WO2024017580A1 - Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6 - Google Patents

Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6 Download PDF

Info

Publication number
WO2024017580A1
WO2024017580A1 PCT/EP2023/067490 EP2023067490W WO2024017580A1 WO 2024017580 A1 WO2024017580 A1 WO 2024017580A1 EP 2023067490 W EP2023067490 W EP 2023067490W WO 2024017580 A1 WO2024017580 A1 WO 2024017580A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
reinforcing element
reinforcing
tex
reinforcing elements
Prior art date
Application number
PCT/EP2023/067490
Other languages
English (en)
Inventor
Nizar DIDANE
Thierry DEUX
Alexis LUMINET
Ayaka IMAMURA
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Publication of WO2024017580A1 publication Critical patent/WO2024017580A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0042Reinforcements made of synthetic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0092Twist structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2214Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre characterised by the materials of the zero degree ply cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2238Physical properties or dimensions of the ply coating rubber
    • B60C2009/2247Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2257Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2261Modulus of the cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2266Density of the cords in width direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2285Twist structures

Definitions

  • Tire fabric comprising reinforcing elements comprising an assembly consisting of two multifilament strands of polyamide 5.6
  • the present invention relates to a tire composite comprising reinforcing elements comprising an assembly consisting of two multifilament strands of polyamide 5.6.
  • the invention also relates to a tire comprising a hooping ply obtained from this composite.
  • a tire fabric intended to equip passenger vehicles marketed under the MICHELIN brand and belonging to the PRIMACY 4 range and having the following dimensional characteristics: 225/45R17 94WXL TL.
  • a tire comprises a tread and a hooping reinforcement extending in the crown in a circumferential direction of the tire.
  • the hooping reinforcement comprises a hooping ply comprising several reinforcing elements arranged side by side substantially parallel to each other and forming an angle less than or equal to 10° with the circumferential direction of the tire.
  • Such a tire from the state of the art comprises a hooping ply comprising a composite comprising reinforcing elements comprising an assembly consisting of two multifilament strands of polyamide 6.6, the two strands being wound into a helix, one around the other at a twist of 250 turns per meter.
  • Each multifilament strand has a density equal to 140 tex.
  • the object of the invention is to find an elastomer composite making it possible to obtain a hooping ply having a satisfactory breaking force to combat road hazards, and comprising reinforcing elements having characteristics of strength and strength. torsions allowing the tire designer to adapt the performance of the tire, for example the endurance and resistance to compression fatigue of the reinforcing elements.
  • the invention also aims to reduce the share of petro-sourced multifilament strands in the tire by increasing the level of sustainable material in the multifilament strands.
  • the subject of the invention is an elastomer composite which comprises a plurality of wire reinforcing elements substantially parallel to each other and extending in a main direction, each reinforcing element being embedded in a composition of elastomer, the reinforcing element comprising an assembly consisting of at least two multifilament strands of aliphatic polyamide 5.6, and the strands being wound together helically to form a layer and the reinforcing element being balanced in twists, the twist factor K of the reinforcing element going from 110 to 220 with K defined by the formula
  • T T x [(Title / (1000.p)] 1/2 in which T is the twist of the reinforcing element expressed in turns per meter, Titer is the sum of the titles of the multifilament strands of the reinforcing element in tex, p is the average density of the multifilament strands in g/cm 3 weighted by the respective titles of the constituent materials of the multifilament strands, and the density of reinforcing elements in the composite ranging from 80 to 145 reinforcing elements per decimeter of composite measured in a transverse direction perpendicular to the main direction of the reinforcing elements.
  • strand of aliphatic polyamide is meant a set of filaments made up of linear macromolecules of polymers or copolymers containing amide functions which do not have aromatic rings and which can be synthesized by polycondensation between a carboxylic acid and an amine.
  • aliphatic polyamides 5.6 we can cite PA 5.6 polyamides which comprise at least 30% by mass of biosourced material, and in particular Bio-Nylon 56 from the company OTIZ.
  • each monofilament yarn in English “yarn"
  • elastomer composition a composition comprising an elastomer, preferably diene, for example natural rubber, a reinforcing filler, for example carbon black and/or silica and a crosslinking system, for example example a vulcanization system, preferably comprising sulfur.
  • assembly we mean that the assembly does not include any other multifilament strand than at least the two multifilament strands of aliphatic polyamide.
  • the composite comprising an assembly consisting of at least two multifilament strands of aliphatic polyamide 5.6 has improved endurance.
  • the multifilament strands of aliphatic polyamide are wound together helically to form a layer.
  • the measurement of the torsion T of the reinforcing element can be carried out by any method known to those skilled in the art, for example in accordance with standard ASTM D 885/D 885M - 10a of 2014.
  • the reinforcing element has a twist factor K such that it must have a sufficient value to have a good compromise between, on the one hand the extension modulus and the breaking force, and on the other hand on the other hand, endurance to fatigue in compression.
  • the tire will have a good compromise between drift rigidity and endurance.
  • the reinforcing element also comprises a layer of an adhesive composition coating the assembly consisting of the two strands.
  • an adhesive composition is for example of the RFL type (acronym for Resorcinol-Formaldehyde-Latex) but also adhesive compositions as described in WO2015118041.
  • the assembly consists of two multifilament strands of aliphatic polyamide 5.6.
  • the assembly consists of two multifilament strands of aliphatic polyamide 5.6; the strands being wound together helically to form a layer.
  • the assembly does not include any other multifilament strand than the two multifilament strands of aliphatic polyamide 5,6.
  • the torsion factor K of the reinforcing element ranges from 120 to 150.
  • the density of reinforcing elements in the composite ranges from 90 to 130 reinforcing elements per decimeter of composite, preferably from 95 to 125 reinforcing elements per decimeter of composite.
  • the density of reinforcing elements in the composite is the number of reinforcing elements taken over a decimeter of the composite in the direction perpendicular to the direction in which the reinforcing elements extend parallel to each other. In these intervals of density of reinforcing elements, the composite has a relatively high breaking force and a relatively low cost allowing its use in tires suitable for most uses.
  • the twist of the reinforcing element ranges from 200 to 500 turns per meter and preferably from 250 to 490 turns per meter.
  • the reinforcing element has sufficient endurance to be used in a tire adapted to most current uses and a relatively low risk of dispersion of its breaking force.
  • the density of the multifilament strand of polyamide 5.6 ranges from 60 to 160 tex and preferably from 70 to 140 tex.
  • the initial modulus in extension of the reinforcing element ranges from 1 to 5 cN/tex and preferably from 2 to 5 cN/tex.
  • the initial module relates to certain performances of the reinforcing element at low deformations, in particular to the flattening of the tire hooping ply.
  • the final modulus ranges from 5 to 18 cN/tex and preferably from 5 to 12 cN/tex.
  • the final modulus relates to certain performances of the reinforcing element at large deformations, for example, for a hoop application, the stiffness trends at high deformations have a low impact on tire performance.
