 25 mm x flat part wall thickness. A plurality of test pieces are stacked so that the total thickness is closest to 20 mm to form a test piece for measurement. Next, in accordance with Procedure C of ASTM-D2856-70, the true volume Vx of the measurement specimen was measured using an air comparison hydrometer model 930 manufactured by Toshiba Beckman Corporation, and the following formula (Equation (1)) ) to calculate the closed cell ratio S (%). The above measurement is performed using five test pieces for measurement, and the arithmetic mean value thereof is taken as the closed cell ratio of the foam blow-molded article.
ただし、
Vx:上記方法で測定された試験片の真の体積(cm3)であり、発泡ブロー成形体を構成する樹脂の体積と、試験片内の独立気泡部分の気泡全体積との和に相当する、
Va:測定に使用された試験片の外寸から計算された試験片の見掛け体積(cm3)、
W:測定に使用された試験片の全質量(g)、そして
ρ:発泡ブロー成形体を構成する樹脂の密度(g/cm3)、
である。 however,
Vx: The true volume (cm 3 ) of the test piece measured by the above method, which corresponds to the sum of the volume of the resin constituting the foam blow-molded product and the total volume of the cells in the closed cell portion within the test piece. ,
Va: apparent volume of the test piece (cm 3 ) calculated from the outer dimensions of the test piece used for measurement,
W: total mass (g) of the test piece used in the measurement, and ρ: density (g/cm 3 ) of the resin constituting the foam blow-molded product.
It is.
Vx:上記方法で測定された試験片の真の体積(cm3)であり、発泡ブロー成形体を構成する樹脂の体積と、試験片内の独立気泡部分の気泡全体積との和に相当する、
Va:測定に使用された試験片の外寸から計算された試験片の見掛け体積(cm3)、
W:測定に使用された試験片の全質量(g)、そして
ρ:発泡ブロー成形体を構成する樹脂の密度(g/cm3)、
である。 however,
Vx: The true volume (cm 3 ) of the test piece measured by the above method, which corresponds to the sum of the volume of the resin constituting the foam blow-molded product and the total volume of the cells in the closed cell portion within the test piece. ,
Va: apparent volume of the test piece (cm 3 ) calculated from the outer dimensions of the test piece used for measurement,
W: total mass (g) of the test piece used in the measurement, and ρ: density (g/cm 3 ) of the resin constituting the foam blow-molded product.
It is.
(見掛け密度)
発泡ブロー成形体の見掛け密度が100kg/m3以上450kg/m3以下であることが好ましい。上記見掛け密度を有することで、軽量であるとともに、適度な剛性を有する成形体を安定して得ることができる。軽量性と剛性、更には緩衝性とのバランスの観点からは、発泡ブロー成形体の見掛け密度は、120kg/m3以上400kg/m3以下であることが好ましく、130kg/m3以上350kg/m3以下であることがより好ましく、150kg/m3以上250kg/m3以下であることがさらに好ましい。発泡ブロー成形体の見掛け密度の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。発泡ブロー成形体の見掛け密度の数値範囲は、例えば、100kg/m3、120kg/m3、130kg/m3及び150kg/m3からなる群のいずれか1つを下限値とし、且つ450kg/m3、400kg/m3、350kg/m3及び250kg/m3からなる群のいずれか1つを上限値とする範囲を挙げることができる。 (apparent density)
It is preferable that the foam blow-molded article has an apparent density of 100 kg/m 3 or more and 450 kg/m 3 or less. By having the above apparent density, it is possible to stably obtain a molded article that is lightweight and has appropriate rigidity. From the viewpoint of balance between lightness, rigidity, and cushioning properties, the apparent density of the foam blow-molded product is preferably 120 kg/m 3 or more and 400 kg/m 3 or less, and 130 kg/m 3 or more and 350 kg/m 3 or less. It is more preferably 3 or less, and even more preferably 150 kg/m 3 or more and 250 kg/m 3 or less. Regarding the numerical range of the apparent density of the foam blow-molded article, the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the apparent density of the foam blow-molded product is, for example, a lower limit of any one of the group consisting of 100 kg/m 3 , 120 kg/m 3 , 130 kg/m 3 and 150 kg/m 3 , and 450 kg/m 3 3 , 400 kg/m 3 , 350 kg/m 3 and 250 kg/m 3 as the upper limit.
発泡ブロー成形体の見掛け密度が100kg/m3以上450kg/m3以下であることが好ましい。上記見掛け密度を有することで、軽量であるとともに、適度な剛性を有する成形体を安定して得ることができる。軽量性と剛性、更には緩衝性とのバランスの観点からは、発泡ブロー成形体の見掛け密度は、120kg/m3以上400kg/m3以下であることが好ましく、130kg/m3以上350kg/m3以下であることがより好ましく、150kg/m3以上250kg/m3以下であることがさらに好ましい。発泡ブロー成形体の見掛け密度の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。発泡ブロー成形体の見掛け密度の数値範囲は、例えば、100kg/m3、120kg/m3、130kg/m3及び150kg/m3からなる群のいずれか1つを下限値とし、且つ450kg/m3、400kg/m3、350kg/m3及び250kg/m3からなる群のいずれか1つを上限値とする範囲を挙げることができる。 (apparent density)
It is preferable that the foam blow-molded article has an apparent density of 100 kg/m 3 or more and 450 kg/m 3 or less. By having the above apparent density, it is possible to stably obtain a molded article that is lightweight and has appropriate rigidity. From the viewpoint of balance between lightness, rigidity, and cushioning properties, the apparent density of the foam blow-molded product is preferably 120 kg/m 3 or more and 400 kg/m 3 or less, and 130 kg/m 3 or more and 350 kg/m 3 or less. It is more preferably 3 or less, and even more preferably 150 kg/m 3 or more and 250 kg/m 3 or less. Regarding the numerical range of the apparent density of the foam blow-molded article, the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the apparent density of the foam blow-molded product is, for example, a lower limit of any one of the group consisting of 100 kg/m 3 , 120 kg/m 3 , 130 kg/m 3 and 150 kg/m 3 , and 450 kg/m 3 3 , 400 kg/m 3 , 350 kg/m 3 and 250 kg/m 3 as the upper limit.
(見掛け密度の測定)
発泡ブロー成形体の長手方向中央部および長手方向両端部付近の計3箇所の長手方向に対する垂直断面に対して、各垂直断面の周方向の平坦部分において等間隔な4箇所を選択し、平面視での面積約10cm2の試験片を切り出し、そして、各試験片について、その質量Wi[g]を体積Vi[cm3]で除し、単位換算することにより各試験片の見掛け密度(Wi/Vi)を求め、それらの値の算術平均値を見掛け密度(D)とした。 (Measurement of apparent density)
For a total of three vertical cross sections in the longitudinal direction near the longitudinal center and both longitudinal ends of the foam blow molded article, four equally spaced points were selected in the circumferential flat part of each vertical cross section, and Cut out a test piece with an area of about 10 cm 2 at Vi) was determined, and the arithmetic mean value of these values was taken as the apparent density (D).
発泡ブロー成形体の長手方向中央部および長手方向両端部付近の計3箇所の長手方向に対する垂直断面に対して、各垂直断面の周方向の平坦部分において等間隔な4箇所を選択し、平面視での面積約10cm2の試験片を切り出し、そして、各試験片について、その質量Wi[g]を体積Vi[cm3]で除し、単位換算することにより各試験片の見掛け密度(Wi/Vi)を求め、それらの値の算術平均値を見掛け密度(D)とした。 (Measurement of apparent density)
For a total of three vertical cross sections in the longitudinal direction near the longitudinal center and both longitudinal ends of the foam blow molded article, four equally spaced points were selected in the circumferential flat part of each vertical cross section, and Cut out a test piece with an area of about 10 cm 2 at Vi) was determined, and the arithmetic mean value of these values was taken as the apparent density (D).
