WO2024018784A1 - Laser annealing device, laser annealing method, and laser annealing program - Google Patents

Laser annealing device, laser annealing method, and laser annealing program Download PDF

Info

Publication number
WO2024018784A1
WO2024018784A1 PCT/JP2023/022018 JP2023022018W WO2024018784A1 WO 2024018784 A1 WO2024018784 A1 WO 2024018784A1 JP 2023022018 W JP2023022018 W JP 2023022018W WO 2024018784 A1 WO2024018784 A1 WO 2024018784A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser pulse
laser
semiconductor wafer
scanning
pulse
Prior art date
Application number
PCT/JP2023/022018
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 岡田
雅史 萬
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2024018784A1 publication Critical patent/WO2024018784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser annealing device and the like.
  • Patent Document 1 discloses a laser annealing technique in which a semiconductor wafer is irradiated with a laser pulse shaped into a line (hereinafter also referred to as a line beam).
  • the line beam is scanned in the short width direction, but in order to avoid damage to the semiconductor wafer due to concentrated laser pulse irradiation in a short period of time, the scanning amount at the interval between laser pulses is set to be greater than or equal to the width of the line beam. has been done.
  • two consecutive laser pulses are applied to adjacent non-overlapping areas on the semiconductor wafer.
  • Patent Document 1 discloses folded scanning along the width direction of the line beam (i.e., back and forth scanning). scanning) is performed repeatedly.
  • the present invention has been made in view of these circumstances, and it is an object of the present invention to provide a laser annealing device and the like that can effectively perform annealing treatment by intensive overlapping irradiation.
  • a laser annealing device provides a laser annealing device that shapes a cross section of a laser pulse emitted by a pulsed laser device into a substantially rectangular shape having a first side and a second side that are orthogonal to each other.
  • a laser pulse scanning unit that scans the laser pulse shaped by the laser pulse shaping unit and the laser pulse shaping unit within the plane of the semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends. and a laser pulse scanning unit in which the scanning amount of the laser pulse scanned along the first direction at an interval at which the semiconductor wafer is irradiated is 1/30 or less of the length of the first side.
  • the same location on the semiconductor wafer is continuously irradiated 30 times or more with a laser pulse scanned along the first direction by the laser pulse scanning unit. Therefore, the temperature of the semiconductor wafer can be raised effectively, and the intended purpose of laser annealing, such as repairing damage caused by melting the semiconductor wafer surface and activating dopants implanted into the semiconductor wafer, can be efficiently achieved. can.
  • Another aspect of the present invention is a laser annealing method.
  • This method includes a laser pulse shaping step of shaping a cross section of a laser pulse emitted by a pulse laser device into a substantially rectangular shape having first and second sides orthogonal to each other, and a laser pulse shaped in the laser pulse shaping step. , a laser pulse scanning step of scanning within the plane of the semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends, wherein the laser pulse scanned along the first direction is applied to the semiconductor wafer; and a laser pulse scanning step in which the scanning amount of the laser pulse at intervals at which the wafer is irradiated is 1/30 or less of the length of the first side.
  • the present invention also encompasses any combination of the above components and the conversion of these expressions into methods, devices, systems, recording media, computer programs, etc.
  • annealing treatment can be effectively performed by intensive overlapping irradiation.
  • FIG. 1 is a perspective view schematically showing the configuration of a laser annealing device.
  • the configuration of an optical fiber, which is a main part of a fiber laser device, and the principles of laser pulse generation and amplification in the optical fiber are schematically shown.
  • the configuration of a pulse laser device as a fiber laser device is schematically shown.
  • 3 shows the time course of the surface temperature of a semiconductor wafer irradiated with various laser beams.
  • 2 schematically shows a laser pulse scanned within the surface of a semiconductor wafer.
  • FIG. 1 is a perspective view schematically showing the configuration of a laser annealing apparatus 1 according to an embodiment of the present invention.
  • the laser annealing device 1 is a device that performs an annealing process (heating process) by irradiating the semiconductor wafer 3 with laser pulses generated by a pulsed laser device 2 .
  • the semiconductor wafer 3 fixedly mounted on the wafer table 31 can be driven integrally with the wafer table 31 in the illustrated x direction by a stage device 4, which will be described later. Further, the laser pulse (laser light) oscillated by the pulse laser device 2 can be scanned in the y direction orthogonal to the x direction by a galvano scanner 14, which will be described later. Laser pulses (laser light) scanned in the y direction by the galvano scanner 14 are reflected by a mirror 16, which will be described later, and are incident on the semiconductor wafer 3 in the z direction orthogonal to the x and y directions.
  • the x direction which is the driving direction of the semiconductor wafer 3 is parallel to the X-axis direction (X direction)
  • the y direction which is the scanning direction of the laser pulse (laser light)
  • the z direction which is the direction of incidence of the laser pulse (laser light) on the wafer 3, is parallel to the Z-axis direction (Z direction).
  • the x direction and the X direction will also be referred to as the vertical direction
  • the y direction and the Y direction will also be referred to as the horizontal direction
  • the z direction and the Z direction will also be referred to as the height direction.
  • the Y direction is the first direction in this embodiment
  • the X direction is the second direction in this embodiment.
  • the pulse laser device 2 is a laser device that oscillates laser pulses at a frequency of 100kHz or higher.
  • the frequency of the laser pulse oscillated by the pulsed laser device 2 is, for example, between 100kHz and 10MHz, and between 500kHz and 5MHz. , more preferably between 700kHz and 3MHz.
  • the frequency of the laser pulse oscillated by the pulsed laser device 2 is 1 MHz.
  • the pulse laser device 2 is configured by, for example, a fiber laser device that oscillates laser pulses using an optical fiber.
  • FIG. 2 schematically shows the configuration of an optical fiber 20, which is a main part of the fiber laser device, and the principle of generation and amplification of laser pulses LP in the optical fiber 20.
  • the optical fiber 20 includes a core 201 in the center, a first clad 202 provided around the core 201, and a second clad 203 provided around the first clad 202.
  • the refractive index of the core 201 is higher than the refractive index of the first cladding 202
  • the refractive index of the first cladding 202 is higher than the refractive index of the second cladding 203. That is, the refractive index of the optical fiber 20 is higher as it is closer to the center (core 201) and lower as it is closer to the periphery (second cladding 203).
  • Excitation light EL generated by a light emitting element such as a laser diode enters from one end of the optical fiber 20 (for example, the left end in FIG. 2).
  • This excitation light EL propagates inside the core 201 and the first cladding 202 while being totally reflected at the interface between the first cladding 202 and the second cladding 203.
  • Each time the excitation light EL passes through the core 201 it excites a rare earth element such as Yb added to the core 201, and generates stimulated emission light that becomes the source of the laser pulse LP (laser light).
  • the stimulated emission light generated in the core 201 propagates inside the core 201 while being totally reflected at the interface between the core 201 and the first cladding 202 .
  • mirrors such as total reflection mirrors such as FBG (Fiber Bragg Grating) and output mirrors are formed at both ends of the core 201, and the stimulated emission light that is repeatedly reflected between these mirrors is reflected back to the core.
  • a laser pulse LP laser light
  • This laser pulse LP is formed by being amplified while reciprocating inside the 201. This laser pulse LP is output to the outside of the optical fiber 20 from an output mirror formed at one end of the core 201 (for example, the right end in FIG. 2).
  • FIG. 3 schematically shows the configuration of a pulse laser device 2 as a fiber laser device including an optical fiber 20 as shown in FIG.
  • the pulse laser device 2 includes an excitation light supply section 21, a laser light generation section 22, and a laser light supply section 23.
  • the excitation light supply unit 21 includes a light emitting element 211 such as one or more laser diodes that emits light that is the source of the excitation light EL, and when a plurality of light emitting elements 211 are provided, combines the respective lights to generate the excitation light EL. It includes an optical coupling section 212 to be formed.
  • the excitation light supply section 21 supplies excitation light EL based on the light emitted by the light emitting element 211 to the laser light generation section 22 .
  • the laser light generation unit 22 includes the aforementioned optical fiber 20 to which the excitation light EL is supplied from the input end (left end in FIG. 3), and an input mirror 221 and an output mirror 222 formed at both ends thereof.
  • the input mirror 221 and the output mirror 222 are both formed by FBG at both ends of the core 201, for example. It is preferable that the reflectance of the input mirror 221 provided on the input side (excitation light supply section 21 side) is higher than the reflectance of the output mirror 222 provided on the output side (laser light supply section 23 side).
  • the input mirror 221 is preferably configured as a total reflection mirror that totally reflects the stimulated emission light inside the core 201, which is the source of the laser pulse LP (laser light), toward the output side.
  • the output mirror 222 reflects a part of the stimulated emission light inside the core 201 to the input side, and outputs the rest to the laser light supply section 23 .
  • the laser light supply section 23 includes an optical fiber 231 that guides the laser pulse LP (laser light) generated by the laser light generation section 22 to the output point OP of the pulse laser device 2.
  • the output point of the laser beam generation section 22 may be the output point OP of the pulsed laser device 2, and in that case, it is not necessary to provide the laser beam supply section 23.
  • the laser pulse LP is emitted from the output point OP of the pulse laser device 2 in the X direction.
  • a laser annealing device 1 that guides this laser pulse LP to a semiconductor wafer 3 to be irradiated includes a beam expander 11, a mirror 12, a beam shaping optical element 13, a galvano scanner 14, an f ⁇ lens 15, and a mirror 16. .
  • the beam expander 11 adjusts the laser pulse LP (laser light) emitted from the output point OP of the pulse laser device 2 to a predetermined size (diameter). For example, when the cross section of the laser pulse LP (laser light) emitted from the output point OP of the pulse laser device 2 is approximately circular with a diameter D0, the beam expander 11 adjusts the cross section of the laser pulse LP (laser light) to a predetermined shape. Convert (typically enlarge) into a substantially circular shape with diameter D1.
  • the beam expander 11 is composed of a plurality of lenses 111, 112, and 113.
  • lens 111 is a convex lens
  • lens 112 is a concave lens
  • lens 113 is a convex lens
  • the number and type of lenses and other optical elements constituting the beam expander 11 are arbitrary as long as the desired function and/or effect of adjusting the size of the laser pulse LP can be obtained.
  • the beam expander 11 may be composed of two or more convex lenses and one or more concave lenses arranged in any order, or may be composed only of three or more convex lenses.
  • the mirror 12 reflects the laser pulse LP whose size has been adjusted by the beam expander 11, and changes its traveling direction from the X direction to the Y direction.
  • the beam shaping optical element 13 is a laser pulse shaping section that shapes the laser pulse LP whose size has been adjusted by the beam expander 11 to adjust its shape and/or intensity distribution.
  • the cross section of the laser pulse LP whose size has been adjusted by the beam expander 11 is approximately circular and has an intensity distribution that follows a Gaussian distribution or a normal distribution, but is shaped by the beam shaping optical element 13 to be approximately rectangular and have an approximately uniform intensity distribution. be done.
  • Such a beam shaping optical element 13 is constituted by, for example, a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the galvano scanner 14 is a laser pulse scanning unit that scans the laser pulse LP shaped by the beam shaping optical element 13 along the y direction (Y direction), that is, the first direction.
  • the galvano scanner 14 includes a galvano mirror 141 as a drivable optical element that reflects an incident laser pulse LP and directs it to a desired scanning position in a first direction (y direction), and a galvano mirror 141 that rotates the galvano mirror 141 around the Z axis. It includes a motor 142 that rotates. The motor 142 adjusts the rotational position or rotation angle of the galvano mirror 141 around the Z axis, so that the laser pulse LP incident on the galvano mirror 141 is reflected to an arbitrary y-direction (first direction) position.
  • the laser pulse scanning unit that directs the incident laser pulse LP to a desired scanning position in the y direction (first direction) is not limited to the galvano scanner 14, but may also be a polygon mirror scanner equipped with a polygon mirror (optical element) that can be rotated. Alternatively, it may be configured by an optical element such as a drivable MEMS (Micro Electro Mechanical Systems) mirror.
  • the scanning direction of the laser pulse LP by the laser pulse scanning unit such as the galvano scanner 14 is not limited to the y direction (Y direction), but may be a direction intersecting the y direction (Y direction) such as the x direction (X direction). , the x direction (X direction) and the y direction (Y direction) may be used.
  • the laser pulse scanning unit such as the galvano scanner 14 can scan the laser pulse LP within the xy plane (XY plane), that is, within the plane of the semiconductor wafer 3, the semiconductor wafer 3 and the wafer table 31 are It is not necessary to provide a stage device 4 that is driven in a direction (X direction) or the like.
  • the galvano scanner 14 and the like constitute a laser pulse scanning unit in the first direction (Y direction) and the second direction (X direction).
  • the f ⁇ lens 15 focuses the laser pulse LP scanned in the y direction (Y direction) by the galvano scanner 14 onto the semiconductor wafer 3 to be annealed.
  • a mirror 16 provided between the f ⁇ lens 15 and the semiconductor wafer 3 reflects the laser pulse LP in the X direction from the f ⁇ lens 15 and irradiates the semiconductor wafer 3 in the Z direction (z direction).
  • the laser pulse LP thus focused on the semiconductor wafer 3 by the f ⁇ lens 15 and the mirror 16 moves in the Y direction within the plane of the semiconductor wafer 3 by scanning in the Y direction by the galvano scanner 14.
  • the size of the laser pulse LP focused on the semiconductor wafer 3 can be arbitrarily designed, it is preferably between 0.10 mm square and 0.15 mm square, and more preferably between 0.12 mm square and 0.13 mm square.
  • the scanning speed of the laser pulse LP in the Y direction on the semiconductor wafer 3 surface can be arbitrarily designed; for example, 100 cm/s and 500 cm. It is preferably between 250 cm/s and 350 cm/s, more preferably between 250 cm/s and 350 cm/s.
  • the stage device 4 is a drive device that drives the semiconductor wafer 3 and the wafer table 31 relative to the laser pulse LP along the x direction (X direction), that is, the second direction.
  • a laser pulse scanning section that scans laser pulses LP along two directions is configured. By this stage device 4, the laser pulse LP is relatively moved in the X direction within the surface of the semiconductor wafer 3.
  • the scanning of the laser pulse LP in the y direction by the galvano scanner 14 as the laser pulse scanning section in the first direction (Y direction) and the scanning of the laser pulse LP in the y direction by the laser pulse scanning section in the second direction (X direction) are performed.
  • the laser pulse LP can be scanned within the xy plane (XY plane), that is, within the plane of the semiconductor wafer 3.
  • the driving direction of the semiconductor wafer 3 by the stage device 4 is not limited to the x direction (X direction), but may also be a direction intersecting the x direction (X direction) such as the y direction (Y direction), or a direction intersecting the x direction (X direction) such as the y direction (Y direction). ) and the y direction (Y direction).
