WO2024018510A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2024018510A1
WO2024018510A1 PCT/JP2022/028012 JP2022028012W WO2024018510A1 WO 2024018510 A1 WO2024018510 A1 WO 2024018510A1 JP 2022028012 W JP2022028012 W JP 2022028012W WO 2024018510 A1 WO2024018510 A1 WO 2024018510A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
source unit
refrigerant
bottom plate
refrigeration cycle
Prior art date
Application number
PCT/JP2022/028012
Other languages
French (fr)
Japanese (ja)
Inventor
康太 鈴木
洋貴 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/028012 priority Critical patent/WO2024018510A1/en
Publication of WO2024018510A1 publication Critical patent/WO2024018510A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigeration cycle device equipped with a refrigerant leak detection means.
  • the fluorocarbon refrigerant gas used in refrigeration cycle equipment uses greenhouse gases that cause global warming. In order to reduce greenhouse gas emissions, a shift to alternative fluorocarbon refrigerants is underway, and the amount of fluorocarbon refrigerant gas used in refrigeration cycle equipment is being reduced. However, at the same time, it is also important to develop technology to reduce the impact of fluorocarbon refrigerant gas on global warming by early detection and treatment of refrigerant leaking from already installed refrigeration cycle equipment.
  • One way to make it easier to find refrigerant leaks is to seal in a fluorescent agent inside the refrigeration cycle device.
  • the fluorescent agent when a refrigerant leak occurs, the fluorescent agent is leaked together with the refrigerant from the leak location. Therefore, when irradiated with an ultraviolet lamp, the fluorescent agent attached to the leakage area emits light, making it possible to identify the leakage area.
  • the number of parts in the refrigerant circuit of a refrigeration cycle device is large, and the shape of the piping is complicated. There are some cases where it is not possible to identify.
  • the present disclosure has been made to solve such problems, and aims to provide a refrigeration cycle device that enables early identification of a refrigerant leak location when a refrigerant leaks.
  • a refrigeration cycle device is a refrigeration cycle device including a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping, and in which a refrigerant circulates through the piping.
  • a fluorescent agent added to refrigerating machine oil is circulated together with the refrigerant, and a bottom plate of a heat source unit in which the compressor and the condenser are installed is leaked when the refrigerant leaks from the refrigerant circuit. It has an uneven shape having a bottom surface where the fluorescent agent stays.
  • the heat source unit when the refrigerant leaks from the refrigerant circuit, the heat source unit is provided with a bottom plate having an uneven shape having a bottom part where the leaked fluorescent agent stays.
  • the location where the refrigerant, refrigerating machine oil, and fluorescent agent accumulate can be limited to a part of the uneven shape of the bottom plate, making it possible to quickly identify the location where the refrigerant leaks.
  • FIG. 2 is a perspective view showing an example of the appearance of a heat source unit provided in the refrigeration cycle device according to the first embodiment.
  • 1 is a schematic diagram showing an example of a circuit configuration of a refrigerant circuit that constitutes a refrigeration cycle device according to a first embodiment
  • FIG. 1 is a perspective view showing an example of the configuration of a heat source unit according to Embodiment 1.
  • FIG. 3 is a plan view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment.
  • FIG. 2 is a side view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment.
  • FIG. 3 is a side view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment.
  • FIG. 1 is a schematic diagram showing an example of a circuit configuration of a refrigerant circuit that constitutes a refrigeration cycle device according to a first embodiment
  • FIG. 1 is a perspective view showing an example of the configuration of a heat
  • FIG. 3 is a side view and a plan view schematically showing an example of a method for attaching refrigerant circuit components in the heat source unit according to the first embodiment.
  • 7 is a plan view showing an installation environment of a heat source unit provided in a refrigeration cycle device according to a second embodiment.
  • FIG. 7 is a plan view showing an installation environment of a heat source unit provided in a refrigeration cycle device according to a second embodiment.
  • FIG. 3 is a perspective view showing an installation environment of a heat source unit provided in a refrigeration cycle device according to a second embodiment.
  • 7 is a plan view showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to Embodiment 3.
  • FIG. 7 is a perspective view showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to a fourth embodiment.
  • FIG. 7 is a plan view schematically showing an example of the configuration of a bottom plate of a heat source unit according to Embodiment 5.
  • FIG. 9 is a cross-sectional view schematically showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to a ninth embodiment.
  • FIG. 7 is a side view schematically showing an example of the configuration of a bottom plate of a heat source unit according to Embodiment 10.
  • FIG. FIG. 7 is an explanatory diagram schematically showing an example of the configuration of a bottom plate of a heat source unit according to Embodiment 8.
  • the width direction of the heat source unit is the X direction
  • the depth direction of the heat source unit is the Y direction.
  • the Y direction is sometimes referred to as a first direction.
  • the X direction is sometimes referred to as the second direction.
  • the Y1 side is the front side of the heat source unit, that is, the front side
  • the Y2 side is the rear side, that is, the back side of the heat source unit.
  • the X direction and the Y direction are, for example, horizontal directions.
  • the Z direction is a direction that intersects the X direction and the Y direction.
  • the Z direction is, for example, a vertical direction, that is, an up-down direction. When the Z direction is an up-down direction, the Z1 side is the upper side or upward direction, and the Z2 side is the lower side or downward direction.
  • the Z direction may be a vertical direction.
  • Embodiment 1 (refrigeration cycle device 100)
  • the configuration of refrigeration cycle apparatus 100 according to Embodiment 1 will be described using FIGS. 1 and 2.
  • FIG. 1 is a perspective view showing an example of the appearance of a heat source unit provided in a refrigeration cycle apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram showing an example of a circuit configuration of a refrigerant circuit that constitutes the refrigeration cycle device according to the first embodiment.
  • the refrigeration cycle device 100 includes a heat source unit 1 and a load unit 2, and the heat source unit 1 and the load unit 2 are connected by a refrigerant pipe 10. By doing so, a refrigeration cycle is formed.
  • the refrigeration cycle device 100 is used as, for example, an air conditioner or a water heater, its use is not limited thereto.
  • the heat source unit 1 houses a compressor 11, a condenser 12, and a blower fan 15.
  • the blower fan 15 is installed relative to the condenser 12 and blows fluid such as air to the condenser 12.
  • the fluid such as air blown by the blower fan 15 is, for example, the outside air around the heat source unit 1.
  • the blower fan 15 is installed, for example, at the top of the heat source unit 1, as shown in FIG.
  • the load unit 2 includes an expansion valve 13, an evaporator 14, and a blower fan 16.
  • the blowing fan 16 is installed relative to the evaporator 14 and blows fluid such as air to the evaporator 14.
  • the fluid such as air that is blown by the ventilation fan 16 is, for example, the air around the load unit 2.
  • the refrigeration cycle device 100 is an air conditioner, the fluid such as air is indoor air in an air-conditioned area where the load unit is installed.
  • the compressor 11, condenser 12, expansion valve 13, and evaporator 14 are connected by a refrigerant pipe 10.
  • the refrigerant pipe 10 is sometimes simply referred to as a "pipe.”
  • one load unit 2 is provided for the heat source unit 1, but the invention is not limited to this.
  • two or more load units 2 may be provided in parallel to the heat source unit 1. may be connected to.
  • the load units 2 may all have the same capacity, or may have different capacities.
  • the compressor 11 takes in a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges the refrigerant as a high-temperature and high-pressure refrigerant.
  • the compressor 11 may be an inverter compressor whose rotation speed is controlled by an inverter.
  • the heat source unit 1 shown in FIGS. 1 and 2 has a configuration having one compressor 11, the present invention is not limited to this.
  • the heat source unit 1 may include two or more compressors 11 depending on the magnitude of the load on the load unit 2.
  • the condenser 12 is connected to the discharge side of the compressor 11 via the refrigerant pipe 10.
  • the refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the condenser 12 exchanges heat between the refrigerant and a fluid such as air.
  • the condenser 12 is, for example, a fin-and-tube heat exchanger.
  • the condenser 12 is not limited to a fin-and-tube type heat exchanger, and may be a heat exchanger of other forms, such as a heat exchanger with corrugated fins or a finless heat exchanger without fins. It may be.
  • the fluid such as air used for heat exchange in the condenser 12 is not limited to air.
  • the fluid such as air may be, for example, water, a refrigerant, or brine.
  • the blower fan 15 installed with respect to the condenser 12 is unnecessary, so the blower fan 15 does not need to be installed. In this way, the condenser 12 performs heat exchange between the refrigerant and the fluid and condenses the refrigerant.
  • the high-pressure liquid refrigerant sent out from the condenser 12 is sent to the load unit 2 and flows into the expansion valve 13.
  • the high pressure liquid refrigerant is reduced in pressure by the expansion valve 13 and becomes a low pressure refrigerant.
  • the expansion valve 13 is a pressure reducing device that reduces the pressure of the refrigerant.
  • the expansion valve 13 is, for example, an electronic expansion valve, a capillary tube, or the like.
  • the evaporator 14 exchanges heat between the refrigerant and a fluid such as air.
  • the evaporator 14 is, for example, a fin-and-tube heat exchanger.
  • the evaporator 14 is not limited to a fin-and-tube type heat exchanger, and may be a heat exchanger of other forms, such as a heat exchanger with corrugated fins or a finless heat exchanger without fins. It may be.
  • the fluid such as air is not limited to air.
  • the fluid such as air may be, for example, water, a refrigerant, or brine.
  • blower fan 16 installed with respect to the evaporator 14 is unnecessary, so the blower fan 16 does not need to be installed. In this way, the evaporator 14 exchanges heat between the refrigerant and the fluid and evaporates the refrigerant.
  • the refrigerant flowing out of the evaporator 14 flows into the compressor 11. Then, the refrigerant is compressed again by the compressor 11 and discharged toward the condenser 12. In the refrigeration cycle device 100, this cycle is repeated.
  • a single refrigerant for example, a single refrigerant, a pseudo-azeotropic refrigerant mixture, a non-pseudo-azeotropic refrigerant mixture, etc.
  • single refrigerants include R22 and R32.
  • pseudo azeotropic refrigerant mixture include R410A and R404A.
  • non-pseudo azeotropic refrigerant mixture include R407C.
  • FIG. 3 is a perspective view showing an example of the configuration of the heat source unit according to the first embodiment.
  • the heat source unit 1 is shown with the exterior panel 1a and the maintenance panel 1b removed. Further, in FIG. 3, for the sake of explanation, the illustration of each component disposed in the upper part of the heat source unit 1 is omitted.
  • FIG. 4 is a plan view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment.
  • FIG. 5 is a side view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment.
  • FIG. 6 is a side view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment.
  • FIG. 7 is a side view and a plan view schematically showing an example of a method for attaching refrigerant circuit components in the heat source unit according to the first embodiment.
  • the heat source unit 1 has a rectangular parallelepiped shape as a whole. Exterior panels 1a are provided on three of the four side surfaces of the heat source unit 1, that is, on the left, right, and back sides. Further, among the four side surfaces of the heat source unit 1, a maintenance panel 1b is removably provided on the remaining one side surface, that is, the front side. The maintenance panel 1b is arranged on the front side of the heat source unit 1 on the Y1 side in the Y direction. That is, the maintenance panel 1b is provided on one of the side surfaces extending in the X direction. The maintenance panel 1b is removed by a service person during maintenance such as inspection of the heat source unit 1. In this way, the casing of the heat source unit 1 is composed of three exterior panels 1a and one maintenance panel 1b. Note that the maintenance panel 1b may be composed of one panel, or may be divided into two panels, left and right, as shown in FIG.
  • the three exterior panels 1a are each provided with an intake port for taking air into the heat source unit 1.
  • the upper surface portion 1c of the heat source unit 1 is open, and a blower fan 15 is provided directly below the upper surface portion 1c.
  • a mesh fan guard is installed on the upper surface portion 1c of the heat source unit 1, if necessary.
  • the ventilation fan 15 is provided for each of two openings, but it is not limited to that case. That is, one opening may be provided in the upper surface portion 1c of the heat source unit 1, and one ventilation fan 15 may be provided for the one opening. In this way, the number of openings in the upper surface portion 1c of the heat source unit 1 and the number of blower fans 15 may be any number greater than or equal to 1, and are not particularly limited.
  • a support member 1d that supports the condenser 12 is provided below the three exterior panels 1a.
  • the exterior panel 1a is attached to a support member 1d. Further, as shown in FIG. 3, the condenser 12 is placed on and attached to the support member 1d.
  • the condenser 12 has a U-shape in plan view.
  • the condenser 12 is, for example, a fin-and-tube heat exchanger composed of fins and heat exchanger tubes.
  • the heat exchanger tubes extend parallel to the XY plane.
  • the heat exchanger tube is bent and has a U-shape in plan view. Therefore, the tube axis direction of the heat exchanger tube changes into a U-shape according to the shape of the heat exchanger tube.
  • the condenser 12 is arranged on the Y2 side in the Y direction, which is the depth direction of the heat source unit 1. Specifically, the condenser 12 is arranged along the left and right sides of the heat source unit 1 and along the rear exterior panel 1a. On the other hand, refrigerant circuit components such as the compressor 11 and the condenser 12 are arranged on the Y1 side in the Y direction, which is the depth direction of the heat source unit 1.
  • the bottom plate 17 is arranged at the lower part of the heat source unit 1, that is, at the bottom.
  • the bottom plate 17 is installed parallel to the XY plane.
  • the bottom plate 17 is arranged parallel to the installation surface of the heat source unit 1.
  • the bottom plate 17 has an uneven shape.
  • the bottom plate 17 has a rectangular shape in plan view.
  • the bottom plate 17 has an uneven shape by having a bottom surface portion 172a (see FIG. 6) consisting of a recess in which fluorescent agent leaked together with the refrigerant stays when the refrigerant leaks from the refrigerant circuit.
  • FIGS. 6 show examples of the shape of the bottom plate 17 provided in the heat source unit 1.
  • the bottom plate 17 has an uneven shape by providing at least one of a rib-shaped convex portion 171 and a groove-shaped concave portion 172. Both the convex portion 171 and the concave portion 172 extend in the Y direction. The recess 172 is recessed toward the Z2 side with respect to the protrusion 171.
  • the bottom plate 17 may have an uneven shape by having at least one of a convex portion 171 and a concave portion 172 on the upper surface portion 17a of the bottom plate 17, but the present invention is not limited thereto.
  • the bottom plate 17 may have an uneven shape by placing a panel having an uneven shape on the upper surface 17a of the main body of the bottom plate 17, as shown in FIG.
  • the bottom plate 17 may have an uneven shape by having a recess 172 on the upper surface 17a of the bottom plate 17, as shown in FIG. 6(a).
  • the recessed portion 172 is recessed from the upper surface portion 17a of the bottom plate 17 toward the Z2 side, as shown in FIG. 6(a).
  • the convex portion 171 is located between the concave portions 172 .
  • the convex portions 171 and the concave portions 172 are arranged alternately.
  • the recess 172 has a trapezoidal cross-sectional shape.
  • the recessed portion 172 has a flat bottom portion 172a and an inclined surface portion 172b adjacent to the bottom portion 172a. Both the flat bottom portion 172a and the inclined surface portion 172b have an elongated rectangular shape when viewed from above. Furthermore, the longitudinal directions of the flat bottom portion 172a and the inclined surface portion 172b both extend in the Y direction.
  • the inclined surface portions 172b are installed on both sides of the bottom surface portion 172a in the X direction. The inclined surface portion 172b is inclined toward the outside of the bottom surface portion 172a in the X direction as it goes from the bottom surface portion 172a toward the Z1 side in the Z direction.
  • the convex portion 171 has a flat main surface portion 171a.
  • the flat main surface portion 171a is connected to the inclined surface portion 172b of the recess 172.
  • the main surface portion 171a is the upper surface portion 17a of the bottom plate 17 itself.
  • the flat main surface portion 171a has an elongated rectangular shape in plan view. Further, the longitudinal direction of the flat main surface portion 171a extends in the Y direction.
  • the upper surface portion 17a of the bottom plate 17 has a concave portion 172, thereby forming an uneven shape.
  • the upper surface portion 17a of the bottom plate 17 may have an uneven shape by having the convex portion 171.
  • the upper surface portion 17a of the bottom plate 17 may have an uneven shape by having both a convex portion 171 and a concave portion 172.
  • the recessed portion 172 is recessed toward the Z2 side in the Z direction from the upper surface portion 17a. Furthermore, the recess 172 has a trapezoidal shape when viewed from the side.
  • the recessed portion 172 has a flat bottom portion 172a and an inclined surface portion 172b adjacent to the bottom portion 172a.
  • the flat bottom portion 172a and the inclined surface portion 172b both have a rectangular shape when viewed from above.
  • the inclined surface portions 172b are installed on both sides of the bottom surface portion 172a in the X direction.
  • the inclined surface portion 172b is inclined toward the outside of the bottom surface portion 172a in the X direction as it goes from the bottom surface portion 172a toward the Z1 side in the Z direction.
  • the convex portion 171 protrudes from the upper surface portion 17a toward the Z1 side in the Z direction.
  • the convex portion 171 has a trapezoidal shape when viewed from the side, as shown in FIG. 6(b). Therefore, the convex portion 171 has a trapezoidal cross-sectional shape. Therefore, the convex portion 171 has a flat main surface portion 171a and an inclined surface portion 171b adjacent to the main surface portion 171a. Both the flat main surface portion 171a and the inclined surface portion 171b have an elongated rectangular shape when viewed from above, and their longitudinal directions extend in the Y direction.
  • the inclined surface portions 171b are installed on both sides of the main surface portion 171a in the X direction.
  • the inclined surface portion 171b is inclined toward the outside of the main surface portion 171a in the X direction as it goes from the main surface portion 171a toward the Z2 side in the Z direction.
  • the bottom plate 17 has a plurality of protrusions 171 and a plurality of recesses 172. Both the plurality of protrusions 171 and the plurality of recesses 172 are arranged along the Y direction. Further, the plurality of convex portions 171 are arranged parallel to each other at intervals in the X direction. Further, the plurality of recesses 172 are arranged parallel to each other at intervals in the X direction. Note that the width of the protrusion 171 in the X direction and the width of the recess 172 in the X direction may be the same or different.
  • the width of the recess 172 in the X direction is smaller than the width of the protrusion 171 in the X direction, as shown in FIGS. 5 and 7(a).
  • refrigerant circuit components such as the compressor 11 and the condenser 12 are fixed to the convex portion 171 of the bottom plate 17.
  • Refrigerant circuit components such as the compressor 11 and the condenser 12 have a larger bottom area than the convex portions 171 and the concave portions 172, so they are disposed across one or more convex portions 171 and one or more concave portions 172.
  • the fixed location is the convex portion 171.
  • Refrigerant circuit components such as the compressor 11 and the condenser 12 are fixed to the convex portion 171 with fixing devices such as screws.
  • a drainage hole 173 may be formed in the recess 172 of the bottom plate 17 to drain rainwater and the like.
  • a drain hole 173 is arranged within the recess 172.
  • the drain hole 173 is a through hole that penetrates the thickness of the bottom plate 17.
  • a plurality of water drainage holes 173 are formed.
  • the water drainage hole 173 is provided at the end of the recess 172 on the Y1 side and the end on the Y2 side in the Y direction. Further, if necessary, a drainage hole 173B may be provided between the end of the recess 172 on the Y1 side and the end on the Y2 side in the Y direction.
  • a hole 173A for draining water may also be provided in the convex portion 171.
  • the drain holes 173, 173A, and 173B have, for example, a circular shape in plan view.
  • the drain hole 173 is a hole for draining drain water such as dew water or frost melting water adhering to the surface of the heat transfer tube or fin of the condenser 12 to the outside of the heat source unit 1.
  • the bottom surface 172a of the recess 172 is sometimes called a "water receiving surface" because the drain water flows toward the drain hole 173 on the surface thereof.
  • a notch 174 may be formed in the bottom plate 17 to take out the refrigerant pipe 10 connected to the load unit 2.
  • the cutout portion 174 is a through hole that penetrates the thickness of the bottom plate 17.
  • the cutout portion 174 may be formed across the convex portion 171 and the concave portion 172.
  • the cutout portion 174 has, for example, a rectangular shape in plan view.
  • a fluorescent agent is attached to the refrigeration oil that circulates in the refrigerant circuit together with the refrigerant.
  • the fluorescent agent is added to refrigerating machine oil in order to detect leakage of refrigerant from the refrigerant pipe 10 and the like.
  • the fluorescent agent emits light when exposed to ultraviolet rays emitted from an ultraviolet lamp, for example.
  • FIG. 7(a) is a diagram showing an example of a case where refrigerant leakage occurs in the heat source unit according to the first embodiment.
  • FIG. 7A shows an example in which refrigerant leaks from a connecting portion 20 connecting the compressor 11 and the refrigerant pipe 10.
  • FIG. 7A shows an example in which refrigerant leaks from a connecting portion 20 connecting the compressor 11 and the refrigerant pipe 10.
  • the compressor 11 has a discharge pipe 11a that discharges refrigerant and a suction pipe 11b that sucks the refrigerant.
  • the discharge pipe 11a and the refrigerant pipe 10 are connected through a connecting portion 20.
  • the connection part 20 that connects the discharge pipe 11a and the refrigerant pipe 10 is, for example, a flare connection part or a brazed part.
  • a flare connection part for example, a flare nut is attached to either the discharge pipe 11a or the refrigerant pipe 10, and a union is attached to the other.
  • the discharge pipe 11a and the refrigerant pipe 10 are connected by tightening the union and the flare nut using a tool such as a torque wrench.
  • a tool such as a torque wrench.
  • the connection part 20 is a brazed part, the discharge pipe 11a and the refrigerant
  • the leakage location may have gaps, cracks, or small holes.
  • refrigeration oil also leaks from the leakage location.
  • the timing of refrigerant leakage and the timing of refrigerating machine oil leakage may be simultaneous or may be slightly different from each other. Since a fluorescent agent is added to the refrigerating machine oil, the added fluorescent agent also leaks along with the refrigerating machine oil. As a result, the refrigerant, refrigeration oil, and fluorescent agent flow out from the leakage location.
  • the leaked refrigerating machine oil and fluorescent agent drip downward from the leakage location and stay on the uneven bottom surface portion 172a of the bottom plate 17.
  • the bottom portion 172a of the recess 172 is sometimes referred to as a “fluorescent agent retention portion” because the leaked fluorescent agent is retained therein.
  • the bottom part 172a functions as a "fluorescent agent retention part”. Therefore, as shown in FIG. 7(a), it is desirable that the connecting portion 20 be disposed directly above the recess 172 of the bottom plate 17, but the present invention is not limited thereto.
  • the shell of the compressor 11 is supported by a plurality of legs 11c, as shown in FIG. 7(b).
  • FIG. 7B shows an example in which the compressor 11 is supported by four legs 11c, the number of legs 11c is not particularly limited.
  • the connection part 20 that connects the discharge pipe 11a of the compressor 11 and the refrigerant pipe 10 directly above the recess 172
  • the connecting portion 20 be placed directly above the recess 172, avoiding a position directly above the leg 11c.
  • the heat source unit 1 is provided with a bottom plate 17 having an uneven shape and having a bottom part 172a where the fluorescent agent stays.
  • a bottom plate 17 having an uneven shape and having a bottom part 172a where the fluorescent agent stays.
  • the refrigerating machine oil and the fluorescent agent are prevented from spreading over a wide area of the bottom plate 17. Therefore, in the bottom plate 17, the area where ultraviolet rays need to be irradiated when performing an inspection to identify a leakage point is narrowed, and the leakage point can be easily identified. Specifically, the movement of the fluorescent agent staying in the bottom portion 172a in the X direction is restricted by the inclined surface portion 172b of the recess 172.
  • the service person only has to irradiate the ultraviolet rays in the Y direction along the recess 172 of the bottom plate 17, and can efficiently detect the location where the fluorescent agent is attached. Further, since the refrigerant leakage point is located directly above or near the point directly above the location where the fluorescent agent is attached, the refrigerant leakage location can also be efficiently and reliably detected. Furthermore, even when the fluorescent agent flows from the convex portion 171 toward the recessed portion 172, since the fluorescent agent is attached along the direction in which the fluorescent agent flows, by tracing that direction in the opposite direction, the refrigerant can be removed. Leak points can be identified immediately.
  • the bottom plate 17 having an uneven shape in the heat source unit 1 by using the bottom plate 17 having an uneven shape in the heat source unit 1, the spots where refrigerant, refrigeration machine oil, and fluorescent agent accumulate in the event of a refrigerant leak can be reduced to the uneven shape of the bottom plate 17.
