WO2024017357A1 - 微小孔眼钻井设备 - Google Patents

微小孔眼钻井设备 Download PDF

Info

Publication number
WO2024017357A1
WO2024017357A1 PCT/CN2023/108481 CN2023108481W WO2024017357A1 WO 2024017357 A1 WO2024017357 A1 WO 2024017357A1 CN 2023108481 W CN2023108481 W CN 2023108481W WO 2024017357 A1 WO2024017357 A1 WO 2024017357A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
hole
drilling
transmission section
drill bit
Prior art date
Application number
PCT/CN2023/108481
Other languages
English (en)
French (fr)
Inventor
徐梓辰
万晓跃
杨忠华
郭庆波
Original Assignee
蓝土地能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蓝土地能源技术有限公司 filed Critical 蓝土地能源技术有限公司
Publication of WO2024017357A1 publication Critical patent/WO2024017357A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling

Definitions

  • the present invention relates to the technical field of drilling equipment, and in particular, to a micro-hole drilling equipment.
  • micro-hole drilling technology In the field of energy and minerals, micro-hole drilling technology is used for geological exploration, engineering drilling, or drilling of micro-holes in tunnels to achieve engineering purposes such as gas drainage, gas extraction, or sampling.
  • micro-hole drilling cannot achieve trajectory control in micro-holes, which restricts the effectiveness of micro-hole drilling technology under the above conditions.
  • the purpose of the present invention is to provide a micro-hole drilling equipment to solve the technical problem that trajectory control cannot be achieved in micro-hole drilling.
  • the invention provides a micro-hole drilling equipment, which includes:
  • Micro-hole drill pipe with flow channels inside
  • the drilling service string is arranged in the main wellbore and serves as an operating platform for the micro-hole drill pipe.
  • the micro-hole drill pipe is accommodated in the drilling service string or is arranged on the side of the drilling service string. on the pipe wall;
  • a drill bit which is arranged at the lower end of the micro-hole drill rod
  • a main driving device which is connected to the micro-hole drill rod and is used to drive the micro-hole drill rod to move and/or rotate longitudinally along the micro-hole;
  • the rotation deflection control device includes a lateral force mechanism or a drill bit coaxial mechanism; the lateral force mechanism or the drill bit coaxial mechanism is provided at the lower part of the micro-hole drill pipe;
  • the rotary deflection control device can change the deflection performance of the micro-hole drilling tool under the rotation condition of the micro-hole drill pipe, including strengthening or limiting the deflection.
  • the invention provides a micro-hole drilling equipment, which includes:
  • a drill bit which is arranged at the lower end of the micro-hole drill rod
  • a main driving device which is connected to the micro-hole drill rod and is used to drive the micro-hole drill rod to move longitudinally or rotate along the micro-hole;
  • the rotation and pitching control device includes a lateral force mechanism and a guide control device
  • a lateral force mechanism is provided at the lower part of the micro-hole drill pipe
  • the steering control device can control the pressure or flow rate of the drilling circulating medium in the micro-hole drill pipe, and is used to control the lateral force mechanism to apply lateral force to the lower part of the micro-hole drill pipe or the drill bit.
  • This micro-hole drilling design is mainly aimed at radial micro-holes with a diameter between 0.5 inches and 3 inches and a turning radius within 1.
  • the lateral force mechanism in this micro-hole drilling equipment operates under the control of the guidance control device. The lateral force generated prompts the drill bit to turn, thereby realizing micro-hole guided drilling and changing the micro-hole drilling trajectory.
  • This micro-hole drilling equipment can be used in geological exploration, engineering drilling, or drilling micro-holes in tunnels; in geological body transformation and shaft tunnel construction, wire saw cutting can be achieved using micro-holes with controllable trajectories. The cost of rock mass transformation or excavation is greatly saved.
  • Figure 1 is a schematic structural diagram of an embodiment of the small hole drilling equipment provided by the present invention.
  • Figure 2 is a schematic structural diagram of another embodiment of the small hole drilling equipment provided by the present invention.
  • Figures 3-4 are schematic structural diagrams of another embodiment of the small hole drilling equipment provided by the present invention.
  • Figure 5 is a schematic structural diagram of an embodiment of the lateral force mechanism in the small hole drilling equipment provided by the present invention.
  • Figure 6A is a schematic structural diagram of another embodiment of the small hole drilling equipment provided by the present invention.
  • Figure 6B is a partial enlarged view of the lower part of Figure 6A;
  • Figure 6C is a partial enlarged view of C in Figure 6A;
  • Figure 7 is a schematic structural representation of an embodiment of the rotary deflection control device in the small hole drilling equipment provided by the present invention. picture;
  • Fig. 8 is a schematic structural diagram of an embodiment of the rotary deflection control device in the small hole drilling equipment provided by the present invention.
  • Fig. 9 is a schematic structural diagram of an embodiment of the rotational deflection control device in the small hole drilling equipment provided by the present invention.
  • the invention provides a micro-hole drilling equipment, as shown in Figures 1 to 9, including: a micro-hole drill pipe, a drilling service string 101, a drill bit 20, a main drive device and a rotary deflection control device.
  • the drilling service pipe string is arranged in the main wellbore and serves as an operating platform for the micro-hole drill pipe.
  • the micro-hole drill pipe is accommodated in the drilling service pipe string or is arranged on the pipe wall of the drilling service pipe string;
  • the drill bit 20 is provided at the lower end of the micro-hole drill pipe;
  • the main driving device is connected to the micro-hole drill rod and is used to drive the micro-hole drill rod to move and/or rotate longitudinally along the micro-hole;
  • the rotary deflection control device includes a lateral force mechanism or a drill bit coaxial mechanism
  • a lateral force mechanism or drill bit coaxial mechanism is provided at the lower part of the micro-hole drill rod;
  • the rotary deflection control device can change the deflection performance of the micro-hole drilling tool under the rotation condition of the micro-hole drill pipe, including strengthening or limiting the deflection.
  • the main driving device is connected to the micro-hole drill rod and is used to drive the micro-hole drill rod to move and/or rotate longitudinally along the micro-hole; two sets of main driving devices can be provided to be responsible for longitudinal movement and rotation respectively, and are used to drive the micro-hole drill rod.
  • the main driving device is a motor 104.
  • the main driving device is arranged above the micro hole drill rod, and the lower part of the motor rotor is connected to the upper end of the micro hole drill rod.
  • the pitch control mechanism can be implemented in a variety of ways.
  • the micro-hole drill pipe In order to achieve or approach the effect of radial drilling, it is best for the micro-hole drill pipe to be an articulated flexible drill pipe.
  • the micro-hole drill pipe can also be a titanium alloy drill pipe.
  • the rotary deflection control device includes a main drive device and a drill bit coaxial mechanism
  • the main driving device also includes a drilling control device, which is used to drive the micro-hole drill rod to move along the tool axis to change the drilling pressure applied to the micro-hole drill rod;
  • the drill bit coaxial mechanism includes a first transmission section 410 and a second transmission section 420.
  • the drill bit is arranged at the lower part of the first transmission section, and the first transmission section and the second transmission section are hinged or plugged; the first transmission section A deflection movable gap 530 and a telescopic space 540 are provided between the hinge structure or plug-in structure of the transmission section and the second transmission section, which can cause deflection between the first transmission section and the second transmission section; the first transmission section and the second transmission section A fitting surface 550 is also provided between the two transmission sections, which is used to control the first transmission section and the second transmission section to remain coaxial when the drilling pressure is high.
  • the drilling control device increases the drilling pressure applied to the drill pipe with small holes, the telescopic space between the first transmission section and the second transmission section is compressed, and the drilling pressure passes through the third transmission section.
  • the second transmission section is transmitted to the fitting surface, so that the first transmission section and the second transmission section are closely coupled and kept coaxial.
  • the lower end of the second transmission section is provided with a ball head
  • the upper end of the first transmission section 410 is provided with a ball head sleeve
  • the lower end of the second transmission section is provided with a ball head
  • the upper end of the first transmission section 410 is provided with a ball head.