  • X direction x direction
  • Y direction y direction
  • Y direction y direction
  • the stage device 4 when the stage device 4 can drive the semiconductor wafer 3 relative to the laser pulse LP within the xy plane (XY plane), a galvanometer that scans the laser pulse LP in the y direction (Y direction) etc.
  • the scanner 14 may not be provided.
  • the stage device 4 constitutes a laser pulse scanning section in the first direction (Y direction) and the second direction (X direction).
  • FIG. 4 shows the time course of the surface temperature of the semiconductor wafer 3 irradiated with various laser beams.
  • the solid line indicates the surface temperature when the laser pulse LP of high frequency (800 kHz in the illustrated example) oscillated by the fiber laser device as the pulse laser device 2 according to the present embodiment is irradiated.
  • the dashed line indicates the surface temperature when irradiated with a high peak power (typically several 100 kW) and low frequency (typically between 2 kHz and several 10 kHz) laser pulses emitted by conventional pulsed laser equipment. show.
  • the dashed-dotted line indicates the surface temperature when irradiated with a low peak power (typically several kW) and low frequency laser light emitted by a conventional diode laser device. Note that the peak power is the value obtained by dividing the pulse energy by the pulse width.
  • a high peak power, low frequency laser pulse emitted by a conventional pulse oscillation laser device shown by a broken line is used for the purpose of repairing damage caused by dopant ion implantation by melting the surface of the semiconductor wafer 3.
  • the semiconductor wafer 3 is made of general silicon, the surface will be melted by heating it above its melting point (1,410° C.).
  • the surface temperature of the semiconductor wafer 3 instantaneously rises to over 1,500°C due to the high peak power laser pulses emitted by the conventional pulsed laser device shown by the broken line.
  • the surface of the formed semiconductor wafer 3 is melted and damage is repaired.
  • the conventional laser pulse has a low frequency, the surface temperature of the semiconductor wafer 3 drops rapidly immediately after the laser pulse is irradiated. For this reason, the interior or subsurface of the semiconductor wafer 3 into which the dopant is implanted is not sufficiently heated, and the dopant is not activated.
  • a low peak power and low frequency laser beam oscillated by a conventional diode laser device shown by a dashed line is used. Since this laser beam has a low peak power, it cannot heat the surface of the semiconductor wafer 3 above its melting point, but it continuously heats the inside or under the surface of the semiconductor wafer 3 to activate the implanted dopant. can. In this way, a pulsed laser device (dashed line) is generally used for melting on the surface of the semiconductor wafer 3, and a diode laser device (dotted chain line) is used for activation below the surface of the semiconductor wafer 3. Met. Since it is necessary to prepare different laser devices for annealing for different purposes, this has led to an increase in the size and cost of the laser annealing device.
  • one pulse laser device 2 melts the surface of the semiconductor wafer 3 and melts the surface of the semiconductor wafer 3. Activation at the bottom can be effectively achieved.
  • the pulsed laser device 2 according to the present embodiment performs a surface melting step (a period of "surface melting” shown in the figure) in which the surface of the semiconductor wafer 3 is heated to a temperature higher than the melting point and melted by a plurality of laser pulses LP.
  • the semiconductor wafer 3 is irradiated with laser pulses LP, and the temperature below the surface of the semiconductor wafer 3 is raised to a predetermined activation temperature or higher for at least a predetermined period of time using a plurality of laser pulses LP. , an activation step (the illustrated "activation" period) for activating the dopant added below the surface of the semiconductor wafer 3.
  • the surface temperature of the semiconductor wafer 3 rises above the melting point (1,410° C.) by a large number of laser pulses LP that are intermittently irradiated at a high frequency (800 kHz in the illustrated example). Therefore, the surface of the semiconductor wafer 3 is melted, and damage caused by dopant ion implantation or the like is repaired.
  • the individual laser pulses LP do not have sufficient power to heat the surface of the semiconductor wafer 3 above the melting point, but the semiconductor wafer 3 is heated by being irradiated with high frequency. As a result of accumulation, the surface temperature can be raised above the melting point.
  • the surface melting step starts when the surface temperature of the semiconductor wafer 3 rises above the melting point, and ends when the surface temperature of the semiconductor wafer 3 falls below the melting point.
  • the laser pulse LP is scanned on the semiconductor wafer 3 by the galvano scanner 14 as a laser pulse scanning unit along the Y direction (y direction), that is, the first direction, but the laser pulse LP has a width in the Y direction.
  • the time required for the LP to pass one point on the semiconductor wafer 3 is substantially equal to the time of the surface melting step. Strictly speaking, the time from when the laser pulse LP starts hitting a point on the semiconductor wafer 3 until the surface temperature reaches the melting point, and the time from when the laser pulse LP passes a point on the semiconductor wafer 3 until the surface temperature falls below the melting point. Due to time constraints, there may be a slight time difference.
  • the semiconductor wafer 3 is irradiated with the laser pulse LP continuously from the surface melting step, so that the temperature inside or under the surface of the semiconductor wafer 3 into which the dopant is implanted is increased to a predetermined activation temperature or higher. , the dopant is activated.
  • the activation temperature may vary depending on the type of dopant and the material of the semiconductor wafer 3 (silicon, silicon carbide, gallium nitride, etc.), but the most common method is to implant an acceptor (P-type dopant) such as boron into a silicon semiconductor wafer 3. In a typical case, the temperature is about 1,000°C.
  • the temperature of that region is maintained at or above the activation temperature for a predetermined period of time.
  • This predetermined time may also vary depending on the type and amount of dopant and the material of the semiconductor wafer 3, but is typically about 10 ⁇ s.
  • the interior or subsurface region of the semiconductor wafer 3 into which the dopants have been implanted is heated to 1000° C. for at least 10 ⁇ s.
  • a typical goal is to increase the temperature above this level.
  • the activation step starts when the temperature of the activation region under the surface of the semiconductor wafer 3 into which the dopant is implanted rises above the activation temperature, and ends when the temperature of the activation region falls below the activation temperature. do. Since FIG. 4, which shows the surface temperature of the semiconductor wafer 3, does not show the temperature of the activation region below the surface, the start timing and end timing of the activation step are shown as a guide. Typically, the activation step is shorter than the surface fusing step, as shown. Additionally, the start timing of the activation step is typically later than the start timing of the surface melting step. Furthermore, the end timing of the activation step is substantially equal to the end timing of the surface melting step.
  • the temperature of the activation region in the semiconductor wafer 3 involved in the activation step is less likely to drop than the temperature of the surface of the semiconductor wafer 3 involved in the surface melting step.
  • the timing of the end of the surface melting step (the surface temperature decreases below the melting point) is considered to be slightly later than the end timing of the surface melting step (the surface temperature decreases below the melting point).
  • the activation step may be made longer than 10 ⁇ s.
  • the activation step can be lengthened by slowing down the scanning speed of the laser pulse LP in the Y direction (y direction), that is, the first direction, by the galvano scanner 14 as the laser pulse scanning unit.
  • the same effect can be obtained by setting the oscillation frequency of the laser pulse LP by the pulse laser device 2 higher than 800 kHz.
  • the surface melting step will inevitably be lengthened, but the surface of the semiconductor wafer 3 may become overheated due to heat radiation from the surface of the semiconductor wafer 3 during the non-pulse period when the intermittent laser pulse LP is not irradiated. (In the example shown, the surface temperature is kept below 2,000°C.) In this way, according to the present embodiment, the surface melting step can be appropriately performed regardless of the length of the activation step.
  • one pulsed laser device 2 continues to irradiate the semiconductor wafer 3 with laser pulses LP through the successive surface melting steps and activation steps, thereby combining melting on the surface and activation below the surface. You can do it.
  • FIG. 5 schematically shows the laser pulse LP scanned within the semiconductor wafer 3 (in the XY plane) by the laser pulse scanning unit (galvano scanner 14 and/or stage device 4). It should be noted that, due to space constraints, the number and dimensions of the scanning segments described below do not necessarily correspond to practical embodiments, but are adjusted as appropriate for illustration.
  • the cross section of the laser pulse LP irradiated onto the semiconductor wafer 3 is shaped into a substantially rectangular shape by the beam shaping optical element 13 as a laser pulse shaping section.
  • This substantially rectangular cross section has a first side E1 and a second side E2 that are orthogonal to each other.
  • the first direction in which the first side E1 extends is approximately equal to the Y direction, which is the scanning direction of the laser pulse LP by the galvano scanner 14, and the second direction in which the second side E2 extends is the scanning direction of the laser pulse LP by the stage device 4. is approximately equal to the X direction.
  • the beam shaping optical element 13 shapes the cross section of the laser pulse LP into a substantially square shape.
  • the length of the first side E1 in the Y direction and the length of the second side E2 in the X direction are approximately equal.
  • the lengths of the first side E1 and the second side E2 are both 100 ⁇ m (0.1 mm).
  • the scanning of the laser pulse LP is started from the scanning start position indicated by the dotted square in the upper left.
  • the approximately square laser pulse LP is scanned in the +Y direction by the galvano scanner 14, and at the end of the semiconductor wafer 3 in the +Y direction, the stage device 4 moves the laser pulse LP in the +X direction as described later.
  • the end of the semiconductor wafer 3 in the -Y direction is scanned by a second scanning amount S2 in the +X direction by the stage device 4, and is scanned by the galvano scanner 14 in the -Y direction. Scanned in the +Y direction.
  • the laser pulse LP is intermittently irradiated onto the semiconductor wafer 3 at a high frequency (for example, 1 MHz) while being scanned along the first direction (Y direction) by the galvano scanner 14 as the first laser pulse scanning unit.
  • the illustrated first scanning amount S1 is the scanning amount in the first direction (Y direction) in the interval at which the semiconductor wafer 3 is irradiated with the laser pulse LP.
  • the semiconductor wafer 3 is intermittently irradiated with a substantially square laser pulse LP.
  • the first scanning amount S1 can be adjusted by the scanning speed in the first direction (Y direction) by the galvano scanner 14 and the oscillation frequency of the laser pulse LP by the pulse laser device 2. For example, if the scanning speed in the first direction (Y direction) by the galvano scanner 14 is 333 cm/s and the oscillation frequency of the laser pulse LP by the pulse laser device 2 is 1 MHz, the first scanning amount S1 is 3.33 ⁇ m. Become. In this example, since the length of the first side E1 of the laser pulse LP is 100 ⁇ m, the galvano scanner 14 scans the laser pulse LP in the first direction (Y direction) by the length of the first side E1.
  • the amount S1 is 1/30 or less of the length of the first side E1.
  • the laser pulse LP that is turned back at each end (lower end and/or upper end in FIG. 5) of the semiconductor wafer 3 in the first direction (Y direction) is scanned back and forth in the first direction (Y direction) by the galvano scanner 14. Ru.
  • the laser pulse LP is irradiated in the first direction (Y direction), which is the turning position of the laser pulse LP, so that different (shifted) X direction (second direction) ranges of the semiconductor wafer 3 are irradiated with the laser pulse LP.
  • the stage device 4 scans the laser pulse LP in the second direction (X direction) by a second scanning amount S2.
  • the scanning speed in the second direction (X direction) by the stage device 4 as the second laser pulse scanning section is the scanning speed in the first direction (Y direction) by the galvano scanner 14 as the first laser pulse scanning section (for example, 333 cm /s) may be the same or significantly different.
  • the scanning speed (driving speed) by the stage device 4 is significantly smaller than the scanning speed by the galvano scanner 14.
  • the oscillation frequency of the laser pulse LP remains high (for example, 1 MHz) during scanning in the first direction (Y direction)
  • an excessive number of times will be generated during scanning in the second direction (X direction) by the stage device 4.
  • the semiconductor wafer 3 may be irradiated with the laser pulse LP of ).
  • the oscillation frequency of the laser pulse LP may be lowered, or the oscillation of the laser pulse LP by the pulse laser device 2 may be temporarily stopped.
  • the laser pulse LP may be temporarily evacuated from the semiconductor wafer 3 by the galvano scanner 14 or other optical element.
  • the second scanning amount S2 in the second direction (X direction) by the stage device 4 is preferably 1/3 or less of the length of the second side E2 of the laser pulse LP.
  • the second scanning amount S2 in the illustrated example is 1/3 (33.3 ⁇ m) of the length (100 ⁇ m) of the second side E2.
  • the semiconductor wafer 3 is not irradiated with the laser pulse LP during the second scanning amount S2 (33.3 ⁇ m) by the stage device 4.
  • the laser pulse LP is scanned by the stage device 4 in the second direction (X direction) by the length of the second side E2
  • the laser pulse LP is scanned three times (100 ⁇ m / 33.3 ⁇ m).
  • the laser pulse LP is irradiated onto most of the scanning segments (for example, the hatched scanning segments typically shown in FIG.
  • M is preferably set to 30 or more
  • N is preferably set to 3 or more, so according to the present embodiment, most of the scanning segments excluding the edge of the semiconductor wafer 3 are scanned 90 times or more.
  • the laser pulse LP can be irradiated over the entire range. Thus, a series of surface melting and activation steps can be effectively carried out with a large number of laser pulses LP, as described with respect to FIG.
  • the laser pulse LP which can increase the number of times the laser pulse LP is irradiated to each scanning segment as described above, variations in the energy and profile (intensity distribution, etc.) of the laser pulse LP irradiated each scanning segment can be reduced.
  • the influence can be reduced, and highly uniform annealing treatment (particularly the surface melting step and the activation step) can be performed over each scan segment and the entire surface of the semiconductor wafer 3.
  • the number of times M ⁇ N of irradiation of the laser pulse LP to each scanning segment is considered to have the effect of suppressing fluctuations in the fluence, which is directly linked to the uniformity of the annealing process, to “1/ ⁇ (M ⁇ N)”.
  • each device and each method described in the embodiments can be realized by hardware resources or software resources, or by cooperation of hardware resources and software resources.
  • hardware resources for example, a processor, ROM, RAM, and various integrated circuits can be used.
  • software resources for example, programs such as operating systems and applications can be used.
  • the present invention relates to a laser annealing device and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser annealing device comprises: a laser pulse shaping unit that shapes the cross-section of a laser pulse LP oscillated by a pulsed laser device into a substantially rectangular shape having a first edge E1 and a second edge E2 that are orthogonal to each other; and a laser pulse scanning unit that scans the laser pulse LP shaped by the laser pulse shaping unit in the plane of a semiconductor wafer 3 along a first direction (Y direction) in which the first edge E1 extends and a second direction (X direction) in which the second edge E2 extends such that a first scanning amount S1 for the laser pulse LP in the interval during which the semiconductor wafer 3 is being irradiated with the laser pulse LP being scanned along the first direction is at most 1/30 of the length of the first edge E1.