  • the initial modulus is defined as the slope at the origin of the linear part of the Force-Elongation curve which occurs just after a standard pretension of 0.5 cN/tex.
  • the final modulus is defined as the slope at the point corresponding to 80% of the breaking force of the Force-Elongation curve.
  • the Force-Elongation curve is obtained by measurement in a known manner using an “INSTRON” traction machine fitted with “4D” clamps. The tested samples undergo tension over an initial length of 400 mm at a nominal speed of 200 mm/min, under a standard pretension of 0.5 cN/tex.
  • the initial modulus is the slope of the Force-Elongation curve between 1000 cN and 2000 cN and the final modulus is the slope of the Force-Elongation curve between 4000 cN and 11000 cN.
  • the initial modulus is the slope of the curve Force-Elongation between 1000 cN and 4000 cN and the final modulus is the slope of the Force-Elongation curve between 6000 cN and 18000 cN.
  • the ratio of the diameter of the reinforcing element to the thickness of the composite is strictly less than 0.90, preferably less than or equal to 0.80.
  • the diameter of the reinforcing element is less than or equal to 0.95 mm, preferably less than or equal to 0.80 mm, more preferably less than or equal to 0.70 mm.
  • the reinforcing element according to the invention extends in a general direction G and the diameter of this reinforcing element is the diameter in which this reinforcing element is inscribed in a section plane perpendicular to the direction G.
  • the thickness of the composite is less than or equal to 1.45 mm, preferably less than or equal to 1.30 mm, more preferably less than or equal to 1.20 mm.
  • the thickness of the composite is the shortest distance between the two external surfaces of the composite, that is to say the distance measured in a direction perpendicular to the two external surfaces of the composite.
  • Another object of the invention is a tire comprising a hooping reinforcement comprising at least one hooping ply, in which the hooping ply comprises an elastomer composite as described above.
  • the tires of the invention in particular, can be intended for motor vehicles of the tourism type, 4x4, "SUV” (Sport Utility Vehicles), but also for two-wheeled vehicles such as motorcycles, or for industrial vehicles such as metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles, agricultural or civil engineering vehicles.
  • SUV Sport Utility Vehicles
  • two-wheeled vehicles such as motorcycles
  • industrial vehicles such as metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles, agricultural or civil engineering vehicles.
  • the tires can be intended for motor vehicles of the tourism, 4x4, "SUV” (Sport Utility Vehicles) type.
  • FIG. 1 is a view, in a meridian section plane, of a tire 10 according to the invention.
  • FIG. 2 illustrates a composite 35 making it possible to obtain a hooping ply of the tire of Figure 1;
  • - Figure 3 is a sectional view along the plane III-l 11' of the composite 35 of Figure 2;
  • - Figure 4 is an enlargement and an enlargement of a sectional view of the reinforcing element 45 according to the invention.
  • the expression refers to a radius of the tire. It is in this sense that we say of a point A that it is “radially interior” to a point B (or “radially inside” of point B) if it is closer to the axis rotation of the tire than point B. Conversely, a point C is said to be “radially external to” a point D (or “radially external” to point D) if it is further from the axis of rotation of the tire pneumatic than point D.
  • we advance “radially inwards (or outwards)” when we advance in the direction of the smaller (or larger) radii. When talking about radial distances, this meaning of the term also applies.
  • radial section or “radial section” we mean here a section or a section along a plane which includes the axis of rotation of the tire.
  • the “median circumferential plane” M of the tire is the plane which is normal to the axis of rotation of the tire and which is located equidistant from the annular reinforcement structures of each bead.
  • the “median tangential plane” TT of the tire is the plane which is perpendicular to the “median circumferential plane” M.
  • An “axial” direction is a direction parallel to the axis of rotation of the tire.
  • a “circumferential” direction is a direction which is perpendicular to both a radius of the tire and the axial direction.
  • a reference mark X, Y, Z is shown corresponding to the usual respectively axial (X), radial (Y) and circumferential (Z) directions of a tire.
  • FIG. 1 a radial sectional view of a tire according to a first embodiment of the invention and designated by the general reference 10.
  • the tire 10 is substantially of revolution around an axis substantially parallel to the axial direction X.
  • the tire 10 is here intended for a passenger vehicle.
  • the tire 10 comprises a crown 12 comprising a crown reinforcement 14 comprising a working reinforcement 15 comprising two working layers 16, 18 of working reinforcement elements and a hooping reinforcement 17 comprising a hooping layer 19 of hooping reinforcement elements.
  • the top frame 14 is surmounted by a tread 20 arranged radially external to the top frame 14.
  • the hooping frame 17, the hooping ply 19, is radially interposed between the working frame 15 and the tread 20.
  • the tire also comprises two sidewalls 22 extending the top 12 radially inwards.
  • the tire 10 further comprises two beads 24 radially internal to the sidewalls 22 and each comprising an annular reinforcing structure 26, in this case a bead 28, surmounted by a mass of rubber 30 for padding on bead, as well as a reinforcement of radial carcass 32.
  • the carcass reinforcement 32 comprises at least one carcass ply comprising several reinforcing elements, the ply being anchored to each of the beads 24 by an inversion around the rod 28, so as to form a strand in each bead 24 forward 38 extending from the beads through the sides towards the top 12, and a return strand 40, the radially outer end 42 of the return strand 40 being radially outside the annular reinforcing structure 26.
  • the reinforcement carcass 32 thus extends from the beads 24 through the sides 22 into the crown 12.
  • the carcass reinforcement 32 is arranged radially inside the crown reinforcement 14 and the hooping reinforcement 17
  • the carcass reinforcement 32 comprises a single carcass ply 34.
  • the tire 10 also comprises an internal sealing layer 43, preferably made of butyl, axially internal to the sidewalls 22 and radially internal to the crown reinforcement 14 and extending between the two beads 24.
  • an internal sealing layer 43 preferably made of butyl, axially internal to the sidewalls 22 and radially internal to the crown reinforcement 14 and extending between the two beads 24.
  • Each working ply 16, 18, hooping 19 and carcass 34 comprises a polymer composition in which reinforcing elements of the corresponding ply are embedded.
  • Each polymeric composition, here an elastomeric composition, working layers 16, 18, hooping 19 and carcass 34 is produced in a conventional composition for calendering reinforcing elements conventionally comprising a diene elastomer, for example natural rubber , a reinforcing filler, for example carbon black and/or silica, a crosslinking system, for example a vulcanization system, preferably comprising sulfur, stearic acid and zinc oxide, and possibly a vulcanization accelerator and/or retarder and/or various additives.
  • the composite comprises reinforcing elements 45 embedded in an elastomer composition.
  • the reinforcing elements 45 are substantially parallel to each other and in a main direction D substantially perpendicular to the general direction G in which the reinforcing elements of the hooping ply extend, the general direction G making an angle greater than or equal to at 45°, preferably ranging from 80° to 110° and here equal to 90°.
  • each reinforcing element 45 comprises several multifilament strands and comprises an assembly consisting of two multifilament strands of aliphatic polyamide, the two strands being wound helically one around the other.
  • the aliphatic polyamide is Polyamide 5.6.
  • Each reinforcing element is torsionally balanced.
  • Figure 4 is a sectional view of the reinforcing element 45 on which the filaments 46 of each of the strands can be distinguished.
  • the title of the multifilament strand of aliphatic polyamide of the chain reinforcing element ranges from 60 to 160 tex and preferably from 70 to 140 tex.