  • a ball head sleeve is provided at the upper end of the second transmission section; the diameter of the equivalent circular section of the fitting surface is greater than 1/3 of the outer diameter of the drill bit, and there is still space in the telescopic space between the first transmission section and the second transmission section.
  • the falling mechanism 560 is used to prevent the first transmission section from falling out of the second transmission section.
  • the drilling pressure applied to the drill bit by the drilling control device is less than the elastic force of the second return spring and the water pressure inside the smile hole drill pipe.
  • the drilling pressure is auxiliaryly transmitted from the second transmission section to the first transmission section by the second return spring, preventing the fitting surface from fitting; when the drilling control device applies a high drilling pressure, the drilling pressure overcomes the second return spring
  • the elastic force and the water pressure inside the drill pipe with tiny holes compress the telescopic space so that the fitting surfaces can fit closely, thus maintaining the coaxiality of the first transmission section and the second transmission section.
  • this embodiment also includes a central centralizer 570, which is used to form a three-point fixed circle with the drill bit 20 and the centralizer 440 to enhance the ability to limit deflection and ensure stable tilt drilling of the drilling tool.
  • a flow channel is provided inside the main driving device, and the flow channel inside the main driving device is connected to the flow channel inside the micro-hole drill pipe; the main driving device also includes a flow control valve, and the flow control valve is connected in series with the flow channel. In the channel, the flow control of the fluid in the flow channel can be realized.
  • the flow control valve is fixedly connected to the drilling service string, or the flow control valve is fixedly connected to the micro-hole drill pipe; the flow control valve internal flow
  • the channels are respectively connected with the internal main channel 106 of the drilling service string and the internal flow channel of the micro-hole drill pipe.
  • the drilling circulation medium flows from the main channel 106 in the drilling service string through the flow control valve and then successively passes through the micro-hole drill pipe. and drill bits are discharged to the annulus and return upward through the annulus.
  • the main driving device includes a drill feed control device, which is fixedly connected to the drilling service string.
  • the drill feed control device includes at least one drill feed flow control valve 105 and a cylinder. 102;
  • the micro-hole drill pipe is arranged in the cylinder; the drill flow control valve is connected with the main channel 106 in the drilling service string and the first cavity 107 of the cylinder to control the flow of the micro-hole drill pipe.
  • the thrust force borne by the upper part achieves the purpose of applying drilling weight.
  • the drilling flow control valve 105 includes a valve seat 111, a valve head 112, a screw rod 113, a screw nut 114, and a motor 271.
  • the motor is drivingly connected to the screw rod 113; the screw rod 113 is inserted in Inside the screw nut 114, and driven by the motor, it performs a telescopic movement.
  • the screw drives the valve head 112 to perform a telescopic movement relative to the valve seat 111 to change the throttling area of the drilling flow control valve.
  • the pressure sensor 121 also includes a pressure sensor 121 and a pressure transmitter circuit 122, and the pressure sensor 121 is electrically connected to the pressure transmitter circuit.
  • the invention provides a micro-hole drilling equipment, as shown in Figures 1 to 4.
  • the micro-hole drilling equipment includes: a micro-hole drill pipe 10, a drill bit 20, a main driving device, a lateral force mechanism 30 and a steering control device 50.
  • a flow channel 11 is provided inside the micro-hole drill pipe 10, and the drill bit 20 is provided at the lower end of the micro-hole drill pipe 10;
  • the main driving device is connected to the micro-hole drill rod 10 and is used to drive the micro-hole drill rod 10 to move longitudinally and rotate along the micro-hole 100;
  • the lateral force mechanism 30 is provided at the lower part of the micro-hole drill pipe 10;
  • the guide control device 50 is connected to the lateral force mechanism 30 and is used to control the lateral force mechanism 30 to apply lateral force to the lower part of the microhole drill pipe 10 or the drill bit 20 .
  • the lateral force mechanism 30 in the micro-hole drilling equipment operates under the control of the steering control device 50, and the generated lateral force prompts the drill bit 20 to turn, thereby realizing guided drilling of the micro-hole 100 and changing the micro-hole drilling trajectory.
  • the lateral force mechanism and guide control device are part of the rotary pitch control device.
  • the lateral force mechanism 30 may adopt a hydraulic device or an electric drive device.
  • the guide control device 50 may be a hydraulic component, such as a valve or a pump; the guide control device 50 may also be an electric switch, power supply or electric controller.
  • the lateral force mechanism 30 may use a hydraulic device: the flow channel 11 is connected to the lateral force mechanism 30 ; the guide control device 50 includes a control mechanism connected to the flow channel 11 to control the flow of fluid flowing into the flow channel 11 Flow rate and pressure.
  • the guide control device 50 includes a control module 51 .
  • the control mechanism operates under the control of the control module 51 to regulate the flow rate or pressure of the fluid flowing into the flow channel 11 .
  • the guide control device 50 may be positioned outside the eyelet opening.
  • the diameter of the micro-hole drill pipe 10 in the micro-hole drilling equipment is between 1 inch and 6 inches. Further, the diameter of the micro-hole 100 is less than 100 mm, and the length of the micro-hole drill rod 10 is 100 to 20,000 times the diameter of the drill bit 20 .
  • control mechanism is arranged on the upper part of the micro-hole drill pipe 10, and the output end of the pump is connected to the input end of the flow channel 11 through the control mechanism.
  • one end of the control mechanism is sealingly connected to the output end of the pump, and the other end of the control mechanism is sealingly connected to the input end of the flow channel 11 of the microhole drill pipe 10 .
  • the drilling circulation medium is pressurized by the pump and passes through the control mechanism, the flow channel 11 of the micro-hole drill pipe 10 and the drill bit 20 in sequence, and then returns to the outside of the hole through the annulus of the micro-hole drill pipe 10 and the micro-hole 100.
  • control mechanism includes a blocking mechanism or a flow relief mechanism, which regulates the pressure in the flow channel 11 of the micro-hole drill pipe 10 by blocking or draining the flow, thereby changing the driving pressure of the lateral force mechanism 30 .
  • a throttling device is also included, and the flow channel 11 is connected to the lateral force mechanism 30 through the throttling device;
  • the throttling device is provided on the drill bit 20 , or the throttling device is provided near the lateral force mechanism 30 .
  • the throttling resistance causes the throttling pressure drop.
  • the throttling pressure drop can drive the lateral force mechanism 30 to push against the well wall to generate lateral force. , driving the drill bit 20 to turn.
  • the throttling device is a nozzle connected to the hydraulic chamber of the lateral force mechanism 30 .
  • the lateral force mechanism 30 includes a hydraulic cylinder 32. As shown in Figures 1-5, the hydraulic cylinder 32 is disposed at the lower part of the drill bit 20 or the micro-hole drill pipe 10. The hydraulic cylinder 32 can pass against the well wall. In this way, the reaction force is used to exert lateral force on the drill bit 20; or the hydraulic cylinder 32 directly drives the drill bit 20 to deflect.
  • an attitude measurement system 40 is provided at the lower part of the microhole drill pipe 10 , or the attitude measurement system 40 is provided on the drill bit 20 .
  • the attitude measurement system 40 is used to measure the attitude of the drill bit 20.
  • the attitude measurement system 40 and the control module 51 are both communicatively connected with the control system. Through the attitude of the drill bit 20 measured by the attitude measurement device, the control system controls the flow into the microhole drill through the control module 51.
  • the flow rate or pressure of the drilling circulating medium in the flow channel 11 of the rod 10 is used to drive the lateral force mechanism 30 to periodically perform the guiding function by utilizing the periodic changes in the flow rate or pressure of the drilling circulating medium.
  • the attitude measurement system 40 may use any one or a combination of an accelerometer, a magnetometer, a galvanometer, or a gyroscope.
  • the magnetometer determines the orientation by measuring the geomagnetic field; or, a magnet is installed near the hole, and the magnetometer determines the spatial position of the drill bit 20 .
  • current is released near the hole opening, and the spatial position of the drill bit 20 is determined through a magnetometer or galvanometer provided near the drill bit 20 .