Description

レーザアニール装置、レーザアニール方法、レーザアニールプログラムLaser annealing equipment, laser annealing method, laser annealing program
 本発明は、レーザアニール装置等に関する。 The present invention relates to a laser annealing device and the like.
 特許文献1には、ライン状に整形されたレーザパルス(以下ではラインビームともいう)を半導体ウエハに照射するレーザアニール技術が開示されている。ラインビームは短尺の幅方向に走査されるが、レーザパルスが短時間で集中的に照射されることによる半導体ウエハの損傷を避けるために、レーザパルスの間隔における走査量がラインビームの幅以上とされている。従って、二つの連続するレーザパルスは、半導体ウエハ上でオーバーラップ(重複)しない隣接領域に照射される。一方、レーザアニールの所期の目的を達成する上では、半導体ウエハの同一箇所を複数回に亘って照射する必要があるため、特許文献1ではラインビームの幅方向に沿った折返し走査(すなわち往復走査)が繰り返し行われる。 Patent Document 1 discloses a laser annealing technique in which a semiconductor wafer is irradiated with a laser pulse shaped into a line (hereinafter also referred to as a line beam). The line beam is scanned in the short width direction, but in order to avoid damage to the semiconductor wafer due to concentrated laser pulse irradiation in a short period of time, the scanning amount at the interval between laser pulses is set to be greater than or equal to the width of the line beam. has been done. Thus, two consecutive laser pulses are applied to adjacent non-overlapping areas on the semiconductor wafer. On the other hand, in order to achieve the intended purpose of laser annealing, it is necessary to irradiate the same spot on the semiconductor wafer multiple times, so Patent Document 1 discloses folded scanning along the width direction of the line beam (i.e., back and forth scanning). scanning) is performed repeatedly.
特開2018-67642号公報JP2018-67642A
 レーザアニールの目的や使用するレーザ装置にもよるが、特許文献1のように集中的なオーバーラップ照射を避けるレーザアニール技術では、半導体ウエハの各所が十分に昇温しない可能性があり、半導体ウエハの表面の溶融による損傷修復や、半導体ウエハ内に注入されたドーパントの活性化という所期の目的が達成されない恐れがある。 Although it depends on the purpose of laser annealing and the laser equipment used, with laser annealing technology that avoids intensive overlapping irradiation as in Patent Document 1, there is a possibility that various parts of the semiconductor wafer will not be sufficiently heated, and the semiconductor wafer The intended purpose of repairing damage by melting the surface of the semiconductor wafer and activating dopants implanted into the semiconductor wafer may not be achieved.
 本発明はこうした状況に鑑みてなされたものであり、集中的なオーバーラップ照射によって効果的にアニール処理を施せるレーザアニール装置等を提供することを目的とする。 The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a laser annealing device and the like that can effectively perform annealing treatment by intensive overlapping irradiation.
 上記課題を解決するために、本発明のある態様のレーザアニール装置は、パルスレーザ装置が発振するレーザパルスの断面を、互いに直交する第1辺および第2辺を有する略矩形に整形するレーザパルス整形部と、レーザパルス整形部によって整形されたレーザパルスを、第1辺が延びる第1方向および第2辺が延びる第2方向に沿って半導体ウエハの面内で走査するレーザパルス走査部であって、第1方向に沿って走査されるレーザパルスが半導体ウエハに照射される間隔における当該レーザパルスの走査量が第1辺の長さの1/30以下であるレーザパルス走査部と、を備える。 In order to solve the above problems, a laser annealing device according to an aspect of the present invention provides a laser annealing device that shapes a cross section of a laser pulse emitted by a pulsed laser device into a substantially rectangular shape having a first side and a second side that are orthogonal to each other. A laser pulse scanning unit that scans the laser pulse shaped by the laser pulse shaping unit and the laser pulse shaping unit within the plane of the semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends. and a laser pulse scanning unit in which the scanning amount of the laser pulse scanned along the first direction at an interval at which the semiconductor wafer is irradiated is 1/30 or less of the length of the first side. .
 この態様では、レーザパルス走査部が第1方向に沿って走査するレーザパルスによって、半導体ウエハの同一箇所が30回以上に亘って連続的に照射される。このため、半導体ウエハを効果的に昇温でき、半導体ウエハの表面の溶融による損傷修復や、半導体ウエハ内に注入されたドーパントの活性化等の、レーザアニールの所期の目的を効率的に達成できる。 In this aspect, the same location on the semiconductor wafer is continuously irradiated 30 times or more with a laser pulse scanned along the first direction by the laser pulse scanning unit. Therefore, the temperature of the semiconductor wafer can be raised effectively, and the intended purpose of laser annealing, such as repairing damage caused by melting the semiconductor wafer surface and activating dopants implanted into the semiconductor wafer, can be efficiently achieved. can.
 本発明の別の態様は、レーザアニール方法である。この方法は、パルスレーザ装置が発振するレーザパルスの断面を、互いに直交する第1辺および第2辺を有する略矩形に整形するレーザパルス整形ステップと、レーザパルス整形ステップにおいて整形されたレーザパルスを、第1辺が延びる第1方向および第2辺が延びる第2方向に沿って半導体ウエハの面内で走査するレーザパルス走査ステップであって、第1方向に沿って走査されるレーザパルスが半導体ウエハに照射される間隔における当該レーザパルスの走査量が第1辺の長さの1/30以下であるレーザパルス走査ステップと、を備える。 Another aspect of the present invention is a laser annealing method. This method includes a laser pulse shaping step of shaping a cross section of a laser pulse emitted by a pulse laser device into a substantially rectangular shape having first and second sides orthogonal to each other, and a laser pulse shaped in the laser pulse shaping step. , a laser pulse scanning step of scanning within the plane of the semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends, wherein the laser pulse scanned along the first direction is applied to the semiconductor wafer; and a laser pulse scanning step in which the scanning amount of the laser pulse at intervals at which the wafer is irradiated is 1/30 or less of the length of the first side.
 なお、以上の構成要素の任意の組合せや、これらの表現を方法、装置、システム、記録媒体、コンピュータプログラム等に変換したものも、本発明に包含される。 It should be noted that the present invention also encompasses any combination of the above components and the conversion of these expressions into methods, devices, systems, recording media, computer programs, etc.
 本発明によれば、集中的なオーバーラップ照射によって効果的にアニール処理を施せる。 According to the present invention, annealing treatment can be effectively performed by intensive overlapping irradiation.
レーザアニール装置の構成を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the configuration of a laser annealing device. ファイバレーザ装置の要部である光ファイバの構成と、光ファイバにおけるレーザパルスの発生および増幅の原理を模式的に示す。The configuration of an optical fiber, which is a main part of a fiber laser device, and the principles of laser pulse generation and amplification in the optical fiber are schematically shown. ファイバレーザ装置としてのパルスレーザ装置の構成を模式的に示す。The configuration of a pulse laser device as a fiber laser device is schematically shown. 各種のレーザ光が照射された半導体ウエハの表面温度の時間推移を示す。3 shows the time course of the surface temperature of a semiconductor wafer irradiated with various laser beams. 半導体ウエハ面内を走査されるレーザパルスを模式的に示す。2 schematically shows a laser pulse scanned within the surface of a semiconductor wafer.
 以下では、図面を参照しながら、本発明を実施するための形態(以下では実施形態ともいう)について詳細に説明する。説明および/または図面においては、同一または同等の構成要素、部材、処理等に同一の符号を付して重複する説明を省略する。図示される各部の縮尺や形状は、説明の簡易化のために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記載される全ての特徴やそれらの組合せは、必ずしも本発明の本質的なものであるとは限らない。 Hereinafter, modes for carrying out the present invention (hereinafter also referred to as embodiments) will be described in detail with reference to the drawings. In the description and/or drawings, the same or equivalent components, members, processes, etc. are denoted by the same reference numerals, and redundant description will be omitted. The scales and shapes of the parts shown in the drawings are set for convenience to simplify the explanation, and should not be interpreted in a limited manner unless otherwise stated. The embodiments are illustrative and do not limit the scope of the present invention. Not all features or combinations thereof described in the embodiments are necessarily essential to the present invention.
 図1は、本発明の実施形態に係るレーザアニール装置1の構成を模式的に示す斜視図である。レーザアニール装置1は、パルスレーザ装置2が発振するレーザパルスを半導体ウエハ3に照射してアニール処理(加熱処理)を施す装置である。 FIG. 1 is a perspective view schematically showing the configuration of a laser annealing apparatus 1 according to an embodiment of the present invention. The laser annealing device 1 is a device that performs an annealing process (heating process) by irradiating the semiconductor wafer 3 with laser pulses generated by a pulsed laser device 2 .
 ウエハテーブル31に固定的に載置された半導体ウエハ3は、後述するステージ装置4によってウエハテーブル31と一体的に図示のx方向に駆動可能である。また、パルスレーザ装置2によって発振されたレーザパルス(レーザ光)は、後述するガルバノスキャナ14によってx方向と直交するy方向に走査(スキャン)可能である。ガルバノスキャナ14によってy方向に走査されたレーザパルス(レーザ光)は、後述するミラー16によって反射されてx方向およびy方向と直交するz方向に半導体ウエハ3に入射する。 The semiconductor wafer 3 fixedly mounted on the wafer table 31 can be driven integrally with the wafer table 31 in the illustrated x direction by a stage device 4, which will be described later. Further, the laser pulse (laser light) oscillated by the pulse laser device 2 can be scanned in the y direction orthogonal to the x direction by a galvano scanner 14, which will be described later. Laser pulses (laser light) scanned in the y direction by the galvano scanner 14 are reflected by a mirror 16, which will be described later, and are incident on the semiconductor wafer 3 in the z direction orthogonal to the x and y directions.
 以下では、互いに直交するXYZの各軸を座標軸とする三次元直交座標系に基づいて、レーザアニール装置1の構成および/または作用に関する方向を記述する。半導体ウエハ3の駆動方向であるx方向はX軸方向(X方向)と平行であり、レーザパルス(レーザ光)の走査方向であるy方向はY軸方向(Y方向)と平行であり、半導体ウエハ3に対するレーザパルス(レーザ光)の入射方向であるz方向はZ軸方向(Z方向)と平行である。以下では便宜的に、x方向およびX方向を縦方向ともいい、y方向およびY方向を横方向ともいい、z方向およびZ方向を高さ方向ともいう。また、後述するように、Y方向は本実施形態における第1方向であり、X方向は本実施形態における第2方向である。 Hereinafter, directions regarding the configuration and/or operation of the laser annealing apparatus 1 will be described based on a three-dimensional orthogonal coordinate system whose coordinate axes are XYZ axes that are orthogonal to each other. The x direction, which is the driving direction of the semiconductor wafer 3, is parallel to the X-axis direction (X direction), and the y direction, which is the scanning direction of the laser pulse (laser light), is parallel to the Y-axis direction (Y direction). The z direction, which is the direction of incidence of the laser pulse (laser light) on the wafer 3, is parallel to the Z-axis direction (Z direction). Hereinafter, for convenience, the x direction and the X direction will also be referred to as the vertical direction, the y direction and the Y direction will also be referred to as the horizontal direction, and the z direction and the Z direction will also be referred to as the height direction. Further, as described later, the Y direction is the first direction in this embodiment, and the X direction is the second direction in this embodiment.
 パルスレーザ装置2は、100kHz以上の周波数でレーザパルスを発振するレーザ装置である。本実施形態に係るレーザアニール装置1の後述する作用や効果を十分に得る上で、パルスレーザ装置2によって発振されるレーザパルスの周波数は、例えば100kHzと10MHzの間であり、500kHzと5MHzの間であるのが好ましく、700kHzと3MHzの間であるのが更に好ましい。本実施形態では、特に断らない限り、パルスレーザ装置2によって発振されるレーザパルスの周波数が1MHzである例について説明する。 The pulse laser device 2 is a laser device that oscillates laser pulses at a frequency of 100kHz or higher. In order to fully obtain the functions and effects described below of the laser annealing device 1 according to the present embodiment, the frequency of the laser pulse oscillated by the pulsed laser device 2 is, for example, between 100kHz and 10MHz, and between 500kHz and 5MHz. , more preferably between 700kHz and 3MHz. In this embodiment, unless otherwise specified, an example will be described in which the frequency of the laser pulse oscillated by the pulsed laser device 2 is 1 MHz.
 本実施形態に係るパルスレーザ装置2は、例えば、光ファイバによってレーザパルスを発振するファイバレーザ装置によって構成される。図2は、ファイバレーザ装置の要部である光ファイバ20の構成と、光ファイバ20におけるレーザパルスLPの発生および増幅の原理を模式的に示す。光ファイバ20は、中央部のコア201と、当該コア201の周囲に設けられる第1クラッド202と、当該第1クラッド202の周囲に設けられる第2クラッド203を備える。コア201の屈折率は第1クラッド202の屈折率より高く、第1クラッド202の屈折率は第2クラッド203の屈折率より高い。つまり、光ファイバ20の屈折率は、中央部(コア201)に近いほど高く、周縁部(第2クラッド203)に近いほど低い。 The pulse laser device 2 according to the present embodiment is configured by, for example, a fiber laser device that oscillates laser pulses using an optical fiber. FIG. 2 schematically shows the configuration of an optical fiber 20, which is a main part of the fiber laser device, and the principle of generation and amplification of laser pulses LP in the optical fiber 20. The optical fiber 20 includes a core 201 in the center, a first clad 202 provided around the core 201, and a second clad 203 provided around the first clad 202. The refractive index of the core 201 is higher than the refractive index of the first cladding 202, and the refractive index of the first cladding 202 is higher than the refractive index of the second cladding 203. That is, the refractive index of the optical fiber 20 is higher as it is closer to the center (core 201) and lower as it is closer to the periphery (second cladding 203).
 光ファイバ20の一端(例えば図2における左端)からは、レーザダイオード等の発光素子によって生成された励起光ELが入射する。この励起光ELは、第1クラッド202と第2クラッド203の境界面で全反射しながら、コア201および第1クラッド202の内部を伝播する。励起光ELはコア201を通過する度に、コア201に添加されたYb等の希土類元素等を励起し、レーザパルスLP(レーザ光)の元となる誘導放出光を生成させる。コア201で生成された誘導放出光は、コア201と第1クラッド202の境界面で全反射しながら、コア201の内部を伝播する。後述するように、コア201の両端部にはFBG(Fiber Bragg Grating)等の全反射鏡や出力鏡等の鏡が形成されており、これらの鏡の間で繰り返し反射される誘導放出光がコア201の内部を往復しながら増幅されることでレーザパルスLP(レーザ光)が形成される。このレーザパルスLPは、コア201の一端部(例えば図2における右端部)に形成された出力鏡から光ファイバ20外に出力される。 Excitation light EL generated by a light emitting element such as a laser diode enters from one end of the optical fiber 20 (for example, the left end in FIG. 2). This excitation light EL propagates inside the core 201 and the first cladding 202 while being totally reflected at the interface between the first cladding 202 and the second cladding 203. Each time the excitation light EL passes through the core 201, it excites a rare earth element such as Yb added to the core 201, and generates stimulated emission light that becomes the source of the laser pulse LP (laser light). The stimulated emission light generated in the core 201 propagates inside the core 201 while being totally reflected at the interface between the core 201 and the first cladding 202 . As described later, mirrors such as total reflection mirrors such as FBG (Fiber Bragg Grating) and output mirrors are formed at both ends of the core 201, and the stimulated emission light that is repeatedly reflected between these mirrors is reflected back to the core. A laser pulse LP (laser light) is formed by being amplified while reciprocating inside the 201. This laser pulse LP is output to the outside of the optical fiber 20 from an output mirror formed at one end of the core 201 (for example, the right end in FIG. 2).