(発泡ブロー成形体の曲げ弾性率)
発泡ブロー成形体の曲げ弾性率(MPa)は、140MPa以上250MPa以下であることが好ましい。発泡ブロー成形体の曲げ弾性率が上記の数値範囲にあることで、十分な剛性を確保することが容易となる。この効果をより高める観点からは、発泡ブロー成形体の曲げ弾性率は、150MPa以上200MPa以下であることがより好ましい。発泡ブロー成形体の曲げ弾性率の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。発泡ブロー成形体の曲げ弾性率の数値範囲は、例えば、140MPa、及び150MPaからなる群のいずれか1つを下限値とし、且つ250MPa、及び200MPaからなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Bending elastic modulus of foam blow molded product)
The flexural modulus (MPa) of the foam blow-molded product is preferably 140 MPa or more and 250 MPa or less. When the flexural modulus of the foam blow-molded article is within the above numerical range, it becomes easy to ensure sufficient rigidity. From the viewpoint of further enhancing this effect, the flexural modulus of the foam blow-molded product is more preferably 150 MPa or more and 200 MPa or less. Regarding the numerical range of the flexural modulus of the foam blow-molded article, the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the flexural modulus of the foam blow-molded product is, for example, the lower limit is any one of the group consisting of 140 MPa and 150 MPa, and the upper limit is any one of the group consisting of 250 MPa and 200 MPa. I can list a range.
発泡ブロー成形体の曲げ弾性率(MPa)は、140MPa以上250MPa以下であることが好ましい。発泡ブロー成形体の曲げ弾性率が上記の数値範囲にあることで、十分な剛性を確保することが容易となる。この効果をより高める観点からは、発泡ブロー成形体の曲げ弾性率は、150MPa以上200MPa以下であることがより好ましい。発泡ブロー成形体の曲げ弾性率の数値範囲は、上記に記載した数値範囲の組み合わせに示される上限値とおよび下限値は独立して任意に組み合わせることが可能である。上限値及び下限値を任意に組み合わせることで定められる数値範囲には、上限値、下限値、及び上限値と下限値との間の値が含まれる。発泡ブロー成形体の曲げ弾性率の数値範囲は、例えば、140MPa、及び150MPaからなる群のいずれか1つを下限値とし、且つ250MPa、及び200MPaからなる群のいずれか1つを上限値とする範囲を挙げることができる。 (Bending elastic modulus of foam blow molded product)
The flexural modulus (MPa) of the foam blow-molded product is preferably 140 MPa or more and 250 MPa or less. When the flexural modulus of the foam blow-molded article is within the above numerical range, it becomes easy to ensure sufficient rigidity. From the viewpoint of further enhancing this effect, the flexural modulus of the foam blow-molded product is more preferably 150 MPa or more and 200 MPa or less. Regarding the numerical range of the flexural modulus of the foam blow-molded article, the upper limit and lower limit shown in the combination of the numerical ranges described above can be independently and arbitrarily combined. The numerical range defined by arbitrarily combining the upper limit value and the lower limit value includes the upper limit value, the lower limit value, and the value between the upper limit value and the lower limit value. The numerical range of the flexural modulus of the foam blow-molded product is, for example, the lower limit is any one of the group consisting of 140 MPa and 150 MPa, and the upper limit is any one of the group consisting of 250 MPa and 200 MPa. I can list a range.
(発泡ブロー成形体の曲げ弾性率の測定)
発泡ブロー成形体の曲げ弾性率については、発泡ブロー成形体の平坦部分からサンプルを切り出し、そのサンプル片の曲げ弾性率を、JIS K7171:2016に基づいて測定することで、特定することができる。 (Measurement of flexural modulus of foam blow molded product)
The flexural modulus of the blow-molded foam can be determined by cutting out a sample from a flat portion of the blow-molded foam and measuring the flexural modulus of the sample piece based on JIS K7171:2016.
発泡ブロー成形体の曲げ弾性率については、発泡ブロー成形体の平坦部分からサンプルを切り出し、そのサンプル片の曲げ弾性率を、JIS K7171:2016に基づいて測定することで、特定することができる。 (Measurement of flexural modulus of foam blow molded product)
The flexural modulus of the blow-molded foam can be determined by cutting out a sample from a flat portion of the blow-molded foam and measuring the flexural modulus of the sample piece based on JIS K7171:2016.
[2-2 発泡ブロー成形体による効果]
本発明にかかる発泡ブロー成形体は、上記の[1.発泡ブロー成形体の製造方法]で説明したことと同様に、特定のポリプロピレン系樹脂(ポリオレフィン系樹脂(A))と特定のエラストマー(オレフィン系熱可塑性エラストマー(B))とが特定の範囲で配合された混合樹脂の発泡成形体であることで、耐寒衝撃性と剛性の両方に優れる。また、発泡ブロー成形体は、特定のエラストマーにより構成されていることで、表面平滑性に優れたものとなる。 [2-2 Effects of foam blow molded product]
The foam blow-molded article according to the present invention can be obtained from the above-mentioned [1. Similar to what was explained in [Method for producing foam blow molded article], a specific polypropylene resin (polyolefin resin (A)) and a specific elastomer (olefin thermoplastic elastomer (B)) are blended in a specific range. Because it is a foamed molded product made from a mixed resin, it has excellent cold impact resistance and rigidity. In addition, the foam blow-molded article is made of a specific elastomer and has excellent surface smoothness.
本発明にかかる発泡ブロー成形体は、上記の[1.発泡ブロー成形体の製造方法]で説明したことと同様に、特定のポリプロピレン系樹脂(ポリオレフィン系樹脂(A))と特定のエラストマー(オレフィン系熱可塑性エラストマー(B))とが特定の範囲で配合された混合樹脂の発泡成形体であることで、耐寒衝撃性と剛性の両方に優れる。また、発泡ブロー成形体は、特定のエラストマーにより構成されていることで、表面平滑性に優れたものとなる。 [2-2 Effects of foam blow molded product]
The foam blow-molded article according to the present invention can be obtained from the above-mentioned [1. Similar to what was explained in [Method for producing foam blow molded article], a specific polypropylene resin (polyolefin resin (A)) and a specific elastomer (olefin thermoplastic elastomer (B)) are blended in a specific range. Because it is a foamed molded product made from a mixed resin, it has excellent cold impact resistance and rigidity. In addition, the foam blow-molded article is made of a specific elastomer and has excellent surface smoothness.
また、ポリオレフィン系樹脂(A)として、分岐状ホモポリプロピレンのみならず直鎖状ポリプロピレンブロックが特定の範囲で併用されていることで、エラストマーを用いたことによる発泡ブロー成形体の剛性の低下が抑えられている。したがって、本発明にかかる発泡ブロー成形体は、剛性に優れる。
In addition, as polyolefin resin (A), not only branched homopolypropylene but also linear polypropylene blocks are used in a specific range, thereby suppressing the decrease in rigidity of the foam blow-molded product due to the use of elastomer. It is being Therefore, the foam blow molded article according to the present invention has excellent rigidity.
また、発泡ブロー成形体には、用途等の様々な条件に応じて様々な見掛け密度のものを求められる。本発明にかかる発泡ブロー成形体では、特定のポリプロピレン系樹脂と特定のエラストマーとが特定の範囲で用いられており、発泡ブロー成形体の見掛け密度を様々な値としても表面平滑性に優れたものを得ることができる。
Additionally, foam blow-molded products are required to have various apparent densities depending on various conditions such as usage. In the foam blow molded article according to the present invention, a specific polypropylene resin and a specific elastomer are used in a specific range, and the foam blow molded article has excellent surface smoothness even when the apparent density of the foam blow molded article is varied. can be obtained.
なお、発泡ブロー成形体の上述した耐寒衝撃性は、次に示す(-10℃落球試験)で特定することができる。
The above-mentioned cold impact resistance of the foam blow-molded article can be determined by the following (-10°C falling ball test).
(-10℃落球試験(1.5m、1kg))
発泡ブロー成形体を-10℃の雰囲気下で24時間載置することで発泡ブロー成形体の状態調節が行われ、状態調節を行った発泡ブロー成形体のうち平坦部分を上に向けて試験台に載置し、1.5m上方から、1kgの鉄球を平らな部分に向けて落下させる。このとき、発泡ブロー成形体の損傷状態を観察する。発泡ブロー成形体の損傷の程度が少ない(損傷がない場合を含む)ほど、発泡ブロー成形体の耐寒衝撃性に優れる、と評価することができる。 (-10℃ falling ball test (1.5m, 1kg))
Conditioning of the foamed blow-molded product is performed by placing the foamed blow-molded product in an atmosphere of -10°C for 24 hours, and the flat part of the foamed blow-molded product that has been conditioned is placed on a test stand. A 1 kg iron ball is dropped onto a flat surface from 1.5 m above. At this time, the state of damage to the foam blow molded article is observed. It can be evaluated that the smaller the degree of damage to the foam blow-molded article (including cases where there is no damage), the better the cold impact resistance of the foam blow-molded article.
