WO2024017313A1 - 理水区域及方法和专用设备 - Google Patents

理水区域及方法和专用设备 Download PDF

Info

Publication number
WO2024017313A1
WO2024017313A1 PCT/CN2023/108254 CN2023108254W WO2024017313A1 WO 2024017313 A1 WO2024017313 A1 WO 2024017313A1 CN 2023108254 W CN2023108254 W CN 2023108254W WO 2024017313 A1 WO2024017313 A1 WO 2024017313A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
proof
laying
area
layer
Prior art date
Application number
PCT/CN2023/108254
Other languages
English (en)
French (fr)
Inventor
施国樑
Original Assignee
施国樑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施国樑 filed Critical 施国樑
Publication of WO2024017313A1 publication Critical patent/WO2024017313A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B49/00Combined machines
    • A01B49/04Combinations of soil-working tools with non-soil-working tools, e.g. planting tools
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B77/00Machines for lifting and treating soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/16Sealings or joints

Definitions

  • the invention relates to the technical field of setting up a water-proof layer on land to construct a water management area, methods and special equipment.
  • Chinese patent 2014103602898 rail-based robot isolates agricultural land which discloses a rail-based robot to isolate agricultural land, including land, a base rail installed in the land and planting soil; the planting soil can produce agricultural products that meet standards; the implementation of measures for contaminated soil Pollution control includes planting pollution-absorbing plants to absorb pollutants and removing pollutants from the soil by harvesting pollutant-absorbing plants, characterized by containing an isolation layer that separates the planting soil from the rest of the land; the isolation layer includes plastic film and geotextile; and Filling planting soil is piled on top of the isolation layer to build isolated farmland with evenly distributed planting soil in strips or pits.
  • the patent does not provide technical solutions or ideas for transforming grassland saline-alkali land into fertile farmland and doubling precipitation in arid areas. Contents of the invention
  • One of the objects of the present invention is to provide a method for constructing a water management area.
  • the method of constructing a water management area of the present invention demarcate a target area in a natural area, lay water-proof materials on at least part of the land in the target area to form a water-proof layer and transform it into a water-proof area, and the water-proof area includes water-proof agricultural land; the target area The remaining unmodified land is the original area; the collection of the water-isolated area and the original area is called the water management area.
  • Water management areas include cities, villages, fields, wilderness, highlands, surface waters and deserts; the area and proportion of water-isolated areas in water management areas are not limited, including areas greater than or equal to 10,000 m2 , especially greater than or equal to 5km2 and Accounting for more than 50%; the water-insulating material divides the land into a farming layer above it and a foundation below it. The water-insulating material blocks water from moving between the farming layer and the foundation, allowing most of the rainwater in the water-proof agricultural land to pass through Transpiration and evaporation re-enter the atmosphere; the thickness of the tillage layer is not limited, including the range of 0.1 to 2 meters; the preferred range is 0.5 to 1 meter.
  • Water-proof materials include, but are not limited to, agricultural mulch, geotextiles, and water-proof mud and sandbag laying layers; the laying method of water-proof materials is not limited, including continuous laying and fragmented laying; continuous laying includes connected laying and non-connected laying; connection Paving refers to the mutual connection between the laid waterproof materials, including but not limited to bonding, heat welding, ultrasonic welding, seaming and nailing; non-connected paving includes the simple overlapping of the edges of two pieces of paving materials or each other.
  • the method of constructing a water management area of the present invention provides a technical means for transforming saline-alkali land and dry land into high-yield cultivated land, and provides a water management area, a water-isolating farmland and a means of sustainably increasing rainfall and water extraction.
  • a model plot an arid and semi-arid plot with an area of 5 to 100 km 2 , a continental climate, temperatures in the early morning of the planting season that are often lower than the dew point, suitable for increased rainfall, and external influences on the model plot include wind and increased moisture.
  • the second object of the present invention is to provide a water management area.
  • the technical solution of the present invention to achieve this goal includes using the above-mentioned method of constructing a water management area, demarcating a target area in the natural area, laying water-proof materials on at least part of the land in the target area to form a water-proof layer, and transforming the water-proof area into a water-proof area.
  • the area includes water-isolated agricultural land; the remaining unmodified land in the target area is the original area; the collection of water-isolated agricultural land and original area is called the water management area; the area and proportion of the water-isolated area in the water management area are not limited; the water-isolated area
  • the material divides the land into the cultivated layer above and the foundation below.
  • the water-insulating material blocks water from moving between the cultivated layer and the foundation, so that most of the rainwater in the water-isolated agricultural land re-enters the atmosphere through transpiration and evaporation, which is reusable. Continuously increasing rainfall will lay the foundation for increasing crop yields and using water conservancy facilities to draw water from the air to supply domestic production; the thickness of the farming layer is not limited.
  • Water-proof materials include, but are not limited to, agricultural mulch films, geotextiles, and water-proof layers of sandbags.
  • the laying method of waterproofing materials is not limited, including continuous laying and fragmented laying.
  • the third object of the present invention is to provide water-proof agricultural land.
  • the technical solution of the present invention to achieve this goal is to use the above-mentioned method of constructing a water management area to construct a water-proof farmland, including terraces and planting water surfaces.
  • the area is not limited, and a larger one is better; all or most of the water-proof farmland is laid underground.
  • the water-insulating materials divide the land into the cultivated layer above and the foundation below.
  • the water-isolated materials prevent water from moving between the cultivated layer and the foundation, so that most of the rainwater in the water-isolated agricultural land evaporates through transpiration. It re-enters the atmosphere and lays the foundation for sustainable rainfall increases to increase crop yields and the use of water conservancy facilities to draw water from the air to supply domestic production.
  • the thickness of the tillage layer is not limited, including the range of 0.1 to 2 meters.
  • Water-proof materials include, but are not limited to, agricultural mulch films, geotextiles, and water-proof layers of sandbags.
  • the laying method of waterproofing materials is not limited, including continuous laying and fragmented laying.
  • a fourth object of the present invention is to provide a plowing and laying system for water management in farmland.
  • the technical solution of the present invention to achieve this goal is to build a water-proof agricultural land plowing and laying system, including earth-fetching and piling equipment, a laying machine and a control system; it is used to lay water-proof materials underground to divide the land into cultivated layers and Under the foundation, the water-insulating material blocks water from moving between the cultivated layer and the foundation, allowing most of the rainwater in the water-isolated agricultural land to re-enter the atmosphere through transpiration and evaporation; the thickness of the cultivated layer is not limited, including the range of 0.1 to 2 meters. .
  • the earth-moving equipment includes one of the following five types of equipment and their combination: 1) bucket excavator; 2) excavator with vibrating screen and bucket; 3) movable screening platform; 4) milling screw conveyor The array and the soil conveying equipment that relays the soil; 5) The milling cutter beater array and the mud pump that serves as the suction interface.
  • An excavator includes more than one group, and each group has more than one bucket;
  • the vibrating screen integrated bucket includes the main body of the bucket, one or more vibrating screens and a storage space between the screens;
  • the vibrating screen includes screens and vibration sources that are connected by transmission to each other;
  • the storage space between the screens includes the outlet and the outlet valve cover;
  • the milling cutter auger array includes integrating several milling cutter augers as the suction interface of the mud pump;
  • the soil conveying equipment includes a screw conveyor and a belt conveyor;
  • the milling cutter beater array and Mud pumps are suitable for scenarios where the land is flat, the land has good water retention, and water is freely available; when the water-isolating materials need to be widened laterally, the above-mentioned equipment 4) and equipment 5) include the use of temporary piles in the middle to collect mud and maintain isolation.
  • the laying machine includes a modular shell, which is connected to each other through flange end faces at both ends to increase the width of the working surface; the shell is provided with output ports arranged along its centerline; the shell is equipped with a roller transmission at the bottom Array; the water-proof material is placed in stacks on the roller conveyor array and can be output from the output port; a set of slide rails are arranged on the shell.
  • External engineering machinery is used to push or pull the laying machine through transmission parts, transmission connection interfaces and cables to lay the water-proof material.
  • the control system includes a positioning device, force and strain gauge sensors installed inside the laying machine and on the bucket, a horizontal state detector, a communication module and a machine vision monitoring module.
  • the pile turning and laying system includes one of the following 14 facilities and their combination: 1) The power transmission umbilical cable and its dedicated winch system are used to drive the traction equipment including the tractor to supply power to the laying machine; 2) Movable pipe automatic plug-in devices and movable electrical automatic plug-in devices are used to connect the laying system to the power grid water source while traveling; for details, please refer to Chinese Patent Application No.
  • a casing installed close to the ground in front of the casing
  • the shovel plate mold when the shovel plate mold is moving, it pushes the soil in front of the laying machine forward and processes the forming surface on the foundation surface; 9) a set of slide rails arranged along the length of the shell on the shell; 10) more than one A spiral drill bit installed horizontally forward to drive the laying machine forward and stabilize the state of the laying machine; 11) Several closers evenly distributed along the inside of the output port; 12) A wheel set, a driving wheel set or a spiral driving wheel installed at the bottom of the casing set, used to drive the laying machine to move; 13) laser receiving and measuring device, including installed above the laying machine and engineering machinery, used to exchange laser reference signals with external base stations; 14) transverse widening splicing device of water-proof material, installed above the laying machine The outside of the machine casing; used to splice the newly laid water-proof material with the previously laid water-proof material. It includes a cover
  • the laying machine of the turnover laying system includes two ends: a first end and a second end; the first end lays the first layer of water-proof material; the second end realizes the laying of the first layer and the second layer of water-proof material.
  • Splicing, the turning pile laying system includes: 1) box dam assembly, 2) inflated pipe group, 3) simple assembly, one or all of these three special equipment groups. 1. Box dam group, including several box dams placed end to end in the splicing ditches on both sides of the plot, and the box dams are filled with water to increase the weight to form a temporary dam for anchoring water-insulating materials; the box body of the box dam is closed and has a waterproof cover on it.
  • Sticking steel plate and clamping device it is equipped with water pumping pipe, segmented main pipe, power supply and box dam control system; at the first end, there is a fan and a rubber pusher for adjusting the position of the water-proof material on the box dam ; At the second end, there is a rubber pusher and an electric heating turntable or glue applicator; 2.
  • the blowing pipe group at the first end, there is a sinking tank excavator, guard plate manipulator, and auxiliary water-proof material tray box and/or plastic film tube box, electric heating turntable or glue applicator, and water level control assembly; at the second end, a water pipe cleaner, a second electric heating turntable, or a second glue applicator is provided; the water pipe cleaner includes an overlapping area Nozzle Template; 3. Simple assembly. At the first end, there is a sink trough excavator, guard plate manipulator, and water level control assembly; at the second end, there is a nozzle template for the overlapping area.
  • the fifth object of the present invention is to provide an underground turning and laying system.
  • the technical solution of the present invention to achieve this goal is to build an underground laying system, including drive traction equipment, a laying machine working underground and a control system; used to lay water-proof materials underground to divide the land into a farming layer above it and a layer below it.
  • Foundation water-insulating materials prevent water from moving between the cultivated layer and the foundation, allowing most of the rainwater in the water-isolated agricultural land to re-enter the atmosphere through transpiration and evaporation; the thickness of the cultivated layer is not limited.
  • Driving and pulling equipment includes external tractors, winches, and bulldozers that drive and pull the paving machine to lay waterproof materials; alternatively, the paving machine is equipped with an auger bit that extends forward and/or is installed on the top and/or bottom of the housing.
  • the hoist drives the paving machine to move;
  • the hoist includes being fixed on the ground or installed on the tractor;
  • the hoist installed on the tractor includes the use of two rows of tractors in the front and rear for relay traction;
  • the screw propeller of the paving machine is included on the top and bottom of the paving machine casing Arrange and advance in a row in front and back; push the soil back while pushing;
  • the laying machine includes a modular shell; the shell is connected to each other through flange end surfaces at both ends to increase the width of the working surface;
  • the shell is provided with an edge It has a full-length output port arranged in the length direction;
  • a roller transmission array is provided at the bottom inside the housing; water-proof materials are placed in piles on the roller transmission array and can be output from the output port;
  • the top of the housing is along the direction of its center line
  • a set of slide rails is arranged; electric scooters, electric sewing machines or earth lifters are connected to the slide rails and travel on the slide rails
  • the underground laying system includes one of the following 13 facility devices and their combination: 1) umbilical cable and its dedicated winch system for external power supply to supply power to the laying machine; 2) automatic insertion of movable pipes connecting devices and movable electrical automatic plugging devices; 3) Hydraulic roof plates installed on driven traction equipment, including tractors, winches and bulldozers, to resist the ground and increase traction on the laying machine; 4) Replaceable operating modules, Including digging bucket, 3D detection and harvester modules; 5) Elbow laying machine, used to provide extra-wide water-proof material; 6) Housing with porous water-injection surface structure, used to reduce the traveling resistance of the laying machine; 7 ) The driving traction equipment pulls the paving machine through the transmission shaft, and a moldboard or a moldboard with a hydraulic regulator is installed on the transmission shaft for attitude control of the paving machine; 8) It is connected to the slide rail and is mounted on the slide rail.
  • a quick-loading electric scooter, electric sewing machine or earth lifter running on the rail is used to transport workers, realize sewing connections and discard the soil at the output port of the laying machine; 9) a spiral conveyor milling cutter installed vertically on the front side of the casing, Used to break up soil and provide downward thrust; 10) Several closures are evenly distributed along the inside of the output port; 11) The front end of the housing is connected to more than one vibrator; 12) Laser measurement device, installed on the laying machine and engineering Mechanically, it is used to achieve laser measurement with an external base station; 13) The transverse widening splicing device of water-proof materials is installed on the outside of the laying machine casing; used to combine the newly laid water-proof materials with the previously laid water-proof materials. Splicing includes the cover, the space in the cover for storing water-proof material welding devices, the stretching cleaning assembly, the roller connection assembly and the control system.