 図3は、図2のような光ファイバ20を備えるファイバレーザ装置としてのパルスレーザ装置2の構成を模式的に示す。パルスレーザ装置2は、励起光供給部21と、レーザ光生成部22と、レーザ光供給部23を備える。励起光供給部21は、励起光ELの元となる光を発する一または複数のレーザダイオード等の発光素子211と、発光素子211が複数設けられる場合にそれぞれの光を結合して励起光ELを形成する光結合部212を備える。励起光供給部21は、発光素子211が発した光に基づく励起光ELをレーザ光生成部22に供給する。 FIG. 3 schematically shows the configuration of a pulse laser device 2 as a fiber laser device including an optical fiber 20 as shown in FIG. The pulse laser device 2 includes an excitation light supply section 21, a laser light generation section 22, and a laser light supply section 23. The excitation light supply unit 21 includes a light emitting element 211 such as one or more laser diodes that emits light that is the source of the excitation light EL, and when a plurality of light emitting elements 211 are provided, combines the respective lights to generate the excitation light EL. It includes an optical coupling section 212 to be formed. The excitation light supply section 21 supplies excitation light EL based on the light emitted by the light emitting element 211 to the laser light generation section 22 .
 レーザ光生成部22は、入力端(図3における左端)から励起光ELが供給される前述の光ファイバ20と、その両端部に形成される入力鏡221および出力鏡222を備える。入力鏡221および出力鏡222は、例えば、いずれもFBGによってコア201の両端部に形成される。入力側(励起光供給部21側)に設けられる入力鏡221の反射率は、出力側(レーザ光供給部23側)に設けられる出力鏡222の反射率より高くするのが好ましい。特に、入力鏡221は、レーザパルスLP(レーザ光)の元となるコア201の内部の誘導放出光を、出力側に全反射する全反射鏡として構成されるのが好ましい。出力鏡222は、コア201の内部の誘導放出光の一部を入力側に反射し、残りをレーザ光供給部23に対して出力する。 The laser light generation unit 22 includes the aforementioned optical fiber 20 to which the excitation light EL is supplied from the input end (left end in FIG. 3), and an input mirror 221 and an output mirror 222 formed at both ends thereof. The input mirror 221 and the output mirror 222 are both formed by FBG at both ends of the core 201, for example. It is preferable that the reflectance of the input mirror 221 provided on the input side (excitation light supply section 21 side) is higher than the reflectance of the output mirror 222 provided on the output side (laser light supply section 23 side). In particular, the input mirror 221 is preferably configured as a total reflection mirror that totally reflects the stimulated emission light inside the core 201, which is the source of the laser pulse LP (laser light), toward the output side. The output mirror 222 reflects a part of the stimulated emission light inside the core 201 to the input side, and outputs the rest to the laser light supply section 23 .
 レーザ光供給部23は、レーザ光生成部22が生成したレーザパルスLP(レーザ光)を、パルスレーザ装置2の出力点OPまで導く光ファイバ231を備える。なお、レーザ光生成部22の出力点を、パルスレーザ装置2の出力点OPとしてもよく、その場合はレーザ光供給部23を設ける必要はない。 The laser light supply section 23 includes an optical fiber 231 that guides the laser pulse LP (laser light) generated by the laser light generation section 22 to the output point OP of the pulse laser device 2. Note that the output point of the laser beam generation section 22 may be the output point OP of the pulsed laser device 2, and in that case, it is not necessary to provide the laser beam supply section 23.
 図1において、レーザパルスLPは、パルスレーザ装置2の出力点OPからX方向に出射される。このレーザパルスLPを照射対象の半導体ウエハ3まで導くレーザアニール装置1は、ビームエキスパンダ11と、ミラー12と、ビーム整形光学素子13と、ガルバノスキャナ14と、fθレンズ15と、ミラー16を備える。 In FIG. 1, the laser pulse LP is emitted from the output point OP of the pulse laser device 2 in the X direction. A laser annealing device 1 that guides this laser pulse LP to a semiconductor wafer 3 to be irradiated includes a beam expander 11, a mirror 12, a beam shaping optical element 13, a galvano scanner 14, an fθ lens 15, and a mirror 16. .
 ビームエキスパンダ11は、パルスレーザ装置2の出力点OPから出射されたレーザパルスLP(レーザ光)を所定のサイズ(径)に調整する。例えば、パルスレーザ装置2の出力点OPから出射されたレーザパルスLP(レーザ光)の断面が径D0の略円形である場合、ビームエキスパンダ11は当該レーザパルスLP(レーザ光)の断面を所定の径D1の略円形に変換(典型的には拡大)する。ビームエキスパンダ11は、複数のレンズ111、112、113によって構成される。典型的には、レンズ111は凸レンズであり、レンズ112は凹レンズであり、レンズ113は凸レンズである。但し、ビームエキスパンダ11を構成するレンズその他の光学素子の数や種類は、レーザパルスLPのサイズを調整するという所期の作用および/または効果が得られる限り任意である。例えば、ビームエキスパンダ11は、任意の順に配置される二つ以上の凸レンズと一つ以上の凹レンズによって構成されてもよいし、三つ以上の凸レンズのみによって構成されてもよい。 The beam expander 11 adjusts the laser pulse LP (laser light) emitted from the output point OP of the pulse laser device 2 to a predetermined size (diameter). For example, when the cross section of the laser pulse LP (laser light) emitted from the output point OP of the pulse laser device 2 is approximately circular with a diameter D0, the beam expander 11 adjusts the cross section of the laser pulse LP (laser light) to a predetermined shape. Convert (typically enlarge) into a substantially circular shape with diameter D1. The beam expander 11 is composed of a plurality of lenses 111, 112, and 113. Typically, lens 111 is a convex lens, lens 112 is a concave lens, and lens 113 is a convex lens. However, the number and type of lenses and other optical elements constituting the beam expander 11 are arbitrary as long as the desired function and/or effect of adjusting the size of the laser pulse LP can be obtained. For example, the beam expander 11 may be composed of two or more convex lenses and one or more concave lenses arranged in any order, or may be composed only of three or more convex lenses.
 ミラー12は、ビームエキスパンダ11によってサイズが調整されたレーザパルスLPを反射し、その進行方向をX方向からY方向に変える。 The mirror 12 reflects the laser pulse LP whose size has been adjusted by the beam expander 11, and changes its traveling direction from the X direction to the Y direction.
 ビーム整形光学素子13は、ビームエキスパンダ11によってサイズが調整されたレーザパルスLPを整形して、その形状および/または強度分布を調整するレーザパルス整形部である。例えば、ビームエキスパンダ11によってサイズが調整されたレーザパルスLPの断面は、略円形でガウス分布または正規分布に従う強度分布を有するが、ビーム整形光学素子13によって略矩形で強度分布が略均一に整形される。このようなビーム整形光学素子13は、例えば回折光学素子(DOE: Diffractive Optical Element)によって構成される。 The beam shaping optical element 13 is a laser pulse shaping section that shapes the laser pulse LP whose size has been adjusted by the beam expander 11 to adjust its shape and/or intensity distribution. For example, the cross section of the laser pulse LP whose size has been adjusted by the beam expander 11 is approximately circular and has an intensity distribution that follows a Gaussian distribution or a normal distribution, but is shaped by the beam shaping optical element 13 to be approximately rectangular and have an approximately uniform intensity distribution. be done. Such a beam shaping optical element 13 is constituted by, for example, a diffractive optical element (DOE).
 ガルバノスキャナ14は、ビーム整形光学素子13によって整形されたレーザパルスLPをy方向(Y方向)すなわち第1方向に沿って走査するレーザパルス走査部である。ガルバノスキャナ14は、入射するレーザパルスLPを反射して第1方向(y方向)における所期の走査位置に向ける駆動可能な光学素子としてのガルバノミラー141と、当該ガルバノミラー141をZ軸周りに回転駆動するモータ142を備える。モータ142によってガルバノミラー141のZ軸周りの回転位置または回転角度が調整されることで、ガルバノミラー141に入射するレーザパルスLPが任意のy方向(第1方向)位置に反射される。 The galvano scanner 14 is a laser pulse scanning unit that scans the laser pulse LP shaped by the beam shaping optical element 13 along the y direction (Y direction), that is, the first direction. The galvano scanner 14 includes a galvano mirror 141 as a drivable optical element that reflects an incident laser pulse LP and directs it to a desired scanning position in a first direction (y direction), and a galvano mirror 141 that rotates the galvano mirror 141 around the Z axis. It includes a motor 142 that rotates. The motor 142 adjusts the rotational position or rotation angle of the galvano mirror 141 around the Z axis, so that the laser pulse LP incident on the galvano mirror 141 is reflected to an arbitrary y-direction (first direction) position.
 なお、入射するレーザパルスLPをy方向(第1方向)における所期の走査位置に向けるレーザパルス走査部はガルバノスキャナ14に限らず、回転駆動可能なポリゴンミラー(光学素子)を備えるポリゴンミラースキャナや、駆動可能なMEMS(Micro Electro Mechanical Systems)ミラー等の光学素子によって構成されてもよい。また、ガルバノスキャナ14等のレーザパルス走査部によるレーザパルスLPの走査方向もy方向(Y方向)に限らず、x方向(X方向)等のy方向(Y方向)に交差する方向でもよいし、x方向(X方向)およびy方向(Y方向)の二方向でもよい。後者の場合のように、ガルバノスキャナ14等のレーザパルス走査部が、xy平面内(XY平面内)すなわち半導体ウエハ3面内でレーザパルスLPを走査できる場合、半導体ウエハ3およびウエハテーブル31をx方向(X方向)等に駆動するステージ装置4を設けなくてもよい。この場合、ガルバノスキャナ14等によって、第1方向(Y方向)および第2方向(X方向)のレーザパルス走査部が構成される。 Note that the laser pulse scanning unit that directs the incident laser pulse LP to a desired scanning position in the y direction (first direction) is not limited to the galvano scanner 14, but may also be a polygon mirror scanner equipped with a polygon mirror (optical element) that can be rotated. Alternatively, it may be configured by an optical element such as a drivable MEMS (Micro Electro Mechanical Systems) mirror. Further, the scanning direction of the laser pulse LP by the laser pulse scanning unit such as the galvano scanner 14 is not limited to the y direction (Y direction), but may be a direction intersecting the y direction (Y direction) such as the x direction (X direction). , the x direction (X direction) and the y direction (Y direction) may be used. As in the latter case, when the laser pulse scanning unit such as the galvano scanner 14 can scan the laser pulse LP within the xy plane (XY plane), that is, within the plane of the semiconductor wafer 3, the semiconductor wafer 3 and the wafer table 31 are It is not necessary to provide a stage device 4 that is driven in a direction (X direction) or the like. In this case, the galvano scanner 14 and the like constitute a laser pulse scanning unit in the first direction (Y direction) and the second direction (X direction).
 fθレンズ15は、ガルバノスキャナ14によってy方向(Y方向)に走査されたレーザパルスLPをアニール対象の半導体ウエハ3に集光する。fθレンズ15と半導体ウエハ3の間に設けられるミラー16は、fθレンズ15からのX方向のレーザパルスLPを反射してZ方向(z方向)に半導体ウエハ3に照射する。このようにfθレンズ15およびミラー16によって半導体ウエハ3に集光されるレーザパルスLPは、ガルバノスキャナ14によるy方向の走査によって半導体ウエハ3面内をY方向に移動する。半導体ウエハ3に集光されるレーザパルスLPのサイズは任意に設計できるが、例えば0.10mm四方と0.15mm四方の間とするのが好ましく、0.12mm四方と0.13mm四方とするのが更に好ましい。また、半導体ウエハ3面におけるレーザパルスLPのY方向の走査速度(および/または、ステージ装置4による半導体ウエハ3のX方向の駆動速度)も任意に設計できるが、例えば100 cm/sと500 cm/sの間とするのが好ましく、250 cm/sと350 cm/sの間とするのが更に好ましい。 The fθ lens 15 focuses the laser pulse LP scanned in the y direction (Y direction) by the galvano scanner 14 onto the semiconductor wafer 3 to be annealed. A mirror 16 provided between the fθ lens 15 and the semiconductor wafer 3 reflects the laser pulse LP in the X direction from the fθ lens 15 and irradiates the semiconductor wafer 3 in the Z direction (z direction). The laser pulse LP thus focused on the semiconductor wafer 3 by the fθ lens 15 and the mirror 16 moves in the Y direction within the plane of the semiconductor wafer 3 by scanning in the Y direction by the galvano scanner 14. Although the size of the laser pulse LP focused on the semiconductor wafer 3 can be arbitrarily designed, it is preferably between 0.10 mm square and 0.15 mm square, and more preferably between 0.12 mm square and 0.13 mm square. Furthermore, the scanning speed of the laser pulse LP in the Y direction on the semiconductor wafer 3 surface (and/or the driving speed of the semiconductor wafer 3 in the X direction by the stage device 4) can be arbitrarily designed; for example, 100 cm/s and 500 cm. It is preferably between 250 cm/s and 350 cm/s, more preferably between 250 cm/s and 350 cm/s.
 また、ステージ装置4は、半導体ウエハ3およびウエハテーブル31を、レーザパルスLPに対してx方向(X方向)すなわち第2方向に沿って相対駆動する駆動装置であり、半導体ウエハ3に対して第2方向に沿ってレーザパルスLPを走査するレーザパルス走査部を構成する。このステージ装置4によって、レーザパルスLPは半導体ウエハ3面内をX方向に相対移動する。 Further, the stage device 4 is a drive device that drives the semiconductor wafer 3 and the wafer table 31 relative to the laser pulse LP along the x direction (X direction), that is, the second direction. A laser pulse scanning section that scans laser pulses LP along two directions is configured. By this stage device 4, the laser pulse LP is relatively moved in the X direction within the surface of the semiconductor wafer 3.
 このように、第1方向(Y方向)のレーザパルス走査部としてのガルバノスキャナ14によるレーザパルスLPのy方向の走査と、第2方向(X方向)のレーザパルス走査部としてのステージ装置4による半導体ウエハ3のx方向の駆動を組み合わせることで、レーザパルスLPをxy平面内(XY平面内)すなわち半導体ウエハ3面内で走査できる。なお、ステージ装置4による半導体ウエハ3の駆動方向はx方向(X方向)に限らず、y方向(Y方向)等のx方向(X方向)に交差する方向でもよいし、x方向(X方向)およびy方向(Y方向)の二方向でもよい。後者の場合のように、ステージ装置4がxy平面内(XY平面内)で半導体ウエハ3をレーザパルスLPに対して相対駆動できる場合、レーザパルスLPをy方向(Y方向)等に走査するガルバノスキャナ14を設けなくてもよい。この場合、ステージ装置4によって、第1方向(Y方向)および第2方向(X方向)のレーザパルス走査部が構成される。 In this way, the scanning of the laser pulse LP in the y direction by the galvano scanner 14 as the laser pulse scanning section in the first direction (Y direction) and the scanning of the laser pulse LP in the y direction by the laser pulse scanning section in the second direction (X direction) are performed. By combining the driving of the semiconductor wafer 3 in the x direction, the laser pulse LP can be scanned within the xy plane (XY plane), that is, within the plane of the semiconductor wafer 3. Note that the driving direction of the semiconductor wafer 3 by the stage device 4 is not limited to the x direction (X direction), but may also be a direction intersecting the x direction (X direction) such as the y direction (Y direction), or a direction intersecting the x direction (X direction) such as the y direction (Y direction). ) and the y direction (Y direction). As in the latter case, when the stage device 4 can drive the semiconductor wafer 3 relative to the laser pulse LP within the xy plane (XY plane), a galvanometer that scans the laser pulse LP in the y direction (Y direction) etc. The scanner 14 may not be provided. In this case, the stage device 4 constitutes a laser pulse scanning section in the first direction (Y direction) and the second direction (X direction).