発泡ブロー成形体を-10℃の雰囲気下で24時間載置することで発泡ブロー成形体の状態調節が行われ、状態調節を行った発泡ブロー成形体のうち平坦部分を上に向けて試験台に載置し、1.5m上方から、1kgの鉄球を平らな部分に向けて落下させる。このとき、発泡ブロー成形体の損傷状態を観察する。発泡ブロー成形体の損傷の程度が少ない(損傷がない場合を含む)ほど、発泡ブロー成形体の耐寒衝撃性に優れる、と評価することができる。 (-10℃ falling ball test (1.5m, 1kg))
Conditioning of the foamed blow-molded product is performed by placing the foamed blow-molded product in an atmosphere of -10°C for 24 hours, and the flat part of the foamed blow-molded product that has been conditioned is placed on a test stand. A 1 kg iron ball is dropped onto a flat surface from 1.5 m above. At this time, the state of damage to the foam blow molded article is observed. It can be evaluated that the smaller the degree of damage to the foam blow-molded article (including cases where there is no damage), the better the cold impact resistance of the foam blow-molded article.
なお、鉄球が発泡ブロー成形体に衝突した際、平坦部分から外れた場所に力がかかって発泡ブロー成形体が損傷した場合には、上記した-10℃落球試験が再度実施されることが好ましい。
In addition, if the iron ball collides with the foam blow-molded product and the foam blow-molded product is damaged due to force being applied to a place that is off the flat part, the above-mentioned -10°C falling ball test may be performed again. preferable.
次に、実施例を用いてさらに詳細に説明する。
Next, the present invention will be explained in more detail using examples.
(樹脂の準備)
表1に示すポリオレフィン系樹脂、及びエラストマーを準備した。ただし、ポリオレフィン系樹脂については、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)と直鎖状ホモポリプロピレンが準備された。表1には、準備されたポリオレフィン系樹脂、及びエラストマーの物性(MFR(g/10分(230℃、荷重2.16kg))及び曲げ弾性率(MPa))を合わせて示す。 (Preparation of resin)
Polyolefin resins and elastomers shown in Table 1 were prepared. However, regarding the polyolefin resins, branched homopolypropylene (a1), linear block polypropylene (a2), and linear homopolypropylene were prepared. Table 1 also shows the physical properties (MFR (g/10 min (230°C, load 2.16 kg)) and flexural modulus (MPa)) of the prepared polyolefin resin and elastomer.
表1に示すポリオレフィン系樹脂、及びエラストマーを準備した。ただし、ポリオレフィン系樹脂については、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)と直鎖状ホモポリプロピレンが準備された。表1には、準備されたポリオレフィン系樹脂、及びエラストマーの物性(MFR(g/10分(230℃、荷重2.16kg))及び曲げ弾性率(MPa))を合わせて示す。 (Preparation of resin)
Polyolefin resins and elastomers shown in Table 1 were prepared. However, regarding the polyolefin resins, branched homopolypropylene (a1), linear block polypropylene (a2), and linear homopolypropylene were prepared. Table 1 also shows the physical properties (MFR (g/10 min (230°C, load 2.16 kg)) and flexural modulus (MPa)) of the prepared polyolefin resin and elastomer.
ポリオレフィン系樹脂、及びエラストマーのMFR(g/10分(230℃、荷重2.16kg))及び曲げ弾性率(MPa)は、ポリオレフィン系樹脂(A)、及びオレフィン系熱可塑性エラストマー(B)について上記した方法と同様の方法を適用して特定することできる。なお、後述される分岐状ホモポリプロピレン(a1)及びエラストマーの融点(℃)について、それぞれの融点の特定方法は、オレフィン系熱可塑性エラストマー(B)について上記した方法が用いられる。また、分岐状ホモポリプロピレン(a1)及びエラストマーの結晶化温度(℃)については、JIS K 7121:1987に基づき、熱流束示差走査熱量計を用いて測定される。なお、示差走査熱量測定(DSC)曲線に複数の結晶化ピークが表れる場合は、ピーク高さの最も高い結晶化ピークのピーク温度を結晶化温度とする。
The MFR (g/10 min (230°C, load 2.16 kg)) and flexural modulus (MPa) of the polyolefin resin and elastomer are as described above for the polyolefin resin (A) and the olefin thermoplastic elastomer (B). It can be identified by applying a method similar to the method described above. Regarding the melting points (° C.) of the branched homopolypropylene (a1) and the elastomer described later, the method described above for the olefinic thermoplastic elastomer (B) is used to specify the respective melting points. Further, the crystallization temperature (° C.) of the branched homopolypropylene (a1) and the elastomer is measured using a heat flux differential scanning calorimeter based on JIS K 7121:1987. In addition, when a plurality of crystallization peaks appear in the differential scanning calorimetry (DSC) curve, the peak temperature of the crystallization peak with the highest peak height is taken as the crystallization temperature.
分岐状ホモポリプロピレン(a1)としては、ボレアリス社(Borealis社)製の商品名「WB140」が準備された(溶融張力(230℃);36cN、融点159℃、結晶化温度129℃)。表2、表3及び表4では、準備された分岐状ホモポリプロピレンをWB140と略称表記する。
As the branched homopolypropylene (a1), the trade name "WB140" manufactured by Borealis was prepared (melt tension (230°C): 36 cN, melting point 159°C, crystallization temperature 129°C). In Tables 2, 3, and 4, the prepared branched homopolypropylene is abbreviated as WB140.
直鎖状ブロックポリプロピレン(a2)としては、表1のL-PP1からL-PP3に示すものが準備された。
As the linear block polypropylene (a2), those shown in L-PP1 to L-PP3 in Table 1 were prepared.
L-PP1は、プロピレンとエチレンの共重合体(プロピレン-エチレン共重合体)(日本ポリプロ株式会社製、商品名「ノバテック(商標)PP(型番BC03GS)」)である。L-PP1のプロピレン-エチレン共重合体は、チーグラー触媒による共重合体(MFRは30g/10分)である。
L-PP1 is a copolymer of propylene and ethylene (propylene-ethylene copolymer) (manufactured by Nippon Polypro Co., Ltd., trade name "Novatec (trademark) PP (model number BC03GS)"). The propylene-ethylene copolymer of L-PP1 is a Ziegler-catalyzed copolymer (MFR is 30 g/10 min).
L-PP2は、日本ポリプロ株式会社製の商品名「ノバテックPP(型番BC6DRF)」(MFRは2.5g/10分)ポリプロピレンブロックコポリマーである。
L-PP2 is a polypropylene block copolymer manufactured by Nippon Polypropylene Co., Ltd. under the trade name "Novatec PP (model number BC6DRF)" (MFR is 2.5 g/10 minutes).
L-PP3は、エチレン-α-オレフィン共重合体(MFRは15g/10分)を含むプロピレンブロック共重合体(サンアロマー株式会社製、商品名「クオリア(商標)(型番CM688A)」)である。L-PP3のプロピレンブロック共重合体のMFRは9.5g/10分である。
L-PP3 is a propylene block copolymer (manufactured by Sun Allomer Co., Ltd., trade name "Qualia (trademark) (model number CM688A)") containing an ethylene-α-olefin copolymer (MFR is 15 g/10 minutes). The MFR of the propylene block copolymer of L-PP3 is 9.5 g/10 minutes.
表2、表3及び表4では、L-PP1、L-PP2、及びL-PP3に示す直鎖状ブロックポリプロピレンを、それぞれBC03GS、BC6DRF及びCM688Aと略称表記する。
In Tables 2, 3, and 4, the linear block polypropylenes shown in L-PP1, L-PP2, and L-PP3 are abbreviated as BC03GS, BC6DRF, and CM688A, respectively.
直鎖状ホモポリプロピレンは、株式会社プライムポリマー製の商品名「プライムポリプロ(商標)(型番J106G)」が準備された。表4では、準備された直鎖状ホモポリプロピレンをJ106Gと略称表記する。
The linear homopolypropylene was prepared under the trade name "Prime Polypro (trademark) (model number J106G)" manufactured by Prime Polymer Co., Ltd. In Table 4, the prepared linear homopolypropylene is abbreviated as J106G.