  • the density of each multifilament strand of aliphatic polyamide 5.6 of the chain reinforcement element is 94 tex.
  • each reinforcing element 45 ranges from 200 to 500 turns per meter and preferably from 250 to 490 turns per meter. Here, it is equal to 250 revolutions per meter.
  • the twist factor K of each reinforcing element 45 ranges from 110 to 220 and preferably from 120 to 150.
  • K 124.
  • the initial extension modulus of each reinforcing element ranges from 1 to 5 cN/tex and preferably from 2 to 5 cN/tex. Here it is 4.9 cN/tex.
  • the final modulus ranges from 5 to 18 cN/tex and preferably from 5 to 12 cN/tex. Here it is 11.4 cN/tex.
  • each composite 35 has a thickness E and each reinforcing element 45 has a diameter d.
  • the diameter d corresponds to the diameter of the theoretical circle in which the reinforcing element is inscribed.
  • the representation of each strand is deliberately schematic for the purposes of simplifying the description.
  • each reinforcing element 45 is less than or equal to 0.95 mm, preferably less than or equal to 0.80 mm, more preferably less than or equal to 0.70 mm.
  • d 0.65 mm.
  • each composite 35 is less than or equal to 1.45 mm, preferably less than or equal to 1.30 mm, more preferably less than or equal to 1.20 mm.
  • E 0.86.
  • the d/E ratio is strictly less than 0.90, preferably less than or equal to 0.80.
  • d/E 0.76.
  • the density of the reinforcing elements in the composite ranges from 80 to 145 reinforcing elements per decimeter of composite, here it is 98 threads per dm of composite.
  • each reinforcing element 45 is balanced in twists, that is to say that the two multifilament strands are wound with a substantially identical twist and that the twist of the monofilaments of each multifilament strand is substantially zero.
  • each monofilament yarn in English “yarn”
  • an initial twist equal to 485 turns per meter in a given direction, here the Z direction
  • surtors in English “strand”.
  • the two strands are then twisted together according to a final twist equal to 485 turns per meter in direction S to obtain the assembly of the reinforcing element (in English "cord ").
  • each assembly is coated with an adhesive composition, for example an RFL type adhesive composition (acronym for Resorcinol-Formaldehyde-Latex) and undergoes heat treatment steps in order to make it crosslinked, at least in part, the adhesive composition.
  • an adhesive composition for example an RFL type adhesive composition (acronym for Resorcinol-Formaldehyde-Latex) and undergoes heat treatment steps in order to make it crosslinked, at least in part, the adhesive composition.
  • Each composite 35 is manufactured by embedding several reinforcing elements 45 in the elastomer composition, for example by calendering.
  • reinforcing elements are passed through and two strips made of an elastomer composition, called skims, are brought on either side of the reinforcing elements. way to sandwich the reinforcing elements between the two skims. The reinforcing elements are thus embedded in the elastomer composition.
  • the tire manufacturing process is that conventionally used by those skilled in the art. During this process and as already described previously, different layers and composites are successively placed, during a first series of assembly steps. Then, we conform the draft thus obtained. Then, other layers and composites intended to form the crown 12 of the tire 10 are available, including the composite according to the invention intended to form the hooping ply 19 of the tire 10. Finally, the blank thus obtained is vulcanized to obtain the tire 10.
  • NT composite comprises ET reinforcement elements each comprising an assembly consisting of two multifilament strands of polyamide 6.6 assembled together and wound helically around each other at a twist of 250 turns per meter.
  • Each ET reinforcement element is torsionally balanced.
  • Each multifilament strand of the ET reinforcing element has a density equal to 140 tex.
  • the composite T comprises RT reinforcing elements each comprising an assembly consisting of two multifilament strands of polyamide 6.6 assembled together and wound helically around each other at a twist of 485 turns per meter.
  • Each reinforcing element T is torsionally balanced.
  • Each multifilament strand of the reinforcing element T has a density equal to 94 tex.
  • Table 1 summarizes the characteristics of the reinforcing element 45 of the tire 10 according to the invention, the reinforcing element 45' according to the invention, a control reinforcing element T and a reinforcing element AND the state of the art. Breaking force measurements are carried out in tension according to standard ISO 6892 of 1984.
  • the reinforcing element 45 has an initial module equivalent to that of the reinforcing element of the state of the art ET and a final module significantly lower than that of the reinforcing element of the state of the art ET and that the reinforcing element 45' has an initial modulus equivalent to the control reinforcing element T and a final modulus significantly lower than that of the control reinforcement element T.
  • stiffness trends at high deformations have a low impact on tire performance.
  • the endurance of the reinforcing element 45 was compared to that of the reinforcing element of the state of the art ET.
  • the reinforcing element 45 conforms to the invention.
  • the reinforcing element of the state of the art ET does not conform to the invention.
  • reinforcing elements were embedded in an elastomer composition in order to form a test piece in the form of a strip of thickness equal to 2 mm which was cycled around a cylindrical bar 15mm in diameter. After 190,000 cycles, the final breaking force of each reinforcing element was measured. We then calculated the lapse corresponding to the loss, in%, of breaking strength after 190,000 cycles. The higher the decay, the lower the stamina.
  • Table 3 The test results as well as the characteristics of the reinforcing elements tested are summarized in Table 3 below.
  • the endurance of the reinforcing element 45' was compared to that of a control reinforcing element T.
  • the reinforcing element 45' conforms to the invention.
  • the control reinforcing element T does not conform to the invention.
  • reinforcing elements were embedded in an elastomer composition in order to form a test piece in the form of a strip of thickness equal to 2 mm which was cycled around a bar cylindrical, 15 mm in diameter. After 800,000 cycles, the final breaking force of each reinforcing element was measured. We then calculated the lapse corresponding to the loss, in%, of breaking force after 800,000 cycles. The higher the decay, the lower the stamina.
  • Table 4 The test results as well as the characteristics of the reinforcing elements tested are summarized in Table 4 below.
  • the rod 28 is a braided rod consisting of an assembly of metal wires covered with a deposit based on zinc or a copper alloy which undergo a surface treatment specific, for example by heat treatment to allow adhesion to the elastomeric matrix.
  • the tire may have a bead which is a sheathed bead, that is to say which is made up of metal wires previously coated with a polymeric film or made up of 'an assembly of metal wires coated with a polymer film.
  • the sheath of the rod is made of an extrudable thermoplastic, such as for example an aliphatic polyamide and preferably aliphatic polyamide 6,6.
  • an adhesive composition for example of the RFL type (acronym for Resorcinol-Formaldehyde-Latex) but also the adhesive compositions such as described in WO2015118041, is deposited at the interface of the sheath, which makes it possible to avoid specific surface treatment of the metal wires.
  • This sheathed rod thus makes it possible, without specific treatment of the wires, to guarantee adhesion to the elastomeric matrix and to protect the rod against corrosion in aggressive environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne un composite d'élastomère (35) qui comprend au moins un élément de renfort (45) noyé dans une composition d'élastomère, l'élément de renfort (45) comprenant un assemblage constitué d'au moins deux brins multifilamentaires de polyamide aliphatique 5,6 (46), et les brins (46) étant enroulés ensemble en hélice pour former une couche et l'élément de renfort (45) étant équilibré en torsions, le facteur de torsion K de l'élément de renfort (45) allant de 110 à 220, et la densité d'éléments de renfort (45) dans le composite (35) allant de 80 à 145 éléments de renfort par décimètre de composite.

