WO2024018820A1 - Motor and ceiling fan - Google Patents
Motor and ceiling fan Download PDFInfo
- Publication number
- WO2024018820A1 WO2024018820A1 PCT/JP2023/023212 JP2023023212W WO2024018820A1 WO 2024018820 A1 WO2024018820 A1 WO 2024018820A1 JP 2023023212 W JP2023023212 W JP 2023023212W WO 2024018820 A1 WO2024018820 A1 WO 2024018820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- hall
- motor
- stator
- electromagnets
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 52
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 230000005389 magnetism Effects 0.000 claims abstract description 8
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 25
- 230000004907 flux Effects 0.000 description 10
- 230000003014 reinforcing effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000000696 magnetic material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2798—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
- H02K11/215—Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/02—Machines with one stator and two or more rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
Definitions
- the present disclosure relates to a motor and a ceiling fan, and more particularly, to a so-called axial gap type motor and a ceiling fan using the motor as a power source.
- an axial gap type rotating electrical machine (motor) described in Patent Document 1 is illustrated.
- the axial gap type rotating electrical machine described in Patent Document 1 (hereinafter referred to as a conventional example) includes a stator and a pair of rotors.
- the stator has a plurality of stator cores and a plurality of coils formed by winding conductive wire around each stator core. These plurality of stator cores are arranged at equal intervals along the circumferential direction of the rotating shaft.
- the pair of rotors are attached to the rotating shaft so as to sandwich the stator in the axial direction of the rotating shaft.
- Each rotor includes a disk-shaped back yoke and a plurality of permanent magnets arranged on a surface of the back yoke facing the stator.
- the plurality of permanent magnets are fixed to the back yoke so as to be arranged at equal intervals along the circumferential direction of the rotating shaft.
- conventional brushless motors usually use a Hall element to detect the magnetic field (magnetic flux) of a permanent magnet in order to determine the timing of passing excitation current through a plurality of electromagnets (coils).
- a Hall element (or a Hall IC in which a Hall element and a signal processing circuit are integrated) is mounted on a printed wiring board and placed at a position where the magnetism (magnetic flux) of a permanent magnet can be detected.
- An object of the present disclosure is to provide a motor and a ceiling fan that can suppress deterioration in accuracy of magnetic detection.
- a motor includes a stator and a rotor that is rotatable with respect to the stator.
- the rotor includes permanent magnets in which different magnetic poles are arranged alternately along the rotation direction, and a support member that supports the permanent magnets.
- the stator includes a plurality of electromagnets arranged along the rotational direction of the rotor, a mounting member to which the plurality of electromagnets are attached, and a magnetic detection section that detects magnetism of the permanent magnet.
- Each of the plurality of electromagnets has a stator core and a coil wound around the stator core.
- the magnetic detection section includes a Hall element or a Hall IC, and a support substrate that supports the Hall element or the Hall IC.
- the Hall element or the Hall IC is arranged outside the stator core with respect to the rotation center of the rotor.
- a ceiling fan includes the motor and one or more blades that are driven and rotated by the motor.
- FIG. 1 is an exploded perspective view of a motor according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view of the same motor with the connecting body omitted.
- FIG. 3 is a side view of the same motor with the connecting body omitted.
- FIG. 4 is a perspective view of the same motor with the connecting body and second rotor omitted.
- FIG. 5 is a perspective view of the same motor with the connecting body, second rotor, and mounting plate omitted.
- FIG. 6 is a plan view of the same motor with the connecting body and support member omitted.
- FIG. 7 is a plan view of the same motor with the connecting body, support member, and permanent magnet omitted.
- FIG. 1 is an exploded perspective view of a motor according to an embodiment of the present disclosure.
- FIG. 2 is a perspective view of the same motor with the connecting body omitted.
- FIG. 3 is a side view of the same motor with the connecting body omitted.
- FIG. 4 is a
- FIG. 8 is a plan view of the main parts of the same motor with the connecting body, support member, and permanent magnet omitted.
- FIG. 9 is an explanatory diagram for explaining the operation of the motor same as above.
- FIG. 10 is an explanatory diagram for explaining the operation of the motor same as above.
- FIG. 11 is a perspective view of a ceiling fan according to an embodiment of the present disclosure.
- the motor M1 includes a stator S1 and a rotor (first rotor R1) that is rotatable with respect to the stator S1 (see FIGS. 1 to 3).
- the first rotor R1 includes a permanent magnet 4 in which different magnetic poles (magnetic pole portions 40) are arranged alternately along the rotation direction, and a support member 5 that supports the permanent magnet 4.
- the stator S1 includes a plurality of electromagnets 1 arranged along the rotational direction of the first rotor R1, a mounting member 2 to which the plurality of electromagnets 1 are attached, and a magnetic detection section 3 that detects the magnetism of the permanent magnet 4. .
- Each of the plurality of electromagnets 1 has a stator core 10 and a coil 11 wound around the stator core 10.
- the magnetic detection unit 3 includes a Hall element or Hall IC 30 and a support substrate 31 that supports the Hall IC 30.
- Hall IC 30 is arranged outside stator core 10 with respect to the rotation center of first rotor R1 (center of shaft 6) (see FIG. 7).
- the Hall element or Hall IC 30 when the Hall element or Hall IC 30 is arranged inside the stator core 10 with respect to the rotation center of the first rotor R1, the Hall element or the Hall IC 30 is The gap between the Hall IC 30 and the permanent magnet 4 becomes wider, which may lead to a decrease in the accuracy of magnetic detection by the magnetic detection section 3.
- the Hall element or Hall IC 30 is arranged outside the stator core 10 with respect to the rotation center of the first rotor R1 (the center of the shaft 6). Therefore, in the motor M1 according to the embodiment, the accuracy of magnetic detection is reduced due to the deflection of the support substrate 31, compared to the case where the Hall element or the Hall IC 30 is arranged inside the stator core 10 with respect to the rotation center of the first rotor R1. can be suppressed.
- the ceiling fan CF1 includes a motor M1 according to the embodiment of the present disclosure, and one or more blades 81 that are driven and rotated by the motor M1.
- the ceiling fan CF1 according to the embodiment includes the motor M1 according to the embodiment of the present disclosure, it is possible to suppress a decrease in accuracy of magnetic detection.
- the motor M1 (hereinafter abbreviated as motor M1) according to the embodiment includes a rotor block and a stator S1.
- the motor M1 further includes a shaft 6 that rotatably supports the rotor block (see FIGS. 1 to 3).
- the shaft 6 is formed of a metal material into a hollow cylindrical shape.
- the rotor block has a first rotor R1, a second rotor R2, and a connecting body W1 that connects the first rotor R1 and the second rotor R2 (see FIG. 1). ).
- the first rotor R1 includes a permanent magnet 4 and a support member 5 that supports the permanent magnet 4.
- the permanent magnet 4 is, for example, a ring-shaped neodymium magnet with multiple poles on both sides. That is, the permanent magnet 4 has a plurality of magnetic pole parts 40 that are magnetized to have different poles (N pole and S pole) in the thickness direction. These plurality of magnetic pole parts 40 have the same shape and the same size, and are arranged so that different poles are alternately lined up along the circumferential direction of the permanent magnet 4 (see FIG. 1). Although the number of magnetic pole parts 40 in the embodiment is 18, it is not limited to this, and may be from 2 to 17 or 19 or more. Furthermore, the permanent magnet 4 may be a magnet other than a neodymium magnet, such as a ferrite magnet or a samarium cobalt magnet.
- the support member 5 has a bottom wall 50, a peripheral wall 51, a flange 52, and a housing portion 53 (see FIGS. 1 to 5). Note that it is preferable that the bottom wall 50, the peripheral wall 51, the flange 52, and the accommodating portion 53 be integrally formed of a soft magnetic material such as stainless steel.
- the bottom wall 50 is formed into a disk shape.
- the peripheral wall 51 is formed in a cylindrical shape and protrudes from the peripheral edge of the bottom wall 50 in the thickness direction of the bottom wall 50.
- the flange 52 is formed in a ring shape and protrudes outward from the tip of the peripheral wall 51.
- the accommodating portion 53 is formed into a cylindrical shape with a bottom. The accommodating portion 53 protrudes from the center of the bottom wall 50 along the thickness direction of the bottom wall 50 in a direction opposite to the peripheral wall 51 (downward in FIG. 1).
- a circular hole 530 passes through the bottom of the housing portion 53 (see FIG. 1).
- a bearing is housed in the housing portion 53.
- the support member 5 (first rotor R1) is rotatably supported by the shaft 6 via a bearing housed in the housing section 53.
- the permanent magnet 4 is fixed to the bottom wall 50 by an appropriate method such as adhesion, welding, caulking, or screwing. That is, the permanent magnet 4 is housed in a space surrounded by the bottom wall 50 and the peripheral wall 51 (see FIG. 2).
- the second rotor R2 has a top plate 70, a side plate 71, a flange 72, and a housing portion 73.
- the top plate 70, the side plate 71, the flange 72, and the accommodating part 73 be integrally formed of a soft magnetic material such as stainless steel.
- the top plate 70 is formed into a disk shape.
- the side plate 71 is formed in a cylindrical shape and protrudes from the periphery of the top plate 70 in the thickness direction of the top plate 70.
- the flange 72 is formed in a ring shape and protrudes outward from the tip of the side plate 71.
- the housing portion 73 is formed into a cylindrical shape with a bottom. The housing portion 73 protrudes from the center of the top plate 70 along the thickness direction of the top plate 70 in a direction opposite to the side plate 71 (upward in FIG. 1).
- a circular hole 730 passes through the bottom of the accommodating portion 73.
- a bearing is housed in the housing portion 73.
- the second rotor R2 is rotatably supported by the shaft 6 via a bearing housed in the housing portion 73.
- the connecting body W1 is formed into a cylindrical shape from a soft magnetic material such as stainless steel.
- the flange 52 of the support member 5 of the first rotor R1 is screwed (or riveted) to the first end surface (the lower end surface in FIG. 1) of the coupling body W1.
- the flange 72 of the second rotor R2 is screwed (or riveted) to the second end surface (the upper end surface in FIG. 1) of the coupling body W1. That is, the first rotor R1 (support member 5) and the second rotor R2 are connected by the connecting body W1 and can rotate integrally.
- the stator S1 includes a plurality of electromagnets 1 arranged along the rotation direction of the rotor block, a mounting member 2 to which the plurality of electromagnets 1 are attached, and a magnetic detection section 3 that detects the magnetism of the permanent magnet 4. , has.
- Electromagnet The plurality of electromagnets 1 all have the same configuration. Note that the number of the plurality of electromagnets 1 is the same as the number of the plurality of magnetic pole parts 40 of the permanent magnet 4 (18 pieces). However, the number of electromagnets 1 may not be the same as the number of magnetic pole parts 40.
- the electromagnet 1 includes a stator core 10, a coil 11, and a bobbin 12.
- the stator core 10 includes a first flange 101, a second flange 102, a fixed part 103, and a body (see FIG. 5).
- the first flange 101 and the second flange 102 are each formed into a rectangular flat plate shape.
- the body is formed into a prismatic shape and connects the first flange 101 and the second flange 102.
- the fixing portion 103 is formed into a rectangular flat plate shape.
- the fixing part 103 is coupled to the second flange 102 so that a part thereof overlaps a part of the second flange 102 in the thickness direction (see FIG. 5). Note that two protrusions 105 are provided on the surface of the fixing part 103.
- These two protrusions 105 are formed in the shape of a square column and protrude from the surface of the fixing part 103 so as to be lined up parallel to each other.
- the first flange 101, the second flange 102, the fixed part 103, and the body are preferably formed integrally by laminating a plurality of laminated steel plates made of a soft magnetic material such as electromagnetic steel plates in one direction. .
- the bobbin 12 has a cylindrical winding trunk through which the body of the stator core 10 is inserted, and a pair of flanges 121 provided at both ends of the winding trunk in the axial direction.
- the pair of flange portions 121 are formed in an elliptical shape and protrude outward from each end of the winding drum portion in the axial direction.
- the winding trunk portion and the pair of flange portions 121 are integrally formed of an electrically insulating material such as synthetic resin.
- the bobbin 12 is composed of two parts in consideration of ease of assembly.
- the coil 11 is constructed by winding a wire rod made of aluminum or aluminum alloy around the body of the stator core 10 from above the winding body of the bobbin 12 .
- the mounting member 2 includes a mounting plate 20, a plurality of fixing members 21, and a reinforcing member 22.
- the mounting plate 20 is formed into a disc shape from a soft magnetic material such as stainless steel.
- a D-shaped insertion hole 200 passes through the center of the mounting plate 20.
- the shaft 6 is inserted through the insertion hole 200.
- the mounting plate 20 has a plurality of first mounting holes 201, a plurality of second mounting holes 202, and a plurality of third mounting holes 203 (see FIG. 1).
- the plurality of first mounting holes 201 are each circular and are arranged at equal intervals along the circumferential direction of the mounting plate 20 at both ends of the mounting plate 20 in the radial direction.
- the plurality of second mounting holes 202 are each rectangular, and are lined up along the circumferential direction of the mounting plate 20 inside the plurality of first mounting holes 201 at both ends of the mounting plate 20 in the radial direction.
- the plurality of third mounting holes 203 are each circular, and are arranged at equal intervals along the circumferential direction of the mounting plate 20 inside the plurality of second mounting holes 202 at both ends of the mounting plate 20 in the radial direction. There is.
- the plurality of fixing members 21 all have the same configuration. Note that the number of the plurality of fixing members 21 is the same as that of the electromagnets 1 (18 pieces). However, the number of fixing members 21 may not be the same as the number of electromagnets 1.
- the fixing member 21 is formed into a wedge shape from a non-magnetic material such as synthetic resin.
- a recess 210 is formed in the first surface of the fixing member 21 (the surface facing the mounting plate 20). Furthermore, one through hole 211 and one through hole 212 are provided at both longitudinal ends of the fixing member 21, each penetrating in the height direction of the fixing member 21 (see FIG. 5).