エラストマーとしては、EL1からEL4に示すオレフィン系エラストマー及び、EL5に示すスチレン系エラストマーが準備された。
As the elastomers, olefin elastomers shown in EL1 to EL4 and styrene elastomers shown in EL5 were prepared.
EL1は、結晶性オレフィン重合体ブロックと共役ジエン化合物の重合体ブロックとからなるトリブロック共重合体の水素添加物である。EL1として、両端のブロック部をエチレン重合体ブロックとし且つ中央のブロック部を共役ジエン化合物の重合体ブロックとするブロック共重合体の水素添加物(JSR株式会社社製、商品名「ダイナロン(商標)6200P」)(ブロック共重合体におけるエチレン由来の成分が30質量%、1,3-ブタジエン由来の成分が70質量%、水添率(水素添加率)が98%以上、融点97℃、結晶化温度64℃)が準備された。EL1は、オレフィン系熱可塑性エラストマー(B)に対応している。
EL1 is a hydrogenated triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block. EL1 is a hydrogenated block copolymer in which the block portions at both ends are ethylene polymer blocks and the central block portion is a polymer block of a conjugated diene compound (manufactured by JSR Corporation, product name: Dynalon (trademark)). 6200P'') (30% by mass of ethylene-derived components in the block copolymer, 70% by mass of 1,3-butadiene-derived components, hydrogenation rate (hydrogenation rate) of 98% or more, melting point 97°C, crystallization A temperature of 64° C.) was prepared. EL1 corresponds to the olefin thermoplastic elastomer (B).
EL2は、メタロセン系プロピレン-エチレン共重合体(エクソンモービル社製、商品名「ビスタマックス(商標)6202、融点102℃」)である。EL3は、RPTO(リアクターTPO(Thermoplastic Olefinic Elastomer))(Basell株式会社製、商品名「キャタロイ(型番Q100F)」、融点143℃、結晶化温度96℃)である。RPTOは、チーグラー触媒により逐次重合されたプロピレン系ランダムブロック共重合体である。EL4は、エチレンブテンブロック共重合体(三井化学株式会社製、商品名「タフマー(商標)(型番DF605)」、融点50℃以下)である。
EL2 is a metallocene propylene-ethylene copolymer (manufactured by ExxonMobil, trade name "Vistamax (trademark) 6202, melting point 102°C"). EL3 is RPTO (Reactor TPO (Thermoplastic Olefinic Elastomer)) (manufactured by Basell Corporation, trade name "Cataroy (model number Q100F)", melting point 143°C, crystallization temperature 96°C). RPTO is a propylene-based random block copolymer that is sequentially polymerized using a Ziegler catalyst. EL4 is an ethylene butene block copolymer (manufactured by Mitsui Chemicals, Inc., trade name "Tafmer (trademark) (model number DF605)", melting point 50° C. or lower).
EL5は、スチレンとブタジエンからなるブロック共重合体の二重結合部分を水素添加したスチレン系熱可塑性エラストマーの水素添加物(旭化成株式会社製、商品名「タフテック(商標)(型番H1041)」)
EL5 is a hydrogenated styrenic thermoplastic elastomer obtained by hydrogenating the double bonds of a block copolymer made of styrene and butadiene (manufactured by Asahi Kasei Corporation, product name: "Tuftec (trademark) (model number H1041)")
表2、表3及び表4では、EL1、EL2、EL3、EL4及びEL5に示すエラストマーを、それぞれ6200P、6202、Q100F、DF605及びH1041と略称表記する。
In Tables 2, 3, and 4, the elastomers shown in EL1, EL2, EL3, EL4, and EL5 are abbreviated as 6200P, 6202, Q100F, DF605, and H1041, respectively.
実施例1から5、比較例1から9
(押出発泡工程)
表2(実施例1から5)、表3(比較例1から4)、表4(比較例5から9)に示す種類及び配合量(質量%)のポリオレフィン系樹脂、エラストマー、及び後述する添加剤を口径65mmの押出機に供給し、押出機内にて溶融混練して樹脂溶融物とした。さらに、押出機に発泡剤として二酸化炭素(CO2)を圧入し、樹脂溶融物と混練して発泡性樹脂溶融物とした。発泡性樹脂溶融物は、押出機に連結したアキュームレーターに充填された。そして発泡温度170℃にて、アキュームレーターの先端に配置した環状ダイより発泡性樹脂溶融物を常圧域に押出し且つ発泡させることで、円筒状の発泡パリソンを形成した。 Examples 1 to 5, Comparative Examples 1 to 9
(Extrusion foaming process)
Polyolefin resins and elastomers of the types and amounts (mass%) shown in Table 2 (Examples 1 to 5), Table 3 (Comparative Examples 1 to 4), and Table 4 (Comparative Examples 5 to 9), and additions described below. The agent was supplied to an extruder with a diameter of 65 mm, and melted and kneaded in the extruder to obtain a resin melt. Furthermore, carbon dioxide (CO 2 ) was pressurized as a foaming agent into the extruder and kneaded with the resin melt to obtain a foamable resin melt. The foamable resin melt was charged into an accumulator connected to an extruder. Then, at a foaming temperature of 170° C., the foamable resin melt was extruded into a normal pressure region through an annular die placed at the tip of an accumulator and foamed, thereby forming a cylindrical foamed parison.
(押出発泡工程)
表2(実施例1から5)、表3(比較例1から4)、表4(比較例5から9)に示す種類及び配合量(質量%)のポリオレフィン系樹脂、エラストマー、及び後述する添加剤を口径65mmの押出機に供給し、押出機内にて溶融混練して樹脂溶融物とした。さらに、押出機に発泡剤として二酸化炭素(CO2)を圧入し、樹脂溶融物と混練して発泡性樹脂溶融物とした。発泡性樹脂溶融物は、押出機に連結したアキュームレーターに充填された。そして発泡温度170℃にて、アキュームレーターの先端に配置した環状ダイより発泡性樹脂溶融物を常圧域に押出し且つ発泡させることで、円筒状の発泡パリソンを形成した。 Examples 1 to 5, Comparative Examples 1 to 9
(Extrusion foaming process)
Polyolefin resins and elastomers of the types and amounts (mass%) shown in Table 2 (Examples 1 to 5), Table 3 (Comparative Examples 1 to 4), and Table 4 (Comparative Examples 5 to 9), and additions described below. The agent was supplied to an extruder with a diameter of 65 mm, and melted and kneaded in the extruder to obtain a resin melt. Furthermore, carbon dioxide (CO 2 ) was pressurized as a foaming agent into the extruder and kneaded with the resin melt to obtain a foamable resin melt. The foamable resin melt was charged into an accumulator connected to an extruder. Then, at a foaming temperature of 170° C., the foamable resin melt was extruded into a normal pressure region through an annular die placed at the tip of an accumulator and foamed, thereby forming a cylindrical foamed parison.
(プリブロー工程)
環状ダイの直下には成形型として2分割式の金型が配置されており、押出発泡工程で形成された円筒状の発泡パリソンが、金型の間に配置された。さらに、ピンチを用いて金型よりも下方側で発泡パリソンの開口部が閉じられた後、発泡パリソン内にプリブローエアが吹き込まれ、さらに2分割式の金型が閉じられることにより、成形型で発泡パリソンが挟み込まれた。 (Pre-blow process)
A two-part mold was placed directly below the annular die, and a cylindrical foam parison formed in the extrusion foaming process was placed between the molds. Furthermore, after the opening of the foamed parison is closed below the mold using a pinch, pre-blow air is blown into the foamed parison, and the two-part mold is further closed, allowing foaming to occur in the mold. The parison was pinched.
環状ダイの直下には成形型として2分割式の金型が配置されており、押出発泡工程で形成された円筒状の発泡パリソンが、金型の間に配置された。さらに、ピンチを用いて金型よりも下方側で発泡パリソンの開口部が閉じられた後、発泡パリソン内にプリブローエアが吹き込まれ、さらに2分割式の金型が閉じられることにより、成形型で発泡パリソンが挟み込まれた。 (Pre-blow process)
A two-part mold was placed directly below the annular die, and a cylindrical foam parison formed in the extrusion foaming process was placed between the molds. Furthermore, after the opening of the foamed parison is closed below the mold using a pinch, pre-blow air is blown into the foamed parison, and the two-part mold is further closed, allowing foaming to occur in the mold. The parison was pinched.