Description

Description
Titre : Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6
[001] La présente invention concerne un composite pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6. L’invention concerne également un pneumatique comprenant une nappe de frettage obtenue à partir de ce composite.
[002] On connait de l’état de la technique un tissu pour pneumatique destiné à équiper des véhicules tourisme commercialisés sous la marque MICHELIN et appartenant à la gamme PRIMACY 4 et présentant des caractéristiques dimensionnelles suivantes : 225/45R17 94WXL TL. Un tel pneumatique comprend une bande de roulement et une armature de frettage s’étendant dans le sommet selon une direction circonférentielle du pneumatique. L’armature de frettage comprend une nappe de frettage comprenant plusieurs éléments de renfort agencés côte à côte sensiblement parallèlement les uns aux autres et formant un angle inférieur ou égal à 10° avec la direction circonférentielle du pneumatique.
[003] Un tel pneumatique de l’état de la technique comprend une nappe de frettage comprenant un composite comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires en polyamide 6,6, les deux brins étant enroulés en hélice l’un autour de l’autre à une torsion de 250 tours par mètre. Chaque brin multifilamentaire présente un titre égal à 140 tex.
[004] L’invention a pour but de trouver un composite d’élastomère permettant d’obtenir une nappe de frettage présentant une force à rupture satisfaisante pour lutter contre les aléas routiers, et comprenant des éléments de renfort présentant des caractéristiques de titres et de torsions permettant au concepteur de pneumatique, d’adapter les performances du pneumatique, par exemple l’endurance et la résistance à la fatigue en compression des éléments de renforts. L’invention a également pour but de diminuer la part des brins multifilamentaires pétrosourcées dans le pneumatique en augmentant le taux de matière durable dans les brins multifilamentaires.
[005] A cet effet, l’invention a pour objet un composite d’élastomère qui comprend une pluralité d’éléments de renfort filaires substantiellement parallèles entre eux et s’étendant selon une direction principale, chaque élément de renfort étant noyé dans une composition d’élastomère, l’élément de renfort comprenant un assemblage constitué d’au moins deux brins multifilamentaires de polyamide aliphatique 5,6, et les brins étant enroulés ensemble en hélice pour former une couche et l’élément de renfort étant équilibré en torsions, le facteur de torsion K de l’élément de renfort allant de 110 à 220 avec K défini par la formule
K = T x [(Titre / (1000.p)]1/2 dans laquelle T est la torsion de l’élément de renfort exprimée en tours par mètre, Titre est la somme des titres des brins multifilamentaires de l’élément de renfort en tex, p est la masse volumique moyenne des brins multifilamentaires en g/cm3 pondérée par les titres respectifs des matériaux constitutifs des brins multifilamentaires , et la densité d’éléments de renfort dans le composite allant de 80 à 145 éléments de renfort par décimètre de composite mesuré selon une direction transverse perpendiculaire à la direction principale des éléments de renforts.
[006] Par brin de polyamide aliphatique, on entend un ensemble de filaments constitués de macromolécules linéaires de polymères ou copolymères contenant des fonctions amides ne présentant pas de cycles aromatiques et pouvant être synthétisés par polycondensation entre un acide carboxylique et une amine. Parmi les polyamides aliphatiques 5,6, on pourra citer les polyamides PA 5,6 qui comprennent au moins 30% en taux massique de matière biosourcée, et notamment le Bio-Nylon 56 de la société OTIZ.
[007] Par équilibré en torsions, on comprend que les deux brins multifilamentaires sont enroulés avec une torsion sensiblement identique et que la torsion des monofilaments de chaque brin multifilamentaire, c’est-à-dire la torsion des monofilaments du brin multifilamentaire de polyamide aliphatique et la torsion des monofilaments du brin de polyamide aliphatique est sensiblement nulle. En effet, le procédé de fabrication de ces éléments de renforts, bien connu de l’état de la technique, comprend une première étape durant laquelle, chaque filé de monofilaments (en anglais « yarn ») est tout d’abord individuellement tordu sur lui- même (selon une torsion initiale RT et R2’ avec R1 ’=R2’) dans une direction donnée D’=D1 ’=D2’ (respectivement sens S ou Z, selon une nomenclature reconnue désignant l’orientation des spires selon la barre transversale d’un S ou d’un Z), pour former un brin ou surtors (en anglais « strand ») dans lequel les monofilaments se voient imposer une déformation en hélice autour de l’axe du brin. Puis, au cours d’une seconde étape, les deux brins, sont ensuite retordus ensemble selon une torsion finale R3 telle que R3=R1 ’=R2’ en direction D3 opposée à la direction D’=D1 ’=D2’ (respectivement sens Z ou S), pour l’obtention de l’élément de renfort (en anglais « cord »). Cet élément de renfort est alors dit équilibré en torsion car les monofilaments des deux brins présentent, dans l’élément de renfort final, la même torsion résiduelle car R1’=R2’. Cette torsion résiduelle est nulle ou sensiblement nulle car R3=R1’=R2’ et la direction D’=D1’=D2’ est opposée à la direction D3. Par torsion résiduelle sensiblement nulle, on entend que la torsion résiduelle est strictement inférieure à 2,5% de la torsion R3. [008] Par composition d’élastomère, on entend une composition comprenant un élastomère, de préférence diénique, par exemple du caoutchouc naturel, une charge renforçante, par exemple du noir de carbone et/ou de la silice et un système de réticulation, par exemple un système de vulcanisation, de préférence comprenant du soufre.
[009] Par « assemblage constitué », on entend que l’assemblage ne comprend pas d’autre brin multifilamentaire qu’au moins les deux brins multifilamentaires de polyamide aliphatique.
[010] Dans l’intervalle sélectionné de facteur de torsion, pour un titre donné, le composite comprenant un assemblage constitué d’au moins deux brins multifilamentaires de polyamide aliphatique 5,6 présente une endurance améliorée. [011] Les brins multifilamentaires de polyamide aliphatique sont enroulés ensemble en hélice pour former une couche.
[012] Le facteur de torsion K est lié à la torsion T selon la relation connue qui suit : K = T x [(Titre / (1000.p)]1/2 dans laquelle la torsion T des filaments élémentaires est exprimée en tours par mètre, le Titre est exprimé en tex (poids en gramme de 1000 mètres de l’élément de renfort), et enfin p est la densité ou masse volumique (en g/cm3) du matériau (par exemple, environ 1 ,50 g/cm3 pour la cellulose, 1 ,44 g/cm3 pour l’aramide, 1 ,38 g/cm3 pour un polyester tel que PET, 1 ,14 g/cm3 pour le polyamide 5,6) ; dans le cas d’un câblé hybride, p est bien entendu une moyenne des densités pondérée par les titres respectifs des matériaux de l’élément de renfort. A titre d’exemple, pour le premier mode de réalisation pour un élément de renfort comprenant un assemblage constitué de deux brins multifilamentaires en polyamide 5,6 ayant un titre de 140 tex et dont la torsion de l’élément de renfort est de 250 tours par mètres, le calcul de K est le suivant :
K= 250 x [(140+140)/( 1000 x (140 x 1 , 14+140x1 , 14)/( 140+140))]1/2 [013] La mesure de la torsion T de l’élément de renfort peut être réalisée par toute méthode connue par l’homme du métier, par exemple conformément à la norme ASTM D 885/D 885M - 10a de 2014.
[014] Le titre (ou densité linéique) de chaque brin est déterminé selon la norme ASTM D1423. Le titre est donné en tex (poids en grammes de 1000 m de produit - rappel: 0, 111 tex égal à 1 denier).
[015] Avantageusement, l’élément de renfort a un facteur de torsion K tel qu’il doit avoir une valeur suffisante pour avoir un bon compromis entre, d’une part le module d’extension et la force à rupture, et d’autre part l’endurance à la fatigue en compression. Ainsi, le pneumatique aura un bon compromis entre rigidité de dérive et endurance.