- the reinforcing member 22 has a cylindrical main body portion 220, a tube portion 221, and a plurality of prismatic protrusions 222 (see FIGS. 1 and 5). Note that it is preferable that the main body portion 220, the cylindrical portion 221, and the plurality of protrusions 222 be integrally formed of a non-magnetic material such as synthetic resin or aluminum.
- a D-shaped insertion hole passes through the center of the main body portion 220.
- the cylindrical portion 221 protrudes from the periphery of the insertion hole on the first surface (lower surface in FIG. 1) of the main body portion 220 in the normal direction of the first surface (downward in FIG. 1). Note that the cylindrical portion 221 is formed into a cylindrical shape whose cross-sectional shape parallel to the first surface has the same shape as the insertion hole.
- Each of the plurality of protrusions 222 protrudes from the first surface of the main body portion 220 in the same direction as the cylindrical portion 221. Further, the plurality of protrusions 222 are arranged at equal intervals in the circumferential direction at both radial ends of the main body portion 220. Furthermore, a through hole 224 that penetrates the protrusion 222 in the height direction (vertical direction in FIG. 1) is provided at the outer end of each protrusion 222 (see FIG. 5). Note that the number of the plurality of protrusions 222 is the same as that of the electromagnets 1 (18 pieces), but the number does not have to be the same as that of the electromagnets 1.
- the main body portion 220 is provided with a plurality of groove portions 223.
- the plurality of grooves 223 are arranged at equal intervals along the circumferential direction of the main body 220, spanning the second surface (the upper surface in FIG. 1) of the main body 220 and the side surface of the main body 220.
- the tip portions of the plurality of fixing members 21 are fitted into each of the plurality of grooves 223 one by one (see FIG. 5). That is, the number of the plurality of grooves 223 is the same as that of the fixing member 21 (18 pieces).
- the magnetic detection unit 3 includes a plurality of Hall ICs 30, a support substrate 31, and a holder 32 (see FIG. 1).
- Each of the plurality of (three in the illustrated example) Hall ICs 30 is configured by accommodating a Hall element for magnetic detection and a signal processing circuit in one package.
- the signal processing circuit performs signal processing on the output of the Hall element and outputs a detection signal.
- the detection signal output from the signal processing circuit (Hall IC 30) is a signal indicating the timing at which the direction of the magnetic field (magnetic flux) of the permanent magnet 4 is reversed as the rotor block rotates.
- the support substrate 31 has a mounting section 313, a protruding section 314, and a base section 315.
- the mounting portion 313 is formed into an arcuate flat plate shape.
- the three Hall ICs 30 are mounted on the first surface 311 (lower surface in FIG. 1) of the mounting portion 313 at equal intervals along the circumferential direction (see FIG. 7).
- the protrusion 314 is formed into a narrow rectangular shape.
- the tip of the protruding portion 314 is connected to the mounting portion 313.
- the base portion 315 is formed into a rectangular shape that is sufficiently wider than the protrusion portion 314.
- the base portion 315 is connected to the rear end of the protruding portion 314.
- a connector is mounted on the surface of the base portion 315 (the upper surface in FIG. 1).
- the connector is electrically connected to each Hall IC 30 via conductors (printed wiring) formed on the mounting portion 313, the protruding portion 314, and the base portion 315. That is, the detection signal output from each Hall IC 30 is output to an external drive device (driver circuit) via the connector.
- the holder 32 includes a first support part 321 that supports the mounting part 313, a second support part 322 that supports the protrusion part 314, a third support part 323 that supports the base part 315, and a mounting part 324.
- the first support part 321, the second support part 322, the third support part 323, and the attachment part 324 are integrally formed of a non-magnetic material such as synthetic resin (see FIGS. 1, 5, and 7). ).
- the first support portion 321 is formed into an arcuate frame shape.
- the first support portion 321 supports the periphery of the mounting portion 313 of the support substrate 31 (see FIG. 5).
- the second support portion 322 is formed into a long box shape.
- the tip of the second support part 322 is connected to the first support part 321.
- the second support portion 322 accommodates and supports the protrusion portion 314 of the support substrate 31 (see FIG. 5).
- the third support portion 323 is formed into a rectangular box shape.
- the third support part 323 is connected to the rear end of the second support part 322.
- the third support portion 323 accommodates and supports the base portion 315 of the support substrate 31 (see FIG. 1).
- the mounting portion 324 is formed into a disk shape with a circular hole 325 passing through the center.
- the attachment part 324 is connected to the rear end of the third support part 323 (see FIGS. 1 and 7).
- the operator places the fixing members 21 one by one between the plurality of electromagnets 1 attached to the mounting plate 20.
- a part of each stator core 10 of two adjacent electromagnets 1 (a part of the second collar part 102 and a part of the fixing part 103) is accommodated in the recess 210 of the fixing member 21 (see FIG. 5).
- the operator inserts one stud or screw into each of the two through holes 211 and 212 of the fixing member 21, which overlaps with the first mounting hole 201 of the mounting plate 20.
- the plurality of fixing members 21 are fixed to the mounting plate 20 with rivets or screws.
- the operator accommodates the reinforcing member 22 in a space surrounded by the plurality of electromagnets 1 attached to the mounting plate 20.
- the operator fits the tip portions of the plurality of fixing members 21 into the plurality of grooves 223 of the reinforcing member 22 one by one (see FIG. 5).
- the operator inserts one stud or screw into each through hole 224 of the plurality of protrusions 222 and one through hole 211 of each fixing member 21 that overlaps with each through hole 224, and
- the reinforcing member 22 is fixed to the mounting plate 20 with screws.
- the operator inserts the shaft 6 into the cylindrical portion 221 of the reinforcing member 22 and the insertion hole 200 of the mounting plate 20. Then, the operator fixes the reinforcing member 22 to the shaft 6 by screwing the cylindrical portion 221 and the shaft 6 together.
- the operator inserts the shaft 6 into the hole 325 of the attachment part 324 in such a way that the first support part 321 of the holder 32 faces the electromagnet 1. Then, the operator fixes the mounting portion 324 of the holder 32 and the tip of the cylindrical portion 221 of the reinforcing member 22 using an appropriate method such as adhesive. As a result, the magnetic detection section 3 is attached to the reinforcing member 22, and the assembly work of the stator S1 is completed.
- the operator attaches the connecting body W1 to the flange 52 of the support member 5. Then, the operator rotatably attaches the second rotor R2 to the shaft 6 via the bearing housed in the housing section 73.
- the 18 electromagnets 1 are divided into 3 groups, each group consisting of 6 electromagnets. Then, the electromagnets 1 belonging to different groups are arranged in order along the circumferential direction of the mounting member 2. Further, the coils 11 of six electromagnets 1 belonging to the same group are electrically connected in series, and the coils 11 of each group are connected in a three-phase star connection. That is, the three sets of electromagnets 1 are individually supplied with U-phase, V-phase, and W-phase alternating current voltages (alternating current) whose phases are shifted by 120 degrees.
- the drive device controls the inverter connected to the three sets of electromagnets 1 based on the detection signal of the magnetic detection unit 3, and switches the polarity of the electromagnets 1 belonging to each set to generate a rotor block (first rotor R1). Rotate.
- the holder 32 of the magnetic detection section 3 supports the support substrate 31 in a cantilevered manner. Therefore, the magnetic attraction force of the permanent magnet 4 acts on the Hall IC 30 mounted on the free end (mounting section 313) of the support substrate 31, causing the magnetic detection section 3 to bend.
- FIG. 9 shows the position coordinates of the Hall IC 30 in an orthogonal coordinate system in which the axial center of the shaft 6 is the origin O, the direction perpendicular to the axial center is the X axis, and the direction of the axial center is the Z axis.
- the X coordinate of the Hall IC 30 when the magnetic detection section 3 is not bent (when the Z coordinate of the Hall IC 30 is 0) is set to X1.
- the magnetic detection unit 3 is deflected by the magnetic attraction force (when the Z coordinate of the Hall IC 30 becomes greater than 0)
- the X coordinate of the Hall IC 30 changes from X1 to X2 ( ⁇ X1).
- the Hall IC 30 is displaced toward the axis of the shaft 6 (origin O).
- the Hall IC 30 is arranged inside the electromagnet 1 (stator core 10) (on the side closer to the shaft 6 than the electromagnet 1 in the radial direction of the mounting member 2).
- the distance between the Hall IC 30 and the permanent magnet 4 increases in the direction perpendicular to the axis (radial direction of the mounting member 2).
- a solid line ⁇ 1 in FIG. 10 indicates a change in the magnetic field (magnetic flux density) that intersects with the Hall IC when the magnetic detection section 3 is not bent.
- the magnetic pole part 40 of the permanent magnet 4 attached to the first rotor R1 moves in the circumferential direction, the magnetic flux density that intersects with the Hall IC changes monotonically (see solid line ⁇ 1).
- the solid line ⁇ 2 in FIG. 10 shows the change in magnetic flux density when the magnetic detection unit 3 is bent, and indicates that the magnetic flux density intersecting the Hall IC does not change monotonically but repeats increases and decreases.
- the symbol "Th" in FIG. 10 indicates a threshold value for the Hall IC to determine switching of the magnetic field (magnetic flux density). That is, as shown by the solid line ⁇ 2 in FIG. 10, when the magnetic detection section 3 is bent, the detection accuracy of the magnetic detection section 3 is reduced.
- the Hall IC 30 is arranged outside the stator core 10 with respect to the rotation center of the first rotor R1 (the axis of the shaft 6). Therefore, when the magnetic detection section 3 is deflected and the Hall IC 30 is displaced in a direction closer to the axis of the shaft 6, the distance between the Hall IC 30 and the permanent magnet 4 becomes shorter in the direction perpendicular to the axis. Therefore, in the motor M1, the magnetic field (magnetic flux density) detected by the Hall IC 30 of the magnetic detection section 3 changes monotonically, so that it is possible to suppress a decrease in accuracy of magnetic detection due to deflection of the magnetic detection section 3.
- the Hall IC 30 is mounted on the first surface 311 of the support substrate 31, that is, the surface facing the permanent magnet 4 attached to the first rotor R1 (see FIG. 3). Therefore, in the motor M1, the distance between the Hall IC 30 and the permanent magnet 4 becomes smaller when the magnetic detection section 3 is bent, compared to when the Hall IC 30 is mounted on the second surface 312 of the support substrate 31. As a result, the motor M1 can further suppress deterioration in accuracy of magnetic detection.
- the support substrate 31 has a mounting section 313 on which the Hall IC 30 is mounted, and a protrusion section 314 that projects from the mounting section 313 toward the rotation center. That is, in the motor M1, the support substrate 31 can be attached to the stator S1 not through the mounting section 313 on which the Hall IC 30 is mounted, but through the protruding section 314 that projects from the mounting section 313. Therefore, in the motor M1, the support substrate 31 can be accommodated within the height of the stator core 10, so that the height of the stator S1 can be reduced (flattened).
- wiring (conductor) for electrically connecting the Hall IC 30 and the driving device is formed on the protrusion 314 of the support substrate 31. If the current flowing through the wiring of the protrusion 314 is influenced by the magnetic field of the electromagnet 1, there is a risk that the detection accuracy of the magnetic detection section 3 will be reduced.
- the protrusion 314 is arranged between two electromagnets 1 adjacent to each other along the rotational direction among the plurality of electromagnets 1, and the width d1 of the protrusion 314 is set between the two electromagnets 1.
- the distance between the stator cores 10 is set to be less than or equal to d2 (see FIG. 8).
- the distance r2 from the rotation center (axis center of the shaft 6) to the outermost circumference of the support substrate 31 is less than or equal to the distance r1 from the rotation center to the inner circumference of the rotor (first rotor R1 and second rotor R2). Yes (see Figure 7). That is, since the motor M1 does not allow the support substrate 31 to protrude outside the mounting plate 20 of the first rotor R1, the risk of contact between the support substrate 31 and the first rotor R1 is reduced, and the Hall IC 30 is permanently attached. It is possible to prevent the detection accuracy from decreasing due to being too far away from the magnet 4.
- the motor M1 is a so-called double rotor axial gap type single-sided magnet, which is equipped with a second rotor R2 that faces the first rotor R1 with the stator S1 in between and is connected to the first rotor R1. It's a motor.
- a double rotor axial gap type motor is generally a double-side magnet type in which a permanent magnet is mounted on each of the two rotors.
- the motor M1 has a permanent magnet 4 only in the first rotor R1 and does not have a permanent magnet in the second rotor R2.
- the motor M1 since the motor M1 has the permanent magnet 4 only on one rotor (first rotor R1), manufacturing costs can be reduced compared to the case where both rotors have permanent magnets. Furthermore, since the motor M1 is a double rotor type, it has an advantage over a single rotor type in that it can suppress wobbling when rotating an object (such as the blade 81 of the ceiling fan CF1). .
- the ceiling fan CF1 according to the embodiment has a main body 80 that incorporates a motor M1, and a main body 80 that is rotated by the motor M1.
- a plurality of (four in the illustrated example) blades 81 are provided.
- the main body 80 is formed into a cylindrical shape from metal or synthetic resin.
- the main body 80 is mechanically and electrically detachably attached to, for example, a hanging ceiling body installed on the ceiling of a room.
- the main body 80 accommodates the motor M1 so that the axis of the shaft 6 is perpendicular to the ceiling surface.
- the four blades 81 are each made of synthetic resin and have the same shape and dimensions.
- the root portion of each blade 81 is fixed to, for example, a connecting body W1 of the motor M1. That is, when the rotor block of the motor M1 rotates, the four blades 81 fixed to the rotor block (coupled body W1) also rotate.
- the ceiling fan CF1 rotates the blades 81 using the motor M1 according to the embodiment, it is possible to suppress a decrease in the detection accuracy of the magnetic detection section 3 similarly to the motor M1.