  • This enables early identification of refrigerant leak locations.
  • the fluorescent agent leaked together with the refrigerant drips onto the bottom plate 17 the fluorescent agent is blocked by the inclined surface portion 172b of the recess 172, and its movement in the X direction is restricted.
  • the fluorescent agent moves within the recess 172 only in the Y direction. Therefore, by irradiating ultraviolet rays along the recessed portion 172, the location of the refrigerant leak can be identified.
  • the range to be irradiated with ultraviolet rays can be narrowed down to the concave portion 172 and its surroundings, so the range to be irradiated with ultraviolet rays is significantly smaller than in the past, and it can be done efficiently and in a short time.
  • the location of the refrigerant leak can be identified.
  • the refrigerant circuit components with a high risk of refrigerant leakage on the maintenance panel 1b side of the heat source unit 1 the refrigerant will leak in a position where it can be easily seen by service personnel, making it easier to discover the source of refrigerant leakage. .
  • FIG. 8 is a plan view showing the installation environment of the heat source unit provided in the refrigeration cycle device according to the second embodiment.
  • FIG. 9 is a plan view showing the installation environment of the heat source unit provided in the refrigeration cycle device according to the second embodiment.
  • FIG. 10 is a perspective view showing the installation environment of the heat source unit provided in the refrigeration cycle device according to the second embodiment.
  • the configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the second embodiment are basically the same as those of the first embodiment, so below, the features of the second embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
  • connection parts 20 such as brazed parts and flare joints, which connect the refrigerant pipes 10, often lead to refrigerant leakage.
  • the plan view in FIG. 8 shows an example of the configuration of the heat source unit 1.
  • a plan view of the bottom plate 17 of the heat source unit 1 is shown.
  • the service space 18 shown in FIG. 8 is a space for performing maintenance such as replacing refrigerant circuit components.
  • the service space 18 is a part of the installation surface on which the heat source unit 1 is installed, and is arranged outside the maintenance panel 1b of the heat source unit 1.
  • the service person uses the service space 18 to remove the maintenance panel 1b of the heat source unit 1 and replace the refrigerant circuit components when inspecting the refrigerant circuit components mounted on the heat source unit 1.
  • a service space 18 is provided on the Y1 side of the heat source unit 1 in the Y direction. That is, the building wall 30 or the like that would be an obstacle is not placed close to the maintenance panel 1b placed in front of the heat source unit 1.
  • the heat source unit 1 is installed while securing a space at least a preset distance L1 from the maintenance panel 1b of the heat source unit 1. A space longer than the distance L1 becomes the service space 18.
  • the service space 18 is a space for service personnel to perform maintenance and other work, but also functions as a ventilation space.
  • the heat source unit 1 is installed by securing a space at least a preset distance L2 from the exterior panel 1a on the back surface of the heat source unit 1.
  • the space longer than the distance L2 becomes the ventilation space 19A.
  • the heat source unit 1 is installed with a space of a predetermined distance L3 or more secured from the left and right exterior panels 1a of the heat source unit 1.
  • a space longer than the distance L3 becomes a ventilation space 19B.
  • the distance L1 is, for example, 450 mm.
  • the distance L2 is, for example, 300 mm.
  • the distance L3 is, for example, 100 mm.
  • a compressor 11 which is an excitation source
  • a device having a connection part 20, such as a flare connection part are arranged near the service space 18 of the heat source unit 1.
  • the following four locations are particularly likely to cause refrigerant leakage.
  • Compressor 11 (2) Refrigerant pipe 10 connected to compressor 11 (3) Refrigerant circuit parts connected to the compressor 11 (4) Connection parts 20 such as brazed parts and flare connections
  • these (1) to (4) are arranged near the service space 18. Specifically, these (1) to (4) are arranged inside the heat source unit 1 on the maintenance panel 1b side.
  • a plurality of refrigerant circuit components including a compressor 11 are arranged inside the heat source unit 1. At least two of the plurality of refrigerant circuit components are connected by refrigerant piping 10 via a connecting portion 20 such as a flared connecting portion or a brazed portion.
  • a compressor 11, an accumulator 21 (see FIG. 11), an oil regulator 22 (see FIG. 11), an oil separator 23 (see FIG. 11), a dryer 24 (see FIG. 11), etc. are arranged in the heat source unit 1. Let's take an example to explain the case.
  • connection part 20 such as a flare connection part or a brazed part.
  • connection section 20 falls under (4) above.
  • the above (1) to (4) where refrigerant leakage is likely to occur are located on the maintenance panel 1b side.
  • the service engineer finds fluorescent material attached to the bottom plate 17, he or she can irradiate ultraviolet light along the recess 172 of the bottom plate 17 using an ultraviolet lamp in order to identify the location of the refrigerant leak. Therefore, the service person does not have to irradiate the entire bottom plate 17 with ultraviolet rays, so the work load is reduced.
  • This will be explained by giving a concrete example. For example, it is assumed that when a service person checks the area R1 in FIG. 8 near the maintenance panel 1b, a fluorescent agent has adhered to the area R2 shown in FIG. 8 within the area R1. In that case, the service person uses an ultraviolet lamp to irradiate ultraviolet light along the recess 172 including the area R2, as shown by the area R3 in FIG. By doing so, the location of the refrigerant leak can be efficiently identified.
  • the number of refrigerant circuit components arranged inside the heat source unit 1 is large, and the shape of the refrigerant piping 10 is also complicated. Therefore, inside the heat source unit 1, on the Y2 side in the Y direction, the refrigerant circuit components or the refrigerant pipe 10, etc. become visual obstacles, making it difficult to find the fluorescent agent. On the other hand, inside the heat source unit 1, there are no visual obstacles on the Y1 side in the Y direction, so it is easy to find the fluorescent agent. Therefore, in the second embodiment, by arranging the above items (1) to (4) where refrigerant leakage is likely to occur on the maintenance panel 1b side, it is possible for a service person to detect refrigerant leakage at an early stage.
  • exterior panels 1a are arranged on the left and right sides and the back surface of the heat source unit 1. Since these exterior panels 1a can prevent sunlight from entering the heat source unit 1, the inside of the heat source unit 1 can be kept in a dark state. Thereby, the refrigerant circuit components mounted in the heat source unit 1 are placed in the shade. Therefore, by irradiating the bottom plate 17 with an ultraviolet lamp, it is possible to efficiently check whether or not the fluorescent agent is attached.
  • a control box (not shown) is further arranged inside the heat source unit 1.
  • the control box houses a drive circuit and a control circuit for driving the compressor 11 and the blower fan 15, and the like.
  • the control box does not need to be placed on the service space 18 side because it does not become a refrigerant leakage point. Therefore, the control box may be arranged on the back side of the maintenance panel 1b of the heat source unit 1, that is, on the Y2 side in the Y direction inside the heat source unit 1. Further, the control box may be arranged on the Z1 side of the compressor 11 or the accumulator (see FIG. 11) in the Z direction. That is, the control box may be placed above the compressor 11 or the accumulator 21 (see FIG. 11).
  • components such as the compressor 11 or the accumulator 21 have a more complex structure than the bottom plate 17, and there is a possibility that the fluorescent agent may adhere to positions that are difficult for service personnel to see. There is. Therefore, when the fluorescent agent adheres to parts such as the compressor 11 or the accumulator 21, it is difficult for a service person to discover the fluorescent agent, and there is a concern that the service person may overlook the fluorescent agent.
  • connection parts 20 When piping a large number of refrigerant pipes 10, it is assumed that a plurality of connection parts 20 inevitably overlap in the Z direction due to space constraints. In that case, when the refrigerant leaks from any one of the plurality of connections 20A and 20B, the fluorescent agent drips into the recess 172 located directly below the connections 20A and 20B. If the service engineer discovers that the fluorescent agent has adhered to the recess 172, he or she infers that the refrigerant is leaking from one of the plurality of connections 20A and 20B located directly above the recess 172. It is possible to do so. In that case, the service person can identify the location of the refrigerant leak by sequentially checking the plurality of connections 20A and 20B one by one. Therefore, it is permissible to arrange two or more connecting portions 20 one above the other in the Z direction.
  • the above (1) to (4) where refrigerant leakage is likely to occur are arranged on the maintenance panel 1b side. Therefore, when a serviceman removes the maintenance panel 1b during inspection, he can immediately find the fluorescent agent attached to the bottom plate 17. This allows service personnel to detect refrigerant leaks at an early stage.
  • FIG. 11 is a plan view showing an example of the configuration of a heat source unit provided in the refrigeration cycle device according to the third embodiment.
  • the configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the third embodiment are basically the same as those of the first embodiment, so below, the features of the third embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
  • the accumulator 21 is connected, for example, to the suction pipe 11b of the compressor 11 (see FIG. 7).
  • the accumulator 21 is a container that stores refrigerant.
  • the accumulator 21 has a function of storing surplus refrigerant. Further, the accumulator 21 may further have a function of separating the gas refrigerant and the liquid refrigerant in order to prevent a large amount of liquid refrigerant from returning to the compressor 11.
  • the oil regulator 22 takes out the refrigerating machine oil in the accumulator 21 and supplies it to the compressor 11.
  • the oil separator 23 is connected to, for example, the discharge pipe 11a of the compressor 11 (see FIG. 7). Refrigerating machine oil used in the compressor 11 mixes with the high temperature and high pressure refrigerant discharged from the compressor 11 and circulates within the refrigerant circuit. Although an oil separator is not required for a compressor that discharges a small amount of refrigerating machine oil, an oil separator 23 is arranged for a compressor that discharges a large amount of refrigerating machine oil. When a large amount of refrigerating machine oil flows into the condenser 12 and evaporator 14, the heat transfer effect of the condenser 12 and evaporator 14 is reduced.
  • the oil separator 23 separates the refrigerating machine oil from the refrigerant discharged by the compressor 11 and returns it to the compressor 11.
  • two or more of the refrigerant circuit components that are likely to cause refrigerant leakage among the components mounted on the heat source unit 1 are arranged with respect to the Y direction, which is the extending direction of the recess 172 of the bottom plate 17. , arranged orthogonally or substantially orthogonally.
  • At least two refrigerant circuit components of the compressor 11, the accumulator 21, the oil regulator 22, and the oil separator 23 are arranged side by side in the X direction as shown by the dashed line B in FIG. Due to this arrangement, the extending directions of the connecting portions 20 and the refrigerant pipes 10 that connect two or more refrigerant circuit components arranged side by side are orthogonal or approximately orthogonal to the Y direction, which is the extending direction of the recesses 172. Thereby, the fluorescent agent leaking from the connecting portion 20 and the refrigerant pipe 10 remains within the recess 172 and does not spread toward the X direction of the bottom plate 17. Therefore, the refrigerant leak location where the refrigerant leak has occurred can be easily specified. Furthermore, as a result, it is possible to easily identify the refrigerant circuit component that caused the refrigerant leak.
  • one or more of the accumulator 21, the oil regulator 22, and the oil separator 23 and the compressor 11 be arranged so as to be perpendicular or substantially perpendicular to the concave portion 172 and the convex portion 171.
  • the refrigerant circuit components connected to the compressor 11 and the refrigerant piping 10 connected to the compressor 11 are particularly susceptible to refrigerant leakage. This is because it is a place where it is likely to occur.
  • substantially orthogonal includes a direction in which the angle deviates from orthogonal within a range that does not impede the identification of the leaking location of the fluorescent agent when refrigerant leakage occurs.
  • at least one of the accumulator 21, the oil regulator 22, and the oil separator 23 may be referred to as a first device 25 (see FIG. 13).
  • the compressor 11 and the oil regulator 22 are arranged in the X direction.
  • the compressor 11 and the oil regulator 22 are connected via a refrigerant pipe 10. Therefore, the connection direction between the compressor 11 and the oil regulator 22 is the X direction, which is orthogonal to the Y direction.
  • the combination of refrigerant circuit components arranged side by side in the X direction is not limited to this, and may include the compressor 11 and accumulator 21, the compressor 11 and oil separator 23, or the compressor 11 and accumulator 21 and oil separator 23. It may be a combination like this.
  • At least one refrigerant circuit component of the accumulator 21, the oil regulator 22, and the oil separator 23 is installed inside the heat source unit 1 as the first device 25 (see FIG. 13). ).
  • the compressor 11 and the first device 25 are arranged side by side in the X direction, and the compressor 11 and the first device 25 are connected via the refrigerant pipe 10.
  • the compressor 11, the first device 25, the refrigerant pipe 10 connecting the compressor 11 and the first device 25, or the connecting portion 20 connecting the compressor 11 and the first device 25 are arranged in the X direction. are placed side by side.
  • the service person can easily and efficiently identify the location of the refrigerant leak and the refrigerant circuit component that caused the refrigerant leak.
  • FIG. 12 is a perspective view showing an example of the configuration of a heat source unit provided in the refrigeration cycle device according to the fourth embodiment.
  • Embodiment 4 The configuration and operation of refrigeration cycle device 100 and heat source unit 1 according to Embodiment 4 are basically the same as those of Embodiment 1, so below, the features of Embodiment 4 will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
  • a dividing wall 175 is provided inside the groove-shaped recess 172.
  • the dividing wall 175 is a plate-shaped member extending in the X direction, and is arranged parallel to the XZ plane.
  • the dividing wall 175 may have a flat plate shape, but as shown in FIG. 12, the plate thickness may increase toward the Z2 side in the Z direction.
  • the cross-sectional shape indicating the plate thickness of the dividing wall 175 is triangular, trapezoidal, wedge-shaped, or the like. Both ends of the dividing wall 175 in the X direction are joined to the inclined surface portion 172b of the recess 172.
  • the dividing wall 175 is erected from the bottom surface 172a of the recess 172 on the Z1 side in the Z direction.
  • the dividing wall 175 divides the inside of the recess 172 into two blocks aligned in the Y direction.
  • one dividing wall 175 is provided in the recess 172, and the inside of the recess 172 is divided into two blocks, but the invention is not limited to this case. That is, two or more dividing walls 175 may be provided in the recess 172, and the inside of the recess 172 may be divided into three or more blocks. The larger the number of blocks, the more accurately the refrigerant leak location can be identified.
  • the dividing wall 175 is installed inside the groove-shaped recess 172. Even if a large amount of refrigerating machine oil and fluorescent agent leaks out, the installation of the dividing wall 175 of the bottom plate 17 prevents the refrigerating machine oil and fluorescent agent from flowing in the Y direction inside the recess 172 because it is blocked by the dividing wall 175. Can not. As described above, in the fourth embodiment, by installing the dividing wall 175, the restrictions on the range through which the refrigerating machine oil and the fluorescent agent flow are even greater than in the first to third embodiments.
  • the range that requires ultraviolet irradiation when identifying a refrigerant leakage point is further narrowed, and the refrigerant leakage point can be identified even more easily. Furthermore, the larger the number of dividing walls 175, the greater the restriction on the outflow range, which makes detection easier.
  • a case is described in which a dividing wall 175 is provided in the recess 172 shown in FIG. 6(a).
  • the invention is not limited to that case, and a dividing wall 175 may be provided for the recess 172 shown in FIG. 5 or 6(b).
  • the bottom surface 172a of the recess 172 is divided into two or more blocks in the Y direction, it is possible to suppress the refrigerating machine oil and the fluorescent agent from flowing widely in the Y direction, thereby identifying the location of the refrigerant leak. is easy.
  • FIG. 13 is a plan view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the fifth embodiment.
  • the arrangement density of the groove-shaped recesses 172 may be different for each region by dividing the bottom plate 17 into a plurality of regions.
  • the fifth embodiment an example will be described in which the bottom plate 17 is divided into a plurality of regions, and the arrangement density of the groove-shaped recesses 172 is made different for each region. Note that the number of regions into which the bottom plate 17 is divided is not particularly limited, and may be determined as appropriate.
  • the configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the fifth embodiment are basically the same as those of the first embodiment, so below, the features of the fifth embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
  • the arrangement density is the ratio of the area where the recesses 172 are formed to the area of the entire upper surface 17a of the bottom plate 17. Therefore, the arrangement density may indicate the ratio of the formation area of the recesses 172 to the formation area of the projections 171 and the ratio of the number of recesses 172 to the number of projections 171.
  • a plurality of refrigerant circuit components including the compressor 11 are arranged inside the heat source unit 1. Furthermore, at least two of the plurality of refrigerant circuit components are connected to each other by the refrigerant pipe 10 via the connecting portion 20 .
  • At least one refrigerant circuit component among the accumulator 21, the oil regulator 22, and the oil separator 23 is installed as the first device 25 inside the heat source unit 1. ing. As shown in FIG. 13, the compressor 11 and the first device 25 are arranged side by side in the X direction, and the compressor 11 and the first device 25 are connected via the refrigerant pipe 10 and the connection part 20. There is. At this time, the compressor 11, the refrigerant pipe 10, and the connection section 20 are arranged directly above the second region 170b. In the second region 170b, a larger number of recesses 172 are arranged than in the first region 170a. Therefore, when refrigerant leakage occurs in the second region 170b, the refrigerating machine oil and the fluorescent agent remain within one of the recesses 172 and do not spread. As a result, the location of the refrigerant leak can be easily identified.
  • the second region 170b is arranged on the maintenance panel 1b side, and the first region 170a where the arrangement density of the recesses 172 is small is arranged in the heat source unit 1. It is desirable to arrange it on the Y2 side in the Y direction.
  • FIG. 13(a) shows a case where the bottom plate 17 is provided with two regions, the first region 170a and the second region 170b, the present invention is not limited to that case.
  • 13(b) and 13(c) show a case where the bottom plate 17 is provided with three regions: a first region 170a, a second region 170b, and a third region 170c.
  • the arrangement density of the recesses 172 in these three regions is as follows.
  • First density of first region 170a Normal Second density of second region 170b: Dense Third density of third region 170c: Sparse
  • the second density is the largest and the third density is the smallest.
  • the second region 170b is arranged on the maintenance panel 1b side, and the third region 170c is arranged on the Y2 side in the Y direction inside the heat source unit 1. is desirable. Further, the first region 170a is arranged side by side with the second region 170b in the X direction, for example.
  • the second region 170b is arranged on the maintenance panel 1b side, and the third region 170c is arranged on the Y2 side in the Y direction inside the heat source unit 1. It is desirable to place Further, the first region 170a is arranged side by side in the X direction with respect to the second region 170b and the third region 170c, for example.
  • FIGS. 13A to 13C are merely examples, and the number of regions provided on the bottom plate 17 may be changed as appropriate. Further, the arrangement of regions provided on the bottom plate 17 may be changed as appropriate.
  • an example of parts arranged in the first region 170a and the third region 170c is as follows. It is shown below. Examples of parts placed in the first region 170a: refrigerant pipes that are not connected by brazing or the like. Refrigerant piping without a connection part 20. Regarding the refrigerant pipe, there is no leakage point unless there is a hole in the refrigerant pipe itself.
  • the refrigerant pipes that are not connected by brazing or the like require less maintenance, they may be arranged on the Y2 side in the Y direction, regardless of the arrangement density of the recesses 172.
  • parts placed in the third area 170c parts not directly related to refrigerant, such as control boxes and electrical parts.
  • the arrangement density of the recesses 172 in the locations where the compressor 11 or the connecting portion 20, etc. are arranged, where refrigerant leakage is likely to occur is Make it denser than the parts. This makes it easier to identify the leak location in the X direction perpendicular to the recess 172 where refrigerant leaks are likely to occur, making leak detection easier.
  • the arrangement density of the concave portions 172 in locations where the risk of refrigerant leakage is low may be less dense than in other portions in order to improve the workability of the bottom plate 17. That is, the bottom plate 17 may have three types of arrangement density: dense, normal, and sparse.
  • the width or depth of the groove of the recess 172 may be changed depending on the amount of refrigerant leakage. For example, in locations where refrigerant leaks are likely to occur, such as the compressor 11 or the connection portion 20, the width of the recess 172 in the X direction may be increased or the depth of the recess 172 may be increased to prevent the fluorescent agent from flowing out. May be suppressed. Note that adjusting the arrangement density of the recesses 172 or adjusting the width and depth of the recesses 172 is effective if either one is adopted, but it is even more effective if these adjustments are combined.
  • Embodiment 6 As described above using FIG. 4, the bottom plate 17 is provided with drain holes 173 at both the end on the Y1 side and the end on the Y2 side in the Y direction. However, it is not limited to this. In Embodiment 6, a case will be described in which a drain hole 173 is provided at either the end on the Y1 side or the end on the Y2 side in the Y direction.
  • the drain hole 173 may cause the fluorescent agent to flow together with the drain water. Therefore, in the recessed portion 172, the drain hole 173 is provided only at either the end on the Y1 side or the end on the Y2 side in the Y direction. Furthermore, the drain hole 173B formed between the end on the Y1 side and the end on the Y2 side in the Y direction of the recess 172 shown in FIG. 4 is not formed in the sixth embodiment. Thereby, it is possible to suppress the fluorescent agent from flowing out through the drainage hole 173. Note that in the convex portion 171, the water drainage hole 173A is not so important with respect to the outflow of the fluorescent agent. Therefore, in the convex portion 171, as shown in FIG. 4, a hole 173A for draining water may be provided.
  • Embodiment 7 As shown in FIG. 3 above, in the heat source unit 1, the lower end 12a of the condenser 12 does not reach the bottom plate 17, and there is a space between the bottom plate 17 and the lower end 12a of the condenser 12 in the Z direction. It is desirable that there is a gap between the two. In the example of FIG. 3, a distance L4 is provided between the bottom plate 17 and the lower end 12a of the condenser 12 in the Z direction. Specifically, the support member 1d functions as a spacer for forming the distance L4.
  • the fluorescent agent may be affected by the suction of outside air by the blower fan 15 through the condenser 12, and the position at which the fluorescent agent is dropped may be shifted.
  • the heat source unit 1 when the blower fan 15 is driven, outside air is sucked into the heat source unit 1 from the air intake port provided in the exterior panel 1a. Then, the outside air passes through the condenser 12 and flows through the heat source unit 1 toward the Z1 side in the Z direction. Therefore, an airflow is generated within the heat source unit 1 that flows from the Z2 side toward the Z1 side in the Z direction.
  • the lower end 12a of the condenser 12 does not reach the bottom plate 17, and there is a space between the bottom plate 17 and the lower end 12a of the condenser 12 in the Z direction.
  • the configuration is such that there is an interval of distance L4 between the two.
  • a support member 1d is installed as a spacer to form a distance L4. Since the support member 1d is not provided with an intake port for taking in outside air, outside air does not flow into the heat source unit 1 from the support member 1d. As shown in FIG.
  • “there is a gap” more precisely means that there is a gap between the main surface portion 171a of the convex portion 171 of the bottom plate 17 and the lower end portion 12a of the condenser 12. Furthermore, “there is a gap” includes both a state in which the condenser 12 is not fixed to the bottom plate 17 and a state in which the condenser 12 is arranged on the support member 1d arranged on the bottom plate 17. .
  • the example in which the condenser 12 is arranged on the support member 1d is shown here, it is not limited to that case, and other members other than the support member 1d may be used.
  • FIG. 16 is an explanatory diagram schematically showing an example of the configuration of the bottom plate of the heat source unit according to Embodiment 8.
  • the configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the eighth embodiment are basically the same as those of the first embodiment, so below, the features of the eighth embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
  • the shape of the bottom plate 17 is an uneven shape in which the cross-sectional shape when viewed in the Y direction is a straight line or a substantially straight line, but the present invention is not limited thereto. That is, the bottom plate 17 may have any shape as long as the fluorescent agent does not flow in the X direction parallel to the maintenance panel 1b. Specifically, the bottom plate 17 may have a concavo-convex shape having a wavy shape made of curved lines, as shown in FIG. 16(a) or FIG. 16(b). Alternatively, the bottom plate 17 may have an uneven shape that is composed of a dimpled surface having a plurality of dimple-shaped recesses, as shown in FIG. 16(c).
  • the cross-sectional shape of the bottom plate 17 is composed of one or more types of curves, as shown in FIGS. 16(a) and 16(b), for example.
  • the width of the recess 172 in the X direction and the width of the protrusion 171 in the X direction are the same.
  • the width of the concave portion 172 in the X direction is smaller than the width of the convex portion 171 in the X direction.
  • the width of the recess 172 in the X direction and the width of the protrusion 171 in the X direction are not particularly limited and may be determined as appropriate.
  • the other configurations when the bottom plate 17 has a wavy shape are the same as in the first embodiment.
  • the bottom plate 17 has an uneven shape consisting of a dimple-formed surface, as shown in FIG. A plurality of recesses 172A are formed.
