WO2024018828A1 - Ultrafine polyphenylene sulfide fiber, nonwoven fabric, and methods for producing same - Google Patents

Ultrafine polyphenylene sulfide fiber, nonwoven fabric, and methods for producing same Download PDF

Info

Publication number
WO2024018828A1
WO2024018828A1 PCT/JP2023/023495 JP2023023495W WO2024018828A1 WO 2024018828 A1 WO2024018828 A1 WO 2024018828A1 JP 2023023495 W JP2023023495 W JP 2023023495W WO 2024018828 A1 WO2024018828 A1 WO 2024018828A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene sulfide
fibers
fiber
ultrafine
nonwoven fabric
Prior art date
Application number
PCT/JP2023/023495
Other languages
French (fr)
Japanese (ja)
Inventor
大士 勝田
将太 竹下
匠平 土屋
有希 二ノ宮
茂俊 前川
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024018828A1 publication Critical patent/WO2024018828A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/551Resins thereof not provided for in groups D04H1/544 - D04H1/55

Definitions

  • the present invention relates to ultrafine polyphenylene sulfide fibers having excellent adhesiveness and dispersibility, nonwoven fabrics made from the same, and methods for producing them.
  • polyphenylene sulfide In addition to having high heat resistance, chemical resistance, electrical insulation, and flame retardancy, polyphenylene sulfide also has excellent mechanical properties and moldability, making it suitable for use as a metal substitute and resistant to extreme environments. It is widely used as a material for obtaining Polyphenylene sulfide fibers made from polyphenylene sulfide are used in applications such as bag filters, papermaking canvas, electrical insulation paper, battery separators, and various diaphragms by taking advantage of the above properties.
  • nonwoven fabrics used for the above-mentioned applications are required to be thinner and have a lower basis weight for the purpose of making devices smaller, lighter, and higher in performance.
  • problems such as the nonwoven fabrics being easily broken due to minute tension fluctuations during the manufacturing process, and being easily torn by contact with the edges or burrs of other components during the modularization process. be. Therefore, with the aim of improving the strength, various studies have been made to increase the strength and adhesiveness of binder fibers, which are components that contribute to adhesion between fibers that make up nonwoven fabrics.
  • the binder fibers must also be made of polyphenylene sulfide in order not to impair the heat resistance and chemical resistance of polyphenylene sulfide.
  • a nonwoven fabric characterized by containing ultrafine acid-resistant fibers A with a fiber diameter of 2 ⁇ m or less and acid-resistant fibers B with a fiber diameter larger than the acid-resistant fibers A See, for example, Patent Document 2
  • a nonwoven fabric characterized by containing polyphenylene sulfide fibers having an irregular cross section and polyphenylene sulfide fibers having a circular cross section with a fiber diameter of 5 ⁇ m or less has been proposed (for example, (See Patent Document 3).
  • polyphenylene sulfide undrawn fibers produced by a melt-spinning method are subjected to relaxation heat treatment to shrink within the manufacturing process, thereby making it possible to obtain polyphenylene sulfide fibers with a low heat shrinkage rate.
  • the polyphenylene sulfide undrawn fibers obtained by this method have a substantially large fiber diameter, it is difficult to obtain a thin fabric or a low basis weight nonwoven fabric.
  • Patent Document 2 and Patent Document 4 relate to nonwoven fabrics using ultrafine polyphenylene sulfide fibers with a fiber diameter of 2 ⁇ m or less. Although this technology makes it possible to improve the performance of nonwoven fabrics, it is difficult to obtain thin fabrics or nonwoven fabrics with low basis weights because the binder fibers used are common undrawn polyphenylene sulfide yarns. Have difficulty.
  • Patent Document 3 uses polyphenylene sulfide fibers with irregular cross sections and circular cross-sectional polyphenylene sulfide fibers with a fiber diameter of 5 ⁇ m or less, so that paper breakage does not occur during production using a wet papermaking method. It is possible to obtain a nonwoven fabric that is difficult to use. However, the effect of improving the strength of the nonwoven fabric obtained by this method is limited, and when trying to make a thin fabric or a low basis weight nonwoven fabric that is required in recent years, it is difficult to achieve a strength that can be used for practical purposes. It is.
  • an object of the present invention was to provide an ultrafine polyphenylene sulfide fiber having excellent adhesiveness and water dispersibility, a nonwoven fabric made from the same, and a method for producing the same. be.
  • the present inventors have conducted studies and found that in order to make nonwoven fabrics made of polyphenylene sulfide fibers thinner, lower in weight, and stronger, binder fibers that contribute to adhesion between fibers among the fibers that make up nonwoven fabrics should be used. It has been found that reducing the fiber diameter is effective. On the other hand, when trying to reduce the fiber diameter, methods are used such as drawing undrawn yarn or eluting and removing the sea component of sea-island fibers with a high-temperature solution, but crystallization progresses due to molecular orientation and exposure to heat. However, the binder fibers obtained had low adhesiveness.
  • the present inventors conducted further intensive studies and found that even when the fiber diameter is reduced, the degree of crystallinity calculated by differential scanning calorimetry falls within a specific range. It was discovered that by doing so, ultrafine polyphenylene sulfide fibers having excellent adhesiveness and dispersibility could be obtained, and the present invention was completed.
  • the present invention aims to solve the above-mentioned problems, and the ultrafine polyphenylene sulfide fiber of the present invention has an average fiber diameter of 0.2 ⁇ m or more and 5.0 ⁇ m or less, and has a crystallization value calculated by differential scanning calorimetry.
  • the degree of oxidation is 0% or more and 15% or less.
  • the ultrafine polyphenylene sulfide fiber is a fiber with a modified cross section, and has a degree of irregularity defined by the following formula of 1.2 or more.
  • Degree of irregularity Minimum circumscribed circle diameter / Maximum inscribed circle diameter
  • the minimum circumscribed circle diameter is the diameter ( ⁇ m) of the smallest circle that includes all of the fiber cross sections
  • the maximum inscribed circle diameter is the diameter of the smallest circle that includes the entire fiber cross section. This is the diameter of a large circle ( ⁇ m).
  • the average fiber length is 0.1 mm or more and 6.0 mm or less.
  • the method for producing ultrafine polyphenylene sulfide fibers of the present invention involves removing the sea component from an undrawn fiber having a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component in an alkaline aqueous solution at a temperature of 70° C. or lower to obtain an average fiber diameter of
  • This is a method for producing ultrafine polyphenylene sulfide fibers, in which fibers have a crystallinity of 0.2 ⁇ m or more and 5.0 ⁇ m or less and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
  • the method for producing a nonwoven fabric of the present invention includes mixing the ultrafine polyphenylene sulfide fibers and stretched polyphenylene sulfide fibers in a papermaking dispersion liquid to make paper, and then subjecting the nonwoven fabric to thermocompression bonding at a temperature of 130°C or higher and 250°C or lower. This is the manufacturing method.
  • ultrafine polyphenylene sulfide fibers having excellent adhesiveness and dispersibility can be obtained.
  • FIG. 1 is a conceptual diagram for explaining an example of the fiber cross section of the ultrafine polyphenylene sulfide fiber of the present invention and a method for measuring the degree of irregularity.
  • the ultrafine polyphenylene sulfide fiber of the present invention has an average fiber diameter of 0.2 ⁇ m or more and 5.0 ⁇ m or less, and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
  • the constituent elements will be described in detail below, but the present invention is not limited to the scope described below unless it exceeds the gist thereof.
  • the polyphenylene sulfide according to the present invention is a polymer composed of diphenylene sulfide units such as p-phenylene sulfide units represented by structural formula (1) and m-phenylene sulfide units as a main repeating unit.
  • the polyphenylene sulfide according to the present invention preferably contains 60 mol% or more of p-phenylene sulfide units.
  • the fiber has excellent heat resistance.
  • it becomes a nonwoven fabric with excellent strength.
  • the polyphenylene sulfide according to the present invention may contain copolymerized units other than the above-mentioned diphenylene sulfide units as long as the effects of the present invention are not impaired.
  • copolymerized units other than diphenylene sulfide units include aromatic sulfides such as triphenylene sulfide and biphenylene sulfide, and alkyl-substituted and halogen-substituted products thereof.
  • the polyphenylene sulfide according to the present invention includes inorganic substances such as titanium oxide, silica, barium oxide, and calcium carbonate, coloring agents such as dyes and pigments, flame retardants, and optical brighteners, to the extent that the effects of the present invention are not impaired. , antioxidants, and various additives such as ultraviolet absorbers.
  • the ultrafine polyphenylene sulfide fibers of the present invention may be not only monocomponent fibers but also composite fibers made of two or more types of resins.
  • the ultrafine polyphenylene sulfide fiber is a composite fiber
  • its composite form is not particularly limited as long as it does not impair the effects of the present invention, and may include a core-sheath type, a sea-island type, a side-by-side type, an eccentric core-sheath type, and a blend type. You can select as appropriate from among the following.
  • the resin used together with the above-mentioned polyphenylene sulfide has a copolymerization ratio of m-phenylene sulfide units from the viewpoint of process stability and flexibility in the manufacturing process.
  • Different polyphenylene sulfides are preferably used.
  • the core component is polyphenylene sulfide made of only p-phenylene sulfide units
  • the sheath component is polyphenylene sulfide copolymerized with m-phenylene sulfide units
  • the sea component may be polyphenylene sulfide consisting only of p-phenylene sulfide units
  • the island component may be polyphenylene sulfide copolymerized with m-phenylene sulfide units.
  • the cross-sectional shape of the ultrafine polyphenylene sulfide fiber of the present invention is not limited in any way, and includes not only a round cross section but also a multilobal cross section such as a Y-shaped cross section and a triangular cross-section, a flat cross-section, an S-shaped cross section, a cross cross section, and a hollow cross section. It can be made into any irregular cross-sectional shape such as.
  • the ultrafine polyphenylene sulfide fiber of the present invention preferably has a degree of irregularity defined by the following formula of 1.2 or more.
  • the degree of irregularity is not particularly limited, but the upper limit that can be achieved in the present invention is about 500.
  • the degree of irregularity referred to here is measured by the method described below, and will be explained in detail using FIG. 1.
  • FIG. 1 shows an example of the fiber cross section of the ultrafine polyphenylene sulfide fiber of the present invention.
  • an image of the cross section of the fiber is taken using a scanning electron microscope at a magnification that allows observation of a single fiber.
  • the minimum circumscribed circle and maximum inscribed circle in the cross section are plotted using image analysis software, and the degree of irregularity is calculated from the following formula. This is measured for 20 arbitrarily extracted fibers, a simple numerical average is obtained, and the result is rounded off to the second decimal place.
  • Degree of irregularity Minimum circumscribed circle diameter / Maximum inscribed circle diameter
  • the minimum circumscribed circle diameter is the diameter ( ⁇ m) of the smallest circle that includes the entire fiber cross section
  • the maximum inscribed circle diameter is the diameter of the smallest circle that includes the entire fiber cross section. This is the diameter of a large circle ( ⁇ m).
  • the average fiber diameter of the ultrafine polyphenylene sulfide fiber of the present invention is 0.2 ⁇ m or more and 5.0 ⁇ m or less.
  • the average fiber diameter is 0.2 ⁇ m or more, preferably 0.4 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the fibers become less entangled and the dispersibility of the fibers improves. Improved uniformity.
  • the average fiber diameter is 5.0 ⁇ m or less, preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, the number of fibers constituting the same fineness and same basis weight increases, so when used as a binder. The number of bonding points increases, resulting in a nonwoven fabric with excellent strength.
  • the average fiber diameter ( ⁇ m) of the fibers referred to here is determined as follows. (1) An image of the cross section of the fiber is taken using a scanning electron microscope at a magnification that allows observation of a single fiber. (2) Using the photographed image, use image analysis software to measure the area Af ( ⁇ m 2 ) formed by the cross-sectional outline of the single fiber, and calculate the diameter of a perfect circle that has the same area as this area Af. do. (3) Measure this on 100 arbitrarily extracted fibers, obtain a simple numerical average, calculate the average fiber diameter ( ⁇ m), and round to the second decimal place.
  • the ultrafine polyphenylene sulfide fibers of the present invention can be used as long fibers, but they can also be cut into short fibers by cutting the fibers to a certain length before being processed into nonwoven fabrics or the like.
  • the average fiber length is preferably 0.1 mm or more and 6.0 mm or less.
  • the average fiber length is preferably 0.1 mm or more, more preferably 0.2 mm or more, and still more preferably 0.3 mm or more.
  • the fibers are less likely to fall off during the processing step into a nonwoven fabric.
  • the average fiber length is preferably 6.0 mm or less, more preferably 4.0 mm or less, and even more preferably 2.0 mm or less, the fibers become less entangled with each other and the dispersibility of the fibers improves. The quality will improve when
  • the average fiber length of the fibers mentioned here is determined based on "8.4.1. Average fiber length (c direct method)" of JIS L1015:2010 “Chemical fiber staple test method”.
  • the ultrafine polyphenylene sulfide fiber of the present invention has a degree of crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
  • the fiber can be easily handled in higher-order processes.
  • the crystallinity to 15% or less, preferably 12% or less, more preferably 10% or less, and still more preferably 9% or less, polyphenylene sulfide fibers with excellent adhesive properties, which are suitable for binder fibers, can be obtained. .
  • the crystallinity (%) of the fiber referred to here is determined as follows. (1) After weighing out approximately 5 mg of fiber using an electronic balance, set the fiber in a differential scanning calorimeter and perform differential scanning under nitrogen, heating rate of 16°C/min, and measurement temperature range of 50 to 320°C. Perform calorimetry. (2) Calculate the heat of crystallization ⁇ Hc (J/g) from the area of the exothermic peak in the obtained measurement results (DSC curve), and calculate the heat of crystallization ⁇ Hm (J/g) from the area of the endothermic peak. In addition, when multiple exothermic peaks or endothermic peaks are observed, ⁇ Hc and ⁇ Hm are calculated from the sum of the areas of all the peaks. (3) Measure three times by changing the measurement position for each level, obtain a simple numerical average value, calculate ⁇ Hc and ⁇ Hm, and then calculate the degree of crystallinity (%) using the following formula (1). , round to the first decimal place.
  • Crystallinity (%) ( ⁇ Hm- ⁇ Hc)/ ⁇ Hm 0 ⁇ 100 (1)
  • ⁇ Hm 0 is the heat of fusion of a complete crystal (J/g), and in the case of polyphenylene sulfide, 140.1 J/g is generally used.
  • the nonwoven fabric of the present invention is a nonwoven fabric containing the above-mentioned ultrafine polyphenylene sulfide fibers.
  • ultrafine polyphenylene sulfide fibers By including ultrafine polyphenylene sulfide fibers, the number of fibers constituting the nonwoven fabric increases, resulting in a nonwoven fabric that is resistant to tearing and has excellent strength. In addition, since the constituent fibers themselves become thinner, a thinner nonwoven fabric can be obtained.
  • the proportion of the ultrafine polyphenylene sulfide fibers in the nonwoven fabric of the present invention is preferably 10% by mass or more and 80% by mass or less.
  • the proportion of the ultrafine polyphenylene sulfide fibers is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, the number of fibers constituting the nonwoven fabric increases, thereby improving adhesion between fibers.
  • the number of dots increases, resulting in a nonwoven fabric with excellent mechanical properties.
  • the proportion of the ultrafine polyphenylene sulfide fibers to preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less, a nonwoven fabric with appropriate air permeability and flexibility can be obtained.
  • Fibers other than the ultrafine polyphenylene sulfide contained in the nonwoven fabric of the present invention are not particularly limited, but include polyphenylene sulfide, polypropylene, polyethylene, poly-4-methylpentene-1, polycarbonate, polyacrylate, polyethylene terephthalate, polybutylene terephthalate, and Examples include fibers made of methylene terephthalate, polyethylene naphthalate, polylactic acid, aromatic polyester, polyamide, aromatic polyamide, thermoplastic polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, and copolymers thereof. Among these, fibers made of polyphenylene sulfide are preferably used from the viewpoint of chemical resistance, heat resistance, and adhesiveness with ultrafine polyphenylene sulfide fibers.
  • the basis weight of the nonwoven fabric of the present invention is preferably 2 g/m 2 or more and 80 g/m 2 or less.
  • the basis weight is preferably 2 g/m 2 or more, more preferably 5 g/m 2 or more, the nonwoven fabric has excellent strength.
  • the nonwoven fabric has excellent flexibility.
  • the basis weight (g/m 2 ) of nonwoven fabric mentioned here is measured by the following procedure in accordance with "6.2 Mass per unit area (ISO method)" of JIS L1913:2010 "General nonwoven fabric test method”. , is the calculated value.
  • (1) Take a 20 cm x 25 cm test piece from the nonwoven fabric.
  • (2) For the sampled test piece, measure the mass (g) in a standard state and convert it to mass per 1 m 2 of area (g/m 2 ).
  • the measurement is carried out three times by changing the sampling point of the test piece, and the value obtained by rounding off the arithmetic mean value to the first decimal place is calculated as the basis weight (g/m 2 ).
  • the thickness of the nonwoven fabric of the present invention is preferably 170 ⁇ m or less.
  • the nonwoven fabric has appropriate air permeability and flexibility.
  • the lower limit of the thickness of the nonwoven fabric of the present invention is not particularly limited, but in order to obtain a nonwoven fabric with practical strength, it is preferably 2 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the thickness ( ⁇ m) of the nonwoven fabric referred to here is based on JIS P8118:2014 "Paper and paperboard - Test method for thickness, density and specific volume”.
  • the thickness of 20 test pieces was measured one by one using a thickness meter (for example, "Micrometer” manufactured by Mitutoyo Co., Ltd.), and the thickness ( ⁇ m) of the nonwoven fabric was calculated by taking a simple number average. , the value is rounded to the first decimal place.
  • the strength of the nonwoven fabric of the present invention is preferably 10 N/15 mm or more.
  • the strength of the nonwoven fabric is preferably 10 N/15 mm or more, more preferably 15 N/15 mm or more, and even more preferably 20 N/15 mm or more.
  • the upper limit of the strength of the nonwoven fabric of the present invention is not particularly limited, but the strength that the nonwoven fabric of the present invention can achieve is about 100 N/15 mm.
  • the strength of the nonwoven fabric (N/15mm) referred to here means that a nonwoven fabric cut into a sample width of 15mm is tested using a tensile tester Tensilon (for example, UTM-III-100 manufactured by Orientech Co., Ltd.). The value of the maximum point load was measured under the conditions of initial length 20 mm and tensile speed 20 mm/min, and the strength of the nonwoven fabric (N/15 mm) was calculated by taking the simple numerical average of the 5 measured values, and the first decimal place was calculated. This is a rounded value.
  • Tensilon for example, UTM-III-100 manufactured by Orientech Co., Ltd.
  • the strength per unit weight of the nonwoven fabric of the present invention is preferably 0.25 (N/15 mm)/(g/m 2 ) or more.