- the motor (M1) includes a stator (S1) and a rotor (first rotor R1) that is rotatable with respect to the stator (S1).
- the rotor includes permanent magnets (4) in which different magnetic poles are arranged alternately along the rotation direction, and a support member (5) that supports the permanent magnets (4).
- the stator (S1) includes a plurality of electromagnets (1) lined up along the rotational direction of the rotor, a mounting member (2) to which the plurality of electromagnets (1) are attached, and a magnetic sensor that detects the magnetism of a permanent magnet (4). Part (3).
- Each of the plurality of electromagnets (1) has a stator core (10) and a coil (11) wound around the stator core (10).
- the magnetic detection unit (3) includes a Hall element or Hall IC (30) and a support substrate (31) that supports the Hall element or Hall IC (30).
- the Hall element or Hall IC (30) is arranged outside the stator core (10) with respect to the rotation center of the rotor.
- the motor (M1) even if the support substrate (31) is bent, the distance between the Hall element or Hall IC (30) and the permanent magnet (4) is unlikely to increase, so the support substrate (31) It is possible to suppress a decrease in accuracy of magnetic detection due to deflection of the magnetic field.
- the motor (M1) according to the second aspect of the present disclosure can be realized in combination with the first aspect.
- the support substrate (31) has a first surface (311) facing the rotor and a second surface (312) facing the mounting member (2). is preferred.
- the Hall element or Hall IC (30) is preferably supported by the first surface (311) of the support substrate (31).
- the motor (M1) according to the second aspect can further suppress deterioration in accuracy of magnetic detection.
- the motor (M1) according to the third aspect of the present disclosure can be realized in combination with the first or second aspect.
- the support substrate (31) includes a mounting portion (313) on which the Hall element or Hall IC (30) is mounted, and a mounting portion (313) that protrudes toward the rotation center from the mounting portion (313). It is preferable to have a protrusion (314) that
- the motor (M1) according to the third aspect can reduce the height (flattening) of the stator (S1).
- the motor (M1) according to the fourth aspect of the present disclosure can be realized in combination with the third aspect.
- the protrusion (314) is preferably arranged between two electromagnets (1) adjacent to each other along the rotational direction among the plurality of electromagnets (1).
- the width (d1) of the protrusion (314) is preferably equal to or less than the distance (d2) between the stator cores (10) of the two electromagnets (1).
- the motor (M1) according to the fourth aspect can further reduce the height (flattening) of the stator (S1).
- the motor (M1) according to the fifth aspect of the present disclosure can be realized in combination with any one of the first to fourth aspects.
- the distance (r2) from the rotation center to the outermost periphery of the support substrate (31) is preferably equal to or less than the distance (r1) from the rotation center to the inner periphery of the rotor. .
- the motor (M1) according to the fifth aspect does not allow the support substrate (31) to protrude outside the rotor, the risk of contact between the support substrate (31) and the rotor is reduced, and the Hall element or Hall IC ( 30) can be prevented from being too far away from the permanent magnet (4) and resulting in a decrease in detection accuracy.
- the motor (M1) according to the sixth aspect of the present disclosure can be realized in combination with any one of the first to fifth aspects.
- the rotor is preferably the first rotor (R1).
- the motor (M1) according to the sixth aspect includes a second rotor (R2) that faces the first rotor (R1) across the stator (S1) and is connected to the first rotor (R1). It is preferable to further include.
- the second rotor (R2) does not have permanent magnets.
- the motor (M1) according to the sixth aspect can reduce manufacturing costs.
- a ceiling fan (CF1) includes the motor (M1) according to any one of the first to sixth aspects, and one or more blades (81) that are driven and rotated by the motor (M1). ) and.
- the ceiling fan (CF1) according to the seventh aspect includes the motor (M1) according to any one of the first to sixth aspects, it is possible to suppress a decrease in accuracy of magnetic detection.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
The present disclosure addresses the problem of inhibiting reduction in magnetic detection accuracy. A motor (M1) comprises: a stator (S1); and a first rotor that can rotate relative to the stator (S1). The first rotor has a permanent magnet in which different magnetic poles are alternately arranged along the rotation direction, and a support member that supports the permanent magnet. The stator (S1) has a plurality of electromagnets (1) arranged along the rotation direction of the first rotor, an attachment member (2) to which the electromagnets (1) are attached, and a magnetic detection unit (3) that detects magnetism of the permanent magnet. The electromagnets (1) each have a stator core (10) and a coil wound on the stator core (10). The magnetic detection unit (3) has Hall ICs (30) and a support substrate (31) that supports the Hall ICs (30). The Hall ICs (30) are disposed outside the stator cores (10) relative to the rotation center of the rotor.
Description
本開示は、モータ及び天井扇に関し、より詳細には、いわゆるアキシャルギャップ型のモータ、及び当該モータを動力源とする天井扇に関する。
The present disclosure relates to a motor and a ceiling fan, and more particularly, to a so-called axial gap type motor and a ceiling fan using the motor as a power source.
従来例として特許文献1記載のアキシャルギャップ型回転電機(モータ)を例示する。特許文献1記載のアキシャルギャップ型回転電機(以下、従来例という。)は、ステータと、一対のロータと、を備える。
As a conventional example, an axial gap type rotating electrical machine (motor) described in Patent Document 1 is illustrated. The axial gap type rotating electrical machine described in Patent Document 1 (hereinafter referred to as a conventional example) includes a stator and a pair of rotors.
ステータは、複数のステータコアと、各ステータコアに導線を巻回して形成される複数のコイルと、を有する。これら複数のステータコアは、回転軸の周方向に沿って等間隔に並ぶように配置される。
The stator has a plurality of stator cores and a plurality of coils formed by winding conductive wire around each stator core. These plurality of stator cores are arranged at equal intervals along the circumferential direction of the rotating shaft.
一対のロータは、回転軸の軸長方向にステータを挟むように回転軸に取り付けられる。各ロータは、円盤状のバックヨークと、バックヨークのステータとの対向面に配置される複数の永久磁石と、を備える。複数の永久磁石は、回転軸の周方向に沿って等間隔に並ぶようにバックヨークに固定される。
The pair of rotors are attached to the rotating shaft so as to sandwich the stator in the axial direction of the rotating shaft. Each rotor includes a disk-shaped back yoke and a plurality of permanent magnets arranged on a surface of the back yoke facing the stator. The plurality of permanent magnets are fixed to the back yoke so as to be arranged at equal intervals along the circumferential direction of the rotating shaft.
従来例において、ステータコアとコイルからなる電磁石により磁界が形成されると、当該磁界が永久磁石から生じた磁界に影響を及ぼす。これにより、従来例は、電磁石と永久磁石との間で吸引力及び反発力が生じてロータを回転させる。
In the conventional example, when a magnetic field is formed by an electromagnet consisting of a stator core and a coil, the magnetic field affects the magnetic field generated from the permanent magnet. As a result, in the conventional example, attractive force and repulsive force are generated between the electromagnet and the permanent magnet to rotate the rotor.
ところで、従来例のようなブラシレスモータは、通常、複数の電磁石(コイル)に励磁電流を流すタイミングを決定するため、ホール素子を用いて永久磁石の磁界(磁束)を検出している。ホール素子(あるいは、ホール素子と信号処理用の回路を集積化したホールIC)は、プリント配線板に実装されて永久磁石の磁気(磁束)を検出可能な位置に配置される。
By the way, conventional brushless motors usually use a Hall element to detect the magnetic field (magnetic flux) of a permanent magnet in order to determine the timing of passing excitation current through a plurality of electromagnets (coils). A Hall element (or a Hall IC in which a Hall element and a signal processing circuit are integrated) is mounted on a printed wiring board and placed at a position where the magnetism (magnetic flux) of a permanent magnet can be detected.
しかしながら、永久磁石の磁気吸引力によってホール素子が実装されたプリント配線板が撓むと、ホール素子と永久磁石の距離が変化するため、ホール素子による磁気(磁束)の検出精度が低下する可能性がある。
However, if the printed wiring board on which the Hall element is mounted is bent due to the magnetic attraction force of the permanent magnet, the distance between the Hall element and the permanent magnet changes, which may reduce the accuracy of detecting magnetism (magnetic flux) by the Hall element. be.
本開示の目的は、磁気検出の精度低下の抑制を図ることができるモータ及び天井扇を提供することである。
An object of the present disclosure is to provide a motor and a ceiling fan that can suppress deterioration in accuracy of magnetic detection.
本開示の一態様に係るモータは、ステータと、前記ステータに対して回転可能であるロータと、を備える。前記ロータは、回転方向に沿って異なる磁極が交互に並ぶ永久磁石と、前記永久磁石を支持する支持部材と、を有する。前記ステータは、前記ロータの回転方向に沿って並ぶ複数の電磁石と、前記複数の電磁石が取り付けられる取付部材と、前記永久磁石の磁気を検出する磁気検出部と、を有する。前記複数の電磁石はそれぞれ、ステータコアと、前記ステータコアに巻回されたコイルと、を有する。前記磁気検出部は、ホール素子又はホールICと、前記ホール素子又は前記ホールICを支持する支持基板と、を有する。前記ホール素子又は前記ホールICは、前記ロータの回転中心に対して前記ステータコアの外側に配置される。
A motor according to one aspect of the present disclosure includes a stator and a rotor that is rotatable with respect to the stator. The rotor includes permanent magnets in which different magnetic poles are arranged alternately along the rotation direction, and a support member that supports the permanent magnets. The stator includes a plurality of electromagnets arranged along the rotational direction of the rotor, a mounting member to which the plurality of electromagnets are attached, and a magnetic detection section that detects magnetism of the permanent magnet. Each of the plurality of electromagnets has a stator core and a coil wound around the stator core. The magnetic detection section includes a Hall element or a Hall IC, and a support substrate that supports the Hall element or the Hall IC. The Hall element or the Hall IC is arranged outside the stator core with respect to the rotation center of the rotor.
本開示の一態様に係る天井扇は、前記モータと、前記モータに駆動されて回転する1つ以上の羽根と、を備える。
A ceiling fan according to one aspect of the present disclosure includes the motor and one or more blades that are driven and rotated by the motor.
以下、本開示の実施形態に係るモータ及び天井扇について図面を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさ及び厚さのそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。
Hereinafter, a motor and a ceiling fan according to an embodiment of the present disclosure will be described in detail with reference to the drawings. However, each figure described in the following embodiments is a schematic diagram, and the respective ratios of the sizes and thicknesses of each component do not necessarily reflect the actual size ratios. Note that the configuration described in the embodiments below is only an example of the present disclosure. The present disclosure is not limited to the following embodiments, and various changes can be made depending on the design etc. as long as the effects of the present disclosure can be achieved.
(1)概要
本開示の実施形態に係るモータM1は、ステータS1と、ステータS1に対して回転可能であるロータ(第1のロータR1)と、を備える(図1-図3参照)。第1のロータR1は、回転方向に沿って異なる磁極(磁極部40)が交互に並ぶ永久磁石4と、永久磁石4を支持する支持部材5と、を有する。 (1) Overview The motor M1 according to the embodiment of the present disclosure includes a stator S1 and a rotor (first rotor R1) that is rotatable with respect to the stator S1 (see FIGS. 1 to 3). The first rotor R1 includes apermanent magnet 4 in which different magnetic poles (magnetic pole portions 40) are arranged alternately along the rotation direction, and a support member 5 that supports the permanent magnet 4.
本開示の実施形態に係るモータM1は、ステータS1と、ステータS1に対して回転可能であるロータ(第1のロータR1)と、を備える(図1-図3参照)。第1のロータR1は、回転方向に沿って異なる磁極(磁極部40)が交互に並ぶ永久磁石4と、永久磁石4を支持する支持部材5と、を有する。 (1) Overview The motor M1 according to the embodiment of the present disclosure includes a stator S1 and a rotor (first rotor R1) that is rotatable with respect to the stator S1 (see FIGS. 1 to 3). The first rotor R1 includes a
ステータS1は、第1のロータR1の回転方向に沿って並ぶ複数の電磁石1と、複数の電磁石1が取り付けられる取付部材2と、永久磁石4の磁気を検出する磁気検出部3と、を有する。
The stator S1 includes a plurality of electromagnets 1 arranged along the rotational direction of the first rotor R1, a mounting member 2 to which the plurality of electromagnets 1 are attached, and a magnetic detection section 3 that detects the magnetism of the permanent magnet 4. .
複数の電磁石1はそれぞれ、ステータコア10と、ステータコア10に巻回されたコイル11と、を有する。磁気検出部3は、ホール素子又はホールIC30と、ホールIC30を支持する支持基板31と、を有する。ホールIC30は、第1のロータR1の回転中心(シャフト6の中心)に対してステータコア10の外側に配置される(図7参照)。
Each of the plurality of electromagnets 1 has a stator core 10 and a coil 11 wound around the stator core 10. The magnetic detection unit 3 includes a Hall element or Hall IC 30 and a support substrate 31 that supports the Hall IC 30. Hall IC 30 is arranged outside stator core 10 with respect to the rotation center of first rotor R1 (center of shaft 6) (see FIG. 7).
後述するように、ホール素子又はホールIC30が第1のロータR1の回転中心に対してステータコア10の内側に配置された場合、ホール素子又はホールIC30を支持する支持基板31のたわみによって、ホール素子又はホールIC30と永久磁石4の間のギャップが広くなり、磁気検出部3による磁気検出の精度低下を招くおそれがある。
As will be described later, when the Hall element or Hall IC 30 is arranged inside the stator core 10 with respect to the rotation center of the first rotor R1, the Hall element or the Hall IC 30 is The gap between the Hall IC 30 and the permanent magnet 4 becomes wider, which may lead to a decrease in the accuracy of magnetic detection by the magnetic detection section 3.