  • the dimple-shaped recess 172A may be formed from a hemispherical depression, or may be formed from a curved surface having a cylindrical shape or a U-shaped cross section.
  • the plurality of dimple-shaped recesses 172A are arranged in a row along the Y direction at intervals. Further, the number of rows constituted by the plurality of dimple-shaped recesses 172A may be one or more.
  • Each of the one or more columns extends in the Y direction, as shown in FIG. 16(c).
  • the rows are spaced apart from each other in the X direction.
  • a plurality of dimple-like recesses 172A arranged in a row are arranged in place of each of the groove-like recesses 172 shown in the first embodiment.
  • the arrangement density of the dimple-shaped recesses 172A is determined by dividing the bottom plate 17 into a plurality of regions and The arrangement density of the dimples may be made different. In the example of FIG.
  • the interval between adjacent dimple-shaped recesses 172A in the Y direction is larger than in the second region 170b. Furthermore, in the first region 170a, the number of rows of dimple-shaped recesses 172A is smaller than in the second region 170b.
  • FIG. 16(c) is just an example, and the present invention is not limited thereto. Note that when the dimple-shaped recess 172A is formed on the upper surface portion 17a of the bottom plate 17, the dimple-shaped recess 172A is a circular depression in plan view, so the fluorescent agent is absorbed into the dimple-shaped recess 172A as shown in area A.
  • the arrangement density of the dimple-shaped recesses 172A that is, the arrangement density of the rows of the dimple-shaped recesses 172A is not limited to the above description, but may be arranged on the upper surface of the bottom plate 17, for example, like a polka dot pattern. It may be uniform over the entire surface of 17a.
  • the ratio of the concave portions 172 to the convex portions 171, the number of the concave portions 172 and the convex portions 171, the size and depth of the concave portions 172, etc. are not particularly limited, and may be determined as appropriate. You may decide.
  • FIG. 14 is a sectional view schematically showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to Embodiment 9.
  • the configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the ninth embodiment are basically the same as those of the first embodiment, so below, the features of the ninth embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
  • the bottom surface 172a of the recess 172 is a plane parallel to the XY plane, but the present invention is not limited to that case. That is, as shown in FIG. 14, the bottom portion 172a of the groove-shaped recess 172 may be sloped. Specifically, as shown in FIG. 14, the bottom surface portion 172a of each recess 172 is inclined in the Y direction from the Y2 side toward the Y1 side and becomes lower toward the maintenance panel 1b.
  • each recess 172 has a stopper 172c on the Y1 side in the Y direction to stop the fluorescent agent from flowing down.
  • the stopper 172c is erected from the bottom surface 172a of the recess 172 toward the Z1 side in the Z direction.
  • the fluorescent agent leaked together with the refrigerant flows down along the bottom surface 172a of the recess 172.
  • the fluorescent agent comes into contact with the stopper 172c and is stopped.
  • the fluorescent agent remains at the stopper 172c.
  • each recess 172 By removing the maintenance panel 1b and irradiating only the Y1 side end of each recess 172 with ultraviolet rays, the service person can check whether fluorescent agent is attached to all the recesses 172. If there is a recess 172 to which the fluorescent agent is attached, by irradiating ultraviolet rays along the recess 172, the location of the refrigerant leak can be discovered.
  • the bottom surface 172a of the recess 172 is inclined so that the front side is lower than the back side, and has a shape that blocks the fluorescent agent at the lowest point. In this case, the moment the service person opens the maintenance panel 1b, the presence or absence of refrigerant leakage can be confirmed, and the location of the fluorescent agent leakage in the X direction along the maintenance panel 1b can be identified at an early stage.
  • FIG. 15 is a side view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the tenth embodiment.
  • a convex portion 171 is provided in a region where the groove-like recess 172 or the dimple-like recess 172A is not provided.
  • a fluorescent agent retention member 171c made of a mesh-like net material or an absorbent material may be provided over the entire main surface portion 171a of the convex portion 171, as shown in FIG.
  • the fluorescent agent leaked together with the refrigerant is caught in the net of the mesh-like net material, and the fluorescent agent leaked together with the refrigerant is caught at that position. Accumulate. Further, when an absorbing material is provided as the fluorescent agent retention member 171c on the main surface portion 171a of the convex portion 171, the fluorescent agent leaked together with the refrigerant is absorbed by the absorbing material. Therefore, the fluorescent agent dropped onto the main surface portion 171a of the convex portion 171 does not flow down into the recessed portion 172, but remains at the dropped position.
  • At least one of a mesh-like net material and an absorbent material is provided on the main surface portion 171a of the convex portion 171 of the bottom plate 17 to retain or absorb the fluorescent agent. Locate the location of the leak. This further facilitates identification of the location of the refrigerant leak.
  • the main surface portion 171a of the convex portion 171 of the bottom plate 17 may be provided with both a mesh-like net material and an absorbent material. Specifically, the main surface portion 171a of the convex portion 171 is first coated with an absorbent material. Next, a mesh material is applied on top of the absorbent material. As a result, the fluorescent agent is first restrained from flowing in the X direction and the Y direction by the mesh material. The fluorescent agent that has flowed down to the Z2 side in the Z direction through the mesh of the mesh material is absorbed by the absorbent material. As a result, the fluorescent agent is prevented from flowing further in the X direction and the Y direction, and remains at the position where it was dropped.
  • a fluorescent agent made of a mesh-like net material or an absorbing material is applied not only to the main surface portion 171a of the convex portion 171 but also to the inclined surface portion 171b.
  • a retention member 171c may be provided.
  • 1 heat source unit 1a exterior panel, 1b maintenance panel, 1c upper surface, 1d support member, 2 load unit, 10 refrigerant piping, 11 compressor, 11a discharge pipe, 11b suction pipe, 11c leg, 12 condenser, 12a lower end , 13 expansion valve, 14 evaporator, 15 blower fan, 16 blower fan, 17 bottom plate, 17a top surface, 18 service space, 19A ventilation space, 19B ventilation space, 20 connection section, 20A connection section, 20B connection section, 21 accumulator , 22 oil regulator, 23 oil separator, 24 dryer, 25 first equipment, 30 wall, 31 wall, 100 refrigeration cycle device, 170a first area, 170b second area, 170c third area, 171 convex part, 171a main Surface part, 171b slope part, 171c fluorescent agent retention member, 172 recess (groove-shaped recess), 172A recess (dimple-shaped recess), 172a bottom part, 172b slope part, 172c stopper, 173 hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This refrigeration cycle device comprises a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by pipes, and a refrigerant circulates through the pipes, wherein: a fluorescent agent that has been added to a refrigerating machine oil circulates with the refrigerant through the refrigerant circuit; and a bottom plate of a heat source unit having the compressor and the condenser which are installed therein has a shape of protrusions and recesses that has a bottom surface section on which the fluorescent agent that has leaked out stays when the refrigerant has leaked out of the refrigerant circuit.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷媒漏洩検知手段を備えた冷凍サイクル装置に関わる。 The present disclosure relates to a refrigeration cycle device equipped with a refrigerant leak detection means.
 冷凍サイクル装置に用いられているフロン冷媒ガスには、地球温暖化をもたらす温室効果ガスが使用されている。温室効果ガスの削減のため、代替フロン冷媒への移行が進められており、冷凍サイクル装置に用いるフロン冷媒ガスが削減されつつある。しかしながら、それと同時に、既に設置されている冷凍サイクル装置から漏洩する冷媒を早期発見および処置することで、フロン冷媒ガスの地球温暖化への影響を低減させる技術も重要である。 The fluorocarbon refrigerant gas used in refrigeration cycle equipment uses greenhouse gases that cause global warming. In order to reduce greenhouse gas emissions, a shift to alternative fluorocarbon refrigerants is underway, and the amount of fluorocarbon refrigerant gas used in refrigeration cycle equipment is being reduced. However, at the same time, it is also important to develop technology to reduce the impact of fluorocarbon refrigerant gas on global warming by early detection and treatment of refrigerant leaking from already installed refrigeration cycle equipment.
特開2012-184435号公報Japanese Patent Application Publication No. 2012-184435
 冷媒漏洩箇所を発見しやすくする方法として、冷凍サイクル装置内に蛍光剤を封入しておく方法がある。この方法においては、冷媒漏れが発生した際、漏れ箇所から冷媒と共に蛍光剤が漏洩される。そのため、紫外線ランプを照射すると、漏れ箇所に付着した蛍光剤が発光するため、漏れ箇所の特定が可能となる。しかし、冷凍サイクル装置の冷媒回路の部品点数は多く、且つ、配管形状も複雑であるため、闇雲に紫外線ランプを照射するだけでは、漏洩箇所の特定に時間を要し、さらには、漏洩箇所の特定に至らないケースもある。 One way to make it easier to find refrigerant leaks is to seal in a fluorescent agent inside the refrigeration cycle device. In this method, when a refrigerant leak occurs, the fluorescent agent is leaked together with the refrigerant from the leak location. Therefore, when irradiated with an ultraviolet lamp, the fluorescent agent attached to the leakage area emits light, making it possible to identify the leakage area. However, the number of parts in the refrigerant circuit of a refrigeration cycle device is large, and the shape of the piping is complicated. There are some cases where it is not possible to identify.
 さらに、一般的な従来の熱源ユニットでは、底板に凹凸があまり無いため、たとえ蛍光剤を冷凍機油に添加しておいても、大量の冷媒漏洩が発生した場合は、滴下した冷凍機油および蛍光剤が底板の広域に広がってしまう。そのため、底板において、紫外線を照射すべき範囲が大きくなり、漏洩箇所の特定に時間を要することとなっていた。 Furthermore, in general conventional heat source units, there are not many irregularities on the bottom plate, so even if a fluorescent agent is added to the refrigerating machine oil, if a large amount of refrigerant leaks, the dripped refrigerating machine oil and the fluorescent agent will be removed. will spread over a wide area on the bottom plate. Therefore, in the bottom plate, the range to be irradiated with ultraviolet rays becomes large, and it takes time to identify the leakage location.
 本開示は、かかる課題を解決するためになされたものであり、冷媒漏洩時の冷媒漏洩箇所の早期特定を可能とする冷凍サイクル装置を得ることを目的とする。 The present disclosure has been made to solve such problems, and aims to provide a refrigeration cycle device that enables early identification of a refrigerant leak location when a refrigerant leaks.
 本開示に係る冷凍サイクル装置は、圧縮機、凝縮器、膨張弁および蒸発器が配管によって接続され、前記配管を冷媒が循環する冷媒回路を備えた冷凍サイクル装置であって、前記冷媒回路内を、前記冷媒と共に冷凍機油に添加された蛍光剤が循環し、前記圧縮機と前記凝縮器とが内部に設置された熱源ユニットの底板が、前記冷媒が前記冷媒回路から漏洩したときに、漏洩した前記蛍光剤が滞留する底面部を有する凹凸形状を有するものである。 A refrigeration cycle device according to the present disclosure is a refrigeration cycle device including a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping, and in which a refrigerant circulates through the piping. , a fluorescent agent added to refrigerating machine oil is circulated together with the refrigerant, and a bottom plate of a heat source unit in which the compressor and the condenser are installed is leaked when the refrigerant leaks from the refrigerant circuit. It has an uneven shape having a bottom surface where the fluorescent agent stays.
 本開示に係る冷凍サイクル装置によれば、熱源ユニットに、冷媒が冷媒回路から漏洩したときに、漏洩した蛍光剤が滞留する底面部を有する凹凸形状を有する底板を用いることで、冷媒漏洩時の冷媒、冷凍機油、および、蛍光剤の滞留箇所を、底板の凹凸形状の一部に限定することができ、冷媒漏洩箇所の早期特定を可能にする。 According to the refrigeration cycle device according to the present disclosure, when the refrigerant leaks from the refrigerant circuit, the heat source unit is provided with a bottom plate having an uneven shape having a bottom part where the leaked fluorescent agent stays. The location where the refrigerant, refrigerating machine oil, and fluorescent agent accumulate can be limited to a part of the uneven shape of the bottom plate, making it possible to quickly identify the location where the refrigerant leaks.
実施の形態1に係る冷凍サイクル装置に設けられた熱源ユニットの外観の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the appearance of a heat source unit provided in the refrigeration cycle device according to the first embodiment. 実施の形態1に係る冷凍サイクル装置を構成する冷媒回路の回路構成の一例を示す概略図である。1 is a schematic diagram showing an example of a circuit configuration of a refrigerant circuit that constitutes a refrigeration cycle device according to a first embodiment; FIG. 実施の形態1に係る熱源ユニットの構成の一例を示す斜視図である。1 is a perspective view showing an example of the configuration of a heat source unit according to Embodiment 1. FIG. 実施の形態1に係る熱源ユニットの底板の構成の一例を示す平面図である。FIG. 3 is a plan view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment. 実施の形態1に係る熱源ユニットの底板の構成の一例を示す側面図である。FIG. 2 is a side view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment. 実施の形態1に係る熱源ユニットの底板の構成の一例を模式的に示す側面図である。FIG. 3 is a side view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment. 実施の形態1に係る熱源ユニットにおける冷媒回路部品の取付方法の一例を模式的に示す側面図および平面図である。FIG. 3 is a side view and a plan view schematically showing an example of a method for attaching refrigerant circuit components in the heat source unit according to the first embodiment. 実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの設置環境を示す平面図である。7 is a plan view showing an installation environment of a heat source unit provided in a refrigeration cycle device according to a second embodiment. FIG. 実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの設置環境を示す平面図である。7 is a plan view showing an installation environment of a heat source unit provided in a refrigeration cycle device according to a second embodiment. FIG. 実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの設置環境を示す斜視図である。FIG. 3 is a perspective view showing an installation environment of a heat source unit provided in a refrigeration cycle device according to a second embodiment. 実施の形態3に係る冷凍サイクル装置に設けられた熱源ユニットの構成の一例を示す平面図である。7 is a plan view showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to Embodiment 3. FIG. 実施の形態4に係る冷凍サイクル装置に設けられた熱源ユニットの構成の一例を示す斜視図である。FIG. 7 is a perspective view showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to a fourth embodiment. 実施の形態5に係る熱源ユニットの底板の構成の一例を模式的に示す平面図である。FIG. 7 is a plan view schematically showing an example of the configuration of a bottom plate of a heat source unit according to Embodiment 5. FIG. 実施の形態9に係る冷凍サイクル装置に設けられた熱源ユニットの構成の一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to a ninth embodiment. 実施の形態10に係る熱源ユニットの底板の構成の一例を模式的に示す側面図である。FIG. 7 is a side view schematically showing an example of the configuration of a bottom plate of a heat source unit according to Embodiment 10. FIG. 実施の形態8に係る熱源ユニットの底板の構成の一例を模式的に示す説明図である。FIG. 7 is an explanatory diagram schematically showing an example of the configuration of a bottom plate of a heat source unit according to Embodiment 8.
 以下、実施の形態に係る冷凍サイクル装置および熱源ユニットなどについて、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の前文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものと異なる場合がある。各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。そして、明細書全文に表されている構成要素の形態は、あくまでも例示であって、明細書に記載された実施の形態に限定するものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。明細書に記載された組合せは、各実施の形態における組合せに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、添え字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、符号、添え字などを省略して記載する場合がある。 Hereinafter, a refrigeration cycle device, a heat source unit, etc. according to an embodiment will be described with reference to drawings and the like. In the following drawings, the same reference numerals are the same or equivalent, and are common in the preamble of the embodiments described below. Further, in the drawings, the size relationship of each component may differ from the actual one. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the embodiments described in the specification, and may be modified in various ways without departing from the gist of the present disclosure. It is possible to do so. The combinations described in the specification are not limited to the combinations in each embodiment, and components described in other embodiments can be applied to other embodiments. Furthermore, regarding multiple devices of the same type that are distinguished by subscripts, if there is no need to distinguish or specify them, the symbols, subscripts, etc. may be omitted from the description.
 また、各図面において、熱源ユニットの幅方向をX方向とし、熱源ユニットの奥行き方向をY方向とする。Y方向は第1方向と呼ばれることがある。X方向は第2方向と呼ばれることがある。Y方向において、Y1側が、熱源ユニットの前側すなわち正面側であり、Y2側が、熱源ユニットの後側すなわち背面側である。X方向およびY方向は、例えば水平方向である。Z方向は、X方向およびY方向に交差する方向である。Z方向は、例えば、垂直方向、すなわち、上下方向である。Z方向が上下方向の場合、Z1側が上側または上方向であり、Z2側が下側または下方向である。Z方向は、鉛直方向の場合がある。 In each drawing, the width direction of the heat source unit is the X direction, and the depth direction of the heat source unit is the Y direction. The Y direction is sometimes referred to as a first direction. The X direction is sometimes referred to as the second direction. In the Y direction, the Y1 side is the front side of the heat source unit, that is, the front side, and the Y2 side is the rear side, that is, the back side of the heat source unit. The X direction and the Y direction are, for example, horizontal directions. The Z direction is a direction that intersects the X direction and the Y direction. The Z direction is, for example, a vertical direction, that is, an up-down direction. When the Z direction is an up-down direction, the Z1 side is the upper side or upward direction, and the Z2 side is the lower side or downward direction. The Z direction may be a vertical direction.
 実施の形態1.
 (冷凍サイクル装置100)
 図1および図2を用いて、実施の形態1に係る冷凍サイクル装置100の構成について説明する。図1は、実施の形態1に係る冷凍サイクル装置に設けられた熱源ユニットの外観の一例を示す斜視図である。図2は、実施の形態1に係る冷凍サイクル装置を構成する冷媒回路の回路構成の一例を示す概略図である。
Embodiment 1.
(refrigeration cycle device 100)
The configuration of refrigeration cycle apparatus 100 according to Embodiment 1 will be described using FIGS. 1 and 2. FIG. 1 is a perspective view showing an example of the appearance of a heat source unit provided in a refrigeration cycle apparatus according to a first embodiment. FIG. 2 is a schematic diagram showing an example of a circuit configuration of a refrigerant circuit that constitutes the refrigeration cycle device according to the first embodiment.
 図1および図2に示すように、実施の形態1に係る冷凍サイクル装置100は、熱源ユニット1と負荷ユニット2とで構成されており、熱源ユニット1と負荷ユニット2とが冷媒配管10で接続されることにより、冷凍サイクルが形成されている。なお、冷凍サイクル装置100は、例えば、空気調和装置または給湯装置として用いられるが、それらに用途は限定されない。 As shown in FIGS. 1 and 2, the refrigeration cycle device 100 according to the first embodiment includes a heat source unit 1 and a load unit 2, and the heat source unit 1 and the load unit 2 are connected by a refrigerant pipe 10. By doing so, a refrigeration cycle is formed. Note that, although the refrigeration cycle device 100 is used as, for example, an air conditioner or a water heater, its use is not limited thereto.
 熱源ユニット1には、図2に示すように、圧縮機11、凝縮器12、および、送風ファン15が収容されている。送風ファン15は、凝縮器12に対して設置されており、凝縮器12に対して、空気等の流体を送風する。送風ファン15によって送風される空気等の流体は、例えば、熱源ユニット1の周囲の外気である。なお、送風ファン15は、図1に示すように、例えば、熱源ユニット1の上部に設置される。 As shown in FIG. 2, the heat source unit 1 houses a compressor 11, a condenser 12, and a blower fan 15. The blower fan 15 is installed relative to the condenser 12 and blows fluid such as air to the condenser 12. The fluid such as air blown by the blower fan 15 is, for example, the outside air around the heat source unit 1. Note that the blower fan 15 is installed, for example, at the top of the heat source unit 1, as shown in FIG.
 負荷ユニット2は、膨張弁13、蒸発器14、および、送風ファン16を有している。送風ファン16は、蒸発器14に対して設置されており、蒸発器14に対して、空気等の流体を送風する。送風ファン16が送風する空気等の流体は、例えば、負荷ユニット2の周囲の空気である。冷凍サイクル装置100が空気調和装置の場合には、空気等の流体は、負荷ユニットが設置されている空調対象領域の室内空気である。 The load unit 2 includes an expansion valve 13, an evaporator 14, and a blower fan 16. The blowing fan 16 is installed relative to the evaporator 14 and blows fluid such as air to the evaporator 14. The fluid such as air that is blown by the ventilation fan 16 is, for example, the air around the load unit 2. When the refrigeration cycle device 100 is an air conditioner, the fluid such as air is indoor air in an air-conditioned area where the load unit is installed.
 図2に示すように、圧縮機11、凝縮器12、膨張弁13、および、蒸発器14は、冷媒配管10によって接続されている。なお、冷媒配管10は、単に、「配管」と呼ばれることがある。 As shown in FIG. 2, the compressor 11, condenser 12, expansion valve 13, and evaporator 14 are connected by a refrigerant pipe 10. Note that the refrigerant pipe 10 is sometimes simply referred to as a "pipe."
 なお、図2に示す例では、1台の負荷ユニット2が熱源ユニット1に対して設けられているが、これに限られず、例えば、2台以上の負荷ユニット2を熱源ユニット1に対して並列に接続してもよい。また、負荷ユニット2を複数設けた場合、それぞれの負荷ユニット2は、すべて同一の容量でもよいし、それぞれが異なる容量でもよい。 In the example shown in FIG. 2, one load unit 2 is provided for the heat source unit 1, but the invention is not limited to this. For example, two or more load units 2 may be provided in parallel to the heat source unit 1. may be connected to. Further, when a plurality of load units 2 are provided, the load units 2 may all have the same capacity, or may have different capacities.
 圧縮機11は、低温および低圧の冷媒を吸入し、当該冷媒を圧縮することで、高温および高圧の冷媒にして吐出する。圧縮機11は、回転数がインバータ制御されるインバータ圧縮機でもよい。ここで、図1および図2に示す熱源ユニット1は、1台の圧縮機11を有する構成であるが、これに限らない。例えば、熱源ユニット1は、負荷ユニット2における負荷の大きさに応じて、2台以上の圧縮機11を有する構成であってもよい。 The compressor 11 takes in a low-temperature and low-pressure refrigerant, compresses the refrigerant, and discharges the refrigerant as a high-temperature and high-pressure refrigerant. The compressor 11 may be an inverter compressor whose rotation speed is controlled by an inverter. Here, although the heat source unit 1 shown in FIGS. 1 and 2 has a configuration having one compressor 11, the present invention is not limited to this. For example, the heat source unit 1 may include two or more compressors 11 depending on the magnitude of the load on the load unit 2.
 凝縮器12は、冷媒配管10を介して圧縮機11の吐出側に接続されている。凝縮器12には、圧縮機11から吐出された冷媒が流入される。凝縮器12は、当該冷媒と空気等の流体との間で熱交換を行う。凝縮器12は、例えば、フィンアンドチューブ型の熱交換器である。ただし、凝縮器12は、フィンアンドチューブ型の熱交換器に限定されず、コルゲートフィンを備えた熱交換器、あるいは、フィンが設けられていないフィンレス熱交換器等、他の形態の熱交換器であってもよい。また、凝縮器12の熱交換で用いられる空気等の流体は、空気に限定されない。空気等の流体は、例えば、水、冷媒、または、ブライン等であってもよい。その場合、凝縮器12に対して設置される送風ファン15は不要であるため、送風ファン15は設置しなくてもよい。このように、凝縮器12は、冷媒と流体との間で熱交換を行い、冷媒を凝縮させるものである。 The condenser 12 is connected to the discharge side of the compressor 11 via the refrigerant pipe 10. The refrigerant discharged from the compressor 11 flows into the condenser 12 . The condenser 12 exchanges heat between the refrigerant and a fluid such as air. The condenser 12 is, for example, a fin-and-tube heat exchanger. However, the condenser 12 is not limited to a fin-and-tube type heat exchanger, and may be a heat exchanger of other forms, such as a heat exchanger with corrugated fins or a finless heat exchanger without fins. It may be. Further, the fluid such as air used for heat exchange in the condenser 12 is not limited to air. The fluid such as air may be, for example, water, a refrigerant, or brine. In that case, the blower fan 15 installed with respect to the condenser 12 is unnecessary, so the blower fan 15 does not need to be installed. In this way, the condenser 12 performs heat exchange between the refrigerant and the fluid and condenses the refrigerant.