 図4は、各種のレーザ光が照射された半導体ウエハ3の表面温度の時間推移を示す。実線は、本実施形態に係るパルスレーザ装置2としてのファイバレーザ装置が発振する高周波数(図示の例では800kHz)のレーザパルスLPが照射された際の表面温度を示す。破線は、従来のパルス発振レーザ装置が発振する高ピークパワー(典型的には数100kW)かつ低周波数(典型的には2kHzと数10kHzの間)のレーザパルスが照射された際の表面温度を示す。一点鎖線は、従来のダイオードレーザ装置が発振する低ピークパワー(典型的には数kW)かつ低周波数のレーザ光が照射された際の表面温度を示す。なお、ピークパワーとは、パルスエネルギーをパルス幅で除した値である。 FIG. 4 shows the time course of the surface temperature of the semiconductor wafer 3 irradiated with various laser beams. The solid line indicates the surface temperature when the laser pulse LP of high frequency (800 kHz in the illustrated example) oscillated by the fiber laser device as the pulse laser device 2 according to the present embodiment is irradiated. The dashed line indicates the surface temperature when irradiated with a high peak power (typically several 100 kW) and low frequency (typically between 2 kHz and several 10 kHz) laser pulses emitted by conventional pulsed laser equipment. show. The dashed-dotted line indicates the surface temperature when irradiated with a low peak power (typically several kW) and low frequency laser light emitted by a conventional diode laser device. Note that the peak power is the value obtained by dividing the pulse energy by the pulse width.
 破線で示される従来のパルス発振レーザ装置が発振する高ピークパワーかつ低周波数のレーザパルスは、半導体ウエハ3の表面を溶融させることで、ドーパントのイオン注入による損傷を修復する目的で使用される。半導体ウエハ3が一般的なシリコンによって形成される場合、その融点(1,410℃)以上に加熱することで表面が溶融する。図示の例では、破線で示される従来のパルス発振レーザ装置が発振する高ピークパワーのレーザパルスによって、半導体ウエハ3の表面温度が瞬間的に1,500℃以上に上がるため、融点が1,410℃のシリコンで形成される半導体ウエハ3の表面が溶融して損傷が修復される。しかし、従来のレーザパルスは低周波数であるため、半導体ウエハ3の表面温度はレーザパルス照射直後に急激に下がる。このため、ドーパントが注入された半導体ウエハ3の内部または表面下は十分に加熱されず、ドーパントは活性化されない。 A high peak power, low frequency laser pulse emitted by a conventional pulse oscillation laser device shown by a broken line is used for the purpose of repairing damage caused by dopant ion implantation by melting the surface of the semiconductor wafer 3. If the semiconductor wafer 3 is made of general silicon, the surface will be melted by heating it above its melting point (1,410° C.). In the illustrated example, the surface temperature of the semiconductor wafer 3 instantaneously rises to over 1,500°C due to the high peak power laser pulses emitted by the conventional pulsed laser device shown by the broken line. The surface of the formed semiconductor wafer 3 is melted and damage is repaired. However, since the conventional laser pulse has a low frequency, the surface temperature of the semiconductor wafer 3 drops rapidly immediately after the laser pulse is irradiated. For this reason, the interior or subsurface of the semiconductor wafer 3 into which the dopant is implanted is not sufficiently heated, and the dopant is not activated.
 そこで、半導体ウエハ3内に注入されたドーパントを活性化する目的で、一点鎖線で示される従来のダイオードレーザ装置が発振する低ピークパワーかつ低周波数のレーザ光が使用される。このレーザ光は低ピークパワーであるため、半導体ウエハ3の表面を融点以上に加熱することはできないが、半導体ウエハ3の内部または表面下を持続的に加熱して、注入されたドーパントを活性化できる。このように、半導体ウエハ3の表面における溶融にはパルス発振レーザ装置(破線)が使用され、半導体ウエハ3の表面下における活性化にはダイオードレーザ装置(一点鎖線)が使用されるのが一般的であった。異なる目的のアニールのために異なるレーザ装置を用意する必要があるため、レーザアニール装置の大型化や高コスト化に繋がっていた。 Therefore, for the purpose of activating the dopant implanted into the semiconductor wafer 3, a low peak power and low frequency laser beam oscillated by a conventional diode laser device shown by a dashed line is used. Since this laser beam has a low peak power, it cannot heat the surface of the semiconductor wafer 3 above its melting point, but it continuously heats the inside or under the surface of the semiconductor wafer 3 to activate the implanted dopant. can. In this way, a pulsed laser device (dashed line) is generally used for melting on the surface of the semiconductor wafer 3, and a diode laser device (dotted chain line) is used for activation below the surface of the semiconductor wafer 3. Met. Since it is necessary to prepare different laser devices for annealing for different purposes, this has led to an increase in the size and cost of the laser annealing device.
 これに対して、実線で示される本実施形態に係る高周波数のレーザパルスLPによれば、一つのパルスレーザ装置2(ファイバレーザ装置等)によって半導体ウエハ3の表面における溶融および半導体ウエハ3の表面下における活性化を効果的に実現できる。具体的には、本実施形態に係るパルスレーザ装置2は、複数のレーザパルスLPによって半導体ウエハ3の表面を融点以上に昇温して溶融させる表面溶融ステップ(図示の「表面溶融」の期間)と、表面溶融ステップから継続してレーザパルスLPを半導体ウエハ3に照射し、更に複数のレーザパルスLPによって半導体ウエハ3の表面下を少なくとも所定時間に亘って所定の活性化温度以上に昇温し、半導体ウエハ3の表面下に添加されたドーパントを活性化する活性化ステップ(図示の「活性化」の期間)と、を実行する。 On the other hand, according to the high frequency laser pulse LP according to the present embodiment shown by the solid line, one pulse laser device 2 (fiber laser device etc.) melts the surface of the semiconductor wafer 3 and melts the surface of the semiconductor wafer 3. Activation at the bottom can be effectively achieved. Specifically, the pulsed laser device 2 according to the present embodiment performs a surface melting step (a period of "surface melting" shown in the figure) in which the surface of the semiconductor wafer 3 is heated to a temperature higher than the melting point and melted by a plurality of laser pulses LP. Continuing from the surface melting step, the semiconductor wafer 3 is irradiated with laser pulses LP, and the temperature below the surface of the semiconductor wafer 3 is raised to a predetermined activation temperature or higher for at least a predetermined period of time using a plurality of laser pulses LP. , an activation step (the illustrated "activation" period) for activating the dopant added below the surface of the semiconductor wafer 3.
 表面溶融ステップでは、高周波数(図示の例では800kHz)で間欠的に照射される多数のレーザパルスLPによって、半導体ウエハ3の表面温度が融点(1,410℃)以上に上がる。このため、半導体ウエハ3の表面が溶融して、ドーパントのイオン注入等による損傷が修復される。なお、図示されるように、個々のレーザパルスLPは、半導体ウエハ3の表面を融点以上に加熱するための十分なパワーを持たないが、高周波数で照射されることで半導体ウエハ3に熱が蓄積される結果、その表面温度を融点以上に上げられる。表面溶融ステップは、半導体ウエハ3の表面温度が融点以上に上がった時に開始し、半導体ウエハ3の表面温度が融点未満に下がった時に終了する。 In the surface melting step, the surface temperature of the semiconductor wafer 3 rises above the melting point (1,410° C.) by a large number of laser pulses LP that are intermittently irradiated at a high frequency (800 kHz in the illustrated example). Therefore, the surface of the semiconductor wafer 3 is melted, and damage caused by dopant ion implantation or the like is repaired. Note that, as shown in the figure, the individual laser pulses LP do not have sufficient power to heat the surface of the semiconductor wafer 3 above the melting point, but the semiconductor wafer 3 is heated by being irradiated with high frequency. As a result of accumulation, the surface temperature can be raised above the melting point. The surface melting step starts when the surface temperature of the semiconductor wafer 3 rises above the melting point, and ends when the surface temperature of the semiconductor wafer 3 falls below the melting point.
 前述のように、レーザパルスLPはレーザパルス走査部としてのガルバノスキャナ14によって半導体ウエハ3上をY方向(y方向)すなわち第1方向に沿って走査されるが、Y方向に幅を持つレーザパルスLPが半導体ウエハ3上の一点を通過するのに要する時間は表面溶融ステップの時間と実質的に等しい。厳密には、レーザパルスLPが半導体ウエハ3上の一点に当たり始めてから表面温度が融点に達するまでの時間と、レーザパルスLPが半導体ウエハ3上の一点を通過した後に表面温度が融点を下回るまでの時間があるため、僅かな時間差が存在しうる。 As mentioned above, the laser pulse LP is scanned on the semiconductor wafer 3 by the galvano scanner 14 as a laser pulse scanning unit along the Y direction (y direction), that is, the first direction, but the laser pulse LP has a width in the Y direction. The time required for the LP to pass one point on the semiconductor wafer 3 is substantially equal to the time of the surface melting step. Strictly speaking, the time from when the laser pulse LP starts hitting a point on the semiconductor wafer 3 until the surface temperature reaches the melting point, and the time from when the laser pulse LP passes a point on the semiconductor wafer 3 until the surface temperature falls below the melting point. Due to time constraints, there may be a slight time difference.
 活性化ステップでは、表面溶融ステップから継続してレーザパルスLPが半導体ウエハ3に照射されることで、ドーパントが注入された半導体ウエハ3の内部または表面下が所定の活性化温度以上に昇温し、ドーパントが活性化される。活性化温度は、ドーパントの種類や半導体ウエハ3の材料(シリコン、炭化ケイ素、窒化ガリウム等)によって異なりうるが、最も一般的なシリコンの半導体ウエハ3にホウ素等のアクセプタ(P型ドーパント)を注入した典型的な場合では約1,000℃である。また、半導体ウエハ3の内部または表面下に添加されたドーパントを十分に活性化するためには、その領域の温度を所定時間に亘って活性化温度以上に維持する必要がある。この所定時間も、ドーパントの種類や量、半導体ウエハ3の材料によって異なりうるが、典型的なケースでは約10μsである。このように、活性化ステップでは、ドーパントが注入された半導体ウエハ3の内部または表面下の領域(典型的には半導体ウエハ3の表面下の10μmまでの領域)を、少なくとも10μsに亘って1000℃以上に昇温することが典型的な目標になる。 In the activation step, the semiconductor wafer 3 is irradiated with the laser pulse LP continuously from the surface melting step, so that the temperature inside or under the surface of the semiconductor wafer 3 into which the dopant is implanted is increased to a predetermined activation temperature or higher. , the dopant is activated. The activation temperature may vary depending on the type of dopant and the material of the semiconductor wafer 3 (silicon, silicon carbide, gallium nitride, etc.), but the most common method is to implant an acceptor (P-type dopant) such as boron into a silicon semiconductor wafer 3. In a typical case, the temperature is about 1,000℃. Furthermore, in order to sufficiently activate the dopant added inside or under the surface of the semiconductor wafer 3, it is necessary to maintain the temperature of that region at or above the activation temperature for a predetermined period of time. This predetermined time may also vary depending on the type and amount of dopant and the material of the semiconductor wafer 3, but is typically about 10 μs. Thus, in the activation step, the interior or subsurface region of the semiconductor wafer 3 into which the dopants have been implanted (typically up to 10 μm below the surface of the semiconductor wafer 3) is heated to 1000° C. for at least 10 μs. A typical goal is to increase the temperature above this level.
 活性化ステップは、ドーパントが注入された半導体ウエハ3の表面下の活性化領域の温度が活性化温度以上に上がった時に開始し、当該活性化領域の温度が活性化温度未満に下がった時に終了する。半導体ウエハ3の表面温度を示す図4は表面下の活性化領域の温度を示すものではないため、活性化ステップの開始タイミングと終了タイミングは目安として示されている。典型的には、図示されるように、活性化ステップは表面溶融ステップより短い。また、活性化ステップの開始タイミングは、典型的には表面溶融ステップの開始タイミングより遅い。更に、活性化ステップの終了タイミングは、表面溶融ステップの終了タイミングと実質的に等しい。但し、厳密には、活性化ステップが関わる半導体ウエハ3内の活性化領域の温度は、表面溶融ステップが関わる半導体ウエハ3の表面の温度より下がりにくいため、活性化ステップの終了タイミング(活性化領域が活性化温度未満に降温)は表面溶融ステップの終了タイミング(表面が融点未満に降温)より僅かに遅くなると考えられる。 The activation step starts when the temperature of the activation region under the surface of the semiconductor wafer 3 into which the dopant is implanted rises above the activation temperature, and ends when the temperature of the activation region falls below the activation temperature. do. Since FIG. 4, which shows the surface temperature of the semiconductor wafer 3, does not show the temperature of the activation region below the surface, the start timing and end timing of the activation step are shown as a guide. Typically, the activation step is shorter than the surface fusing step, as shown. Additionally, the start timing of the activation step is typically later than the start timing of the surface melting step. Furthermore, the end timing of the activation step is substantially equal to the end timing of the surface melting step. However, strictly speaking, the temperature of the activation region in the semiconductor wafer 3 involved in the activation step is less likely to drop than the temperature of the surface of the semiconductor wafer 3 involved in the surface melting step. The timing of the end of the surface melting step (the surface temperature decreases below the melting point) is considered to be slightly later than the end timing of the surface melting step (the surface temperature decreases below the melting point).
 なお、活性化領域に添加されたドーパントの量が通常より多い場合や、活性化領域が10μmより深い場合は、活性化ステップを10μsより長くすればよい。具体的には、レーザパルス走査部としてのガルバノスキャナ14によるレーザパルスLPのY方向(y方向)すなわち第1方向の走査速度を遅くすることで、活性化ステップを長くできる。あるいは、パルスレーザ装置2によるレーザパルスLPの発振周波数を800kHzより高くすることで同様の効果が得られる。活性化ステップを長くすると表面溶融ステップも必然的に長くなるが、間欠的なレーザパルスLPが照射されない非パルス期間における半導体ウエハ3の表面からの放熱等によって、半導体ウエハ3の表面が過熱状態となることが防止される(図示の例では表面温度が2,000℃以下に抑えられる)。このように、本実施形態によれば、活性化ステップの長さによらず表面溶融ステップを適切に実行できる。 Note that if the amount of dopant added to the activation region is larger than usual or if the activation region is deeper than 10 μm, the activation step may be made longer than 10 μs. Specifically, the activation step can be lengthened by slowing down the scanning speed of the laser pulse LP in the Y direction (y direction), that is, the first direction, by the galvano scanner 14 as the laser pulse scanning unit. Alternatively, the same effect can be obtained by setting the oscillation frequency of the laser pulse LP by the pulse laser device 2 higher than 800 kHz. If the activation step is lengthened, the surface melting step will inevitably be lengthened, but the surface of the semiconductor wafer 3 may become overheated due to heat radiation from the surface of the semiconductor wafer 3 during the non-pulse period when the intermittent laser pulse LP is not irradiated. (In the example shown, the surface temperature is kept below 2,000°C.) In this way, according to the present embodiment, the surface melting step can be appropriately performed regardless of the length of the activation step.
 本実施形態によれば、連続する表面溶融ステップおよび活性化ステップを通じて、一つのパルスレーザ装置2がレーザパルスLPを半導体ウエハ3に照射し続けることで、表面における溶融および表面下における活性化を併せて行える。 According to this embodiment, one pulsed laser device 2 continues to irradiate the semiconductor wafer 3 with laser pulses LP through the successive surface melting steps and activation steps, thereby combining melting on the surface and activation below the surface. You can do it.
 図5は、レーザパルス走査部(ガルバノスキャナ14および/またはステージ装置4)によって、半導体ウエハ3面内(XY面内)を走査されるレーザパルスLPを模式的に示す。なお、紙面スペースの制約のために、後述する走査セグメントの数や寸法は現実的な実施例に必ずしも即しておらず、図示に適当なように調整されている。 FIG. 5 schematically shows the laser pulse LP scanned within the semiconductor wafer 3 (in the XY plane) by the laser pulse scanning unit (galvano scanner 14 and/or stage device 4). It should be noted that, due to space constraints, the number and dimensions of the scanning segments described below do not necessarily correspond to practical embodiments, but are adjusted as appropriate for illustration.