これに対して実施形態に係るモータM1は、第1のロータR1の回転中心(シャフト6の中心)に対してステータコア10の外側にホール素子又はホールIC30を配置する。そのため、実施形態に係るモータM1は、第1のロータR1の回転中心に対してステータコア10の内側にホール素子又はホールIC30を配置する場合に比べて、支持基板31のたわみによる磁気検出の精度低下の抑制を図ることができる。
In contrast, in the motor M1 according to the embodiment, the Hall element or Hall IC 30 is arranged outside the stator core 10 with respect to the rotation center of the first rotor R1 (the center of the shaft 6). Therefore, in the motor M1 according to the embodiment, the accuracy of magnetic detection is reduced due to the deflection of the support substrate 31, compared to the case where the Hall element or the Hall IC 30 is arranged inside the stator core 10 with respect to the rotation center of the first rotor R1. can be suppressed.
また、本開示の実施形態に係る天井扇CF1は、本開示の実施形態に係るモータM1と、モータM1に駆動されて回転する1つ以上の羽根81と、を備える。
Furthermore, the ceiling fan CF1 according to the embodiment of the present disclosure includes a motor M1 according to the embodiment of the present disclosure, and one or more blades 81 that are driven and rotated by the motor M1.
しかして、実施形態に係る天井扇CF1は、本開示の実施形態に係るモータM1を備えているので、磁気検出の精度低下の抑制を図ることができる。
Therefore, since the ceiling fan CF1 according to the embodiment includes the motor M1 according to the embodiment of the present disclosure, it is possible to suppress a decrease in accuracy of magnetic detection.
(2)実施形態に係るモータの詳細
実施形態に係るモータM1(以下、モータM1と略す。)は、ロータブロックと、ステータS1と、を備える。モータM1は、ロータブロックを回転可能に支持するシャフト6を更に備える(図1-図3参照)。シャフト6は、金属材料によって中空の円筒状に形成されている。 (2) Details of the motor according to the embodiment The motor M1 (hereinafter abbreviated as motor M1) according to the embodiment includes a rotor block and a stator S1. The motor M1 further includes ashaft 6 that rotatably supports the rotor block (see FIGS. 1 to 3). The shaft 6 is formed of a metal material into a hollow cylindrical shape.
実施形態に係るモータM1(以下、モータM1と略す。)は、ロータブロックと、ステータS1と、を備える。モータM1は、ロータブロックを回転可能に支持するシャフト6を更に備える(図1-図3参照)。シャフト6は、金属材料によって中空の円筒状に形成されている。 (2) Details of the motor according to the embodiment The motor M1 (hereinafter abbreviated as motor M1) according to the embodiment includes a rotor block and a stator S1. The motor M1 further includes a
(2-1)ロータブロック
ロータブロックは、第1のロータR1と、第2のロータR2と、第1のロータR1と第2のロータR2を連結する連結体W1と、を有する(図1参照)。 (2-1) Rotor block The rotor block has a first rotor R1, a second rotor R2, and a connecting body W1 that connects the first rotor R1 and the second rotor R2 (see FIG. 1). ).
ロータブロックは、第1のロータR1と、第2のロータR2と、第1のロータR1と第2のロータR2を連結する連結体W1と、を有する(図1参照)。 (2-1) Rotor block The rotor block has a first rotor R1, a second rotor R2, and a connecting body W1 that connects the first rotor R1 and the second rotor R2 (see FIG. 1). ).
(2-1-1)第1のロータ
第1のロータR1は、永久磁石4と、永久磁石4を支持する支持部材5と、を有する。永久磁石4は、例えば、リング型かつ両面多極型のネオジム磁石である。つまり、永久磁石4は、厚み方向に異極(N極とS極)に着磁された複数の磁極部40を有している。これら複数の磁極部40は、同一の形状及び同一の寸法であり、かつ、永久磁石4の周方向に沿って異極が交互に並ぶように配置される(図1参照)。なお、実施形態における磁極部40の個数は18個であるが、これに限定されず、2から17個又は19個以上であっても構わない。また、永久磁石4はネオジム磁石以外の磁石、例えば、フェライト磁石、サマリウムコバルト磁石などでも構わない。 (2-1-1) First Rotor The first rotor R1 includes apermanent magnet 4 and a support member 5 that supports the permanent magnet 4. The permanent magnet 4 is, for example, a ring-shaped neodymium magnet with multiple poles on both sides. That is, the permanent magnet 4 has a plurality of magnetic pole parts 40 that are magnetized to have different poles (N pole and S pole) in the thickness direction. These plurality of magnetic pole parts 40 have the same shape and the same size, and are arranged so that different poles are alternately lined up along the circumferential direction of the permanent magnet 4 (see FIG. 1). Although the number of magnetic pole parts 40 in the embodiment is 18, it is not limited to this, and may be from 2 to 17 or 19 or more. Furthermore, the permanent magnet 4 may be a magnet other than a neodymium magnet, such as a ferrite magnet or a samarium cobalt magnet.
第1のロータR1は、永久磁石4と、永久磁石4を支持する支持部材5と、を有する。永久磁石4は、例えば、リング型かつ両面多極型のネオジム磁石である。つまり、永久磁石4は、厚み方向に異極(N極とS極)に着磁された複数の磁極部40を有している。これら複数の磁極部40は、同一の形状及び同一の寸法であり、かつ、永久磁石4の周方向に沿って異極が交互に並ぶように配置される(図1参照)。なお、実施形態における磁極部40の個数は18個であるが、これに限定されず、2から17個又は19個以上であっても構わない。また、永久磁石4はネオジム磁石以外の磁石、例えば、フェライト磁石、サマリウムコバルト磁石などでも構わない。 (2-1-1) First Rotor The first rotor R1 includes a
支持部材5は、底壁50、周壁51、フランジ52及び収容部53を有する(図1-図5参照)。なお、底壁50、周壁51、フランジ52及び収容部53は、ステンレス鋼などの軟磁性材料によって一体に形成されることが好ましい。
The support member 5 has a bottom wall 50, a peripheral wall 51, a flange 52, and a housing portion 53 (see FIGS. 1 to 5). Note that it is preferable that the bottom wall 50, the peripheral wall 51, the flange 52, and the accommodating portion 53 be integrally formed of a soft magnetic material such as stainless steel.
底壁50は、円盤状に形成されている。周壁51は、円筒状に形成されて底壁50の周縁から底壁50の厚み方向に突出している。フランジ52は、リング状に形成されて周壁51の先端から外向きに突出している。収容部53は、有底円筒状に形成されている。収容部53は、底壁50の中央から底壁50の厚み方向に沿って周壁51と逆の向き(図1における下向き)に突出している。収容部53の底には円形の穴530が貫通している(図1参照)。図示は省略するが、収容部53にはベアリングが収容される。支持部材5(第1のロータR1)は、収容部53に収容されるベアリングを介してシャフト6に回転可能に支持される。
The bottom wall 50 is formed into a disk shape. The peripheral wall 51 is formed in a cylindrical shape and protrudes from the peripheral edge of the bottom wall 50 in the thickness direction of the bottom wall 50. The flange 52 is formed in a ring shape and protrudes outward from the tip of the peripheral wall 51. The accommodating portion 53 is formed into a cylindrical shape with a bottom. The accommodating portion 53 protrudes from the center of the bottom wall 50 along the thickness direction of the bottom wall 50 in a direction opposite to the peripheral wall 51 (downward in FIG. 1). A circular hole 530 passes through the bottom of the housing portion 53 (see FIG. 1). Although not shown, a bearing is housed in the housing portion 53. The support member 5 (first rotor R1) is rotatably supported by the shaft 6 via a bearing housed in the housing section 53.
永久磁石4は、接着、溶接、かしめ、ねじ止めなどの適宜の方法によって底壁50に固定される。つまり、永久磁石4は、底壁50と周壁51に囲まれた空間に収容される(図2参照)。
The permanent magnet 4 is fixed to the bottom wall 50 by an appropriate method such as adhesion, welding, caulking, or screwing. That is, the permanent magnet 4 is housed in a space surrounded by the bottom wall 50 and the peripheral wall 51 (see FIG. 2).
(2-1-2)第2のロータ
第2のロータR2は、天板70、側板71、フランジ72及び収容部73を有する。なお、天板70、側板71、フランジ72及び収容部73は、ステンレス鋼などの軟磁性材料によって一体に形成されることが好ましい。 (2-1-2) Second Rotor The second rotor R2 has atop plate 70, a side plate 71, a flange 72, and a housing portion 73. In addition, it is preferable that the top plate 70, the side plate 71, the flange 72, and the accommodating part 73 be integrally formed of a soft magnetic material such as stainless steel.
第2のロータR2は、天板70、側板71、フランジ72及び収容部73を有する。なお、天板70、側板71、フランジ72及び収容部73は、ステンレス鋼などの軟磁性材料によって一体に形成されることが好ましい。 (2-1-2) Second Rotor The second rotor R2 has a
天板70は、円盤状に形成されている。側板71は、円筒状に形成されて天板70の周縁から天板70の厚み方向に突出している。フランジ72は、リング状に形成されて側板71の先端から外向きに突出している。収容部73は、有底円筒状に形成されている。収容部73は、天板70の中央から天板70の厚み方向に沿って側板71と逆の向き(図1における上向き)に突出している。収容部73の底には円形の穴730が貫通している。図示は省略するが、収容部73にはベアリングが収容される。第2のロータR2は、収容部73に収容されるベアリングを介してシャフト6に回転可能に支持される。
The top plate 70 is formed into a disk shape. The side plate 71 is formed in a cylindrical shape and protrudes from the periphery of the top plate 70 in the thickness direction of the top plate 70. The flange 72 is formed in a ring shape and protrudes outward from the tip of the side plate 71. The housing portion 73 is formed into a cylindrical shape with a bottom. The housing portion 73 protrudes from the center of the top plate 70 along the thickness direction of the top plate 70 in a direction opposite to the side plate 71 (upward in FIG. 1). A circular hole 730 passes through the bottom of the accommodating portion 73. Although not shown, a bearing is housed in the housing portion 73. The second rotor R2 is rotatably supported by the shaft 6 via a bearing housed in the housing portion 73.
(2-1-3)連結体
連結体W1は、ステンレス鋼などの軟磁性材料によって円筒状に形成されている。連結体W1の第1の端面(図1における下側の端面)に、第1のロータR1の支持部材5のフランジ52がねじ止め(あるいは、鋲止め)される。一方、連結体W1の第2の端面(図1における上側の端面)に、第2のロータR2のフランジ72がねじ止め(あるいは、鋲止め)される。すなわち、第1のロータR1(支持部材5)と第2のロータR2は、連結体W1により連結されて一体的に回転可能となる。 (2-1-3) Connecting body The connecting body W1 is formed into a cylindrical shape from a soft magnetic material such as stainless steel. Theflange 52 of the support member 5 of the first rotor R1 is screwed (or riveted) to the first end surface (the lower end surface in FIG. 1) of the coupling body W1. On the other hand, the flange 72 of the second rotor R2 is screwed (or riveted) to the second end surface (the upper end surface in FIG. 1) of the coupling body W1. That is, the first rotor R1 (support member 5) and the second rotor R2 are connected by the connecting body W1 and can rotate integrally.
連結体W1は、ステンレス鋼などの軟磁性材料によって円筒状に形成されている。連結体W1の第1の端面(図1における下側の端面)に、第1のロータR1の支持部材5のフランジ52がねじ止め(あるいは、鋲止め)される。一方、連結体W1の第2の端面(図1における上側の端面)に、第2のロータR2のフランジ72がねじ止め(あるいは、鋲止め)される。すなわち、第1のロータR1(支持部材5)と第2のロータR2は、連結体W1により連結されて一体的に回転可能となる。 (2-1-3) Connecting body The connecting body W1 is formed into a cylindrical shape from a soft magnetic material such as stainless steel. The
(2-2)ステータ
ステータS1は、ロータブロックの回転方向に沿って並ぶ複数の電磁石1と、複数の電磁石1が取り付けられる取付部材2と、永久磁石4の磁気を検出する磁気検出部3と、を有する。 (2-2) Stator The stator S1 includes a plurality ofelectromagnets 1 arranged along the rotation direction of the rotor block, a mounting member 2 to which the plurality of electromagnets 1 are attached, and a magnetic detection section 3 that detects the magnetism of the permanent magnet 4. , has.
ステータS1は、ロータブロックの回転方向に沿って並ぶ複数の電磁石1と、複数の電磁石1が取り付けられる取付部材2と、永久磁石4の磁気を検出する磁気検出部3と、を有する。 (2-2) Stator The stator S1 includes a plurality of
(2-2-1)電磁石
複数の電磁石1はすべて同一の構成を有している。なお、複数の電磁石1は、永久磁石4の複数の磁極部40と同数(18個)である。ただし、電磁石1は磁極部40と同数でなくてもよい。 (2-2-1) Electromagnet The plurality ofelectromagnets 1 all have the same configuration. Note that the number of the plurality of electromagnets 1 is the same as the number of the plurality of magnetic pole parts 40 of the permanent magnet 4 (18 pieces). However, the number of electromagnets 1 may not be the same as the number of magnetic pole parts 40.
複数の電磁石1はすべて同一の構成を有している。なお、複数の電磁石1は、永久磁石4の複数の磁極部40と同数(18個)である。ただし、電磁石1は磁極部40と同数でなくてもよい。 (2-2-1) Electromagnet The plurality of
電磁石1は、ステータコア10と、コイル11と、ボビン12と、を有する。
The electromagnet 1 includes a stator core 10, a coil 11, and a bobbin 12.