(ブロー成形工程)
成形型で挟み込まれた発泡パリソンの内部にブローピンからブローエアが吹き込まれること、及び、金型に設けた孔より吸引することで発泡パリソンの外側面と金型の内面との間の空間を減圧することにより、発泡パリソンの外面を成形型の内面に押し付けた。そして、発泡パリソンに金型内面に対応した形状が賦形された。賦形及び冷却後、成形型である金型を開いて成形体を取り出し、バリ及びポケット部を取り除いた。これにより発泡ブロー成形体が得られた。得られた発泡ブロー成形体は、中空状に形成されており、断面がおおむね矩形の筒状で最大長さ650mm且つ最大幅180mmのダクトに対応する形状に形成された。なお、発泡ブロー成形体の中空状に形成されている部分を特に中空部を称呼する場合がある。 (Blow molding process)
Blow air is blown from a blow pin into the inside of the foamed parison sandwiched between the molds, and the air is sucked through holes provided in the mold to reduce the pressure in the space between the outer surface of the foamed parison and the inner surface of the mold. This pressed the outer surface of the foamed parison against the inner surface of the mold. The foamed parison was then shaped to correspond to the inner surface of the mold. After shaping and cooling, the mold, which is a mold, was opened, the molded product was taken out, and burrs and pockets were removed. As a result, a foam blow-molded article was obtained. The obtained foam blow molded article was formed into a hollow shape, and was formed into a shape corresponding to a duct having a generally rectangular cylindrical cross section and a maximum length of 650 mm and a maximum width of 180 mm. Note that the hollow portion of the foam blow-molded product may be particularly referred to as the hollow portion.
成形型で挟み込まれた発泡パリソンの内部にブローピンからブローエアが吹き込まれること、及び、金型に設けた孔より吸引することで発泡パリソンの外側面と金型の内面との間の空間を減圧することにより、発泡パリソンの外面を成形型の内面に押し付けた。そして、発泡パリソンに金型内面に対応した形状が賦形された。賦形及び冷却後、成形型である金型を開いて成形体を取り出し、バリ及びポケット部を取り除いた。これにより発泡ブロー成形体が得られた。得られた発泡ブロー成形体は、中空状に形成されており、断面がおおむね矩形の筒状で最大長さ650mm且つ最大幅180mmのダクトに対応する形状に形成された。なお、発泡ブロー成形体の中空状に形成されている部分を特に中空部を称呼する場合がある。 (Blow molding process)
Blow air is blown from a blow pin into the inside of the foamed parison sandwiched between the molds, and the air is sucked through holes provided in the mold to reduce the pressure in the space between the outer surface of the foamed parison and the inner surface of the mold. This pressed the outer surface of the foamed parison against the inner surface of the mold. The foamed parison was then shaped to correspond to the inner surface of the mold. After shaping and cooling, the mold, which is a mold, was opened, the molded product was taken out, and burrs and pockets were removed. As a result, a foam blow-molded article was obtained. The obtained foam blow molded article was formed into a hollow shape, and was formed into a shape corresponding to a duct having a generally rectangular cylindrical cross section and a maximum length of 650 mm and a maximum width of 180 mm. Note that the hollow portion of the foam blow-molded product may be particularly referred to as the hollow portion.
なお、表2、表3及び表4に示すポリオレフィン系樹脂及びエラストマーの種類(「種別」欄)の記載(略称の記載)は、表1に示すポリオレフィン系樹脂及びエラストマーの種類に対応している。表2、表3及び表4においてポリオレフィン系樹脂の種類の記載の直下欄に示す数値が、ポリオレフィン系樹脂における分岐状ポリプロピレンと直鎖状ポリプロピレンの合計を100とした場合における分岐状ポリプロピレンと直鎖状ポリプロピレンそれぞれの配合比率(質量%)に対応する。また、エラストマーの種類の記載の直下欄に示す数値が、ポリオレフィン系樹脂100質量部に対するエラストマーの配合量(質量部)に対応する。
Note that the descriptions (description of abbreviations) of the types of polyolefin resins and elastomers (in the "Type" column) shown in Tables 2, 3, and 4 correspond to the types of polyolefin resins and elastomers shown in Table 1. . In Table 2, Table 3, and Table 4, the numerical values shown in the column immediately below the description of the type of polyolefin resin are branched polypropylene and linear polypropylene when the sum of branched polypropylene and linear polypropylene in the polyolefin resin is 100. This corresponds to the blending ratio (mass%) of each type of polypropylene. Further, the numerical value shown in the column immediately below the description of the type of elastomer corresponds to the amount (parts by mass) of the elastomer to be blended with respect to 100 parts by mass of the polyolefin resin.
また、前記混合樹脂には、ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)の合計100質量部に対して、添加剤としてカーボンブラック0.9質量部、タルク2質量部が含まれるように、カーボンブラックマスターバッチ(45%マスターバッチ(MB))及びタルクマスターバッチ(20%マスターバッチ(MB))として添加した。カーボンブラックマスターバッチは、B&Tech Corporation製、商品名「PP Black Master Batch,BT920F-JSJ」である。タルクマスターバッチは、松村産業製、商品名「ハイフィラー#12」(タルク濃度20質量%、メジアン径7.5μm)である。なお、タルクは気泡調整剤として機能することができる。
In addition, the mixed resin contains 0.9 parts by mass of carbon black and 2 parts by mass of talc as additives for a total of 100 parts by mass of the polyolefin resin (A) and the olefin thermoplastic elastomer (B). They were added as carbon black masterbatch (45% masterbatch (MB)) and talc masterbatch (20% masterbatch (MB)). The carbon black masterbatch is manufactured by B&Tech Corporation and has a trade name of "PP Black Master Batch, BT920F-JSJ". The talc masterbatch is manufactured by Matsumura Sangyo and has the trade name "High Filler #12" (talc concentration 20% by mass, median diameter 7.5 μm). Note that talc can function as a bubble regulator.
発泡剤の圧入量(mol/kg)は、表2、表3及び表4に示す通りである。なお、表2、表3及び表4に示される発泡剤の圧入量は、ポリオレフィン系樹脂とエラストマーの混合樹脂1kg当たりの量(mol/kg)である。
The amount of blowing agent injected (mol/kg) is as shown in Table 2, Table 3, and Table 4. Note that the amount of blowing agent injected shown in Tables 2, 3, and 4 is the amount (mol/kg) per 1 kg of the mixed resin of polyolefin resin and elastomer.
(発泡ブロー成形体の物性)
実施例1から5、比較例1から9において得られたそれぞれの発泡ブロー成形体の物性として、見掛け密度(kg/m3)、厚み(mm)、独立気泡率(%)、及び曲げ弾性率(MPa)を測定した。結果を表2、表3及び表4に示す。 (Physical properties of foam blow molded product)
The physical properties of each foam blow molded article obtained in Examples 1 to 5 and Comparative Examples 1 to 9 include apparent density (kg/m 3 ), thickness (mm), closed cell ratio (%), and flexural modulus. (MPa) was measured. The results are shown in Tables 2, 3 and 4.
実施例1から5、比較例1から9において得られたそれぞれの発泡ブロー成形体の物性として、見掛け密度(kg/m3)、厚み(mm)、独立気泡率(%)、及び曲げ弾性率(MPa)を測定した。結果を表2、表3及び表4に示す。 (Physical properties of foam blow molded product)
The physical properties of each foam blow molded article obtained in Examples 1 to 5 and Comparative Examples 1 to 9 include apparent density (kg/m 3 ), thickness (mm), closed cell ratio (%), and flexural modulus. (MPa) was measured. The results are shown in Tables 2, 3 and 4.
発泡ブロー成形体の見掛け密度、独立気泡率、及び曲げ弾性率は、上述した方法で測定された。
The apparent density, closed cell ratio, and flexural modulus of the foam blow-molded product were measured by the methods described above.