  • the strength of the nonwoven fabric is preferably 0.25 (N/15 mm)/(g/m 2 ) or more, more preferably 0.38 (N/15 mm)/(g/m 2 ) or more, and even more preferably 0.50.
  • (N/15 mm)/(g/m 2 ) or more provides a tear-resistant nonwoven fabric suitable for diaphragm applications and filter applications.
  • the upper limit of the strength of the nonwoven fabric of the present invention is not particularly limited, the strength that the nonwoven fabric of the present invention can achieve is about 2.50 (N/15 mm)/(g/m 2 ).
  • the strength per area of nonwoven fabric ((N/15mm)/(g/m 2 )) referred to here is calculated by dividing the strength of the nonwoven fabric determined above by the area weight, and dividing the value to the third decimal place. This is a rounded value.
  • the ultrafine polyphenylene sulfide fiber of the present invention and the nonwoven fabric made from it not only have excellent long-term heat resistance, but also have chemical resistance, mechanical properties, electrical insulation properties, and flame retardancy. It can be used for diaphragm applications such as hydrogen production equipment diaphragms, fuel cell diaphragms, battery diaphragms, electrode diaphragms, and reinforcement materials for these diaphragms, bag filters, chemical filters, food filters, chemical filters, oil filters, engine oil filters, and air filters.
  • Filter applications such as cleaning filters, paper applications such as electrical insulating paper, heat-resistant workwear applications such as firefighting uniforms, safety clothing, laboratory workwear, thermal clothing, flame-retardant clothing, papermaking felt, heat-resistant felt, mold release materials, It can be suitably used for various applications such as paper dryer canvas, heart patch, artificial skin, printed circuit board base material, copy rolling cleaner, ion exchange base material, oil retaining material, insulation material, cushioning material, net conveyor, etc. Although it can be preferably used for diaphragm applications and paper applications where thinning and low basis weight are required, it is not limited to these applications.
  • the method for producing ultrafine polyphenylene sulfide fibers of the present invention involves removing the sea component from an undrawn fiber having a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component in an alkaline aqueous solution at a temperature of 70° C. or lower to obtain an average fiber diameter of
  • This is a method for producing ultrafine polyphenylene sulfide fibers, in which fibers have a crystallinity of 0.2 ⁇ m or more and 5.0 ⁇ m or less and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
  • vacuum drying at 100 to 200° C. for 1 to 24 hours is usually used.
  • melt spinning a melt spinning method using an extruder such as a pressure melter type, single screw extruder type, or twin screw extruder type can be applied.
  • the extruded polyphenylene sulfide passes through piping, is measured by a metering device such as a gear pump, passes through a filter to remove foreign substances, and then is guided to a spinneret.
  • the temperature from the polymer piping to the spinneret is preferably 290° C. or higher to improve fluidity, and preferably 380° C. or lower to suppress thermal decomposition of the polymer.
  • the ultrafine polyphenylene sulfide fiber of the present invention can be obtained by removing the polymer of the sea component of a sea-island composite fiber having a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component.
  • the cross-sectional shape of the ultrafine polyphenylene sulfide fiber of the present invention is almost the same as the cross-sectional shape of the island component of the above-mentioned sea-island composite fiber, so the cross-sectional shape of the island component can be made into any shape. , it becomes possible to obtain ultrafine polyphenylene sulfide fibers having a desired cross-sectional shape.
  • the method for controlling the cross-sectional shape of the island component is not particularly limited, but preferred methods include, for example, the methods disclosed in JP-A No. 2010-216042 and JP-A No. 2016-188454.
  • An easily soluble polymer is suitably used for the sea component of the above-mentioned sea-island composite fiber.
  • the easily soluble polymers mentioned here include, for example, melt-molded polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polypropylene, polyolefin, polycarbonate, polyacrylate, polyamide, polylactic acid, thermoplastic polyurethane, etc. selected from possible polymers and copolymers thereof.
  • the sea component is preferably a copolymerized polyester, polylactic acid, polyvinyl alcohol, etc.
  • a polyester obtained by copolymerizing a single polyester, or a polyester obtained by copolymerizing a polyethylene glycol in combination in order to further improve dissolution properties.
  • thermal decomposition of the easily eluted polymer progresses during spinning, the cross-sectional formability and spinnability of the conjugate fiber will deteriorate, so that it is required to be difficult to thermally decompose at the above-mentioned spinning temperature, that is, to have high heat resistance.
  • a polyester obtained by homo-copolymerizing 5-sodium sulfoisophthalic acid is more preferable.
  • the copolymerized amount of 5-sodium sulfoisophthalic acid is 2 mol% or more and 20 mol% or less. is preferred.
  • the copolymerization amount of 5-sodium sulfoisophthalic acid is preferably 2 mol% or more, more preferably 3 mol% or more, solubility in aqueous solvents is improved, so when used as the sea component of a sea-island composite fiber, Sea components can be easily removed.
  • the copolymerization amount of 5-sodium sulfoisophthalic acid to preferably 20 mol% or less, more preferably 15 mol% or less, a polymer with excellent heat resistance can be obtained.
  • the sea-island type composite fiber used in the present invention is produced by melting polyphenylene sulfide and other component polymers separately, then measuring them using a known measuring device such as a gear pump via polymer piping, and passing through a filter to remove foreign substances. , respectively leading to the spinneret.
  • the respective polymers introduced into the spinneret are combined into an arbitrary composite form within the spinneret, and are discharged from the spinneret hole as sea-island composite fibers.
  • the spinneret used for discharging preferably has a diameter D of the spinneret hole of 0.1 mm or more and 0.6 mm or less, and a land length L of the spinneret hole (the length of the straight pipe part that is the same as the diameter of the spinneret hole).
  • L/D which is defined as the quotient obtained by dividing L) by the pore diameter, is preferably 1 or more and 10 or less.
  • the shape and cross-sectional area of the island component in the sea-island composite fiber may be the same as the area of the fiber cross-section calculated from the above-mentioned fiber shape and average fiber diameter.
  • polyphenylene sulfide which is an island component
  • the number of island components in the sea-island composite fiber is not particularly limited, but is preferably 20 or more and 4000 or less.
  • the number of island components is preferably 20 or more, more preferably 100 or more, and even more preferably 200.
  • the diameter of the island components can be reduced, and therefore the average fiber diameter of the ultrafine polyphenylene sulfide fiber can be reduced. It becomes possible.
  • the number of island components is preferably 4000 or less, more preferably 3000 or less, the fiber cross-sectional formability becomes good, so that fibers with small variations in fiber diameter can be obtained.
  • the sea-island composite fibers discharged from the die hole are cooled and solidified by blowing cooling air (air) onto them.
  • the temperature of the cooling air can be determined in balance with the cooling air speed from the viewpoint of cooling efficiency, but it is preferably 30° C. or lower. By setting the temperature of the cooling air to preferably 30° C. or lower, solidification behavior due to cooling is stabilized, resulting in fibers with high uniformity in fiber diameter.
  • the cooling air be allowed to flow through the undrawn fibers discharged from the die in a direction substantially perpendicular to the fiber axis.
  • the speed of the cooling air is preferably 10 m/min or more from the viewpoint of cooling efficiency and uniformity of fineness, and preferably 100 m/min or less from the viewpoint of yarn spinning stability.
  • the undrawn fibers that have been cooled and solidified are taken up by a roller (godet roller) that rotates at a constant speed.
  • the drawing speed is preferably 300 m/min or more in order to improve linear uniformity and productivity, and preferably 1500 m/min or less in order to prevent the orientation of molecular chains from proceeding.
  • the undrawn fibers thus obtained are subjected to the next step without being drawn.
  • the obtained undrawn fibers may be crimped using a crimper and fixed in shape using a setter at a temperature of 70° C. or lower, if necessary.
  • crimping the fibers become entangled with each other, thereby increasing the adhesion area between the fibers, making it possible to obtain a nonwoven fabric with excellent mechanical strength.
  • the number of crimps in the above crimps is preferably 2 crimps/25 mm or more and 15 crimps/25 mm or less.
  • the number of crimps in the above crimps is preferably 2 crimps/25 mm or more and 15 crimps/25 mm or less.
  • short fibers can be obtained by cutting the obtained sea-island composite fiber into a predetermined length with a cutter.
  • the fiber length of the short fibers is preferably 0.1 mm or more and 6.0 mm or less.
  • the average fiber length is preferably 0.1 mm or more, more preferably 0.2 mm or more, and still more preferably 0.3 mm or more.
  • the fibers are less likely to fall off during the processing step into a nonwoven fabric.
  • the average fiber length to preferably 6.0 mm or less, more preferably 4.0 mm or less, and even more preferably 2.0 mm or less, the fibers become less entangled with each other and the dispersibility of the fibers improves. When this happens, the uniformity of the basis weight improves.
  • shortening using a cutter may be carried out after obtaining ultrafine polyphenylene sulfide fibers by the method described below.
  • the sea-island composite fibers described above may be immersed in a solvent capable of dissolving the sea component to remove the sea component polymer.
  • a solvent capable of dissolving the sea component to remove the sea component polymer.
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution can be used as the solvent.
  • the bath ratio of the sea-island composite fiber and the alkaline aqueous solution is preferably 1/10,000 or more and 1/5 or less, and 1/5,000 or more and 1/5 or less. It is more preferable that it is /10 or less. By setting it within this range, it is possible to suppress the ultrafine fibers from unnecessarily intertwining with each other when the sea component is dissolved.
  • the alkali concentration of the alkaline aqueous solution is preferably 0.1% by mass or more and 5.0% by mass or less, more preferably 0.5% by mass or more and 3% by mass or less. By setting it within this range, the dissolution of the sea components can be completed in a short time.
  • the temperature of the alkaline aqueous solution when removing sea components is 70°C or lower.
  • the temperature of the alkaline aqueous solution is 70°C or lower, preferably 65°C or lower, more preferably 60°C or lower, crystallization does not proceed during the elution process, resulting in ultrafine polyphenylene sulfide with low crystallinity and excellent adhesive properties. Fiber can be obtained.
  • the treatment time with the alkaline aqueous solution is preferably 10 minutes or more and 100 minutes or less.
  • the treatment time is preferably 10 minutes or more, more preferably 20 minutes or more, it becomes difficult for the sea component to remain undissolved, resulting in ultrafine polyphenylene sulfide fibers having excellent dispersibility.
  • a surfactant to the above alkaline aqueous solution as a dissolution promoter for the sea component.
  • the surfactant include cationic surfactants, anionic surfactants, nonionic surfactants, etc., but when polyester is used as the easily soluble polymer, cationic surfactants are preferably used.
  • the surfactant concentration in the alkaline aqueous solution is preferably 0.05% by mass or more and 2% by mass or less, and preferably 0.1% by mass or more and 1% by mass or less based on the weight of the alkaline aqueous solution. More preferred. By setting the temperature within this range, it is possible to complete the dissolution of sea components in a short time even at a temperature of 70° C. or lower.
  • a papermaking liquid can be prepared by using short fibers made of ultrafine polyphenylene sulfide fibers obtained as described above as binder fibers and dispersing them together with binder fibers in water. Note that polyphenylene sulfide drawn fibers are usually used as the binder fibers.
  • the ratio of binder fibers to binder fibers in the papermaking liquid is preferably 10% by mass or more and 80% by mass or less.
  • the ratio of the binder fiber to the binder fiber is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more.
  • the number of bonding points between the fibers increases, resulting in excellent mechanical properties. It becomes a non-woven fabric.
  • the ratio of binder fibers to binder fibers to preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less, a nonwoven fabric with appropriate air permeability and flexibility can be obtained. Become.
  • a nonwoven fabric can be obtained by supplying the above papermaking liquid to a papermaking machine. Note that by adjusting the fiber concentration of the supplied papermaking liquid, the basis weight of the obtained nonwoven fabric can be changed.
  • the nonwoven fabric obtained as described above is preferably dried to remove moisture.
  • the drying temperature is preferably 70° C. or lower to prevent a decrease in fusion properties due to crystallization of the amorphous portion.
  • the thus obtained nonwoven fabric is heat-pressed using a flat plate hot press machine or a calendar roll, whereby the ultrafine polyphenylene sulfide fibers of the present invention cause fusion between the binder fibers, resulting in a nonwoven fabric with excellent mechanical properties.
  • the thermocompression temperature is preferably 130°C or more and 250°C or less, and the compression time is preferably 10 minutes or less.
  • the thermocompression temperature is preferably 130° C. or higher, more preferably 150° C. or higher, and still more preferably 170° C. or higher, the ultrafine polyphenylene sulfide fibers of the present invention are fused to produce a nonwoven fabric with excellent mechanical properties.
  • thermocompression bonding temperature preferably to 250° C. or lower, it is possible to suppress the generation of wrinkles due to thermal contraction of the nonwoven fabric during thermocompression bonding.
  • pressure bonding time preferably 10 minutes or less, more preferably 5 minutes or less, it is possible to suppress a decrease in flexibility of the nonwoven fabric due to excessive crystallization.
  • Average fiber diameter Measurement was performed as described above using a scanning electron microscope "S-5500” manufactured by Hitachi High-Technologies Corporation as a scanning electron microscope and "WinROOF2015” manufactured by Mitani Shoji Co., Ltd. as an image analysis software. .
  • Average fiber length Measurement was performed as described above based on "8.4.1. Average fiber length (c direct method)" of JIS L1015:2010 “Chemical fiber staple test method”.
  • Thickness of nonwoven fabric Based on JIS P8118:2014 "Paper and paperboard - Test method for thickness, density and specific volume", measurement was performed as described above using a "micrometer” manufactured by Mitutoyo Co., Ltd. .
  • Quality of nonwoven fabric The quality of the obtained nonwoven fabric was evaluated on the following three levels. A: There is no unevenness in the basis weight and the uniformity of the appearance is good. B: Fiber bundles, fiber aggregates, etc. are visible in the nonwoven fabric. C: Tears and pinholes have occurred in the nonwoven fabric.
  • the introduction hole located directly above the spinneret hole was a straight hole, and the connecting portion between the introduction hole and the spinneret hole was tapered.
  • the polyphenylene sulfide discharged from the nozzle passed through a 50 mm heat-retaining area, and then was air-cooled over 1.0 m using a uniflow type cooling device at a temperature of 25° C. and a wind speed of 18 m/min. Thereafter, an oil agent was applied, and each of the 36 filaments was wound up with a winder through a first godet roller and a second godet roller at 1000 m/min to obtain an undrawn fiber.
  • the obtained undrawn fibers were stretched 3.0 times between rollers heated to 90°C, and then heat set using rollers heated to 200°C to obtain polyphenylene sulfide drawn fibers.
  • the obtained stretched polyphenylene sulfide fibers were cut with a cutter to obtain short fibers with an average fiber length of 6 mm.
  • Example 1 Polyphenylene sulfide consisting only of p-phenylene sulfide units was used as the island component, polyethylene terephthalate copolymerized with 5.0 mol% of 5-sodium sulfoisophthalic acid was used as the sea component, and each polymer was vacuum-dried at 150°C for 12 hours. Melt spinning was carried out at a spinning temperature of 310°C. In melt spinning, the island component and the sea component were each melted separately, measured by a gear pump via polymer piping, passed through a filter to remove foreign substances, and then supplied to a spinning pack.
  • the composite ratio of the sea/island component was set to 40/60 and melted and discharged. After cooling and solidifying the resulting yarn, an oil agent was applied thereto and the fiber was wound at a spinning speed of 1000 m/min to obtain an undrawn fiber having a sea-island composite cross section (single hole discharge rate: 2.6 g/min).
  • the obtained sea-island composite fibers were cut with a cutter to obtain short fibers with an average fiber length of 0.5 mm. Thereafter, the obtained short fibers were dissolved for 40 minutes in a 3% by mass aqueous sodium hydroxide solution (bath ratio 1/100) heated to 50°C to obtain binder fibers made of ultrafine polyphenylene sulfide fibers. .
  • "DY-1125K (quaternary ammonium salt type cationic surfactant)" manufactured by Lion Specialty Chemicals Co., Ltd. was added as a dissolution promoter to the sodium hydroxide aqueous solution based on the mass of the sodium hydroxide aqueous solution. The treatment was performed by adding 0.5% by mass.
  • Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 2 A polyphenylene sulfide fiber for a binder and a nonwoven fabric were obtained in the same manner as in Example 1, except that the number of islands in the sea-island composite base was changed. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 4 Polyphenylene sulfide fibers for a binder and a nonwoven fabric were obtained in the same manner as in Example 1, except that short fibers with an average fiber length of 2.5 mm were used when cutting the sea-island composite fibers with a cutter. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 1 A nonwoven fabric was obtained in the same manner as in Example 1, except that the undrawn fibers obtained in Reference Example 1 were used as binder fibers without being drawn. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 2 Except that the undrawn fibers having a sea-island composite cross section obtained by the method of Example 1 were drawn 3.0 times between rollers heated to 90°C, and then heat set with rollers heated to 200°C. A polyphenylene sulfide fiber for a binder and a nonwoven fabric were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 5 Ultrafine polyphenylene sulfide fiber, and a nonwoven fabric was obtained.
  • Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 6 A binder material was prepared in the same manner as in Example 3, except that the island component shape of the sea-island composite fiber was Y-shaped, and the fiber cross section of the polyphenylene sulfide fiber after sea component elution was a Y-shaped cross section with a degree of irregularity of 1.7. Polyphenylene sulfide fibers and nonwoven fabrics were obtained. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 7 Polyphenylene sulfide for a binder was prepared in the same manner as in Example 3, except that the island component shape of the sea-island composite fiber was made flat, and the fiber cross section of the polyphenylene sulfide fiber after sea component elution was made into a flat cross section with a degree of irregularity of 3.8. Fibers and nonwoven fabrics were obtained. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Example 8 9 Ultrafine polyphenylene sulfide fibers and nonwoven fabrics were obtained in the same manner as in Example 1, except that the basis weights of the nonwoven fabrics were changed to 10 g/m 2 (Example 8) and 5 g/m 2 (Example 9), respectively. Table 2 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
  • Examples 1 to 9 have a small average fiber diameter and a low degree of crystallinity, so it is possible to make the nonwoven fabric thinner, and the adhesiveness and quality are good.
  • Comparative Example 1 the nonwoven fabric is thick because the fiber diameter is large, and in Comparative Examples 2 and 3, the adhesiveness of the binder fibers is low, so the strength and strength per area of the nonwoven fabric are low, and the quality is also inferior. there were.