ステータコア10は、第1鍔部101と、第2鍔部102と、固定部103と、胴部と、を有する(図5参照)。第1鍔部101及び第2鍔部102は、それぞれ長方形の平板状に形成されている。胴部は、角柱状に形成されて第1鍔部101と第2鍔部102を連結している。固定部103は、長方形の平板状に形成されている。固定部103は、その一部を第2鍔部102の一部と厚み方向に重ねるようにして第2鍔部102と結合されている(図5参照)。なお、固定部103の表面に、2つの突起105が設けられている。これら2つの突起105は、四角柱状に形成されて互いに平行に並ぶように固定部103の表面から突出している。なお、第1鍔部101、第2鍔部102、固定部103及び胴部は、電磁鋼板などの軟磁性体からなる複数の積層鋼板が一方向に積層されて一体に形成されることが好ましい。
The stator core 10 includes a first flange 101, a second flange 102, a fixed part 103, and a body (see FIG. 5). The first flange 101 and the second flange 102 are each formed into a rectangular flat plate shape. The body is formed into a prismatic shape and connects the first flange 101 and the second flange 102. The fixing portion 103 is formed into a rectangular flat plate shape. The fixing part 103 is coupled to the second flange 102 so that a part thereof overlaps a part of the second flange 102 in the thickness direction (see FIG. 5). Note that two protrusions 105 are provided on the surface of the fixing part 103. These two protrusions 105 are formed in the shape of a square column and protrude from the surface of the fixing part 103 so as to be lined up parallel to each other. The first flange 101, the second flange 102, the fixed part 103, and the body are preferably formed integrally by laminating a plurality of laminated steel plates made of a soft magnetic material such as electromagnetic steel plates in one direction. .
ボビン12は、ステータコア10の胴部が挿通される円筒状の巻胴部と、巻胴部の軸方向の両端に設けられる一対のフランジ部121と、を有する。一対のフランジ部121は、長円形状に形成されて巻胴部の軸方向の両端から一つずつ外向きに突出している。なお、巻胴部と一対のフランジ部121は、合成樹脂などの電気絶縁性を有する材料で一体に形成されることが好ましい。ただし、ボビン12は、組立性を考慮して2部品で構成されることが好ましい。
The bobbin 12 has a cylindrical winding trunk through which the body of the stator core 10 is inserted, and a pair of flanges 121 provided at both ends of the winding trunk in the axial direction. The pair of flange portions 121 are formed in an elliptical shape and protrude outward from each end of the winding drum portion in the axial direction. Note that it is preferable that the winding trunk portion and the pair of flange portions 121 are integrally formed of an electrically insulating material such as synthetic resin. However, it is preferable that the bobbin 12 is composed of two parts in consideration of ease of assembly.
コイル11は、アルミニウム又はアルミニウム合金製の線材がボビン12の巻胴部の上からステータコア10の胴部に巻回されて構成されている。
The coil 11 is constructed by winding a wire rod made of aluminum or aluminum alloy around the body of the stator core 10 from above the winding body of the bobbin 12 .
(2-2-2)取付部材
取付部材2は、取付板20と、複数の固定部材21と、補強部材22と、を有する。 (2-2-2) Mounting member The mountingmember 2 includes a mounting plate 20, a plurality of fixing members 21, and a reinforcing member 22.
取付部材2は、取付板20と、複数の固定部材21と、補強部材22と、を有する。 (2-2-2) Mounting member The mounting
取付板20は、ステンレス鋼などの軟磁性材料によって円盤状に形成されている。取付板20の中央にD字形状の挿通穴200が貫通している。この挿通穴200にはシャフト6が挿通される。また、取付板20は、複数の第1取付穴201と、複数の第2取付穴202と、複数の第3取付穴203と、を有する(図1参照)。複数の第1取付穴201は、それぞれ円形であって、取付板20の径方向の両端において、取付板20の周方向に沿って等間隔に並んでいる。複数の第2取付穴202は、それぞれ長方形であって、取付板20の径方向の両端において、複数の第1取付穴201の内側に、取付板20の周方向に沿って並んでいる。複数の第3取付穴203は、それぞれ円形であって、取付板20の径方向の両端において、複数の第2取付穴202の内側に、取付板20の周方向に沿って等間隔に並んでいる。
The mounting plate 20 is formed into a disc shape from a soft magnetic material such as stainless steel. A D-shaped insertion hole 200 passes through the center of the mounting plate 20. The shaft 6 is inserted through the insertion hole 200. Furthermore, the mounting plate 20 has a plurality of first mounting holes 201, a plurality of second mounting holes 202, and a plurality of third mounting holes 203 (see FIG. 1). The plurality of first mounting holes 201 are each circular and are arranged at equal intervals along the circumferential direction of the mounting plate 20 at both ends of the mounting plate 20 in the radial direction. The plurality of second mounting holes 202 are each rectangular, and are lined up along the circumferential direction of the mounting plate 20 inside the plurality of first mounting holes 201 at both ends of the mounting plate 20 in the radial direction. The plurality of third mounting holes 203 are each circular, and are arranged at equal intervals along the circumferential direction of the mounting plate 20 inside the plurality of second mounting holes 202 at both ends of the mounting plate 20 in the radial direction. There is.
複数の固定部材21はすべて同一の構成を有している。なお、複数の固定部材21は、電磁石1と同数(18個)である。ただし、固定部材21は電磁石1と同数でなくてもよい。
The plurality of fixing members 21 all have the same configuration. Note that the number of the plurality of fixing members 21 is the same as that of the electromagnets 1 (18 pieces). However, the number of fixing members 21 may not be the same as the number of electromagnets 1.
固定部材21は、合成樹脂のような非磁性材料によって楔状に形成されている。固定部材21の第1面(取付板20と対向する面)に凹所210が形成されている。また、固定部材21の長手方向の両端に、固定部材21の高さ方向に貫通する貫通穴211、212が一つずつ設けられている(図5参照)。
The fixing member 21 is formed into a wedge shape from a non-magnetic material such as synthetic resin. A recess 210 is formed in the first surface of the fixing member 21 (the surface facing the mounting plate 20). Furthermore, one through hole 211 and one through hole 212 are provided at both longitudinal ends of the fixing member 21, each penetrating in the height direction of the fixing member 21 (see FIG. 5).
補強部材22は、円柱状の本体部220と、筒部221と、角柱状の複数の突部222と、を有する(図1及び図5参照)。なお、本体部220、筒部221及び複数の突部222は、合成樹脂又はアルミニウムのような非磁性材料によって一体に形成されることが好ましい。
The reinforcing member 22 has a cylindrical main body portion 220, a tube portion 221, and a plurality of prismatic protrusions 222 (see FIGS. 1 and 5). Note that it is preferable that the main body portion 220, the cylindrical portion 221, and the plurality of protrusions 222 be integrally formed of a non-magnetic material such as synthetic resin or aluminum.
本体部220の中央にD字形状の挿通穴が貫通している。筒部221は、本体部220の第1面(図1における下面)における挿通穴の周縁から第1面の法線方向(図1における下方向)に突出している。なお、筒部221は、第1面と平行な断面形状が挿通穴と同一形状の筒状に形成されている。
A D-shaped insertion hole passes through the center of the main body portion 220. The cylindrical portion 221 protrudes from the periphery of the insertion hole on the first surface (lower surface in FIG. 1) of the main body portion 220 in the normal direction of the first surface (downward in FIG. 1). Note that the cylindrical portion 221 is formed into a cylindrical shape whose cross-sectional shape parallel to the first surface has the same shape as the insertion hole.
複数の突部222はそれぞれ、本体部220の第1面から筒部221と同じ向きに突出している。また、複数の突部222は、本体部220の径方向の両端において周方向に等間隔に並んでいる。さらに、各突部222の外側の端部に、突部222を高さ方向(図1における上下方向)に貫通する貫通穴224が設けられている(図5参照)。なお、複数の突部222は、電磁石1と同数(18個)であるが、電磁石1と同数でなくてもよい。
Each of the plurality of protrusions 222 protrudes from the first surface of the main body portion 220 in the same direction as the cylindrical portion 221. Further, the plurality of protrusions 222 are arranged at equal intervals in the circumferential direction at both radial ends of the main body portion 220. Furthermore, a through hole 224 that penetrates the protrusion 222 in the height direction (vertical direction in FIG. 1) is provided at the outer end of each protrusion 222 (see FIG. 5). Note that the number of the plurality of protrusions 222 is the same as that of the electromagnets 1 (18 pieces), but the number does not have to be the same as that of the electromagnets 1.
ここで、本体部220には複数の溝部223が設けられている。複数の溝部223は、本体部220の第2面(図1における上面)と本体部220の側面に跨がって、本体部220の周方向に沿って等間隔に並んでいる。なお、複数の溝部223のそれぞれに、複数の固定部材21の先端部分が一つずつ嵌め込まれる(図5参照)。つまり、複数の溝部223は、固定部材21と同数(18個)である。
Here, the main body portion 220 is provided with a plurality of groove portions 223. The plurality of grooves 223 are arranged at equal intervals along the circumferential direction of the main body 220, spanning the second surface (the upper surface in FIG. 1) of the main body 220 and the side surface of the main body 220. Note that the tip portions of the plurality of fixing members 21 are fitted into each of the plurality of grooves 223 one by one (see FIG. 5). That is, the number of the plurality of grooves 223 is the same as that of the fixing member 21 (18 pieces).
(2-2-3)磁気検出部
磁気検出部3は、複数のホールIC30と、支持基板31と、ホルダ32と、を有する(図1参照)。 (2-2-3) Magnetic Detection Unit Themagnetic detection unit 3 includes a plurality of Hall ICs 30, a support substrate 31, and a holder 32 (see FIG. 1).
磁気検出部3は、複数のホールIC30と、支持基板31と、ホルダ32と、を有する(図1参照)。 (2-2-3) Magnetic Detection Unit The
複数(図示例では3個)のホールIC30はそれぞれ、磁気検出用のホール素子と信号処理回路を1つのパッケージに収容して構成されている。信号処理回路は、ホール素子の出力を信号処理して検出信号を出力する。なお、信号処理回路(ホールIC30)から出力される検出信号は、ロータブロックの回転に伴って永久磁石4の磁界(磁束)の向きが反転したタイミングを示す信号である。
Each of the plurality of (three in the illustrated example) Hall ICs 30 is configured by accommodating a Hall element for magnetic detection and a signal processing circuit in one package. The signal processing circuit performs signal processing on the output of the Hall element and outputs a detection signal. Note that the detection signal output from the signal processing circuit (Hall IC 30) is a signal indicating the timing at which the direction of the magnetic field (magnetic flux) of the permanent magnet 4 is reversed as the rotor block rotates.
支持基板31は、実装部313、突出部314、ベース部315を有する。実装部313は、弧状に湾曲した平板状に形成されている。3個のホールIC30は、実装部313の第1面311(図1における下面)に、周方向に沿って等間隔に並べて実装されている(図7参照)。
The support substrate 31 has a mounting section 313, a protruding section 314, and a base section 315. The mounting portion 313 is formed into an arcuate flat plate shape. The three Hall ICs 30 are mounted on the first surface 311 (lower surface in FIG. 1) of the mounting portion 313 at equal intervals along the circumferential direction (see FIG. 7).
突出部314は、幅細の長方形状に形成されている。突出部314の先端は、実装部313とつながっている。
The protrusion 314 is formed into a narrow rectangular shape. The tip of the protruding portion 314 is connected to the mounting portion 313.
ベース部315は、突出部314よりも十分に幅の広い4角形状に形成されている。ベース部315は、突出部314の後端とつながっている。ベース部315の表面(図1における上面)にはコネクタが実装される。コネクタは、実装部313、突出部314及びベース部315に形成された導体(プリント配線)を介して各ホールIC30と電気的に接続される。つまり、各ホールIC30から出力される検出信号は、コネクタを介して外部の駆動装置(ドライバ回路)に出力される。
The base portion 315 is formed into a rectangular shape that is sufficiently wider than the protrusion portion 314. The base portion 315 is connected to the rear end of the protruding portion 314. A connector is mounted on the surface of the base portion 315 (the upper surface in FIG. 1). The connector is electrically connected to each Hall IC 30 via conductors (printed wiring) formed on the mounting portion 313, the protruding portion 314, and the base portion 315. That is, the detection signal output from each Hall IC 30 is output to an external drive device (driver circuit) via the connector.
ホルダ32は、実装部313を支持する第1支持部321と、突出部314を支持する第2支持部322と、ベース部315を支持する第3支持部323と、取付部324と、を有する。なお、第1支持部321、第2支持部322、第3支持部323及び取付部324は、合成樹脂のような非磁性材料によって一体に形成されている(図1、図5及び図7参照)。
The holder 32 includes a first support part 321 that supports the mounting part 313, a second support part 322 that supports the protrusion part 314, a third support part 323 that supports the base part 315, and a mounting part 324. . Note that the first support part 321, the second support part 322, the third support part 323, and the attachment part 324 are integrally formed of a non-magnetic material such as synthetic resin (see FIGS. 1, 5, and 7). ).
第1支持部321は、弧状に湾曲した枠状に形成されている。第1支持部321は、支持基板31の実装部313の周縁を支持する(図5参照)。
The first support portion 321 is formed into an arcuate frame shape. The first support portion 321 supports the periphery of the mounting portion 313 of the support substrate 31 (see FIG. 5).
第2支持部322は、長尺の箱状に形成されている。第2支持部322の先端は、第1支持部321とつながっている。第2支持部322は、支持基板31の突出部314を収容して支持する(図5参照)。
The second support portion 322 is formed into a long box shape. The tip of the second support part 322 is connected to the first support part 321. The second support portion 322 accommodates and supports the protrusion portion 314 of the support substrate 31 (see FIG. 5).
第3支持部323は、4角形の箱状に形成されている。第3支持部323は、第2支持部322の後端とつながっている。第3支持部323は、支持基板31のベース部315を収容して支持する(図1参照)。
The third support portion 323 is formed into a rectangular box shape. The third support part 323 is connected to the rear end of the second support part 322. The third support portion 323 accommodates and supports the base portion 315 of the support substrate 31 (see FIG. 1).
取付部324は、中央に円形の穴325が貫通した円盤状に形成されている。取付部324は、第3支持部323の後端とつながっている(図1及び図7参照)。
The mounting portion 324 is formed into a disk shape with a circular hole 325 passing through the center. The attachment part 324 is connected to the rear end of the third support part 323 (see FIGS. 1 and 7).