(発泡ブロー成形体の厚み)
発泡ブロー成形体の厚みは、発泡ブロー成形体の平均厚みを示しており、以下の方法により測定される値である。発泡ブロー成形体の長手方向中央部および長手方向両端部付近、さらに中央部と両端部との中間部の計5部位の長手方向に対する垂直断面を得る。各垂直断面の周方向に等間隔に6箇所の発泡ブロー成形体の厚み(肉厚)の測定を行い、得られた30箇所の厚みの測定値から最大値と最小値を除く28箇所の厚みの算術平均値を発泡ブロー成形体の平均厚みとした。 (Thickness of foam blow molded product)
The thickness of the foam blow-molded article indicates the average thickness of the foam blow-molded article, and is a value measured by the following method. Vertical cross sections with respect to the longitudinal direction of the foam blow-molded article are obtained at five parts in total, including the longitudinal center portion, the vicinity of both longitudinal end portions, and the intermediate portion between the center portion and both end portions. The thickness (wall thickness) of the foam blow-molded product was measured at 6 points equally spaced in the circumferential direction of each vertical cross section, and the maximum and minimum values were excluded from the obtained thickness measurements at 30 points. The arithmetic mean value of was taken as the average thickness of the foam blow-molded product.
発泡ブロー成形体の厚みは、発泡ブロー成形体の平均厚みを示しており、以下の方法により測定される値である。発泡ブロー成形体の長手方向中央部および長手方向両端部付近、さらに中央部と両端部との中間部の計5部位の長手方向に対する垂直断面を得る。各垂直断面の周方向に等間隔に6箇所の発泡ブロー成形体の厚み(肉厚)の測定を行い、得られた30箇所の厚みの測定値から最大値と最小値を除く28箇所の厚みの算術平均値を発泡ブロー成形体の平均厚みとした。 (Thickness of foam blow molded product)
The thickness of the foam blow-molded article indicates the average thickness of the foam blow-molded article, and is a value measured by the following method. Vertical cross sections with respect to the longitudinal direction of the foam blow-molded article are obtained at five parts in total, including the longitudinal center portion, the vicinity of both longitudinal end portions, and the intermediate portion between the center portion and both end portions. The thickness (wall thickness) of the foam blow-molded product was measured at 6 points equally spaced in the circumferential direction of each vertical cross section, and the maximum and minimum values were excluded from the obtained thickness measurements at 30 points. The arithmetic mean value of was taken as the average thickness of the foam blow-molded product.
(発泡ブロー成形体の評価)
実施例1から5、比較例1から9において得られたそれぞれの発泡ブロー成形体について、耐寒衝撃性及び表面平滑性について評価した。結果を表2、表3及び表4に示す。 (Evaluation of foam blow molded product)
The foam blow molded articles obtained in Examples 1 to 5 and Comparative Examples 1 to 9 were evaluated for cold impact resistance and surface smoothness. The results are shown in Tables 2, 3 and 4.
実施例1から5、比較例1から9において得られたそれぞれの発泡ブロー成形体について、耐寒衝撃性及び表面平滑性について評価した。結果を表2、表3及び表4に示す。 (Evaluation of foam blow molded product)
The foam blow molded articles obtained in Examples 1 to 5 and Comparative Examples 1 to 9 were evaluated for cold impact resistance and surface smoothness. The results are shown in Tables 2, 3 and 4.
(耐寒衝撃性)
発泡ブロー成形体の耐寒衝撃性は、-10℃落球試験(1.5m、1kg)を実施することで評価された。 (cold impact resistance)
The cold impact resistance of the foam blow-molded product was evaluated by performing a -10°C falling ball test (1.5 m, 1 kg).
発泡ブロー成形体の耐寒衝撃性は、-10℃落球試験(1.5m、1kg)を実施することで評価された。 (cold impact resistance)
The cold impact resistance of the foam blow-molded product was evaluated by performing a -10°C falling ball test (1.5 m, 1 kg).
(-10℃落球試験(1.5m、1kg))
発泡ブロー成形体を-10℃の雰囲気下、24時間載置して状態調節を行った。状態調節を行った発泡ブロー成形体を、平坦部分を上に向けて試験台に載置し、1.5m上方から、1kgの鉄球を平らな部分に向けて落下させ、発泡ブロー成形体の損傷を観察した。落球試験は、5回実施された。なお、発泡ブロー成形体のうち落球が衝突した平らな部分(平坦部分)が撓み、平らな部分以外(平坦部分から外れた場所)に力がかかって発泡ブロー成形体が損傷した場合には、落球試験の回数に計上せずに、落球試験を再度行った。落球試験の結果に基づき、次の基準で発泡ブロー成形体の耐寒衝撃性を評価した。 (-10℃ falling ball test (1.5m, 1kg))
The foam blow molded article was placed in an atmosphere of -10° C. for 24 hours to condition it. The conditioned foam blow-molded product was placed on a test stand with the flat part facing upward, and a 1 kg iron ball was dropped from 1.5 meters above the flat part to test the foam blow-molded product. Observe for damage. The falling ball test was conducted five times. In addition, if the flat part (flat part) of the foam blow-molded body that the falling ball collided with is bent, and the foam blow-molded body is damaged due to force being applied to areas other than the flat part (places that are off the flat part), The falling ball test was performed again without counting the number of falling ball tests. Based on the results of the falling ball test, the cold impact resistance of the foam blow-molded product was evaluated based on the following criteria.
発泡ブロー成形体を-10℃の雰囲気下、24時間載置して状態調節を行った。状態調節を行った発泡ブロー成形体を、平坦部分を上に向けて試験台に載置し、1.5m上方から、1kgの鉄球を平らな部分に向けて落下させ、発泡ブロー成形体の損傷を観察した。落球試験は、5回実施された。なお、発泡ブロー成形体のうち落球が衝突した平らな部分(平坦部分)が撓み、平らな部分以外(平坦部分から外れた場所)に力がかかって発泡ブロー成形体が損傷した場合には、落球試験の回数に計上せずに、落球試験を再度行った。落球試験の結果に基づき、次の基準で発泡ブロー成形体の耐寒衝撃性を評価した。 (-10℃ falling ball test (1.5m, 1kg))
The foam blow molded article was placed in an atmosphere of -10° C. for 24 hours to condition it. The conditioned foam blow-molded product was placed on a test stand with the flat part facing upward, and a 1 kg iron ball was dropped from 1.5 meters above the flat part to test the foam blow-molded product. Observe for damage. The falling ball test was conducted five times. In addition, if the flat part (flat part) of the foam blow-molded body that the falling ball collided with is bent, and the foam blow-molded body is damaged due to force being applied to areas other than the flat part (places that are off the flat part), The falling ball test was performed again without counting the number of falling ball tests. Based on the results of the falling ball test, the cold impact resistance of the foam blow-molded product was evaluated based on the following criteria.
A(きわめて良好):発泡ブロー成形体が割れない。
B(良好):発泡ブロー成形体に割れが認められるが破片の飛び散りが認められない。
C(不良):発泡ブロー成形体が割れ、且つ、発泡ブロー成形体の割れた破片の飛び散りが認められる。 A (very good): The foam blow-molded product does not crack.
B (Good): Cracks are observed in the foam blow-molded product, but no scattering of fragments is observed.
C (Poor): The blow-molded foam was cracked, and the broken pieces of the blow-molded foam were scattered.
B(良好):発泡ブロー成形体に割れが認められるが破片の飛び散りが認められない。
C(不良):発泡ブロー成形体が割れ、且つ、発泡ブロー成形体の割れた破片の飛び散りが認められる。 A (very good): The foam blow-molded product does not crack.
B (Good): Cracks are observed in the foam blow-molded product, but no scattering of fragments is observed.
C (Poor): The blow-molded foam was cracked, and the broken pieces of the blow-molded foam were scattered.
それぞれの実施例、比較例について、-10℃落球試験を行うための発泡ブロー成形体として、10個のサンプルを準備し、各サンプルを用いて発泡ブロー成形体の耐寒衝撃性を評価し、評価結果がA又はBとなったサンプル数(良好サンプル数)を数えた。結果を表2、表3及び表4に示す。
For each Example and Comparative Example, 10 samples were prepared as foam blow-molded bodies for conducting a -10°C falling ball test, and each sample was used to evaluate the cold impact resistance of the foam blow-molded bodies. The number of samples with a result of A or B (number of good samples) was counted. The results are shown in Tables 2, 3 and 4.
(表面平滑性の評価)
発泡ブロー成形体の表面平滑性とは、発泡ブロー成形体の中空部の内面側表面の平滑性を示す。発泡ブロー成形体の表面平滑性は、中空状の発泡ブロー成形体における中空部の平坦部分を切り出して、その平坦部分における発泡ブロー成形体の内側表面を目視により観察することで、実施された。発泡ブロー成形体の表面平滑性は、次に示す基準で実施された。 (Evaluation of surface smoothness)
The surface smoothness of the foam blow-molded article refers to the smoothness of the inner surface of the hollow portion of the foam blow-molded article. The surface smoothness of the foam blow-molded article was measured by cutting out a flat part of the hollow part of the hollow foam blow-molding article and visually observing the inner surface of the foam blow-molded article in the flat part. The surface smoothness of the foam blow-molded product was measured according to the following criteria.