Abstract

Provided is an ultrafine polyphenylene sulfide fiber having an average fiber diameter of 0.2 μm to 5.0 μm and a crystallinity of 0% to 15%, as calculated by differential scanning calorimetry. Provided are an ultrafine polyphenylene sulfide fiber having excellent adhesiveness and dispersibility, a nonwoven fabric comprising the same, and methods for producing the same.

Description

極細ポリフェニレンスルフィド繊維及び不織布、並びにそれらの製造方法Ultrafine polyphenylene sulfide fibers and nonwoven fabrics, and methods for producing them
 本発明は、優れた接着性および分散性を有する極細ポリフェニレンスルフィド繊維及びそれからなる不織布、並びにそれらの製造方法に関する。 The present invention relates to ultrafine polyphenylene sulfide fibers having excellent adhesiveness and dispersibility, nonwoven fabrics made from the same, and methods for producing them.
 ポリフェニレンスルフィドは高い耐熱性、耐薬品性、電気絶縁性、難燃性を有することに加えて、優れた力学物性や成型加工性を有していることから、金属代替材料や極限環境下に耐え得る材料として広く使用されている。ポリフェニレンスルフィドを繊維化したポリフェニレンスルフィド繊維については、上記の特性を活かし、バグフィルター、抄紙カンバス、電気絶縁紙、電池セパレーターおよび各種隔膜などの用途に使用されている。特に、ポリフェニレンスルフィドが有する耐熱性や高濃度アルカリ溶液等に対する耐薬品性等の特徴と、不織布材料が有するイオン透過性やガス分離性を組み合わせ、水素製造装置隔膜や燃料電池隔膜、およびこれら隔膜補強材向けに、ポリフェニレンスルフィド繊維からなる湿式不織布が展開されている。 In addition to having high heat resistance, chemical resistance, electrical insulation, and flame retardancy, polyphenylene sulfide also has excellent mechanical properties and moldability, making it suitable for use as a metal substitute and resistant to extreme environments. It is widely used as a material for obtaining Polyphenylene sulfide fibers made from polyphenylene sulfide are used in applications such as bag filters, papermaking canvas, electrical insulation paper, battery separators, and various diaphragms by taking advantage of the above properties. In particular, by combining the characteristics of polyphenylene sulfide, such as heat resistance and chemical resistance against high concentration alkaline solutions, with the ion permeability and gas separation properties of nonwoven fabric materials, we are creating hydrogen production equipment diaphragms, fuel cell diaphragms, and reinforcement of these diaphragms. Wet-laid nonwoven fabrics made of polyphenylene sulfide fibers are being developed for materials.
 近年、上記用途に使用される不織布は、装置の小型軽量化・高性能化を目的に不織布の薄地化や低目付化が求められている。薄地、低目付の不織布の場合、製造工程中の微小な張力変動により不織布が破断しやすいことに加え、モジュール化工程での他部材のエッジやバリとの接触によって、容易に引き裂かれるといった問題がある。そのため、強度を向上させることを目的に、不織布を構成する繊維同士の接着に寄与する成分である、バインダー繊維の強度や接着性を上げるための様々な検討がなされている。なお、ポリフェニレンスルフィド繊維からなる不織布においては、ポリフェニレンスルフィドの持つ耐熱性や耐薬品性を損なわないようにするため、バインダー繊維もポリフェニレンスルフィドから構成される必要がある。 In recent years, nonwoven fabrics used for the above-mentioned applications are required to be thinner and have a lower basis weight for the purpose of making devices smaller, lighter, and higher in performance. In the case of thin, low basis weight nonwoven fabrics, there are problems such as the nonwoven fabrics being easily broken due to minute tension fluctuations during the manufacturing process, and being easily torn by contact with the edges or burrs of other components during the modularization process. be. Therefore, with the aim of improving the strength, various studies have been made to increase the strength and adhesiveness of binder fibers, which are components that contribute to adhesion between fibers that make up nonwoven fabrics. In addition, in a nonwoven fabric made of polyphenylene sulfide fibers, the binder fibers must also be made of polyphenylene sulfide in order not to impair the heat resistance and chemical resistance of polyphenylene sulfide.
 このような背景から、熱収縮率が小さく、かつ水分散性が良好な抄紙用ポリフェニレンスルフィド繊維を得ることを目的に、溶融紡糸により製造されたポリフェニレンスルフィド未延伸繊維を70℃以上の温水中を通過させて熱処理した後、70~90℃の乾熱域を弛緩状態で通過させて5~60分間の弛緩熱処理をすることを特徴とする抄紙用ポリフェニレンサルファイド繊維の製造方法が提案されている(例えば、特許文献1参照)。 Against this background, in order to obtain polyphenylene sulfide fibers for paper making that have a low heat shrinkage rate and good water dispersibility, undrawn polyphenylene sulfide fibers produced by melt spinning are immersed in hot water of 70°C or higher. A method for producing polyphenylene sulfide fibers for papermaking has been proposed, which is characterized by passing through a dry heat range of 70 to 90° C. in a relaxed state to undergo a relaxation heat treatment for 5 to 60 minutes. For example, see Patent Document 1).
 一方、ポリフェニレンスルフィド繊維からなる不織布の高性能化に関し、繊維径が2μm以下の極細耐酸性繊維Aと、繊維径が前記耐酸性繊維Aよりも大きい耐酸性繊維Bを含むことを特徴とする不織布や(例えば、特許文献2参照)、異形断面を有するポリフェニレンスルフィド繊維及び繊維の直径が5μm以下である円断面形状のポリフェニレンスルフィド繊維を含有することを特徴とする不織布が提案されている(例えば、特許文献3参照)。 On the other hand, with regard to improving the performance of a nonwoven fabric made of polyphenylene sulfide fibers, a nonwoven fabric characterized by containing ultrafine acid-resistant fibers A with a fiber diameter of 2 μm or less and acid-resistant fibers B with a fiber diameter larger than the acid-resistant fibers A. (See, for example, Patent Document 2), a nonwoven fabric characterized by containing polyphenylene sulfide fibers having an irregular cross section and polyphenylene sulfide fibers having a circular cross section with a fiber diameter of 5 μm or less has been proposed (for example, (See Patent Document 3).
 また、海成分と島成分とで構成される海島型複合繊維の海成分を溶解除去することにより得られた、繊維径が200~2000nmの極細繊維を用いたバグフィルター用ろ過布の製造方法も提案されている(例えば、特許文献4参照)。 In addition, there is also a method for producing filter cloth for bag filters using ultrafine fibers with a fiber diameter of 200 to 2000 nm, which are obtained by dissolving and removing the sea component of a sea-island type composite fiber composed of a sea component and an island component. It has been proposed (for example, see Patent Document 4).
特開2010-174400号公報Japanese Patent Application Publication No. 2010-174400 特開2020-172729号公報Japanese Patent Application Publication No. 2020-172729 特開2020-66818号公報JP2020-66818A 国際公開第2017/086186号International Publication No. 2017/086186
 特許文献1の技術では、溶融紡糸法により製造されたポリフェニレンスルフィド未延伸繊維を、製造工程内で弛緩熱処理して収縮させることにより、熱収縮率の小さいポリフェニレンスルフィド繊維を得ることができる。しかしながら、該方法にて得られるポリフェニレンスルフィド未延伸繊維は、実質的に繊維径が太いため、薄地や低目付の不織布を得ることが困難である。 In the technique of Patent Document 1, polyphenylene sulfide undrawn fibers produced by a melt-spinning method are subjected to relaxation heat treatment to shrink within the manufacturing process, thereby making it possible to obtain polyphenylene sulfide fibers with a low heat shrinkage rate. However, since the polyphenylene sulfide undrawn fibers obtained by this method have a substantially large fiber diameter, it is difficult to obtain a thin fabric or a low basis weight nonwoven fabric.
 また、特許文献2および特許文献4の技術は、繊維径が2μm以下の極細ポリフェニレンスルフィド繊維を用いた不織布に関するものである。該技術によれば、不織布性能の高度化を達成することが可能となるものの、例示されているバインダー繊維は一般的なポリフェニレンスルフィド未延伸糸であるため、薄地や低目付の不織布を得ることが困難である。加えて、島成分にポリフェニレンスルフィド繊維を用いた海島繊維の海成分を除去することにより極細ポリフェニレンスルフィド繊維を得る製造方法が例示されているが、該製造方法で得られた極細ポリフェニレンスルフィド繊維は、脱海時の加温により結晶化が進行するため、バインダー繊維として使用した際の接着性が不十分なものである。 Furthermore, the techniques of Patent Document 2 and Patent Document 4 relate to nonwoven fabrics using ultrafine polyphenylene sulfide fibers with a fiber diameter of 2 μm or less. Although this technology makes it possible to improve the performance of nonwoven fabrics, it is difficult to obtain thin fabrics or nonwoven fabrics with low basis weights because the binder fibers used are common undrawn polyphenylene sulfide yarns. Have difficulty. In addition, a manufacturing method for obtaining ultrafine polyphenylene sulfide fibers by removing the sea component of sea-island fibers using polyphenylene sulfide fibers as the island component is exemplified, but the ultrafine polyphenylene sulfide fibers obtained by this manufacturing method are Because crystallization progresses due to heating during sea removal, adhesiveness is insufficient when used as a binder fiber.
 さらに、特許文献3の技術は、異形断面を有するポリフェニレンスルフィド繊維及び繊維の直径が5μm以下である円形断面形状のポリフェニレンスルフィド繊維を用いることにより、湿式抄紙法で製造する際に断紙が発生しにくい不織布を得ることができる。しかしながら、該方法にて得られる不織布は、強度向上の効果が限定的であり、近年要求されるような薄地や低目付の不織布としようとしたときには、実用に供しうる強度を実現することが困難である。 Furthermore, the technology of Patent Document 3 uses polyphenylene sulfide fibers with irregular cross sections and circular cross-sectional polyphenylene sulfide fibers with a fiber diameter of 5 μm or less, so that paper breakage does not occur during production using a wet papermaking method. It is possible to obtain a nonwoven fabric that is difficult to use. However, the effect of improving the strength of the nonwoven fabric obtained by this method is limited, and when trying to make a thin fabric or a low basis weight nonwoven fabric that is required in recent years, it is difficult to achieve a strength that can be used for practical purposes. It is.
 そこで、本発明の目的は、上記の事情を鑑みてなされたものであって、優れた接着性および水分散性を有する極細ポリフェニレンスルフィド繊維及びそれからなる不織布、並びにそれらの製造方法を提供することにある。 SUMMARY OF THE INVENTION Therefore, an object of the present invention was to provide an ultrafine polyphenylene sulfide fiber having excellent adhesiveness and water dispersibility, a nonwoven fabric made from the same, and a method for producing the same. be.
 本発明者らが検討を進めたところ、ポリフェニレンスルフィド繊維からなる不織布の薄地化や低目付化、強度向上のためには、不織布を構成する繊維の内、繊維同士の接着に寄与するバインダー繊維の繊維径を細くすることが有効であることを見出した。一方、繊維径を細くしようとした場合、未延伸糸を延伸する方法や、海島繊維の海成分を高温溶液により溶出除去する方法が用いられるが、分子配向や熱を受けることにより結晶化が進行し、得られるバインダー繊維は接着性の低いものであった。 The present inventors have conducted studies and found that in order to make nonwoven fabrics made of polyphenylene sulfide fibers thinner, lower in weight, and stronger, binder fibers that contribute to adhesion between fibers among the fibers that make up nonwoven fabrics should be used. It has been found that reducing the fiber diameter is effective. On the other hand, when trying to reduce the fiber diameter, methods are used such as drawing undrawn yarn or eluting and removing the sea component of sea-island fibers with a high-temperature solution, but crystallization progresses due to molecular orientation and exposure to heat. However, the binder fibers obtained had low adhesiveness.
 そこで、本発明者らは、上記の課題を達成するため、さらに鋭意検討した結果、繊維径を細くした場合であっても、示差走査熱量測定にて算出される結晶化度を特定の範囲とすることにより、優れた接着性および分散性を有する極細ポリフェニレンスルフィド繊維となることを見出し、本発明を完成するに至った。 Therefore, in order to achieve the above-mentioned problem, the present inventors conducted further intensive studies and found that even when the fiber diameter is reduced, the degree of crystallinity calculated by differential scanning calorimetry falls within a specific range. It was discovered that by doing so, ultrafine polyphenylene sulfide fibers having excellent adhesiveness and dispersibility could be obtained, and the present invention was completed.
 本発明は、上記の課題を解決せんとするものであり、本発明の極細ポリフェニレンスルフィド繊維は、平均繊維径が0.2μm以上5.0μm以下であり、示差走査熱量測定にて算出される結晶化度が0%以上15%以下である。 The present invention aims to solve the above-mentioned problems, and the ultrafine polyphenylene sulfide fiber of the present invention has an average fiber diameter of 0.2 μm or more and 5.0 μm or less, and has a crystallization value calculated by differential scanning calorimetry. The degree of oxidation is 0% or more and 15% or less.
 本発明の極細ポリフェニレンスルフィド繊維の好ましい態様によれば、前記極細ポリフェニレンスルフィド繊維は異形断面繊維であって、下記式で定義される異形度が1.2以上である。 According to a preferred embodiment of the ultrafine polyphenylene sulfide fiber of the present invention, the ultrafine polyphenylene sulfide fiber is a fiber with a modified cross section, and has a degree of irregularity defined by the following formula of 1.2 or more.
   異形度=最小外接円直径/最大内接円直径
ここで、最小外接円直径は繊維横断面すべてを含む最も小さな円の直径(μm)、最大内接円直径は繊維横断面の中に入る最も大きな円の直径(μm)である。
Degree of irregularity = Minimum circumscribed circle diameter / Maximum inscribed circle diameter Here, the minimum circumscribed circle diameter is the diameter (μm) of the smallest circle that includes all of the fiber cross sections, and the maximum inscribed circle diameter is the diameter of the smallest circle that includes the entire fiber cross section. This is the diameter of a large circle (μm).
 本発明の極細ポリフェニレンスルフィド繊維の好ましい態様によれば、平均繊維長が0.1mm以上6.0mm以下である。 According to a preferred embodiment of the ultrafine polyphenylene sulfide fiber of the present invention, the average fiber length is 0.1 mm or more and 6.0 mm or less.
 本発明の極細ポリフェニレンスルフィド繊維の製造方法は、島成分にポリフェニレンスルフィドを配した海島型複合断面を有した未延伸繊維を、70℃以下のアルカリ水溶液中で海成分を除去して、平均繊維径が0.2μm以上5.0μm以下、かつ示差走査熱量測定にて算出される結晶化度が0%以上15%以下の繊維を得る、極細ポリフェニレンスルフィド繊維の製造方法である。 The method for producing ultrafine polyphenylene sulfide fibers of the present invention involves removing the sea component from an undrawn fiber having a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component in an alkaline aqueous solution at a temperature of 70° C. or lower to obtain an average fiber diameter of This is a method for producing ultrafine polyphenylene sulfide fibers, in which fibers have a crystallinity of 0.2 μm or more and 5.0 μm or less and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
 本発明の不織布の製造方法は、前記極細ポリフェニレンスルフィド繊維と、ポリフェニレンスルフィド延伸繊維とを抄紙分散液中に混合して抄紙した後、130℃以上250℃以下の温度で熱圧着を施す、不織布の製造方法である。 The method for producing a nonwoven fabric of the present invention includes mixing the ultrafine polyphenylene sulfide fibers and stretched polyphenylene sulfide fibers in a papermaking dispersion liquid to make paper, and then subjecting the nonwoven fabric to thermocompression bonding at a temperature of 130°C or higher and 250°C or lower. This is the manufacturing method.
 本発明によれば、優れた接着性および分散性を有する極細ポリフェニレンスルフィド繊維を得ることができる。 According to the present invention, ultrafine polyphenylene sulfide fibers having excellent adhesiveness and dispersibility can be obtained.
本発明の極細ポリフェニレンスルフィド繊維の繊維横断面の一例及び異形度の測定方法を説明するための概念図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram for explaining an example of the fiber cross section of the ultrafine polyphenylene sulfide fiber of the present invention and a method for measuring the degree of irregularity.
 本発明の極細ポリフェニレンスルフィド繊維は、平均繊維径が0.2μm以上5.0μm以下であり、示差走査熱量測定にて算出される結晶化度が0%以上15%以下である。以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 The ultrafine polyphenylene sulfide fiber of the present invention has an average fiber diameter of 0.2 μm or more and 5.0 μm or less, and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less. The constituent elements will be described in detail below, but the present invention is not limited to the scope described below unless it exceeds the gist thereof.
 [極細ポリフェニレンスルフィド繊維]
 本発明に係るポリフェニレンスルフィドは、主たる繰返し単位として、構造式(1)で示されるp―フェニレンスルフィド単位や、m-フェニレンスルフィド単位などのジフェニレンスルフィド単位にて構成されるポリマーである。