  • Figure 1.1 and Figure 1.2 are respectively the side view and top view of a double bucket excavator turning pile laying system;
  • Figure 1.3 is a partial structural diagram of a laying machine;
  • Figure 1.4 is a structural schematic diagram of a closer;
  • Figure 1.5 is a A schematic front view of the parallel widening of the laying machine;
  • Figure 1.6 is a top view of a roller conveyor array;
  • Figure 2 is a schematic diagram of continuous but non-connected laying of water-proof materials;
  • Figure 3 is a schematic diagram of the layout of the rainfall enhancement area in a water management area;
  • Figure 4 is a schematic structural diagram of a milling turning pile laying system;
  • Figure 5.1 is a top view of a mud pump laying system to construct water-proof agricultural land;
  • Figure 5.2 is a structural schematic diagram of a mud pump laying system;
  • Figure 5.3 is a mud accumulation system Schematic diagram of forming high ground and separating water;
  • Figures 6.1 and 6.3
  • Figure 13.2 is the structural schematic diagram of the water-proof material widening and splicing device, which is also the II-direction view of Figure 13.1;
  • Figure 14 is the schematic diagram of a water-proof material axial compression table;
  • Figure 15 is The propulsion principle diagram of a self-propelled dry laying machine;
  • Figure 16.1 is a schematic diagram of laying water-proof materials to build an artificial river in the desert;
  • Figure 16.2 is the II-direction cross-section of Figure 16.1, which is the trenching and damming before laying the water-proof layer.
  • Figure 16.3 is a schematic diagram of stacking sand bags along the riverbed slope to set up a water-proof layer to build an artificial river
  • Figures 17.1 and 17.2 are respectively a schematic structural diagram of a screening screw conveyor placed at an obtuse angle and an acute angle
  • Figure 17.3 is a diagram Section I of 17.1 and 17.2
  • Figure 18.1 is a schematic diagram of a paving system using a vibrating screen integrated bucket to excavate, sort, lay water-insulating materials, and construct a farming layer in the desert
  • Figure 18.2 is a vibrating screen integrated digging bucket used to excavate soil, sort it, lay water-proof materials, and construct a farming layer
  • Figure 18.2 is a vibrating screen integrated digging bucket used to excavate soil from the desert.
  • FIG. 1 A schematic diagram of laying, leveling and compacting materials
  • Figure 18.3 is a schematic diagram of a vibrating screen integrated bucket that vibrates through the screen while outputting the screened materials
  • Figure 18.4 is a schematic diagram of a vibrating screen integrated bucket classifying and disposing of screened materials of different sizes
  • Figure 19.1 is a schematic diagram of using a vacuum nozzle to clean water-insulating materials and inflation pipes.
  • Figures 19.2 and 19.3 are respectively the front and rear views of a laying machine equipped with auxiliary water-insulating material trays and air pipe trays;
  • Figure 20 This is a schematic diagram of an overlapping splicing paving system that uses water sinks to retain mud and water.
  • FIG. 1 gives Example 1.
  • Manufacture an excavation type turning pile laying system including an excavator 1, a laying machine 2 and a control system; the excavator includes two mechanical arms 3 and two buckets 4; the laying machine includes a shell 5; the shell adopts a modular design.
  • the casing is provided with a full-length output port 6 in the same direction as its center line. Several closures 7 are evenly distributed along the inside of the output port.
  • the bottom of the casing contains a roller transmission array 8.
  • the width of a single shell includes 2 to 6 meters; the working surface width is increased by connecting the flange end faces 9 at both ends of the shell, including increasing it to 60 meters; the bottom edge 10 of the shell is a straight line or a curved waveform when viewed from the front; the waveform The amplitude is not limited, including 0 ⁇ 900mm; the length of the waveform is not limited.
  • the bottom edge of the shell in Figure 1.5 is a V-shaped triangular waveform; the length of the waveform is equal to the width of the shell.
  • the corrugation of the bottom of the laying machine determines the cross-sectional shape of the waterproof material.
  • the control system includes horizontal status detectors installed on each laying machine to provide real-time horizontal status to the control system host.
  • More than one set of driving wheels 11 are evenly distributed at the bottom of the casing; a shovel plate mold 12 is provided in front of the driving wheels.
  • the shovel plate mold scrapes the soil in front of the paving machine to improve the dimensional accuracy of the foundation surface; in one possible design, the driving wheel of Embodiment 1 is changed to a spiral driving wheel.
  • Relevant content refers to existing sled vehicle technology.
  • the roller transmission array includes several rollers each connected to the bottom through a rotating pair mechanism, including an electric roller 13 with a driving motor; the electric roller can drive the piles of water-proof materials 14 above it to move forward; the water-proof materials are stacked The stacks are placed on a roller conveyor array and are pulled out layer by layer from top to bottom during subsequent laying. This is the default placement and output mode of waterproof materials.
  • One side of the water-proof material is a reinforcing edge 15, which is convenient for passing through the gap between the upper and lower rollers of the closer during installation and advancing along the gap.
  • One housing includes more than one closer, which is installed inside the output port. It includes more than one air bag 16, spring 17, transmission part, upper roller 18 and lower roller 19; 1 to 100mm is allowed between adjacent closers.
  • the airbag is connected to a positive pressure source, a negative pressure source or the atmosphere through a control valve;
  • the transmission member includes a top plate 20 and a transmission rod 21 that is drivingly connected to the top plate, and its appearance is like a push pin.
  • the upper and lower surfaces of the top are in contact with an air bag and the upper end of a spring respectively;
  • the transmission rod is connected to the upper roller through a one-dimensional rotating mechanism;
  • the closer has two stable states: the open state and the closed state: the closer is in the open state
  • the gap between the upper and lower rollers becomes larger, making it easier for the water-proof material to pass through.
  • the air bag communicates with the positive pressure source and expands, the spring is shortened, and the upper roller moves downward, as shown by the dotted line in Figure 1.4.
  • the gap between the upper and lower rollers becomes smaller to prevent mud from entering.
  • the lower roller is connected to the shell through a one-dimensional rotating mechanism; the upper and lower rollers are With or without drive mechanism; the upper and lower rollers are equipped with sealing strips to the output port of the housing for dust and mud prevention.
  • a spiral drill bit 22 is provided at each front end of the laying machine.
  • the spiral drill bit includes a drive shaft 23 and a spiral blade 24 located in front of the drive shaft.
  • the spiral drill bit has the functions of both a drill bit and a screw propeller, providing part or all of the forward driving force for the laying system and crushing the soil, making the working state of the laying system more stable.
  • the horizontal inclination angle of the auger bit can swing in a small amplitude.
  • the swing includes using a steering gear or connecting the free end of a hydraulic device through a one-dimensional rotating pair on the side of the drive shaft to change the level of the laying system during advancement.
  • the inclination angle enables the control of the operating depth of the laying system and the degree of undulation along the forward direction.
  • the operating range of the bucket is slightly reduced.
  • the use of a spiral drill bit to pre-break the soil improves excavation efficiency.
  • the design of the spiral drill bit refers to the existing technology.
  • Example 1 Each excavator is in place, digs out the transverse trench to the foundation, unloads the paving machine from the vehicle, including lifting and unloading with the excavator, and connecting the shells of each paving machine through the flange end faces on both sides. Widened to form an excavator laying system and placed into transverse trenches. Install a 40-90 degree arc-shaped additional channel 25 on the left side of the shell, switch the closer to the open state, and hoist the entire stack of water-proof materials into the shell from the upper port of the additional channel and into each shell from the side port.
  • Starting the electric roller of the roller transfer array involves manually passing the reinforcing edge of the water-proof material through the gap between the upper and lower rollers and the output port, advancing it to the end simultaneously, and then removing the additional channel and then installing a closed side plate or installing an amplifier splicer. ; Then pull the water-insulating material back enough; switch the closer to the closed state; press the pulled-out water-insulating material with soil; then start the excavator to dig soil and cover it on the newly laid water-insulating material to form a tillage Layer 26.
  • the water-insulating material divides the land into a foundation 27 below the water-insulating material and a cultivation layer above the water-insulating material.
  • Embodiment 1 uses two buckets. One bucket can be used to provide support for the other bucket to extend forward to discharge materials, as shown in Figure 1.1. Similarly, choosing the left bucket to unload materials in front of the right, as shown in the excavator on the right in Figure 1.2, can also make use of the support of the right bucket to make the excavator work better. Using two buckets can appropriately reduce the weight of the excavator.
  • the excavated laying system of the present invention provides a special equipment for constructing water-proof areas.
  • the excavator has high reliability over time; it uses dual robotic arms and dual buckets to make rapid progress.
  • Digging has the effect of deep plowing.
  • the parallelogram casing's compact structure includes full utilization of the slope behind the earth and is friendly to bucket operations. Assuming that the laying width of the laying system is 60 meters and the average laying speed is 0.1 meters/second, 21600m 2 and 2.16 hectares can be laid per hour.
  • Embodiment 1 uses an electric excavator instead of an excavator driven by an internal combustion engine.
  • the additional channel in Embodiment 1 is configured with a roller transmission array to facilitate the loading of water-proof materials.
  • the excavator manipulator of Embodiment 1 includes a laser alignment signal receiver 28 for receiving the laser alignment signal from an external base station in real time to position the laying system, including making the longitudinal section of the water-proof material It is shown as the waveform at the top of Figure 1.1.
  • the non-linear waveform of the longitudinal section of the water-insulating material superimposed on the non-linear waveform of the cross-section makes the water-insulating material evenly distributed with pits for convenient water storage, which helps to maintain good moisture content, improve the drought resistance of water-insulating agricultural land, and make the water-insulating material resistant to damage. sensitive.
  • the forward speed of the roller transmission array in Embodiment 1 is gradually increased from front to back. Doing so creates axial compression of the entire stack of waterproofing materials, including shortening from 68 meters to 66 meters, allowing the laying of the waterproofing materials to be looser.
  • the spiral drill bit in Embodiment 1 may not be used; its spiral driving wheel may also be changed to other wheel sets.
  • Figure 2 shows Example 2.
  • the projected area overlap is shown in Figure 2.
  • This kind of non-connected splicing can still effectively reduce leakage, but omitting the connection operation will help reduce the cost of renovation; the splicing part is higher than other parts of the water-insulating material, so that the cultivated layer can retain more water and has good moisture retention; there are gaps in the splicing part, rainwater When there is too much, it can seep into the ground through gaps to slow down waterlogging and replenish groundwater.
  • the projected areas of the edges of two adjacent water-proof materials in Embodiment 2 do not overlap. If the edge projected areas of two adjacent water-insulating materials in the water management area do not overlap, for example, for a water-insulating material with an average area of 60* 500m2 , there will be a gap between one 60-meter side and one 500-meter side of the adjacent water-insulating material laid. If there is a 0.1-meter splicing gap, the gap area accounts for less than 0.19% of the water management area, and the increase in leakage caused by it can be ignored in increasing rainfall and returning salt and alkali.
  • FIG. 3 shows Example 3.
  • Operating Area The area, shape, location and height of the rain-enhancing operation area change according to the on-site conditions including changes in wind force and direction.
  • Beneficial effects of Example 3 Building water-isolated areas and superimposing rainfall enhancement technology can increase rainfall in water-isolated farmland and improve moisture conditions. It can also bring rainwater to urban roads, buildings and greening, freshen the air, and can also be obtained through the rainwater collection system. Domestic and production water.
  • FIG. 4 shows Example 4.
  • a milling type turning pile laying system is manufactured, including a laying machine 2, a milling cutter screw conveyor array, a rearward soil conveyor 32, a forward horizontally installed auger bit 22, a spiral driving wheel 11 at the bottom of the laying machine and a control system.
  • the laying system is pulled by cables 33 .
  • the control system includes horizontal status detectors installed on each laying machine.
  • the screw conveyor is a general bulk material conveying equipment, including a spiral blade and a conveying channel; when the spiral blade rotates, the material is pushed to move in the conveying channel.
  • the milling cutter screw conveyor array includes several milling cutter screw conveyors 34 evenly distributed over the entire working surface.
  • the milling cutter screw conveyor includes a spiral conveying milling cutter and a conveying channel.
  • the spiral conveyor milling cutter is obtained by arranging dense cutting edges on the edge of the spiral blade, which has both the milling function and the spiral blade pushing function; the backward soil conveyor includes but is not limited to the use of
  • Embodiment 4 Each tractor towed is in place, digs out the transverse trench to the foundation 27, removes the milling cutter screw conveyor array and the laying machine and enters the transverse trench, including the parallel widening of the laying machine casings, multiple milling
  • the knife screw conveyor array is evenly distributed on each laying machine to form the laying system; the water-proof material is loaded and then the water-proof material is pulled out from the output port of the laying machine and pressed with soil. Then, the tractor pulls the laying system through the cable, milling and lifting the soil while moving forward, and the soil is transported to the water-insulating material 14 laid behind through the rear soil conveyor to build the tillage layer 26.
  • Beneficial effects of Embodiment 4 The milling type turning and laying system uses a milling screw conveyor array to mill soil. It has a compact structure, high reliability, and the turned soil is evenly dispersed.
  • Example 5 is given in Figures 5 and 6.
  • Manufacture a mud pump turning pile laying system for the construction of water-proof agricultural land and paddy fields 35 which includes a beater array, a mud pump 36, a mud pipe array, a laying machine 2 that can operate underwater, including an elbow laying machine 37, and a fan 38 , the first manipulator 39, the second manipulator 40, the height rudder and the control system.
  • the control system includes a monitor 42 and a horizontal status detector provided on each laying machine.
  • the artificial river 43, dam 44 and field ridge 45 are connected and also serve as mechanical farming roads.
  • the box body 49 of the box dam is closed, and is provided with an installation connection interface, an anti-adhesive steel plate and a clamping device.
  • the connection interface includes several recessed through holes to facilitate the connection of special equipment and water injection; the inside of the box is provided with a water pumping pipe 50, a segmented main pipe 51, a power supply and a box dam control system.
  • the box dam control system includes wireless communication modules configured to achieve mutual communication.
  • the clamper includes a pressure plate 52 connected to the box through a one-dimensional rotating mechanism and drivingly connected to the electric mechanism.