発泡ブロー成形体の表面平滑性とは、発泡ブロー成形体の中空部の内面側表面の平滑性を示す。発泡ブロー成形体の表面平滑性は、中空状の発泡ブロー成形体における中空部の平坦部分を切り出して、その平坦部分における発泡ブロー成形体の内側表面を目視により観察することで、実施された。発泡ブロー成形体の表面平滑性は、次に示す基準で実施された。 (Evaluation of surface smoothness)
The surface smoothness of the foam blow-molded article refers to the smoothness of the inner surface of the hollow portion of the foam blow-molded article. The surface smoothness of the foam blow-molded article was measured by cutting out a flat part of the hollow part of the hollow foam blow-molding article and visually observing the inner surface of the foam blow-molded article in the flat part. The surface smoothness of the foam blow-molded product was measured according to the following criteria.
A(良好):発泡ブロー成形体の中空部の内側表面を目視した場合に、隣接する凹凸の高低差(凹部の底位置と凸部の先端位置の差)が1mm以上となるような凹凸の形成箇所が、内側表面の100cm2の領域当たり1か所以下である(ただし、中空部の内側表面に凹凸が認められない場合を含む)。
B(不良):発泡ブロー成形体の中空部の内側表面を目視した場合に、隣接する凹凸の高低差(凹部の底位置と凸部の先端位置の差)が1mm以上となるような凹凸の形成箇所が、中空部の内側表面の100cm2の領域当たり2か所以上である。 A (good): When the inner surface of the hollow part of the foam blow-molded product is visually observed, the difference in height between adjacent irregularities (difference between the bottom position of the concave part and the tip position of the convex part) is 1 mm or more. The number of formation points is one or less per 100 cm 2 of the inner surface (including cases where no unevenness is observed on the inner surface of the hollow part).
B (Poor): When the inner surface of the hollow part of the foam blow-molded product is visually observed, the difference in height between adjacent asperities (difference between the bottom position of the concave part and the tip position of the convex part) is 1 mm or more. There are two or more formation locations per 100 cm 2 area on the inner surface of the hollow part.
B(不良):発泡ブロー成形体の中空部の内側表面を目視した場合に、隣接する凹凸の高低差(凹部の底位置と凸部の先端位置の差)が1mm以上となるような凹凸の形成箇所が、中空部の内側表面の100cm2の領域当たり2か所以上である。 A (good): When the inner surface of the hollow part of the foam blow-molded product is visually observed, the difference in height between adjacent irregularities (difference between the bottom position of the concave part and the tip position of the convex part) is 1 mm or more. The number of formation points is one or less per 100 cm 2 of the inner surface (including cases where no unevenness is observed on the inner surface of the hollow part).
B (Poor): When the inner surface of the hollow part of the foam blow-molded product is visually observed, the difference in height between adjacent asperities (difference between the bottom position of the concave part and the tip position of the convex part) is 1 mm or more. There are two or more formation locations per 100 cm 2 area on the inner surface of the hollow part.
表2、表3及び表4において、表面平滑性の欄には、上記評価結果の他に凹凸の形成箇所の認識箇所数を合わせて記載している。例えば、実施例1から5で得られた発泡ブロー成形体では、凹凸の形成箇所は、0(すなわち内側表面に凹凸が認められない)であった。
In Tables 2, 3, and 4, the column for surface smoothness includes the number of recognized unevenness formation locations in addition to the above evaluation results. For example, in the foam blow molded articles obtained in Examples 1 to 5, the number of unevenness formation locations was 0 (that is, no unevenness was observed on the inner surface).
実施例1から実施例5では、表2に示すように、耐寒衝撃性及び表面平滑性に優れた発泡ブロー成形体が得られていることが確認された。また、発泡ブロー成形体の曲げ弾性率も一般的にダクト等の用途で求められる剛性に対応する値を有していることが確認された。
In Examples 1 to 5, as shown in Table 2, it was confirmed that foam blow-molded products with excellent cold impact resistance and surface smoothness were obtained. It was also confirmed that the flexural modulus of the foam blow-molded product had a value corresponding to the rigidity generally required for applications such as ducts.
比較例1,2では、実施例2に比較して混合樹脂におけるポリオレフィン系樹脂とエラストマーの配合比率を変更しており、表3に示すように、発泡ブロー成形体に求められる耐衝撃性と表面平滑性の両立が得られなかった。
In Comparative Examples 1 and 2, the blending ratio of polyolefin resin and elastomer in the mixed resin was changed compared to Example 2, and as shown in Table 3, the impact resistance and surface required for the foam blow-molded product were improved. It was not possible to achieve both smoothness and smoothness.
比較例3から比較例6では、実施例1等に比較してエラストマーの種類を変更しており、表3及び表4に示すように、発泡ブロー成形体に求められる耐衝撃性と表面平滑性の両立が得られなかった。
In Comparative Examples 3 to 6, the type of elastomer was changed compared to Example 1, etc., and as shown in Tables 3 and 4, the impact resistance and surface smoothness required for foam blow-molded products were improved. It was not possible to achieve both.
比較例7及び比較例8では、実施例1等に比較して直線状ブロックポリプロピレン(a)の配合量を変更しており、表4に示すように、発泡ブロー成形体に求められる耐衝撃性と表面平滑性の両立が得られなかった。また、比較例7及び比較例8では、表4に示すように、実施例1から5に対して曲げ弾性率の値が低く、発泡ブロー成形体の剛性が不十分となっていた。
In Comparative Example 7 and Comparative Example 8, the blending amount of linear block polypropylene (a) was changed compared to Example 1, etc., and as shown in Table 4, the impact resistance required for the foam blow molded product was improved. It was not possible to achieve both surface smoothness and surface smoothness. Furthermore, in Comparative Examples 7 and 8, as shown in Table 4, the values of the flexural modulus were lower than those of Examples 1 to 5, and the rigidity of the foam blow-molded products was insufficient.
比較例9では、実施例1等で用いられた直線状ブロックポリプロピレンにかえて直線状ホモポリプロピレンに変更しており、表4に示すように、発泡ブロー成形体に求められる耐衝撃性と表面平滑性の両立が得られなかった。
In Comparative Example 9, linear homopolypropylene was used instead of the linear block polypropylene used in Example 1, etc., and as shown in Table 4, it achieved the impact resistance and surface smoothness required for a foam blow-molded product. I was unable to achieve sexual compatibility.
上述した本発明の製造方法及び実施例は、一例であり、本発明はこれに限定されない。本発明として開示された技術においては、例えば、分岐状ホモポリプロピレン(a1)の各種の属性を組み合わせてもよい。本発明として開示された技術では、例えば、分岐状ホモポリプロピレン(a1)が特定の溶融張力及び特定の融点を有してもよい。これらことは、分岐状ホモポリプロピレン(a1)のみならず、直鎖状ブロックポリプロピレン(a2)、オレフィン系熱可塑性エラストマー(B)、及び回収原料についても同様である。ただし、ここに挙げた組み合わせは、一例でありこれに限定されるものではない。
The manufacturing method and examples of the present invention described above are merely examples, and the present invention is not limited thereto. In the technology disclosed as the present invention, for example, various attributes of the branched homopolypropylene (a1) may be combined. In the technology disclosed as the present invention, for example, the branched homopolypropylene (a1) may have a specific melt tension and a specific melting point. The same applies not only to the branched homopolypropylene (a1) but also to the linear block polypropylene (a2), the olefin thermoplastic elastomer (B), and the recovered raw material. However, the combinations listed here are just examples and are not limited thereto.