 凝縮器12から送り出された高圧の液冷媒は、負荷ユニット2に送り込まれて、膨張弁13に流入される。高圧の液冷媒は、膨張弁13によって減圧されて、低圧の冷媒となる。膨張弁13は、冷媒を減圧させる減圧装置である。膨張弁13は、例えば、電子膨張弁、キャピラリチューブ等である。 The high-pressure liquid refrigerant sent out from the condenser 12 is sent to the load unit 2 and flows into the expansion valve 13. The high pressure liquid refrigerant is reduced in pressure by the expansion valve 13 and becomes a low pressure refrigerant. The expansion valve 13 is a pressure reducing device that reduces the pressure of the refrigerant. The expansion valve 13 is, for example, an electronic expansion valve, a capillary tube, or the like.
 蒸発器14には、膨張弁13から流出された低圧の冷媒が流入される。蒸発器14は、当該冷媒と空気等の流体との間で熱交換を行う。蒸発器14は、例えば、フィンアンドチューブ型の熱交換器である。ただし、蒸発器14は、フィンアンドチューブ型の熱交換器に限定されず、コルゲートフィンを備えた熱交換器、あるいは、フィンが設けられていないフィンレス熱交換器等、他の形態の熱交換器であってもよい。また、空気等の流体は、空気に限定されない。空気等の流体は、例えば、水、冷媒、または、ブライン等であってもよい。その場合、蒸発器14に対して設置される送風ファン16は不要であるため、送風ファン16は設置しなくてもよい。このように、蒸発器14は、冷媒と流体との間で熱交換を行い、冷媒を蒸発させるものである。 The low-pressure refrigerant flowing out from the expansion valve 13 flows into the evaporator 14 . The evaporator 14 exchanges heat between the refrigerant and a fluid such as air. The evaporator 14 is, for example, a fin-and-tube heat exchanger. However, the evaporator 14 is not limited to a fin-and-tube type heat exchanger, and may be a heat exchanger of other forms, such as a heat exchanger with corrugated fins or a finless heat exchanger without fins. It may be. Furthermore, the fluid such as air is not limited to air. The fluid such as air may be, for example, water, a refrigerant, or brine. In that case, the blower fan 16 installed with respect to the evaporator 14 is unnecessary, so the blower fan 16 does not need to be installed. In this way, the evaporator 14 exchanges heat between the refrigerant and the fluid and evaporates the refrigerant.
 蒸発器14から流出した冷媒は、圧縮機11に流入される。そして、圧縮機11で、再び、冷媒が圧縮されて、凝縮器12に向けて吐出される。冷凍サイクル装置100においては、本サイクルが繰り返される。 The refrigerant flowing out of the evaporator 14 flows into the compressor 11. Then, the refrigerant is compressed again by the compressor 11 and discharged toward the condenser 12. In the refrigeration cycle device 100, this cycle is repeated.
 冷凍サイクル装置100における冷媒回路を循環する冷媒種類としては、例えば、単一冷媒、疑似共沸混合冷媒、または、非疑似共沸混合冷媒等が使用される。単一冷媒には、たとえば、R22またはR32等がある。疑似共沸混合冷媒には、たとえば、R410AまたはR404A等がある。非疑似共沸混合冷媒には、たとえば、R407C等がある。 As the type of refrigerant circulating in the refrigerant circuit in the refrigeration cycle device 100, for example, a single refrigerant, a pseudo-azeotropic refrigerant mixture, a non-pseudo-azeotropic refrigerant mixture, etc. are used. Examples of single refrigerants include R22 and R32. Examples of the pseudo azeotropic refrigerant mixture include R410A and R404A. Examples of the non-pseudo azeotropic refrigerant mixture include R407C.
 (熱源ユニット1)
 次に、図1、および、図3~図7を用いて、実施の形態1に係る熱源ユニット1の構成について説明する。図3は、実施の形態1に係る熱源ユニットの構成の一例を示す斜視図である。図3においては、説明のため、熱源ユニット1の外装パネル1aおよびメンテナンスパネル1bを取り外した状態を示している。また、図3においては、説明のため、熱源ユニット1内の上部に配置された各部品については、図示を省略している。図4は、実施の形態1に係る熱源ユニットの底板の構成の一例を示す平面図である。図5は、実施の形態1に係る熱源ユニットの底板の構成の一例を示す側面図である。図6は、実施の形態1に係る熱源ユニットの底板の構成の一例を模式的に示す側面図である。図7は、実施の形態1に係る熱源ユニットにおける冷媒回路部品の取付方法の一例を模式的に示す側面図および平面図である。
(Heat source unit 1)
Next, the configuration of the heat source unit 1 according to the first embodiment will be described using FIG. 1 and FIGS. 3 to 7. FIG. 3 is a perspective view showing an example of the configuration of the heat source unit according to the first embodiment. In FIG. 3, for the sake of explanation, the heat source unit 1 is shown with the exterior panel 1a and the maintenance panel 1b removed. Further, in FIG. 3, for the sake of explanation, the illustration of each component disposed in the upper part of the heat source unit 1 is omitted. FIG. 4 is a plan view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment. FIG. 5 is a side view showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment. FIG. 6 is a side view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the first embodiment. FIG. 7 is a side view and a plan view schematically showing an example of a method for attaching refrigerant circuit components in the heat source unit according to the first embodiment.
 図1に示すように、熱源ユニット1は、全体として直方体形状を有している。熱源ユニット1の4つの側面のうち、3つの側面すなわち左右および背面には、外装パネル1aが設けられている。また、熱源ユニット1の4つの側面のうち、残りの1つの側面すなわち正面には、メンテナンスパネル1bが着脱可能に設けられている。メンテナンスパネル1bは、熱源ユニット1のY方向のY1側の側面である正面に配置されている。すなわち、メンテナンスパネル1bは、X方向に延伸する側面の1つに対して設けられている。メンテナンスパネル1bは、熱源ユニット1の点検等のメンテナンスの際に、サービスマンによって取り外される。このように、3つの外装パネル1aと1つのメンテナンスパネル1bとで、熱源ユニット1の筐体は構成されている。なお、メンテナンスパネル1bは、1枚のパネルから構成されていてもよいが、図1に示すように、左右2枚に分かれていてもよい。 As shown in FIG. 1, the heat source unit 1 has a rectangular parallelepiped shape as a whole. Exterior panels 1a are provided on three of the four side surfaces of the heat source unit 1, that is, on the left, right, and back sides. Further, among the four side surfaces of the heat source unit 1, a maintenance panel 1b is removably provided on the remaining one side surface, that is, the front side. The maintenance panel 1b is arranged on the front side of the heat source unit 1 on the Y1 side in the Y direction. That is, the maintenance panel 1b is provided on one of the side surfaces extending in the X direction. The maintenance panel 1b is removed by a service person during maintenance such as inspection of the heat source unit 1. In this way, the casing of the heat source unit 1 is composed of three exterior panels 1a and one maintenance panel 1b. Note that the maintenance panel 1b may be composed of one panel, or may be divided into two panels, left and right, as shown in FIG.
 また、3つの外装パネル1aには、空気を熱源ユニット1内に取り込むための吸気口がそれぞれ設けられている。熱源ユニット1の上面部1cは開口されており、上面部1cの真下には、送風ファン15が設けられている。熱源ユニット1の上面部1cには、必要に応じて、網目状のファンガードが設置される。送風ファン15が駆動することによって、外装パネル1aに設けられた吸気口から空気が取り込まれる。取り込まれた空気は、凝縮器12を通過して、熱源ユニット1の上面部1cの開口から、熱源ユニット1の外部に排出される。なお、図1の例では、熱源ユニット1の上面部1cに2つの開口が設けられ、2つの開口のそれぞれに対して送風ファン15が設けられているが、その場合に限定されない。すなわち、熱源ユニット1の上面部1cには1つの開口が設けられて、当該1つの開口に対して1つの送風ファン15が設けられていてもよい。このように、熱源ユニット1の上面部1cの開口の個数、および、送風ファン15の個数は、1以上の任意の個数であってもよく、特に限定されない。 Furthermore, the three exterior panels 1a are each provided with an intake port for taking air into the heat source unit 1. The upper surface portion 1c of the heat source unit 1 is open, and a blower fan 15 is provided directly below the upper surface portion 1c. A mesh fan guard is installed on the upper surface portion 1c of the heat source unit 1, if necessary. When the blower fan 15 is driven, air is taken in from the intake port provided in the exterior panel 1a. The taken air passes through the condenser 12 and is discharged to the outside of the heat source unit 1 from the opening in the upper surface portion 1c of the heat source unit 1. In addition, in the example of FIG. 1, two openings are provided in the upper surface part 1c of the heat source unit 1, and the ventilation fan 15 is provided for each of two openings, but it is not limited to that case. That is, one opening may be provided in the upper surface portion 1c of the heat source unit 1, and one ventilation fan 15 may be provided for the one opening. In this way, the number of openings in the upper surface portion 1c of the heat source unit 1 and the number of blower fans 15 may be any number greater than or equal to 1, and are not particularly limited.
 3つの外装パネル1aの下方には、凝縮器12を支持する支持部材1dが設けられている。外装パネル1aは、支持部材1dに取り付けられている。また、凝縮器12は、図3に示すように、支持部材1dの上に載置され、支持部材1dに取り付けられている。 A support member 1d that supports the condenser 12 is provided below the three exterior panels 1a. The exterior panel 1a is attached to a support member 1d. Further, as shown in FIG. 3, the condenser 12 is placed on and attached to the support member 1d.
 また、図3に示すように、熱源ユニット1においては、圧縮機11、凝縮器12等の冷媒回路部品が、底板17、外装パネル1a、または、支持部材1dに対して、固定されている。図3に示すように、凝縮器12は、平面視で、U字形状を有している。凝縮器12は、例えば、フィンと伝熱管とから構成されるフィンアンドチューブ型熱交換器である。伝熱管は、XY平面に平行に延設されている。伝熱管は、曲げ加工が施されて、平面視でU字形状を有している。そのため、伝熱管の管軸方向は、伝熱管の形状に従い、U字状に変化する。凝縮器12は、熱源ユニット1の奥行き方向であるY方向のY2側に配置されている。具体的には、凝縮器12は、熱源ユニット1の左右および背面の外装パネル1aに沿って配置されている。一方、圧縮機11、凝縮器12等の冷媒回路部品は、熱源ユニット1の奥行き方向であるY方向のY1側に配置されている。 Further, as shown in FIG. 3, in the heat source unit 1, refrigerant circuit components such as the compressor 11 and the condenser 12 are fixed to the bottom plate 17, the exterior panel 1a, or the support member 1d. As shown in FIG. 3, the condenser 12 has a U-shape in plan view. The condenser 12 is, for example, a fin-and-tube heat exchanger composed of fins and heat exchanger tubes. The heat exchanger tubes extend parallel to the XY plane. The heat exchanger tube is bent and has a U-shape in plan view. Therefore, the tube axis direction of the heat exchanger tube changes into a U-shape according to the shape of the heat exchanger tube. The condenser 12 is arranged on the Y2 side in the Y direction, which is the depth direction of the heat source unit 1. Specifically, the condenser 12 is arranged along the left and right sides of the heat source unit 1 and along the rear exterior panel 1a. On the other hand, refrigerant circuit components such as the compressor 11 and the condenser 12 are arranged on the Y1 side in the Y direction, which is the depth direction of the heat source unit 1.
 図4~図6は、熱源ユニット1に設けられた底板17の形状の一例を示している。底板17は、熱源ユニット1の下部、すなわち、底部に配置されている。底板17は、XY平面に平行に設置されている。底板17は、熱源ユニット1の設置面に平行に配置されている。底板17は、凹凸形状を有している。底板17は、図4に示すように、平面視で、矩形形状を有している。底板17は、冷媒が冷媒回路から漏洩したときに、冷媒と共に漏洩した蛍光剤が滞留する凹みからなる底面部172a(図6参照)を有することで凹凸形状となっている。図4および図5に示す例では、底板17は、リブ状の凸部171および溝状の凹部172の少なくともいずれか一方を設けることで、凹凸形状を形成している。凸部171および凹部172は、共に、Y方向に延設されている。凹部172は、凸部171に対して、Z2側に凹んでいる。 4 to 6 show examples of the shape of the bottom plate 17 provided in the heat source unit 1. The bottom plate 17 is arranged at the lower part of the heat source unit 1, that is, at the bottom. The bottom plate 17 is installed parallel to the XY plane. The bottom plate 17 is arranged parallel to the installation surface of the heat source unit 1. The bottom plate 17 has an uneven shape. As shown in FIG. 4, the bottom plate 17 has a rectangular shape in plan view. The bottom plate 17 has an uneven shape by having a bottom surface portion 172a (see FIG. 6) consisting of a recess in which fluorescent agent leaked together with the refrigerant stays when the refrigerant leaks from the refrigerant circuit. In the example shown in FIGS. 4 and 5, the bottom plate 17 has an uneven shape by providing at least one of a rib-shaped convex portion 171 and a groove-shaped concave portion 172. Both the convex portion 171 and the concave portion 172 extend in the Y direction. The recess 172 is recessed toward the Z2 side with respect to the protrusion 171.
 底板17は、底板17の上面部17aにおいて、凸部171および凹部172の少なくともいずれか一方を有することで、凹凸形状としてもよいが、その場合に限定されない。底板17は、図5に示すように、底板17の本体の上面部17aに、凹凸形状を有するパネルを載置することで、凹凸形状としてもよい。 The bottom plate 17 may have an uneven shape by having at least one of a convex portion 171 and a concave portion 172 on the upper surface portion 17a of the bottom plate 17, but the present invention is not limited thereto. The bottom plate 17 may have an uneven shape by placing a panel having an uneven shape on the upper surface 17a of the main body of the bottom plate 17, as shown in FIG.
 あるいは、底板17は、図6(a)に示すように、底板17の上面部17aに凹部172を有することで、凹凸形状としてもよい。凹部172は、図6(a)に示すように、底板17の上面部17aからZ2側に向かって凹んでいる。凹部172と凹部172との間が、凸部171となる。凸部171と凹部172とは、交互に配置されている。 Alternatively, the bottom plate 17 may have an uneven shape by having a recess 172 on the upper surface 17a of the bottom plate 17, as shown in FIG. 6(a). The recessed portion 172 is recessed from the upper surface portion 17a of the bottom plate 17 toward the Z2 side, as shown in FIG. 6(a). The convex portion 171 is located between the concave portions 172 . The convex portions 171 and the concave portions 172 are arranged alternately.
 図6(a)の場合、凹部172は、断面形状が、台形形状になっている。凹部172は、平坦な底面部172aと、底面部172aに隣接する傾斜面部172bと、を有している。平坦な底面部172aおよび傾斜面部172bは、共に、平面視で、細長い矩形形状を有している。また、平坦な底面部172aおよび傾斜面部172bの長手方向は、共に、Y方向に延びている。傾斜面部172bは、X方向において、底面部172aの両側に設置されている。傾斜面部172bは、底面部172aからZ方向のZ1側に向かうにつれて、底面部172aのX方向の外方に向かって傾斜している。 In the case of FIG. 6(a), the recess 172 has a trapezoidal cross-sectional shape. The recessed portion 172 has a flat bottom portion 172a and an inclined surface portion 172b adjacent to the bottom portion 172a. Both the flat bottom portion 172a and the inclined surface portion 172b have an elongated rectangular shape when viewed from above. Furthermore, the longitudinal directions of the flat bottom portion 172a and the inclined surface portion 172b both extend in the Y direction. The inclined surface portions 172b are installed on both sides of the bottom surface portion 172a in the X direction. The inclined surface portion 172b is inclined toward the outside of the bottom surface portion 172a in the X direction as it goes from the bottom surface portion 172a toward the Z1 side in the Z direction.
 また、図6(a)の場合、凸部171は、平坦な主面部171aを有している。平坦な主面部171aは、凹部172の傾斜面部172bに連結されている。なお、図6(a)の場合、主面部171aは、底板17の上面部17aそのものとなる。平坦な主面部171aは、平面視で、細長い矩形形状を有している。また、平坦な主面部171aの長手方向は、Y方向に延びている。 Further, in the case of FIG. 6(a), the convex portion 171 has a flat main surface portion 171a. The flat main surface portion 171a is connected to the inclined surface portion 172b of the recess 172. In the case of FIG. 6A, the main surface portion 171a is the upper surface portion 17a of the bottom plate 17 itself. The flat main surface portion 171a has an elongated rectangular shape in plan view. Further, the longitudinal direction of the flat main surface portion 171a extends in the Y direction.
 なお、図6(a)の例では、底板17の上面部17aが凹部172を有することで、凹凸形状としている。しかしながら、その場合に限定されない。すなわち、底板17の上面部17aが凸部171を有することで、凹凸形状としてもよい。 In the example of FIG. 6(a), the upper surface portion 17a of the bottom plate 17 has a concave portion 172, thereby forming an uneven shape. However, it is not limited to that case. That is, the upper surface portion 17a of the bottom plate 17 may have an uneven shape by having the convex portion 171.
 あるいは、図6(b)のように、底板17の上面部17aが、凸部171と凹部172との両方を有することで、凹凸形状としてもよい。図6(b)の場合、凹部172は、上面部17aよりZ方向のZ2側に凹んでいる。また、凹部172は、側面視で、台形形状を有している。凹部172は、平坦な底面部172aと、底面部172aに隣接する傾斜面部172bと、を有している。平坦な底面部172aおよび傾斜面部172bは、共に、平面視で、矩形形状を有している。傾斜面部172bは、X方向において、底面部172aの両側に設置されている。傾斜面部172bは、底面部172aからZ方向のZ1側に向かうにつれて、底面部172aのX方向の外方に向かって傾斜している。 Alternatively, as shown in FIG. 6(b), the upper surface portion 17a of the bottom plate 17 may have an uneven shape by having both a convex portion 171 and a concave portion 172. In the case of FIG. 6(b), the recessed portion 172 is recessed toward the Z2 side in the Z direction from the upper surface portion 17a. Furthermore, the recess 172 has a trapezoidal shape when viewed from the side. The recessed portion 172 has a flat bottom portion 172a and an inclined surface portion 172b adjacent to the bottom portion 172a. The flat bottom portion 172a and the inclined surface portion 172b both have a rectangular shape when viewed from above. The inclined surface portions 172b are installed on both sides of the bottom surface portion 172a in the X direction. The inclined surface portion 172b is inclined toward the outside of the bottom surface portion 172a in the X direction as it goes from the bottom surface portion 172a toward the Z1 side in the Z direction.
 また、図6(b)の場合、凸部171は、上面部17aよりZ方向のZ1側に突出している。凸部171は、図6(b)に示すように、側面視で、台形形状を有している。従って、凸部171は、台形の断面形状を有している。そのため、凸部171は、平坦な主面部171aと、主面部171aに隣接する傾斜面部171bと、を有している。平坦な主面部171aおよび傾斜面部171bは、共に、平面視で、細長い矩形形状を有しており、長手方向がY方向に延びている。傾斜面部171bは、X方向において、主面部171aの両側に設置されている。傾斜面部171bは、主面部171aからZ方向のZ2側に向かうにつれて、主面部171aのX方向の外方に向かって傾斜している。 Further, in the case of FIG. 6(b), the convex portion 171 protrudes from the upper surface portion 17a toward the Z1 side in the Z direction. The convex portion 171 has a trapezoidal shape when viewed from the side, as shown in FIG. 6(b). Therefore, the convex portion 171 has a trapezoidal cross-sectional shape. Therefore, the convex portion 171 has a flat main surface portion 171a and an inclined surface portion 171b adjacent to the main surface portion 171a. Both the flat main surface portion 171a and the inclined surface portion 171b have an elongated rectangular shape when viewed from above, and their longitudinal directions extend in the Y direction. The inclined surface portions 171b are installed on both sides of the main surface portion 171a in the X direction. The inclined surface portion 171b is inclined toward the outside of the main surface portion 171a in the X direction as it goes from the main surface portion 171a toward the Z2 side in the Z direction.
 底板17は、複数の凸部171と、複数の凹部172と、を有している。複数の凸部171と、複数の凹部172と、は、共に、Y方向に沿って配置されている。また、複数の凸部171は、X方向に互いに間隔を空けて、互いに平行になるように配置されている。また、複数の凹部172は、X方向に互いに間隔を空けて、互いに平行になるように配置されている。なお、凸部171のX方向の幅と凹部172のX方向の幅とは、同じであっても、異なっていてもよい。但し、冷媒漏洩箇所を特定しやすくするためには、図5および図7(a)に示すように、凹部172のX方向の幅が、凸部171のX方向の幅より小さい方が望ましい。 The bottom plate 17 has a plurality of protrusions 171 and a plurality of recesses 172. Both the plurality of protrusions 171 and the plurality of recesses 172 are arranged along the Y direction. Further, the plurality of convex portions 171 are arranged parallel to each other at intervals in the X direction. Further, the plurality of recesses 172 are arranged parallel to each other at intervals in the X direction. Note that the width of the protrusion 171 in the X direction and the width of the recess 172 in the X direction may be the same or different. However, in order to easily identify the location of the refrigerant leak, it is desirable that the width of the recess 172 in the X direction is smaller than the width of the protrusion 171 in the X direction, as shown in FIGS. 5 and 7(a).
 図7(a)および図7(b)に示すように、圧縮機11、凝縮器12等の冷媒回路部品等は、底板17の凸部171に対して固定される。圧縮機11、凝縮器12等の冷媒回路部品等は、凸部171および凹部172よりも底面積が大きいため、1以上の凸部171と1以上の凹部172とに亘って配置されているが、固定箇所は凸部171部分となる。圧縮機11、凝縮器12等の冷媒回路部品等は、凸部171に、ネジ等の固定具により固定される。 As shown in FIGS. 7(a) and 7(b), refrigerant circuit components such as the compressor 11 and the condenser 12 are fixed to the convex portion 171 of the bottom plate 17. Refrigerant circuit components such as the compressor 11 and the condenser 12 have a larger bottom area than the convex portions 171 and the concave portions 172, so they are disposed across one or more convex portions 171 and one or more concave portions 172. , the fixed location is the convex portion 171. Refrigerant circuit components such as the compressor 11 and the condenser 12 are fixed to the convex portion 171 with fixing devices such as screws.
 底板17の凹部172には、図4に示すように、雨水などを排出する水抜き用の孔173が形成されていてもよい。水抜き用の孔173は、凹部172内に配置されている。水抜き用の孔173は、底板17の板厚を貫通する貫通穴である。水抜き用の孔173は、図4に示すように、複数形成されている。水抜き用の孔173は、凹部172のY方向のY1側の端部およびY2側の端部に設けられている。また、必要に応じて、凹部172のY方向のY1側の端部とY2側の端部との間にも、水抜き用の孔173Bを設けるようにしてもよい。さらに、必要に応じて、水抜き用の孔173Aを、凸部171にも設けるようにしてもよい。水抜き用の孔173、173A、173Bは、平面視で、例えば、円形形状を有している。水抜き用の孔173は、凝縮器12の伝熱管またはフィンなどの表面に付着した結露水または霜の融解水などのドレン水を、熱源ユニット1の外部に排出するための穴である。凹部172の底面部172aは、その表面をドレン水が水抜き用の孔173に向かって流れるため、「水受面」と呼ばれることがある。 As shown in FIG. 4, a drainage hole 173 may be formed in the recess 172 of the bottom plate 17 to drain rainwater and the like. A drain hole 173 is arranged within the recess 172. The drain hole 173 is a through hole that penetrates the thickness of the bottom plate 17. As shown in FIG. 4, a plurality of water drainage holes 173 are formed. The water drainage hole 173 is provided at the end of the recess 172 on the Y1 side and the end on the Y2 side in the Y direction. Further, if necessary, a drainage hole 173B may be provided between the end of the recess 172 on the Y1 side and the end on the Y2 side in the Y direction. Furthermore, if necessary, a hole 173A for draining water may also be provided in the convex portion 171. The drain holes 173, 173A, and 173B have, for example, a circular shape in plan view. The drain hole 173 is a hole for draining drain water such as dew water or frost melting water adhering to the surface of the heat transfer tube or fin of the condenser 12 to the outside of the heat source unit 1. The bottom surface 172a of the recess 172 is sometimes called a "water receiving surface" because the drain water flows toward the drain hole 173 on the surface thereof.
 また、底板17には、負荷ユニット2と接続する冷媒配管10を取りだす切り欠き部174が形成されていてもよい。切り欠き部174は、底板17の板厚を貫通する貫通穴である。切り欠き部174は、凸部171と凹部172とに亘って形成されていてもよい。切り欠き部174は、例えば、平面視で、矩形形状を有している。 Furthermore, a notch 174 may be formed in the bottom plate 17 to take out the refrigerant pipe 10 connected to the load unit 2. The cutout portion 174 is a through hole that penetrates the thickness of the bottom plate 17. The cutout portion 174 may be formed across the convex portion 171 and the concave portion 172. The cutout portion 174 has, for example, a rectangular shape in plan view.