  • the control mechanism includes an electrically driven valve that can open or cut off the flow of fluid into the flow channel.
  • the electrically driven valve can open or cut off the connection between the drilling circulating fluid and the flow channel in the water hole of the drill string.
  • the electrically driven valve includes an electrically driven actuator 27, a valve seat 25 and a control valve 26.
  • the control valve 26 is connected to the electrically driven actuator 27.
  • the control valve 26 moves relative to the valve seat 25 under the driving of the electrically driven actuator 27. It is used to connect the drilling circulating fluid and the flow channel in the water hole of the drill string.
  • the control mechanism can be any form of electrically driven valve, and the electrically driven valve can be an electric rotary valve, an electric directional valve or the solenoid valve 270 shown in Figures 6A-6B.
  • the electrically driven actuator is an electric motor 271
  • the control valve is a rotary valve rotor 261
  • the valve seat is a rotary valve stator 251;
  • the rotary valve rotor 261 is in the electric motor 271 It rotates relative to the rotary valve stator 251 under the driving force, and is used to connect the drilling circulating fluid in the drill string water hole with the control flow channel.
  • the electrically driven actuator is a linear motor or a combination of an electric motor 271 and a screw 273
  • the control valve is a valve stem 262
  • the valve seat is a valve with a throttle hole.
  • the electrically driven actuator is an electromagnet 274
  • the control valve is a valve stem 262
  • the valve seat is a valve seat 252 with a throttle hole; the fluid passes through the inflow hole 24 enters the electrically driven valve, and the valve stem 262 moves linearly relative to the rotary valve stator 251 driven by the electromagnet 274, which can periodically change the throttling area of the throttling hole to achieve drilling circulation in the drill string water hole.
  • the connection between fluid and control flow channel is an electromagnet 274
  • the control valve is a valve stem 262
  • the valve seat is a valve seat 252 with a throttle hole
  • the motor includes an angular position sensor 272, which may be a Hall sensor or a rotary transformer.
  • an angular position sensor 272 may be a Hall sensor or a rotary transformer.
  • the number of motor rotations can be monitored by recording the number of motor AC pulses, and the valve position can be further estimated.
  • the steering control device includes a variable displacement pump, which regulates the driving pressure of the lateral force mechanism by periodically changing the flow rate of liquid pumped into the flow channel of the micro-hole drill pipe.
  • the variable displacement pump is connected to the hydraulic cylinder through the flow channel, and the variable displacement pump periodically changes the flow rate of the pumped liquid, thereby regulating the lateral force generated by the hydraulic cylinder.
  • This micro-hole guided drilling equipment can establish several micro-holes with controllable trajectories to enhance contact with the formation and accuracy. It can also be used in the development of solid minerals such as coal mines, hydrates, and metal ions;
  • the drill bit in the micro-hole guided drilling equipment can be a directional jet drill bit that can produce directional jets.
  • the water jet direction of the directional jet drill bit does not coincide with the axis of the drill bit, which facilitates orientation;
  • This micro-hole guided drilling equipment can realize micro-hole guided drilling under rotary drilling conditions.
  • the total friction force it receives is the combined force of the axial friction component and the tangential friction force, making the micro-hole drill pipe
  • the axial friction component endured is greatly reduced, which is conducive to smooth drilling of micro-hole drill pipes in small holes.
  • the rotary tilting control device includes at least a hydraulic cylinder 320 and a rib 324.
  • the diameter d of the circumscribed circle formed when the ribs 324 are opened is equivalent to the diameter of the circumscribed circle of the drill bit.
  • the coaxial reset mechanism includes an annular hydraulic cylinder 320, at least three wedge-shaped force transmission members 321 and three ribs 324; the annular hydraulic cylinder 320 is arranged behind the drill bit and the annular hydraulic cylinder 320 is located behind the drill bit.
  • the cylinder 320 is arranged along the axis of the drill bit; it includes an annular piston 322 and an annular cavity 323.
  • the annular piston 322 can drive the wedge-shaped force transmission member 321 to move along the axial direction in the annular cavity and push the ribs 324 in the radial direction through the wedge-shaped force transmission member 321. Movement; the annular cavity is connected to the internal flow channel of the micro-hole drill pipe through the communication hole 324, or the hydraulic accommodation cavity is connected to other hydraulic sources through hydraulic lines, and the pressure in the annular cavity is controlled through the hydraulic system.
  • the ribs can be controlled to stabilize the drill bit by controlling the drilling fluid pressure flowing into the micro-hole drill pipe through the flow control valve.
  • the drilling fluid is restricted from flowing into the micro-hole drill pipe, hole
  • the wedge-shaped force transmission member is not enough to overcome the thrust of the first return spring 326, and cannot push the ribs to form a circle equivalent to the diameter of the drill bit, then the passability of the drilling tool is good; when drilling is not restricted
  • the pressure in the annular cavity increases significantly, and the pushing ribs of the wedge-shaped force transmission member reach the 325 motion dead center of the limiting structure, forming a circle equivalent to the diameter of the drill bit, which supports the drill bit and increases the stability of the drill bit.
  • the deflection performance limits the deflection performance of the drill bit, so that a wellbore trajectory that is close to a straight line can be obtained during the drilling process.
  • the same effect can be achieved by controlling the drilling fluid pressure flowing into the tiny drill pipe flow channel through any other means such as a hydraulic system.
  • the rotary deflection control device includes a drill bit coaxial mechanism driven by a hydraulic system or drilling fluid in a micro-hole drill pipe.
  • the drill bit coaxial mechanism drives an annular hydraulic cylinder.
  • the annular reset mechanism pushes the rear part of the first transmission sub-joint under the action of hydraulic pressure, forcing the first transmission sub-joint and the second transmission sub-joint to remain coaxial, so as to achieve the effect of stable oblique drilling.
  • FIG. 9 and Figure 6C it includes a first transmission sub-joint 410, a second transmission sub-joint 420, and also includes the drill bit coaxial mechanism 430 located near the guide drilling section.
  • the drill bit coaxial The mechanism pushes the rear part of the first transmission sub-joint 410 under the action of hydraulic pressure, forcing the first transmission sub-joint 410 and the second transmission sub-joint 420 to remain coaxial;
  • the centralizer 440 is arranged outside the second transmission sub-joint or The centralizer is arranged on the outer side of the second transmission sub-joint near the sub-joint.
  • the drilling fluid pressure flowing into the micro-hole drill pipe is controlled through the flow control valve or the pressure flowing into the micro-hole drill pipe is controlled by any other means.
  • the drilling fluid pressure can control the drill bit coaxial mechanism 430 to press against the tail fitting surface of the first transmission sub-joint 410 to force the first transmission sub-joint 410 and the second transmission joint 420 to remain coaxial.
  • the drilling tool has good passability; when the drilling fluid is not restricted from flowing into the drill pipe with small holes, the pressure in the annular cavity increases significantly, overcoming the thrust of the second return spring of the drill bit coaxial mechanism, and the sleeve-type drill bit simultaneously
  • the shaft mechanism 430 reaches the dead center of motion and resists the tail of the first transmission sub-joint 410, forcing the first transmission sub-joint 410 and the second transmission sub-joint 420 to remain coaxial, which increases the stabilizing performance of the drill bit and limits the tilting performance of the drill bit, that is, A wellbore trajectory approaching a straight line can be obtained during the drilling process.
  • the same effect can be achieved by controlling the drilling fluid pressure flowing into the tiny drill pipe flow channel through any other means such as a hydraulic system.
  • an attitude measurement mechanism is provided on the lower part of the microhole drill rod, or an attitude measurement mechanism is provided on the drill head.
  • the diameter of the microhole drilled by the microhole drill pipe is between 8 mm and 80 mm, and the length of the microhole drill pipe is 1-100 meters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种微小孔眼钻井设备,该微小孔眼钻井设备包括:微小孔眼钻杆(10)、钻孔服务管柱(101)、钻头(20)、主驱动装置和旋转造斜控制装置,微小孔眼钻杆(10)内部设置有流道(11);钻孔服务管柱(101)设置于主井眼中,作为微小孔眼钻杆(10)的操作平台,微小孔眼钻杆(10)容置于钻孔服务管柱(101)内或设置于钻孔服务管柱(101)的管壁上;钻头(20)设置于微小孔眼钻杆(10)下端;主驱动装置与微小孔眼钻杆连接,用于驱动微小孔眼钻杆(10)沿微小孔眼纵向移动或旋转;旋转造斜控制装置包括侧向力机构(30)或钻头同轴机构;侧向力机构(30)或钻头同轴机构设置于微小孔眼钻杆(10)的下部;旋转造斜控制装置能在微小孔眼钻杆旋转条件下改变微小孔眼钻具的造斜性能,以解决微小孔眼钻井中无法实现轨迹控制的技术问题。