[Ultra-fine polyphenylene sulfide fiber]
The polyphenylene sulfide according to the present invention is a polymer composed of diphenylene sulfide units such as p-phenylene sulfide units represented by structural formula (1) and m-phenylene sulfide units as a main repeating unit.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明に係るポリフェニレンスルフィドは、p-フェニレンスルフィド単位が60モル%以上であることが好ましい。p-フェニレンスルフィド単位を好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上とすることにより、耐熱性に優れた繊維となる。また、不織布として加工した際に、優れた強度を有する不織布となる。 The polyphenylene sulfide according to the present invention preferably contains 60 mol% or more of p-phenylene sulfide units. By controlling the content of p-phenylene sulfide units to preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, the fiber has excellent heat resistance. Moreover, when processed into a nonwoven fabric, it becomes a nonwoven fabric with excellent strength.
 本発明に係るポリフェニレンスルフィドは、本発明の効果を損なわない範囲で、上記ジフェニレンスルフィド単位以外の共重合単位を含んでいてもよい。ジフェニレンスルフィド単位以外の共重合単位としては、トリフェニレンスルフィドやビフェニレンスルフィドなどの芳香族スルフィド、またはこれらのアルキル置換体、ハロゲン置換体などが挙げられる。 The polyphenylene sulfide according to the present invention may contain copolymerized units other than the above-mentioned diphenylene sulfide units as long as the effects of the present invention are not impaired. Examples of copolymerized units other than diphenylene sulfide units include aromatic sulfides such as triphenylene sulfide and biphenylene sulfide, and alkyl-substituted and halogen-substituted products thereof.
 本発明に係るポリフェニレンスルフィドは、本発明の効果を損なわない範囲で、酸化チタン、シリカ、酸化バリウム、炭酸カルシウムなどの無機物、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤を含んでいてもよい。 The polyphenylene sulfide according to the present invention includes inorganic substances such as titanium oxide, silica, barium oxide, and calcium carbonate, coloring agents such as dyes and pigments, flame retardants, and optical brighteners, to the extent that the effects of the present invention are not impaired. , antioxidants, and various additives such as ultraviolet absorbers.
 本発明の極細ポリフェニレンスルフィド繊維は、単成分繊維はもとより、2種類以上の樹脂を複合した複合繊維であってもよい。前記の極細ポリフェニレンスルフィド繊維が複合繊維の場合において、その複合形態は本発明の効果を損ねない限り特に限定されるものではなく、芯鞘型や海島型、サイドバイサイド型、偏心芯鞘型、ブレンド型などから適宜選択することができる。なお、前記の極細ポリフェニレンスルフィド繊維を複合繊維とする場合において、前記のポリフェニレンスルフィドと共に使用される樹脂は、製造工程における工程安定性や柔軟性の観点から、m-フェニレンスルフィド単位の共重合比率が異なるポリフェニレンスルフィドが好適に用いられる。例えば、芯鞘型複合繊維とする場合において、芯成分をp-フェニレンスルフィド単位のみからなるポリフェニレンスルフィド、鞘成分をm-フェニレンスルフィド単位を共重合したポリフェニレンスルフィドとしたり、海島型複合繊維とする場合において、海成分をp-フェニレンスルフィド単位のみからなるポリフェニレンスルフィド、島成分をm-フェニレンスルフィド単位を共重合したポリフェニレンスルフィドなどとしたりすることができる。 The ultrafine polyphenylene sulfide fibers of the present invention may be not only monocomponent fibers but also composite fibers made of two or more types of resins. When the ultrafine polyphenylene sulfide fiber is a composite fiber, its composite form is not particularly limited as long as it does not impair the effects of the present invention, and may include a core-sheath type, a sea-island type, a side-by-side type, an eccentric core-sheath type, and a blend type. You can select as appropriate from among the following. In addition, when the above-mentioned ultrafine polyphenylene sulfide fiber is used as a composite fiber, the resin used together with the above-mentioned polyphenylene sulfide has a copolymerization ratio of m-phenylene sulfide units from the viewpoint of process stability and flexibility in the manufacturing process. Different polyphenylene sulfides are preferably used. For example, in the case of a core-sheath type composite fiber, the core component is polyphenylene sulfide made of only p-phenylene sulfide units, and the sheath component is polyphenylene sulfide copolymerized with m-phenylene sulfide units, or when the sea-island type composite fiber is used. In this case, the sea component may be polyphenylene sulfide consisting only of p-phenylene sulfide units, and the island component may be polyphenylene sulfide copolymerized with m-phenylene sulfide units.
 本発明の極細ポリフェニレンスルフィド繊維の横断面形状は、何ら制限されるものではなく、丸断面はもとより、Y字断面や三角断面等の多葉断面、扁平断面、S字断面、十字断面、中空断面などの任意の異形断面形状とすることができる。 The cross-sectional shape of the ultrafine polyphenylene sulfide fiber of the present invention is not limited in any way, and includes not only a round cross section but also a multilobal cross section such as a Y-shaped cross section and a triangular cross-section, a flat cross-section, an S-shaped cross section, a cross cross section, and a hollow cross section. It can be made into any irregular cross-sectional shape such as.
 本発明の極細ポリフェニレンスルフィド繊維は、下記式で定義される異形度が1.2以上であることが好ましい。異形度を好ましくは1.2以上、より好ましく1.5以上、さらに好ましくは1.7以上とすることにより、繊維の比表面積が大きくなるため、バインダーとして使用した際の接着面積が増加し、優れた強度を有する不織布となる。また、異形度の上限は特に制限されないが、本発明で達しえる上限は500程度である。 The ultrafine polyphenylene sulfide fiber of the present invention preferably has a degree of irregularity defined by the following formula of 1.2 or more. By setting the degree of irregularity to preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 1.7 or more, the specific surface area of the fiber increases, so the adhesion area when used as a binder increases, The result is a nonwoven fabric with excellent strength. Further, the upper limit of the degree of irregularity is not particularly limited, but the upper limit that can be achieved in the present invention is about 500.
 ここで言う、異形度とは、以下に説明する手法にて測定されるものであり、図1を用いて詳細に説明する。 The degree of irregularity referred to here is measured by the method described below, and will be explained in detail using FIG. 1.
 図1には、本発明の極細ポリフェニレンスルフィド繊維の繊維横断面の一例を示している。 FIG. 1 shows an example of the fiber cross section of the ultrafine polyphenylene sulfide fiber of the present invention.
 まず、繊維の横断面を、走査型電子顕微鏡で1本の繊維が観察できる倍率として画像を撮影する。撮影した画像を用い、画像解析ソフトを用いて、横断面における最小外接円と最大内接円を作図し、下記式より異形度を算出する。これを任意に抽出した繊維20本について測定し、単純な数平均を求め、小数点第2位を四捨五入する。 First, an image of the cross section of the fiber is taken using a scanning electron microscope at a magnification that allows observation of a single fiber. Using the photographed image, the minimum circumscribed circle and maximum inscribed circle in the cross section are plotted using image analysis software, and the degree of irregularity is calculated from the following formula. This is measured for 20 arbitrarily extracted fibers, a simple numerical average is obtained, and the result is rounded off to the second decimal place.
   異形度=最小外接円直径/最大内接円直径
ここで、最小外接円直径は繊維横断面全てを含む最も小さな円の直径(μm)、最大内接円直径は繊維横断面の中に入る最も大きな円の直径(μm)である。
Degree of irregularity = Minimum circumscribed circle diameter / Maximum inscribed circle diameter Here, the minimum circumscribed circle diameter is the diameter (μm) of the smallest circle that includes the entire fiber cross section, and the maximum inscribed circle diameter is the diameter of the smallest circle that includes the entire fiber cross section. This is the diameter of a large circle (μm).
 本発明の極細ポリフェニレンスルフィド繊維の平均繊維径は、0.2μm以上5.0μm以下である。平均繊維径を0.2μm以上、好ましくは0.4μm以上、より好ましくは0.5μm以上とすることにより、繊維同士が絡みにくくなり繊維の分散性が向上するため、不織布とした際に目付の均一性が向上する。また、平均繊維径を5.0μm以下、好ましくは3.0μm以下、より好ましくは2.0μm以下とすることにより、同一繊度や同一目付における繊維の構成本数が増加するため、バインダーとして使用した際の接着点が増加し、優れた強度を有する不織布となる。 The average fiber diameter of the ultrafine polyphenylene sulfide fiber of the present invention is 0.2 μm or more and 5.0 μm or less. By setting the average fiber diameter to 0.2 μm or more, preferably 0.4 μm or more, and more preferably 0.5 μm or more, the fibers become less entangled and the dispersibility of the fibers improves. Improved uniformity. In addition, by setting the average fiber diameter to 5.0 μm or less, preferably 3.0 μm or less, more preferably 2.0 μm or less, the number of fibers constituting the same fineness and same basis weight increases, so when used as a binder. The number of bonding points increases, resulting in a nonwoven fabric with excellent strength.
 ここで言う、繊維の平均繊維径(μm)とは、以下のようにして求めるものである。
(1)繊維の横断面を、走査型電子顕微鏡で1本の繊維が観察できる倍率として画像を撮影する。
(2)撮影した画像を用い、画像解析ソフトを用いて、単繊維の横断面輪郭が形成する面積Af(μm)を計測し、この面積Afと同一の面積となる真円の直径を算出する。
(3)これを任意に抽出した繊維100本について測定し、単純な数平均を求め平均繊維径(μm)を算出し、小数点第2位を四捨五入する。
The average fiber diameter (μm) of the fibers referred to here is determined as follows.
(1) An image of the cross section of the fiber is taken using a scanning electron microscope at a magnification that allows observation of a single fiber.
(2) Using the photographed image, use image analysis software to measure the area Af (μm 2 ) formed by the cross-sectional outline of the single fiber, and calculate the diameter of a perfect circle that has the same area as this area Af. do.
(3) Measure this on 100 arbitrarily extracted fibers, obtain a simple numerical average, calculate the average fiber diameter (μm), and round to the second decimal place.
 本発明の極細ポリフェニレンスルフィド繊維は、長繊維として使用することもできるが、不織布などに加工する前に一定の長さで繊維をカットして、短繊維とすることもできる。 The ultrafine polyphenylene sulfide fibers of the present invention can be used as long fibers, but they can also be cut into short fibers by cutting the fibers to a certain length before being processed into nonwoven fabrics or the like.
 本発明の極細ポリフェニレンスルフィド繊維を短繊維とする場合、平均繊維長は、0.1mm以上6.0mm以下が好ましい。平均繊維長を好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上とすることにより、不織布への加工工程において繊維が脱落しにくくなる。また、平均繊維長を好ましくは6.0mm以下、より好ましくは4.0mm以下、さらに好ましくは2.0mm以下とすることにより、繊維同士が絡みにくくなり繊維の分散性が向上するため、不織布とした際に品位が向上する。 When the ultrafine polyphenylene sulfide fiber of the present invention is used as short fibers, the average fiber length is preferably 0.1 mm or more and 6.0 mm or less. By setting the average fiber length to preferably 0.1 mm or more, more preferably 0.2 mm or more, and still more preferably 0.3 mm or more, the fibers are less likely to fall off during the processing step into a nonwoven fabric. In addition, by setting the average fiber length to preferably 6.0 mm or less, more preferably 4.0 mm or less, and even more preferably 2.0 mm or less, the fibers become less entangled with each other and the dispersibility of the fibers improves. The quality will improve when
 ここで言う、繊維の平均繊維長とは、JIS L1015:2010「化学繊維ステープル試験方法」の「8.4.1.平均繊維長(c直接法)」に基づき求めるものである。 The average fiber length of the fibers mentioned here is determined based on "8.4.1. Average fiber length (c direct method)" of JIS L1015:2010 "Chemical fiber staple test method".
 本発明の極細ポリフェニレンスルフィド繊維は、示差走査熱量測定にて算出される結晶化度が0%以上15%以下である。結晶化度を0%以上、好ましくは1%以上とすることにより、高次工程での取り扱い性に優れた繊維となる。また、結晶化度を15%以下、好ましくは12%以下、より好ましくは10%以下、さらに好ましくは9%以下とすることにより、バインダー繊維に好適な、接着性に優れたポリフェニレンスルフィド繊維となる。 The ultrafine polyphenylene sulfide fiber of the present invention has a degree of crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less. By setting the crystallinity to 0% or more, preferably 1% or more, the fiber can be easily handled in higher-order processes. In addition, by setting the crystallinity to 15% or less, preferably 12% or less, more preferably 10% or less, and still more preferably 9% or less, polyphenylene sulfide fibers with excellent adhesive properties, which are suitable for binder fibers, can be obtained. .
 ここで言う、繊維の結晶化度(%)とは、以下のようにして求めるものである。
(1)電子天秤を用いて繊維を約5mg量り取った後、示差走査熱量計に繊維をセットし、窒素下、昇温速度16℃/分、測定温度範囲50~320℃の条件で示差走査熱量測定を実施する。
(2)得られた測定結果(DSC曲線)における発熱ピークの面積より結晶化発熱量ΔHc(J/g)、吸熱ピークの面積より結晶融解熱量ΔHm(J/g)を算出する。なお、発熱ピークや吸熱ピークが複数見られた場合、すべてのピークの面積を合算した値より、ΔHcおよびΔHmを算出する。
(3)1水準につき測定位置を変更して3回測定を行い、単純な数平均値を求めΔHcおよびΔHmを算出した後、以下の式(1)にて結晶化度(%)を算出し、小数点第1位を四捨五入する。
The crystallinity (%) of the fiber referred to here is determined as follows.
(1) After weighing out approximately 5 mg of fiber using an electronic balance, set the fiber in a differential scanning calorimeter and perform differential scanning under nitrogen, heating rate of 16°C/min, and measurement temperature range of 50 to 320°C. Perform calorimetry.
(2) Calculate the heat of crystallization ΔHc (J/g) from the area of the exothermic peak in the obtained measurement results (DSC curve), and calculate the heat of crystallization ΔHm (J/g) from the area of the endothermic peak. In addition, when multiple exothermic peaks or endothermic peaks are observed, ΔHc and ΔHm are calculated from the sum of the areas of all the peaks.
(3) Measure three times by changing the measurement position for each level, obtain a simple numerical average value, calculate ΔHc and ΔHm, and then calculate the degree of crystallinity (%) using the following formula (1). , round to the first decimal place.
   結晶化度(%)=(ΔHm-ΔHc)/ΔHm×100 ・・・(1)
ここで、ΔHmは完全結晶融解熱量(J/g)であり、ポリフェニレンスルフィドの場合、一般的に140.1J/gが用いられる。
Crystallinity (%) = (ΔHm-ΔHc)/ΔHm 0 ×100 (1)
Here, ΔHm 0 is the heat of fusion of a complete crystal (J/g), and in the case of polyphenylene sulfide, 140.1 J/g is generally used.
 [不織布]
 本発明の不織布は、上記極細ポリフェニレンスルフィド繊維を含む不織布である。極細ポリフェニレンスルフィド繊維を含むことにより、不織布を構成する繊維の本数が多くなるため、破れにくく、優れた強度を有する不織布となる。加えて、構成する繊維自体が細くなるため、厚さが薄い不織布を得ることができる。
[Nonwoven fabric]
The nonwoven fabric of the present invention is a nonwoven fabric containing the above-mentioned ultrafine polyphenylene sulfide fibers. By including ultrafine polyphenylene sulfide fibers, the number of fibers constituting the nonwoven fabric increases, resulting in a nonwoven fabric that is resistant to tearing and has excellent strength. In addition, since the constituent fibers themselves become thinner, a thinner nonwoven fabric can be obtained.
 本発明の不織布の上記極細ポリフェニレンスルフィド繊維の割合は10質量%以上80質量%以下が好ましい。上記極細ポリフェニレンスルフィド繊維の割合を好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上とすることにより、不織布を構成する繊維の本数が増えることで繊維同士の接着点が多くなり、力学特性に優れた不織布となる。また、上記極細ポリフェニレンスルフィド繊維の割合を好ましくは80質量%以下、より好ましくは75質量%以下、さらに好ましくは70質量%以下とすることにより、適度な通気性や柔軟性を有した不織布となる。 The proportion of the ultrafine polyphenylene sulfide fibers in the nonwoven fabric of the present invention is preferably 10% by mass or more and 80% by mass or less. By setting the proportion of the ultrafine polyphenylene sulfide fibers to preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, the number of fibers constituting the nonwoven fabric increases, thereby improving adhesion between fibers. The number of dots increases, resulting in a nonwoven fabric with excellent mechanical properties. Furthermore, by setting the proportion of the ultrafine polyphenylene sulfide fibers to preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less, a nonwoven fabric with appropriate air permeability and flexibility can be obtained. .