 前述のように、半導体ウエハ3に照射されるレーザパルスLPの断面は、レーザパルス整形部としてのビーム整形光学素子13によって略矩形に整形されている。この略矩形の断面は、互いに直交する第1辺E1および第2辺E2を有する。第1辺E1が延びる第1方向は、ガルバノスキャナ14によるレーザパルスLPの走査方向であるY方向と略等しく、第2辺E2が延びる第2方向は、ステージ装置4によるレーザパルスLPの走査方向であるX方向と略等しい。図示の例では、ビーム整形光学素子13によってレーザパルスLPの断面が略正方形に整形されている。この場合、Y方向の第1辺E1の長さと、X方向の第2辺E2の長さは略等しい。以下の例では、第1辺E1および第2辺E2の長さが共に100μm(0.1mm)であるものとする。 As described above, the cross section of the laser pulse LP irradiated onto the semiconductor wafer 3 is shaped into a substantially rectangular shape by the beam shaping optical element 13 as a laser pulse shaping section. This substantially rectangular cross section has a first side E1 and a second side E2 that are orthogonal to each other. The first direction in which the first side E1 extends is approximately equal to the Y direction, which is the scanning direction of the laser pulse LP by the galvano scanner 14, and the second direction in which the second side E2 extends is the scanning direction of the laser pulse LP by the stage device 4. is approximately equal to the X direction. In the illustrated example, the beam shaping optical element 13 shapes the cross section of the laser pulse LP into a substantially square shape. In this case, the length of the first side E1 in the Y direction and the length of the second side E2 in the X direction are approximately equal. In the following example, it is assumed that the lengths of the first side E1 and the second side E2 are both 100 μm (0.1 mm).
 図示の例では、左上の点線の正方形で示される走査開始位置からレーザパルスLPの走査が開始される。図5における一連の矢印で示されるように、略正方形のレーザパルスLPは、ガルバノスキャナ14によって+Y方向に走査され、半導体ウエハ3の+Y方向の端部においてステージ装置4によって+X方向に後述する第2走査量S2だけ走査され、ガルバノスキャナ14によって-Y方向に走査され、半導体ウエハ3の-Y方向の端部においてステージ装置4によって+X方向に第2走査量S2だけ走査され、ガルバノスキャナ14によって+Y方向に走査される。 In the illustrated example, the scanning of the laser pulse LP is started from the scanning start position indicated by the dotted square in the upper left. As shown by a series of arrows in FIG. 5, the approximately square laser pulse LP is scanned in the +Y direction by the galvano scanner 14, and at the end of the semiconductor wafer 3 in the +Y direction, the stage device 4 moves the laser pulse LP in the +X direction as described later. The end of the semiconductor wafer 3 in the -Y direction is scanned by a second scanning amount S2 in the +X direction by the stage device 4, and is scanned by the galvano scanner 14 in the -Y direction. Scanned in the +Y direction.
 第1レーザパルス走査部としてのガルバノスキャナ14によって第1方向(Y方向)に沿って走査される間に、レーザパルスLPは高周波数(例えば1MHz)で間欠的に半導体ウエハ3に照射される。図示の第1走査量S1は、レーザパルスLPが半導体ウエハ3に照射される間隔における第1方向(Y方向)の走査量である。換言すれば、ガルバノスキャナ14による第1方向(Y方向)の走査量が第1走査量S1の倍数になる度に、略正方形のレーザパルスLPが間欠的に半導体ウエハ3に照射される。 The laser pulse LP is intermittently irradiated onto the semiconductor wafer 3 at a high frequency (for example, 1 MHz) while being scanned along the first direction (Y direction) by the galvano scanner 14 as the first laser pulse scanning unit. The illustrated first scanning amount S1 is the scanning amount in the first direction (Y direction) in the interval at which the semiconductor wafer 3 is irradiated with the laser pulse LP. In other words, each time the scanning amount in the first direction (Y direction) by the galvano scanner 14 becomes a multiple of the first scanning amount S1, the semiconductor wafer 3 is intermittently irradiated with a substantially square laser pulse LP.
 第1走査量S1は、ガルバノスキャナ14による第1方向(Y方向)の走査速度と、パルスレーザ装置2によるレーザパルスLPの発振周波数によって調整可能である。例えば、ガルバノスキャナ14による第1方向(Y方向)の走査速度が333 cm/sであり、パルスレーザ装置2によるレーザパルスLPの発振周波数が1MHzである場合、第1走査量S1は3.33μmとなる。本例ではレーザパルスLPの第1辺E1の長さが100μmであるため、ガルバノスキャナ14によってレーザパルスLPが第1方向(Y方向)に第1辺E1の長さの分だけ走査される間に、レーザパルスLPは30回(100μm / 3.33μm)に亘って第1走査量S1ずつ第1方向(Y方向)にずれた位置に順次照射される。このようにレーザパルスLPが第1辺E1の長さの分だけ走査される間の照射回数をMとすれば「E1=M×S1」(本例では、E1=100μm=30×3.33μm=M×S1)が成り立つ。 The first scanning amount S1 can be adjusted by the scanning speed in the first direction (Y direction) by the galvano scanner 14 and the oscillation frequency of the laser pulse LP by the pulse laser device 2. For example, if the scanning speed in the first direction (Y direction) by the galvano scanner 14 is 333 cm/s and the oscillation frequency of the laser pulse LP by the pulse laser device 2 is 1 MHz, the first scanning amount S1 is 3.33 μm. Become. In this example, since the length of the first side E1 of the laser pulse LP is 100 μm, the galvano scanner 14 scans the laser pulse LP in the first direction (Y direction) by the length of the first side E1. Then, the laser pulse LP is sequentially applied 30 times (100 μm/3.33 μm) to positions shifted in the first direction (Y direction) by the first scanning amount S1. If the number of irradiations during which the laser pulse LP is scanned by the length of the first side E1 is M, then "E1=M×S1" (in this example, E1=100μm=30×3.33μm= M×S1) holds true.
 本実施形態では「M≧30」とするのが好ましい。換言すれば、第1レーザパルス走査部としてのガルバノスキャナ14によって第1方向(Y方向)に沿って走査されるレーザパルスLPが半導体ウエハ3に照射される間隔における当該レーザパルスLPの第1走査量S1を、第1辺E1の長さの1/30以下とするのが好ましい。この場合、二つの連続するレーザパルスLPの重複率は「(E1-S1)/E1=(M-1)/M=29/30=約97%」以上となる。なお、図5は紙面スペースの制約のために便宜的にM=20の例を示しているが、以下ではM=30の例として説明する。 In this embodiment, it is preferable that "M≧30". In other words, the first scan of the laser pulse LP scanned along the first direction (Y direction) by the galvano scanner 14 as the first laser pulse scanning unit at the interval at which the semiconductor wafer 3 is irradiated with the laser pulse LP. It is preferable that the amount S1 is 1/30 or less of the length of the first side E1. In this case, the overlap rate of two consecutive laser pulses LP is equal to or higher than "(E1-S1)/E1=(M-1)/M=29/30=about 97%". Although FIG. 5 shows an example where M=20 for convenience due to space limitations, the following description will be made using an example where M=30.
 半導体ウエハ3における第1方向(Y方向)の各端部(図5における下端部および/または上端部)において折り返されるレーザパルスLPは、ガルバノスキャナ14によって第1方向(Y方向)に往復走査される。このような往復走査において半導体ウエハ3の異なる(ずれた)X方向(第2方向)範囲にレーザパルスLPが照射されるように、当該レーザパルスLPの折返し位置である第1方向(Y方向)の各端部において、ステージ装置4がレーザパルスLPを第2方向(X方向)に第2走査量S2だけ走査する。 The laser pulse LP that is turned back at each end (lower end and/or upper end in FIG. 5) of the semiconductor wafer 3 in the first direction (Y direction) is scanned back and forth in the first direction (Y direction) by the galvano scanner 14. Ru. In such a reciprocating scan, the laser pulse LP is irradiated in the first direction (Y direction), which is the turning position of the laser pulse LP, so that different (shifted) X direction (second direction) ranges of the semiconductor wafer 3 are irradiated with the laser pulse LP. At each end, the stage device 4 scans the laser pulse LP in the second direction (X direction) by a second scanning amount S2.
 第2レーザパルス走査部としてのステージ装置4による第2方向(X方向)の走査速度は、第1レーザパルス走査部としてのガルバノスキャナ14による第1方向(Y方向)の走査速度(例えば333 cm/s)と同程度でもよいし有意に異なっていてもよい。典型的な例では、ステージ装置4による走査速度(駆動速度)は、ガルバノスキャナ14による走査速度より有意に小さい。この場合、レーザパルスLPの発振周波数が第1方向(Y方向)の走査の際の高周波(例えば1MHz)のままでは、ステージ装置4による第2方向(X方向)の走査の間に過剰な回数のレーザパルスLPが半導体ウエハ3に照射されてしまう恐れがある(但し、折返し位置は、最終製品とならないことが多い半導体ウエハ3の端部にあるため、過剰にアニールされても問題とならないともいえる)。そこで、ステージ装置4による第2方向(X方向)の走査の間は、レーザパルスLPの発振周波数を下げてもよいし、パルスレーザ装置2によるレーザパルスLPの発振を一時的に停止してもよいし、ガルバノスキャナ14その他の光学素子によってレーザパルスLPを半導体ウエハ3から一時的に退避させてもよい。 The scanning speed in the second direction (X direction) by the stage device 4 as the second laser pulse scanning section is the scanning speed in the first direction (Y direction) by the galvano scanner 14 as the first laser pulse scanning section (for example, 333 cm /s) may be the same or significantly different. In a typical example, the scanning speed (driving speed) by the stage device 4 is significantly smaller than the scanning speed by the galvano scanner 14. In this case, if the oscillation frequency of the laser pulse LP remains high (for example, 1 MHz) during scanning in the first direction (Y direction), an excessive number of times will be generated during scanning in the second direction (X direction) by the stage device 4. There is a risk that the semiconductor wafer 3 may be irradiated with the laser pulse LP of ). Therefore, during scanning in the second direction (X direction) by the stage device 4, the oscillation frequency of the laser pulse LP may be lowered, or the oscillation of the laser pulse LP by the pulse laser device 2 may be temporarily stopped. Alternatively, the laser pulse LP may be temporarily evacuated from the semiconductor wafer 3 by the galvano scanner 14 or other optical element.
 ステージ装置4による第2方向(X方向)の第2走査量S2は、レーザパルスLPの第2辺E2の長さの1/3以下とするのが好ましい。図示の例における第2走査量S2は、第2辺E2の長さ(100μm)の1/3(33.3μm)である。また、ステージ装置4による第2走査量S2(33.3μm)の走査の間には、レーザパルスLPが半導体ウエハ3に照射されないものとする。この例では、ステージ装置4によってレーザパルスLPが第2方向(X方向)に第2辺E2の長さの分だけ走査される間に、レーザパルスLPは3回(100μm / 33.3μm)に亘って第2走査量S2ずつ第2方向(X方向)にずれた位置に順次照射される。このようにレーザパルスLPが第2辺E2の長さの分だけ走査される間の照射回数をNとすれば「E2=N×S2」(本例では、E2=100μm=3×33.3μm=N×S2)が成り立つ。ここで、二つの連続するレーザパルスLPの重複率は「(E2-S2)/E2=(N-1)/N=2/3=約67%」以上となる。 The second scanning amount S2 in the second direction (X direction) by the stage device 4 is preferably 1/3 or less of the length of the second side E2 of the laser pulse LP. The second scanning amount S2 in the illustrated example is 1/3 (33.3 μm) of the length (100 μm) of the second side E2. Further, it is assumed that the semiconductor wafer 3 is not irradiated with the laser pulse LP during the second scanning amount S2 (33.3 μm) by the stage device 4. In this example, while the laser pulse LP is scanned by the stage device 4 in the second direction (X direction) by the length of the second side E2, the laser pulse LP is scanned three times (100 μm / 33.3 μm). The light is sequentially irradiated to positions shifted in the second direction (X direction) by the second scanning amount S2. If the number of irradiations during which the laser pulse LP is scanned by the length of the second side E2 is N, then "E2=N×S2" (in this example, E2=100μm=3×33.3μm= N×S2) holds true. Here, the overlap rate of two consecutive laser pulses LP is equal to or higher than "(E2-S2)/E2=(N-1)/N=2/3=about 67%".
 以上の例では、ガルバノスキャナ14による第1辺E1の長さの走査の間にM=30回のレーザパルスLPが半導体ウエハ3に照射され、ステージ装置4による第2辺E2の長さの走査の間にN=3回のレーザパルスLPが半導体ウエハ3に照射される。この結果、半導体ウエハ3(XY平面)を第1走査量S1の長さの第1辺と第2走査量S2の長さの第2辺を有する走査セグメントで区切った場合、半導体ウエハ3の端部を除くほとんどの走査セグメント(例えば図5で代表的に示される斜線付きの走査セグメント)に、M×N=30×3=90回に亘ってレーザパルスLPが照射される。前述のように、Mは30以上とするのが好ましく、Nは3以上とするのが好ましいため、本実施形態によれば、半導体ウエハ3の端部を除くほとんどの走査セグメントに、90回以上に亘ってレーザパルスLPを照射できる。このため、図4に関して説明したように、多数のレーザパルスLPによって、一連の表面溶融ステップおよび活性化ステップを効果的に実行できる。 In the above example, the semiconductor wafer 3 is irradiated with M=30 laser pulses LP while the galvano scanner 14 scans the length of the first side E1, and the stage device 4 scans the length of the second side E2. During this period, the semiconductor wafer 3 is irradiated with N=3 laser pulses LP. As a result, when the semiconductor wafer 3 (XY plane) is divided into scan segments having a first side with a length of the first scan amount S1 and a second side with a length of the second scan amount S2, the end of the semiconductor wafer 3 The laser pulse LP is irradiated onto most of the scanning segments (for example, the hatched scanning segments typically shown in FIG. 5) except for the area (M×N=30×3=90 times). As mentioned above, M is preferably set to 30 or more, and N is preferably set to 3 or more, so according to the present embodiment, most of the scanning segments excluding the edge of the semiconductor wafer 3 are scanned 90 times or more. The laser pulse LP can be irradiated over the entire range. Thus, a series of surface melting and activation steps can be effectively carried out with a large number of laser pulses LP, as described with respect to FIG.
 以上のように各走査セグメントへのレーザパルスLPの照射回数を大きくできる本実施形態によれば、当該各走査セグメントに照射される各回のレーザパルスLPのエネルギーやプロファイル(強度分布等)のばらつきの影響を低減でき、当該各走査セグメントひいては半導体ウエハ3全面に亘って均一性の高いアニール処理(特に表面溶融ステップおよび活性化ステップ)を施せる。ここで、各走査セグメントへのレーザパルスLPの照射回数M×Nは、アニール処理の均一性に直結するフルエンスの変動を「1/√(M×N)」に抑える効果があると考えられる。 According to this embodiment, which can increase the number of times the laser pulse LP is irradiated to each scanning segment as described above, variations in the energy and profile (intensity distribution, etc.) of the laser pulse LP irradiated each scanning segment can be reduced. The influence can be reduced, and highly uniform annealing treatment (particularly the surface melting step and the activation step) can be performed over each scan segment and the entire surface of the semiconductor wafer 3. Here, the number of times M×N of irradiation of the laser pulse LP to each scanning segment is considered to have the effect of suppressing fluctuations in the fluence, which is directly linked to the uniformity of the annealing process, to “1/√(M×N)”.
 以上、本発明を実施形態に基づいて説明した。例示としての実施形態における各構成要素や各処理の組合せには様々な変形例が可能であり、そのような変形例が本発明の範囲に含まれることは当業者にとって自明である。 The present invention has been described above based on the embodiments. It will be obvious to those skilled in the art that various modifications can be made to the combinations of components and processes in the exemplary embodiments, and such modifications are within the scope of the present invention.
 なお、実施形態で説明した各装置や各方法の構成、作用、機能は、ハードウェア資源またはソフトウェア資源によって、あるいは、ハードウェア資源とソフトウェア資源の協働によって実現できる。ハードウェア資源としては、例えば、プロセッサ、ROM、RAM、各種の集積回路を利用できる。ソフトウェア資源としては、例えば、オペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the configuration, operation, and function of each device and each method described in the embodiments can be realized by hardware resources or software resources, or by cooperation of hardware resources and software resources. As hardware resources, for example, a processor, ROM, RAM, and various integrated circuits can be used. As software resources, for example, programs such as operating systems and applications can be used.
 本発明は、レーザアニール装置等に関する。 The present invention relates to a laser annealing device and the like.
 1 レーザアニール装置、2 パルスレーザ装置、3 半導体ウエハ、4 ステージ装置、11 ビームエキスパンダ、13 ビーム整形光学素子、14 ガルバノスキャナ、20 光ファイバ、22 レーザ光生成部、E1 第1辺、E2 第2辺、LP レーザパルス。 1 Laser annealing device, 2 Pulsed laser device, 3 Semiconductor wafer, 4 Stage device, 11 Beam expander, 13 Beam shaping optical element, 14 Galvano scanner, 20 Optical fiber, 22 Laser light generation section, E1 first side, E2 No. 2nd side, LP laser pulse.