Description

微小孔眼钻井设备
相关申请
本申请要求专利申请号为202221910524.0、申请日为2022年07月20日、发明名称为“微小孔眼钻井设备”的中国发明专利的优先权。
技术领域
本发明涉及钻井装备的技术领域,尤其涉及一种微小孔眼钻井设备。
背景技术
在能源与矿产领域,利用微小孔眼钻进技术进行地质勘查、工程钻孔、或者在巷道内进行微小孔眼的钻孔,可以实现气体排水、采气或者取样等工程目的。
目前,微小孔眼钻井无法在微小孔眼中实现轨迹控制,制约了上述条件下微小孔眼钻井技术的使用效果。此外,由于微小孔眼尺寸的限制,微小孔眼钻进过程也无法在钻头处设置可控定向机构,也就无法实现钻井工具的钻井面角控制。
发明内容
本发明的目的是提供一种微小孔眼钻井设备,以解决微小孔眼钻井中无法实现轨迹控制的技术问题。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种微小孔眼钻井设备,包括:
微小孔眼钻杆,其内部设置有流道;
钻孔服务管柱,钻孔服务管柱设置于主井眼中,作为微小孔眼钻杆的操作平台,所述微小孔眼钻杆容置于钻孔服务管柱内或设置于钻孔服务管柱的管壁上;
钻头,其设置于所述微小孔眼钻杆下端;
主驱动装置,其与所述微小孔眼钻杆连接,用于驱动所述微小孔眼钻杆沿微小孔眼纵向移动和/或旋转;
旋转造斜控制装置,所述旋转造斜控制装置包括侧向力机构或钻头同轴机构;侧向力机构或钻头同轴机构设置于所述微小孔眼钻杆的下部;
所述旋转造斜控制装置能在微小孔眼钻杆旋转条件下改变微小孔眼钻具的造斜性能,其中包括加强或限制造斜。
本发明提供一种微小孔眼钻井设备,包括:
微小孔眼钻杆,其内部设置有流道;
钻头,其设置于所述微小孔眼钻杆下端;
主驱动装置,其与所述微小孔眼钻杆连接,用于驱动所述微小孔眼钻杆沿微小孔眼纵向移动或自转;
旋转造斜控制装置;
所述旋转造斜控制装置包括侧向力机构和导向控制装置;
侧向力机构,其设置于所述微小孔眼钻杆的下部;
导向控制装置,能控制微小孔眼钻杆中的钻井循环介质的压力或流量,用于控制所述侧向力机构对所述微小孔眼钻杆下部或者所述钻头施加侧向力。
本发明的特点及优点是:
该微小孔眼钻孔设别主要针对直径在0.5英寸~3英寸之间,转弯半径在1以内的径向微小孔眼。该微小孔眼钻井设备中侧向力机构在导向控制装置的控制下动作,所产生的侧向力促使钻头进行转向,从而实现微小孔眼导向钻进,改变微小孔眼钻井轨迹。该微小孔眼钻井设备可以应用于地质勘查、工程钻孔、或者在巷道内进行微小孔眼的钻孔;进行地质体改造及竖井巷道建设中,可利用可控轨迹的微小井眼实现绳锯切割,大幅度节约了岩体改造或掘进成本。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1为本发明提供的小孔眼钻井设备一实施方式的结构示意图;
图2为本发明提供的小孔眼钻井设备又一实施方式的结构示意图;
图3-图4为本发明提供的小孔眼钻井设备又一实施方式的结构示意图;
图5为本发明提供的小孔眼钻井设备中侧向力机构一实施方式的结构示意图;
图6A为本发明提供的小孔眼钻井设备又一实施方式的结构示意图;
图6B为图6A的下部的局部放大图;
图6C为图6A中C处的局部放大图;
图7为本发明提供的小孔眼钻井设备中的旋转造斜控制装置一实施方式的结构示意 图;
图8为本发明提供的小孔眼钻井设备中的旋转造斜控制装置一实施方式的结构示意图;
图9为本发明提供的小孔眼钻井设备中的旋转造斜控制装置一实施方式的结构示意图。
附图标号说明:
100、微小孔眼;
10、微小孔眼钻杆;11、流道;20、钻头;
30、侧向力机构;32、液压缸;
40、姿态测量系统;
50、导向控制装置;51、控制模块;
24、入流孔;
25、阀座;26、控制阀;27、电驱动执行器;
251、转阀定子;261、转阀转子;271、电动机;272、角度位置传感器;
252、带有节流孔的阀座;262、阀杆;273、丝杠;
274、电磁铁;
101、钻孔服务管柱;106、主流道;
第一腔体107;102、缸筒;
105、送钻流动控制阀;
111、阀座;112、阀头;113、丝杆;114、丝杆螺母;271、电机;
121、压力传感器121;122、压力变送器电路;
123、电机驱动电路;124、电磁铁驱动电路;
270、电磁阀;274、电磁铁;132、回程流动控制阀阀头;133、回程流动控制
阀阀座;
104、马达。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明提供了一种微小孔眼钻井设备,如图1-图9所示,包括:微小孔眼钻杆、钻孔服务管柱101、钻头20、主驱动装置和旋转造斜控制装置,
微小孔眼钻杆内部设置有流道;
钻孔服务管柱设置于主井眼中,作为微小孔眼钻杆的操作平台,所述微小孔眼钻杆容置于钻孔服务管柱内或设置于钻孔服务管柱的管壁上;
钻头20设置于所述微小孔眼钻杆下端;
主驱动装置与所述微小孔眼钻杆连接,用于驱动所述微小孔眼钻杆沿微小孔眼纵向移动和/或旋转;
所述旋转造斜控制装置包括侧向力机构或钻头同轴机构;
侧向力机构或钻头同轴机构设置于所述微小孔眼钻杆的下部;
所述旋转造斜控制装置能在微小孔眼钻杆旋转条件下改变微小孔眼钻具的造斜性能,其中包括加强或限制造斜。
主驱动装置与所述微小孔眼钻杆连接,用于驱动所述微小孔眼钻杆沿微小孔眼纵向移动和/或旋转;即可设置两套主驱动装置分别负责纵向移动以及旋转,用于驱动微小孔眼钻杆旋转时,所述主驱动装置为马达104,所述主驱动装置设置于所述微小孔眼钻杆上方,所述马达转子下方与所述微小孔眼钻杆上端相连。造斜控制机构可以采用多种实施方式。
为了达到或接近径向钻井的效果,所述微小孔眼钻杆为铰接式柔性钻杆为最佳,所述微小孔眼钻杆也可采用钛合金钻杆。
在一实施方式中,所述旋转造斜控制装置包括主驱动装置和钻头同轴机构,
主驱动装置,还包括送钻控制装置,所述送钻控制装置用于驱动所述微小孔眼钻杆沿工具轴线移动能改变施加在微小孔眼钻杆上的钻压;
钻头同轴机构包括第一传动节410、第二传动节420,所述钻头设置于所述第一传动节下部,所述第一传动节和第二传动节铰接或插接;所述第一传动节和第二传动节的铰接结构或插接结构间设置有偏转活动间隙530和伸缩空间540,能使第一传动节和第二传动节之间发生偏转;所述第一传动节和第二传动节之间还设置有贴合面550,用于在高钻压时控制第一传动节和第二传动节保持同轴。