(2-3)モータの組立て手順
上述したモータM1の組立て手順を説明する。ただし、以下に説明する組立て手順は一例であり、一部の手順の順序を入れ替えてもよいし、別の手順を追加しても構わない。 (2-3) Motor assembly procedure The assembly procedure of the above-mentioned motor M1 will be explained. However, the assembly procedure described below is just an example, and the order of some of the procedures may be changed or other procedures may be added.
上述したモータM1の組立て手順を説明する。ただし、以下に説明する組立て手順は一例であり、一部の手順の順序を入れ替えてもよいし、別の手順を追加しても構わない。 (2-3) Motor assembly procedure The assembly procedure of the above-mentioned motor M1 will be explained. However, the assembly procedure described below is just an example, and the order of some of the procedures may be changed or other procedures may be added.
(2-3-1)ステータの組立て
作業者は、初めにステータS1を組み立てる。作業者は、取付板20の第2取付穴202にステータコア10の突起105を一つずつ嵌め込むことで複数の電磁石1を取付板20に取り付ける。 (2-3-1) Assembling the stator The worker first assembles the stator S1. The operator attaches the plurality ofelectromagnets 1 to the mounting plate 20 by fitting the protrusions 105 of the stator core 10 into the second mounting holes 202 of the mounting plate 20 one by one.
作業者は、初めにステータS1を組み立てる。作業者は、取付板20の第2取付穴202にステータコア10の突起105を一つずつ嵌め込むことで複数の電磁石1を取付板20に取り付ける。 (2-3-1) Assembling the stator The worker first assembles the stator S1. The operator attaches the plurality of
次に、作業者は、取付板20に取り付けた複数の電磁石1の間に固定部材21を一つずつ配置する。このとき、隣り合う2つの電磁石1の各ステータコア10の一部(第2鍔部102の一部と固定部103の一部)が、固定部材21の凹所210に収容される(図5参照)。そして、作業者は、固定部材21の2つの貫通穴211、212のうち、取付板20の第1取付穴201と重なる方の貫通穴212に、それぞれ鋲又はねじを1本ずつ挿通し、それらの鋲又はねじで複数の固定部材21を取付板20に固定する。
Next, the operator places the fixing members 21 one by one between the plurality of electromagnets 1 attached to the mounting plate 20. At this time, a part of each stator core 10 of two adjacent electromagnets 1 (a part of the second collar part 102 and a part of the fixing part 103) is accommodated in the recess 210 of the fixing member 21 (see FIG. 5). ). Then, the operator inserts one stud or screw into each of the two through holes 211 and 212 of the fixing member 21, which overlaps with the first mounting hole 201 of the mounting plate 20. The plurality of fixing members 21 are fixed to the mounting plate 20 with rivets or screws.
続いて、作業者は、取付板20に取り付けた複数の電磁石1に囲まれた空間に補強部材22を収容する。このとき、作業者は、補強部材22の複数の溝部223に、複数の固定部材21の先端部分を一つずつ嵌め込む(図5参照)。そして、作業者は、複数の突部222のそれぞれの貫通穴224と、各貫通穴224と重なる各固定部材21の貫通穴211に、それぞれ鋲又はねじを1本ずつ挿通し、それらの鋲又はねじで補強部材22を取付板20に固定する。
Next, the operator accommodates the reinforcing member 22 in a space surrounded by the plurality of electromagnets 1 attached to the mounting plate 20. At this time, the operator fits the tip portions of the plurality of fixing members 21 into the plurality of grooves 223 of the reinforcing member 22 one by one (see FIG. 5). Then, the operator inserts one stud or screw into each through hole 224 of the plurality of protrusions 222 and one through hole 211 of each fixing member 21 that overlaps with each through hole 224, and The reinforcing member 22 is fixed to the mounting plate 20 with screws.
次に、作業者は、補強部材22の筒部221と取付板20の挿通穴200にシャフト6を挿通する。そして、作業者は、筒部221とシャフト6をねじ止めすることで補強部材22をシャフト6に固定する。
Next, the operator inserts the shaft 6 into the cylindrical portion 221 of the reinforcing member 22 and the insertion hole 200 of the mounting plate 20. Then, the operator fixes the reinforcing member 22 to the shaft 6 by screwing the cylindrical portion 221 and the shaft 6 together.
続いて、作業者は、ホルダ32の第1支持部321を電磁石1に対向させる向きで取付部324の穴325にシャフト6を挿通する。そして、作業者は、ホルダ32の取付部324と補強部材22の筒部221の先端を接着等の適宜の方法で固定する。その結果、磁気検出部3が補強部材22に取り付けられ、ステータS1の組立て作業が完了する。
Next, the operator inserts the shaft 6 into the hole 325 of the attachment part 324 in such a way that the first support part 321 of the holder 32 faces the electromagnet 1. Then, the operator fixes the mounting portion 324 of the holder 32 and the tip of the cylindrical portion 221 of the reinforcing member 22 using an appropriate method such as adhesive. As a result, the magnetic detection section 3 is attached to the reinforcing member 22, and the assembly work of the stator S1 is completed.
(2-3-2)ステータとロータブロックの組立て
次に、作業者は、支持部材5の収容部53に収容されたベアリングを介して、第1のロータR1を回転可能にシャフト6に取り付ける。 (2-3-2) Assembling the stator and rotor block Next, the operator rotatably attaches the first rotor R1 to theshaft 6 via the bearing housed in the housing portion 53 of the support member 5.
次に、作業者は、支持部材5の収容部53に収容されたベアリングを介して、第1のロータR1を回転可能にシャフト6に取り付ける。 (2-3-2) Assembling the stator and rotor block Next, the operator rotatably attaches the first rotor R1 to the
続いて、作業者は、支持部材5のフランジ52に連結体W1を取り付ける。それから、作業者は、収容部73に収容されたベアリングを介して、第2のロータR2を回転可能にシャフト6に取り付ける。
Subsequently, the operator attaches the connecting body W1 to the flange 52 of the support member 5. Then, the operator rotatably attaches the second rotor R2 to the shaft 6 via the bearing housed in the housing section 73.
最後に、作業者は、第2のロータR2のフランジ72に連結体W1を固定し、ステータS1をロータブロックに組み付けてモータM1の組立て作業を完了する。
Finally, the worker fixes the connecting body W1 to the flange 72 of the second rotor R2, and assembles the stator S1 to the rotor block to complete the assembly work of the motor M1.
(2-4)モータの動作
18個の電磁石1は、6個を1組として3組に振り分けられる。そして、異なる組に属する電磁石1が取付部材2の周方向に沿って順番に並ぶように配置される。また、同じ組に属する6個の電磁石1のコイル11が電気的に直列接続され、各組のコイル11同士は3相スター結線されている。つまり、3組の電磁石1には、120度ずつ位相がずれたU相、V相、W相の交流電圧(交流電流)が各別に供給される。 (2-4) Operation of the motor The 18electromagnets 1 are divided into 3 groups, each group consisting of 6 electromagnets. Then, the electromagnets 1 belonging to different groups are arranged in order along the circumferential direction of the mounting member 2. Further, the coils 11 of six electromagnets 1 belonging to the same group are electrically connected in series, and the coils 11 of each group are connected in a three-phase star connection. That is, the three sets of electromagnets 1 are individually supplied with U-phase, V-phase, and W-phase alternating current voltages (alternating current) whose phases are shifted by 120 degrees.
18個の電磁石1は、6個を1組として3組に振り分けられる。そして、異なる組に属する電磁石1が取付部材2の周方向に沿って順番に並ぶように配置される。また、同じ組に属する6個の電磁石1のコイル11が電気的に直列接続され、各組のコイル11同士は3相スター結線されている。つまり、3組の電磁石1には、120度ずつ位相がずれたU相、V相、W相の交流電圧(交流電流)が各別に供給される。 (2-4) Operation of the motor The 18
駆動装置は、磁気検出部3の検出信号に基づいて、3組の電磁石1に接続されたインバータを制御し、各組に属する電磁石1の極性を切り替えることによってロータブロック(第1のロータR1)を回転させる。
The drive device controls the inverter connected to the three sets of electromagnets 1 based on the detection signal of the magnetic detection unit 3, and switches the polarity of the electromagnets 1 belonging to each set to generate a rotor block (first rotor R1). Rotate.
(2-5)実施形態の利点
磁気検出部3のホルダ32は、支持基板31を片持ち支持している。そのため、支持基板31の自由端(実装部313)に実装されたホールIC30に、永久磁石4の磁気吸引力が作用することによって、磁気検出部3に撓みが生じる。 (2-5) Advantages of Embodiment Theholder 32 of the magnetic detection section 3 supports the support substrate 31 in a cantilevered manner. Therefore, the magnetic attraction force of the permanent magnet 4 acts on the Hall IC 30 mounted on the free end (mounting section 313) of the support substrate 31, causing the magnetic detection section 3 to bend.
磁気検出部3のホルダ32は、支持基板31を片持ち支持している。そのため、支持基板31の自由端(実装部313)に実装されたホールIC30に、永久磁石4の磁気吸引力が作用することによって、磁気検出部3に撓みが生じる。 (2-5) Advantages of Embodiment The
図9は、シャフト6の軸心を原点O、軸心と直交する方向をX軸、軸心の方向をZ軸とした直交座標系においてホールIC30の位置座標を示している。磁気検出部3に撓みが生じていない場合(ホールIC30のZ座標が0の場合)のホールIC30のX座標をX1とする。磁気吸引力によって磁気検出部3に撓みが生じた場合(ホールIC30のZ座標が0より大きくなった場合)、ホールIC30のX座標がX1からX2(<X1)に変化する。その結果、ホールIC30は、シャフト6の軸心(原点O)に近付く向きに変位する。
FIG. 9 shows the position coordinates of the Hall IC 30 in an orthogonal coordinate system in which the axial center of the shaft 6 is the origin O, the direction perpendicular to the axial center is the X axis, and the direction of the axial center is the Z axis. The X coordinate of the Hall IC 30 when the magnetic detection section 3 is not bent (when the Z coordinate of the Hall IC 30 is 0) is set to X1. When the magnetic detection unit 3 is deflected by the magnetic attraction force (when the Z coordinate of the Hall IC 30 becomes greater than 0), the X coordinate of the Hall IC 30 changes from X1 to X2 (<X1). As a result, the Hall IC 30 is displaced toward the axis of the shaft 6 (origin O).
ここで、電磁石1(ステータコア10)の内側(取付部材2の径方向において電磁石1よりもシャフト6に近い側)にホールIC30が配置された場合を想定する。この場合、ホールIC30がシャフト6の軸心に近付く向きに変位することにより、軸心と直交する向き(取付部材2の径方向)においてホールIC30と永久磁石4との距離が大きくなってしまう。図10における実線α1は、磁気検出部3に撓みが生じていない場合にホールICと交わる磁界(磁束密度)の変化を示している。第1のロータR1に取り付けられている永久磁石4の磁極部40が周方向に移動することにより、ホールICと交わる磁束密度が単調に変化している(実線α1参照)。
Here, it is assumed that the Hall IC 30 is arranged inside the electromagnet 1 (stator core 10) (on the side closer to the shaft 6 than the electromagnet 1 in the radial direction of the mounting member 2). In this case, as the Hall IC 30 is displaced toward the axis of the shaft 6, the distance between the Hall IC 30 and the permanent magnet 4 increases in the direction perpendicular to the axis (radial direction of the mounting member 2). A solid line α1 in FIG. 10 indicates a change in the magnetic field (magnetic flux density) that intersects with the Hall IC when the magnetic detection section 3 is not bent. As the magnetic pole part 40 of the permanent magnet 4 attached to the first rotor R1 moves in the circumferential direction, the magnetic flux density that intersects with the Hall IC changes monotonically (see solid line α1).
一方、図10における実線α2は、磁気検出部3に撓みが生じている場合の磁束密度の変化を示しており、ホールICと交わる磁束密度が単調に変化せず、増減を繰り返すことを表している。なお、図10における「Th」の符号は、ホールICが磁界(磁束密度)の切り替わりを判定するためのしきい値を示している。つまり、図10の実線α2に示すように、磁気検出部3に撓みが生じた場合、磁気検出部3の検出精度が低下する。
On the other hand, the solid line α2 in FIG. 10 shows the change in magnetic flux density when the magnetic detection unit 3 is bent, and indicates that the magnetic flux density intersecting the Hall IC does not change monotonically but repeats increases and decreases. There is. Note that the symbol "Th" in FIG. 10 indicates a threshold value for the Hall IC to determine switching of the magnetic field (magnetic flux density). That is, as shown by the solid line α2 in FIG. 10, when the magnetic detection section 3 is bent, the detection accuracy of the magnetic detection section 3 is reduced.
しかしながら、モータM1は、第1のロータR1の回転中心(シャフト6の軸心)に対してステータコア10の外側にホールIC30を配置している。そのため、磁気検出部3に撓みが生じてホールIC30がシャフト6の軸心に近付く向きに変位した場合、軸心と直交する向きにおいてホールIC30と永久磁石4との距離が短くなる。したがって、モータM1において、磁気検出部3のホールIC30が検出する磁界(磁束密度)は単調に変化するので、磁気検出部3のたわみによる磁気検出の精度低下の抑制を図ることができる。
However, in the motor M1, the Hall IC 30 is arranged outside the stator core 10 with respect to the rotation center of the first rotor R1 (the axis of the shaft 6). Therefore, when the magnetic detection section 3 is deflected and the Hall IC 30 is displaced in a direction closer to the axis of the shaft 6, the distance between the Hall IC 30 and the permanent magnet 4 becomes shorter in the direction perpendicular to the axis. Therefore, in the motor M1, the magnetic field (magnetic flux density) detected by the Hall IC 30 of the magnetic detection section 3 changes monotonically, so that it is possible to suppress a decrease in accuracy of magnetic detection due to deflection of the magnetic detection section 3.