Claims (11)

  1.  パルスレーザ装置が発振するレーザパルスの断面を、互いに直交する第1辺および第2辺を有する略矩形に整形するレーザパルス整形部と、
     前記レーザパルス整形部によって整形された前記レーザパルスを、前記第1辺が延びる第1方向および前記第2辺が延びる第2方向に沿って半導体ウエハの面内で走査するレーザパルス走査部であって、前記第1方向に沿って走査される前記レーザパルスが前記半導体ウエハに照射される間隔における当該レーザパルスの走査量が前記第1辺の長さの1/30以下であるレーザパルス走査部と、
     を備えるレーザアニール装置。
    a laser pulse shaping unit that shapes a cross section of a laser pulse emitted by the pulsed laser device into a substantially rectangular shape having a first side and a second side that are orthogonal to each other;
    A laser pulse scanning unit that scans the laser pulse shaped by the laser pulse shaping unit within a plane of a semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends. a laser pulse scanning unit, wherein the scanning amount of the laser pulse scanned along the first direction at an interval at which the semiconductor wafer is irradiated is 1/30 or less of the length of the first side; and,
    A laser annealing device equipped with.
  2.  前記レーザパルス走査部によって前記第2方向に沿って走査される前記レーザパルスが前記半導体ウエハに照射される間隔における当該レーザパルスの走査量が前記第2辺の長さの1/3以下である、請求項1に記載のレーザアニール装置。 The scanning amount of the laser pulse scanned along the second direction by the laser pulse scanning section at an interval at which the semiconductor wafer is irradiated with the laser pulse is 1/3 or less of the length of the second side. A laser annealing apparatus according to claim 1.
  3.  前記レーザパルス整形部は、前記レーザパルスの断面を略正方形に整形する、請求項1または2に記載のレーザアニール装置。 The laser annealing apparatus according to claim 1 or 2, wherein the laser pulse shaping section shapes the cross section of the laser pulse into a substantially square shape.
  4.  前記第1方向に沿って前記レーザパルスを走査する前記レーザパルス走査部は、入射する当該レーザパルスを当該第1方向における所期の走査位置に向ける駆動可能な光学素子によって構成される、請求項1または2に記載のレーザアニール装置。 The laser pulse scanning unit that scans the laser pulse along the first direction is configured by a drivable optical element that directs the incident laser pulse to a desired scanning position in the first direction. 3. The laser annealing apparatus according to 1 or 2.
  5.  前記第2方向に沿って前記レーザパルスを走査する前記レーザパルス走査部は、前記半導体ウエハを当該レーザパルスに対して当該第2方向に沿って相対駆動する駆動装置によって構成される、請求項1または2に記載のレーザアニール装置。 1 . The laser pulse scanning unit that scans the laser pulse along the second direction is configured by a driving device that drives the semiconductor wafer relative to the laser pulse along the second direction. Or the laser annealing apparatus according to 2.
  6.  前記レーザパルス走査部は、
     前記レーザパルス整形部によって整形された前記レーザパルスを、少なくとも前記第1方向に沿って走査しながら前記半導体ウエハに照射し、複数の前記レーザパルスによって前記半導体ウエハの表面を融点以上に昇温して溶融させる表面溶融ステップと、
     前記表面溶融ステップから継続して、前記レーザパルスを少なくとも前記第1方向に沿って走査しながら前記半導体ウエハに照射し、更に複数の前記レーザパルスによって前記半導体ウエハの表面下を少なくとも所定時間に亘って所定の活性化温度以上に昇温し、前記半導体ウエハの表面下に添加されたドーパントを活性化する活性化ステップと、
     を実行する請求項1または2に記載のレーザアニール装置。
    The laser pulse scanning section includes:
    The semiconductor wafer is irradiated with the laser pulse shaped by the laser pulse shaping unit while scanning at least along the first direction, and the surface of the semiconductor wafer is heated to a temperature above the melting point by the plurality of laser pulses. a surface melting step of melting the
    Continuing from the surface melting step, the semiconductor wafer is irradiated with the laser pulse while scanning at least along the first direction, and the plurality of laser pulses are applied under the surface of the semiconductor wafer for at least a predetermined period of time. an activation step of raising the temperature to a predetermined activation temperature or higher to activate the dopant added below the surface of the semiconductor wafer;
    The laser annealing apparatus according to claim 1 or 2, wherein the laser annealing apparatus performs the following.
  7.  前記活性化ステップは、前記半導体ウエハの表面下の10μmまでの領域を少なくとも10μsに亘って1000℃以上に昇温する、請求項6に記載のレーザアニール装置。 7. The laser annealing apparatus according to claim 6, wherein in the activation step, a region up to 10 μm below the surface of the semiconductor wafer is heated to 1000° C. or higher for at least 10 μs.
  8.  前記パルスレーザ装置は、100kHz以上の周波数で前記レーザパルスを発振する、請求項1または2に記載のレーザアニール装置。 The laser annealing device according to claim 1 or 2, wherein the pulse laser device oscillates the laser pulse at a frequency of 100 kHz or more.
  9.  前記パルスレーザ装置は、光ファイバによって前記レーザパルスを発振するファイバレーザ装置である、請求項1または2に記載のレーザアニール装置。 The laser annealing device according to claim 1 or 2, wherein the pulse laser device is a fiber laser device that oscillates the laser pulse using an optical fiber.
  10.  パルスレーザ装置が発振するレーザパルスの断面を、互いに直交する第1辺および第2辺を有する略矩形に整形するレーザパルス整形ステップと、
     前記レーザパルス整形ステップにおいて整形された前記レーザパルスを、前記第1辺が延びる第1方向および前記第2辺が延びる第2方向に沿って半導体ウエハの面内で走査するレーザパルス走査ステップであって、前記第1方向に沿って走査される前記レーザパルスが前記半導体ウエハに照射される間隔における当該レーザパルスの走査量が前記第1辺の長さの1/30以下であるレーザパルス走査ステップと、
     を備えるレーザアニール方法。
    a laser pulse shaping step of shaping a cross section of a laser pulse emitted by the pulsed laser device into a substantially rectangular shape having first sides and second sides perpendicular to each other;
    A laser pulse scanning step of scanning the laser pulse shaped in the laser pulse shaping step within the plane of the semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends. a laser pulse scanning step in which a scanning amount of the laser pulse scanned along the first direction at an interval at which the semiconductor wafer is irradiated is 1/30 or less of the length of the first side; and,
    A laser annealing method comprising:
  11.  パルスレーザ装置が発振するレーザパルスの断面を、互いに直交する第1辺および第2辺を有する略矩形に整形するレーザパルス整形ステップと、
     前記レーザパルス整形ステップにおいて整形された前記レーザパルスを、前記第1辺が延びる第1方向および前記第2辺が延びる第2方向に沿って半導体ウエハの面内で走査するレーザパルス走査ステップであって、前記第1方向に沿って走査される前記レーザパルスが前記半導体ウエハに照射される間隔における当該レーザパルスの走査量が前記第1辺の長さの1/30以下であるレーザパルス走査ステップと、
     をコンピュータに実行させるレーザアニールプログラム。
    a laser pulse shaping step of shaping a cross section of a laser pulse emitted by the pulsed laser device into a substantially rectangular shape having first sides and second sides perpendicular to each other;
    a laser pulse scanning step of scanning the laser pulse shaped in the laser pulse shaping step within the plane of the semiconductor wafer along a first direction in which the first side extends and a second direction in which the second side extends; a laser pulse scanning step in which the scanning amount of the laser pulse scanned along the first direction at an interval at which the semiconductor wafer is irradiated is 1/30 or less of the length of the first side; and,
    A laser annealing program that runs on a computer.
PCT/JP2023/022018 2022-07-19 2023-06-14 Laser annealing device, laser annealing method, and laser annealing program WO2024018784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114799 2022-07-19
JP2022-114799 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024018784A1 true WO2024018784A1 (en) 2024-01-25