该实施方式中,当所述送钻控制装置增加施加在微小孔眼钻杆上的钻压时,所述第一传动节和第二传动节之间的伸缩空间被压缩,所述钻压通过第二传动节传递至所述贴合面,使第一传动节和第二传动节紧密贴合并保持同轴。
进一步地,如图7所示,所述第二传动节下端设置有球头、所述第一传动节410上端设置有球头套,或者,所述第二传动节下端设置有球头、所述第二传动节上端设置有球头套;所述贴合面的等效圆截面的直径大于所述钻头外直径的1/3,第一传动节和所述第二传动节间的伸缩空间内还包括第二复位弹簧450;所述第一传动节和所述第二传动节间还包括扭矩传递机构用于向钻头传递扭矩;所述第一传动节和所述第二传动节间还包括防掉机构560用于防止第一传动节从第二传动节内脱出。
当所述送钻控制装置施加给钻头的钻压小于所述第二复位弹簧的弹力及微笑孔眼钻杆内部的水压力时。钻压由第二复位弹簧从第二传动节辅助传递至第一传动节,阻止贴合面贴合;当所述送钻控制装置施加高钻压时,所述钻压克服了第二复位弹簧的弹力以及微小孔眼钻杆内部的水压力,使伸缩空间被压缩,使贴合面能紧密贴合,起到保持第一传动节与第二传动节同轴的效果。
如图7所示,本实施例还包括中部扶正器570,用于与钻头20、扶正器440形成三点定圆,增强限制造斜的能力,保障钻具稳斜钻进。
在一实施例中,主驱动装置内部设置有流道,其内设流道与所述微小孔眼钻杆内设流道连接;主驱动装置还包括流动控制阀,所述流动控制阀串联于流道中,能实现对所述流道中流体的流动控制,所述流动控制阀与钻孔服务管柱固定连接,或者,所述流动控制阀与微小孔眼钻杆固定连接;所述流动控制阀内部流道分别与钻孔服务管柱内部主流道106和所述微小孔眼钻杆内部流道联通,钻井循环介质自钻孔服务管柱内的主流道106流经流量控制阀继而陆续经过微小孔眼钻杆和钻头排至环空,经环空向上返回。
在一实施例中,主驱动装置包括送钻控制装置,所述送钻控制装置与所述钻孔服务管柱固定连接,所述送钻控制装置包括至少一个送钻流动控制阀105和缸筒102;所述微小孔眼钻杆设置于缸筒内;所述送钻流动控制阀分别与钻孔服务管柱内主流道106和缸筒联通第一腔体107联通,以控制流入微小孔眼钻杆上部承受的推力达到施加钻压的目的。
进一步地,所述送钻流动控制阀105包括阀座111、阀头112、丝杆113、丝杆螺母114、电机271,所述电机与丝杆113传动连接;所述丝杆113插设于丝杆螺母114内部,并在电机的驱动下做伸缩运动,所述丝杆带动阀头112相对阀座111做伸缩运动改变送钻流动控制阀的节流面积。
进一步地,还包括压力传感器121和压力变送器电路122,所述压力传感器121与所述压力变送器电路电连接。
本发明提供了一种微小孔眼钻井设备,如图1-图4所示,该微小孔眼钻井设备包括:微小孔眼钻杆10、钻头20、主驱动装置、侧向力机构30及导向控制装置50,微小孔眼钻杆10内部设置有流道11,钻头20设置于微小孔眼钻杆10下端;
主驱动装置与微小孔眼钻杆10连接,用于驱动微小孔眼钻杆10沿微小孔眼100纵向移动及自转;
侧向力机构30设置于微小孔眼钻杆10的下部;
导向控制装置50与侧向力机构30连接,用于控制侧向力机构30对微小孔眼钻杆10下部或者钻头20施加侧向力。
该微小孔眼钻井设备中侧向力机构30在导向控制装置50的控制下动作,所产生的侧向力促使钻头20进行转向,从而实现微小孔眼100导向钻进,改变微小孔眼钻井轨迹。
侧向力机构和导向控制装置作为旋转造斜控制装置的一部分。
侧向力机构30可以采用液压装置,也可以采用电驱动装置。相应地,导向控制装置50可以为液压元件,例如阀门或泵;导向控制装置50也可以为电开关、电源或电控制器。在一些实施方式,侧向力机构30可以采用液压装置:流道11与侧向力机构30连通;导向控制装置50包括控制机构,控制机构与流道11连接以控制流入流道11的流体的流速和压力。导向控制装置50包括控制模块51,控制机构在控制模块51的控制下动作,对流入流道11中的流体的流速或压力进行调控。导向控制装置50可以设置于孔眼孔口外部。
该微小孔眼钻井设备中的微小孔眼钻杆10,所钻的微小孔眼100的直径在1寸~6寸之间。进一步地,微小孔眼100的直径小于100毫米,微小孔眼钻杆10的长度为钻头20直径的100~20000倍。
进一步地,控制机构设置于微小孔眼钻杆10的上部,泵的输出端通过控制机构与流道11的输入端连通。具体地,控制机构的一端与泵的输出端密封连接,控制机构的另一端与微小孔眼钻杆10的流道11输入端密封连接。钻孔循环介质通过泵加压后依次经过控制机构、微小孔眼钻杆10的流道11及钻头20后,通过微小孔眼钻杆10与微小孔眼100的环空返回孔口外。
进一步地,控制机构包括截流机构或泄流机构,通过截流或泄流的方式来调节微小孔眼钻杆10的流道11内的压力,从而改变侧向力机构30驱动压力。
在一些实施方式中,还包括节流装置,流道11通过节流装置与侧向力机构30连接; 节流装置设置于钻头20上,或者,节流装置设置于侧向力机构30附近。当微小孔眼钻杆10中的循环流体排放到孔眼内时产生节流阻力,节流阻力引起节流压降,节流压降能驱动侧向力机构30抵推井壁,以产生侧向力,驱动钻头20转向。例如,节流装置为与侧向力机构30的液压腔连接的喷嘴。
在一些实施方式中,侧向力机构30包括液压缸32,如图1-图5所示,液压缸32设置于钻头20或者微小孔眼钻杆10的下部,液压缸32能通过抵靠井壁的方式,利用反作用力为钻头20施加侧向力;或者液压缸32直接驱动钻头20发生偏转。
进一步地,微小孔眼钻杆10的下部设置有姿态测量系统40,或者,钻头20上设置有姿态测量系统40。姿态测量系统40用于测量钻头20处的姿态,姿态测量系统40和控制模块51均与控制系统通讯连接,通过姿态测量装置测得的钻头20姿态,控制系统通过控制模块51控制流入微小孔眼钻杆10的流道11的钻孔循环介质的流量或压力,利用钻孔循环介质的流量或压力的周期性变化,来驱动侧向力机构30周期性执行导向功能。姿态测量系统40可以采用加速度计、磁力计、电流计或陀螺仪中的任一个或组合。磁力计通过测量地磁场判断方位;或者,在孔口附近设置磁体,通过磁力计判断钻头20处的空间位置。在一实施例中,在孔口附近释放电流,通过近钻头20处设置的磁力计或电流计判断钻头20的空间位置。