  • the pressure plate has three stable working states: 1) everted state, 2) internally closed and non-pressed state, and 3) internally closed and compressed state, and can be switched; the pressure plate in the everted state and the internally closed and non-compressed state has no influence on the outside world;
  • the inner closed pressing plate presses the water-insulating material below it.
  • the beater array includes several beaters 53 and a rear fairing 54, which serves as the input port of the mud pump.
  • the beater has the functions of milling soil and beating soil; the beaten soil can be easily sucked and pumped.
  • the beater includes a self-water-filled end mill, which includes a spindle and a water-filled cutting edge.
  • the water-filled cutting edge adopts a porous water-filled surface structure.
  • the porous water-injection surface structure includes several output holes connected to the water source through water channels with the same journey and resistance; for relevant content, please refer to the existing technology.
  • the mud tube array includes several mud tubes 55 and one or more groups of two propellers 56 each including a spiral propeller.
  • Each mud tube includes a cable constraint at its outlet to make it relatively concentrated; each group of two propellers is provided separately.
  • the outlet of the mud pipe is driven to keep it in the appropriate position.
  • the elbow laying machine involves processing and arranging the casing, output port and internal parts of the laying machine into 40 to 90 degree arc segments.
  • a fan 38 and a rubber pusher 57 are provided at the first end of the laying machine.
  • the rubber pusher is used to adjust the water-insulating material on the box dam.
  • a rubber pusher and an electric heating turntable 58 or glue applicator are provided.
  • the height rudder is connected to the laying machine using a rudder stock 59 and is used to control the working state of the laying system including turning upward or downward.
  • the beater array, mud pump, mud pipe array, laying machine and elbow laying machine, horizontal status detector, monitor, fan, first manipulator, second manipulator, height rudder and propeller communicate with each other through their own interface circuits. Control system host signal connections; their status changes according to changes in host status.
  • Embodiment 5 put each traction device including a drag or winch in place, put the laying machine into the transverse trench, widen the laying machine in parallel and connect the two elbow laying machines, load the water-proof material 14, and install the beating
  • the mud pump array, mud pump, mud pipe array, fan, two manipulators and height rudder constitute a mud pump laying system. Pull out the water-insulating material from the output port, place it on both sides of the box dam, the first layer of water-insulating material on the box dam in Figure 6.1 and the second layer of water-insulating material on the box dam in Figure 6.3, and activate them.
  • the fan blows the water-proof material output near the top onto the box dam, and the first and second robots are used to adjust the water-proof material, press it, and achieve thermal welding; then the remaining water-proof material is pressed with soil. Then, the laying system is pulled through the cable 33 to lay the waterproof material. Monitors monitor the scene. During laying, the beater array rotates back and forth dozens of degrees to mill and beat the soil. The mud output from the mud pipe forms a high soil plateau, and the low-lying area 61 between the high ground and the temporary dam retains the water separated from the mud.
  • Embodiment 5 is effective Results:
  • the mud pump type paving system of the present invention uses a beater array to mill and beat the soil and uses a mud pump to pump the soil. It has the advantages of compact structure, high reliability, light weight, low cost and low energy consumption.
  • the box dam in Embodiment 5 is replaced by field ridges and separates strip-shaped plots.
  • Embodiment 5 uses multiple sets of propellers to load-carry mud pipes.
  • the mud pipe of Example 5 outputs mud to adjacent plots.
  • Embodiment 5 uses a rigid mud tube output array and omits the propeller.
  • FIG. 7 gives Example 6.
  • a tractor underground paving system is manufactured, including a tractor 62, a paving machine 2, a connecting rod assembly 63, a moldboard 64 and a paving control system.
  • the connecting rod assembly connects the tractor and the laying machine; the working state of the connecting rod assembly is controlled through the hydraulic device 65, including cutting the laying machine into the ground and pulling the laying machine out for lifting.
  • the hydraulic device 66 controls the laying machine to flip upwards or downwards.
  • the cross-section of the laying machine is streamlined and includes a housing 5, a full-length output port, a closer and a roller transfer array.
  • the moldboard is optional and is installed on the connecting rod assembly with a horizontal inclination.
  • Embodiment 6 Each tractor is in place, each paving machine is unloaded and connected to the connecting rod assembly of the corresponding tractor to be lifted. Each shell is connected and widened through the flange end faces on both sides to form a tractor paving system. Then install the water-proof material; then pull the water-proof material back enough to press the water-proof material with soil; adjust the hydraulic device of each tractor to make the shell cut into the ground and drag the shell forward to lay the water-proof material.
  • the traction underground laying system of the present invention provides a special equipment for laying water-insulating materials to build water management areas, which omits the need to turn over a large amount of soil, causing little change in the soil structure of the original farming layer and saving energy consumption.
  • a moldboard angle screw adjustment device 67 is used between the moldboard and the connecting rod assembly in Embodiment 6, including a matched screw nut, and one end of the screw and the nut are connected to each other through a rotating pair mechanism.
  • the connecting rod assembly and the moldboard; the moldboard is also connected to the connecting rod assembly through a rotating pair.
  • the adjustable moldboard angle allows the system to always work at its best.
  • FIG. 8 gives Example 7.
  • a towed underground paving system is constructed, including a tractor 62 and an underground paving machine 2 pulled by a cable 34 of a winch 68 on the tractor.
  • the laying machine includes a housing, a cable connection interface mast 69 and a control system.
  • the working process of Embodiment 7 the tractor is in place and the transverse trench 70 is dug; the laying machine 2 enters the transverse trench; the laser receiving device on the laying machine is used to receive the laser beam emitted by the base station for measurement and positioning.
  • Relevant content may refer to existing technology.
  • the casings of multiple laying machines working in parallel are connected in series to increase the working width, the entire stack of water-insulating materials is loaded, the water-insulating material 14 is pulled out from the output port of the casing and placed on the foundation, and the water-insulating material 14 is placed on the pulled-out water-insulating material.
  • the material is covered with soil and held down.
  • Use cable 33 to connect the winch on the tractor to the mast of the laying machine. Start the tractor to pull the paving machine to lay the waterproof material. The soil passing over the paving machine 2 falls on the paving material behind the paving machine to form a tillage layer 26 .
  • the traction underground laying system of the present invention provides a technical means for laying water-proof materials to build water-proof areas or water-proof farmland.
  • the use of winch traction can achieve more complex and precise traction control and fast laying speed.
  • Figure 8 shows Example 8.
  • a front-row tractor 71 is added and a two-row tractor is used to pull and drag the paving machine 2 in relay.
  • Example 8 Operation process of Example 8: At switching point 1, the front tractor stops and tows the paving machine, the rear tractor moves forward to switching point 2, the rear tractor stops and tows the paving machine, and the front tractor moves forward to switching point 1. And so the cycle continues.
  • Beneficial effects of Embodiment 8 The static friction between the tractor and the ground when it is stationary is obviously greater than the kinetic friction when it is moving, so a lighter and smaller tractor can be used to achieve the same traction, which is beneficial to reducing equipment costs; winch High traction control accuracy.
  • the tractor can complete different tasks independently nearly half of the time, including cleaning and leveling. For scenarios where relevant work must be performed, get twice the result with half the effort.
  • the tractor of Embodiment 8 is equipped with a generator to supply power to the laying machine.
  • the laying system of Embodiment 8 includes a hydraulic top plate 72, and the resistance force generated by the top plate is used to increase the traction force on the following laying machine.
  • all possible embodiments of the present invention are improved: part of the shell of the laying machine is equipped with a vibrator, including a vibration generator used by a concrete vibrator to reduce the resistance and energy of the laying machine.
  • FIG. 8 and Example 9 is given.
  • the tractor is equipped with a new operation module 73, including a detection module for 3D terrain modeling, an earthwork module for trenching, embankment and leveling, and a harvesting and weeding module.
  • the detection module includes an ultrasonic detection device to provide conditions for three-dimensional modeling; the earthmoving module includes a digging bucket.
  • the detection module includes an ultrasonic detection device to provide conditions for three-dimensional modeling; the earthmoving module includes a digging bucket.
  • Example 10 is given in Figure 9.
  • An underground laying machine including a casing 5, a quick-loading spiral conveyor milling cutter 74 evenly distributed on the front side of the casing, a laser receiving device 28, a front row spiral propeller conveyor 75 evenly distributed on the upper side of the casing, a middle
  • the three rows of screw propeller conveyors namely row screw propeller 76 and rear row screw propeller conveyor 77, are relay-transported, the mast 69 is connected to the housing, the roller transmission array 8 is provided in the housing, and the water-proof material is pushed synchronously Feeder 78, closer and water-proof material extension splicer 79, set on the outside of the shell for widening splicing with adjacent water-proof materials Splicer.
  • the shell is designed and manufactured in a modular manner, and the special-shaped flange end plate structures at both ends are used to achieve wider connection;
  • the wedge shape at the front end of the shell includes a lower wedge-shaped surface 80 and an upper wedge-shaped surface 81; the wedge shape is suitable for wedging into the soil.
  • the lower wedge-shaped surface has a horizontal inclination wedge angle 82 ranging from 1 to 7°.
  • the quick-loading spiral conveyor milling cutter is used for milling, chopping and lifting earthwork, and moving the earthwork upward to the shell of the laying machine; while lifting the earthwork, its reaction force provides downward thrust to the laying machine; the thrust increases with the speed of the laying machine.
  • each row of screw propeller conveyors include providing the horizontal propulsion force of the laying machine and generating the interaction between the laying machine and the laying machine. Relative displacement of the soil above; the tilted screw propeller conveyor will produce a vertical force component.
  • three screw conveyors 74 to 76 connected front and back are provided with conveying channels.
  • Each screw propeller conveyor is equipped with a power head 83 for independent driving, or a power head plus one or more universal joints 84 for joint driving;
  • the synchronous pushers are evenly distributed along the inside of the housing.
  • the synchronous pusher includes a pushing mechanical arm 85, a driving roller 87 provided at the free end of the pushing mechanical arm, and a monitor.
  • the rotation speed of the driving roller is adjustable, and it acts on the top sheet of each stack of water-proof materials 14 to help the water-proof materials move and output simultaneously, including monitoring the site with a built-in monitor. This can avoid the disorder caused by the adhesion of two adjacent layers of water-proof materials.
  • the pushing mechanical arm maintains the appropriate pressure of the driving roller on the water-proof material; the surface linear speed of the driving roller is the same as the laying speed and can be adjusted.
  • Extended splicers are used to join extended lengths of waterproof material.
  • Embodiment 10 The working process of Embodiment 10: the tractor drives the laying machine forward and supplies power to the laying machine through cables; the quick-installation spiral conveyor milling cutter chops and lifts the soil, and the three rows of spiral conveyors push the soil backward to form the tillage layer 26 and provide The forward thrust of the laying machine and the waterproof material are output from the output port.
  • Beneficial effects of Embodiment 10 The paving machine adopts a mast to be connected with the cable 33 on the tractor, so that the tractor has more freedom; the tractor directly pulls the paving machine, omitting the earthwork turning process, simplifying the process; 3 rows of screw propulsion conveying The relay pushes the soil backward and provides the forward thrust of the laying machine, reducing the driving load of the cable.
  • the design of Embodiment 10 is modified: its quick-loading spiral conveyor milling cutter includes an upper portion with a smaller diameter. A thinner diameter means less driving force.
  • the screw propeller conveyor for relay conveying on the upper side of the casing of Embodiment 19 is a design other than 3 rows.
  • part of the surface of the casing of Embodiment 10 adopts a porous water-injected surface structure. The porous water-filled surface structure's water-forming slurry provides lubrication and helps reduce drive energy on the laying machine.
  • the laying machine of Embodiment 10 includes a moldboard 64 and a moldboard angle screw adjustment device 67 .
  • the tension of the cable is combined with the buoyancy of the water-insulating material in the laying machine, causing the laying machine to move upward and off the established track.
  • the adoption of a moldboard solves this problem by obtaining a downward reaction force, allowing the paving machine to run freely underground.
  • Example 11 is given in Figures 8 and 10.
  • a multifunctional tractor 62 is constructed, including tracks, chassis, engine, bucket and transversely disposed auger 86; its uses include incorporating leveling and pulling a paving machine.
  • the screw conveyor is connected to the tractor transmission through a hydraulic device 65 and can rotate clockwise or counterclockwise.
  • the transverse screw conveyor includes an open conveying channel 88 with baffles, spiral blades 24 disposed in the conveying channel, a widened baffle 89 disposed at the edge of the conveying channel, and a hydraulic bypass plate disposed on the outer side of the conveying channel.
  • Road cover plate 90, hydraulic end valves 91 provided at both ends of the conveyor channel, power head 82 and conveyor control system.
  • Power heads include electric and hydraulic power heads.
  • the spiral blade can rotate forward and reverse.
  • the materials in the screw conveyor can/cannot flow out from the bypass channel 92 of the conveying channel.
  • the bucket 4 can pour the earth into the conveying channel from above the widened baffle of the transverse screw conveyor.
  • the hydraulic end valve has two stable states: open state and closed state; when the hydraulic end valve is in the open state, this end is switched to the output end; when the hydraulic end valve is in the closed state, this end is switched to the input end.
  • the working process of Example 11 Use multiple tractors to level the ground surface in parallel, and make the transverse screw conveyors on these tractors connect end to end in a relay conveying state.
  • the two transverse screw conveyors When the input end of one of two adjacent transverse screw conveyors is just below the output end of the other screw conveyor, the two transverse screw conveyors are said to be in a relay conveying state. Materials can be transferred between two screw conveyors.
  • the tractors loading the two screw conveyors are staggered forward and backward, and then adjusting the status of the two transverse screw conveyors includes switching their input ends and output ends, Then the two tractors loading the two transverse screw conveyors are returned to alignment and enter a new relay conveying state.
  • Embodiment 11 When tractors equipped with transversely arranged screw conveyors and operating modules for buckets are arranged in rows, the traction laying system can be completed while simultaneously completing tasks such as: leveling a large area including a 60-meter-wide plot; on-site Material transportation includes inputting soil from vehicles on the field ridge or exporting earth to vehicles on the field ridge. Guest soil is used to improve soil.