[016] Le titre (ou densité linéique) de chaque brin est déterminé selon la norme ASTM D1423. Le titre est donné en tex (poids en grammes de 1000 m de produit - rappel: 0, 111 tex égal à 1 denier).
[017] Dans un mode de réalisation avantageux, l’élément de renfort comprend également une couche d’une composition adhésive revêtant l’assemblage constitué des deux brins. Une telle composition adhésive est par exemple de type RFL (acronyme pour Résorcinol-Formaldéhyde-Latex) mais également les compositions adhésives telles que décrites dans WO2015118041 .
[018] Avantageusement, l’assemblage est constitué de deux brins multifilamentaires de polyamide aliphatique 5,6.
[019] De préférence, l’assemblage est constitué de deux brins multifilamentaires de polyamide aliphatique 5,6; les brins étant enroulés ensemble en hélice pour former une couche. Par assemblage constitué, on entend que l’assemblage ne comprend pas d’autre brin multifilamentaire que les deux brins multifilamentaires de polyamide aliphatique 5,6.
[020] Avantageusement, le facteur de torsion K de l’élément de renfort va de 120 à 150.
[021] Avantageusement, la densité d’éléments de renfort dans le composite va de 90 à 130 éléments de renfort par décimètre de composite, de préférence de 95 à 125 éléments de renfort par décimètre de composite. La densité d’éléments de renfort dans le composite est le nombre d’éléments de renfort pris sur un décimètre du composite selon la direction perpendiculaire à la direction selon laquelle les éléments de renfort s’étendent parallèlement les uns par rapport aux autres. Dans ces intervalles de densité d’éléments de renfort, le composite présente une force à rupture relativement élevée et un coût relativement bas permettant son utilisation dans des pneumatiques adaptés à la plupart des usages.
[022] Avantageusement, la torsion de l’élément de renfort va de 200 à 500 tours par mètre et de préférence de 250 à 490 tours par mètre. Pour un titre donné, dans cet intervalle de torsion, l’élément de renfort présente une endurance suffisante pour être utilisé dans un pneumatique adapté à la plupart des usages actuels et un risque de dispersion de sa force à rupture relativement faible.
[023] Avantageusement, le titre du brin multifilamentaire de polyamide 5,6 va de 60 à 160 tex et de préférence de 70 à 140 tex.
[024] Avantageusement, le module initial en extension de l’élément de renfort va de 1 à 5 cN/tex et de préférence de 2 à 5 cN/tex. Le module initial est relatif à certaines performances de l’élément de renfort aux faibles déformations, notamment à la mise à plat de la nappe de frettage du pneumatique.
[025] Avantageusement, le module final va de 5 à 18 cN/tex et de préférence de 5 à 12 cN/tex. Le module final est relatif à certaines performances de l’élément de renfort aux grandes déformations, par exemple, pour une application en frette, les tendances de rigidité à fortes déformations ont un faible impact sur les performances pneumatique.
[026] On définit le module initial comme la pente à l’origine de la partie linéaire de la courbe Force-Allongement qui intervient juste après une prétension standard de 0,5 cN/tex. Le module final est défini comme la pente au point correspondant à 80% de la force à rupture de la courbe Force-Allongement. La courbe Force-Allongement est obtenue par mesure de manière connue à l'aide d'une machine de traction « INSTRON » munie de pinces « 4D ». Les échantillons testés subissent une traction sur une longueur initiale de 400 mm à une vitesse nominale de 200 mm/min, sous une prétension standard de 0,5 cN/tex.
[027] Ainsi, par exemple pour un assemblage constitué de deux brins multifilamentaires de polyamide aliphatique 5,6 à 94 tex, le module initial est la pente de la courbe Force-Allongement entre 1000 cN et 2000 cN et le module final est la pente de la courbe Force-Allongement entre 4000 cN et 11000 cN.
[028] Et, par exemple pour un assemblage constitué de deux brins multifilamentaires de polyamide aliphatique 5,6 à 140 tex, le module initial est la pente de la courbe Force-Allongement entre 1000 cN et 4000 cN et le module final est la pente de la courbe Force-Allongement entre 6000 cN et 18000 cN.
[029] Avantageusement, le rapport du diamètre de l’élément de renfort sur l’épaisseur du composite est strictement inférieur à 0,90, de préférence inférieur ou égal à 0,80.
[030] Avantageusement, le diamètre de l’élément de renfort est inférieur ou égal à 0,95 mm, de préférence inférieur ou égal à 0,80 mm, plus préférentiellement inférieur ou égal à 0,70 mm. L’élément de renfort selon l’invention s’étend selon une direction générale G et le diamètre de cet élément de renfort est le diamètre dans lequel est inscrit cet élément de renfort dans un plan de coupe perpendiculaire à la direction G.
[031] Avantageusement, l’épaisseur du composite est inférieure ou égale à 1 ,45 mm, de préférence, inférieure ou égale à 1 ,30 mm, plus préférentiellement inférieure ou égale à 1 ,20 mm. L’épaisseur du composite est la distance la plus courte entre les deux surfaces externes du composite, c’est-à-dire la distance mesurée selon une direction perpendiculaire aux deux surfaces externes du composite.
[032] Un autre objet de l’invention est un pneumatique comprenant une armature de frettage comprenant au moins une nappe de frettage, dans lequel la nappe de frettage comprend un composite d’élastomère tel que décrit précédemment.
[033] Les pneumatiques de l'invention, en particulier, peuvent être destinés à des véhicules à moteur du type tourisme, 4x4, "SUV" (Sport Utility Vehicles), mais également à des véhicules deux-roues tels que motos, ou à des véhicules industriels tels que métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route, engins agricoles ou de Génie civil.
[034] De préférence, les pneumatiques peuvent être destinés à des véhicules à moteur du type tourisme, 4x4, "SUV" (Sport Utility Vehicles).
[035] L’invention sera mieux comprise à la lumière de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif et faite en se référant aux dessins dans lesquels :
- la figure 1 est une vue, dans un plan de coupe méridien, d’un pneumatique 10 selon l’invention,
-la figure 2 illustre un composite 35 permettant d’obtenir une nappe de frettage du pneumatique de la figure 1 ;
- la figure 3 est une vue en coupe selon le plan lll-l 11’ du composite 35 de la figure 2 ; et - la figure 4 est un agrandissement est un agrandissement d’une vue en coupe de l’élément de renfort 45 selon l’invention.
[036] Dans l'emploi du terme « radial », il convient de distinguer plusieurs utilisations différentes du mot par l’homme du métier. Premièrement, l'expression se réfère à un rayon du pneumatique. C'est dans ce sens qu'on dit d'un point A qu'il est « radialement intérieur » à un point B (ou « radialement à l'intérieur » du point B) s'il est plus près de l'axe de rotation du pneumatique que le point B. Inversement, un point C est dit « radialement extérieur à » un point D (ou « radialement à l'extérieur » du point D) s'il est plus éloigné de l'axe de rotation du pneumatique que le point D. On dira qu'on avance « radialement vers l'intérieur (ou l'extérieur) » lorsqu'on avance en direction des rayons plus petits (ou plus grands). Lorsqu'il est question de distances radiales, ce sens du terme s'applique également.
[037] Par « coupe radiale » ou « section radiale » on entend ici une coupe ou une section selon un plan qui comporte l'axe de rotation du pneumatique.
[038] Le « plan circonférentiel médian » M du pneumatique est le plan qui est normal à l'axe de rotation du pneumatique et qui se situe à équidistance des structures annulaires de renfort de chaque bourrelet.
[039] Le « plan tangentiel médian » TT du pneumatique est le plan qui est perpendiculaire au « plan circonférentiel médian » M.