 (冷凍機油)
 実施の形態1に係る冷凍サイクル装置100においては、冷媒とともに冷媒回路内を循環する冷凍機油に、蛍光剤が添付されている。蛍光剤は、冷媒配管10等からの冷媒の漏れを検知するために、冷凍機油に添加されている。蛍光剤は、例えば、紫外線ランプから照射される紫外線によって発光するものである。
(Refrigerating machine oil)
In the refrigeration cycle device 100 according to the first embodiment, a fluorescent agent is attached to the refrigeration oil that circulates in the refrigerant circuit together with the refrigerant. The fluorescent agent is added to refrigerating machine oil in order to detect leakage of refrigerant from the refrigerant pipe 10 and the like. The fluorescent agent emits light when exposed to ultraviolet rays emitted from an ultraviolet lamp, for example.
 図7(a)は、実施の形態1に係る熱源ユニットにおいて冷媒漏洩が発生した場合の一例を示す図である。図7(a)においては、圧縮機11と冷媒配管10とを接続している接続部20から冷媒が漏洩した一例を示している。 FIG. 7(a) is a diagram showing an example of a case where refrigerant leakage occurs in the heat source unit according to the first embodiment. FIG. 7A shows an example in which refrigerant leaks from a connecting portion 20 connecting the compressor 11 and the refrigerant pipe 10. In FIG.
 図7(a)に示すように、圧縮機11は、冷媒を吐出する吐出管11aと、冷媒を吸入する吸入管11bと、を有している。吐出管11aと冷媒配管10とは接続部20で接続されている。吐出管11aと冷媒配管10とを接続する接続部20は、例えば、フレア接続部またはロウ付け部である。言い換えると、接続部20がフレア接続部の場合、例えば、吐出管11aと冷媒配管10とのいずれか一方にフレアナットを取り付けておき、他方にユニオンを取り付けておく。そして、ユニオンとフレアナットとをトルクレンチ等の工具を用いて締め詰めることで、吐出管11aと冷媒配管10とを接続する。また、接続部20がロウ付け部の場合、吐出管11aと冷媒配管10とをロウ付けにより接合する。 As shown in FIG. 7(a), the compressor 11 has a discharge pipe 11a that discharges refrigerant and a suction pipe 11b that sucks the refrigerant. The discharge pipe 11a and the refrigerant pipe 10 are connected through a connecting portion 20. The connection part 20 that connects the discharge pipe 11a and the refrigerant pipe 10 is, for example, a flare connection part or a brazed part. In other words, when the connection part 20 is a flare connection part, for example, a flare nut is attached to either the discharge pipe 11a or the refrigerant pipe 10, and a union is attached to the other. Then, the discharge pipe 11a and the refrigerant pipe 10 are connected by tightening the union and the flare nut using a tool such as a torque wrench. Moreover, when the connection part 20 is a brazed part, the discharge pipe 11a and the refrigerant|coolant piping 10 are joined by brazing.
 圧縮機11で発生する振動、圧縮機11または接続部20の経年劣化、接続部20の接続不良等によって冷媒漏洩が発生した場合、漏洩箇所には、隙間、亀裂、または、微小な穴などが生じているため、当該漏洩箇所からは冷凍機油も漏洩する。冷媒の漏洩のタイミングと、冷凍機油の漏洩のタイミングと、は、同時であっても、多少ずれていてもよい。冷凍機油には蛍光剤が添加されているので、冷凍機油と共に、添加された蛍光剤も漏洩する。その結果、漏洩箇所からは、冷媒、冷凍機油、および、蛍光剤が流出する。流出した冷凍機油および蛍光剤は漏洩箇所から下方向に滴下し、底板17の凹凸形状の底面部172aに滞留する。凹部172の底面部172aは、漏洩した蛍光剤が滞留するため、「蛍光剤滞留部」と呼ばれることがある。このように、底面部172aは、「蛍光剤滞留部」として機能する。そのため、接続部20は、図7(a)に示すように、底板17の凹部172の真上に配置されることが望ましいが、それに限定されない。なお、圧縮機11のシェルは、図7(b)に示すように、複数の脚11cで支持されている。図7(b)では、4つの脚11cで圧縮機11を支持する例を示しているが、脚11cの個数は特に限定されない。このとき、圧縮機11の吐出管11aと冷媒配管10とを接続する接続部20を、凹部172の真上に配置する場合、脚11cと接続部20との位置関係も考慮する必要がある。つまり、圧縮機11を上から見たときに、脚11cと接続部20とが重なっていると、接続部20から漏洩した蛍光剤が脚11cに滴下して付着してしまい、その結果、当該蛍光剤が凹部172内に滞留しなくなってしまう。そのため、接続部20は、図7(b)に示すように、脚11cの真上の位置を避けて、凹部172の真上に配置することが望ましい。 If a refrigerant leak occurs due to vibrations generated in the compressor 11, deterioration of the compressor 11 or the connection part 20 over time, poor connection of the connection part 20, etc., the leakage location may have gaps, cracks, or small holes. As a result, refrigeration oil also leaks from the leakage location. The timing of refrigerant leakage and the timing of refrigerating machine oil leakage may be simultaneous or may be slightly different from each other. Since a fluorescent agent is added to the refrigerating machine oil, the added fluorescent agent also leaks along with the refrigerating machine oil. As a result, the refrigerant, refrigeration oil, and fluorescent agent flow out from the leakage location. The leaked refrigerating machine oil and fluorescent agent drip downward from the leakage location and stay on the uneven bottom surface portion 172a of the bottom plate 17. The bottom portion 172a of the recess 172 is sometimes referred to as a “fluorescent agent retention portion” because the leaked fluorescent agent is retained therein. In this way, the bottom part 172a functions as a "fluorescent agent retention part". Therefore, as shown in FIG. 7(a), it is desirable that the connecting portion 20 be disposed directly above the recess 172 of the bottom plate 17, but the present invention is not limited thereto. Note that the shell of the compressor 11 is supported by a plurality of legs 11c, as shown in FIG. 7(b). Although FIG. 7B shows an example in which the compressor 11 is supported by four legs 11c, the number of legs 11c is not particularly limited. At this time, when arranging the connection part 20 that connects the discharge pipe 11a of the compressor 11 and the refrigerant pipe 10 directly above the recess 172, it is also necessary to consider the positional relationship between the leg 11c and the connection part 20. In other words, when the compressor 11 is viewed from above, if the leg 11c and the connecting part 20 overlap, the fluorescent agent leaking from the connecting part 20 will drip and adhere to the leg 11c, resulting in the The fluorescent agent no longer stays in the recess 172. Therefore, as shown in FIG. 7(b), it is desirable that the connecting portion 20 be placed directly above the recess 172, avoiding a position directly above the leg 11c.
 従来の一般的な熱源ユニットでは、底板に凹凸があまり無かったため、たとえ蛍光剤を冷凍機油に添加しておいても、大量の冷媒漏洩が発生した場合は、滴下した冷凍機油および蛍光剤が底板の広域に広がってしまう。そのため、従来の一般的な熱源ユニットでは、底板において、紫外線を照射すべき範囲が大きくなり、漏洩箇所の特定に時間を要することとなっていた。また、従来の一般的な熱源ユニットでは、広範囲に蛍光剤が広がってしまった場合、冷媒漏洩箇所を特定することが出来ないケースもあった。 In conventional general heat source units, there were not many irregularities on the bottom plate, so even if a fluorescent agent was added to the refrigerating machine oil, if a large amount of refrigerant leaked, the dripping refrigerating machine oil and fluorescent agent would leak onto the bottom plate. spread over a wide area. Therefore, in conventional general heat source units, the area on the bottom plate that should be irradiated with ultraviolet rays becomes large, and it takes time to identify the leakage location. Furthermore, in conventional general heat source units, if the fluorescent agent spreads over a wide area, it may not be possible to identify the location of the refrigerant leak.
 そこで、実施の形態1では、熱源ユニット1に、蛍光剤が滞留する底面部172aを有する凹凸形状の底板17を設けている。このような底板17を用いることで、冷凍機油および蛍光剤が多量に流出した場合でも、底板17の凹凸形状によって冷凍機油および蛍光剤が流れる範囲に制約が発生する。言い換えると、凹部172に向かって滴下した冷凍機油および蛍光剤は、図7の領域Aで示されるように、凹部172の底面部172aに滞留する。また、凸部171に向かって滴下した冷凍機油および蛍光剤は、まず、凸部171の平坦な主面部171aで受け止められる。そして、主面部171aに隣接する傾斜面部171bを伝って、凹部172に流れ込み、図7の領域Aで示されるように、凹部172の底面部172aに滞留する。このように、実施の形態1においては、凹凸形状の底板17を用いることで、冷凍機油および蛍光剤が底板17の広域に広がることを抑制している。そのため、底板17において、漏洩箇所を特定する点検を行う際の紫外線照射が必要な範囲が狭くなり、漏洩箇所の特定を容易にすることができる。具体的には、底面部172aに滞留する蛍光剤は、凹部172の傾斜面部172bによってX方向の移動が規制される。そのため、サービスマンは、底板17の凹部172に沿ってY方向に紫外線を照射すればよいため、効率良く、蛍光剤が付着している箇所を検知することができる。また、蛍光剤が付着している箇所の真上または真上の近傍が、冷媒の漏洩箇所であるため、冷媒の漏洩箇所も、効率良く且つ確実に検知することができる。また、凸部171から凹部172に向かって蛍光剤が流れた場合においても、蛍光剤が流れた方向に沿って蛍光剤が付着しているため、その方向を逆向きにたどることで、冷媒の漏洩箇所をすぐに特定することができる。 Therefore, in the first embodiment, the heat source unit 1 is provided with a bottom plate 17 having an uneven shape and having a bottom part 172a where the fluorescent agent stays. By using such a bottom plate 17, even if a large amount of refrigerating machine oil and fluorescent agent leak out, the range in which the refrigerating machine oil and fluorescent agent can flow is restricted due to the uneven shape of the bottom plate 17. In other words, the refrigerating machine oil and the fluorescent agent dripped toward the recess 172 stay at the bottom 172a of the recess 172, as shown by area A in FIG. Further, the refrigerating machine oil and the fluorescent agent dripped toward the convex portion 171 are first received by the flat main surface portion 171a of the convex portion 171. Then, it flows into the recess 172 along the inclined surface 171b adjacent to the main surface 171a, and stays at the bottom 172a of the recess 172, as shown by area A in FIG. In this way, in the first embodiment, by using the uneven bottom plate 17, the refrigerating machine oil and the fluorescent agent are prevented from spreading over a wide area of the bottom plate 17. Therefore, in the bottom plate 17, the area where ultraviolet rays need to be irradiated when performing an inspection to identify a leakage point is narrowed, and the leakage point can be easily identified. Specifically, the movement of the fluorescent agent staying in the bottom portion 172a in the X direction is restricted by the inclined surface portion 172b of the recess 172. Therefore, the service person only has to irradiate the ultraviolet rays in the Y direction along the recess 172 of the bottom plate 17, and can efficiently detect the location where the fluorescent agent is attached. Further, since the refrigerant leakage point is located directly above or near the point directly above the location where the fluorescent agent is attached, the refrigerant leakage location can also be efficiently and reliably detected. Furthermore, even when the fluorescent agent flows from the convex portion 171 toward the recessed portion 172, since the fluorescent agent is attached along the direction in which the fluorescent agent flows, by tracing that direction in the opposite direction, the refrigerant can be removed. Leak points can be identified immediately.
 以上のように、実施の形態1においては、熱源ユニット1に、凹凸形状を有する底板17を用いることで、冷媒漏洩時の冷媒、冷凍機油、蛍光剤の滞留箇所を底板17の凹凸形状の一部に限定することができ、冷媒漏洩箇所の早期特定を可能とする。言い換えると、冷媒と共に漏洩した蛍光剤が底板17に滴下した場合、当該蛍光剤は凹部172の傾斜面部172bに阻まれて、X方向への移動が規制される。その結果、当該蛍光剤は、凹部172内をY方向のみに移動する。そのため、凹部172に沿って紫外線を照射することで、冷媒漏洩箇所を特定することができる。このように、実施の形態1では、紫外線を照射すべき範囲を凹部172およびその周辺に絞ることができるため、紫外線を照射すべき範囲が従来に比べて大幅に少なくなり、効率良く短時間で冷媒漏洩箇所の特定に至ることができる。また、冷媒漏洩リスクの高い冷媒回路部品を熱源ユニット1のメンテナンスパネル1b側に配置することで、サービスマンから見えやすい位置に冷媒が漏洩することになるので、冷媒漏洩源の発見を容易にする。 As described above, in the first embodiment, by using the bottom plate 17 having an uneven shape in the heat source unit 1, the spots where refrigerant, refrigeration machine oil, and fluorescent agent accumulate in the event of a refrigerant leak can be reduced to the uneven shape of the bottom plate 17. This enables early identification of refrigerant leak locations. In other words, when the fluorescent agent leaked together with the refrigerant drips onto the bottom plate 17, the fluorescent agent is blocked by the inclined surface portion 172b of the recess 172, and its movement in the X direction is restricted. As a result, the fluorescent agent moves within the recess 172 only in the Y direction. Therefore, by irradiating ultraviolet rays along the recessed portion 172, the location of the refrigerant leak can be identified. In this way, in the first embodiment, the range to be irradiated with ultraviolet rays can be narrowed down to the concave portion 172 and its surroundings, so the range to be irradiated with ultraviolet rays is significantly smaller than in the past, and it can be done efficiently and in a short time. The location of the refrigerant leak can be identified. In addition, by locating refrigerant circuit components with a high risk of refrigerant leakage on the maintenance panel 1b side of the heat source unit 1, the refrigerant will leak in a position where it can be easily seen by service personnel, making it easier to discover the source of refrigerant leakage. .
 実施の形態2.
 図8~図10を用いて、実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの構成について説明する。図8は、実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの設置環境を示す平面図である。図9は、実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの設置環境を示す平面図である。図10は、実施の形態2に係る冷凍サイクル装置に設けられた熱源ユニットの設置環境を示す斜視図である。
Embodiment 2.
The configuration of the heat source unit provided in the refrigeration cycle apparatus according to the second embodiment will be explained using FIGS. 8 to 10. FIG. 8 is a plan view showing the installation environment of the heat source unit provided in the refrigeration cycle device according to the second embodiment. FIG. 9 is a plan view showing the installation environment of the heat source unit provided in the refrigeration cycle device according to the second embodiment. FIG. 10 is a perspective view showing the installation environment of the heat source unit provided in the refrigeration cycle device according to the second embodiment.
 実施の形態2に係る冷凍サイクル装置100および熱源ユニット1の構成および動作は、上記の実施の形態1と基本的に同じであるため、以下では、実施の形態2の特徴について主に説明し、実施の形態1と共通する特徴については、ここでは、その説明を省略する。 The configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the second embodiment are basically the same as those of the first embodiment, so below, the features of the second embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
 以下、実施の形態2に係る冷凍サイクル装置100の一例について説明する。熱源ユニット1において冷媒漏洩が発生する箇所としては、駆動による加振源となる圧縮機11、並びに、圧縮機11と接続されている配管および冷媒回路部品となる。さらに、冷媒配管10を接続しているロウ付け部およびフレア接続部等の接続部20(図7参照)も、冷媒漏洩の発生に至るケースが多い。 Hereinafter, an example of the refrigeration cycle device 100 according to the second embodiment will be described. Locations where refrigerant leaks in the heat source unit 1 include the compressor 11, which is a source of vibration due to driving, and the piping and refrigerant circuit components connected to the compressor 11. Furthermore, connection parts 20 (see FIG. 7), such as brazed parts and flare joints, which connect the refrigerant pipes 10, often lead to refrigerant leakage.
 図8の平面図は、熱源ユニット1の構成の一例を示している。図8においては、熱源ユニット1の底板17の平面図を示している。図8に示すサービススペース18は、冷媒回路部品の交換などのメンテナンスを実施するためのスペースである。サービススペース18は、熱源ユニット1が設置されている設置面の一部であり、熱源ユニット1のメンテナンスパネル1bの外方に配置されている。サービスマンは、サービススペース18を利用して、熱源ユニット1に搭載された冷媒回路部品の点検時などに、熱源ユニット1のメンテナンスパネル1bを外し、冷媒回路部品の交換などを実施する。 The plan view in FIG. 8 shows an example of the configuration of the heat source unit 1. In FIG. 8, a plan view of the bottom plate 17 of the heat source unit 1 is shown. The service space 18 shown in FIG. 8 is a space for performing maintenance such as replacing refrigerant circuit components. The service space 18 is a part of the installation surface on which the heat source unit 1 is installed, and is arranged outside the maintenance panel 1b of the heat source unit 1. The service person uses the service space 18 to remove the maintenance panel 1b of the heat source unit 1 and replace the refrigerant circuit components when inspecting the refrigerant circuit components mounted on the heat source unit 1.
 図9および図10に示すように、熱源ユニット1を設置する場合には、熱源ユニット1のY方向のY1側に、サービススペース18を設ける。すなわち、熱源ユニット1の正面に配置されたメンテナンスパネル1bに対して、障害物となる建物の壁30等を近接して配置しない。具体的には、熱源ユニット1のメンテナンスパネル1bから、予め設定された距離L1以上の空間を確保して、熱源ユニット1を設置する。当該距離L1以上の空間が、サービススペース18となる。サービススペース18は、メンテナンス等の作業をサービスマンが行うためのスペースであるが、通風スペースとしても機能する。 As shown in FIGS. 9 and 10, when installing the heat source unit 1, a service space 18 is provided on the Y1 side of the heat source unit 1 in the Y direction. That is, the building wall 30 or the like that would be an obstacle is not placed close to the maintenance panel 1b placed in front of the heat source unit 1. Specifically, the heat source unit 1 is installed while securing a space at least a preset distance L1 from the maintenance panel 1b of the heat source unit 1. A space longer than the distance L1 becomes the service space 18. The service space 18 is a space for service personnel to perform maintenance and other work, but also functions as a ventilation space.
 また、同様に、熱源ユニット1の左右の側面および背面に対しても、障害物となる建物の壁31等を近接して配置しない。具体的には、熱源ユニット1の背面の外装パネル1aから、予め設定された距離L2以上の空間を確保して、熱源ユニット1を設置する。当該距離L2以上の空間が、通風スペース19Aとなる。また、熱源ユニット1の左右の外装パネル1aから、予め設定された距離L3以上の空間を確保して、熱源ユニット1を設置する。当該距離L3以上の空間が、通風スペース19Bとなる。距離L1は、例えば、450mmである。距離L2は、例えば、300mmである。距離L3は、例えば、100mmである。これらの値は、単なる一例であり、特に限定されない。 Similarly, building walls 31 and the like that would be obstacles are not placed close to the left and right side surfaces and the back of the heat source unit 1. Specifically, the heat source unit 1 is installed by securing a space at least a preset distance L2 from the exterior panel 1a on the back surface of the heat source unit 1. The space longer than the distance L2 becomes the ventilation space 19A. Further, the heat source unit 1 is installed with a space of a predetermined distance L3 or more secured from the left and right exterior panels 1a of the heat source unit 1. A space longer than the distance L3 becomes a ventilation space 19B. The distance L1 is, for example, 450 mm. The distance L2 is, for example, 300 mm. The distance L3 is, for example, 100 mm. These values are just examples and are not particularly limited.
 実施の形態2においては、熱源ユニット1のサービススペース18近傍に、加振源である圧縮機11、および、フレア接続部等の接続部20を持つ機器を配置する。上述したように、下記の4つが、特に、冷媒漏洩が発生しやすい箇所である。 In the second embodiment, near the service space 18 of the heat source unit 1, a compressor 11, which is an excitation source, and a device having a connection part 20, such as a flare connection part, are arranged. As mentioned above, the following four locations are particularly likely to cause refrigerant leakage.
 (1)圧縮機11
 (2)圧縮機11と接続されている冷媒配管10
 (3)圧縮機11と接続されている冷媒回路部品
 (4)ロウ付け部およびフレア接続部等の接続部20
(1) Compressor 11
(2) Refrigerant pipe 10 connected to compressor 11
(3) Refrigerant circuit parts connected to the compressor 11 (4) Connection parts 20 such as brazed parts and flare connections
 そのため、実施の形態2では、これらの(1)~(4)を、サービススペース18の近傍に配置する。具体的には、これらの(1)~(4)を、熱源ユニット1内のメンテナンスパネル1b側に配置する。熱源ユニット1の内部には、圧縮機11を含む複数の冷媒回路部品が配置されている。複数の冷媒回路部品のうちの少なくとも2つは、フレア接続部またはロウ付け部等の接続部20を介して冷媒配管10で接続されている。例えば、熱源ユニット1内に、圧縮機11、アキュムレータ21(図11参照)、オイルレギュレータ22(図11参照)、油分離器23(図11参照)、ドライヤ24(図11参照)などが配置されている場合を例に挙げて説明する。これらの複数の冷媒回路部品のうちの少なくとも2つは、フレア接続部またはロウ付け部等の接続部20を介して冷媒配管10で接続されている。例えば、アキュムレータ21とオイルレギュレータ22とが、接続部20を介して接続されていると仮定する。接続部20を介して接続される冷媒回路部品の組み合わせは特に限定されない。その場合、当該接続部20が、上記(4)に該当する。実施の形態2では、冷媒漏洩が発生しやすい上記(1)~(4)をメンテナンスパネル1b側に位置している。このような構成とすることで、点検時において、サービスマンがメンテナンスパネル1bを取り外したときに、メンテナンスパネル1b近傍の図8の領域R1に蛍光剤の付着が有るか否かを見るだけで、すぐに、底板17に付着した蛍光剤を見つけることができる。これにより、サービスマンの冷媒漏洩の早期発見を可能とする。 Therefore, in the second embodiment, these (1) to (4) are arranged near the service space 18. Specifically, these (1) to (4) are arranged inside the heat source unit 1 on the maintenance panel 1b side. A plurality of refrigerant circuit components including a compressor 11 are arranged inside the heat source unit 1. At least two of the plurality of refrigerant circuit components are connected by refrigerant piping 10 via a connecting portion 20 such as a flared connecting portion or a brazed portion. For example, a compressor 11, an accumulator 21 (see FIG. 11), an oil regulator 22 (see FIG. 11), an oil separator 23 (see FIG. 11), a dryer 24 (see FIG. 11), etc. are arranged in the heat source unit 1. Let's take an example to explain the case. At least two of these plurality of refrigerant circuit components are connected by refrigerant piping 10 via a connection part 20 such as a flare connection part or a brazed part. For example, assume that the accumulator 21 and the oil regulator 22 are connected via the connecting portion 20. The combination of refrigerant circuit components connected via the connection portion 20 is not particularly limited. In that case, the connection section 20 falls under (4) above. In the second embodiment, the above (1) to (4) where refrigerant leakage is likely to occur are located on the maintenance panel 1b side. With this configuration, when a serviceman removes the maintenance panel 1b during inspection, he can simply check to see if there is any fluorescent agent attached to the area R1 in FIG. 8 near the maintenance panel 1b. The fluorescent agent attached to the bottom plate 17 can be found immediately. This allows service personnel to detect refrigerant leaks at an early stage.
 また、サービスマンは、底板17に付着した蛍光剤を見つけた場合、冷媒漏洩の発生箇所を特定するために、紫外線ランプを用いて底板17の凹部172に沿って紫外線を照射すればよい。そのため、サービスマンは、底板17の全体に紫外線を照射する必要がないため、作業負荷が少ない。このことを具体的に例を挙げて説明する。例えば、メンテナンスパネル1b近傍の図8の領域R1をサービスマンが確認した際に、例えば、領域R1内において、図8に示す領域R2に蛍光剤が付着していたと仮定する。その場合、サービスマンは、図8の領域R3で示すように、紫外線ランプを用いて、領域R2を含む凹部172に沿って紫外線を照射する。このようにすることで、効率よく、冷媒漏洩箇所を特定することができる。 Additionally, if the service engineer finds fluorescent material attached to the bottom plate 17, he or she can irradiate ultraviolet light along the recess 172 of the bottom plate 17 using an ultraviolet lamp in order to identify the location of the refrigerant leak. Therefore, the service person does not have to irradiate the entire bottom plate 17 with ultraviolet rays, so the work load is reduced. This will be explained by giving a concrete example. For example, it is assumed that when a service person checks the area R1 in FIG. 8 near the maintenance panel 1b, a fluorescent agent has adhered to the area R2 shown in FIG. 8 within the area R1. In that case, the service person uses an ultraviolet lamp to irradiate ultraviolet light along the recess 172 including the area R2, as shown by the area R3 in FIG. By doing so, the location of the refrigerant leak can be efficiently identified.