 本発明の不織布に含まれる上記極細ポリフェニレンスルフィド以外の繊維は特に限定されないが、ポリフェニレンスルフィド、ポリプロピレン、ポリエチレン、ポリ-4-メチルペンテン-1、ポリカーボネート、ポリアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、芳香族ポリエステル、ポリアミド、芳香族ポリアミド、熱可塑性ポリウレタン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、およびこれらの共重合体などからなる繊維が挙げられる。中でも、耐薬品性や耐熱性、極細ポリフェニレンスルフィド繊維との接着性の観点から、ポリフェニレンスルフィドからなる繊維が好適に用いられる。 Fibers other than the ultrafine polyphenylene sulfide contained in the nonwoven fabric of the present invention are not particularly limited, but include polyphenylene sulfide, polypropylene, polyethylene, poly-4-methylpentene-1, polycarbonate, polyacrylate, polyethylene terephthalate, polybutylene terephthalate, and Examples include fibers made of methylene terephthalate, polyethylene naphthalate, polylactic acid, aromatic polyester, polyamide, aromatic polyamide, thermoplastic polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, and copolymers thereof. Among these, fibers made of polyphenylene sulfide are preferably used from the viewpoint of chemical resistance, heat resistance, and adhesiveness with ultrafine polyphenylene sulfide fibers.
 本発明の不織布の目付は、2g/m以上80g/m以下であることが好ましい。目付が好ましくは2g/m以上、より好ましくは5g/m以上であることにより、優れた強度を有する不織布となる。また、目付が好ましくは80g/m以下、より好ましくは50g/m以下であることにより、優れた柔軟性を有する不織布となる。 The basis weight of the nonwoven fabric of the present invention is preferably 2 g/m 2 or more and 80 g/m 2 or less. When the basis weight is preferably 2 g/m 2 or more, more preferably 5 g/m 2 or more, the nonwoven fabric has excellent strength. Further, by having a basis weight of preferably 80 g/m 2 or less, more preferably 50 g/m 2 or less, the nonwoven fabric has excellent flexibility.
 ここで言う、不織布の目付(g/m)とは、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量(ISO法)」に準じて、以下の手順によって測定、算出される値のことである。
(1)不織布より、20cm×25cmの試験片を採取する。
(2)採取した試験片について、標準状態における質量(g)を測定し、面積1m当たりの質量(g/m)に換算する。
(3)1水準につき、試験片の採取箇所を変更して3回測定を行い、その算術平均値の小数点以下第1位を四捨五入した値を、目付(g/m)として算出する。
The basis weight (g/m 2 ) of nonwoven fabric mentioned here is measured by the following procedure in accordance with "6.2 Mass per unit area (ISO method)" of JIS L1913:2010 "General nonwoven fabric test method". , is the calculated value.
(1) Take a 20 cm x 25 cm test piece from the nonwoven fabric.
(2) For the sampled test piece, measure the mass (g) in a standard state and convert it to mass per 1 m 2 of area (g/m 2 ).
(3) For each level, the measurement is carried out three times by changing the sampling point of the test piece, and the value obtained by rounding off the arithmetic mean value to the first decimal place is calculated as the basis weight (g/m 2 ).
 本発明の不織布の厚さは、170μm以下であることが好ましい。不織布の厚さを好ましくは170μm以下、より好ましくは155μm以下とすることにより、適度な通気度や柔軟性を有した不織布となる。また、本発明の不織布の厚さの下限は特に制限されないが、実用的な強度を有した不織布とするためには、2μm以上が好ましく、5μm以上がより好ましい。 The thickness of the nonwoven fabric of the present invention is preferably 170 μm or less. By setting the thickness of the nonwoven fabric to preferably 170 μm or less, more preferably 155 μm or less, the nonwoven fabric has appropriate air permeability and flexibility. Further, the lower limit of the thickness of the nonwoven fabric of the present invention is not particularly limited, but in order to obtain a nonwoven fabric with practical strength, it is preferably 2 μm or more, and more preferably 5 μm or more.
 ここで言う、不織布の厚さ(μm)とは、JIS P8118:2014「紙及び板紙-厚さ、密度及び比容積の試験方法」に基づき、10cm×10cmの試料片を20枚採取し、1枚ずつ、厚み計(例えば、株式会社ミツトヨ社製「マイクロメータ」等)を用いて、試験片20枚の厚さを測定し、単純な数平均を求め不織布の厚さ(μm)を算出し、小数点第1位を四捨五入した値である。 The thickness (μm) of the nonwoven fabric referred to here is based on JIS P8118:2014 "Paper and paperboard - Test method for thickness, density and specific volume". The thickness of 20 test pieces was measured one by one using a thickness meter (for example, "Micrometer" manufactured by Mitutoyo Co., Ltd.), and the thickness (μm) of the nonwoven fabric was calculated by taking a simple number average. , the value is rounded to the first decimal place.
 本発明の不織布の強度は、10N/15mm以上であることが好ましい。不織布の強度を好ましくは10N/15mm以上、より好ましくは、15N/15mm以上、さらに好ましくは20N/15mm以上とすることにより、隔膜用途やフィルター用途に好適な、破れにくい不織布となる。また、本発明の不織布の強度の上限は特に制限されないが、本発明の不織布が達成し得る強度は、100N/15mm程度である。 The strength of the nonwoven fabric of the present invention is preferably 10 N/15 mm or more. By setting the strength of the nonwoven fabric to preferably 10 N/15 mm or more, more preferably 15 N/15 mm or more, and even more preferably 20 N/15 mm or more, the nonwoven fabric becomes tear-resistant and suitable for diaphragm applications and filter applications. Moreover, the upper limit of the strength of the nonwoven fabric of the present invention is not particularly limited, but the strength that the nonwoven fabric of the present invention can achieve is about 100 N/15 mm.
 ここで言う、不織布の強度(N/15mm)とは、試料幅15mmに切り出した不織布を、引張試験機テンシロン(例えば、オリエンテック社製UTM-III-100等)を用いて、試料幅15mm、初期長20mm、引張速度20mm/分の条件で最大点荷重の値を測定し、5回の測定値の単純な数平均を求め不織布の強度(N/15mm)を算出し、小数点第1位を四捨五入した値である。 The strength of the nonwoven fabric (N/15mm) referred to here means that a nonwoven fabric cut into a sample width of 15mm is tested using a tensile tester Tensilon (for example, UTM-III-100 manufactured by Orientech Co., Ltd.). The value of the maximum point load was measured under the conditions of initial length 20 mm and tensile speed 20 mm/min, and the strength of the nonwoven fabric (N/15 mm) was calculated by taking the simple numerical average of the 5 measured values, and the first decimal place was calculated. This is a rounded value.
 本発明の不織布の目付当たりの強度は、0.25(N/15mm)/(g/m)以上であることが好ましい。不織布の強度を好ましくは0.25(N/15mm)/(g/m)以上、より好ましくは、0.38(N/15mm)/(g/m)以上、さらに好ましくは0.50(N/15mm)/(g/m)以上とすることにより、隔膜用途やフィルター用途に好適な、破れにくい不織布となる。また、本発明の不織布の強度の上限は特に制限されないが、本発明の不織布が達成し得る強度は、2.50(N/15mm)/(g/m)程度である。 The strength per unit weight of the nonwoven fabric of the present invention is preferably 0.25 (N/15 mm)/(g/m 2 ) or more. The strength of the nonwoven fabric is preferably 0.25 (N/15 mm)/(g/m 2 ) or more, more preferably 0.38 (N/15 mm)/(g/m 2 ) or more, and even more preferably 0.50. (N/15 mm)/(g/m 2 ) or more provides a tear-resistant nonwoven fabric suitable for diaphragm applications and filter applications. Although the upper limit of the strength of the nonwoven fabric of the present invention is not particularly limited, the strength that the nonwoven fabric of the present invention can achieve is about 2.50 (N/15 mm)/(g/m 2 ).
 ここで言う、不織布の目付当たりの強度((N/15mm)/(g/m))とは、上記で求めた不織布の強度を目付で割り返した値を算出し、小数点第3位を四捨五入した値である。 The strength per area of nonwoven fabric ((N/15mm)/(g/m 2 )) referred to here is calculated by dividing the strength of the nonwoven fabric determined above by the area weight, and dividing the value to the third decimal place. This is a rounded value.
 本発明の極細ポリフェニレンスルフィド繊維、およびそれからなる不織布は、長期耐熱性に優れるだけでなく、耐薬品性、機械的特性、電気絶縁性、難燃性を有していることから、これらの特徴を活かして、水素製造装置隔膜、燃料電池隔膜、電池隔膜、電極用隔膜、およびこれら隔膜補強材などの隔膜用途、バグフィルター、薬液フィルター、食品用フィルター、ケミカルフィルター、オイルフィルター、エンジンオイルフィルター、空気清浄フィルターなどのフィルター用途、電気絶縁紙などの紙用途、消防服などの耐熱作業服用途、安全衣服、実験作業着、保温衣料、難燃衣料、抄紙用フェルト、耐熱性フェルト、離形材、抄紙ドライヤーカンバス、心臓パッチ、人工皮膚、プリント基板基材、コピーローリングクリーナー、イオン交換基材、オイル保持材、断熱材、クッション材、ネットコンベアーなどの各種用途に好適に使用することができ、特に薄地化や低目付化が求められている隔膜用途や紙用途として好ましく使用することができるが、これらの用途に限定されるものではない。 The ultrafine polyphenylene sulfide fiber of the present invention and the nonwoven fabric made from it not only have excellent long-term heat resistance, but also have chemical resistance, mechanical properties, electrical insulation properties, and flame retardancy. It can be used for diaphragm applications such as hydrogen production equipment diaphragms, fuel cell diaphragms, battery diaphragms, electrode diaphragms, and reinforcement materials for these diaphragms, bag filters, chemical filters, food filters, chemical filters, oil filters, engine oil filters, and air filters. Filter applications such as cleaning filters, paper applications such as electrical insulating paper, heat-resistant workwear applications such as firefighting uniforms, safety clothing, laboratory workwear, thermal clothing, flame-retardant clothing, papermaking felt, heat-resistant felt, mold release materials, It can be suitably used for various applications such as paper dryer canvas, heart patch, artificial skin, printed circuit board base material, copy rolling cleaner, ion exchange base material, oil retaining material, insulation material, cushioning material, net conveyor, etc. Although it can be preferably used for diaphragm applications and paper applications where thinning and low basis weight are required, it is not limited to these applications.
 [極細ポリフェニレンスルフィド繊維、および不織布の製造方法]
 次に、本発明の極細ポリフェニレンスルフィド繊維、および不織布を製造する好ましい態様を具体的に説明する。
[Production method of ultrafine polyphenylene sulfide fiber and nonwoven fabric]
Next, preferred embodiments for producing the ultrafine polyphenylene sulfide fiber and nonwoven fabric of the present invention will be specifically described.
 本発明の極細ポリフェニレンスルフィド繊維の製造方法は、島成分にポリフェニレンスルフィドを配した海島型複合断面を有した未延伸繊維を、70℃以下のアルカリ水溶液中で海成分を除去して、平均繊維径が0.2μm以上5.0μm以下、かつ示差走査熱量測定にて算出される結晶化度が0%以上15%以下の繊維を得る、極細ポリフェニレンスルフィド繊維の製造方法である。 The method for producing ultrafine polyphenylene sulfide fibers of the present invention involves removing the sea component from an undrawn fiber having a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component in an alkaline aqueous solution at a temperature of 70° C. or lower to obtain an average fiber diameter of This is a method for producing ultrafine polyphenylene sulfide fibers, in which fibers have a crystallinity of 0.2 μm or more and 5.0 μm or less and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
 使用するポリフェニレンスルフィドは、水分混入防止やオリゴマー除去を目的に、溶融紡糸に供する前に乾燥することが製糸性を高める上で好ましい。乾燥条件としては、100~200℃にて、1~24時間の真空乾燥が通常用いられる。 It is preferable to dry the polyphenylene sulfide used before applying it to melt spinning in order to improve spinnability in order to prevent water contamination and remove oligomers. As the drying conditions, vacuum drying at 100 to 200° C. for 1 to 24 hours is usually used.
 溶融紡糸では、プレッシャーメルタ型、単軸や2軸エクストルーダー型などの押出機を用いた溶融紡糸手法を適用することができる。押し出されたポリフェニレンスルフィドは、配管を経由し、ギアーポンプなどの計量装置により計量され、異物除去のフィルターを通過した後、紡糸口金へと導かれる。このとき、ポリマー配管から紡糸口金までの温度(紡糸温度)は、流動性を高めるために290℃以上が好ましく、ポリマーの熱分解を抑制するために380℃以下とすることが好ましい。 In melt spinning, a melt spinning method using an extruder such as a pressure melter type, single screw extruder type, or twin screw extruder type can be applied. The extruded polyphenylene sulfide passes through piping, is measured by a metering device such as a gear pump, passes through a filter to remove foreign substances, and then is guided to a spinneret. At this time, the temperature from the polymer piping to the spinneret (spinning temperature) is preferably 290° C. or higher to improve fluidity, and preferably 380° C. or lower to suppress thermal decomposition of the polymer.
 本発明の極細ポリフェニレンスルフィド繊維は、島成分にポリフェニレンスルフィドを配した海島型複合断面を有した海島型複合繊維の海成分のポリマーを除去することにより得ることができる。なお、本発明の極細ポリフェニレンスルフィド繊維の横断面形状は、上記の海島型複合繊維の島成分の横断面形状とほぼ同一の形状となるため、島成分の断面形状を任意の形状とすることで、目的の横断面形状を有した極細ポリフェニレンスルフィド繊維を得ることが可能となる。島成分の横断面形状を制御する方法は特に制限されないが、例えば、特開2010-216042号公報や特開2016-188454号公報に開示された方法が好ましい方法として挙げられる。 The ultrafine polyphenylene sulfide fiber of the present invention can be obtained by removing the polymer of the sea component of a sea-island composite fiber having a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component. Note that the cross-sectional shape of the ultrafine polyphenylene sulfide fiber of the present invention is almost the same as the cross-sectional shape of the island component of the above-mentioned sea-island composite fiber, so the cross-sectional shape of the island component can be made into any shape. , it becomes possible to obtain ultrafine polyphenylene sulfide fibers having a desired cross-sectional shape. The method for controlling the cross-sectional shape of the island component is not particularly limited, but preferred methods include, for example, the methods disclosed in JP-A No. 2010-216042 and JP-A No. 2016-188454.
 上記の海島型複合繊維の海成分には、易溶解性ポリマーが好適に用いられる。ここで言う、易溶解性ポリマーとは、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリプロピレン、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタンなどの溶融成形可能なポリマーおよびそれらの共重合体から選択される。中でも、海成分の溶出工程を簡便化するという観点では、海成分は、水系溶剤あるいは熱水などに易溶出性を示す共重合ポリエステル、ポリ乳酸、ポリビニルアルコールなどが好ましく、5-ナトリウムスルホイソフタル酸を単独共重合したポリエステル、あるいはさらに溶出性を向上させるためにポリエチレングリコールを組み合せて共重合したポリエステルが好ましい。一方、紡糸中に易溶出ポリマーの熱分解が進行した場合、複合繊維の断面形成性や紡糸性が悪化するため、上記の紡糸温度において熱分解しにくい、すなわち高い耐熱性が求められる。このような観点から、5-ナトリウムスルホイソフタル酸を単独共重合したポリエステルがより好ましい。 An easily soluble polymer is suitably used for the sea component of the above-mentioned sea-island composite fiber. The easily soluble polymers mentioned here include, for example, melt-molded polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polypropylene, polyolefin, polycarbonate, polyacrylate, polyamide, polylactic acid, thermoplastic polyurethane, etc. selected from possible polymers and copolymers thereof. Among these, from the viewpoint of simplifying the elution process of the sea component, the sea component is preferably a copolymerized polyester, polylactic acid, polyvinyl alcohol, etc. that are easily eluted in aqueous solvents or hot water, and 5-sodium sulfoisophthalic acid is preferred. It is preferable to use a polyester obtained by copolymerizing a single polyester, or a polyester obtained by copolymerizing a polyethylene glycol in combination in order to further improve dissolution properties. On the other hand, if thermal decomposition of the easily eluted polymer progresses during spinning, the cross-sectional formability and spinnability of the conjugate fiber will deteriorate, so that it is required to be difficult to thermally decompose at the above-mentioned spinning temperature, that is, to have high heat resistance. From this point of view, a polyester obtained by homo-copolymerizing 5-sodium sulfoisophthalic acid is more preferable.