[040] Une direction « axiale » est une direction parallèle à l’axe de rotation du pneumatique.
[041] Une direction « circonférentielle » est une direction qui est perpendiculaire à la fois à un rayon du pneumatique et à la direction axiale.
[042] EXEMPLE DE PNEUMATIQUE SELON L’INVENTION
[043] Dans les figures, on a représenté un repère X, Y, Z correspondant aux directions habituelles respectivement axiale (X), radiale (Y) et circonférentielle (Z) d’un pneumatique.
[044] On a représenté schématiquement sur la figure 1 , une vue en coupe radiale, d’un pneumatique selon un premier mode de réalisation de l’invention et désigné par la référence générale 10. Le pneumatique 10 est sensiblement de révolution autour d’un axe sensiblement parallèle à la direction axiale X. Le pneumatique 10 est ici destiné à un véhicule de tourisme.
[045] Le pneumatique 10 comporte un sommet 12 comprenant une armature de sommet 14 comprenant une armature de travail 15 comprenant deux nappes de travail 16, 18 d’éléments de renfort de travail et une armature de frettage 17 comprenant une nappe de frettage 19 d’éléments de renfort de frettage. L’armature de sommet 14 est surmontée d’une bande de roulement 20 agencée radialement extérieure à l’armature de sommet 14. Ici, l’armature de frettage 17, la nappe de frettage 19, est radialement intercalée entre l’armature de travail 15 et la bande de roulement 20.
[046] Le pneumatique comprend également deux flancs 22 prolongeant le sommet 12 radialement vers l’intérieur. Le pneumatique 10 comporte en outre deux bourrelets 24 radialement intérieurs aux flancs 22 et comportant chacun une structure annulaire de renfort 26, en l’occurrence une tringle 28, surmontée d’une masse de gomme 30 de bourrage sur tringle, ainsi qu’une armature de carcasse radiale 32.
[047] L’ armature de carcasse 32 comporte au moins une nappe de carcasse comprenant plusieurs éléments de renfort, la nappe étant ancrée à chacun des bourrelets 24 par un retournement autour de la tringle 28, de manière à former dans chaque bourrelet 24 un brin aller 38 s’étendant depuis les bourrelets à travers les flancs vers le sommet 12, et un brin retour 40, l’extrémité radialement extérieure 42 du brin retour 40 étant radialement à l’extérieur de la structure annulaire de renfort 26. L’armature de carcasse 32 s’étend ainsi depuis les bourrelets 24 à travers les flancs 22 jusque dans le sommet 12. L’armature de carcasse 32 est agencée radialement à l’intérieur de l’armature de sommet 14 et de l’armature de frettage 17. L’armature de carcasse 32 comprend une seule nappe carcasse 34.
[048] Le pneumatique 10 comprend également une couche interne 43 d’étanchéité, de préférence en butyl, axialement intérieure aux flancs 22 et radialement intérieure à l’armature de sommet 14 et s’étendant entre les deux bourrelets 24.
[049] Chaque nappe de travail 16, 18, de frettage 19 et de carcasse 34 comprend une composition polymérique dans laquelle sont noyés des éléments de renfort de la nappe correspondante. Chaque composition polymérique, ici une composition élastomérique, des nappes de travail 16, 18, de frettage 19 et de carcasse 34 est réalisée dans une composition conventionnelle pour calandrage d’éléments de renfort comprenant de façon classique un élastomère diénique, par exemple du caoutchouc naturel, une charge renforçante, par exemple du noir de carbone et/ou de la silice, un système de réticulation, par exemple un système de vulcanisation, de préférence comprenant du soufre, de l’acide stéarique et de l’oxyde de zinc, et éventuellement un accélérateur et/ou retardateur de vulcanisation et/ou divers additifs. [050] EXEMPLE DE COMPOSITE SELON L’INVENTION
[051] On va maintenant décrire en référence aux figures 2 et 3 un composite à partir duquel est obtenue la nappe de frettage 19.
[052] Le composite comprend des éléments de renfort 45 noyés dans une composition d’élastomère. Les éléments de renfort 45 sont sensiblement parallèles les uns aux autres et selon une direction principale D sensiblement perpendiculaire à la direction générale G selon laquelle les éléments de renfort de la nappe de frettage s’étendent, la direction générale G faisant un angle supérieur ou égal à 45°, de préférence allant de 80° à 110° et ici égale à 90°.
[053] Nature des brins de chaque élément de renfort
[054] Comme représenté schématiquement sur la figure 3, chaque élément de renfort 45 comprend plusieurs brins multifilamentaires et comprend un assemblage constitué de deux brins multifilamentaires en polyamide aliphatique, les deux brins étant enroulés en hélice l’un autour de l’autre. Ici, le polyamide aliphatique est du Polyamide 5,6. Chaque élément de renfort est équilibré en torsions. A des fins de précision de la description, la figure 4 est une vue en coupe de l’élément de renfort 45 sur laquelle on distingue les filaments 46 de chacun des brins.
[055] Titre de chaque élément de renfort
[056] Le titre du brin multifilamentaire de polyamide aliphatique de l’élément de renfort de chaine va de 60 à 160 tex et de préférence de 70 à 140 tex. Ici le titre de chaque brin multifilamentaire de polyamide aliphatique 5,6 de l’élément de renfort de chaine est de 94 tex.
[057] Torsion de chaque élément de renfort
[058] La torsion de chaque élément de renfort 45 va 200 à 500 tours par mètre et de préférence de 250 à 490 tours par mètre. Ici, elle est égale à 250 tours par mètre.
[059] Facteur de torsion de chaque élément de renfort
[060] Le facteur de torsion K de chaque élément de renfort 45 va de 110 à 220 et de préférence de 120 à 150. Ici K=124.
[061] Modules initial et final de chaque élément de renfort
[062] Le module initial en extension de chaque élément de renfort va de va de 1 à 5 cN/tex et de préférence de 2 à 5 cN/tex. Ici il est de 4,9 cN/tex.
[063] Et , le module final va de 5 à 18 cN/tex et de préférence de 5 à 12 cN/tex. Ici il est de 11 ,4 cN/tex. [064] Caractéristiques géométriques du composite
[065] En revenant à la figure 3, chaque composite 35 présente une épaisseur E et chaque élément de renfort 45 présente un diamètre d. Le diamètre d correspond au diamètre du cercle théorique dans lequel est inscrit l’élément de renfort. Sur cette figure 3, la représentation de chaque brin est volontairement schématique à des fins de simplification de la description.
[066] Le diamètre de chaque élément de renfort 45 est inférieur ou égal à 0,95 mm, de préférence inférieur ou égal à 0,80 mm, plus préférentiellement inférieur ou égal à 0,70 mm. Ici, d= 0,65 mm.
[067] L’ épaisseur E de chaque composite 35 est inférieure ou égale à 1 ,45 mm, de préférence, inférieure ou égale à 1 ,30 mm, plus préférentiellement inférieure ou égale à 1 ,20 mm. Ici, E=0,86.
[068] Ainsi, le rapport d/E est strictement inférieur à 0,90, de préférence inférieur ou égal à 0,80. Ici, d/E=0,76.
[069] Densité des éléments de renfort dans le composite
[070] La densité des éléments de renfort dans le composite va de 80 à 145 éléments de renfort par décimètre de composite, ici elle est de 98 fils par dm de composite.
[071] PROCEDE DE FABRICATION DE L’ELEMENT DE RENFORT
[072] Comme décrit précédemment, chaque élément de renfort 45 est équilibré en torsions, c’est-à-dire que les deux brins multifilamentaires sont enroulés avec une torsion sensiblement identique et que la torsion des monofilaments de chaque brin multifilamentaire est sensiblement nulle. Dans une première étape, chaque filé de monofilaments (en anglais « yarn ») est tout d’abord individuellement tordu sur lui- même selon une torsion initiale égale à 485 tours par mètre dans une direction donnée, ici le sens Z, pour former un brin ou surtors (en anglais « strand »). Puis, au cours d’une seconde étape, les deux brins, sont ensuite retordus ensemble selon une torsion finale égale à 485 tours par mètre en direction S pour l’obtention de l’assemblage de l’élément de renfort (en anglais « cord »).