在一些实施方式中,控制机构包括电驱动阀,电驱动阀能够打开或切断流体进入流道的通断。电驱动阀能打开或切断钻柱水眼内的钻井循环流体与流道的通断。具体地,电驱动阀包括电驱动执行器27、阀座25和控制阀26,控制阀26与电驱动执行器27相连,控制阀26在电驱动执行器27的驱动下相对阀座25运动,用于实现钻柱水眼内的钻井循环流体与流道的通断。
控制机构可以为任意形式的电驱动阀,电驱动阀为电动转阀、电动换向阀或图6A-图6B所示的电磁阀270。
如图3和图4所示,当电驱动阀为电动转阀时,电驱动执行器为电动机271,控制阀为转阀转子261,阀座为转阀定子251;转阀转子261在电动机271的驱动下相对转阀定子251旋转,用于实现钻柱水眼内的钻井循环流体与控制流道的通断。
如图1所示,当电驱动阀为电动换向阀时,电驱动执行器为直线电机或者电动机271与丝杠273的组合,控制阀为阀杆262,阀座为带有节流孔的阀座252;流体经过入流孔24进入到电驱动阀内,阀杆262在直线驱动电机的驱动下相对转阀定子251作直线运动,能周期性改变节流孔的节流面积,用于实现钻柱水眼内的钻井循环流体与控制流 道的通断。
如图2所示,当电驱动阀为电动换向阀时,电驱动执行器为电磁铁274,控制阀为阀杆262,阀座为带有节流孔的阀座252;流体经过入流孔24进入到电驱动阀内,阀杆262在电磁铁274的驱动下相对转阀定子251作直线运动,能周期性改变节流孔的节流面积,用于实现钻柱水眼内的钻井循环流体与控制流道的通断。
进一步地,电动机包括角度位置传感器272,角度位置传感器可以为霍尔传感器或者旋转变压器。在没有角度位置传感器的情形下,可以通过记录电机交流电脉冲数实现对电机旋转圈数的监测,进一步的推算阀的位置。
在另一些实施方式中,导向控制装置包括变排量泵,通过周期性地改变向微小孔眼钻杆的流道中泵注的液体的流量,实现对侧向力机构的驱动压力进行调控。具体地,变排量泵通过流道与液压缸连通,变排量泵周期性地改变泵注的液体的流量,从而对液压缸所产生的侧向力进行调控。
该微小孔眼钻井设备具有以下优点:
(1)该微小孔眼导向钻孔设备能建立可控轨迹的若干微小孔眼,增强与地层的接触程度以及精度,还可以应用于在煤矿、水合物、金属离子等固体矿物开发中;
(2)该微小孔眼导向钻孔设备中的钻头可以是能产生方向性射流的定向射流钻头,定向射流钻头的水射流方向与钻头轴线不重合,便于实现定向;
(3)该微小孔眼导向钻孔设备可在旋转钻孔条件下实现微小孔眼导向钻进,其受到的总摩擦力为轴向摩擦分力和切向摩擦力的合力,使得微小孔眼钻杆所承受的轴向摩擦分力大幅减小,有利于微小孔眼钻杆在小孔眼中顺畅钻进。
在一实施方式中,所述旋转造斜控制装置包括至少包括液压缸320、肋翼324,所述肋翼324张开时所形成的外切圆的直径d与钻头外切圆直径相当。
进一步地,如图8所示,所述同轴复位机构包括一个环形液压缸320,至少三个楔形传力件321和三个肋翼324;所述环形液压缸320设置于钻头后方且环形液压缸320沿钻头轴线设置;包括环形活塞322和环形腔323,所述环形活塞322能在环形腔内沿轴线方向带动楔形传力件321移动并通过楔形传力件321推动肋翼324沿径向运动;所述环形腔与通过沟通孔324与微小孔眼钻杆的内流道联通,或者,所述液压容置腔通过液压线路与其他液压源联通,通过液压系统控制环形腔内压力。
当所述环形腔与通过沟通孔324与微小孔眼钻杆的内流道联通时,通过流动控制阀控制流入微小孔眼钻杆的钻井液压力即可控制肋翼稳定钻头,当限制钻井液流入微小孔 眼钻杆时,环形腔内压力低,楔形传力件不足以克服第一复位弹簧326的推力,不能推动肋翼形成与钻头直径相当的圆,则钻具的通过性好;当不限制钻井液流入微小孔眼钻杆时,环形腔内压力大幅提高,楔形传力件的推动肋翼达到限位结构325运动死点,形成与钻头直径相当的圆,对钻头形成支撑,增加了钻头的稳斜性能,限制钻头的造斜性能,即可在钻进过程中获得趋近于直线的井眼轨迹。通过液压系统等其他任意方式控制流入微小钻杆流道内部的钻井液压力,也能达到同等效果。
在一实施方式中,所述旋转造斜控制装置包括钻头同轴机构,所述钻头同轴机构驱动于液压系统或微小孔眼钻杆内的钻井液,所述钻头同轴机构驱为环形液压缸,所述环形复位机构在液压的作用下抵推第一传动短节的后部,迫使第一传动短节与第二传动短节保持同轴状,用以达到稳斜钻进的效果。
进一步地,如图9和图6C所示,包括第一传动短节410、第二传动短节420,还包括设于导向钻进节附近的所述钻头同轴机构430,所述钻头同轴机构在液压作用下抵推第一传动短节410的后部,迫使第一传动短节410与第二传动短节420保持同轴状;所述扶正器440设置于第二传动短节外侧或者所述扶正器设置于第二传动短节的附近短节外侧。
当所述环形腔与通过沟通孔470与微小孔眼钻杆的内流道联通时,通过流动控制阀控制流入微小孔眼钻杆的钻井液压力或通过其他任意方式控制流入微小钻杆流道内部的钻井液压力即可控制所述钻头同轴机构430抵靠第一传动短节410尾部贴合面迫使第一传动短节410与第二传动节420保持同轴。当限制钻井液流入微小孔眼钻杆时,环形腔内压力低,钻头同轴机构430不足以克服钻头同轴机构第二复位弹簧450的推力,不能迫使第一传动短节410与第二传动节420保持同轴,则钻具的通过性好;当不限制钻井液流入微小孔眼钻杆时,环形腔内压力大幅提高,克服钻头同轴机构第二复位弹簧的推力,套筒形式的钻头同轴机构430达到运动死点抵住第一传动短节410尾部,迫使第一传动短节410与第二传动节420保持同轴,增加了钻头的稳斜性能,限制钻头的造斜性能,即可在钻进过程中获得趋近于直线的井眼轨迹。通过液压系统等其他任意方式控制流入微小钻杆流道内部的钻井液压力,也能达到同等效果。
在一实施方式中,所述微小孔眼钻杆的下部设置有姿态测量机构,或者,所述钻头上设置有姿态测量机构。
在一实施方式中,所述微小孔眼钻杆钻的微小孔眼的直径在8mm~80mm寸之间,所述微小孔眼钻杆的长度为1-100米。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化与修改,均应属于本发明保护的范围。