  • Embodiment 11 uses a tractor in which both front and rear rows are equipped with transverse screw conveyors.
  • FIG. 11 shows Example 12.
  • a water-insulating material extension device for a laying machine including a panel 93 and a control system, equipped with an upper blowing pipe row 94, a lower blowing pipe row 95 and a water-proofing material status detector for loading the final section 96 of water-proofing material into The initial section 97 of the water-proof material is lengthened by thermal welding.
  • the width of the panel is equal to the width of the casing; the height dimension of the panel along the forward direction, that is, the length direction ranges from 90 to 500 mm; the panel is arranged above the output port in the casing 5 of the laying machine.
  • the electromagnet includes a strip electromagnet, and the length direction of the strip electromagnet is in the same direction as the width of the panel.
  • the air hole is connected to the positive pressure source and negative pressure source through the automatic control valve; When the pores are connected to the negative pressure source, the front and rear sides of the initial section of the water-proof material close to the front of the panel are pressed against the final section in front of the panel due to the pressure difference between the atmospheric pressure and the negative pressure source; when the pores are connected to the positive pressure source, the The end section in front generates blowing force; the edges of the air holes include chamfers; the port styles of the air holes include but are not limited to dots and short diagonal lines; the air hole ports with diagonal short line shapes can suck a larger area; usually, the panel
  • the stomata on the device are grouped into groups, and each group uses a scanning method to communicate with the negative pressure source for inhalation.
  • the electrothermal welder When the electrothermal welder is in working condition, the temperature of its working surface increases, which can heat and weld the two layers of water-insulating materials close to it together; the shape of the surface of the electrothermal welder is the trace pattern generated by welding, including but not limited to dots and lines. and mesh.
  • the upper and lower blowing pipe rows are arranged above and below the output port respectively; the upper and lower blowing pipe rows are connected to the positive pressure source through automatic control valves, and their air outlet status is adjustable; the lower blowing pipe row is used to blow the final section of the water-proof material and The initial segment floats close to the panel.
  • an upward blowing air pipe row is used; the upper blowing air pipe row is connected to the positive pressure source through an automatic control valve.
  • the upper blowing air pipe row can blow air
  • the final section blows out an arc section that bulges downward, and the arc section plays the role of pulling the final section downward from the panel; that is, the final state of the final section on the panel is in accordance with the shape of the upper blowing pipe row when it floats upward. Changes due to state changes; use this phenomenon to adjust the displacement of the end section on the panel.
  • a number of small holes 101 are evenly distributed on the final section and contain paramagnetic material.
  • the final section includes connecting a piece of plastic sheet mixed with paramagnetic material powder and does not affect thermal welding; the arrangement of the paramagnetic material is not limited, including strip-shaped paramagnetic material 102 .
  • the length of the strip-shaped paramagnetic material is in the same direction as the axis of the housing; the center distance between two adjacent strip-shaped paramagnetic materials is equal to the center distance between the surfaces of two adjacent strip-shaped electromagnets on the panel.
  • the small holes should coincide with the air holes on the panel as much as possible when being attracted by the electromagnet; the diameters of the small holes and the air holes include 1 to 3 mm; the negative pressure source realizes the initial section through the air holes on the panel and the small holes on the final section.
  • the suction makes the initial section close to the final section.
  • the detector reports the status of the newly installed water-proof material Normally, the host sequentially orders the lower blow pipe to discharge air, preheats the electric welding device, and sequentially connects each group of air holes to the negative pressure source from bottom to top for negative pressure suction; this causes the initial section of the newly installed water-proof material to be placed at the bottom. The air is sucked onto the front end of the panel under the dual action of blowing air from the air blowing tube and negative pressure suction from the stomata.
  • the electrothermal splicer and its heating surface include, but are not limited to, point shapes, line segments and mesh shapes.
  • the end section contains ultrasonic reflective material including a protective layer of aluminum foil.
  • the surface of the electrothermal fusion splicer in Embodiment 12 takes a shape other than a plane, including a slightly outward smooth protrusion in the middle when viewed in cross section; the protrusion height includes 0.3 to 1.4 mm. This can improve the quality of thermal welding.
  • the monitor is installed on the driving drum 86 shown in Figure 9, and the movement trajectory of the pusher mechanical arm 85 that is drivingly connected to the driving drum is limited to a narrow space near the symmetry plane of the housing. In this way, the visual range is large and it is not easily blocked by the end segment.
  • Embodiment 12 when the inclination angle of the panel changes, the multi-layer welding mechanism still holds.
  • the water-proof material extension device for laying machines of the present invention provides a machine lengthening connection method for water-proof materials, which has the advantages of obvious physical meaning and simple implementation.
  • the position of the end section on the panel can be adjusted by using the upward blowing air pipe row. The greater the air blowing from the upward blowing air pipe row, the more downward the end section bulges, and the further the position of the end section on the panel moves downwards.
  • the use of electromagnets to attract the final section avoids any impact on the installation of water-proof materials.
  • FIG. 12 shows Example 13.
  • a manual-assisted elongated water-proof material laying machine is manufactured, including a housing 5, a slide rail 103 arranged along the direction of the housing output port and connected to the housing, an electric scooter 104 and an electric sewing machine 105 matched with the slide rail.
  • the electric scooter and the slide rail are cooperatively connected through the rolling connection interface 106, and can move forward and backward freely on the slide rail.
  • Embodiment 13 shows Example 14.
  • a transverse widening splicing device for water-proof materials including a cover 107, a space for storing the welded parts of water-proof materials in the cover, a stretching cleaning assembly, a roller connection assembly and a control system; installed on the shell of the laying machine 2 Outside; used to connect the newly laid partitions this time The water material is spliced with the waterproof material that has been laid previously.
  • the stretching cleaning assembly includes more than one group of spiral roller brushes 108 with two upper and lower ones working together, and a vacuum cleaner 109 installed on one side of the spiral roller brush.
  • Two upper and lower spiral roller brushes are arranged on the upper and lower sides of the water-proof material 14, and the surface of the spiral roller brushes has spirally arranged bristles; when the water-proof material passes between the rotating upper and lower spiral roller brushes, it is affected by the edge of the spiral roller brushes.
  • the brushing pull in the rotation direction of the spiral roller brush and the stretching and broadening along the axial direction of the spiral roller brush; the brushing and scraping can clean the surface of the water-proof material.
  • the vacuum cleaner includes a suction nozzle that approaches and cleans the spiral brush.
  • the roller connection assembly includes a set of two electrothermal welding rollers 110 that work together; the two layers of water-insulating material between the two electrothermal welding rollers are welded.
  • the working principle of Embodiment 14 Each time an additional row of water-proof materials is laid on one side of the already laid water-proof materials, it includes clearing the site on one side of the laying machine, loading the water-proof materials in the laying machine, and then installing the horizontal Widen the splicing device, and then manually load the laid water-proof material into the stretch cleaning assembly and the roller connection assembly; then load the side of the water-proof material into the roller connection assembly, and finally close the cover shell. Then the electrothermal welding assembly is enabled and the laying machine is started to lay the water-proof material.
  • the transverse widening and splicing device of water-proof materials of the present invention can use the spiral roller brush to complete the picking up, cleaning, stretching and widening of the previously laid water-proof materials and two layers of water-proof materials in one go during movement. Thermal welding. Using two or more sets of spiral roller brushes can increase the cleaning margin.
  • the heat welding in Embodiment 14 is changed to ultrasonic welding, bonding or sewing.
  • Embodiment 14 is changed to non-connected stacking splicing, which includes only using a set of spiral roller brushes to pull outward and clean the edges of the waterproof material laid this time.
  • FIG 14 shows Example 15.
  • a water-proof material axial compression platform is manufactured, including several electric rollers 13, the center line of which is perpendicular to the drawing, and at least one end of the electric rollers at both ends can rotate upward as a whole at a large inclination angle.
  • the working process of Embodiment 15 After the roll/pack of water-proof material 15 is placed on the axial compression table, at least one of the two-end electric rollers is rotated upward as a whole at a large inclination angle and aligned with the middle part. There is a transitional arc segment in each, so that the rotation of the electric roller pushes the water-proof material to the middle, and the water-proof material is compressed along its axial direction and shortened in length.
  • the water-proof material axial compression platform can axially compress piles of water-proof material with a length of more than 60 meters, and the compression effect is intuitive and controllable.
  • the axially compressed rolls/stacks of water-proof material have a tendency to restore their original length and are adaptable to various subsequent lateral elongation situations, including being not easily damaged when pulled due to uneven foundation surfaces.
  • axial compression of the stacks of waterproof material is achieved as it is loaded into the laying machine, including as shown in Figure 1.5 so that the electric rollers of the roller conveyor array have a linear velocity gradient along the conveying direction. The slower the forward speed, the greater the compression of the entire stack of water-proof materials. This is simpler and has better practical results.
  • FIG. 15 shows Example 16.
  • a self-propelled dry laying machine 2 is manufactured, including a laying machine, a front and a rear screw propeller 111 arranged approximately horizontally on the laying machine casing 5 .
  • the propeller can swing up, down, left and right, including using a two-dimensional steering gear and a two-dimensional hydraulic device to drive and lay the water-proof material 14.
  • the laying machine includes a modular shell, which is connected to each other through flange end faces at both ends to increase the width of the working surface; the shell is provided with output ports arranged along its centerline; the shell is equipped with a roller transmission at the bottom Array; the water-proof material is placed in stacks on the roller conveyor array and can be output from the output port.
  • Embodiment 16 is used to lay water-insulating materials underground to divide the land into an upper cultivation layer and a foundation below.
  • the water-insulating materials block water from moving between the cultivation layer and the foundation, causing the maximum amount of rainwater in the water-isolating agricultural land. Part of it re-enters the atmosphere through transpiration and evaporation.
  • a tractor is used to assist in dragging the laying machine 2 through the cable 33 and the mast 69 .
  • Beneficial effects of Embodiment 16 The self-propelled dry laying machine of the present invention is propelled by a front row spiral propeller and a rear row spiral propeller. It has a simple structure and is suitable for laying water-proof materials in the desert.
  • Figure 16 shows Example 17. Build an artificial river with an aquifer in the desert. Use the excavator 1 to excavate the desert to a sufficient depth; use the screening device 112 to screen the excavated earth to separate the stones 113, small stones 114 and soil 47, and use the screw conveyor 87 to transport them to the dams 44 on both sides of the artificial river 43 superior. The remaining stones, pebbles and soil are filled from bottom to top in order from large to small in individual volume to form the river bed bottom foundation 27; then water-proof material 14 is laid on the river bed foundation including the slopes 115 on both sides to form a water-proof layer; This further includes continuously stacking soil bags 116 on top of the water-proof material. Soil bags are made of geotextile and filled with soil.
  • Water-proof materials and soil bags form a water-proof layer; the water-proof layer divides the desert into a river bed above the water-proof layer and a foundation below the water-proof layer, and the water-proof layer blocks the flow of water between the river bed and the foundation.
  • the riverbed and soil bags contain sediment. Sediment is included as part of the river's self-cleaning system.
  • the content of the screening device refers to the prior art.
  • the river slope is set in a stepped shape 117 so that the stacking of soil bags is more orderly and stable.
  • Embodiment 17 sets a water transmission main pipe 118 at the bottom of the artificial river 43 for transporting saline waste water.
  • the water-insulating material of the artificial river in Embodiment 17 adopts an aerial laying machine 2 reinforced by a grid structure 119. The laying machine relies on the load of vehicles on the dam 44 and the engineering machinery in the artificial river under construction. OK.
  • the water-insulating material in Embodiment 17 is laid under the slope surface at a small horizontal inclination angle as shown by the double dotted line in Figure 16.3.
  • FIG 17 shows Example 18.
  • a screening screw conveyor is manufactured, including spiral blades 24, conveying channels 87, screens 120 and power heads.
  • the spiral blades include spiral conveying milling cutters; the spiral blades include shafted and shaftless, the latter being less likely to be blocked; the conveying channel accommodates more than one spiral blade, which includes a rear plate 121 and a side plate 122; the screen includes various From the steel to the screen, it is made integrally with the conveying channel; the power head includes a reduction motor and a hydraulic motor.
  • Working process of Embodiment 18 Whether it is desert, dry land or swamp, the screw conveyor mills/beats and lifts the soil while traveling. When the soil passes through the screen, most of it passes through the mesh.
  • a small amount of sieved material is sent to a designated location for disposal.
  • the screen mesh include a gradient screen mesh, that is, the mesh openings become monotonically larger along the advancing direction of the soil.
  • the screened soil is distributed through special channels 123.
  • Special channels include classification containers or chutes leading to classification containers and material conveyors include screw conveyors.
  • Beneficial effects of Example 18 The combination completes the sorting of objects of different sizes in the soil.
  • the screen of Embodiment 18 is drivingly connected to a vibration source to improve the sorting efficiency.
  • FIG. 18 shows Example 19.
  • the integrated vibrating screen bucket includes a digging bucket 4, one or more vibrating screen meshes 120 arranged in the bucket, a vibration source 124, a bypass channel 92 for oversized objects on the screen, and a cover plate 90; the vibration source includes a vibration device of a concrete vibrating rod. .
  • the working process of Embodiment 19 After each excavation, the vibrating screen integrated bucket is moved to the position where the screen is laid, the cover plate at the bottom is opened, and the screened soil is accumulated as the tillage layer 26, and then the vibrating screen integrated digging bucket is moved to the location.
  • Each layer of sieve material 125 is poured into the pit formed by excavation according to the requirement that the smaller the particle size, the higher the position, and then laid in layers to form the foundation 27, as shown in Figure 18.4.
  • Each layer is leveled and compacted once, as shown in Figure 18.2; and when laying the screened materials and each layer of screened materials, use a laying machine to lay more than one layer of water-insulating material 14 simultaneously.
  • the vibrating screen integrated bucket provides a technical means to transform desert into fertile land. It takes a few seconds longer than an ordinary bucket to complete the separation and laying of desert components in multiple specifications, including digging, transferring, unloading and Separate while laying.