また、磁気検出部3において、ホールIC30は、支持基板31の第1面311、すなわち、第1のロータR1に取り付けられた永久磁石4と対向する面に実装されている(図3参照)。そのため、モータM1は、支持基板31の第2面312にホールIC30が実装される場合と比較して、磁気検出部3が撓んだ場合にホールIC30と永久磁石4の距離が小さくなる。その結果、モータM1は、磁気検出の精度低下の更なる抑制を図ることができる。
In the magnetic detection unit 3, the Hall IC 30 is mounted on the first surface 311 of the support substrate 31, that is, the surface facing the permanent magnet 4 attached to the first rotor R1 (see FIG. 3). Therefore, in the motor M1, the distance between the Hall IC 30 and the permanent magnet 4 becomes smaller when the magnetic detection section 3 is bent, compared to when the Hall IC 30 is mounted on the second surface 312 of the support substrate 31. As a result, the motor M1 can further suppress deterioration in accuracy of magnetic detection.
さらに、磁気検出部3において、支持基板31は、ホールIC30が実装される実装部313と、実装部313から回転中心に向かって突出する突出部314と、を有している。つまり、モータM1は、ホールIC30が実装された実装部313ではなく、実装部313から突出する突出部314を介して支持基板31をステータS1に取り付けることができる。そのため、モータM1は、支持基板31をステータコア10の高さ内に収めることができるので、ステータS1の低背化(扁平化)を図ることができる。
Further, in the magnetic detection section 3, the support substrate 31 has a mounting section 313 on which the Hall IC 30 is mounted, and a protrusion section 314 that projects from the mounting section 313 toward the rotation center. That is, in the motor M1, the support substrate 31 can be attached to the stator S1 not through the mounting section 313 on which the Hall IC 30 is mounted, but through the protruding section 314 that projects from the mounting section 313. Therefore, in the motor M1, the support substrate 31 can be accommodated within the height of the stator core 10, so that the height of the stator S1 can be reduced (flattened).
ここで、支持基板31の突出部314は、ホールIC30と駆動装置を電気的に接続するための配線(導体)が形成されている。そして、突出部314の配線を流れる電流が電磁石1の磁界の影響を受けると磁気検出部3の検出精度の低下を招くおそれがある。これに対してモータM1は、複数の電磁石1のうちで回転方向に沿って隣り合う2つの電磁石1の間に突出部314を配置し、かつ、突出部314の幅d1を、2つの電磁石1のステータコア10間の間隔d2以下としている(図8参照)。これにより、モータM1は、支持基板31をステータコア10の高さ内に収めることができるので、ステータS1の更なる低背化(扁平化)を図ることができる。
Here, wiring (conductor) for electrically connecting the Hall IC 30 and the driving device is formed on the protrusion 314 of the support substrate 31. If the current flowing through the wiring of the protrusion 314 is influenced by the magnetic field of the electromagnet 1, there is a risk that the detection accuracy of the magnetic detection section 3 will be reduced. On the other hand, in the motor M1, the protrusion 314 is arranged between two electromagnets 1 adjacent to each other along the rotational direction among the plurality of electromagnets 1, and the width d1 of the protrusion 314 is set between the two electromagnets 1. The distance between the stator cores 10 is set to be less than or equal to d2 (see FIG. 8). Thereby, in the motor M1, the support substrate 31 can be accommodated within the height of the stator core 10, so that the height of the stator S1 can be further reduced (flattened).
また、回転中心(シャフト6の軸心)から支持基板31の最外周までの距離r2は、回転中心からロータ(第1のロータR1及び第2のロータR2)の内周縁までの距離r1以下である(図7参照)。すなわち、モータM1は、支持基板31を第1のロータR1の取付板20の外にはみ出させないので、支持基板31と第1のロータR1が接触するリスクの低減を図り、かつ、ホールIC30が永久磁石4から離れすぎて検出精度が低下することを防ぐことができる。
Further, the distance r2 from the rotation center (axis center of the shaft 6) to the outermost circumference of the support substrate 31 is less than or equal to the distance r1 from the rotation center to the inner circumference of the rotor (first rotor R1 and second rotor R2). Yes (see Figure 7). That is, since the motor M1 does not allow the support substrate 31 to protrude outside the mounting plate 20 of the first rotor R1, the risk of contact between the support substrate 31 and the first rotor R1 is reduced, and the Hall IC 30 is permanently attached. It is possible to prevent the detection accuracy from decreasing due to being too far away from the magnet 4.
さらに、モータM1は、ステータS1を挟んで第1のロータR1と対向し、かつ、第1のロータR1と連結される第2のロータR2を備えた、いわゆるダブルロータのアキシャルギャップ型片側磁石のモータである。ダブルロータのアキシャルギャップ型のモータは、2つのロータのそれぞれに永久磁石を搭載した両側磁石タイプが一般的である。しかしながら、モータM1は、第1のロータR1のみに永久磁石4を有し、第2のロータR2に永久磁石を有していない。
Further, the motor M1 is a so-called double rotor axial gap type single-sided magnet, which is equipped with a second rotor R2 that faces the first rotor R1 with the stator S1 in between and is connected to the first rotor R1. It's a motor. A double rotor axial gap type motor is generally a double-side magnet type in which a permanent magnet is mounted on each of the two rotors. However, the motor M1 has a permanent magnet 4 only in the first rotor R1 and does not have a permanent magnet in the second rotor R2.
しかして、モータM1は、片側のロータ(第1のロータR1)のみに永久磁石4を有するので、両側のロータに永久磁石を有する場合に比べて製造コストの削減を図ることができる。また、モータM1は、ダブルロータ型であるので、シングルロータ型に比べて、対象物(天井扇CF1の羽根81など)を回転させたときのふらつきの抑制などを図ることができるといった利点がある。
Therefore, since the motor M1 has the permanent magnet 4 only on one rotor (first rotor R1), manufacturing costs can be reduced compared to the case where both rotors have permanent magnets. Furthermore, since the motor M1 is a double rotor type, it has an advantage over a single rotor type in that it can suppress wobbling when rotating an object (such as the blade 81 of the ceiling fan CF1). .
(3)実施形態に係る天井扇の詳細
実施形態に係る天井扇CF1(以下、天井扇CF1と略す。)は、図11に示すように、モータM1を内蔵する本体80と、モータM1によって回転させられる複数(図示例では4つ)の羽根81と、を備える。 (3) Details of the ceiling fan according to the embodiment As shown in FIG. 11, the ceiling fan CF1 according to the embodiment (hereinafter abbreviated as ceiling fan CF1) has amain body 80 that incorporates a motor M1, and a main body 80 that is rotated by the motor M1. A plurality of (four in the illustrated example) blades 81 are provided.
実施形態に係る天井扇CF1(以下、天井扇CF1と略す。)は、図11に示すように、モータM1を内蔵する本体80と、モータM1によって回転させられる複数(図示例では4つ)の羽根81と、を備える。 (3) Details of the ceiling fan according to the embodiment As shown in FIG. 11, the ceiling fan CF1 according to the embodiment (hereinafter abbreviated as ceiling fan CF1) has a
本体80は、金属又は合成樹脂によって筒状に形成されている。本体80は、例えば、室内の天井に設置された引掛シーリングボディに対して、機械的かつ電気的に着脱可能に取り付けられる。本体80は、シャフト6の軸心を天井面と直交させるようにモータM1を収容する。
The main body 80 is formed into a cylindrical shape from metal or synthetic resin. The main body 80 is mechanically and electrically detachably attached to, for example, a hanging ceiling body installed on the ceiling of a room. The main body 80 accommodates the motor M1 so that the axis of the shaft 6 is perpendicular to the ceiling surface.
4つの羽根81はそれぞれ、合成樹脂によって同一の形状及び寸法に形成されている。各羽根81の根元部分は、例えば、モータM1の連結体W1に固定される。つまり、モータM1のロータブロックが回転することによって、ロータブロック(連結体W1)に固定された4つの羽根81も回転する。
The four blades 81 are each made of synthetic resin and have the same shape and dimensions. The root portion of each blade 81 is fixed to, for example, a connecting body W1 of the motor M1. That is, when the rotor block of the motor M1 rotates, the four blades 81 fixed to the rotor block (coupled body W1) also rotate.
しかして、天井扇CF1は、実施形態に係るモータM1を使用して羽根81を回転させるので、モータM1と同様に磁気検出部3の検出精度の低下の抑制を図ることができる。
Accordingly, since the ceiling fan CF1 rotates the blades 81 using the motor M1 according to the embodiment, it is possible to suppress a decrease in the detection accuracy of the magnetic detection section 3 similarly to the motor M1.
(4)まとめ
本開示の第1の態様に係るモータ(M1)は、ステータ(S1)と、ステータ(S1)に対して回転可能であるロータ(第1のロータR1)と、を備える。ロータは、回転方向に沿って異なる磁極が交互に並ぶ永久磁石(4)と、永久磁石(4)を支持する支持部材(5)と、を有する。ステータ(S1)は、ロータの回転方向に沿って並ぶ複数の電磁石(1)と、複数の電磁石(1)が取り付けられる取付部材(2)と、永久磁石(4)の磁気を検出する磁気検出部(3)と、を有する。複数の電磁石(1)はそれぞれ、ステータコア(10)と、ステータコア(10)に巻回されたコイル(11)と、を有する。磁気検出部(3)は、ホール素子又はホールIC(30)と、ホール素子又はホールIC(30)を支持する支持基板(31)と、を有する。ホール素子又はホールIC(30)は、ロータの回転中心に対してステータコア(10)の外側に配置される。 (4) Summary The motor (M1) according to the first aspect of the present disclosure includes a stator (S1) and a rotor (first rotor R1) that is rotatable with respect to the stator (S1). The rotor includes permanent magnets (4) in which different magnetic poles are arranged alternately along the rotation direction, and a support member (5) that supports the permanent magnets (4). The stator (S1) includes a plurality of electromagnets (1) lined up along the rotational direction of the rotor, a mounting member (2) to which the plurality of electromagnets (1) are attached, and a magnetic sensor that detects the magnetism of a permanent magnet (4). Part (3). Each of the plurality of electromagnets (1) has a stator core (10) and a coil (11) wound around the stator core (10). The magnetic detection unit (3) includes a Hall element or Hall IC (30) and a support substrate (31) that supports the Hall element or Hall IC (30). The Hall element or Hall IC (30) is arranged outside the stator core (10) with respect to the rotation center of the rotor.
本開示の第1の態様に係るモータ(M1)は、ステータ(S1)と、ステータ(S1)に対して回転可能であるロータ(第1のロータR1)と、を備える。ロータは、回転方向に沿って異なる磁極が交互に並ぶ永久磁石(4)と、永久磁石(4)を支持する支持部材(5)と、を有する。ステータ(S1)は、ロータの回転方向に沿って並ぶ複数の電磁石(1)と、複数の電磁石(1)が取り付けられる取付部材(2)と、永久磁石(4)の磁気を検出する磁気検出部(3)と、を有する。複数の電磁石(1)はそれぞれ、ステータコア(10)と、ステータコア(10)に巻回されたコイル(11)と、を有する。磁気検出部(3)は、ホール素子又はホールIC(30)と、ホール素子又はホールIC(30)を支持する支持基板(31)と、を有する。ホール素子又はホールIC(30)は、ロータの回転中心に対してステータコア(10)の外側に配置される。 (4) Summary The motor (M1) according to the first aspect of the present disclosure includes a stator (S1) and a rotor (first rotor R1) that is rotatable with respect to the stator (S1). The rotor includes permanent magnets (4) in which different magnetic poles are arranged alternately along the rotation direction, and a support member (5) that supports the permanent magnets (4). The stator (S1) includes a plurality of electromagnets (1) lined up along the rotational direction of the rotor, a mounting member (2) to which the plurality of electromagnets (1) are attached, and a magnetic sensor that detects the magnetism of a permanent magnet (4). Part (3). Each of the plurality of electromagnets (1) has a stator core (10) and a coil (11) wound around the stator core (10). The magnetic detection unit (3) includes a Hall element or Hall IC (30) and a support substrate (31) that supports the Hall element or Hall IC (30). The Hall element or Hall IC (30) is arranged outside the stator core (10) with respect to the rotation center of the rotor.
第1の態様に係るモータ(M1)は、支持基板(31)に撓みが生じてもホール素子又はホールIC(30)と永久磁石(4)の距離が大きくなりにくいので、支持基板(31)のたわみによる磁気検出の精度低下の抑制を図ることができる。
In the motor (M1) according to the first aspect, even if the support substrate (31) is bent, the distance between the Hall element or Hall IC (30) and the permanent magnet (4) is unlikely to increase, so the support substrate (31) It is possible to suppress a decrease in accuracy of magnetic detection due to deflection of the magnetic field.
本開示の第2の態様に係るモータ(M1)は、第1の態様との組合せにより実現され得る。第2の態様に係るモータ(M1)において、支持基板(31)は、ロータと対向する第1面(311)と、取付部材(2)と対向する第2面(312)と、を有することが好ましい。ホール素子又はホールIC(30)は、支持基板(31)の第1面(311)に支持されることが好ましい。
The motor (M1) according to the second aspect of the present disclosure can be realized in combination with the first aspect. In the motor (M1) according to the second aspect, the support substrate (31) has a first surface (311) facing the rotor and a second surface (312) facing the mounting member (2). is preferred. The Hall element or Hall IC (30) is preferably supported by the first surface (311) of the support substrate (31).
第2の態様に係るモータ(M1)は、磁気検出の精度低下の更なる抑制を図ることができる。
The motor (M1) according to the second aspect can further suppress deterioration in accuracy of magnetic detection.