 上述したように、熱源ユニット1の内部に配置された冷媒回路部品の部品点数は多く、且つ、冷媒配管10の配管形状も複雑である。そのため、熱源ユニット1の内部において、Y方向のY2側においては、冷媒回路部品または冷媒配管10等が視覚障害物となって、蛍光剤の発見が困難である。一方、熱源ユニット1の内部において、Y方向のY1側は、視覚障害物が無いため、蛍光剤の発見が容易である。従って、実施の形態2では、冷媒漏洩が発生しやすい上記の(1)~(4)をメンテナンスパネル1b側に配置することで、サービスマンの冷媒漏洩の早期発見を可能とする。 As described above, the number of refrigerant circuit components arranged inside the heat source unit 1 is large, and the shape of the refrigerant piping 10 is also complicated. Therefore, inside the heat source unit 1, on the Y2 side in the Y direction, the refrigerant circuit components or the refrigerant pipe 10, etc. become visual obstacles, making it difficult to find the fluorescent agent. On the other hand, inside the heat source unit 1, there are no visual obstacles on the Y1 side in the Y direction, so it is easy to find the fluorescent agent. Therefore, in the second embodiment, by arranging the above items (1) to (4) where refrigerant leakage is likely to occur on the maintenance panel 1b side, it is possible for a service person to detect refrigerant leakage at an early stage.
 また、実施の形態2に係る熱源ユニット1では、熱源ユニット1の左右の側面および背面に、外装パネル1aが配置されている。これらの外装パネル1aによって太陽光が熱源ユニット1内に入射することを妨げることができるため、熱源ユニット1の内部を暗い状態に保持できる。これにより、熱源ユニット1内に搭載された冷媒回路部品は日陰になる。そのため、紫外線ランプを底板17に照射することで、効率良く、蛍光剤の付着の有無を確認することができる。 Furthermore, in the heat source unit 1 according to the second embodiment, exterior panels 1a are arranged on the left and right sides and the back surface of the heat source unit 1. Since these exterior panels 1a can prevent sunlight from entering the heat source unit 1, the inside of the heat source unit 1 can be kept in a dark state. Thereby, the refrigerant circuit components mounted in the heat source unit 1 are placed in the shade. Therefore, by irradiating the bottom plate 17 with an ultraviolet lamp, it is possible to efficiently check whether or not the fluorescent agent is attached.
 なお、熱源ユニット1の内部には、制御箱(図示せず)がさらに配置されている。制御箱には、圧縮機11および送風ファン15を駆動するための駆動回路および制御回路などが収容されている。制御箱は、冷媒漏洩箇所にならないため、サービススペース18側に配置する必要はない。そのため、制御箱は、熱源ユニット1のメンテナンスパネル1bの奥側、すなわち、熱源ユニット1の内部のY方向のY2側に配置してもよい。また、制御箱は、圧縮機11またはアキュムレータ(図11参照)のZ方向のZ1側に配置してもよい。すなわち、制御箱は、圧縮機11またはアキュムレータ21(図11参照)の上方に配置してもよい。このように、制御箱のように冷媒が漏れないまたは漏れにくい部品をZ方向に重ねて配置するのは、上記の通り問題はない。しかしながら、例えば接続部20等の冷媒が漏れやすい部品を、圧縮機11またはアキュムレータ21等の部品の真上に配置することは避けた方がよい。その理由は、冷媒が漏洩したときに、蛍光剤が圧縮機11またはアキュムレータ21等の部品に付着してしまい、凹部172内に滴下されなくなるからである。サービスマンは、凹部172内の蛍光剤の有無はチェックするが、蛍光剤の他の部品への付着の有無は基本的にはチェックしない。また、図3および図11に示すように、圧縮機11またはアキュムレータ21等の部品は、底板17に比べて、構造が複雑で、サービスマンから見えにくい位置に蛍光剤が付着してしまう可能性がある。そのため、蛍光剤が圧縮機11またはアキュムレータ21等の部品に付着した場合、当該蛍光剤をサービスマンが発見することは困難であり、サービスマンが見落とす可能性が懸念される。一方、2以上の接続部20をZ方向に重ねて配置することは可能である。図7(b)の例で説明すると、凹部172の真上に配置された接続部20Aに対して、Z方向で重なるように、他の接続部20Bを配置してもよい。多数の冷媒配管10を配管する際に、スペースの関係上、やむを得ず、複数の接続部20がZ方向に重なってしまう場合が想定される。その場合、複数の接続部20Aおよび20Bのいずれか1つから冷媒が漏洩したとき、接続部20Aおよび20Bの真下に配置された凹部172内に蛍光剤が滴下する。サービスマンは、当該蛍光剤が凹部172に付着していることを発見した場合に、その真上に配置された複数の接続部20Aおよび20Bのうちのいずれかから冷媒が漏洩していると推測することが可能である。その場合には、サービスマンが、複数の接続部20Aおよび20Bを1つずつ順に確認することで、冷媒の漏洩箇所を特定することができる。そのため、2以上の接続部20をZ方向に重ねて配置することは許容される。 Note that a control box (not shown) is further arranged inside the heat source unit 1. The control box houses a drive circuit and a control circuit for driving the compressor 11 and the blower fan 15, and the like. The control box does not need to be placed on the service space 18 side because it does not become a refrigerant leakage point. Therefore, the control box may be arranged on the back side of the maintenance panel 1b of the heat source unit 1, that is, on the Y2 side in the Y direction inside the heat source unit 1. Further, the control box may be arranged on the Z1 side of the compressor 11 or the accumulator (see FIG. 11) in the Z direction. That is, the control box may be placed above the compressor 11 or the accumulator 21 (see FIG. 11). As described above, there is no problem in arranging components such as the control box, which do not allow refrigerant to leak or are difficult to leak, one on top of the other in the Z direction. However, it is better to avoid arranging parts that are prone to leakage of refrigerant, such as the connecting portion 20, directly above parts such as the compressor 11 or the accumulator 21. The reason for this is that when the refrigerant leaks, the fluorescent agent will adhere to components such as the compressor 11 or the accumulator 21 and will not drip into the recess 172. The service person checks whether there is a fluorescent agent in the recess 172, but basically does not check whether the fluorescent agent is attached to other parts. Furthermore, as shown in FIGS. 3 and 11, components such as the compressor 11 or the accumulator 21 have a more complex structure than the bottom plate 17, and there is a possibility that the fluorescent agent may adhere to positions that are difficult for service personnel to see. There is. Therefore, when the fluorescent agent adheres to parts such as the compressor 11 or the accumulator 21, it is difficult for a service person to discover the fluorescent agent, and there is a concern that the service person may overlook the fluorescent agent. On the other hand, it is possible to arrange two or more connecting parts 20 one on top of the other in the Z direction. To explain using the example of FIG. 7B, another connecting portion 20B may be arranged so as to overlap in the Z direction with respect to the connecting portion 20A placed directly above the recess 172. When piping a large number of refrigerant pipes 10, it is assumed that a plurality of connection parts 20 inevitably overlap in the Z direction due to space constraints. In that case, when the refrigerant leaks from any one of the plurality of connections 20A and 20B, the fluorescent agent drips into the recess 172 located directly below the connections 20A and 20B. If the service engineer discovers that the fluorescent agent has adhered to the recess 172, he or she infers that the refrigerant is leaking from one of the plurality of connections 20A and 20B located directly above the recess 172. It is possible to do so. In that case, the service person can identify the location of the refrigerant leak by sequentially checking the plurality of connections 20A and 20B one by one. Therefore, it is permissible to arrange two or more connecting portions 20 one above the other in the Z direction.
 以上のように、実施の形態2では、冷媒漏洩が発生しやすい上記の(1)~(4)をメンテナンスパネル1b側に配置している。そのため、点検時において、サービスマンがメンテナンスパネル1bを取り外したときに、すぐに、底板17に付着した蛍光剤を見つけることができる。これにより、サービスマンの冷媒漏洩の早期発見を可能とする。 As described above, in the second embodiment, the above (1) to (4) where refrigerant leakage is likely to occur are arranged on the maintenance panel 1b side. Therefore, when a serviceman removes the maintenance panel 1b during inspection, he can immediately find the fluorescent agent attached to the bottom plate 17. This allows service personnel to detect refrigerant leaks at an early stage.
 実施の形態3.
 図11は、実施の形態3に係る冷凍サイクル装置に設けられた熱源ユニットの構成の一例を示す平面図である。
Embodiment 3.
FIG. 11 is a plan view showing an example of the configuration of a heat source unit provided in the refrigeration cycle device according to the third embodiment.
 実施の形態3に係る冷凍サイクル装置100および熱源ユニット1の構成および動作は、上記の実施の形態1と基本的に同じであるため、以下では、実施の形態3の特徴について主に説明し、実施の形態1と共通する特徴については、ここでは、その説明を省略する。 The configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the third embodiment are basically the same as those of the first embodiment, so below, the features of the third embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
 図11に示すように、熱源ユニット1の内部には、圧縮機11、アキュムレータ21、オイルレギュレータ22、油分離器23、ドライヤ24などの多くの部品が配置されている。 As shown in FIG. 11, many parts such as a compressor 11, an accumulator 21, an oil regulator 22, an oil separator 23, and a dryer 24 are arranged inside the heat source unit 1.
 アキュムレータ21は、例えば、圧縮機11の吸入管11b(図7参照)に接続されている。アキュムレータ21は、冷媒を貯留する容器である。アキュムレータ21は、余剰の冷媒を貯留する機能を有している。また、アキュムレータ21は、圧縮機11に多量の液冷媒が戻るのを防ぐためにガス冷媒と液冷媒とを分離する機能をさらに有していてもよい。 The accumulator 21 is connected, for example, to the suction pipe 11b of the compressor 11 (see FIG. 7). The accumulator 21 is a container that stores refrigerant. The accumulator 21 has a function of storing surplus refrigerant. Further, the accumulator 21 may further have a function of separating the gas refrigerant and the liquid refrigerant in order to prevent a large amount of liquid refrigerant from returning to the compressor 11.
 オイルレギュレータ22は、アキュムレータ21内の冷凍機油を取り出して、圧縮機11に供給する。 The oil regulator 22 takes out the refrigerating machine oil in the accumulator 21 and supplies it to the compressor 11.
 油分離器23は、例えば、圧縮機11の吐出管11a(図7参照)に接続されている。圧縮機11で用いられる冷凍機油は、圧縮機11から吐出される高温および高圧の冷媒に混入して、冷媒回路内を循環する。冷凍機油の吐出量が少ない圧縮機では油分離器は必要ないが、冷凍機油の吐出量が多い圧縮機に対しては油分離器23を配置する。多量の冷凍機油が凝縮器12および蒸発器14に流入されると、凝縮器12および蒸発器14の伝熱作用が低減する。また、冷媒回路を循環する冷媒の冷媒量が不足したり、あるいは、冷媒回路内で冷凍機油が寝込んでしまうと、冷媒回路から圧縮機11に戻る冷凍機油が不足して、圧縮機11の焼き付けの原因となる。そのため、油分離器23は、圧縮機11が吐出した冷媒の中から、冷凍機油を分離させて、圧縮機11に戻している。 The oil separator 23 is connected to, for example, the discharge pipe 11a of the compressor 11 (see FIG. 7). Refrigerating machine oil used in the compressor 11 mixes with the high temperature and high pressure refrigerant discharged from the compressor 11 and circulates within the refrigerant circuit. Although an oil separator is not required for a compressor that discharges a small amount of refrigerating machine oil, an oil separator 23 is arranged for a compressor that discharges a large amount of refrigerating machine oil. When a large amount of refrigerating machine oil flows into the condenser 12 and evaporator 14, the heat transfer effect of the condenser 12 and evaporator 14 is reduced. In addition, if the amount of refrigerant circulating in the refrigerant circuit is insufficient, or if refrigerating machine oil stays in the refrigerant circuit, there will be insufficient refrigerating machine oil returning from the refrigerant circuit to the compressor 11, causing the compressor 11 to seize up. It causes Therefore, the oil separator 23 separates the refrigerating machine oil from the refrigerant discharged by the compressor 11 and returns it to the compressor 11.
 実施の形態3では、熱源ユニット1に搭載された部品のうち、冷媒漏洩が発生しやすい冷媒回路部品のうちの2つ以上を、底板17の凹部172の延設方向であるY方向に対して、直交または略直交するように配置する。 In the third embodiment, two or more of the refrigerant circuit components that are likely to cause refrigerant leakage among the components mounted on the heat source unit 1 are arranged with respect to the Y direction, which is the extending direction of the recess 172 of the bottom plate 17. , arranged orthogonally or substantially orthogonally.
 具体的には、圧縮機11、アキュムレータ21、オイルレギュレータ22、油分離器23のうちの少なくとも2つの冷媒回路部品を、図11の一点鎖線Bで示すように、X方向に並べて配置する。当該配置により、並べて配置された2以上の冷媒回路部品を接続する接続部20および冷媒配管10の延設方向は、凹部172の延設方向であるY方向に対して、直交または略直交する。これにより、当該接続部20および当該冷媒配管10から漏洩した蛍光剤は、凹部172内に留まり、底板17のX方向に向かって広がることがない。そのため、冷媒漏洩が発生した冷媒漏洩箇所を容易に特定することができる。また、その結果、冷媒漏洩の原因となった冷媒回路部品の特定も容易に行うことができる。 Specifically, at least two refrigerant circuit components of the compressor 11, the accumulator 21, the oil regulator 22, and the oil separator 23 are arranged side by side in the X direction as shown by the dashed line B in FIG. Due to this arrangement, the extending directions of the connecting portions 20 and the refrigerant pipes 10 that connect two or more refrigerant circuit components arranged side by side are orthogonal or approximately orthogonal to the Y direction, which is the extending direction of the recesses 172. Thereby, the fluorescent agent leaking from the connecting portion 20 and the refrigerant pipe 10 remains within the recess 172 and does not spread toward the X direction of the bottom plate 17. Therefore, the refrigerant leak location where the refrigerant leak has occurred can be easily specified. Furthermore, as a result, it is possible to easily identify the refrigerant circuit component that caused the refrigerant leak.
 特に、アキュムレータ21、オイルレギュレータ22、油分離器23のうちの1つ以上と、圧縮機11と、が、凹部172および凸部171と直交または略直交するように配置されることが望ましい。その理由は、上記(2)および(3)に示したように、圧縮機11に接続されている冷媒回路部品、および、圧縮機11に接続されている冷媒配管10が、特に、冷媒漏洩が発生しやすい箇所となるためである。なお、ここで、「略直交」は、冷媒漏洩が発生したときに、蛍光剤の漏れ箇所の特定に支障が出ない範囲で、直交から角度がズレる方向を含むものである。なお、アキュムレータ21、オイルレギュレータ22、油分離器23のうちの少なくとも1つは、第1機器25(図13参照)と呼ばれることがある。 In particular, it is desirable that one or more of the accumulator 21, the oil regulator 22, and the oil separator 23 and the compressor 11 be arranged so as to be perpendicular or substantially perpendicular to the concave portion 172 and the convex portion 171. The reason for this is that, as shown in (2) and (3) above, the refrigerant circuit components connected to the compressor 11 and the refrigerant piping 10 connected to the compressor 11 are particularly susceptible to refrigerant leakage. This is because it is a place where it is likely to occur. Note that here, "substantially orthogonal" includes a direction in which the angle deviates from orthogonal within a range that does not impede the identification of the leaking location of the fluorescent agent when refrigerant leakage occurs. Note that at least one of the accumulator 21, the oil regulator 22, and the oil separator 23 may be referred to as a first device 25 (see FIG. 13).
 図11では、圧縮機11とオイルレギュレータ22とがX方向に配置されている。圧縮機11とオイルレギュレータ22とは冷媒配管10を介して接続されている。従って、圧縮機11とオイルレギュレータ22との接続方向はX方向となり、Y方向に直交している。ただし、X方向に並べて配置する冷媒回路部品の組み合わせは、これに限らず、圧縮機11とアキュムレータ21、圧縮機11と油分離器23、または、圧縮機11とアキュムレータ21と油分離器23のような組み合わせであってもよい。 In FIG. 11, the compressor 11 and the oil regulator 22 are arranged in the X direction. The compressor 11 and the oil regulator 22 are connected via a refrigerant pipe 10. Therefore, the connection direction between the compressor 11 and the oil regulator 22 is the X direction, which is orthogonal to the Y direction. However, the combination of refrigerant circuit components arranged side by side in the X direction is not limited to this, and may include the compressor 11 and accumulator 21, the compressor 11 and oil separator 23, or the compressor 11 and accumulator 21 and oil separator 23. It may be a combination like this.
 以上のように、実施の形態3では、熱源ユニット1の内部に、アキュムレータ21、オイルレギュレータ22、および、油分離器23のうちの少なくとも1つの冷媒回路部品が、第1機器25(図13参照)として設置されている。そして、圧縮機11と第1機器25とはX方向に並んで配置され、圧縮機11と第1機器25とは冷媒配管10を介して接続されている。このとき、圧縮機11、第1機器25、圧縮機11と第1機器25とを接続する冷媒配管10、または、圧縮機11と第1機器25とを接続する接続部20は、X方向に並んで配置されている。そのため、これらのうちのいずれかの箇所で冷媒漏洩が発生しても、冷媒とともに漏洩した蛍光剤は凹部172内に滞留するため、底板17上でX方向に広がることがない。そのため、サービスマンは、冷媒漏洩箇所、および、冷媒漏洩の原因となった冷媒回路部品を、容易に且つ効率良く特定することができる。 As described above, in the third embodiment, at least one refrigerant circuit component of the accumulator 21, the oil regulator 22, and the oil separator 23 is installed inside the heat source unit 1 as the first device 25 (see FIG. 13). ). The compressor 11 and the first device 25 are arranged side by side in the X direction, and the compressor 11 and the first device 25 are connected via the refrigerant pipe 10. At this time, the compressor 11, the first device 25, the refrigerant pipe 10 connecting the compressor 11 and the first device 25, or the connecting portion 20 connecting the compressor 11 and the first device 25 are arranged in the X direction. are placed side by side. Therefore, even if refrigerant leakage occurs at any of these locations, the fluorescent agent leaked together with the refrigerant will remain in the recess 172 and will not spread in the X direction on the bottom plate 17. Therefore, the service person can easily and efficiently identify the location of the refrigerant leak and the refrigerant circuit component that caused the refrigerant leak.
 実施の形態4.
 図12は、実施の形態4に係る冷凍サイクル装置に設けられた熱源ユニットの構成の一例を示す斜視図である。
Embodiment 4.
FIG. 12 is a perspective view showing an example of the configuration of a heat source unit provided in the refrigeration cycle device according to the fourth embodiment.
 実施の形態4に係る冷凍サイクル装置100および熱源ユニット1の構成および動作は、上記の実施の形態1と基本的に同じであるため、以下では、実施の形態4の特徴について主に説明し、実施の形態1と共通する特徴については、ここでは、その説明を省略する。 The configuration and operation of refrigeration cycle device 100 and heat source unit 1 according to Embodiment 4 are basically the same as those of Embodiment 1, so below, the features of Embodiment 4 will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
 図12に示すように、実施の形態4では、溝状の凹部172の内部に、分割壁175が設けられている。分割壁175は、X方向に延設された板状部材で、XZ平面に平行になるように配置されている。分割壁175は、平板形状でもよいが、図12に示すように、Z方向のZ2側に向かうにつれて板厚が増加していてもよい。その場合、分割壁175の板厚を示す断面形状は、三角形状、台形形状、くさび形状等となる。分割壁175のX方向の両端部は、凹部172の傾斜面部172bに接合されている。また、分割壁175は、凹部172の底面部172aから、Z方向のZ1側に立設されている。分割壁175は、凹部172の内部をY方向に並ぶ2つのブロックに区分している。 As shown in FIG. 12, in the fourth embodiment, a dividing wall 175 is provided inside the groove-shaped recess 172. The dividing wall 175 is a plate-shaped member extending in the X direction, and is arranged parallel to the XZ plane. The dividing wall 175 may have a flat plate shape, but as shown in FIG. 12, the plate thickness may increase toward the Z2 side in the Z direction. In that case, the cross-sectional shape indicating the plate thickness of the dividing wall 175 is triangular, trapezoidal, wedge-shaped, or the like. Both ends of the dividing wall 175 in the X direction are joined to the inclined surface portion 172b of the recess 172. Further, the dividing wall 175 is erected from the bottom surface 172a of the recess 172 on the Z1 side in the Z direction. The dividing wall 175 divides the inside of the recess 172 into two blocks aligned in the Y direction.
 なお、図12では、凹部172内に1つの分割壁175が設けられ、凹部172の内部が2つのブロックに区分されているが、この場合に限定されない。すなわち、凹部172内に、2以上の分割壁175が設けられ、凹部172の内部が3以上のブロックに区分されていてもよい。ブロックの個数が多いほど、冷媒漏洩箇所を精度良く特定することができる。 Note that in FIG. 12, one dividing wall 175 is provided in the recess 172, and the inside of the recess 172 is divided into two blocks, but the invention is not limited to this case. That is, two or more dividing walls 175 may be provided in the recess 172, and the inside of the recess 172 may be divided into three or more blocks. The larger the number of blocks, the more accurately the refrigerant leak location can be identified.
 以上のように、実施の形態4においては、溝状の凹部172の内部に分割壁175を設置している。冷凍機油および蛍光剤が多量に流出した場合においても、底板17の分割壁175を設置したことで、冷凍機油および蛍光剤が分割壁175に阻まれて、凹部172内をY方向に流れることができない。このように、実施の形態4では、分割壁175の設置により、実施の形態1~3に比べて、冷凍機油および蛍光剤が流れる範囲の制約が、さらに大きくなる。そのため、冷媒漏洩箇所を特定する際の紫外線照射が必要な範囲がさらに狭くなり、冷媒漏洩箇所の特定をさらに容易にすることができる。また、分割壁175は個数が多いほど、流出範囲の制約が大きくなるため、検知が容易になる。 As described above, in the fourth embodiment, the dividing wall 175 is installed inside the groove-shaped recess 172. Even if a large amount of refrigerating machine oil and fluorescent agent leaks out, the installation of the dividing wall 175 of the bottom plate 17 prevents the refrigerating machine oil and fluorescent agent from flowing in the Y direction inside the recess 172 because it is blocked by the dividing wall 175. Can not. As described above, in the fourth embodiment, by installing the dividing wall 175, the restrictions on the range through which the refrigerating machine oil and the fluorescent agent flow are even greater than in the first to third embodiments. Therefore, the range that requires ultraviolet irradiation when identifying a refrigerant leakage point is further narrowed, and the refrigerant leakage point can be identified even more easily. Furthermore, the larger the number of dividing walls 175, the greater the restriction on the outflow range, which makes detection easier.
 なお、図12の例では、図6(a)に示した凹部172に対して分割壁175を設けた場合を例に挙げて説明している。しかしながら、その場合に限定されず、図5または図6(b)に示した凹部172に対して分割壁175を設けるようにしてもよい。その場合においても、同様に、凹部172の底面部172aがY方向に2以上のブロックに区分されるため、冷凍機油および蛍光剤がY方向に広く流れることを抑制できるため、冷媒漏洩箇所の特定が容易である。 Note that in the example of FIG. 12, a case is described in which a dividing wall 175 is provided in the recess 172 shown in FIG. 6(a). However, the invention is not limited to that case, and a dividing wall 175 may be provided for the recess 172 shown in FIG. 5 or 6(b). Even in that case, since the bottom surface 172a of the recess 172 is divided into two or more blocks in the Y direction, it is possible to suppress the refrigerating machine oil and the fluorescent agent from flowing widely in the Y direction, thereby identifying the location of the refrigerant leak. is easy.
 実施の形態5.
 図13は、実施の形態5に係る熱源ユニットの底板の構成の一例を模式的に示す平面図である。溝状の凹部172の配置密度は、底板17を複数の領域に区分して、領域ごとに異なるようにしてもよい。実施の形態5では、底板17を複数の領域に区分して、領域ごとに溝状の凹部172の配置密度を異なるようにした例について説明する。なお、底板17を区分する領域の個数については、特に限定されず、適宜決定してよい。
Embodiment 5.