 海成分に5-ナトリウムスルホイソフタル酸を単独共重合したポリエステルを用いる場合、水系溶剤に対する溶解性と耐熱性の両立の観点から、5-ナトリウムスルホイソフタル酸の共重合量は2mol%以上20mol%以下が好ましい。5-ナトリウムスルホイソフタル酸の共重合量を好ましくは2mol%以上、より好ましくは3mol%以上とすることにより、水系溶剤に対する溶解性が向上するため、海島型複合繊維の海成分に用いた場合、容易に海成分を除去することができる。また、5-ナトリウムスルホイソフタル酸の共重合量を好ましくは20mol%以下、より好ましくは15mol%以下とすることにより、優れた耐熱性を有したポリマーとなる。 When using a polyester in which 5-sodium sulfoisophthalic acid is homopolymerized as the sea component, from the viewpoint of achieving both solubility in aqueous solvents and heat resistance, the copolymerized amount of 5-sodium sulfoisophthalic acid is 2 mol% or more and 20 mol% or less. is preferred. By setting the copolymerization amount of 5-sodium sulfoisophthalic acid to preferably 2 mol% or more, more preferably 3 mol% or more, solubility in aqueous solvents is improved, so when used as the sea component of a sea-island composite fiber, Sea components can be easily removed. Furthermore, by controlling the copolymerization amount of 5-sodium sulfoisophthalic acid to preferably 20 mol% or less, more preferably 15 mol% or less, a polymer with excellent heat resistance can be obtained.
 本発明に用いられる海島型複合繊維は、ポリフェニレンスルフィドと他成分ポリマーをそれぞれ別に溶融させた後、ポリマー配管を経由しギアーポンプなど公知の計量装置により計量し、異物除去のためのフィルターを通過した後、それぞれ紡糸口金へ導く。紡糸口金へ導いたそれぞれのポリマーは、紡糸口金内で任意の複合形態に形状規制して合流させ、海島型複合繊維として口金孔より吐出する。 The sea-island type composite fiber used in the present invention is produced by melting polyphenylene sulfide and other component polymers separately, then measuring them using a known measuring device such as a gear pump via polymer piping, and passing through a filter to remove foreign substances. , respectively leading to the spinneret. The respective polymers introduced into the spinneret are combined into an arbitrary composite form within the spinneret, and are discharged from the spinneret hole as sea-island composite fibers.
 吐出に使用される紡糸口金は、口金孔の孔径Dを0.1mm以上0.6mm以下とすることが好ましく、また、口金孔のランド長L(口金孔の孔径と同一の直管部の長さ)を孔径で除した商で定義されるL/Dは、1以上10以下であることが好ましい。 The spinneret used for discharging preferably has a diameter D of the spinneret hole of 0.1 mm or more and 0.6 mm or less, and a land length L of the spinneret hole (the length of the straight pipe part that is the same as the diameter of the spinneret hole). L/D, which is defined as the quotient obtained by dividing L) by the pore diameter, is preferably 1 or more and 10 or less.
 海島型複合繊維における島成分の形状および断面積は、上記の繊維形状および平均繊維径から算出される繊維横断面の面積と同一とすればよい。例えば、島成分であるポリフェニレンスルフィドを直径2.0μmの丸形状とすることで、平均繊維径2.0μmの丸断面繊維を製造することができる。したがって、平均繊維径が0.2μm以上5.0μm以下の極細ポリフェニレンスルフィド繊維を得るためには、島成分の直径を0.2μm以上5.0μm以下とすればよい。 The shape and cross-sectional area of the island component in the sea-island composite fiber may be the same as the area of the fiber cross-section calculated from the above-mentioned fiber shape and average fiber diameter. For example, by forming polyphenylene sulfide, which is an island component, into a round shape with a diameter of 2.0 μm, it is possible to produce a round cross-section fiber with an average fiber diameter of 2.0 μm. Therefore, in order to obtain ultrafine polyphenylene sulfide fibers having an average fiber diameter of 0.2 μm or more and 5.0 μm or less, the diameter of the island component may be set to 0.2 μm or more and 5.0 μm or less.
 海島型複合繊維における島成分の数は、特に限定されるものではないが、20以上4000以下が好ましい。島成分の数を好ましくは20以上、より好ましくは100以上、さらに好ましくは200とすることにより、島成分の直径を小さくすることができるため、極細ポリフェニレンスルフィド繊維の平均繊維径を細くすることが可能となる。また、島成分の数を好ましくは4000以下、より好ましくは3000以下とすることにより、繊維断面形成性が良好となるため、繊維径のバラツキが小さい繊維を得ることができる。 The number of island components in the sea-island composite fiber is not particularly limited, but is preferably 20 or more and 4000 or less. By setting the number of island components to preferably 20 or more, more preferably 100 or more, and even more preferably 200, the diameter of the island components can be reduced, and therefore the average fiber diameter of the ultrafine polyphenylene sulfide fiber can be reduced. It becomes possible. Further, by setting the number of island components to preferably 4000 or less, more preferably 3000 or less, the fiber cross-sectional formability becomes good, so that fibers with small variations in fiber diameter can be obtained.
 口金孔から吐出した海島型複合繊維は、冷却風(空気)を吹き付けることにより冷却固化される。冷却風の温度は、冷却効率の観点から冷却風速とのバランスで決定することができるが、30℃以下であることが好ましい態様である。冷却風の温度を好ましくは30℃以下とすることにより、冷却による固化挙動が安定し、繊維径均一性の高い繊維となる。 The sea-island composite fibers discharged from the die hole are cooled and solidified by blowing cooling air (air) onto them. The temperature of the cooling air can be determined in balance with the cooling air speed from the viewpoint of cooling efficiency, but it is preferably 30° C. or lower. By setting the temperature of the cooling air to preferably 30° C. or lower, solidification behavior due to cooling is stabilized, resulting in fibers with high uniformity in fiber diameter.
 また、冷却風は、口金から吐出された未延伸繊維に、繊維軸とほぼ垂直方向に流すことが好ましい。その際、冷却風の速度は、冷却効率および繊度の均一性の観点から、10m/分以上であることが好ましく、製糸安定性の点から100m/分以下であることが好ましい。 Furthermore, it is preferable that the cooling air be allowed to flow through the undrawn fibers discharged from the die in a direction substantially perpendicular to the fiber axis. In this case, the speed of the cooling air is preferably 10 m/min or more from the viewpoint of cooling efficiency and uniformity of fineness, and preferably 100 m/min or less from the viewpoint of yarn spinning stability.
 冷却固化された未延伸繊維は、一定速度で回転するローラー(ゴデットローラー)により引き取られる。引取速度は線形均一性、生産性向上のため、300m/分以上が好ましく、分子鎖の配向を進めないために1500m/分以下が好ましい。 The undrawn fibers that have been cooled and solidified are taken up by a roller (godet roller) that rotates at a constant speed. The drawing speed is preferably 300 m/min or more in order to improve linear uniformity and productivity, and preferably 1500 m/min or less in order to prevent the orientation of molecular chains from proceeding.
 このようにして得られた未延伸繊維は、延伸されることなく、未延伸繊維のまま次工程に供される。 The undrawn fibers thus obtained are subjected to the next step without being drawn.
 得られた未延伸繊維には、必要に応じてクリンパーによる捲縮の付与、および70℃以下の温度でセッターによる形状固定を行っても良い。捲縮の付与により、繊維同士が絡合することで繊維同士の接着面積が増加し、力学的強度に優れた不織布を得ることができる。 The obtained undrawn fibers may be crimped using a crimper and fixed in shape using a setter at a temperature of 70° C. or lower, if necessary. By crimping, the fibers become entangled with each other, thereby increasing the adhesion area between the fibers, making it possible to obtain a nonwoven fabric with excellent mechanical strength.
 上記の捲縮における捲縮数としては、2山/25mm以上15山/25mm以下であることが好ましい。捲縮数を好ましくは2山/25mm以上とすることにより、繊維同士が絡合しやすくなり、力学的強度に優れた不織布となる。また、捲縮数を好ましくは15山/25mm以下とすることにより、分散液中での繊維の分散性が向上し、均質な不織布となる。 The number of crimps in the above crimps is preferably 2 crimps/25 mm or more and 15 crimps/25 mm or less. By preferably setting the number of crimp to 2/25 mm or more, the fibers become entangled with each other more easily, resulting in a nonwoven fabric with excellent mechanical strength. Further, by setting the number of crimps to preferably 15 crimps/25 mm or less, the dispersibility of the fibers in the dispersion liquid is improved, resulting in a homogeneous nonwoven fabric.
 次いで、得られた海島型複合繊維をカッターで所定の長さに切断することにより、短繊維を得ることができる。短繊維の繊維長は、0.1mm以上6.0mm以下が好ましい。平均繊維長を好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上とすることにより、不織布への加工工程において繊維が脱落しにくくなる。また、平均繊維長を好ましくは6.0mm以下、より好ましくは4.0mm以下、さらに好ましくは2.0mm以下とすることにより、繊維同士が絡みにくくなり繊維の分散性が向上するため、不織布とした際に目付の均一性が向上する。 Next, short fibers can be obtained by cutting the obtained sea-island composite fiber into a predetermined length with a cutter. The fiber length of the short fibers is preferably 0.1 mm or more and 6.0 mm or less. By setting the average fiber length to preferably 0.1 mm or more, more preferably 0.2 mm or more, and still more preferably 0.3 mm or more, the fibers are less likely to fall off during the processing step into a nonwoven fabric. In addition, by setting the average fiber length to preferably 6.0 mm or less, more preferably 4.0 mm or less, and even more preferably 2.0 mm or less, the fibers become less entangled with each other and the dispersibility of the fibers improves. When this happens, the uniformity of the basis weight improves.
 なお、カッターによる短繊維化については、後述する方法で極細ポリフェニレンスルフィド繊維を得た後に実施しても良い。 Note that shortening using a cutter may be carried out after obtaining ultrafine polyphenylene sulfide fibers by the method described below.
 本発明の極細ポリフェニレンスルフィド繊維を得るためには、海成分を溶解可能な溶剤などに、上記の海島型複合繊維を浸漬して、海成分のポリマーを除去すればよい。海成分のポリマーが、5-ナトリウムスルホイソフタル酸などが共重合された共重合ポリエチレンテレフタレートの場合には、水酸化ナトリウム水溶液などのアルカリ水溶液を溶剤として用いることができる。この際、海島型複合繊維とアルカリ水溶液の浴比(海島型複合繊維質量(g)/アルカリ水溶液質量(g))は1/10000以上1/5以下であることが好ましく、1/5000以上1/10以下であることがより好ましい。該範囲内とすることで、海成分の溶解時に不要に極細繊維同士が絡み合うことを抑制することができる。 In order to obtain the ultrafine polyphenylene sulfide fiber of the present invention, the sea-island composite fibers described above may be immersed in a solvent capable of dissolving the sea component to remove the sea component polymer. When the sea component polymer is copolymerized polyethylene terephthalate copolymerized with 5-sodium sulfoisophthalic acid, an alkaline aqueous solution such as an aqueous sodium hydroxide solution can be used as the solvent. At this time, the bath ratio of the sea-island composite fiber and the alkaline aqueous solution (mass of the sea-island composite fiber (g)/alkaline aqueous solution mass (g)) is preferably 1/10,000 or more and 1/5 or less, and 1/5,000 or more and 1/5 or less. It is more preferable that it is /10 or less. By setting it within this range, it is possible to suppress the ultrafine fibers from unnecessarily intertwining with each other when the sea component is dissolved.
 この際、アルカリ水溶液のアルカリ濃度は、0.1質量%以上5.0質量%以下であることが好ましく、0.5質量%以上3質量%以下であることがより好ましい。係る範囲内とすることで、海成分の溶解を短時間で完了させることができる。 At this time, the alkali concentration of the alkaline aqueous solution is preferably 0.1% by mass or more and 5.0% by mass or less, more preferably 0.5% by mass or more and 3% by mass or less. By setting it within this range, the dissolution of the sea components can be completed in a short time.
 海成分を除去する際のアルカリ水溶液の温度は70℃以下とすることが重要である。アルカリ水溶液の温度を70℃以下、好ましくは65℃以下、より好ましくは60℃以下とすることにより、溶出処理中に結晶化が進行しないため、結晶化度が低く接着性に優れた極細ポリフェニレンスルフィド繊維を得ることができる。 It is important that the temperature of the alkaline aqueous solution when removing sea components is 70°C or lower. By setting the temperature of the alkaline aqueous solution to 70°C or lower, preferably 65°C or lower, more preferably 60°C or lower, crystallization does not proceed during the elution process, resulting in ultrafine polyphenylene sulfide with low crystallinity and excellent adhesive properties. Fiber can be obtained.
 アルカリ水溶液での処理時間は、10分以上100分以下が好ましい。処理時間を好ましくは10分以上、より好ましくは20分以上とすることにより、海成分の溶け残りが生じにくくなり、優れた分散性を有する極細ポリフェニレンスルフィド繊維となる。また、処理時間を好ましくは100分以下、より好ましくは70分以下とすることにより、処理中に結晶化が生じにくくなり、優れた接着性を有する極細ポリフェニレンスルフィド繊維となる。 The treatment time with the alkaline aqueous solution is preferably 10 minutes or more and 100 minutes or less. By setting the treatment time to preferably 10 minutes or more, more preferably 20 minutes or more, it becomes difficult for the sea component to remain undissolved, resulting in ultrafine polyphenylene sulfide fibers having excellent dispersibility. Further, by setting the treatment time to preferably 100 minutes or less, more preferably 70 minutes or less, crystallization is less likely to occur during the treatment, resulting in ultrafine polyphenylene sulfide fibers having excellent adhesive properties.
 さらに、上記のアルカリ水溶液中に海成分の溶解促進剤として界面活性剤を添加することが好ましい。界面活性剤としては、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤などが挙げられるが、易溶解性ポリマーにポリエステルを用いた場合、カチオン系界面活性剤が好適に用いられる。また、アルカリ水溶液中の界面活性剤濃度は、アルカリ水溶液の重さに対して0.05質量%以上2質量%以下であることが好ましく、0.1質量%以上1質量%以下であることがより好ましい。係る範囲内とすることで、70℃以下の温度であっても海成分の溶解を短時間で完了させることが可能となる。 Furthermore, it is preferable to add a surfactant to the above alkaline aqueous solution as a dissolution promoter for the sea component. Examples of the surfactant include cationic surfactants, anionic surfactants, nonionic surfactants, etc., but when polyester is used as the easily soluble polymer, cationic surfactants are preferably used. . Further, the surfactant concentration in the alkaline aqueous solution is preferably 0.05% by mass or more and 2% by mass or less, and preferably 0.1% by mass or more and 1% by mass or less based on the weight of the alkaline aqueous solution. More preferred. By setting the temperature within this range, it is possible to complete the dissolution of sea components in a short time even at a temperature of 70° C. or lower.
 上記のように得られた極細ポリフェニレンスルフィド繊維からなる短繊維をバインダー繊維として用い、被バインダー繊維とともに水中に分散させることにより、抄紙液を調合することができる。なお、通常は被バインダー繊維として、ポリフェニレンスルフィド延伸繊維が用いられる。 A papermaking liquid can be prepared by using short fibers made of ultrafine polyphenylene sulfide fibers obtained as described above as binder fibers and dispersing them together with binder fibers in water. Note that polyphenylene sulfide drawn fibers are usually used as the binder fibers.
 抄紙液中の被バインダー繊維に対するバインダー繊維の割合は、10質量%以上80質量%以下が好ましい。被バインダー繊維に対するバインダー繊維の割合を好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上とすることにより、繊維同士の接着点が多くなり、力学特性に優れた不織布となる。また、被バインダー繊維に対するバインダー繊維の割合を好ましくは80質量%以下、より好ましくは75質量%以下、さらに好ましくは70質量%以下とすることにより、適度な通気性や柔軟性を有した不織布となる。 The ratio of binder fibers to binder fibers in the papermaking liquid is preferably 10% by mass or more and 80% by mass or less. By setting the ratio of the binder fiber to the binder fiber to preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, the number of bonding points between the fibers increases, resulting in excellent mechanical properties. It becomes a non-woven fabric. In addition, by setting the ratio of binder fibers to binder fibers to preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less, a nonwoven fabric with appropriate air permeability and flexibility can be obtained. Become.
 上記の抄紙液を抄紙機に供給することにより、不織布を得ることができる。なお、供給する抄紙液の繊維濃度を調整することにより、得られる不織布の目付を変更することができる。 A nonwoven fabric can be obtained by supplying the above papermaking liquid to a papermaking machine. Note that by adjusting the fiber concentration of the supplied papermaking liquid, the basis weight of the obtained nonwoven fabric can be changed.
 上記のように得られた不織布は、水分を除去するために乾燥することが好ましい。乾燥温度としては、非晶部の結晶化による融着性の低下が起こらないように、70℃以下であることが好ましい。 The nonwoven fabric obtained as described above is preferably dried to remove moisture. The drying temperature is preferably 70° C. or lower to prevent a decrease in fusion properties due to crystallization of the amorphous portion.