Claims (21)

  1. 一种微小孔眼钻井设备,其特征在于,包括:
    微小孔眼钻杆,其内部设置有流道;
    钻孔服务管柱,钻孔服务管柱设置于主井眼中,作为微小孔眼钻杆的操作平台,所述微小孔眼钻杆容置于钻孔服务管柱内或设置于钻孔服务管柱的管壁上;
    钻头,其设置于所述微小孔眼钻杆下端;
    主驱动装置,其与所述微小孔眼钻杆连接,用于驱动所述微小孔眼钻杆沿微小孔眼纵向移动和/或旋转;
    旋转造斜控制装置,所述旋转造斜控制装置包括侧向力机构或钻头同轴机构;侧向力机构或钻头同轴机构设置于所述微小孔眼钻杆的下部;
    所述旋转造斜控制装置能在微小孔眼钻杆旋转条件下改变微小孔眼钻具的造斜性能,其中包括加强或限制造斜。
  2. 根据权利要求1所述的一种微小孔眼钻井设备,其特征在于,
    所述旋转造斜控制装置包括主驱动装置和钻头同轴机构,
    主驱动装置,还包括送钻控制装置,所述送钻控制装置用于驱动所述微小孔眼钻杆沿工具轴线移动能改变施加在微小孔眼钻杆上的钻压;
    钻头同轴机构包括第一传动节(410)、第二传动节(420),所述钻头设置于所述第一传动节下部,所述第一传动节和第二传动节铰接或插接;所述第一传动节和第二传动节的铰接结构或插接结构间设置有偏转活动间隙(530)和伸缩空间(540),能使第一传动节和第二传动节之间发生偏转;所述第一传动节和第二传动节之间还设置有贴合面(550),用于在高钻压时控制第一传动节和第二传动节保持同轴。
  3. 根据权利要求2所述的一种微小孔眼钻井设备,其特征在于,
    所述第二传动节下端设置有球头、所述第一传动节(410)上端设置有球头套,或者,所述第二传动节下端设置有球头、所述第二传动节上端设置有球头套;所述贴合面的等效圆截面的直径大于所述钻头外直径的1/3,第一传动节和所述第二传动节间的伸缩空间内还包括第二复位弹簧(450);所述第一传动节和所述第二传动节间还包括扭矩传递机构用于向钻头传递扭矩;所述第一传动节和所述第二传动节间还包括防掉机构(560)用于防止第一传动节从第二传动节内脱出。
  4. 根据权利要求1所述的一种微小孔眼钻井设备,其特征在于,
    主驱动装置内部设置有流道,其内设流道与所述微小孔眼钻杆内设流道连接;
    主驱动装置还包括流动控制阀,所述流动控制阀串联于流道中,能实现对所述流道中流体的流动控制,
    所述流动控制阀与钻孔服务管柱固定连接,或者,所述流动控制阀与微小孔眼钻杆固定连接;
    所述流动控制阀内部流道分别与钻孔服务管柱内部主流道106和所述微小孔眼钻杆内部流道联通,钻井循环介质自钻孔服务管柱内的主流道106流经流量控制阀继而陆续经过微小孔眼钻杆和钻头排至环空,经环空向上返回。
  5. 如权利要求1-4中任意一项所述的微小孔眼钻井设备,其特征在于,主驱动装置包括送钻控制装置,所述送钻控制装置与所述钻孔服务管柱固定连接,所述送钻控制装置包括至少一个送钻流动控制阀(105)和缸筒(102);所述微小孔眼钻杆设置于缸筒内;所述送钻流动控制阀分别与钻孔服务管柱内主流道(106)和缸筒联通第一腔体(107)联通,以控制流入微小孔眼钻杆上部承受的推力达到施加钻压的目的。
  6. 根据权利要求5所述的微小孔眼钻井设备,其特征在于,所述送钻流动控制阀105包括阀座(111)、阀头(112)、丝杆(113)、丝杆螺母(114)、电机(271),所述电机与丝杆(113)传动连接;所述丝杆(113)插设于丝杆螺母(114)内部,并在电机的驱动下做伸缩运动,所述丝杆带动阀头(112)相对阀座(111)做伸缩运动改变送钻流动控制阀的节流面积。
  7. 根据权利要求5所述的微小孔眼钻井设备,其特征在于,还包括压力传感器(121)和压力变送器电路(122),所述压力传感器(121)与所述压力变送器电路电连接。
  8. 根据权利要求1所述的一种微小孔眼钻井设备,其特征在于,
    所述旋转造斜控制装置包括液压缸(320)、肋翼(324),所述肋翼张开后的外切圆直径d与钻头外切圆直径相当。
  9. 根据权利要求8所述的一种微小孔眼钻井设备,其特征在于,所述同轴复位机构包括一个环形液压缸(320),至少三个楔形传力件(321)和三个肋翼(324);所述环形液压缸(320)设置于钻头后方且环形液压缸(320)沿钻头轴线设置;包括环形活塞(322)和环形腔(323),所述环形活塞(322)能在环形腔内沿轴线方向带动楔形传力件(321)移动并通过楔形传力件(321)推动肋翼(324)沿径向运动;所述环形腔与通过沟通孔(324)与微小孔眼钻杆的内流道联通,或者,所述液压容置腔通过液压线路与其他液压源联通,通过液压系统控制环形腔内压力。
  10. 根据权利要求1所述的一种微小孔眼钻井设备,其特征在于,
    所述旋转造斜控制装置包括钻头同轴机构,
    所述钻头同轴机构驱动于液压系统或微小孔眼钻杆内的钻井液,所述钻头同轴机构驱为环形液压缸,所述环形液压缸在液压的作用下抵推第一传动短节的后部,迫使第一传动短节与第二传动短节保持同轴状,用以达到稳斜钻进的效果。
  11. 根据权利要求10所述的一种微小孔眼钻井设备,其特征在于,包括所述第一传动短节(410)、第二传动短节(420),还包括设于导向钻进节附近的所述钻头同轴机构(430),所述钻头同轴机构在液压作用下抵推第一传动短节(410)的后部,迫使第一传动短节(410)与第二传动短节(420)保持同轴状;扶正器(440)设置于第二传动短节外侧或者所述扶正器设置于第二传动短节的附近短节外侧。
  12. 根据权利要求1所述的微小孔眼钻井设备,其特征在于,所述微小孔眼钻杆的下部设置有姿态测量机构,或者,所述钻头上设置有姿态测量机构。
  13. 根据权利要求1中任一项所述的微小孔眼钻井设备,其特征在于,所述微小孔眼钻杆钻的微小孔眼的直径在8mm~80mm寸之间,所述微小孔眼钻杆的长度为1-100米。
  14. 一种微小孔眼钻井设备,其特征在于,包括:
    微小孔眼钻杆,其内部设置有流道;
    钻头,其设置于所述微小孔眼钻杆下端;
    主驱动装置,其与所述微小孔眼钻杆连接,用于驱动所述微小孔眼钻杆沿微小孔眼纵向移动或自转;
    旋转造斜控制装置;
    所述旋转造斜控制装置包括侧向力机构和导向控制装置;
    侧向力机构,其设置于所述微小孔眼钻杆的下部;
    导向控制装置,能控制微小孔眼钻杆中的钻井循环介质的压力或流量,用于控制所述侧向力机构对所述微小孔眼钻杆下部或者所述钻头施加侧向力。
  15. 根据权利要求1、4或14中任意一项所述的微小孔眼钻井设备,其特征在于,
    导向控制装置能通过流动控制阀控制微小孔眼钻杆中的钻井循环介质的压力或流量,用于控制所述侧向力机构对所述微小孔眼钻杆下部或者所述钻头施加侧向力。
  16. 根据权利要求14所述的微小孔眼钻井设备,其特征在于,所述流道与所述侧向力机构连通;所述导向控制装置包括控制机构,所述控制机构与流道连接以控制流入微小孔眼钻杆流道的流体的流速和压力。
  17. 根据权利要求16所述的微小孔眼钻井设备,其特征在于,所述控制机构设置于所述微小孔眼钻杆的上部,泵的输出端通过所述控制机构与所述流道的输入端连通。
  18. 根据权利要求16所述的微小孔眼钻井设备,其特征在于,还包括节流装置,所述节流装置设置于所述钻头上,或者,所述节流装置设置于所述侧向力机构附近。
  19. 根据权利要求16所述的微小孔眼钻井设备,其特征在于,所述控制机构包括截流机构或泄流机构。
  20. 根据权利要求14所述的微小孔眼钻井设备,其特征在于,所述侧向力机构包括液压缸,所述液压缸设置于所述钻头或者所述微小孔眼钻杆的下部。
  21. 根据权利要求16所述的微小孔眼钻井设备,其特征在于,所述控制机构包括电驱动阀,所述电驱动阀能够打开或切断流体进入流道的通断。
PCT/CN2023/108481 2022-07-20 2023-07-20 微小孔眼钻井设备 WO2024017357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221910524.0 2022-07-20
CN202221910524.0U CN217783401U (zh) 2022-07-20 2022-07-20 微小孔眼钻井设备