FIG. 13 is a plan view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the fifth embodiment. The arrangement density of the groove-shaped recesses 172 may be different for each region by dividing the bottom plate 17 into a plurality of regions. In the fifth embodiment, an example will be described in which the bottom plate 17 is divided into a plurality of regions, and the arrangement density of the groove-shaped recesses 172 is made different for each region. Note that the number of regions into which the bottom plate 17 is divided is not particularly limited, and may be determined as appropriate.
 実施の形態5に係る冷凍サイクル装置100および熱源ユニット1の構成および動作は、上記の実施の形態1と基本的に同じであるため、以下では、実施の形態5の特徴について主に説明し、実施の形態1と共通する特徴については、ここでは、その説明を省略する。 The configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the fifth embodiment are basically the same as those of the first embodiment, so below, the features of the fifth embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
 図13(a)に示すように、実施の形態5では、底板17において、凹部172の配置密度が第1密度の第1領域170aと、凹部172の配置密度が第2密度の第2領域170bと、が設けられている。第2密度は、第1密度より高い。ここで、配置密度とは、底板17の上面部17a全体の面積に対する凹部172の形成面積の比率である。そのため、配置密度は、凸部171の形成面積に対する凹部172の形成面積の比率、および、凸部171の個数に対する凹部172の個数の比率を示す場合もある。 As shown in FIG. 13A, in the fifth embodiment, in the bottom plate 17, a first region 170a in which the recesses 172 are arranged at a first density, and a second region 170b in which the recesses 172 are arranged at a second density. and are provided. The second density is higher than the first density. Here, the arrangement density is the ratio of the area where the recesses 172 are formed to the area of the entire upper surface 17a of the bottom plate 17. Therefore, the arrangement density may indicate the ratio of the formation area of the recesses 172 to the formation area of the projections 171 and the ratio of the number of recesses 172 to the number of projections 171.
 上述したように、熱源ユニット1の内部には、圧縮機11を含む複数の冷媒回路部品が配置されている。また、複数の冷媒回路部品のうちの少なくとも2つは接続部20を介して冷媒配管10で接続されている。 As described above, a plurality of refrigerant circuit components including the compressor 11 are arranged inside the heat source unit 1. Furthermore, at least two of the plurality of refrigerant circuit components are connected to each other by the refrigerant pipe 10 via the connecting portion 20 .
 上記の実施の形態3で説明したように、熱源ユニット1の内部に、アキュムレータ21、オイルレギュレータ22、および、油分離器23のうちの少なくとも1つの冷媒回路部品が、第1機器25として設置されている。そして、図13に示すように、圧縮機11と第1機器25とはX方向に並んで配置され、圧縮機11と第1機器25とは冷媒配管10および接続部20を介して接続されている。このとき、圧縮機11、当該冷媒配管10、および、当該接続部20は、第2領域170bの真上に配置されている。第2領域170bでは、第1領域170aに比べて、凹部172が多数配置されている。そのため、第2領域170bで冷媒漏洩が発生した場合、冷凍機油および蛍光剤がいずれか1つの凹部172内に留まり、広がることがない。その結果、冷媒漏洩箇所の特定を容易に行うことができる。 As described in the third embodiment above, at least one refrigerant circuit component among the accumulator 21, the oil regulator 22, and the oil separator 23 is installed as the first device 25 inside the heat source unit 1. ing. As shown in FIG. 13, the compressor 11 and the first device 25 are arranged side by side in the X direction, and the compressor 11 and the first device 25 are connected via the refrigerant pipe 10 and the connection part 20. There is. At this time, the compressor 11, the refrigerant pipe 10, and the connection section 20 are arranged directly above the second region 170b. In the second region 170b, a larger number of recesses 172 are arranged than in the first region 170a. Therefore, when refrigerant leakage occurs in the second region 170b, the refrigerating machine oil and the fluorescent agent remain within one of the recesses 172 and do not spread. As a result, the location of the refrigerant leak can be easily identified.
 なお、図13(a)の場合、図13(a)に示すように、第2領域170bをメンテナンスパネル1b側に配置し、凹部172の配置密度が小さい第1領域170aを熱源ユニット1内のY方向のY2側に配置することが望ましい。 In the case of FIG. 13(a), as shown in FIG. 13(a), the second region 170b is arranged on the maintenance panel 1b side, and the first region 170a where the arrangement density of the recesses 172 is small is arranged in the heat source unit 1. It is desirable to arrange it on the Y2 side in the Y direction.
 図13(a)の例では、底板17に、第1領域170aと、第2領域170bと、の2つの領域が設けられている場合を示したが、その場合に限定されない。図13(b)およぎ図13(c)では、底板17に、第1領域170aと、第2領域170bと、第3領域170cと、の3つの領域が設けられている場合を示している。これらの3つの領域における凹部172の配置密度は、以下の通りである。 Although the example of FIG. 13(a) shows a case where the bottom plate 17 is provided with two regions, the first region 170a and the second region 170b, the present invention is not limited to that case. 13(b) and 13(c) show a case where the bottom plate 17 is provided with three regions: a first region 170a, a second region 170b, and a third region 170c. The arrangement density of the recesses 172 in these three regions is as follows.
 第1領域170aの第1密度:通常
 第2領域170bの第2密度:密
 第3領域170cの第3密度:疎
First density of first region 170a: Normal Second density of second region 170b: Dense Third density of third region 170c: Sparse
 このように、図13(b)および図13(c)の例では、第2密度が最も大きく、第3密度が最も小さい。 In this way, in the examples of FIGS. 13(b) and 13(c), the second density is the largest and the third density is the smallest.
 図13(b)の場合、図13(b)に示すように、第2領域170bをメンテナンスパネル1b側に配置し、第3領域170cを熱源ユニット1内のY方向のY2側に配置することが望ましい。また、第1領域170aは、例えば、第2領域170bに対してX方向に並べて配置する。 In the case of FIG. 13(b), as shown in FIG. 13(b), the second region 170b is arranged on the maintenance panel 1b side, and the third region 170c is arranged on the Y2 side in the Y direction inside the heat source unit 1. is desirable. Further, the first region 170a is arranged side by side with the second region 170b in the X direction, for example.
 同様に、図13(c)の場合、図13(c)に示すように、第2領域170bをメンテナンスパネル1b側に配置し、第3領域170cを熱源ユニット1内のY方向のY2側に配置することが望ましい。また、第1領域170aは、例えば、第2領域170bおよび第3領域170cに対してX方向に並べて配置する。 Similarly, in the case of FIG. 13(c), the second region 170b is arranged on the maintenance panel 1b side, and the third region 170c is arranged on the Y2 side in the Y direction inside the heat source unit 1. It is desirable to place Further, the first region 170a is arranged side by side in the X direction with respect to the second region 170b and the third region 170c, for example.
 なお、図13(a)~(c)は、単なる一例であり、底板17に設ける領域の個数は適宜変更してよい。また、底板17に設ける領域の配置は適宜変更してよい。なお、第1領域170aの第1密度を「通常」とし、第3領域170cの第3密度を「疎」とした場合に、第1領域170aおよび第3領域170cに配置する部品の例を、以下に示す。
 第1領域170aに配置する部品の例:ろう付け等で接続していない冷媒配管。接続部20を有さない冷媒配管。当該冷媒配管については、冷媒配管自体に穴でも空かない限り、漏洩箇所は無い。このように、ろう付け等で接続していない冷媒配管は、メンテナンスの必要性も低いことから、凹部172の配置密度の疎密に関わらず、Y方向のY2側に配置してもよい。
 第3領域170cに配置する部品の例:制御箱、電気部品など、冷媒と直接関係ない部品。
Note that FIGS. 13A to 13C are merely examples, and the number of regions provided on the bottom plate 17 may be changed as appropriate. Further, the arrangement of regions provided on the bottom plate 17 may be changed as appropriate. In addition, when the first density of the first region 170a is "normal" and the third density of the third region 170c is "sparse", an example of parts arranged in the first region 170a and the third region 170c is as follows. It is shown below.
Examples of parts placed in the first region 170a: refrigerant pipes that are not connected by brazing or the like. Refrigerant piping without a connection part 20. Regarding the refrigerant pipe, there is no leakage point unless there is a hole in the refrigerant pipe itself. In this way, since the refrigerant pipes that are not connected by brazing or the like require less maintenance, they may be arranged on the Y2 side in the Y direction, regardless of the arrangement density of the recesses 172.
Examples of parts placed in the third area 170c: parts not directly related to refrigerant, such as control boxes and electrical parts.
 以上のように、実施の形態5においては、波板形状の底板17において、圧縮機11または接続部20等が配置された、冷媒漏れが発生しやすい箇所の凹部172の配置密度を、他の部分よりも密とする。これにより、冷媒漏洩が発生しやすい箇所での凹部172に直交するX方向の漏れ箇所の特定が行いやすくなり、漏れ検知を容易にする。なお、冷媒漏洩のリスクの少ない箇所の凹部172の配置密度は、底板17の加工性を高めるために、他の部分よりも疎としてもよい。つまり、底板17において、密、通常、疎の3種類の配置密度があってもよい。 As described above, in the fifth embodiment, in the corrugated bottom plate 17, the arrangement density of the recesses 172 in the locations where the compressor 11 or the connecting portion 20, etc. are arranged, where refrigerant leakage is likely to occur, is Make it denser than the parts. This makes it easier to identify the leak location in the X direction perpendicular to the recess 172 where refrigerant leaks are likely to occur, making leak detection easier. Note that the arrangement density of the concave portions 172 in locations where the risk of refrigerant leakage is low may be less dense than in other portions in order to improve the workability of the bottom plate 17. That is, the bottom plate 17 may have three types of arrangement density: dense, normal, and sparse.
 また、冷媒漏洩量などに応じて、凹部172の溝の幅または深さなどを変更してもよい。例えば、圧縮機11または接続部20などの冷媒漏れが発生しやすい箇所では、凹部172のX方向の幅を広げたり、あるいは、凹部172の深さを深くすることで、蛍光剤が流れ出ることを抑制してもよい。なお、凹部172の配置密度の調整、または、凹部172の幅および深さの調整は、どちらか一方を採用すれば効果があるが、それらの調整を組み合わせるとさらに効果的である。 Additionally, the width or depth of the groove of the recess 172 may be changed depending on the amount of refrigerant leakage. For example, in locations where refrigerant leaks are likely to occur, such as the compressor 11 or the connection portion 20, the width of the recess 172 in the X direction may be increased or the depth of the recess 172 may be increased to prevent the fluorescent agent from flowing out. May be suppressed. Note that adjusting the arrangement density of the recesses 172 or adjusting the width and depth of the recesses 172 is effective if either one is adopted, but it is even more effective if these adjustments are combined.
 実施の形態6.
 図4を用いて上述したように、底板17には、Y方向のY1側の端部およびY2側の端部の両方に、水抜き用の孔173が設けられている。しかしながら、これに限定されない。実施の形態6では、Y方向のY1側の端部およびY2側の端部のいずれか一方に、水抜き用の孔173が設ける場合について説明する。
Embodiment 6.
As described above using FIG. 4, the bottom plate 17 is provided with drain holes 173 at both the end on the Y1 side and the end on the Y2 side in the Y direction. However, it is not limited to this. In Embodiment 6, a case will be described in which a drain hole 173 is provided at either the end on the Y1 side or the end on the Y2 side in the Y direction.
 水抜き用の孔173は、ドレン水と共に、蛍光剤も流れる原因になり得る。そこで、凹部172においては、水抜き用の孔173は、Y方向のY1側の端部およびY2側の端部のいずれか一方のみに設けている。さらに、図4に示す凹部172のY方向のY1側の端部とY2側の端部との間に形成された水抜き用の孔173Bは、実施の形態6では形成しない。これにより、水抜き用の孔173による蛍光剤の流出を抑制することができる。なお、凸部171においては、蛍光剤の流出に関して、水抜き用の孔173Aはさほど重要ではない。そのため、凸部171においては、図4に示すように、水抜き用の孔173Aを設けていてもよい。 The drain hole 173 may cause the fluorescent agent to flow together with the drain water. Therefore, in the recessed portion 172, the drain hole 173 is provided only at either the end on the Y1 side or the end on the Y2 side in the Y direction. Furthermore, the drain hole 173B formed between the end on the Y1 side and the end on the Y2 side in the Y direction of the recess 172 shown in FIG. 4 is not formed in the sixth embodiment. Thereby, it is possible to suppress the fluorescent agent from flowing out through the drainage hole 173. Note that in the convex portion 171, the water drainage hole 173A is not so important with respect to the outflow of the fluorescent agent. Therefore, in the convex portion 171, as shown in FIG. 4, a hole 173A for draining water may be provided.
 実施の形態7.
 上記の図3に示すように、熱源ユニット1において、凝縮器12の下端部12aは、底板17までは届いておらず、底板17と凝縮器12の下端部12aとの間には、Z方向において間隔があることが望ましい。図3の例では、底板17と凝縮器12の下端部12aとの間に、Z方向において、距離L4の間隔が設けられている。具体的には、支持部材1dが、距離L4の間隔を形成するためのスペーサとして機能している。
Embodiment 7.
As shown in FIG. 3 above, in the heat source unit 1, the lower end 12a of the condenser 12 does not reach the bottom plate 17, and there is a space between the bottom plate 17 and the lower end 12a of the condenser 12 in the Z direction. It is desirable that there is a gap between the two. In the example of FIG. 3, a distance L4 is provided between the bottom plate 17 and the lower end 12a of the condenser 12 in the Z direction. Specifically, the support member 1d functions as a spacer for forming the distance L4.
 凝縮器12の下端部12aが底板17まで延びていると、凝縮器12を介した送風ファン15による外気の吸い上げの影響を蛍光剤が受けて、蛍光剤が滴下する位置がずれるおそれがある。上述したように、熱源ユニット1において、送風ファン15が駆動すると、外装パネル1aに設けられた吸気口から外気が熱源ユニット1内に吸い込まれる。そして、その外気は、凝縮器12を通って、熱源ユニット1をZ方向のZ1側に向かって流れていく。そのため、熱源ユニット1内には、Z方向のZ2側からZ1側に向かって流れる気流が発生する。このとき、凝縮器12の下端部12aが底板17まで延びていると、冷媒と共に漏洩した蛍光剤が当該気流によって流されて舞い上がってしまい、その後、底板17に向かって滴下することになる。そのため、蛍光剤が滴下する位置が、漏洩箇所の真下からずれるおそれがある。 If the lower end 12a of the condenser 12 extends to the bottom plate 17, the fluorescent agent may be affected by the suction of outside air by the blower fan 15 through the condenser 12, and the position at which the fluorescent agent is dropped may be shifted. As described above, in the heat source unit 1, when the blower fan 15 is driven, outside air is sucked into the heat source unit 1 from the air intake port provided in the exterior panel 1a. Then, the outside air passes through the condenser 12 and flows through the heat source unit 1 toward the Z1 side in the Z direction. Therefore, an airflow is generated within the heat source unit 1 that flows from the Z2 side toward the Z1 side in the Z direction. At this time, if the lower end 12a of the condenser 12 extends to the bottom plate 17, the fluorescent agent leaking together with the refrigerant will be swept away by the airflow and will then drop toward the bottom plate 17. Therefore, there is a possibility that the position where the fluorescent agent is dropped may be shifted from directly below the leakage location.
 そこで、実施の形態1~7においては、熱源ユニット1において、凝縮器12の下端部12aが底板17までは届いておらず、底板17と凝縮器12の下端部12aとの間に、Z方向において距離L4の間隔がある構成にしている。また、距離L4の間隔を形成するスペーサとして、支持部材1dを設置している。支持部材1dには、外気を取り込むための吸気口が設けられていないため、支持部材1dの箇所からは外気が熱源ユニット1内に流入しない。図3に示すように、熱源ユニット1内の冷媒回路部品は、熱源ユニット1内の下部に殆ど配置されているため、支持部材1dを設けることによって、蛍光剤の滴下に関して、送風ファン15による気流は殆ど影響しない。そのため、漏洩した蛍光剤は、漏洩箇所の真下に滴下されるため、サービスマンが漏洩箇所を速やかに発見することができる。 Therefore, in the first to seventh embodiments, in the heat source unit 1, the lower end 12a of the condenser 12 does not reach the bottom plate 17, and there is a space between the bottom plate 17 and the lower end 12a of the condenser 12 in the Z direction. The configuration is such that there is an interval of distance L4 between the two. Further, a support member 1d is installed as a spacer to form a distance L4. Since the support member 1d is not provided with an intake port for taking in outside air, outside air does not flow into the heat source unit 1 from the support member 1d. As shown in FIG. 3, most of the refrigerant circuit components in the heat source unit 1 are arranged at the lower part of the heat source unit 1, so by providing the support member 1d, the airflow by the ventilation fan 15 is reduced with respect to the dropping of the fluorescent agent. has almost no effect. Therefore, since the leaked fluorescent agent is dropped directly below the leakage point, a service person can quickly find the leakage point.
 なお、「間隔がある」とは、正確には、底板17の凸部171の主面部171aと凝縮器12の下端部12aとの間に隙間があることである。また、「間隔がある」とは、凝縮器12が底板17に固定されていない状態、および、底板17に配置された支持部材1d上に凝縮器12が配置されている状態、の両方を含む。なお、ここでは、凝縮器12が支持部材1d上に配置されている例を示したが、その場合に限定されず、支持部材1d以外の他の部材を用いてもよい。 Note that "there is a gap" more precisely means that there is a gap between the main surface portion 171a of the convex portion 171 of the bottom plate 17 and the lower end portion 12a of the condenser 12. Furthermore, "there is a gap" includes both a state in which the condenser 12 is not fixed to the bottom plate 17 and a state in which the condenser 12 is arranged on the support member 1d arranged on the bottom plate 17. . In addition, although the example in which the condenser 12 is arranged on the support member 1d is shown here, it is not limited to that case, and other members other than the support member 1d may be used.
 実施の形態8.
 図16は、実施の形態8に係る熱源ユニットの底板の構成の一例を模式的に示す説明図である。
Embodiment 8.
FIG. 16 is an explanatory diagram schematically showing an example of the configuration of the bottom plate of the heat source unit according to Embodiment 8.
 実施の形態8に係る冷凍サイクル装置100および熱源ユニット1の構成および動作は、上記の実施の形態1と基本的に同じであるため、以下では、実施の形態8の特徴について主に説明し、実施の形態1と共通する特徴については、ここでは、その説明を省略する。 The configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the eighth embodiment are basically the same as those of the first embodiment, so below, the features of the eighth embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
 上記の実施の形態1~7では、底板17の形状を、Y方向に見た断面形状が直線または略直線からなる凹凸形状にしているが、その場合に限定されない。すなわち、底板17は、メンテナンスパネル1bに平行なX方向に蛍光剤が流れない形状であれば、任意の形状でよい。具体的には、底板17は、図16(a)または図16(b)に示すように、曲線からなる波状形状から構成された凹凸形状でもよい。あるいは、底板17は、図16(c)に示すように、複数のディンプル状の凹部が形成されたディンプル形成面から構成された凹凸形状でもよい。底板17が波状形状の場合、底板17の断面形状は、例えば、図16(a)および図16(b)に示すように、1種類以上の曲線から構成される。図16(a)の場合、凹部172のX方向の幅と凸部171のX方向の幅とが同じである。一方、図16(b)の場合、凹部172のX方向の幅は、凸部171のX方向の幅より小さい。凹部172のX方向の幅と凸部171のX方向の幅とは、特に限定されず、適宜決定してよい。底板17が波状形状の場合の他の構成は、実施の形態1と同じである。 In the first to seventh embodiments described above, the shape of the bottom plate 17 is an uneven shape in which the cross-sectional shape when viewed in the Y direction is a straight line or a substantially straight line, but the present invention is not limited thereto. That is, the bottom plate 17 may have any shape as long as the fluorescent agent does not flow in the X direction parallel to the maintenance panel 1b. Specifically, the bottom plate 17 may have a concavo-convex shape having a wavy shape made of curved lines, as shown in FIG. 16(a) or FIG. 16(b). Alternatively, the bottom plate 17 may have an uneven shape that is composed of a dimpled surface having a plurality of dimple-shaped recesses, as shown in FIG. 16(c). When the bottom plate 17 has a wavy shape, the cross-sectional shape of the bottom plate 17 is composed of one or more types of curves, as shown in FIGS. 16(a) and 16(b), for example. In the case of FIG. 16A, the width of the recess 172 in the X direction and the width of the protrusion 171 in the X direction are the same. On the other hand, in the case of FIG. 16(b), the width of the concave portion 172 in the X direction is smaller than the width of the convex portion 171 in the X direction. The width of the recess 172 in the X direction and the width of the protrusion 171 in the X direction are not particularly limited and may be determined as appropriate. The other configurations when the bottom plate 17 has a wavy shape are the same as in the first embodiment.
 また、底板17が、ディンプル形成面からなる凹凸形状を有している場合、図16(c)に示すように、底板17の上面部17aに、平面視で円形形状の窪み、すなわち、ディンプル状の凹部172Aが複数形成されている。この場合、ディンプル状の凹部172Aが設けられていない領域が、凸部171となる。ディンプル状の凹部172Aは、半球面形状の窪みから構成されていてもよいが、円柱形状またはU字断面形状の曲面から構成されていてもよい。図16(c)に示すように、複数のディンプル状の凹部172Aは、Y方向に沿って列状に、互いに間隔を空けて配置される。また、複数のディンプル状の凹部172Aから構成される列は、1以上であってよい。それらの1以上の列は、それぞれ、図16(c)に示すように、Y方向に延びている。それらの列は、X方向に互いに間隔を空けて配置されている。言い換えると、実施の形態8においては、実施の形態1で示した溝状の凹部172のそれぞれの代わりに、列状に並んだ複数のディンプル状の凹部172Aが配置される。また、ディンプル状の凹部172Aの配置密度、すなわち、ディンプル状の凹部172Aの列の配置密度は、上記の実施の形態5で説明したように、底板17を複数の領域に区分して、領域ごとにディンプルの配置密度を異なるようにしてもよい。図16(c)の例では、第1領域170aにおいては、Y方向に隣接するディンプル状の凹部172A間の間隔が、第2領域170bより大きい。さらに、第1領域170aにおいては、ディンプル状の凹部172Aの列の本数が、第2領域170bより少ない。図16(c)は単なる一例であり、これに限定されない。なお、底板17の上面部17aにディンプル状の凹部172Aを形成した場合、ディンプル状の凹部172Aは平面視で円形形状の窪みであるため、蛍光剤は、領域Aで示すように、ディンプル状の凹部172Aの中央下部の底面部172aに滞留される。そして、底面部172aに滞留した蛍光剤は、ディンプル状の凹部172Aの側面を形成する内壁面によって、X方向およびY方向への移動が規制され、ディンプル状の凹部172A内に滞留する。なお、ディンプル状の凹部172Aの配置密度、すなわち、ディンプル状の凹部172Aの列の配置密度については、上記の説明に限定せずに、例えば、水玉模様のパターンのように、底板17の上面部17aの全面で均等であってもよい。 Further, when the bottom plate 17 has an uneven shape consisting of a dimple-formed surface, as shown in FIG. A plurality of recesses 172A are formed. In this case, the region where the dimple-shaped recess 172A is not provided becomes the convex portion 171. The dimple-shaped recess 172A may be formed from a hemispherical depression, or may be formed from a curved surface having a cylindrical shape or a U-shaped cross section. As shown in FIG. 16(c), the plurality of dimple-shaped recesses 172A are arranged in a row along the Y direction at intervals. Further, the number of rows constituted by the plurality of dimple-shaped recesses 172A may be one or more. Each of the one or more columns extends in the Y direction, as shown in FIG. 16(c). The rows are spaced apart from each other in the X direction. In other words, in the eighth embodiment, a plurality of dimple-like recesses 172A arranged in a row are arranged in place of each of the groove-like recesses 172 shown in the first embodiment. Further, the arrangement density of the dimple-shaped recesses 172A, that is, the arrangement density of the rows of the dimple-shaped recesses 172A, is determined by dividing the bottom plate 17 into a plurality of regions and The arrangement density of the dimples may be made different. In the example of FIG. 16(c), in the first region 170a, the interval between adjacent dimple-shaped recesses 172A in the Y direction is larger than in the second region 170b. Furthermore, in the first region 170a, the number of rows of dimple-shaped recesses 172A is smaller than in the second region 170b. FIG. 16(c) is just an example, and the present invention is not limited thereto. Note that when the dimple-shaped recess 172A is formed on the upper surface portion 17a of the bottom plate 17, the dimple-shaped recess 172A is a circular depression in plan view, so the fluorescent agent is absorbed into the dimple-shaped recess 172A as shown in area A. It is retained in the bottom part 172a at the lower center of the recessed part 172A. The fluorescent agent staying in the bottom part 172a is restricted from moving in the X direction and the Y direction by the inner wall surface forming the side surface of the dimple-shaped recess 172A, and stays in the dimple-shaped recess 172A. Note that the arrangement density of the dimple-shaped recesses 172A, that is, the arrangement density of the rows of the dimple-shaped recesses 172A is not limited to the above description, but may be arranged on the upper surface of the bottom plate 17, for example, like a polka dot pattern. It may be uniform over the entire surface of 17a.