本開示の第3の態様に係るモータ(M1)は、第1又は第2の態様との組合せにより実現され得る。第3の態様に係るモータ(M1)において、支持基板(31)は、ホール素子又はホールIC(30)が実装される実装部(313)と、実装部(313)から回転中心に向かって突出する突出部(314)と、を有することが好ましい。
The motor (M1) according to the third aspect of the present disclosure can be realized in combination with the first or second aspect. In the motor (M1) according to the third aspect, the support substrate (31) includes a mounting portion (313) on which the Hall element or Hall IC (30) is mounted, and a mounting portion (313) that protrudes toward the rotation center from the mounting portion (313). It is preferable to have a protrusion (314) that
第3の態様に係るモータ(M1)は、ステータ(S1)の低背化(扁平化)を図ることができる。
The motor (M1) according to the third aspect can reduce the height (flattening) of the stator (S1).
本開示の第4の態様に係るモータ(M1)は、第3の態様との組合せにより実現され得る。第4の態様に係るモータ(M1)において、突出部(314)は、複数の電磁石(1)のうちで回転方向に沿って隣り合う2つの電磁石(1)の間に配置されることが好ましい。突出部(314)の幅(d1)は、2つの電磁石(1)のステータコア(10)間の間隔(d2)以下であることが好ましい。
The motor (M1) according to the fourth aspect of the present disclosure can be realized in combination with the third aspect. In the motor (M1) according to the fourth aspect, the protrusion (314) is preferably arranged between two electromagnets (1) adjacent to each other along the rotational direction among the plurality of electromagnets (1). . The width (d1) of the protrusion (314) is preferably equal to or less than the distance (d2) between the stator cores (10) of the two electromagnets (1).
第4の態様に係るモータ(M1)は、ステータ(S1)の更なる低背化(扁平化)を図ることができる。
The motor (M1) according to the fourth aspect can further reduce the height (flattening) of the stator (S1).
本開示の第5の態様に係るモータ(M1)は、第1-第4のいずれかの態様との組合せにより実現され得る。第5の態様に係るモータ(M1)において、回転中心から支持基板(31)の最外周までの距離(r2)は、回転中心からロータの内周縁までの距離(r1)以下であることが好ましい。
The motor (M1) according to the fifth aspect of the present disclosure can be realized in combination with any one of the first to fourth aspects. In the motor (M1) according to the fifth aspect, the distance (r2) from the rotation center to the outermost periphery of the support substrate (31) is preferably equal to or less than the distance (r1) from the rotation center to the inner periphery of the rotor. .
第5の態様に係るモータ(M1)は、支持基板(31)をロータの外にはみ出させないので、支持基板(31)とロータが接触するリスクの低減を図り、かつ、ホール素子又はホールIC(30)が永久磁石(4)から離れすぎて検出精度が低下することを防ぐことができる。
Since the motor (M1) according to the fifth aspect does not allow the support substrate (31) to protrude outside the rotor, the risk of contact between the support substrate (31) and the rotor is reduced, and the Hall element or Hall IC ( 30) can be prevented from being too far away from the permanent magnet (4) and resulting in a decrease in detection accuracy.
本開示の第6の態様に係るモータ(M1)は、第1-第5のいずれかの態様との組合せにより実現され得る。第6の態様に係るモータ(M1)において、ロータを第1のロータ(R1)とすることが好ましい。第6の態様に係るモータ(M1)は、ステータ(S1)を挟んで第1のロータ(R1)と対向し、かつ、第1のロータ(R1)と連結される第2のロータ(R2)を更に備えることが好ましい。第2のロータ(R2)は永久磁石を有しないことが好ましい。
The motor (M1) according to the sixth aspect of the present disclosure can be realized in combination with any one of the first to fifth aspects. In the motor (M1) according to the sixth aspect, the rotor is preferably the first rotor (R1). The motor (M1) according to the sixth aspect includes a second rotor (R2) that faces the first rotor (R1) across the stator (S1) and is connected to the first rotor (R1). It is preferable to further include. Preferably, the second rotor (R2) does not have permanent magnets.
第6の態様に係るモータ(M1)は、製造コストの削減を図ることができる。
The motor (M1) according to the sixth aspect can reduce manufacturing costs.
本開示の第7の態様に係る天井扇(CF1)は、第1-第6のいずれかの態様のモータ(M1)と、モータ(M1)に駆動されて回転する1つ以上の羽根(81)と、を備える。
A ceiling fan (CF1) according to a seventh aspect of the present disclosure includes the motor (M1) according to any one of the first to sixth aspects, and one or more blades (81) that are driven and rotated by the motor (M1). ) and.
第7の態様に係る天井扇(CF1)は、第1-第6のいずれかの態様のモータ(M1)を備えているので、磁気検出の精度低下の抑制を図ることができる。
Since the ceiling fan (CF1) according to the seventh aspect includes the motor (M1) according to any one of the first to sixth aspects, it is possible to suppress a decrease in accuracy of magnetic detection.
M1 モータ
CF1 天井扇
S1 ステータ
R1 第1のロータ(ロータ)
R2 第2のロータ
1 電磁石
2 取付部材
3 磁気検出部
4 永久磁石
5 支持部材
10 ステータコア
11 コイル
30 ホールIC
31 支持基板
80 本体
81 羽根
311 第1面
312 第2面
313 実装部
314 突出部 M1 Motor CF1 Ceiling fan S1 Stator R1 First rotor (rotor)
R2 Second rotor 1 Electromagnet 2 Mounting member 3 Magnetic detection section 4 Permanent magnet 5 Support member 10 Stator core 11 Coil 30 Hall IC
31Support board 80 Main body 81 Wing 311 First surface 312 Second surface 313 Mounting section 314 Projection section
CF1 天井扇
S1 ステータ
R1 第1のロータ(ロータ)
R2 第2のロータ
1 電磁石
2 取付部材
3 磁気検出部
4 永久磁石
5 支持部材
10 ステータコア
11 コイル
30 ホールIC
31 支持基板
80 本体
81 羽根
311 第1面
312 第2面
313 実装部
314 突出部 M1 Motor CF1 Ceiling fan S1 Stator R1 First rotor (rotor)
31
Claims (7)
- ステータと、
前記ステータに対して回転可能であるロータと、
を備え、
前記ロータは、
回転方向に沿って異なる磁極が交互に並ぶ永久磁石と、
前記永久磁石を支持する支持部材と、
を有し、
前記ステータは、
前記ロータの回転方向に沿って並ぶ複数の電磁石と、
前記複数の電磁石が取り付けられる取付部材と、
前記永久磁石の磁気を検出する磁気検出部と、
を有し、
前記複数の電磁石はそれぞれ、
ステータコアと、
前記ステータコアに巻回されたコイルと、
を有し、
前記磁気検出部は、
ホール素子又はホールICと、
前記ホール素子又は前記ホールICを支持する支持基板と、
を有し、
前記ホール素子又は前記ホールICは、前記ロータの回転中心に対して前記ステータコアの外側に配置される、
モータ。 stator and
a rotor rotatable relative to the stator;
Equipped with
The rotor is
A permanent magnet with different magnetic poles arranged alternately along the direction of rotation,
a support member that supports the permanent magnet;
has
The stator is
a plurality of electromagnets arranged along the rotational direction of the rotor;
a mounting member to which the plurality of electromagnets are attached;
a magnetic detection unit that detects the magnetism of the permanent magnet;
has
Each of the plurality of electromagnets is
stator core and
a coil wound around the stator core;
has
The magnetic detection section includes:
A Hall element or a Hall IC,
a support substrate that supports the Hall element or the Hall IC;
has
The Hall element or the Hall IC is arranged outside the stator core with respect to the rotation center of the rotor.
motor. - 前記支持基板は、前記ロータと対向する第1面と、前記取付部材と対向する第2面と、を有し、
前記ホール素子又は前記ホールICは、前記支持基板の前記第1面に支持される、
請求項1記載のモータ。 The support substrate has a first surface facing the rotor and a second surface facing the mounting member,
The Hall element or the Hall IC is supported by the first surface of the support substrate.
The motor according to claim 1. - 前記支持基板は、前記ホール素子又は前記ホールICが実装される実装部と、前記実装部から前記回転中心に向かって突出する突出部と、を有する、
請求項1又は2記載のモータ。 The support substrate has a mounting portion on which the Hall element or the Hall IC is mounted, and a protrusion that projects from the mounting portion toward the rotation center.
The motor according to claim 1 or 2. - 前記突出部は、前記複数の電磁石のうちで前記回転方向に沿って隣り合う2つの電磁石の間に配置され、
前記突出部の幅は、前記2つの電磁石の前記ステータコア間の間隔以下である、
請求項3記載のモータ。 The protruding portion is arranged between two electromagnets adjacent to each other along the rotation direction among the plurality of electromagnets,
The width of the protrusion is equal to or less than the distance between the stator cores of the two electromagnets.
The motor according to claim 3. - 前記回転中心から前記支持基板の最外周までの距離は、前記回転中心から前記ロータの内周縁までの距離以下である、
請求項1-4のいずれか1項に記載のモータ。 The distance from the rotation center to the outermost periphery of the support substrate is less than or equal to the distance from the rotation center to the inner periphery of the rotor.
The motor according to any one of claims 1 to 4. - 前記ロータを第1のロータとし、
前記ステータを挟んで前記第1のロータと対向し、かつ、前記第1のロータと連結される第2のロータを更に備え、
前記第2のロータは永久磁石を有しない、
請求項1-5のいずれか1項に記載のモータ。 The rotor is a first rotor,
further comprising a second rotor that faces the first rotor with the stator in between and is connected to the first rotor,
the second rotor does not have a permanent magnet;
The motor according to any one of claims 1 to 5. - 請求項1-6のいずれかに記載のモータと、
前記モータに駆動されて回転する1つ以上の羽根と、
を備える、
天井扇。 A motor according to any one of claims 1 to 6,
one or more blades that are driven and rotated by the motor;
Equipped with
ceiling fan.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-115877 | 2022-07-20 | ||
JP2022115877 | 2022-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024018820A1 true WO2024018820A1 (en) | 2024-01-25 |
Family
ID=89617624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/023212 WO2024018820A1 (en) | 2022-07-20 | 2023-06-22 | Motor and ceiling fan |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024018820A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02136464U (en) * | 1989-04-14 | 1990-11-14 | ||
JPH03135353A (en) * | 1989-10-13 | 1991-06-10 | Canon Electron Inc | 3-phase semiconductor motor |
JPH05146133A (en) * | 1991-11-18 | 1993-06-11 | Toshiba Corp | Brushless motor |
JPH0756623Y2 (en) * | 1988-05-12 | 1995-12-25 | 株式会社東芝 | Axial gap type brushless motor |
JPH08237922A (en) * | 1995-02-24 | 1996-09-13 | Sony Corp | Speed sensor for motor |
JP2008109794A (en) * | 2006-10-26 | 2008-05-08 | Daikin Ind Ltd | Axial gap type motor and compressor therewith |
JP2008295212A (en) * | 2007-05-24 | 2008-12-04 | Sumitomo Electric Ind Ltd | Axial motor and in-wheel motor |
US20180248454A1 (en) * | 2017-02-27 | 2018-08-30 | Autel Robotics Co., Ltd. | Motor, gimbal, and mechanical arm having the same |
JP2022052814A (en) * | 2020-09-24 | 2022-04-05 | パナソニックIpマネジメント株式会社 | Brushless DC motor |
-
2023
- 2023-06-22 WO PCT/JP2023/023212 patent/WO2024018820A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756623Y2 (en) * | 1988-05-12 | 1995-12-25 | 株式会社東芝 | Axial gap type brushless motor |
JPH02136464U (en) * | 1989-04-14 | 1990-11-14 | ||
JPH03135353A (en) * | 1989-10-13 | 1991-06-10 | Canon Electron Inc | 3-phase semiconductor motor |
JPH05146133A (en) * | 1991-11-18 | 1993-06-11 | Toshiba Corp | Brushless motor |
JPH08237922A (en) * | 1995-02-24 | 1996-09-13 | Sony Corp | Speed sensor for motor |
JP2008109794A (en) * | 2006-10-26 | 2008-05-08 | Daikin Ind Ltd | Axial gap type motor and compressor therewith |
JP2008295212A (en) * | 2007-05-24 | 2008-12-04 | Sumitomo Electric Ind Ltd | Axial motor and in-wheel motor |
US20180248454A1 (en) * | 2017-02-27 | 2018-08-30 | Autel Robotics Co., Ltd. | Motor, gimbal, and mechanical arm having the same |
JP2022052814A (en) * | 2020-09-24 | 2022-04-05 | パナソニックIpマネジメント株式会社 | Brushless DC motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100803570B1 (en) | Axial air-gap type motor | |
JP4586717B2 (en) | motor | |
US8890387B2 (en) | Stator and motor | |
JP3376373B2 (en) | Motor structure | |
US10778071B2 (en) | Stacking-type stator using multi-layered substrate, and in-car sensor using same | |
US4745312A (en) | Stepping motor | |
US20070018520A1 (en) | Motor/generator to reduce cogging torque | |
US20190149002A1 (en) | Slim-type stator, and single phase motor and cooling fan using same | |
WO1993010593A1 (en) | Brushless dc motor | |
JPH07213041A (en) | Single-phase brushless motor | |
JPH11146617A (en) | Brushless dc motor structure | |
US8294315B2 (en) | Inner-rotor brushless motor | |
US6710504B2 (en) | Brushless DC motor | |
US20100052457A1 (en) | Methods and apparatus for fabrication of electric motors | |
CA3067531A1 (en) | Electrical machine | |
JP2008263738A (en) | Rotary electric machine | |
WO2024018820A1 (en) | Motor and ceiling fan | |
US20190312490A1 (en) | Fault-tolerant motor | |
WO2024018819A1 (en) | Motor and ceiling fan | |
CN113574773B (en) | Stator and motor | |
JP2018160956A (en) | Brushless motor | |
JP2024095223A (en) | Motor and ceiling fan | |
US20220140672A1 (en) | Electric motor, fan, and air conditioner | |
JP2001186744A (en) | Rotor for brushless motor, and brushless motor | |
JP2024095224A (en) | Motor and ceiling fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23842751 Country of ref document: EP Kind code of ref document: A1 |