  • embodiment 19 includes two laying machines 2, a bulldozer 126 and a movable sorting platform.
  • the two paving machines 2 are connected to the bulldozer through the driving shaft 23 and can be driven by the bulldozer; the shovel plate template 12 at the front end of the paving machine pushes the soil in front of it; a laser receiver 28 is configured to receive the collimation signal of the base station for spatial positioning.
  • the movable sorting platform includes a crawler chassis, a dozer bucket, and a self-unloading vibrating screen 127.
  • the self-unloading vibrating screen includes one or more screens 121, a vibration source, a storage space for screened materials, a bypass channel 92 for screened materials, and a cover.
  • the self-unloading vibrating screen is connected to the crawler chassis through more than one hydraulic adjustment device, and its horizontal inclination can be adjusted for inclined materials;
  • the movable sorting platform is used to subdivide the screened materials transferred by the bucket into fine soil and Sieve the supernatant; first dump the supernatant between the front and rear rows of laying machines; then open the cover and pour the fine soil onto the upper layer of water-insulating material as the tillage layer. Its beneficial effects include the ability to lay layers of sand and gravel to form a new foundation and its smooth compaction, and the ability to provide filling between two layers of water-insulating materials through separation.
  • the vibrating screen integrated bucket and self-unloading vibrating screen of Embodiment 19 and its improved version are both equipped with strain gauges and force sensors. To record the weight of each component of the material.
  • both the front and rear rows of laying machines of Embodiment 19 and its improved version are equipped with strain gauges and force sensors.
  • the sorted stones are sanded by a sand making machine and used as a new foundation.
  • Embodiment 19 uses planting pots for planting to solve the problem of insufficient cultivated soil.
  • FIG 19 shows Example 20.
  • Manufacture an inflated pipe turning and laying system including driving equipment, laying machine and elbow laying machine 37.
  • the driving equipment includes tractor or winch and cable.
  • a sink trough excavator 128, a guard plate manipulator, an auxiliary water-proof material tray 129 and/or a plastic film tube tray 130, an electric heating turntable or a glue applicator, and a water level control assembly are provided.
  • the sink trough excavator is connected to the laying machine through the driving shaft 23 to excavate the sink trough 131; the cross section of the sink trough consists of an isosceles quadrilateral with a depth and a length of several centimeters.
  • the auxiliary water-insulating material tray box and the plastic film tube tray place the auxiliary water-insulating material and plastic film tubes respectively.
  • the water pipe cleaner includes a vacuum nozzle template 132.
  • the surface shapes of the upper and lower suction interfaces of the vacuum nozzle template are consistent with the surface of the water-proof material and the inflation tube 133 respectively; for relevant content, please refer to the prior art.
  • the electric heating turntable 58 is used for thermal welding of the water-insulating material and the inflation tube.
  • the glue applicator is used to apply adhesive material between the waterproof material and the inflation tube, and includes a glue injection interface and a pressure roller 134 .
  • the water level control assembly ensures that water is stored inside the inflated tube to prevent it from being blown by the wind before the laying of the water-insulating material is completed, and is responsible for deflating the inflated tube after the laying of the water-insulating material is completed.
  • a water pipe cleaner, a second electric heating turntable or a second glue applicator are provided; the water pipe cleaner includes an overlapping area nozzle template.
  • the working process of Embodiment 20 includes a first end and a second end: at the first end, the water-insulating material with inflatable pipes is laid: the laying system is driven to excavate the sinking tank and lay the inflated pipes at the same time. water-proof material.
  • Laying water-insulating material with inflated pipes includes one of the following four methods and their combinations: 1) Welding a strip of auxiliary water-insulating material 135 on the lower side of the edge of the water-insulating material includes generating two strips of heat-sealed material on both sides of the auxiliary water-insulating material.
  • the inflated pipe; the double-layer inflated pipe is placed in the sink tank when laying the water-insulating material; 3)
  • the connection at the edge of the water-insulating material includes heat welding or bonding a plastic film pipe; the plastic film pipe is placed in the water-insulating material when laying the insulation material.
  • Water materials are placed into sinking tanks when laying; 4) in partitions Placing or connecting the edges of the water material includes heat welding and splicing an inflated pipe, which is placed into a sink tank when laid.
  • the diameter of the inflation tube is preferably such that it stretches straight and does not roll in the sink tank.
  • Beneficial effects of Embodiment 20 A variety of splicing of two adjacent pieces of water-insulating materials can be achieved at the expense of excavation of the water sink, piling of soil without interfering with the water sink, and a small change in equipment.
  • FIG. 20 shows Example 21.
  • Create a paving system that uses water sinks to retain muddy water to achieve overlapping splicing, including driving equipment and paving machines 2.
  • a sink trough excavator and a guard plate manipulator 137 are provided;
  • an overlapping area suction nozzle template 138 is provided;
  • the driving equipment includes a tractor or a winch and a cable;
  • the sink trough excavator includes a
  • the driving shaft is connected to the laying machine to excavate the sinking tank 131;
  • the cross-section of the sinking tank consists of an isosceles quadrilateral with a depth and a long side of several centimeters.
  • the guard plate manipulator includes a steel plate with a length of 1 meter and a width of 0.5 to 0.8 meters, and a large mason's powder knife, which is used to compact and smooth the piled soil 47 on the edge of the sink tank to maintain its shape.