Family

ID=89617481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022018 WO2024018784A1 (en) 2022-07-19 2023-06-14 Laser annealing device, laser annealing method, and laser annealing program

Country Status (1)

Country Link
WO (1) WO2024018784A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119400A (en) * 2002-09-20 2004-04-15 Semiconductor Energy Lab Co Ltd Device and method for laser beam irradiation and method of designing the device
JP2005183699A (en) * 2003-12-19 2005-07-07 Sony Corp Method for crystallizing semiconductor thin film, thin film semiconductor device and display unit
JP2005223301A (en) * 2003-06-24 2005-08-18 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device
JP2015185693A (en) * 2014-03-25 2015-10-22 住友重機械工業株式会社 Semiconductor device manufacturing method
JP2019110153A (en) * 2017-12-15 2019-07-04 住友重機械工業株式会社 Annealing method and annealing apparatus
JP2020202242A (en) * 2019-06-07 2020-12-17 住友重機械工業株式会社 Laser annealing method and laser control device
JP6977191B1 (en) * 2021-03-19 2021-12-08 株式会社東京精密 Laser processing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119400A (en) * 2002-09-20 2004-04-15 Semiconductor Energy Lab Co Ltd Device and method for laser beam irradiation and method of designing the device
JP2005223301A (en) * 2003-06-24 2005-08-18 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device
JP2005183699A (en) * 2003-12-19 2005-07-07 Sony Corp Method for crystallizing semiconductor thin film, thin film semiconductor device and display unit
JP2015185693A (en) * 2014-03-25 2015-10-22 住友重機械工業株式会社 Semiconductor device manufacturing method
JP2019110153A (en) * 2017-12-15 2019-07-04 住友重機械工業株式会社 Annealing method and annealing apparatus
JP2020202242A (en) * 2019-06-07 2020-12-17 住友重機械工業株式会社 Laser annealing method and laser control device
JP6977191B1 (en) * 2021-03-19 2021-12-08 株式会社東京精密 Laser processing equipment

Similar Documents

Publication Publication Date Title
US11820119B2 (en) Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
US20180126488A1 (en) Fibre optic laser machining equipment for etching grooves forming incipient cracks
JP6392789B2 (en) Laser system for processing sapphire and method using the same
US10286487B2 (en) Laser system and method for processing sapphire
KR101718429B1 (en) Laser illumination device
JP2012152823A (en) Method and device for processing object using scanned laser beam irradiated in inclined angle direction
US20220006263A1 (en) Laser processing machine, processing method, and laser light source
KR20090017084A (en) Laser heat treatment equipment and method for processing the same
JP2007029952A (en) Laser beam machining apparatus, and laser beam machining method
GB2569798A (en) Improvements in or relating to laser based machining
TW202046408A (en) Laser annealing method and laser control device capable of suppressing temperature rise of a non-irradiated surface of a semiconductor wafer and efficiently heating the irradiated surface
WO2024018784A1 (en) Laser annealing device, laser annealing method, and laser annealing program
JP2012044046A (en) Apparatus and method for laser annealing
WO2024018786A1 (en) Laser annealing apparatus, laser annealing method, and laser annealing program
CN113258433A (en) Laser oscillator and laser processing method
US20140199858A1 (en) Thermal processing by transmission of mid infra-red laser light through semiconductor substrate
JP2007063606A (en) Quenching method and quenching apparatus using semiconductor laser beam
US20190255649A1 (en) Laser beam machining method and laser beam machine
JP4395110B2 (en) Marking method for transparent material and apparatus using the same
KR102426156B1 (en) Dual wavelength annealing method and apparatus
CN115803852A (en) Control device for laser annealing device and laser annealing method
CN114616071A (en) Laser cutting method and laser cutting equipment thereof
KR102581115B1 (en) Lase processing head for stripping of enamel wire
JP3810716B2 (en) X-ray generator and generation method
WO2024117142A1 (en) Surface treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842716

Country of ref document: EP

Kind code of ref document: A1