 また、底板17をいずれの形状にした場合においても、凹部172と凸部171との比率、凹部172および凸部171の個数、凹部172の大きさおよび深さ等は、特に限定せず、適宜決定してよい。 In addition, regardless of the shape of the bottom plate 17, the ratio of the concave portions 172 to the convex portions 171, the number of the concave portions 172 and the convex portions 171, the size and depth of the concave portions 172, etc. are not particularly limited, and may be determined as appropriate. You may decide.
 実施の形態9.
 図14は、実施の形態9に係る冷凍サイクル装置に設けられた熱源ユニットの構成の一例を模式的に示す断面図である。
Embodiment 9.
FIG. 14 is a sectional view schematically showing an example of the configuration of a heat source unit provided in a refrigeration cycle device according to Embodiment 9.
 実施の形態9に係る冷凍サイクル装置100および熱源ユニット1の構成および動作は、上記の実施の形態1と基本的に同じであるため、以下では、実施の形態9の特徴について主に説明し、実施の形態1と共通する特徴については、ここでは、その説明を省略する。 The configuration and operation of the refrigeration cycle device 100 and the heat source unit 1 according to the ninth embodiment are basically the same as those of the first embodiment, so below, the features of the ninth embodiment will be mainly explained. Descriptions of features common to Embodiment 1 will be omitted here.
 上記の実施の形態1~8では、凹部172の底面部172aをXY平面に平行な面の場合について説明したが、その場合に限定されない。すなわち、図14に示すように、溝状の凹部172の底面部172aに傾斜を持たせてもよい。具体的には、図14に示すように、各凹部172の底面部172aが、Y方向においてY2側からY1側に向かって、メンテナンスパネル1bに向かうにつれて低くなるように傾斜している。 In the first to eighth embodiments described above, the case where the bottom surface 172a of the recess 172 is a plane parallel to the XY plane has been described, but the present invention is not limited to that case. That is, as shown in FIG. 14, the bottom portion 172a of the groove-shaped recess 172 may be sloped. Specifically, as shown in FIG. 14, the bottom surface portion 172a of each recess 172 is inclined in the Y direction from the Y2 side toward the Y1 side and becomes lower toward the maintenance panel 1b.
 さらに、図14に示すように、各凹部172は、Y方向のY1側に、蛍光剤の流下を堰き止めるストッパー172cを有している。ストッパー172cは、凹部172の底面部172aからZ方向のZ1側に向かって立設されている。冷媒と共に漏洩した蛍光剤は、凹部172の底面部172aに沿って流下する。このとき、蛍光剤はストッパー172cに当接して堰き止められる。その結果、ストッパー172cのところに蛍光剤が滞留する。サービスマンは、メンテナンスパネル1bを外して、各凹部172のY1側の端部だけに紫外線を照射すれば、すべての凹部172において、蛍光剤の付着が有るか無いかを確認することができる。そして、蛍光剤の付着の有る凹部172が有った場合に、その凹部172に沿って紫外線を照射していくことで、冷媒漏洩箇所を発見することができる。 Further, as shown in FIG. 14, each recess 172 has a stopper 172c on the Y1 side in the Y direction to stop the fluorescent agent from flowing down. The stopper 172c is erected from the bottom surface 172a of the recess 172 toward the Z1 side in the Z direction. The fluorescent agent leaked together with the refrigerant flows down along the bottom surface 172a of the recess 172. At this time, the fluorescent agent comes into contact with the stopper 172c and is stopped. As a result, the fluorescent agent remains at the stopper 172c. By removing the maintenance panel 1b and irradiating only the Y1 side end of each recess 172 with ultraviolet rays, the service person can check whether fluorescent agent is attached to all the recesses 172. If there is a recess 172 to which the fluorescent agent is attached, by irradiating ultraviolet rays along the recess 172, the location of the refrigerant leak can be discovered.
 実施の形態9では、凹部172の底面部172aが、前側が奥側より低くなるように傾斜し、且つ、最も低い箇所で蛍光剤を堰き止める形状を有している。この場合、サービスマンが、メンテナンスパネル1bを開けた瞬間に、冷媒漏洩の有無を確認でき、メンテナンスパネル1bに沿うX方向における蛍光剤の漏れ箇所の特定を早期に行うことができる。 In Embodiment 9, the bottom surface 172a of the recess 172 is inclined so that the front side is lower than the back side, and has a shape that blocks the fluorescent agent at the lowest point. In this case, the moment the service person opens the maintenance panel 1b, the presence or absence of refrigerant leakage can be confirmed, and the location of the fluorescent agent leakage in the X direction along the maintenance panel 1b can be identified at an early stage.
 実施の形態10.
 図15は、実施の形態10に係る熱源ユニットの底板の構成の一例を模式的に示す側面図である。実施の形態1~9に係る底板17において、溝状の凹部172またはディンプル状の凹部172Aが設けられていない領域には、凸部171が設けられている。このとき、凸部171の主面部171aの全体に亘って、図15に示すように、メッシュ状の網材または吸収素材からなる蛍光剤滞留部材171cを設けるようにしてもよい。蛍光剤滞留部材171cとして、凸部171の主面部171aにメッシュ状の網材が設けられている場合には、メッシュ状の網材の網目に、冷媒と共に漏洩した蛍光剤が引っ掛かり、その位置に溜まる。また、凸部171の主面部171aに、蛍光剤滞留部材171cとして、吸収素材が設けられている場合には、冷媒と共に漏洩した蛍光剤が吸収素材に吸収される。そのため、凸部171の主面部171aに滴下した蛍光剤が、凹部172に流下せずに、滴下した位置に留まるようになる。
Embodiment 10.
FIG. 15 is a side view schematically showing an example of the configuration of the bottom plate of the heat source unit according to the tenth embodiment. In the bottom plate 17 according to the first to ninth embodiments, a convex portion 171 is provided in a region where the groove-like recess 172 or the dimple-like recess 172A is not provided. At this time, a fluorescent agent retention member 171c made of a mesh-like net material or an absorbent material may be provided over the entire main surface portion 171a of the convex portion 171, as shown in FIG. When a mesh-like net material is provided on the main surface 171a of the convex portion 171 as the fluorescent agent retention member 171c, the fluorescent agent leaked together with the refrigerant is caught in the net of the mesh-like net material, and the fluorescent agent leaked together with the refrigerant is caught at that position. Accumulate. Further, when an absorbing material is provided as the fluorescent agent retention member 171c on the main surface portion 171a of the convex portion 171, the fluorescent agent leaked together with the refrigerant is absorbed by the absorbing material. Therefore, the fluorescent agent dropped onto the main surface portion 171a of the convex portion 171 does not flow down into the recessed portion 172, but remains at the dropped position.
 以上のように、実施の形態10では、底板17の凸部171の主面部171aに、メッシュ状の網材または吸収素材のうち少なくとも一方を設けて、蛍光剤を留めるまたは吸わせることで、冷媒漏洩箇所の位置特定を行う。これにより、さらに、冷媒漏洩箇所の特定が容易になる。 As described above, in Embodiment 10, at least one of a mesh-like net material and an absorbent material is provided on the main surface portion 171a of the convex portion 171 of the bottom plate 17 to retain or absorb the fluorescent agent. Locate the location of the leak. This further facilitates identification of the location of the refrigerant leak.
 なお、底板17の凸部171の主面部171aに、メッシュ状の網材および吸収素材の両方を設けるようにしてもよい。具体的には、凸部171の主面部171aに、まず、吸収素材を施す。次に、吸収素材の上に、メッシュ状の網材を施す。これにより、蛍光剤は、まず、メッシュ状の網材によってX方向およびY方向へ流れることが抑制される。そして、メッシュ状の網材の網目の中を、Z方向のZ2側へ流下した蛍光剤は、吸収素材に吸収される。これにより、蛍光剤は、さらにX方向およびY方向へ流れることが抑制されて、滴下した位置に留まるようになる。 Note that the main surface portion 171a of the convex portion 171 of the bottom plate 17 may be provided with both a mesh-like net material and an absorbent material. Specifically, the main surface portion 171a of the convex portion 171 is first coated with an absorbent material. Next, a mesh material is applied on top of the absorbent material. As a result, the fluorescent agent is first restrained from flowing in the X direction and the Y direction by the mesh material. The fluorescent agent that has flowed down to the Z2 side in the Z direction through the mesh of the mesh material is absorbed by the absorbent material. As a result, the fluorescent agent is prevented from flowing further in the X direction and the Y direction, and remains at the position where it was dropped.
 また、凸部171が、上記の図6(b)の形状の場合、凸部171の主面部171aだけでなく、傾斜面部171bに対しても、メッシュ状の網材または吸収素材からなる蛍光剤滞留部材171cを設けるようにしてもよい。 Further, when the convex portion 171 has the shape shown in FIG. 6(b), a fluorescent agent made of a mesh-like net material or an absorbing material is applied not only to the main surface portion 171a of the convex portion 171 but also to the inclined surface portion 171b. A retention member 171c may be provided.
 1 熱源ユニット、1a 外装パネル、1b メンテナンスパネル、1c 上面部、1d 支持部材、2 負荷ユニット、10 冷媒配管、11 圧縮機、11a 吐出管、11b 吸入管、11c 脚、12 凝縮器、12a 下端部、13 膨張弁、14 蒸発器、15 送風ファン、16 送風ファン、17 底板、17a 上面部、18 サービススペース、19A 通風スペース、19B 通風スペース、20 接続部、20A 接続部、20B 接続部、21 アキュムレータ、22 オイルレギュレータ、23 油分離器、24 ドライヤ、25 第1機器、30 壁、31 壁、100 冷凍サイクル装置、170a 第1領域、170b 第2領域、170c 第3領域、171 凸部、171a 主面部、171b 傾斜面部、171c 蛍光剤滞留部材、172 凹部(溝状の凹部)、172A 凹部(ディンプル状の凹部)、172a 底面部、172b 傾斜面部、172c ストッパー、173 孔、173A 孔、173B 孔、174 切り欠き部、175 分割壁、A 領域、B 一点鎖線、L1 距離、L2 距離、L3 距離、L4 距離、R1 領域、R2 領域、R3 領域。 1 heat source unit, 1a exterior panel, 1b maintenance panel, 1c upper surface, 1d support member, 2 load unit, 10 refrigerant piping, 11 compressor, 11a discharge pipe, 11b suction pipe, 11c leg, 12 condenser, 12a lower end , 13 expansion valve, 14 evaporator, 15 blower fan, 16 blower fan, 17 bottom plate, 17a top surface, 18 service space, 19A ventilation space, 19B ventilation space, 20 connection section, 20A connection section, 20B connection section, 21 accumulator , 22 oil regulator, 23 oil separator, 24 dryer, 25 first equipment, 30 wall, 31 wall, 100 refrigeration cycle device, 170a first area, 170b second area, 170c third area, 171 convex part, 171a main Surface part, 171b slope part, 171c fluorescent agent retention member, 172 recess (groove-shaped recess), 172A recess (dimple-shaped recess), 172a bottom part, 172b slope part, 172c stopper, 173 hole, 173A hole, 173B hole, 174 Notch, 175 Dividing wall, A area, B dashed line, L1 distance, L2 distance, L3 distance, L4 distance, R1 area, R2 area, R3 area.

Claims (13)

  1.  圧縮機、凝縮器、膨張弁および蒸発器が配管によって接続され、前記配管を冷媒が循環する冷媒回路を備えた冷凍サイクル装置であって、
     前記冷媒回路内を、前記冷媒と共に冷凍機油に添加された蛍光剤が循環し、
     前記圧縮機と前記凝縮器とが内部に設置された熱源ユニットの底板が、前記冷媒が前記冷媒回路から漏洩したときに、漏洩した前記蛍光剤が滞留する底面部を有する凹凸形状を有する、
     冷凍サイクル装置。
    A refrigeration cycle device comprising a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping, and a refrigerant circulates through the piping,
    A fluorescent agent added to refrigerating machine oil is circulated in the refrigerant circuit together with the refrigerant,
    A bottom plate of a heat source unit in which the compressor and the condenser are installed has an uneven shape having a bottom portion where the leaked fluorescent agent stays when the refrigerant leaks from the refrigerant circuit.
    Refrigeration cycle equipment.
  2.  前記凹凸形状の前記底面部は、前記熱源ユニットの奥行き方向である第1方向に沿って配置され、前記熱源ユニットの幅方向である第2方向への前記蛍光剤の移動を規制する、
     請求項1に記載の冷凍サイクル装置。
    The uneven bottom portion is arranged along a first direction that is a depth direction of the heat source unit, and restricts movement of the fluorescent agent in a second direction that is a width direction of the heat source unit.
    The refrigeration cycle device according to claim 1.
  3.  前記底板は、前記熱源ユニットの奥行き方向である第1方向に延びた複数の溝状の凹部を有し、
     前記溝状の凹部は、前記熱源ユニットの幅方向である第2方向に互いに間隔を空けて並んで配置され、
     前記溝状の凹部のそれぞれは、前記第1方向に延びた前記底面部を有する、
     請求項1または2に記載の冷凍サイクル装置。
    The bottom plate has a plurality of groove-shaped recesses extending in a first direction that is a depth direction of the heat source unit,
    The groove-shaped recesses are arranged side by side at intervals in a second direction that is the width direction of the heat source unit,
    Each of the groove-shaped recesses has the bottom portion extending in the first direction.
    The refrigeration cycle device according to claim 1 or 2.
  4.  前記溝状の凹部は、前記第1方向に見た場合、台形形状の断面形状を有し、
     前記溝状の凹部は、
     平面視で矩形形状を有し、長手方向が前記第1方向に延びた、前記底面部と、
     前記底面部の前記第2方向の両端部に配置され、前記底面部に連結された傾斜面部と、
     を備え、
     前記傾斜面部は、前記底面部から上方向に向かうにつれて前記底面部の外方に向かって傾斜している、
     請求項3に記載の冷凍サイクル装置。
    The groove-shaped recess has a trapezoidal cross-sectional shape when viewed in the first direction,
    The groove-shaped recess is
    the bottom portion having a rectangular shape in plan view and extending in the first direction;
    a sloped surface portion disposed at both ends of the bottom surface portion in the second direction and connected to the bottom surface portion;
    Equipped with
    The inclined surface portion is inclined outward from the bottom surface portion as it goes upward from the bottom surface portion.
    The refrigeration cycle device according to claim 3.
  5.  前記底板は、前記第1方向に列状に配置された複数のディンプル状の凹部を有し、
     前記複数のディンプル状の凹部から構成される1以上の列は、前記熱源ユニットの幅方向である第2方向に互いに間隔を空けて並んで配置され、
     前記複数のディンプル状の凹部のそれぞれは、中央下部に前記底面部を有する、
     請求項1または2に記載の冷凍サイクル装置。
    The bottom plate has a plurality of dimple-shaped recesses arranged in a row in the first direction,
    One or more rows constituted by the plurality of dimple-shaped recesses are arranged side by side at intervals in a second direction that is the width direction of the heat source unit,
    Each of the plurality of dimple-shaped recesses has the bottom portion at a lower center thereof;
    The refrigeration cycle device according to claim 1 or 2.
  6.  前記熱源ユニットは、前記熱源ユニットの幅方向である第2方向に延伸する側面の1つに対し、着脱可能に取り付けられたメンテナンスパネルを備え、
     前記熱源ユニットの内部には、前記圧縮機を含む複数の冷媒回路部品が配置され、
     前記複数の冷媒回路部品のうちの少なくとも2つは接続部を介して前記配管で接続され、
     前記圧縮機および前記接続部は、前記メンテナンスパネル側に配置されている、
     請求項1~5のいずれか1項に記載の冷凍サイクル装置。
    The heat source unit includes a maintenance panel that is removably attached to one of the side surfaces extending in a second direction that is the width direction of the heat source unit,
    A plurality of refrigerant circuit components including the compressor are arranged inside the heat source unit,
    At least two of the plurality of refrigerant circuit components are connected to the piping via a connection part,
    The compressor and the connection part are arranged on the maintenance panel side,
    The refrigeration cycle device according to any one of claims 1 to 5.
  7.  前記熱源ユニットの内部には、オイルレギュレータ、アキュムレータ、および、油分離器のうちの少なくとも1つの冷媒回路部品が、第1機器として設置され、
     前記圧縮機と前記第1機器とは、前記熱源ユニットの幅方向である第2方向に並んで配置され、前記圧縮機と前記第1機器とは前記配管を介して接続されており、
     前記第2方向は、前記熱源ユニットの奥行き方向である第1方向に直交または略直交する方向である、
     請求項1~6のいずれか1項に記載の冷凍サイクル装置。
    Inside the heat source unit, at least one refrigerant circuit component of an oil regulator, an accumulator, and an oil separator is installed as a first device,
    The compressor and the first device are arranged side by side in a second direction that is the width direction of the heat source unit, and the compressor and the first device are connected via the piping,
    The second direction is a direction perpendicular or substantially perpendicular to the first direction, which is the depth direction of the heat source unit.
    The refrigeration cycle device according to any one of claims 1 to 6.
  8.  前記溝状の凹部のうち、少なくとも1つは、前記溝状の凹部の内部を前記第1方向に並ぶ2以上のブロックに区分する分割壁を有する、
     請求項3または4に記載の冷凍サイクル装置。
    At least one of the groove-shaped recesses has a dividing wall that divides the inside of the groove-shaped recess into two or more blocks lined up in the first direction.
    The refrigeration cycle device according to claim 3 or 4.
  9.  前記底板は、
     前記凹部の配置密度が第1密度である第1領域と、
     前記凹部の配置密度が前記第1密度より高い第2密度である第2領域と、
     を有し、
     前記熱源ユニットの内部には、前記圧縮機を含む複数の冷媒回路部品が配置され、
     前記複数の冷媒回路部品のうちの少なくとも2つは接続部を介して前記配管で接続され、
     前記圧縮機および前記接続部は、前記底板の前記第2領域の真上に配置されている、
     請求項3~5のいずれか1項に記載の冷凍サイクル装置。
    The bottom plate is
    a first region in which the arrangement density of the recesses is a first density;
    a second region in which the arrangement density of the recesses is a second density higher than the first density;
    has
    A plurality of refrigerant circuit components including the compressor are arranged inside the heat source unit,
    At least two of the plurality of refrigerant circuit components are connected to the piping via a connection part,
    The compressor and the connection part are arranged directly above the second region of the bottom plate,
    The refrigeration cycle device according to any one of claims 3 to 5.
  10.  前記凝縮器は、前記底板の上方に配置され、
     前記凝縮器と前記底板との上下方向の間には間隔が設けられている、
     請求項1~9のいずれか1項に記載の冷凍サイクル装置。
    the condenser is arranged above the bottom plate,
    A space is provided between the condenser and the bottom plate in the vertical direction;
    The refrigeration cycle device according to any one of claims 1 to 9.
  11.  前記熱源ユニットは、前記熱源ユニットの幅方向である第2方向に延伸する側面の1つに対し、着脱可能に取り付けられたメンテナンスパネルを備え、
     前記溝状の凹部の前記底面部は、前記熱源ユニットの奥行き方向である第1方向に沿って前記メンテナンスパネルに向かうにつれて低くなるように傾斜している、
     請求項3または4に記載の冷凍サイクル装置。
    The heat source unit includes a maintenance panel that is removably attached to one of the side surfaces extending in a second direction that is the width direction of the heat source unit,
    The bottom surface of the groove-shaped recess is inclined to become lower toward the maintenance panel along a first direction that is a depth direction of the heat source unit.
    The refrigeration cycle device according to claim 3 or 4.
  12.  前記底板は、前記底面部を有する凹部と、前記凹部が形成されていない領域に設けられた凸部と、を有し、
     前記凸部の主面部には、メッシュ状の網材または吸収素材のうち、少なくとも一方が設けられている、
     請求項1~11のいずれか1項に記載の冷凍サイクル装置。
    The bottom plate has a concave portion having the bottom surface portion, and a convex portion provided in an area where the concave portion is not formed,
    At least one of a mesh net material and an absorbent material is provided on the main surface of the convex portion.
    The refrigeration cycle device according to any one of claims 1 to 11.
  13.  前記底板の前記溝状の凹部の前記第1方向の両端の少なくともいずれか一方に、前記凝縮器で発生したドレン水を前記熱源ユニットの外部に排水させる水抜き用の孔が設けられている、
     請求項3または4に記載の冷凍サイクル装置。
    A drainage hole for draining drain water generated in the condenser to the outside of the heat source unit is provided in at least one of both ends of the groove-shaped recess of the bottom plate in the first direction.
    The refrigeration cycle device according to claim 3 or 4.
PCT/JP2022/028012 2022-07-19 2022-07-19 Refrigeration cycle device WO2024018510A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028012 WO2024018510A1 (en) 2022-07-19 2022-07-19 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028012 WO2024018510A1 (en) 2022-07-19 2022-07-19 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024018510A1 true WO2024018510A1 (en) 2024-01-25

Family

ID=89617475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028012 WO2024018510A1 (en) 2022-07-19 2022-07-19 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024018510A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645080U (en) * 1987-06-30 1989-01-12
JPH10232034A (en) * 1997-02-20 1998-09-02 Yamaha Motor Co Ltd Outdoor apparatus unit of engine drive thermal pump
JP2004232879A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Refrigerator-freezer
JP2012137196A (en) * 2010-12-24 2012-07-19 Noritz Corp Heat pump type heat source machine
JP2013137141A (en) * 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
JP2018098303A (en) * 2016-12-09 2018-06-21 信越ポリマー株式会社 Tray holding jig and manufacturing method thereof
JP2018185142A (en) * 2009-07-28 2018-11-22 東芝キヤリア株式会社 Heat source unit
WO2021024412A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645080U (en) * 1987-06-30 1989-01-12
JPH10232034A (en) * 1997-02-20 1998-09-02 Yamaha Motor Co Ltd Outdoor apparatus unit of engine drive thermal pump
JP2004232879A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Refrigerator-freezer
JP2018185142A (en) * 2009-07-28 2018-11-22 東芝キヤリア株式会社 Heat source unit
JP2012137196A (en) * 2010-12-24 2012-07-19 Noritz Corp Heat pump type heat source machine
JP2013137141A (en) * 2011-12-28 2013-07-11 Miura Co Ltd Method for detecting leakage of refrigerating machine oil
JP2018098303A (en) * 2016-12-09 2018-06-21 信越ポリマー株式会社 Tray holding jig and manufacturing method thereof
WO2021024412A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning device

Similar Documents

Publication Publication Date Title
JP5818849B2 (en) Air conditioner and refrigerant leakage detection method
KR101381447B1 (en) Heat source unit
CN111602013B (en) Heat exchanger and air conditioner
JP2019128060A (en) Indoor heat exchanger and air conditioner
US10619930B2 (en) Heat exchanger
WO2024018510A1 (en) Refrigeration cycle device
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
US20220252281A1 (en) Chilling unit and chilling unit system
CN207865671U (en) A kind of indoor machine evaporation flow-guiding structure and air conditioner
JP6565277B2 (en) Refrigeration equipment
JP7418551B2 (en) Heat exchangers, outdoor units, and air conditioners
KR20090061942A (en) Liquid drain apparatus of condenser and in-door-unit of air-conditioner therewith
KR100768165B1 (en) Drain panel of ceiling type air conditioner
US20200200476A1 (en) Heat exchanger
JP7229429B2 (en) Outdoor heat exchanger for air conditioner
US11976829B2 (en) Air-conditioning apparatus
AU2019432579B2 (en) Indoor unit of air conditioning apparatus
JP7089187B2 (en) Heat exchanger and air conditioner
JP6972346B2 (en) Heat exchanger unit and refrigeration cycle device
JP7086278B2 (en) Heat exchanger and air conditioner
US20220373264A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP2010145033A (en) Underground heat exchanger and air conditioning system
JP2021081080A (en) Refrigerant flow diverter and air conditioner
JP2019184128A (en) Heat exchanger and heat exchange unit including the same
WO2015189948A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951901

Country of ref document: EP

Kind code of ref document: A1