Claims (5)
- ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂を発泡させた発泡パリソンをブロー成形する工程を含む発泡ブロー成形体の製造方法であって、
前記ポリオレフィン系樹脂(A)が、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなり、且つ、前記分岐状ホモポリプロピレン(a1)と前記直鎖状ブロックポリプロピレン(a2)との質量比[(a1):(a2)]が、50:50~93:7であり、
前記オレフィン系熱可塑性エラストマー(B)が、結晶性オレフィン重合体ブロックと共役ジエン化合物の重合体ブロックからなるトリブロック共重合体の水素添加物であり、
前記混合樹脂においては、前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である、発泡ブロー成形体の製造方法。 A method for producing a foamed blow-molded article, comprising the step of blow-molding a foamed parison formed by foaming a mixed resin of a polyolefin resin (A) and an olefinic thermoplastic elastomer (B),
The polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2) The mass ratio [(a1):(a2)] is 50:50 to 93:7,
The olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
In the mixed resin, the amount of the olefin thermoplastic elastomer (B) based on 100 parts by mass of the polyolefin resin (A) is 20 parts by mass or more and 40 parts by mass or less. - 前記オレフィン系熱可塑性エラストマー(B)の融点が80℃以上100℃以下である、
請求項1に記載の発泡ブロー成形体の製造方法。 The melting point of the olefinic thermoplastic elastomer (B) is 80°C or more and 100°C or less,
A method for producing a foam blow-molded article according to claim 1. - 前記直鎖状ブロックポリプロピレン(a2)の曲げ弾性率が1000MPa以上1500MPa以下である、
請求項1又は2に記載の発泡ブロー成形体の製造方法。 The linear block polypropylene (a2) has a flexural modulus of 1000 MPa or more and 1500 MPa or less,
The method for producing a foam blow-molded article according to claim 1 or 2. - 前記オレフィン系熱可塑性エラストマー(B)のメルトフローレイト(230℃、荷重2.16kg)が1g/10min以上10g/10min以下である、
請求項1から3のいずれか1項に記載の発泡ブロー成形体の製造方法。 The melt flow rate (230° C., load 2.16 kg) of the olefinic thermoplastic elastomer (B) is 1 g/10 min or more and 10 g/10 min or less,
A method for producing a foam blow-molded article according to any one of claims 1 to 3. - ポリオレフィン系樹脂(A)とオレフィン系熱可塑性エラストマー(B)との混合樹脂の発泡ブロー成形体であって、
前記ポリオレフィン系樹脂(A)が、分岐状ホモポリプロピレン(a1)と直鎖状ブロックポリプロピレン(a2)とからなり、且つ、前記分岐状ホモポリプロピレン(a1)と前記直鎖状ブロックポリプロピレン(a2)との質量比[(a1):(a2)]が、50:50~93:7であり、
前記オレフィン系熱可塑性エラストマー(B)が、結晶性オレフィン重合体ブロックと
共役ジエン化合物の重合体ブロックからなるトリブロック共重合体の水素添加物であり、
前記混合樹脂においては、前記ポリオレフィン系樹脂(A)100質量部に対する前記オレフィン系熱可塑性エラストマー(B)の配合量が、20質量部以上40質量部以下である、発泡ブロー成形体。 A foam blow-molded product of a mixed resin of a polyolefin resin (A) and an olefin thermoplastic elastomer (B),
The polyolefin resin (A) consists of a branched homopolypropylene (a1) and a linear block polypropylene (a2), and the branched homopolypropylene (a1) and the linear block polypropylene (a2) The mass ratio [(a1):(a2)] is 50:50 to 93:7,
The olefin thermoplastic elastomer (B) is a hydrogenated product of a triblock copolymer consisting of a crystalline olefin polymer block and a conjugated diene compound polymer block,
In the mixed resin, the foamed blow-molded article has a blending amount of the olefin thermoplastic elastomer (B) with respect to 100 parts by mass of the polyolefin resin (A) from 20 parts by mass to 40 parts by mass.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-115020 | 2022-07-19 | ||
JP2022115020A JP2024013089A (en) | 2022-07-19 | 2022-07-19 | Method for manufacturing foam blow molding, and foam blow molding |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024019042A1 true WO2024019042A1 (en) | 2024-01-25 |
Family
ID=89617725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/026245 WO2024019042A1 (en) | 2022-07-19 | 2023-07-18 | Method for producing foam blow molded body, and foam blow molded body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024013089A (en) |
WO (1) | WO2024019042A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009243860A (en) * | 2008-03-31 | 2009-10-22 | Kyoraku Co Ltd | Lightweight air conditioning duct |
JP2018141031A (en) * | 2017-02-27 | 2018-09-13 | キョーラク株式会社 | Resin for foam molding, foam molding and method for producing the same |
WO2020059112A1 (en) * | 2018-09-21 | 2020-03-26 | 株式会社ジェイエスピー | Method for producing polypropylene resin foam molding |
JP2020132856A (en) * | 2019-02-15 | 2020-08-31 | 日本ポリプロ株式会社 | Polypropylene-based resin composition, and foam sheet |
JP2022115508A (en) * | 2021-01-28 | 2022-08-09 | 株式会社ジェイエスピー | Foam blow molded article |
CN115232396A (en) * | 2022-07-12 | 2022-10-25 | 广州汽车集团股份有限公司 | Polypropylene composite material, automobile air pipe and preparation method thereof |
-
2022
- 2022-07-19 JP JP2022115020A patent/JP2024013089A/en active Pending
-
2023
- 2023-07-18 WO PCT/JP2023/026245 patent/WO2024019042A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009243860A (en) * | 2008-03-31 | 2009-10-22 | Kyoraku Co Ltd | Lightweight air conditioning duct |
JP2018141031A (en) * | 2017-02-27 | 2018-09-13 | キョーラク株式会社 | Resin for foam molding, foam molding and method for producing the same |
WO2020059112A1 (en) * | 2018-09-21 | 2020-03-26 | 株式会社ジェイエスピー | Method for producing polypropylene resin foam molding |
JP2020132856A (en) * | 2019-02-15 | 2020-08-31 | 日本ポリプロ株式会社 | Polypropylene-based resin composition, and foam sheet |
JP2022115508A (en) * | 2021-01-28 | 2022-08-09 | 株式会社ジェイエスピー | Foam blow molded article |
CN115232396A (en) * | 2022-07-12 | 2022-10-25 | 广州汽车集团股份有限公司 | Polypropylene composite material, automobile air pipe and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2024013089A (en) | 2024-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100978771B1 (en) | A polypropylene resin hollow molded foam article and a process for the production thereof | |
KR101639466B1 (en) | Method for producing polypropylene-based resin foamed blow-molded article | |
EP3309197B1 (en) | Propylene resin foamed particle and foamed particle molded body | |
US8448671B2 (en) | Light-weight air conditioning duct for vehicle | |
JP5360975B2 (en) | Method for producing polyethylene resin foam blow molded article and polyethylene resin foam blow molded article | |
US20060194892A1 (en) | Blended foam having improved flexibility at sub-freezing temperatures | |
US20170037214A1 (en) | Foamable masterbatch and polyolefin resin composition with excellent expandability and direct metallizing property | |
WO2020059112A1 (en) | Method for producing polypropylene resin foam molding | |
JP5428061B2 (en) | Foam blow molded product | |
WO2024019042A1 (en) | Method for producing foam blow molded body, and foam blow molded body | |
JP2022115508A (en) | Foam blow molded article | |
JP2020093562A (en) | Air-conditioning duct for vehicle | |
JP2006175825A (en) | Composite molded body | |
JP4963266B2 (en) | Polypropylene resin injection foam | |
JP7433116B2 (en) | Polypropylene resin composition for injection foam molding and injection foam polypropylene resin composition molded article using the same | |
JP4283027B2 (en) | Polypropylene resin composition and foamed molded body thereof | |
JP2004082332A (en) | Polypropylene resin foamed molded product with skin layer and its manufacturing method | |
JP7519233B2 (en) | Method for producing blow molded polyolefin resin foam | |
JP7191495B2 (en) | Expandable polyolefin composition and method | |
US20220010084A1 (en) | Foam Composition for Vehicle Seat Cushion, Foam for Vehicle Seat Cushion, and Manufacturing Method Therefor | |
JP2014058624A (en) | Polyethylene resin-based foamed hollow molded product | |
JP2024116465A (en) | Method for producing blow molded foam | |
JP2011037922A (en) | Melt tension improver for thermoplastic elastomer, and thermoplastic elastomer composition comprising the same | |
KR101928927B1 (en) | Olefin block copolymer foam particle with excellent impact resistance | |
JP5464888B2 (en) | Lightweight air conditioning duct for vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23842965 Country of ref document: EP Kind code of ref document: A1 |