  • the shape of the underside of the suction nozzle template in the overlapping area matches the shape of the ground at the sink tank and contains suction holes.
  • the suction holes are connected to a negative pressure source; they are used to remove the water-proof material below when laying the water-proof material above the splicing joint. The laid water-proof material is lifted up and scraped across the water-proof material below at an angle of 30 to 60 degrees relative to the forward direction with its plane normal line to remove the soil on the water-proof material.
  • Embodiment 21 The working process of Embodiment 21 is divided into two parts: the first end and the second end; the first end includes digging out the sinking tank, placing the water-insulating material into the sinking tank, and pressing the water-insulating material with water and/or soil to prevent wind. ; The second end includes cleaning the upper surface of the first layer of water-proof material at the overlap and covering part of the second layer of water-proof material 14 thereon to realize overlapping splicing.
  • Beneficial effects of Embodiment 21 Overlap splicing with a width of more than 0.5 meters can be achieved at the cost of turning over soil without interfering with the sink tank and increasing slope protection boards and nozzle templates in overlapping areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Civil Engineering (AREA)
  • Soil Working Implements (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

建造理水区域的方法,其特征在于对自然区域划出一个目标地区,对目标地区的至少部分土地铺设隔水材料形成隔水层以改造成隔水区域,隔水区域包括隔水农地,目标地区其余未改造的土地为原貌区域;隔水区域和原貌区域的合集称为理水区域;隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动,令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气,为干旱地区可持续增雨——包括令种植季节降雨量从120㎜增加到1400㎜——增加作物产量和从空中取水供应生活生产奠定基础。隔水材料包括农膜。隔水材料铺设方式不限。隔水农地在种植季节开始时少量开采地下水灌溉启动可持续增雨放大降水量,通过回灌平衡地下水位。隔水农地通过泡田排水去盐碱。

Description

理水区域及方法和专用设备 技术领域
本发明涉及对土地设置隔水层建设理水区域及方法和专用设备技术领域。
背景技术
中国专利2014103602898轨基机器人隔离种植农地,披露一种轨基机器人隔离种植农地,包括土地、设置于土地中的基轨和种植土壤;种植土壤可生产符合标准的农产品;对受污染土壤实施污染治理包括种植吸污植物吸收污染物并通过收割吸污植物从土壤中移除污染物,其特征是含有将种植土壤与土地其它部分分开的隔离层;隔离层包括塑料薄膜和土工布;并在隔离层上面堆置充填种植土壤建设种植土壤成条或者坑状均布的隔离式农地。但该专利未给出改造草地盐碱地为良田及令干旱区域降水倍增的技术方案或思路。发明内容
本发明的目的之一是要提供一种建造理水区域的方法。
本发明建造理水区域的方法:对自然区域划出一个目标地区,对目标地区的至少部分土地铺设隔水材料形成隔水层改造成隔水区域,隔水区域包括隔水农地;目标地区其余未改造的土地为原貌区域;隔水区域和原貌区域的合集称为理水区域。理水区域包括城市、乡村、田地、原野、高地、地表水域和荒漠;理水区域中隔水区域的面积和占比不限,包括面积大于等于1万m2、特别是大于等于5km2和占比50%以上;隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动,令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;耕作层的厚度不限,包括0.1~2米范围;优选0.5~1米范围。隔水材料包括但不限于农用地膜、土工布和隔水的泥沙袋铺设层;隔水材料的铺设方式不限,包括连续铺设和碎片化铺设;连续铺设包括连接铺设和非连接铺设;连接铺设是指铺设的隔水材料之间相互连接,包括但不限于黏结、热熔接、超声波焊接、缝接和用钉状物钉接;非连接铺设包括两块铺设材料的边缘简单叠合或者相互靠近;碎片化铺设不干涉现场特定物体包括树木、山石和构筑物;在上述铺设隔水材料建成隔水区域基础上,还包括叠加以下3点之一及其组合:1)对隔水农地的耕作层土壤进行平整清理去除石块、进行清洗以去除盐碱及其它有害物质包括但不限于含砷物质;2)对理水区域配套增雨系统,利用其雨水渗漏小、以及大陆性气候凌晨气温低容易增雨的特点,通过增雨持续增加降雨量。有关内容可参考现有技术;3)对理水区域配套水利设施包括修建水库和人工河、合理利用地下水和地表水。
有益效果:本发明建造理水区域的方法提供一种改造盐碱地和旱地为高产耕地的技术手段,并提供一种理水区域、一种隔水农地和一种可持续增雨取水的手段。定义一个模型地块:面积5~100km2的干旱半干旱地块、大陆性气候、种植季节凌晨气温经常低于露点温度适合增雨、外部对模型地块的影响包括刮风和增加水汽。隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气为可持续增雨增加农作物产量和利用水利设施从空中取水供应生活生产奠定基础。可持续增雨包括大多数凌晨都实施增雨,令种植季节降雨量从120㎜增加到1400㎜以上。隔水农地在种植季节开始时少量开采地下水灌溉并启动可持续增雨放大降水量;需要时通过回灌平衡地下水位。通过设计优化整个水汽传输通路的增雨方案令刮风对增雨的不利影响最小化。隔水农地通过泡田排水去盐碱。
本发明的目的之二是要提供理水区域。
本发明实现这个目的技术方案:包括使用上述建造理水区域的方法,对自然区域划出一个目标地区,对目标地区的至少部分土地铺设隔水材料形成隔水层改造成隔水区域,隔水区域包括隔水农地;目标地区其余未改造的土地为原貌区域;隔水农地和原貌区域的合集称为理水区域;理水区域中隔水区域的面积和占比不限;隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动,令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气,为可持续增雨增加农作物产量和利用水利设施从空中取水供应生活生产奠定基础;耕作层的厚度不限。隔水材料包括但不限于农用地膜、土工布和隔水的泥沙袋铺设层。隔水材料的铺设方式不限,包括连续铺设和碎片化铺设。
本发明的目的之三是要提供隔水农地。
本发明实现这个目的技术方案:包括使用上述建造理水区域的方法,建造一块隔水农地,包括梯田和种植水面,其面积不限,大一点好;隔水农地全部或者大部分地下铺设有隔水材料,隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气,为可持续增雨提高农作物产量和利用水利设施从空中取水供应生活生产奠定基础。耕作层的厚度不限,包括0.1~2米范围。隔水材料包括但不限于农用地膜、土工布和隔水的泥沙袋铺设层。隔水材料的铺设方式不限,包括连续铺设和碎片化铺设。
本发明的目的之四是提供一种理水农地翻堆铺设系统。
本发明实现这个目的技术方案:建造一个隔水农地翻堆铺设系统,包括取土翻堆设备、铺设机和控制系统;用于在地下铺设隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动、令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;耕作层的厚度不限,包括0.1~2米范围。取土翻堆设备包括下列5种设备之一及其组合:1)挖斗式挖掘机;2)振动筛一体挖斗的挖掘机;3)可移动筛分平台;4)铣刀螺旋输送器阵列及与其接力输送泥土的泥土输送设备;5)铣刀打浆器阵列及以其为吸入界面的泥浆泵。一台挖掘机包括一组以上、每组一个以上挖斗;振动筛一体挖斗包括挖斗主体、一层以上振动筛和筛间存储空间;振动筛包括相互传动连接的筛网和振动源;筛间存储空间包括出口和出口阀盖;铣刀螺旋输送器阵列包括集成若干个铣刀螺旋输送器作为泥浆泵吸入界面;泥土输送设备包括螺旋输送器和皮带输送器;铣刀打浆器阵列和泥浆泵适合土地平整、土地保水性好且取水较自由的场景;上述设备4)和设备5)这两者在隔水材料需要横向加宽时,包括采用中间临时堆高地方式集聚泥浆并保持隔水材料的待叠加拼接部位无泥土滚落。铺设机包括模块化的壳体,壳体通过两端的法兰端面相互连接来增加作业面宽度;壳体上开有沿其中心线方向布置的输出端口;壳体内部在底部设置有辊筒传送阵列;隔水材料成沓安置在辊筒传送阵列上,并能从输出端口输出;壳体上面布置有一组滑轨。采用外部工程机械通过传动件、传动连接界面和缆索推动或者拉动铺设机行进实施隔水材料的铺设。控制系统包括定位装置、设置于铺设机内部及挖斗上的力应变片传感器、水平状态探测器、通讯模块和机器视觉监控模块。
在一个可能的设计中,所述翻堆铺设系统包括以下14个设施器件之一及其组合:1)输电脐带缆及其专用卷扬机系统,用于驱动牵引设备包括拖拉机向铺设机供电;2)可移动管道自动插接装置和可移动电气自动插接装置,用于在行进中实现铺设系统与电网水源的连通;具体内容参考中国专利申请号2019210783788;3)安装于驱动牵引设备包括拖拉机、卷扬机和推土机上的液压顶板,用于抵住土地增加对铺设机的牵引力;4)可更换的作业模块,包括挖斗、3维探测和收割机模块;用于与驱动牵引设备包括拖拉机合并完成相关作业;5)横向首尾相连接力输送的螺旋输送器,设置于驱动牵引设备包括拖拉机、挖掘机以及可移动分选平台上侧用于输送物料;6)设置于铺设机两端的弯头铺设机,用于提供超宽的隔水材料;7)带多孔注水表面结构的壳体,用于减小铺设机行进阻力;具体内容可参考中国专利申请号2019210779119;8)贴地设置于壳体前方的铲板模;铲板模在行进时将铺设机前的泥土向前推进,并对基础表面加工出成形表面;9)壳体上面沿壳体长度方向布置的一组滑轨;10)一个以上向前作水平安装的螺旋钻头,驱动铺设机行进和稳定铺设机状态;11)沿输出端口内侧均布的若干个闭合器;12)安装于壳体底部的轮组、驱动轮组或者螺旋驱动轮组,用于驱动铺设机行进;13)激光接收测量装置,包括安装于铺设机和工程机械上方,用于与外部基站交换激光基准信号;14)隔水材料横向加宽拼接装置,安装于铺设机壳体外侧;用于将本次新铺设隔水材料与前次原铺设隔水材料的拼接,其包括罩壳、罩壳内存放隔水材料熔接器件的空间、拉伸清洁总成、滚筒连接总成和控制系统。
所述翻堆铺设系统的铺设机包括第一端和第二端两个端部;第一端铺设第一层隔水材料;第二端实现第一层与第二层两层隔水材料的拼接,所述翻堆铺设系统包括:1)箱坝拼组、2)吹胀管组、3)简组,这3个专用设备组之一或者全部。1、箱坝组,包括在地块两侧拼接沟中首尾相连放置的若干个箱坝并对箱坝注水增重构成临时水坝用于挂靠隔水材料;箱坝的箱体封闭,上面有防粘钢板和夹料器;其内部设置有抽水管、分段干管、电源和箱坝控制系统;在第一端,设置有风机和一个橡胶推手,用于调整箱坝上的隔水材料位置;在第二端,设置有一个橡胶推手和一个电热转盘或者涂胶器;2、吹胀管组,在第一端,设置有水沉槽开挖器、护板机械手、辅助隔水材料盘箱和/或者塑料薄膜管盘箱、电热转盘或者涂胶器、水位控制总成;在第二端,设置有水管清洁器、第二电热转盘或者第二涂胶器;水管清洁器包括重叠区域吸嘴 模板;3、简组,在第一端,设置有水沉槽开挖器、护板机械手、水位控制总成;在第二端,设置有重叠区域吸嘴模板。
本发明的目的之五是要提供一种地下翻堆铺设系统。
本发明实现这个目的技术方案:建造一个地下铺设系统,包括驱动牵引设备、在地下作业的铺设机和控制系统;用于在地下铺设隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动、令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;耕作层的厚度不限。驱动牵引设备包括外部的拖拉机、卷扬机、推土机驱动牵引铺设机行进铺设隔水材料;或者,铺设机自带向前伸出安装的螺旋钻头和/或者在壳体上面和/或者下面安装的螺旋推进器,驱动铺设机行进;卷扬机包括固定于地面或者安装在拖拉机上;安装于拖拉机上的卷扬机包括采用前后两排拖拉机接力牵引;铺设机自带的螺旋推进器包括在铺设机壳体上面和下面布置并前后排接力推进;在所述推进的同时将泥土往后推;铺设机包括模块化的壳体;壳体通过两端的法兰端面相互连接来增加作业面宽度;壳体上开有沿其长度方向布置的通长输出端口;壳体内部在底部设置有辊筒传送阵列;隔水材料成沓安置在辊筒传送阵列上,并能从输出端口输出;壳体上面沿其中心线方向布置有一组滑轨;电动滑板车、电动缝纫机或者扬土机与所述滑轨配合连接并在滑轨上行驶;控制系统包括定位测量装置、设置于铺设机内部及挖斗上的力应变片传感器、水平状态探测器、通讯模块和机器视觉监控模块。
在一个可能的设计中,所述地下铺设系统包括以下13个设施器件之一及其组合:1)脐带缆及其专用卷扬机系统,用于外部电源向铺设机供电;2)可移动管道自动插接装置和可移动电气自动插接装置;3)安装于驱动牵引设备包括拖拉机、卷扬机和推土机上的液压顶板,用于抵住土地,增加对铺设机的牵引力;4)可更换的作业模块,包括挖斗、3维探测和收割机模块;5)弯头铺设机,用于提供超宽的隔水材料;6)带多孔注水表面结构的壳体,用于减小铺设机行进阻力;7)驱动牵引设备通过传动轴杆牵引铺设机,传动轴杆上安装有犁板或者带液压调节器将的犁板,用于铺设机的姿态控制;8)与所述滑轨配合连接并在滑轨上行驶的快装电动滑板车、电动缝纫机或者扬土机,用于输送工人、实现缝纫连接和扬弃铺设机输出端口处的泥土;9)壳体前侧竖直安装的螺旋输送铣刀,用于打碎土块,提供向下推力;10)沿输出端口内侧均布若干个闭合器;11)壳体前端与一个以上振动器传动连接;12)激光测量装置,安装于铺设机和工程机械上,用于与外部基站实现激光测量;13)隔水材料横向加宽拼接装置,安装于铺设机壳体外侧;用于将本次新铺设隔水材料与前次原铺设隔水材料的拼接,包括罩壳、罩壳内存放隔水材料熔接器件的空间、拉伸清洁总成、滚筒连接总成和控制系统。