 このようにして得られた不織布は、平板加熱プレス機もしくはカレンダーロールにて熱圧着することにより、本発明の極細ポリフェニレンスルフィド繊維により被バインダー繊維間の融着が生じ、力学特性に優れた不織布となる。熱圧着温度としては130℃以上250℃以下が好ましく、圧着時間は10分以下とすることが好ましい。熱圧着温度を好ましくは130℃以上、より好ましくは150℃以上、さらに好ましくは170℃以上とすることにより、本発明の極細ポリフェニレンスルフィド繊維の融着により、力学特性に優れた不織布となる。また、熱圧着温度を好ましくは250℃以下とすることにより、熱圧着時の不織布の熱収縮によるシワの発生を抑制することができる。さらに、圧着時間を好ましくは10分以下、より好ましくは5分以下とすることにより、過度な結晶化により不織布の柔軟性が低下するのを抑制することができる。 The thus obtained nonwoven fabric is heat-pressed using a flat plate hot press machine or a calendar roll, whereby the ultrafine polyphenylene sulfide fibers of the present invention cause fusion between the binder fibers, resulting in a nonwoven fabric with excellent mechanical properties. Become. The thermocompression temperature is preferably 130°C or more and 250°C or less, and the compression time is preferably 10 minutes or less. By setting the thermocompression temperature to preferably 130° C. or higher, more preferably 150° C. or higher, and still more preferably 170° C. or higher, the ultrafine polyphenylene sulfide fibers of the present invention are fused to produce a nonwoven fabric with excellent mechanical properties. Further, by setting the thermocompression bonding temperature preferably to 250° C. or lower, it is possible to suppress the generation of wrinkles due to thermal contraction of the nonwoven fabric during thermocompression bonding. Furthermore, by setting the pressure bonding time to preferably 10 minutes or less, more preferably 5 minutes or less, it is possible to suppress a decrease in flexibility of the nonwoven fabric due to excessive crystallization.
 次に、実施例に基づき本発明を詳細に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前述の方法に基づいて測定を行ったものである。 Next, the present invention will be explained in detail based on Examples. However, the present invention is not limited only to these examples. In addition, in the measurement of each physical property, unless otherwise specified, the measurement was performed based on the method described above.
 (1)平均繊維径
 走査型電子顕微鏡として株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡「S-5500」、画像解析ソフトとして三谷商事株式会社製「WinROOF2015」を用い、前述のとおり測定を行った。
(1) Average fiber diameter Measurement was performed as described above using a scanning electron microscope "S-5500" manufactured by Hitachi High-Technologies Corporation as a scanning electron microscope and "WinROOF2015" manufactured by Mitani Shoji Co., Ltd. as an image analysis software. .
 (2)異形度
 走査型電子顕微鏡として株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡「S-5500」、画像解析ソフトとして三谷商事株式会社製「WinROOF2015」を用い、前述のとおり測定を行った。
(2) Degree of irregularity Measurement was performed as described above using a scanning electron microscope "S-5500" manufactured by Hitachi High-Technologies Corporation as a scanning electron microscope and "WinROOF2015" manufactured by Mitani Shoji Co., Ltd. as an image analysis software.
 (3)平均繊維長
 JIS L1015:2010「化学繊維ステープル試験方法」の「8.4.1.平均繊維長(c直接法)」に基づき、前述の通り測定を行った。
(3) Average fiber length Measurement was performed as described above based on "8.4.1. Average fiber length (c direct method)" of JIS L1015:2010 "Chemical fiber staple test method".
 (4)結晶化度
 TA Instruments社製の示差走査熱量計「DSC Q2000」を用い、前述のとおり測定を行った。
(4) Crystallinity Measurement was performed as described above using a differential scanning calorimeter "DSC Q2000" manufactured by TA Instruments.
 (5)目付
 JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に準じて、前述の通り測定を行った。
(5) Fabric weight Measurement was performed as described above in accordance with "6.2 Mass per unit area" of JIS L1913:2010 "General Nonwoven Fabric Test Methods".
 (6)不織布の厚さ
 JIS P8118:2014「紙及び板紙-厚さ、密度及び比容積の試験方法」に基づき、株式会社ミツトヨ社製「マイクロメータ」を用いて、前述の通り測定を行った。
(6) Thickness of nonwoven fabric Based on JIS P8118:2014 "Paper and paperboard - Test method for thickness, density and specific volume", measurement was performed as described above using a "micrometer" manufactured by Mitutoyo Co., Ltd. .
 (7)不織布の強度
 各実施・比較例で作製した不織布を、引張試験機テンシロン(オリエンテック社製UTM-III-100)を用いて、前述の通り測定を行った。
(7) Strength of nonwoven fabric The nonwoven fabrics produced in each of the practical and comparative examples were measured as described above using a tensile tester Tensilon (UTM-III-100 manufactured by Orientec).
 (8)不織布の品位
 得られた不織布の品位に関し、次の3段階で評価した。
A:目付のムラがなく外観の均一性が良好である
B:不織布中に繊維束や繊維凝集物などが視認できる
C:不織布に破れやピンホールが生じている。
(8) Quality of nonwoven fabric The quality of the obtained nonwoven fabric was evaluated on the following three levels.
A: There is no unevenness in the basis weight and the uniformity of the appearance is good. B: Fiber bundles, fiber aggregates, etc. are visible in the nonwoven fabric. C: Tears and pinholes have occurred in the nonwoven fabric.
 [参考例1]
 p-フェニレンスルフィド単位のみからなるポリフェニレンスルフィドを、150℃で12時間真空乾燥した後、紡糸温度330℃で溶融紡糸した。溶融紡糸において、ポリフェニレンスルフィドを二軸エクストルーダーによって溶融押出しし、ギアーポンプで計量し、異物除去のためのフィルターを通過した後、紡糸パックにポリフェニレンスルフィドを供給した。その後、吐出孔を36孔有する口金より、単孔吐出量0.2g/分の条件でポリフェニレンスルフィドを吐出させた。口金孔の直上に位置する導入孔はストレート孔とし、導入孔と口金孔の接続部分はテーパーとした紡糸口金を用いた。口金より吐出されたポリフェニレンスルフィドは50mmの保温領域を通過させた後、ユニフロー型冷却装置を用いて温度25℃、風速18m/分の条件で1.0mに渡って空冷した。その後、油剤を付与し、36フィラメントともに1000m/分の第1ゴデットローラーおよび第2ゴデットローラーを介して、36フィラメントをワインダーにて巻き取り、未延伸繊維を得た。
[Reference example 1]
Polyphenylene sulfide consisting only of p-phenylene sulfide units was vacuum dried at 150°C for 12 hours, and then melt-spun at a spinning temperature of 330°C. In melt spinning, polyphenylene sulfide was melt-extruded by a twin-screw extruder, metered by a gear pump, and passed through a filter to remove foreign matter, and then fed into a spinning pack. Thereafter, polyphenylene sulfide was discharged from a die having 36 discharge holes at a single hole discharge rate of 0.2 g/min. The introduction hole located directly above the spinneret hole was a straight hole, and the connecting portion between the introduction hole and the spinneret hole was tapered. The polyphenylene sulfide discharged from the nozzle passed through a 50 mm heat-retaining area, and then was air-cooled over 1.0 m using a uniflow type cooling device at a temperature of 25° C. and a wind speed of 18 m/min. Thereafter, an oil agent was applied, and each of the 36 filaments was wound up with a winder through a first godet roller and a second godet roller at 1000 m/min to obtain an undrawn fiber.
 次いで、得られた未延伸繊維を、90℃に熱したローラー間で3.0倍に延伸した後、200℃に熱したローラーにて熱セットし、ポリフェニレンスルフィド延伸繊維を得た。 Next, the obtained undrawn fibers were stretched 3.0 times between rollers heated to 90°C, and then heat set using rollers heated to 200°C to obtain polyphenylene sulfide drawn fibers.
 その後、得られたポリフェニレンスルフィド延伸繊維をカッターにて切断し、平均繊維長6mmの短繊維を得た。 Thereafter, the obtained stretched polyphenylene sulfide fibers were cut with a cutter to obtain short fibers with an average fiber length of 6 mm.
 [実施例1]
 p-フェニレンスルフィド単位のみからなるポリフェニレンスルフィドを島成分、5-ナトリウムスルホイソフタル酸が5.0mol%共重合されたポリエチレンテレフタレートを海成分とし、それぞれのポリマーを150℃で12時間真空乾燥した後、紡糸温度310℃で溶融紡糸した。溶融紡糸において、島成分と海成分をそれぞれ別に溶融させた後、ポリマー配管を経由しギアーポンプにより計量し、異物除去のためのフィルターを通過した後、それぞれ紡糸パックに供給した。その後、島成分の形状が丸である海島型複合口金(島数:1000、D:0.4mm、L:0.8mm)を用いて、海/島成分の複合比率を40/60として溶融吐出した糸条を冷却固化した後、油剤を付与し、紡糸速度1000m/minで巻き取ることで海島型複合断面を有した未延伸繊維を得た(単孔吐出量:2.6g/min)。
[Example 1]
Polyphenylene sulfide consisting only of p-phenylene sulfide units was used as the island component, polyethylene terephthalate copolymerized with 5.0 mol% of 5-sodium sulfoisophthalic acid was used as the sea component, and each polymer was vacuum-dried at 150°C for 12 hours. Melt spinning was carried out at a spinning temperature of 310°C. In melt spinning, the island component and the sea component were each melted separately, measured by a gear pump via polymer piping, passed through a filter to remove foreign substances, and then supplied to a spinning pack. Then, using a sea-island type composite mouthpiece (number of islands: 1000, D: 0.4 mm, L: 0.8 mm) in which the shape of the island component is round, the composite ratio of the sea/island component was set to 40/60 and melted and discharged. After cooling and solidifying the resulting yarn, an oil agent was applied thereto and the fiber was wound at a spinning speed of 1000 m/min to obtain an undrawn fiber having a sea-island composite cross section (single hole discharge rate: 2.6 g/min).
 次いで、得られた海島型複合繊維をカッターにて切断し、平均繊維長0.5mmの短繊維を得た。その後、得られた短繊維を、50℃に加熱した3質量%の水酸化ナトリウム水溶液(浴比1/100)にて、40分間溶解処理することで極細ポリフェニレンスルフィド繊維からなるバインダー繊維を得た。なお、水酸化ナトリウム水溶液中に、溶解促進剤としてライオン・スペシャリティ・ケミカルズ(株)社製「DY-1125K(第4級アンモニウム塩型カチオン系界面活性剤)」を水酸化ナトリウム水溶液質量に対して0.5質量%添加して処理を行った。 Next, the obtained sea-island composite fibers were cut with a cutter to obtain short fibers with an average fiber length of 0.5 mm. Thereafter, the obtained short fibers were dissolved for 40 minutes in a 3% by mass aqueous sodium hydroxide solution (bath ratio 1/100) heated to 50°C to obtain binder fibers made of ultrafine polyphenylene sulfide fibers. . In addition, "DY-1125K (quaternary ammonium salt type cationic surfactant)" manufactured by Lion Specialty Chemicals Co., Ltd. was added as a dissolution promoter to the sodium hydroxide aqueous solution based on the mass of the sodium hydroxide aqueous solution. The treatment was performed by adding 0.5% by mass.
 バインダー繊維として上記の極細ポリフェニレンスルフィド繊維を50質量%、被バインダー繊維として参考例1にて得られたポリフェニレンスルフィド延伸繊維を50質量%の割合で抄紙分散液中に混合し、繊維濃度が0.4質量%となるように調合した。この抄紙液を簡易抄紙機に供給し、目付40g/mの湿式不織布を得た。さらに、上記湿式不織布を120℃の熱風乾燥機内に投入し、3分間処理後に空冷した後に200℃の平板加熱プレス機を用いて、プレス圧1.5MPaで3分間熱圧着を行った。 50% by mass of the ultrafine polyphenylene sulfide fibers described above as binder fibers and 50% by mass of the drawn polyphenylene sulfide fibers obtained in Reference Example 1 as binder fibers were mixed into a papermaking dispersion liquid, and the fiber concentration was 0. The content was adjusted to 4% by mass. This paper making liquid was supplied to a simple paper machine to obtain a wet nonwoven fabric with a basis weight of 40 g/m 2 . Further, the wet nonwoven fabric was put into a hot air dryer at 120°C, treated for 3 minutes, cooled in air, and then thermocompression bonded for 3 minutes at a press pressure of 1.5 MPa using a flat plate hot press at 200°C.
 得られたバインダー繊維、および不織布の評価結果を表1に示す。 Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [実施例2、3]
 海島型複合口金の島数を変更した以外は、実施例1と同じ方法でバインダー用のポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Example 2, 3]
A polyphenylene sulfide fiber for a binder and a nonwoven fabric were obtained in the same manner as in Example 1, except that the number of islands in the sea-island composite base was changed. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [実施例4]
 海島型複合繊維をカッターにて切断する際に平均繊維長2.5mmの短繊維とした以外は、実施例1と同じ方法でバインダー用のポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Example 4]
Polyphenylene sulfide fibers for a binder and a nonwoven fabric were obtained in the same manner as in Example 1, except that short fibers with an average fiber length of 2.5 mm were used when cutting the sea-island composite fibers with a cutter. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [比較例1]
 参考例1にて得られた未延伸繊維を延伸せずにバインダー繊維として用いた以外は、実施例1と同じ方法で不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Comparative example 1]
A nonwoven fabric was obtained in the same manner as in Example 1, except that the undrawn fibers obtained in Reference Example 1 were used as binder fibers without being drawn. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [比較例2]
 実施例1の方法で得られた海島型複合断面を有した未延伸繊維を90℃に熱したローラー間で3.0倍に延伸した後、200℃に熱したローラーにて熱セットした以外は、実施例1と同じ方法でバインダー用のポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Comparative example 2]
Except that the undrawn fibers having a sea-island composite cross section obtained by the method of Example 1 were drawn 3.0 times between rollers heated to 90°C, and then heat set with rollers heated to 200°C. A polyphenylene sulfide fiber for a binder and a nonwoven fabric were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [実施例5、比較例3]
 海島型複合繊維の短繊維の溶解処理におけるアルカリ水溶液の温度をそれぞれ70℃(実施例5)と90℃(比較例3)に変更した以外は、実施例1と同じ方法で極細ポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Example 5, Comparative Example 3]
Ultrafine polyphenylene sulfide fiber, and a nonwoven fabric was obtained. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [実施例6]
 海島型複合繊維の島成分形状をY字とし、海成分溶出後のポリフェニレンスルフィド繊維の繊維横断面を異形度1.7のY字断面とした以外は、実施例3と同じ方法でバインダー用のポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Example 6]
A binder material was prepared in the same manner as in Example 3, except that the island component shape of the sea-island composite fiber was Y-shaped, and the fiber cross section of the polyphenylene sulfide fiber after sea component elution was a Y-shaped cross section with a degree of irregularity of 1.7. Polyphenylene sulfide fibers and nonwoven fabrics were obtained. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
 [実施例7]
 海島型複合繊維の島成分形状を扁平とし、海成分溶出後のポリフェニレンスルフィド繊維の繊維横断面を異形度3.8の扁平断面とした以外は、実施例3と同じ方法でバインダー用のポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表1に示す。
[Example 7]
Polyphenylene sulfide for a binder was prepared in the same manner as in Example 3, except that the island component shape of the sea-island composite fiber was made flat, and the fiber cross section of the polyphenylene sulfide fiber after sea component elution was made into a flat cross section with a degree of irregularity of 3.8. Fibers and nonwoven fabrics were obtained. Table 1 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例8、9]
 不織布の目付をそれぞれ10g/m(実施例8)と5g/m(実施例9)に変更した以外は、実施例1と同じ方法で極細ポリフェニレンスルフィド繊維、および不織布を得た。得られたバインダー繊維、および不織布の評価結果を表2に示す。
[Example 8, 9]
Ultrafine polyphenylene sulfide fibers and nonwoven fabrics were obtained in the same manner as in Example 1, except that the basis weights of the nonwoven fabrics were changed to 10 g/m 2 (Example 8) and 5 g/m 2 (Example 9), respectively. Table 2 shows the evaluation results of the obtained binder fibers and nonwoven fabrics.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~9は、平均繊維径が細く、および結晶化度が低いことから、不織布の薄地化が可能であり、接着性や品位が良好であることが分かる。 It can be seen that Examples 1 to 9 have a small average fiber diameter and a low degree of crystallinity, so it is possible to make the nonwoven fabric thinner, and the adhesiveness and quality are good.
 一方、比較例1は繊維径が太いため不織布が厚くなり、比較例2および比較例3はバインダー繊維の接着性が低いため不織布の強度や目付当たりの強度が低く、加えて品位も劣るものであった。 On the other hand, in Comparative Example 1, the nonwoven fabric is thick because the fiber diameter is large, and in Comparative Examples 2 and 3, the adhesiveness of the binder fibers is low, so the strength and strength per area of the nonwoven fabric are low, and the quality is also inferior. there were.
1: 繊維横断面の輪郭
2: 最小外接円
3: 最大内接円
 