Publications (1)

Publication Number Publication Date
WO2024017357A1 true WO2024017357A1 (zh) 2024-01-25

Family

ID=83941379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108481 WO2024017357A1 (zh) 2022-07-20 2023-07-20 微小孔眼钻井设备

Country Status (2)

Country Link
CN (1) CN217783401U (zh)
WO (1) WO2024017357A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217783401U (zh) * 2022-07-20 2022-11-11 蓝土地能源技术有限公司 微小孔眼钻井设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294480A (zh) * 2008-06-03 2008-10-29 中国海洋石油总公司 一种连续油管超短半径侧钻微小井眼的装置
CN112267830A (zh) * 2020-08-10 2021-01-26 万晓跃 短半径可控轨迹钻井工具
CN112554794A (zh) * 2020-12-04 2021-03-26 万晓跃 一种高精度短半径旋转导向钻井工具
CN113153151A (zh) * 2021-02-24 2021-07-23 万晓跃 一种柔性导向钻井工具
US20210285290A1 (en) * 2017-05-18 2021-09-16 Halliburton Energy Services, Inc. Rotary Steerable Drilling Push-The-Point-The-Bit
CN217783401U (zh) * 2022-07-20 2022-11-11 蓝土地能源技术有限公司 微小孔眼钻井设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294480A (zh) * 2008-06-03 2008-10-29 中国海洋石油总公司 一种连续油管超短半径侧钻微小井眼的装置
US20210285290A1 (en) * 2017-05-18 2021-09-16 Halliburton Energy Services, Inc. Rotary Steerable Drilling Push-The-Point-The-Bit
CN112267830A (zh) * 2020-08-10 2021-01-26 万晓跃 短半径可控轨迹钻井工具
CN112554794A (zh) * 2020-12-04 2021-03-26 万晓跃 一种高精度短半径旋转导向钻井工具
CN112901075A (zh) * 2020-12-04 2021-06-04 万晓跃 一种高精度短半径旋转导向钻井工具
CN113153151A (zh) * 2021-02-24 2021-07-23 万晓跃 一种柔性导向钻井工具
CN217783401U (zh) * 2022-07-20 2022-11-11 蓝土地能源技术有限公司 微小孔眼钻井设备

Also Published As

Publication number Publication date
CN217783401U (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2022083602A1 (zh) 短半径钻井工具、可控轨迹侧向钻井工具及方法
WO2022033609A2 (zh) 短半径钻井工具
US4597454A (en) Controllable downhole directional drilling tool and method
US4732223A (en) Controllable downhole directional drilling tool
US7836948B2 (en) Flow hydraulic amplification for a pulsing, fracturing, and drilling (PFD) device
WO2024017357A1 (zh) 微小孔眼钻井设备
CA2523725C (en) Steerable drilling apparatus having a differential displacement side-force exerting mechanism
CN113482526A (zh) 一种柔性导向钻井工具
EP2148975B1 (en) Flow hydraulic amplification for a pulsing, fracturing, and drilling (pfd) device
US20010052428A1 (en) Steerable drilling tool
EP2195506B1 (en) Dual bha drilling system
CA2523092A1 (en) Systems and methods using a continuously variable transmission to control one or more system components
CN102282333A (zh) 阀控井底马达
CN112554794A (zh) 一种高精度短半径旋转导向钻井工具
CN114439371B (zh) 一种受控超短半径导向钻井系统及钻井方法
RU2114273C1 (ru) Способ бурения наклонно направленных скважин и устройство для его осуществления
CN113404429B (zh) 复合式导向钻井工具及方法
US5297641A (en) Drilling deviation control tool
CN109025821A (zh) 一种混合型高造斜率旋转导向钻井工具
WO2023186055A1 (zh) 一种钻具、钻井方法及钻井导向方法
WO2022228397A1 (zh) 旋转导向钻井工具
WO2022033610A1 (zh) 短半径可控轨迹钻井工具及复合式导向钻井工具
CN109083593A (zh) 一种水力推靠钻头指向式导向钻井工具
US20180038197A1 (en) Controlling the sensitivity of a valve by adjusting a gap
SU1716068A1 (ru) Устройство дл искривлени скважин

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842419

Country of ref document: EP

Kind code of ref document: A1