附图说明
图1.1和图1.2分别是一台双挖斗挖掘机翻堆铺设系统的侧视图和上视图;图1.3是一个铺设机的部分结构示意图;图1.4是一个闭合器的结构示意图;图1.5是一个铺设机并联增宽的前视示意图;图1.6是一个辊筒传送阵列的上视图;图2是一个隔水材料连续但非连接铺设的示意图;图3是一个理水区域增雨面积布局示意图;图4是一个铣削式翻堆铺设系统的结构示意图;图5.1是一个利用泥浆泵铺设系统建设隔水农地的上视图;图5.2是一个泥浆泵铺设系统的结构示意图;图5.3是一个泥浆堆积形成高地并分离出水的示意图;图6.1和6.3方便是泥浆泵铺设系统左端部分和右端部分的示意图;图6.2是隔水材料挂靠箱坝上面的上视图;图7.1和7.2分别是一个拖拉机排牵引地下铺设系统的上视图和透视图;图8.1是一个拖拉机排牵引地下铺设系统的上视图;图8.2是图8.1的T-T向剖视;图9是一台地下铺设机的结构示意图;图10.1是一台配置挖土作业模块和横向安置螺旋输送器的拖拉机/挖掘机的结构示意图;图10.2是一个螺旋输送器的横截面示意图;图10.3是一个螺旋输送器端部的结构示意图;图11.1是一个多层隔水材料熔接系统面板的结构示意图;图11.2是一个隔水材料末段的条状顺磁材料布局图;图11.3是一个多层隔水材料熔接系统面板正视图;图11.4是一个多层隔水材料熔接系统吸贴末段的示意图;图11.5是一个多层隔水材料熔接系统吸贴初始段的示意图;图12是一个人工辅助加长隔水材料的铺设机的结构示意图;图13.1是隔水材料加宽拼接装置前视图、图13.2是隔水材料加宽拼接装置结构示意图,也是图13.1的I-I向视图;图14是一个隔水材料轴向压缩台的示意图;图15是一个自推进干式铺设机的推进原理图;图16.1是在荒漠中铺设隔水材料修建人工河的示意图;图16.2是图16.1的I-I向剖视,是隔水层铺设前挖沟筑坝的作业示意图;图16.3是沿河床坡面堆叠泥沙袋设置隔水层修建人工河的示意图;图17.1和17.2分别是一个钝角和锐角安置的分筛螺旋输送器的结构示意图;图17.3是图17.1和17.2的I向剖视; 图18.1是一个采用振动筛一体挖斗的铺设系统在荒漠中挖土、分选、铺设隔水材料、构筑耕作层的示意图;图18.2是一个用振动筛一体挖斗对取自荒漠的筛上物铺设找平压实的示意图;图18.3是一个用振动筛一体挖斗边振动过筛边输出过筛物的示意图;图18.4是一个振动筛一体挖斗将不同尺寸的筛上物分类处置的示意图;图19.1是一个用真空吸嘴清洁隔水材料及吹胀管的示意图、图19.2和19.3分别是一个配套辅助隔水材料盘箱和气管盘箱的铺设机的正视图和后视图;图20是一个用水沉槽留存泥、水实现重叠拼接铺设系统的示意图。
图中1挖掘机;2铺设机;3机械臂;4挖斗;5壳体;6输出端口;7闭合器;8电辊筒阵列;9法兰端面;10底边;11驱动轮;12铲板模;13电辊筒;14隔水材料;15加强边;16气囊;17弹簧;18上滚筒;19下滚筒;20顶板;21传动杆;22螺旋钻头;23驱动轴杆;24螺旋叶片;25附加通道;26耕作层;27基础;28接收器;29边缘;30隔水区域;31城区;32后向泥土输送器;33缆索;34铣刀螺旋输送器;35水田;36泥浆泵;37弯头铺设机;38风机;39第一机械手;40第二机械手;42监控器;43人工河;44大坝;45田埂;46拼接沟;47泥土;48箱坝;49箱体;50抽水管;51分段干管;52压板;53打浆器;54后整流罩;55泥浆管;56推进器;57橡胶推手;58电热转盘;59舵杆;60泥浆高地;61低洼处;62拖拉机;63连杆总成;64犁板;65液压器件;66液压器件;67调节装置;68卷扬机;69桅杆;70横沟槽;71前排拖拉机;72液压顶板;73作业模块;74螺旋输送铣刀;75前排螺旋推进输送器;76中排螺旋推进输送器;77后排螺旋推进输送器;78推料器;79加长拼接器;80下楔形面;81上楔形面;82楔下角;83动力头;84万向节;85推料机械臂;86驱动滚筒;87螺旋输送器;88输送槽道;89加宽挡板;90盖板;91端部阀;92旁路通道;93面板;94上吹气管排;95下吹气管排;96末段;97初始段;98电磁铁;99气孔;100电热熔接器;101小孔;102条状顺磁材料;103滑轨;104电动滑板车;105电动缝纫机;106滚动连接界面;107罩壳;108螺旋滚刷;109真空吸尘器;110熔接滚筒;111螺旋推进器;112筛选装置;113石块;114小石子;115坡面;116泥土袋;117阶梯状;118输水干管;119网架结构;120筛网;121后板;122旁板;123专门通道;124振动源;125筛上物;126推土机;127振动筛;128水沉槽开挖器;129辅助隔水材料盘箱;130塑料薄膜管盘箱;131水沉槽;132真空吸嘴模板;133吹胀管;134加压滚筒;135辅助隔水材料;136塑料薄膜管;137护板机械手;138重叠区域吸嘴模板。
实施方式
图1给出的实施例1。制造一个挖掘式翻堆铺设系统,包括挖掘机1、铺设机2和控制系统;挖掘机包括两个机械臂3和两个挖斗4;铺设机包括壳体5;壳体采用模块化设计,壳体上开有与其中心线同向的通长输出端口6、沿输出端口内侧均布若干个闭合器7、壳体底部含有一个辊筒传送阵列8。单个壳体宽度包括2~6米;通过壳体两端的法兰端面9相互连接来增加作业面宽度,包括增加到60米;壳体底边10从前方看为直线或者曲线波形;所述波形的幅度不限,包括为0~900㎜;所述波形长度不限。图1.5中的壳体底边为V字形三角波形;其波形长度等于壳体宽度。铺设机底部波形决定隔水材料的横截面形状。控制系统包括设置于各铺设机上的水平状态探测器,为控制系统主机提供实时水平状态。有关内容可参现有技术。壳体底部均布一组以上驱动轮11;在驱动轮前方设置有铲板模12。铲板模铲刮铺设机前的泥土、提高基础表面的尺寸精度;在一个可能的设计中,实施例1的驱动轮改为螺旋驱动轮。有关内容参考现有雪橇车技术。
辊筒传送阵列包括若干个各自通过转动副机构与底部连接的辊筒,包括带驱动电机的电辊筒13;电辊筒能够带动其上面成沓的隔水材料14前移;隔水材料堆叠成沓安置在辊筒传送阵列上,以后铺设时从上到下一层一层被拉出。这是隔水材料默认的安置和输出方式。隔水材料的一边为加强边15,方便安装时手持穿出闭合器上下两滚筒之间的间隙和沿间隙推进。一个壳体内包括一个以上闭合器,闭合器安装于输出端口内侧,其包括一个以上气囊16、弹簧17、传动件、上滚筒18和下滚筒19;相邻闭合器之间允许有1~100㎜的间隙;气囊通过控制阀与一个正压源、一个负压源或者大气连通;传动件包括顶板20和与顶板传动连接的传动杆21,其外形像一个图钉。顶板上、下两表面分别与一个气囊和一个弹簧的上端接触;传动杆通过一个一维转动副机构连接上滚筒;闭合器具有张开状态和闭合状态两种稳定状态:闭合器处于张开状态气囊与负压源或者大气连通内部失压、弹簧伸长传动杆将上滚筒上拉如图1.4实线示、上下滚筒之间间隙变大,方便隔水材料穿过。闭合器处于闭合状态气囊与正压源连通膨胀、弹簧压短、上滚筒下移如图1.4虚线示。上下滚筒之间间隙变小阻挡泥土进入。下滚筒通过一维转动副机构与壳体连接;上、下两滚筒包 括带或者不带驱动机构;上、下两滚筒均带有与壳体输出端口的密封条,用于防尘防泥。铺设机前侧两端各设置一个螺旋钻头22,螺旋钻头包括一根驱动轴杆23和位于驱动轴杆前部的螺旋叶片24。螺旋钻头兼具钻头和螺旋推进的作用,提供对所述铺设系统的部分或者全部向前驱动力和对泥土的破碎、令所述铺设系统工作状态更加稳定。螺旋钻头的水平倾角能够小幅度摆动,所述摆动包括用舵机或者在驱动轴杆侧面通过一维转动副机构连接一个液压器件的自由端实现,用于改变所述铺设系统在前进中的水平倾角,实现对铺设系统作业深度及沿前进方向起伏程度的控制。以壳体的宽度5米、驱动轴杆直径25㎜和驱动轴杆两侧50㎜范围不允许挖斗侵入计,挖斗的作业范围略有缩小。采用螺旋钻头对泥土形成预破碎提高了挖掘效率。螺旋钻头的设计参考现有技术。
实施例1工作过程:各挖掘机到位,挖出横沟槽到基础,从车上卸下铺设机,包括用挖掘机吊起卸下,令各铺设机壳体通过其两侧法兰端面连接增宽,组成一个挖掘机铺设系统并放入横沟槽。在壳体左侧安装一个40~90度弧形附加通道25,切换闭合器到张开状态、吊装整沓隔水材料从所述附加通道上端口进入壳体并从侧端口进入各壳体、启动辊筒传送阵列的电辊筒,包括用手工将隔水材料加强边穿过上下滚筒间隙和输出端口,同步推进到头,然后拆除所述附加通道后再装上封闭旁板或者安装增幅拼接器;再将隔水材料向后拉出足够多;切换闭合器到闭合状态;用泥土压住拉出的隔水材料;然后启用挖掘机边挖土并覆盖在新铺设的隔水材料上形成耕作层26。隔水材料将土地分为隔水材料下面的基础27和隔水材料上面的耕作层。隔水材料的纵向波形由挖掘形成包括为图1.1上面曲线所示波形。实施例1采用两个挖斗,可以利用一个挖斗为另一个挖斗伸向前方卸料提供支撑如图1.1所示。同样,选择左面的挖斗卸料于右前方如图1.2右面那台挖掘机所示,也能够借助于右面挖斗的支撑,使得挖掘机的工况更好。采用两个挖斗可以适当减轻挖掘机的重量。
实施例1的有益效果:本发明的挖掘式铺设系统提供一种建造隔水区域的专用设备。挖掘机经过时效可靠性高;采用双机械臂双挖斗进度快。挖土兼具深耕效应。平行四边形壳体结构紧凑包括充分利用后面泥土的斜坡和对挖斗作业友好。以所述铺设系统的铺设作业幅宽60米,铺设速度平均0.1米/秒计,每小时铺设21600m2合2.16公顷。
在一个可能的设计中,实施例1采用电动挖掘机代替内燃机驱动的挖掘机。在一个可能的设计中,实施例1中附加通道配置辊筒传送阵列,方便隔水材料装入。在一个可能的设计中,实施例1的挖掘机机械臂包括一个激光准直信号接收器28,用于实时接收外部基站发出的激光准直信号对铺设系统定位,包括令隔水材料的纵向截面为图1.1上方波形所示。隔水材料纵向截面的非直线波形叠加横截面的非直线波形令隔水材料均布凹坑方便储水,有助于保持墒情良好、提高隔水农地抗旱能力、使隔水材料对破损不敏感。在一个可能的设计中,令实施例1中辊筒传送阵列的前移速度从前到后逐步增加。这样做能产生对整沓隔水材料的轴向压缩,包括从68米缩短到66米,使得铺设的隔水材料宽松。实施例1中的螺旋钻头可以不用;其螺旋驱动轮也可以改为其他轮组。
图2给出实施例2。令前后两次铺设的相邻两隔水材料14的两个边缘29重叠,实现不连接拼接;两个边缘之间的间隙相对隔水材料其它部分处于较高位置;所述重叠包括两个边缘的投影面积重叠如图2示。这种不连接拼接仍能有效减少渗漏,但省略连接作业有利降低改造成本;拼接处高于隔水材料其它部分令耕作层能够留存更多的水保水保墒性好;拼接处存在间隙,雨水过多时能够通过间隙渗入地下,减缓涝害、补充地下水。
在一个可能的设计中,实施例2中两个相邻隔水材料的边缘的投影面积不重叠。如果理水区域两个相邻隔水材料的边缘投影面积不重叠,譬如平均面积60*500m2的隔水材料,其一个60米边和一个500米边与铺设的相邻隔水材料之间存在0.1米的拼接隙缝,则这个隙缝面积在理水区域的占比不到0.19%,其带来的渗漏增量在增雨和返盐返碱可忽略。
图3给出实施例3。在缺水地区建设隔水区域30,包括城区31和周边的郊区农地,在郊区农地的地下铺设隔水材料形成隔水农地,并每次设计出如虚线图形示的各空中增雨作业区。所述增雨作业区的面积、形状、位置和高度根据现场情况包括风力风向变化而变化。实施例3有益效果:建设隔水区域叠加增雨技术,能增加隔水农地降雨改善墒情,也能给城区道路、建筑物和绿化带来雨水,令空气清新,还能通过雨水收集系统获取生活生产用水。
图4给出实施例4。制造一个铣削式翻堆铺设系统,包括铺设机2、铣刀螺旋输送器阵列、后向泥土输送器32、向前作水平安装的螺旋钻头22、铺设机底部螺旋驱动轮11和控制系统。所述铺设系统通过缆索33拖动行进。控制系统包括设置于各铺设机的水平状态探测器。螺旋输送器是一种通用散装物料输送设备,包括螺旋叶和输送槽道;螺旋叶转动时推动物料在输送槽道中移动。铣刀螺旋输送器阵列包括若干个均布于整个作业面的铣刀螺旋输送器34。铣刀螺旋输送器包括螺旋输送铣刀和输送槽道。螺旋输送铣刀包括通过在螺旋叶边缘设置密布的刃口得到,其兼具铣削功能和螺旋叶推送功能;后向泥土输送器包括但不限于选用螺旋输送器或者输送带。
实施例4工作过程:牵引的各拖拉机到位,挖出横沟槽到基础27,卸下铣刀螺旋输送器阵列和铺设机进入横沟槽,包括铺设机壳体相互并联加宽、多个铣刀螺旋输送器阵列均布于各铺设机上,构成所述铺设系统;装入隔水材料再从铺设机输出端口拉出隔水材料并用土压住。然后,拖拉机通过缆索拉动铺设系统,边前进边铣削提升泥土,这些泥土通过后向泥土输送器输送到后方铺设的隔水材料14上构筑起耕作层26。实施例4有益效果:铣削式翻堆铺设系统用铣刀螺旋输送器阵列铣削泥土,结构紧凑、可靠性高、翻运的泥土碎散均匀。
图5和6给出的实施例5。制造一个泥浆泵翻堆铺设系统,用于建设隔水农地水田35,其包括打浆器阵列、泥浆泵36、泥浆管阵列、能在水下作业铺设机2包括弯头铺设机37、风机38、第一机械手39、第二机械手40、高度舵和控制系统,控制系统包括监控器42和设置于各铺设机的水平状态探测器。人工河43大坝44与田埂45连通兼作机耕路。在地块两侧挖出拼接沟46并保持泥土47不滚落;在拼接沟中首尾相连放置箱坝48、并对箱坝注水增重构成临时水坝用于挂靠隔水材料;各箱坝用缆索串接可被拉动。箱坝的箱体49封闭,上面设置有安装连接界面、防粘钢板和夹料器。连接界面包括为若干个带凹陷的通孔,方便专用设备连接和注水;箱体内部设置有抽水管50、分段干管51、电源和箱坝控制系统。抽水管下端通向箱坝底部、上端与箱坝内的分段干管连通;外部水泵通过各分段干管和抽水管能将各箱坝内的水抽出。箱坝控制系统包括配置无线通讯模块实现相互通信。夹料器包括一个通过一维转动副机构与箱体连接并与电动机构传动连接的压板52。压板具有:1)外翻状态、2)内合不压状态和3)内合压紧状态这三种稳定的工作状态并能切换;外翻状态和内合不压状态压板对外界无影响;内合紧压状态压板压住其下面的隔水材料。打浆器阵列包括若干个打浆器53和后整流罩54,后整流罩作为泥浆泵的输入端口。打浆器兼具铣削泥土和泥土打浆功能;打浆的泥土容易被抽吸泵送。打浆器包括用自注水立铣刀,其包括主轴和注水切削刃,注水切削刃采用多孔注水表面结构。多孔注水表面结构包括若干个输出孔通过同程同阻的水路与水源连通;有关内容可参考现有技术。泥浆管阵列包括若干个泥浆管55和一组以上、每组两个推进器56包括螺旋推进器,各泥浆管在其出口处包括用缆索约束使之相对集中;每组两个推进器分别设置在靠近泥浆管出口处两侧并与泥浆管传动连接驱动泥浆管出口保持在合适位置。弯头铺设机包括将铺设机的壳体、输出端口及其内部零部件加工排布出40~90度弧形段。在铺设机的第一端,设置有风机38和橡胶推手57,橡胶推手用于调整箱坝上的隔水材料。在第二端,设置有一个橡胶推手和一个电热转盘58或者涂胶器。高度舵采用舵杆59与铺设机连接,用于控制铺设系统的工作状态包括向上或者向下拐转。所述打浆器阵列、泥浆泵、泥浆管阵列、铺设机和弯头铺设机、水平状态探测器、监控器、风机、第一机械手、第二机械手、高度舵和推进器通过自身的接口电路与控制系统主机信号连接;它们的状态按照主机状态的变化而变化。实施例5的铺设过程:令各牵引装置包括拖拉或者卷扬机到位,将铺设机放入横沟槽,将铺设机并联加宽并连接两个弯头铺设机、装入隔水材料14、安装打浆器阵列、泥浆泵、泥浆管阵列、风机、两机械手和高度舵,构成一个泥浆泵铺设系统。从输出端口拉出隔水材料、将其两边分别放置在两边箱坝上,分别是图6.1箱坝上的第一层隔水材料和图6.3箱坝上的第二层隔水材料,并启用风机将靠近顶端处输出的隔水材料吹到箱坝上、启用第一、第二两机械手调整隔水材料、压住和实现热熔接;再将其余隔水材料用土压住。然后,通过缆索33拉动所述铺设系统进行隔水材料铺设。监控器监控现场。铺设时,打浆器阵列包括来回摇转数十度铣削泥土并打浆,泥浆管输出的泥浆形成一个泥土高地,高地与临时水坝之间的低洼处61留存从泥浆中分离出的水。铺设完成后,通过分段干管和抽水管抽出各箱体内的水,控制现场拼接沟的水位将箱坝浮起,对熔接后的隔水材料与拼接沟之间的空间鼓风令其鼓胀如图6.3中虚线拱形示、持续拉出箱坝并移除。最后抽出拼接沟中的水和空气,有序淹没隔水材料于拼接沟中。铺设完成。实施例5有益效 果:本发明的泥浆泵式铺设系统用打浆器阵列铣削泥土打浆、用泥浆泵泵送泥土,具有结构紧凑、可靠性高、设备重量轻造价低耗能少的优点。