1: Outline of fiber cross section 2: Minimum circumscribed circle 3: Maximum inscribed circle

Claims (6)

  1.  平均繊維径が0.2μm以上5.0μm以下であって、示差走査熱量測定にて算出される結晶化度が0%以上15%以下である、極細ポリフェニレンスルフィド繊維。 Ultrafine polyphenylene sulfide fibers having an average fiber diameter of 0.2 μm or more and 5.0 μm or less, and a crystallinity calculated by differential scanning calorimetry of 0% or more and 15% or less.
  2.  前記極細ポリフェニレンスルフィド繊維が異形断面繊維であって、下記式で定義される異形度が1.2以上である、請求項1に記載の極細ポリフェニレンスルフィド繊維。
       異形度=最小外接円直径/最大内接円直径
    ここで、最小外接円直径は繊維横断面すべてを含む最も小さな円の直径(μm)、最大内接円直径は繊維横断面の中に入る最も大きな円の直径(μm)である。
    The ultrafine polyphenylene sulfide fiber according to claim 1, wherein the ultrafine polyphenylene sulfide fiber is a modified cross-section fiber, and has a degree of irregularity defined by the following formula of 1.2 or more.
    Degree of irregularity = Minimum circumscribed circle diameter / Maximum inscribed circle diameter Here, the minimum circumscribed circle diameter is the diameter (μm) of the smallest circle that includes all of the fiber cross sections, and the maximum inscribed circle diameter is the diameter of the smallest circle that includes the entire fiber cross section. This is the diameter of a large circle (μm).
  3.  平均繊維長が0.1mm以上6.0mm以下である、請求項1または2に記載の極細ポリフェニレンスルフィド繊維。 The ultrafine polyphenylene sulfide fiber according to claim 1 or 2, having an average fiber length of 0.1 mm or more and 6.0 mm or less.
  4.  請求項1に記載の極細ポリフェニレンスルフィド繊維を含む、不織布。 A nonwoven fabric comprising the ultrafine polyphenylene sulfide fiber according to claim 1.
  5.  島成分にポリフェニレンスルフィドを配した海島型複合断面を有した未延伸繊維を、70℃以下のアルカリ水溶液中で海成分を除去し、平均繊維径が0.2μm以上5.0μm以下、かつ示差走査熱量測定にて算出される結晶化度が0%以上15%以下の繊維を得る、極細ポリフェニレンスルフィド繊維の製造方法。 An undrawn fiber with a sea-island composite cross section in which polyphenylene sulfide is arranged as an island component is removed in an alkaline aqueous solution at 70°C or lower, and the average fiber diameter is 0.2 μm or more and 5.0 μm or less and differentially scanned. A method for producing ultrafine polyphenylene sulfide fibers, which obtains fibers having a crystallinity of 0% or more and 15% or less as calculated by calorimetry.
  6.  請求項1または2に記載の極細ポリフェニレンスルフィド繊維と、ポリフェニレンスルフィド延伸繊維とを抄紙分散液中に混合して抄紙した後、130℃以上250℃以下の温度で熱圧着を施す、不織布の製造方法。
     
    A method for producing a nonwoven fabric, which comprises mixing the ultrafine polyphenylene sulfide fibers according to claim 1 or 2 and drawn polyphenylene sulfide fibers in a papermaking dispersion to make paper, and then subjecting the paper to thermocompression bonding at a temperature of 130°C or higher and 250°C or lower. .
PCT/JP2023/023495 2022-07-20 2023-06-26 Ultrafine polyphenylene sulfide fiber, nonwoven fabric, and methods for producing same WO2024018828A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-115282 2022-07-20
JP2022115282 2022-07-20
JP2022-196106 2022-12-08
JP2022196106 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024018828A1 true WO2024018828A1 (en) 2024-01-25

Family

ID=89617632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023495 WO2024018828A1 (en) 2022-07-20 2023-06-26 Ultrafine polyphenylene sulfide fiber, nonwoven fabric, and methods for producing same

Country Status (1)

Country Link
WO (1) WO2024018828A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152499A (en) * 1986-12-10 1988-06-24 東レ株式会社 Special paper like sheet
JP2006257619A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Dry nonwoven fabric composed of polyphenylene sulfide nano-fiber
WO2010007919A1 (en) * 2008-07-18 2010-01-21 東レ株式会社 Polyphenylene sulfide fiber, process for producing the same, wet-laid nonwoven fabric, and process for producing wet-laid nonwoven fabric
JP2010077544A (en) * 2008-09-24 2010-04-08 Toray Ind Inc Polyphenylene sulfide fiber for papermaking and method for producing the same
WO2011070999A1 (en) * 2009-12-09 2011-06-16 東レ株式会社 Method for producing long fiber nonwoven fabric
JP2019000793A (en) * 2017-06-14 2019-01-10 旭化成株式会社 Filter medium for dust collector filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152499A (en) * 1986-12-10 1988-06-24 東レ株式会社 Special paper like sheet
JP2006257619A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Dry nonwoven fabric composed of polyphenylene sulfide nano-fiber
WO2010007919A1 (en) * 2008-07-18 2010-01-21 東レ株式会社 Polyphenylene sulfide fiber, process for producing the same, wet-laid nonwoven fabric, and process for producing wet-laid nonwoven fabric
JP2010077544A (en) * 2008-09-24 2010-04-08 Toray Ind Inc Polyphenylene sulfide fiber for papermaking and method for producing the same
WO2011070999A1 (en) * 2009-12-09 2011-06-16 東レ株式会社 Method for producing long fiber nonwoven fabric
JP2019000793A (en) * 2017-06-14 2019-01-10 旭化成株式会社 Filter medium for dust collector filter

Similar Documents

Publication Publication Date Title
KR101421317B1 (en) Wet-laid non-woven fabric and filter
KR101441723B1 (en) Thin paper
JP5414963B2 (en) Dry nonwoven fabric made of polyphenylene sulfide nanofiber
JP2007107160A (en) Method for producing short-cut nanofiber and wet nonwoven fabric
JP4677919B2 (en) Tow and short fiber bundles and pulp and liquid dispersions and papers composed of polyphenylene sulfide nanofibers
JP4185748B2 (en) Nonwoven fabric and separator for lithium ion secondary battery
WO2024018828A1 (en) Ultrafine polyphenylene sulfide fiber, nonwoven fabric, and methods for producing same
JP7334623B2 (en) Copolymer polyphenylene sulfide fiber
JP7110316B2 (en) Base material for alkaline water electrolysis membrane and alkaline water electrolysis membrane
JP2021050459A (en) Polyphenylene sulfide composite fibers, method of manufacturing the same, and nonwoven fabric
JP2024051375A (en) Polyarylene sulfide fiber and nonwoven fabric made thereof
JP6068868B2 (en) Shortcut fiber for wet nonwoven fabric
JPH11273653A (en) Nonwoven fabric for battery separator
JPH0729561A (en) Battery separator and manufacture thereof
WO2022190797A1 (en) Polyphenylene sulfide fiber nonwoven fabric, and diaphragm comprising same
JP2004285509A (en) Extra fine fiber and nonwoven fabric using the same
JP7284286B2 (en) Non-woven fabrics for battery separators and battery separators
EP4283038A1 (en) Wet-laid nonwoven fabric sheet
JP2022117559A (en) polyphenylene sulfide fiber
JP2023069101A (en) Battery separator and manufacturing method for the same
JP2022130318A (en) polyphenylene sulfide fiber
JP2014201847A (en) Air-laid nonwoven fabric and fiber product
JP2022098743A (en) Battery separator and method for manufacturing the same
JP2020143387A (en) Polyphenylene sulfide fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842759

Country of ref document: EP

Kind code of ref document: A1