[073] Dans des étapes ultérieures, chaque assemblage est revêtu d’une composition adhésive, par exemple une composition adhésive de type RFL (acronyme pour Résorcinol-Formaldéhyde-Latex) et subit des étapes de traitement thermiques afin de faire réticulée, au moins en partie, la composition adhésive. [074] PROCEDE DE FABRICATION DU COMPOSITE SELON L’INVENTION
[075] On fabrique chaque composite 35 en noyant plusieurs éléments de renfort 45 dans la composition d’élastomère, par exemple par calandrage. Durant une telle étape de calandrage, bien connue de l’homme du métier, on fait défiler des éléments de renforts et on amène deux bandes réalisées dans une composition d’élastomère, appelées skims, de part et d’autre des éléments de renfort de façon à prendre en sandwich les éléments de renforts entre les deux skims. On noie ainsi les éléments de renfort dans la composition d’élastomère.
[076] PROCEDE DE FABRICATION DU PNEUMATIQUE SELON L’INVENTION
[077] Le procédé de fabrication du pneumatique est celui utilisé classiquement par l’homme du métier. Au cours de ce procédé et comme déjà décrit précédemment, on dispose successivement, lors d’une première série d’étapes d’assemblages, différentes nappes et composites. Puis, on conforme l’ébauche ainsi obtenue. Ensuite, on dispose d’autres nappes et composites destinés à former le sommet 12 du pneumatique 10, dont le composite selon l’invention destiné à former la nappe de frettage 19 du pneumatique 10. Enfin, on vulcanise l’ébauche ainsi obtenue pour obtenir le pneumatique 10.
[078] MESURES ET TESTS COMPARATIFS
[079] A titre d’exemple comparatif, on a choisi un composite de l’état de la technique désigné par la référence générale NT d’un pneumatique de l’état de la technique. Le composite NT comprend des éléments de renfort ET comprenant chacun un assemblage constitué de deux brins multifilamentaires en polyamide 6,6 assemblés ensemble et enroulés en hélice l’un autour de l’autre à une torsion de 250 tours par mètre. Chaque élément de renfort ET est équilibré en torsions. Chaque brin multifilamentaire de l’élément de renfort ET présente un titre égal à 140 tex.
[080] A titre d’autre exemple comparatif, on a choisi un composite témoin désigné par la référence générale T d’un pneumatique PT. Le composite T comprend des éléments de renfort RT comprenant chacun un assemblage constitué de deux brins multifilamentaires en polyamide 6,6 assemblés ensemble et enroulés en hélice l’un autour de l’autre à une torsion de 485 tours par mètre. Chaque élément de renfort T est équilibré en torsions. Chaque brin multifilamentaire de l’élément de renfort T présente un titre égal à 94 tex. [081] Comparaison des éléments de renfort
[082] On a résumé dans le tableau 1 les caractéristiques de l’élément de renfort 45 du pneumatique 10 selon l’invention, l’élément de renfort 45’ selon l’invention, un élément de renfort témoin T et un élément de renfort ET de l’état de la technique. Les mesures de force à rupture sont effectuées en traction selon la norme ISO 6892 de 1984.
[083] [Tableau 1 ]
Figure imgf000014_0001
[084] On note que l’élément de renfort 45 présente un module initial équivalent à celui de l’élément de renfort de l’état de la technique ET et un module final significativement inférieur à celui de l’élément de renfort de l’état de la technique ET et que l’élément de renfort 45’ présente un module initial équivalent à l’élément de renfort témoin T et un module final significativement inférieur à celui de l’élément de renfort témoin T. Pour l’application en frette, les tendances de rigidité à fortes déformations ont un faible impact sur les performances du pneumatique.
[085] Comparaison des composites
[086] On a comparé le composite 35 selon l’invention comprenant des éléments de renfort 45 à un composite NT de l’état de la technique comprenant des éléments de renfort ET. Les caractéristiques géométriques de ces composites sont rassemblées dans le tableau 2 ci-dessous.
[087] [Tableau 2]
Figure imgf000015_0001
[088] Endurance des éléments de renfort
[089] On a comparé l’endurance de l’élément de renfort 45 à celle de l’élément de renfort de l’état de la technique ET. L’élément de renfort 45 est conforme à l’invention. L’élément de renfort de l’état de la technique ET n’est pas conforme à l’invention. Afin d’évaluer l’endurance, on a noyé des éléments de renfort dans une composition d’élastomère afin de former une éprouvette sous la forme de bande d’épaisseur égale à 2 mm que l’on a fait cycler autour d’un barreau cylindrique de 15 mm de diamètre. Après 190 000 cycles, on a mesuré la force à rupture finale de chaque élément de renfort. On a alors calculé la déchéance correspondant à la perte, en %, de force à rupture après les 190 000 cycles. Plus la déchéance est élevée, moins l’endurance est élevée. Les résultats des tests ainsi que les caractéristiques des éléments de renfort testés sont rassemblés dans le tableau 3 ci-dessous.
[090] [Tableau s]
Figure imgf000016_0001
[091] On a comparé l’endurance de l’élément de renfort 45’ à celle d’un élément de renfort témoin T. L’élément de renfort 45’ est conforme à l’invention. L’élément de renfort témoin T n’est pas conforme à l’invention. Afin d’évaluer l’endurance, on a noyé des éléments de renfort dans une composition d’élastomère afin de former une éprouvette sous la forme de bande d’épaisseur égale à 2 mm que l’on a fait cycler autour d’un barreau cylindrique de 15 mm de diamètre. Après 800 000 cycles, on a mesuré la force à rupture finale de chaque élément de renfort. On a alors calculé la déchéance correspondant à la perte, en %, de force à rupture après les 800 000 cycles. Plus la déchéance est élevée, moins l’endurance est élevée. Les résultats des tests ainsi que les caractéristiques des éléments de renfort testés sont rassemblés dans le tableau 4 ci-dessous.
[092] [Tableau 4]
Figure imgf000016_0002
Figure imgf000017_0001
[093] Ces résultats montrent que, pour des natures de brins en polyamide aliphatique 5,6 et dans l’intervalle de facteur de torsion K allant de 110 à 220, on constate qu’on peut améliorer l’endurance des éléments de renfort et ainsi celle du composite selon l’invention tout en diminuant la part des matières pétrosourcées en augmentant ainsi le taux de matière durable.
[094] L’invention ne se limite pas aux modes de réalisation précédemment décrits.
[095] Dans le mode de réalisation de l’invention, la tringle 28 est une tringle tressée constituée d’un assemblage de fils métalliques recouverts d’un dépôt à base de zinc ou d’un alliage de cuivre qui subissent un traitement de surface spécifique, par exemple par traitement thermique pour permettre l’adhésion à la matrice élastomérique.
[096] Dans des modes de réalisation non décrits ci-dessus, le pneumatique peut présenter une tringle qui est une tringle gainée, c’est-à-dire qui est constituée de fils de métal préalablement enrobés d’un film polymérique ou constituée d’un assemblage de fils métalliques enrobé d’un film polymérique. La gaine de la tringle est constituée d’un thermoplastique extrudable, comme par exemple un polyamide aliphatique et de préférence de polyamide aliphatique 6,6. Afin de garantir l’adhésion de la tringle gainée avec la composition élastomérique, une composition adhésive par exemple de type RFL (acronyme pour Résorcinol-Formaldéhyde-Latex) mais également les compositions adhésives telles que décrites dans WO2015118041 , est déposée à l’interface de la gaine ce qui permet d’éviter un traitement de surface spécifique des fils métalliques. Cette tringle gainée permet ainsi sans traitement spécifique des fils de garantir l’adhésion à la matrice élastomérique et de protéger la tringle contre la corrosion dans les environnements agressifs.
[097] On pourra également combiner les caractéristiques des différents modes de réalisation et variantes décrits ou envisagés ci-dessus sous réserve que celles-ci soient compatibles entre elles.

Claims

REVENDICATIONS Composite d’élastomère (35), caractérisé en ce qu’il comprend une pluralité d’éléments de renfort filaires substantiellement parallèles entre eux et s’étendant selon une direction principale, chaque élément de renfort (45) étant noyé dans une composition d’élastomère, l’élément de renfort (45) comprenant un assemblage constitué d’au moins deux brins multifilamentaires de polyamide aliphatique 5,6 (46), et les brins (46) étant enroulés ensemble en hélice pour former une couche et l’élément de renfort (45) étant équilibré en torsions, le facteur de torsion K de l’élément de renfort (45) allant de 110 à 220 avec K défini par la formule K = T x [(Titre / (1000.p)]1/2 dans laquelle T est la torsion de l’élément de renfort (45) exprimée en tours par mètre, Titre est la somme des titres des brins multifilamentaires de l’élément de renfort en tex, p est la masse volumique moyenne des brins multifilamentaires en g/cm3 pondérée par les titres respectifs des matériaux constitutifs des brins multifilamentaires , et la densité d’éléments de renfort (45) dans le composite (35) allant de 80 à 145 éléments de renfort par décimètre de composite mesuré selon une direction transverse perpendiculaire à la direction principale des éléments de renforts. Composite d’élastomère (35) selon la revendication précédente, dans lequel l’assemblage est constitué de deux brins multifilamentaires de polyamide aliphatique 5,6 (46). Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel le facteur de torsion K de l’élément de renfort (45) va de 120 à 150. Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel la densité d’éléments de renfort (45) dans le composite (35) va de 90 à 130 éléments de renfort par décimètre de composite, de préférence de 95 à 125 éléments de renfort par décimètre de composite. Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel la torsion de l’élément de renfort (45) va de 200 à 500 tours par mètre et de préférence de 250 à 490 tours par mètre. Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel le titre du brin multifilamentaire de polyamide 5,6 (46) va de 60 à 160 tex et de préférence de 70 à 140 tex. Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel le module initial en extension de l’élément de renfort (45) va de 1 à 5 cN/tex et de préférence de 2 à 5 cN/tex. Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel le module final en extension de l’élément de renfort (45) va de 5 à 18 cN/tex et de préférence de 5 à 12 cN/tex. Composite d’élastomère (35) selon l’une quelconque des revendications précédentes, dans lequel le rapport du diamètre de l’élément de renfort (45) sur l’épaisseur du composite est strictement inférieur à 0,90, de préférence inférieur ou égal à 0,80. . Composite d’élastomère (35) selon la revendication 9, dans lequel le diamètre de l’élément de renfort (45) est inférieur ou égal à 0,95 mm, de préférence inférieur ou égal à 0,80 mm, plus préférentiellement inférieur ou égal à 0,70 mm. Composite d’élastomère (35) selon la revendication 9 ou 10 dans lequel l’épaisseur du composite (35) est inférieure ou égale à 1 ,45 mm, de préférence, inférieure ou égale à 1 ,30 mm, plus préférentiellement inférieure ou égale à 1 ,20 mm. Pneumatique (10) comprenant une armature de frettage (17) comprenant au moins une nappe de frettage (19), caractérisé en ce que la nappe de frettage (19) comprend un composite d’élastomère (35) selon l’une quelconque des revendications précédentes.
PCT/EP2023/067490 2022-07-18 2023-06-27 Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6 WO2024017580A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2207323A FR3137868A1 (fr) 2022-07-18 2022-07-18 Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6
FRFR2207323 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024017580A1 true WO2024017580A1 (fr) 2024-01-25

Family

ID=84053176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067490 WO2024017580A1 (fr) 2022-07-18 2023-06-27 Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6

Country Status (2)

Country Link
FR (1) FR3137868A1 (fr)
WO (1) WO2024017580A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052844A1 (fr) * 2007-10-24 2009-04-30 Pirelli Tyre S.P.A. Pneu ayant un élément structurel renforcé par un fil hybride
WO2015118041A1 (fr) 2014-02-06 2015-08-13 Compagnie Generale Des Etablissements Michelin Elément de renfort en acier revêtu par une composition adhésive à base d'aldéhyde aromatique et de polyphénol
WO2018051032A1 (fr) * 2016-09-19 2018-03-22 Compagnie Generale Des Etablissements Michelin Élément de renfort, composite d'élastomère et pneumatique comprenant cet élément de renfort
WO2019180352A1 (fr) * 2018-03-20 2019-09-26 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une unique nappe de carcasse avec une profondeur de déformation dans le flanc améliorée après rodage
DE102019208984A1 (de) * 2019-06-19 2020-12-24 Continental Reifen Deutschland Gmbh Fahrzeugreifen mit Gürtelbandage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052844A1 (fr) * 2007-10-24 2009-04-30 Pirelli Tyre S.P.A. Pneu ayant un élément structurel renforcé par un fil hybride
WO2015118041A1 (fr) 2014-02-06 2015-08-13 Compagnie Generale Des Etablissements Michelin Elément de renfort en acier revêtu par une composition adhésive à base d'aldéhyde aromatique et de polyphénol
WO2018051032A1 (fr) * 2016-09-19 2018-03-22 Compagnie Generale Des Etablissements Michelin Élément de renfort, composite d'élastomère et pneumatique comprenant cet élément de renfort
WO2019180352A1 (fr) * 2018-03-20 2019-09-26 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une unique nappe de carcasse avec une profondeur de déformation dans le flanc améliorée après rodage
DE102019208984A1 (de) * 2019-06-19 2020-12-24 Continental Reifen Deutschland Gmbh Fahrzeugreifen mit Gürtelbandage

Also Published As

Publication number Publication date
FR3137868A1 (fr) 2024-01-19

Similar Documents

Publication Publication Date Title
EP2812194B1 (fr) Pneumatique a structure de ceinture allégée
EP2812195B1 (fr) Pneumatique a structure de ceinture allegee
EP3027426B1 (fr) Pneumatique comprenant un produit renforcé
EP3515727B1 (fr) Composite d'élastomère et pneumatique comprenant ce composite
EP3253592A1 (fr) Pneu radial ayant une structure de ceinture très fine
EP3826863B1 (fr) Cables metalliques bi-modules
FR3009238A1 (fr) Pneu radial a structure de ceinture allegee
EP3253598A1 (fr) Pneu radial ayant une structure de ceinture ameliorée
FR3056149A1 (fr) Element de renfort, composite d'elastomere et pneumatique comprenant cet element de renfort
EP3277869B1 (fr) Élément de renfort hybride à torsions différenciées
FR3032147A1 (fr) Pneu radial ayant une structure de ceinture amelioree
EP3768883A1 (fr) Pneumatique comprenant un câblé textile aramide perfectionné à au moins triple torsion
EP3027428B1 (fr) Pneumatique comprenant un produit renforce
EP3253596A1 (fr) Pneu radial ayant une structure de ceinture améliorée
EP4100264B1 (fr) Pneumatique pour véhicule agricole comprenant un élément de renfort de carcasse hybride
WO2019180369A1 (fr) Câblé textile aramide perfectionne à au moins triple torsion
WO2024017580A1 (fr) Tissu pour pneumatique comprenant des éléments de renfort comprenant un assemblage constitué de deux brins multifilamentaires de polyamide 5,6
EP3880492B1 (fr) Pneumatique pour véhicule à deux roues comprenant un renfort de frettage hybride
EP3253593B1 (fr) Pneu radial ayant une structure de ceinture améliorée renforcée de monofilaments
WO2016124420A1 (fr) Pneu radial ayant une structure de ceinture améliorée
FR3032151A1 (fr) Pneu radial ayant une structure de ceinture amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23734311

Country of ref document: EP

Kind code of ref document: A1