在一个可能的设计中,实施例5箱坝用田埂替代并分隔出条形地块。在一个可能的设计中,实施例5采用多组推进器来负荷运送泥浆管。在一个可能的设计中,实施例5的泥浆管对相邻地块输出泥浆。在一个可能的设计中,实施例5采用刚性的泥浆管输出阵列并省略推进器。
图7给出的实施例6。制造一个拖拉机地下铺设系统,包括拖拉机62、铺设机2、连杆总成63、犁板64和铺设控制系统。连杆总成连接拖拉机和铺设机;通过液压器件65控制连杆总成的工作状态,包括将铺设机切入地下和将铺设机拉出吊起。通过液压器件66控制铺设机向上或者向下翻转。铺设机的横截面为流线型,包括壳体5、通长的输出端口、闭合器和辊筒传送阵列。犁板为选配,带水平倾角安装于连杆总成上,用于切碎和提升耕作层26的泥土并增加铺设机的下沉力。水平倾角T范围为-5~-30度。实施例6的工作过程:各拖拉机到位,卸下各铺设机并与对应拖拉机的连杆总成连接被吊起,各壳体通过其两侧法兰端面连接增宽,组成一个拖拉机铺设系统。然后装入隔水材料;再将隔水材料向后拉出足够多,用泥土压住隔水材料;调节各拖拉机的液压器件令壳体切入地面并拖动壳体向前铺设隔水材料。
实施例6的有益效果:本发明的牵引式地下铺设系统提供一种铺设隔水材料建造理水区域的专用设备,其省略大量泥土翻堆对原耕作层的土壤结构改变较小、节省能耗。在一个可能的设计中,在实施例6犁板与连杆总成之间采用一个犁板角丝杆调节装置67,包括配对的丝杆螺母,丝杆一端和螺母分别通过转动副机构连接在连杆总成和犁板上;犁板也通过转动副机构与连杆总成连接。犁板角可调令所述系统经常工作于最佳状态。
图8给出的实施例7。建造一个牵引式地下铺设系统,包括拖拉机62和通过拖拉机上卷扬机68的缆索34牵引的地下铺设机2。铺设机包括壳体、缆索连接界面桅杆69和控制系统。实施例7的工作过程:拖拉机到位,挖出横沟槽70;铺设机2进入横沟槽;利用铺设机上的激光接收装置接收基站发出的激光束进行测量定位。有关内容可参考现有技术。多台并联工作的铺设机的壳体相互串接增加作业幅宽、装入整沓隔水材料、从壳体的输出端口拉出隔水材料14于基础上并在所述拉出的隔水材料上覆土压住。用缆索33连接拖拉机上的卷扬机和铺设机的桅杆。开动拖拉机拉动铺设机铺设隔水材料。经过铺设机2上方的泥土落在铺设机后面的铺设材料上构成耕作层26。有益效果:本发明的牵引式地下铺设系统提供一种铺设隔水材料建造隔水区域或者隔水农地的技术手段。利用卷扬机牵引能够实现更复杂精密的牵引控制并且铺设速度快。
图8给出实施例8。在实施例7基础上,增加前排拖拉机71采用两排拖拉机,接力牵引拖动铺设机2。定义:1)前排拖拉机离铺设机远、后排拖拉机与铺设机近且前排拖拉机开始接力牵引时刻为切换点1;所述远和近包括但不限于分别为30米和8米;定义2)后排拖拉机离前排拖拉机近且后排拖拉机开始接力牵引时刻为切换点2。所述近包括但不限于为4米。实施例8作业过程:在切换点1,前排拖拉机停车并牵引铺设机,后排拖拉机前行直到切换点2,后排拖拉机停车并牵引铺设机,前排拖拉机前行到切换点1。这样循环继续。实施例8有益效果:拖拉机静止状态时其与土地之间的静摩擦力明显要比其运动时的动摩擦力大,因而可以用较轻较小的拖拉机达到同样的牵引力,有利于降低设备造价;卷扬机牵引控制精度高。采用前后排拖拉机的模式,其中的拖拉机有近一半的时间可以独立完成不同的任务,包括清理和找平。对必须进行相关作业的场景,事半功倍。在一个可能的设计中,实施例8拖拉机配套发电机向铺设机供电。铺设机多一种供电选择。在一个可能的设计中,实施例8的铺设系统包括一个液压顶板72,利用顶板产生的抵力增加对后面铺设机的牵引力。在一个可能的设计中,对本发明所有可能的实施例进行改进:对铺设机的部分壳体配套振动器,包括混凝土震动棒使用的振动发生器以减小铺设机行进的阻力和能量。
图8并给出实施例9。在实施例7或8基础上,对拖拉机配套新的作业模块73,包括3维地形建模用的探测模块、挖沟筑埂找平的土方模块和收割除草模块。探测模块包括超声波探测装置,用于为三维建模提供条件;土方模块包括挖斗。有关技术可参考现有技术。
图9给出的实施例10。制造一台地下铺设机,包括壳体5、在壳体前侧均布的快装螺旋输送铣刀74、激光接收装置28、在壳体上侧均布的前排螺旋推进输送器75、中排螺旋推进输送器76、后排螺旋推进输送器77这3排接力输送的螺旋推进输送器、与壳体传动连接的桅杆69,设置于壳体内的辊筒传送阵列8、隔水材料同步推料器78、闭合器和隔水材料加长拼接器79、设置于壳体外侧用于与相邻隔水材料拼接的增宽 拼接器。壳体包括采用模块化方式设计制造,利用其两端的异型法兰端盘结构实现连接增宽;壳体前端的楔形包括下楔形面80和上楔形面81;楔形适合楔入泥土。下楔形面有一个范围在1~7°之间的水平倾角楔下角82。快装螺旋输送铣刀包括用于铣削、切碎和提升土方、向上移动土方到铺设机壳体上面;在提升土方的同时其反作用力对铺设机提供向下的推力;所述推力随着快装螺旋输送铣刀转速的变化而变化,因而能够通过改变快装螺旋输送铣刀帮助调节铺设机的运行状态;各排螺旋推进输送器的作用包括提供铺设机的水平推进力和产生铺设机与其上方泥土的相对位移;倾斜安装的螺旋推进输送器会产生竖直方向的分力。图9中3个前后连接的螺旋推进输送器74~76配置有输送槽道。各螺旋推进输送器配置动力头83独立驱动,或者采用动力头加一个以上万向节84联合驱动;
同步推料器沿壳体内部均布。同步推料器包括一个推料机械臂85、一个设置于推料机械臂自由端的驱动滚筒87和监控器。驱动滚筒的转速可调,其作用于每沓隔水材料14最上的那张,帮助隔水材料整体同步移行输出,包括依靠内置监控器监控现场。这样能够避免相邻两层隔水材料黏连带来的无序。推料机械臂保持驱动滚筒对隔水材料的适当压力;驱动滚筒的表面线速度与铺设速度相同并可调节。加长拼接器用于连接加长隔水材料。
实施例10工作过程:拖拉机带动铺设机前进并通过电缆向铺设机供电;快装螺旋输送铣刀切碎提升泥土、所述3排螺旋推进输送器接力将泥土向后推送构成耕作层26并提供铺设机的向前推力、隔水材料从输出端口输出。实施例10有益效果:铺设机采用桅杆与拖拉机上的缆索33传动连接,使拖拉机具有更多的自由度;拖拉机直接拉动铺设机,省略土方的翻堆过程,简化了工艺;3排螺旋推进输送器接力将泥土向后推送并提供铺设机的向前推力,减轻缆索的驱动负荷。在一个可能的设计中,实施例10改动设计:其快装螺旋输送铣刀包括上部较细的直径。较细的直径意味着减少驱动力。在一个可能的设计中,实施例19机壳上侧接力输送的螺旋推进输送器为3排之外的设计.在一个可能的设计中,实施例10壳体的部分表面采用多孔注水表面结构。多孔注水表面结构的注水形成泥浆提供润滑,有助于减少对铺设机的驱动能量。在一个可能的设计中,实施例10的铺设机包括犁板64和犁板角丝杆调节装置67。缆索拉力叠加铺设机中隔水材料减少时的浮力,令铺设机向上运动脱离既定轨道。采用犁板后,获得一个向下的反作用力解决了这个问题,使得所述铺设机在地下运行自由。
图8和10给出实施例11。制造一台多功能拖拉机62,包括履带、底盘、发动机、挖斗和横向设置的螺旋输送器86;其用途包括合并找平和牵引铺设机。螺旋输送器通过液压器件65与拖拉机传动连接,并能够作顺时针或逆时针转动。横向螺旋输送器包括带挡板的开式输送槽道88、设置于输送槽道中的螺旋叶片24、设置于输送槽道沿口的加宽挡板89、设置于输送槽道外侧面的液压式旁路盖板90、设置于输送槽道两端的液压端部阀91、动力头82和输送器控制系统。动力头包括电动和液压动力头。螺旋叶片能作正反向旋转。旁路盖板打开/关闭时,螺旋输送器内的物料能够/不能够从输送槽道的旁路通道92流出。挖斗4能够将土方从横向螺旋输送器加宽挡板上方倒入输送槽道。液压端部阀具有打开状态和闭合状态两种稳定状态;液压端部阀处于打开状态即将此端切换为输出端;液压端部阀处于闭合状态即将此端切换为输入端。实施例11工作过程:用多台拖拉机平行找平地表,并令这些拖拉机上的横向螺旋输送器首尾相接处于接力输送状态。当相邻两台横向螺旋输送器中的一台螺旋输送器的输入端刚好位于另一台螺旋输送器输出端的正下方,则称这两台横向螺旋输送器处于接力输送状态,处于接力输送状态的两台螺旋输送器之间能够转移物料。当两台横向设置的螺旋输送器需要改变输送方向时,令负荷所述两台螺旋输送器的拖拉机前后错开,再调整所述两台横向螺旋输送器的状态包括切换其输入端和输出端,再令负荷所述两台横向螺旋输送器的两台拖拉机回归对齐,进入到新的接力输送状态即可。实施例11有益效果:配置横向安置的螺旋输送器和作业模块为挖斗的拖拉机成排设置时,能在完成牵引铺设系统的同时完成诸如:大范围包括幅宽60米地块的找平;现场物料输送,包括从田埂上的车辆输入客土或者输出土方到田埂上的车辆。客土用于改良土壤。在一个可能的设计中,实施例11中采用前后两排均配置横向螺旋输送器的拖拉机。
图11给出的实施例12。制造一个铺设机隔水材料加长装置,包括面板93和控制系统,配套上吹气管排94、下吹气管排95和隔水材料状态探测器,用于将隔水材料末段96和新装入的隔水材料初始段97热熔接加长。面板宽度与壳体宽度持平;面板沿前进方向即长度方向的高度尺寸范围90~500毫米;面板布置于铺设机壳体5内输出端口上方。面板上面均布有若干个电磁铁98、气孔99和电热熔接器100。电磁铁包括为条向电磁铁,条向电磁铁的长度方向与面板的宽度同向。气孔通过自控阀与正压源和负压源连通; 气孔与负压源连通时,靠近面板前的隔水材料初始段前后两侧因为大气压力与负压源的压差被压在面板前的末段上;气孔与正压源连通时,对其前方的末段产生吹力;气孔沿口包括加工有倒角;气孔的端口样式包括但不限于点状和短斜线条状;斜短线状的气孔端口能够抽吸更大的面积;通常,面板上的气孔分组,各组采用扫描方式与负压源连通吸气。这有助于减小干扰。电热熔接器在工作状态时其工作表面温度升高能够将紧贴其上的两层隔水材料加热熔接在一起;电热熔接器表面的形状即是熔接生成的痕迹图案包括但不限于点、线条和网状。上、下吹气管排分别布置在输出端口的上面和下面;上、下吹气管排通过自控阀连接正压源,其出气状态可调;下吹气管排用于吹动隔水材料末段和初始段飘起靠近面板。为了微调末段在面板上的位置,采用上吹气管排;上吹气管排通过自控阀与正压源连通,对于一个由下吹气管排吹动的末段,上吹气管排吹气能够将末段吹出一段向下鼓起的弧段,所述弧段起到将末段从面板往下拉的作用;即,末段最终在面板上的状态按照其在向上飘起时上吹气管排的状态变动而变动;利用这一现象调节末段在面板上的位移。末段上均布若干个小孔101并含有顺磁材料。顺磁材料本身不具有磁吸能力但能够被磁吸住,因而不会吸起泥沙。末段包括连接一片掺有顺磁材料粉末且不影响热熔接的塑料薄片;顺磁材料的布置方式不受限制,包括为条状顺磁材料102。条状顺磁材料长度与壳体轴心线同向;相邻两条条状顺磁材料的中心距等于面板上相邻两个条状电磁铁表面的中心距。这有助于减小末段最终磁吸于面板上的位置的离散性,提高末段在面板上的位置精度,包括条状顺磁材料以小于等于±3毫米的精度误差被吸引到条状电磁铁表面上。小孔尽可能在被电磁铁吸住时与面板上的气孔重合;小孔和气孔的直径均包括1~3毫米;负压源通过面板上的气孔和末段上的小孔实现对初始段的抽吸使初始段紧贴末段。
实施例12工作过程:当探测器报告隔水材料即将用完需要加长时,主机令铺设机停车、令上下吹气管排吹气并根据探测器报告来估计可能的磁吸状态并依此对上下吹气管排的状态作出调整;然后令相关组的气孔顺序与负压源连通、令电磁铁切换到磁吸状态;这导致末段在上下吹气管排吹气、气孔负压抽吸及电磁铁磁吸多重作用下被磁吸于面板上。保持电磁铁的磁吸状态、关闭负压源和上下吹气管排吹气;铺设机装入隔水材料14到位,如图11.5中虚线梯形所示;探测器报告新装入的隔水材料状态正常,主机顺序令下吹气管排吹气、预热电热熔接器、令各组气孔从下到上顺序与负压源连通进行负压抽吸;这导致新装入隔水材料的初始段在下吹气管排吹气和气孔负压抽吸双重作用下被吸在面板前末段上。然后打开电热熔接器进入热熔接作业程序,电热熔接器表面的两层隔水材料完成热熔接后关闭电热熔接器和负压源;然后包括以扫描方式令气孔接通正压源,将隔水材料从电热熔接器表面吹离;最后,关闭电磁铁,热熔接加长过程结束。重启铺设隔水材料作业。隔水材料上的热熔接缝与电热熔接器的表面构成的图案一致。电热熔接器及其加热表面包括但不限于为点状、线段和网状。
在一个可能的设计中,末段含有超声波反射材料包括带保护层的铝箔。在一个可能的设计中,实施例12电热熔接器的表面取平面以外的形状,包括从横截面看,其中部略微向外光滑凸起;凸起高度包括0.3~1.4毫米。这样做能够提高热熔接质量。在一个可能的设计中,监控器安装于图9所示的驱动滚筒86上,并且与驱动滚筒传动连接的推料机械臂85的移动轨迹限定在壳体对称平面附近的狭窄的空间内。这样视觉范围大,也不容易被末段遮挡。实施例12中,面板的倾角变动,所述多层熔接机制仍然成立。实施例12有益效果:本发明的铺设机用隔水材料加长装置提供一种隔水材料的机器加长连接手段,具有物理意义明显、实施简单的优点。采用上吹气管排能够调节末段在面板上的位置,上吹气管排吹气越大,末段越向下鼓起,则末段在面板上的位置越往下移。采用电磁铁磁吸末段避免了对隔水材料安装的影响。
图12给出实施例13。制造一台人工辅助加长隔水材料铺设机,包括壳体5、沿壳体输出端口方向布置并连接在壳体上的滑轨103、与滑轨配套的电动滑板车104和电动缝纫机105。电动滑板车与滑轨通过滚动连接界面106配合连接,并能在滑轨上自由进退。实施例13工作过程:当根据铺设机内监控器报告隔水材料即将用完时,铺设机所在的铺设系统进入土方避让模式,即令翻堆的挖掘机、后向螺旋输送器或者泥浆泵管将泥土47泥浆往远离铺设机的地方移送;保留铺设机输出端口6不被泥土埋没。工人包括躺在电动滑板车上将隔水材料末段96拉出,如果太长就剪掉一些,在装入新的隔水材料并用手工将加强边15同步推进到头;然后用手对末段和加强边并送入电动缝纫机缝接。然后也可以继续铺设了。实施例13的有益效果:不必等待加长拼接器研发完成,以设备少量改变的代价,提早数个月时间开始建设隔水农地。图13给出实施例14。制造一台隔水材料横向加宽拼接装置,包括罩壳107、罩壳内存放隔水材料熔接部分的空间、拉伸清洁总成、滚筒连接总成和控制系统;安装于铺设机2壳体外侧;用于将本次新铺设的隔 水材料与前次已经铺设的隔水材料拼接。拉伸清洁总成包括一组以上、每组上下两个配合工作的螺旋滚刷108,还包括安装于螺旋滚刷一侧的真空吸尘器109。上下两个螺旋滚刷布置在隔水材料14的上下两侧、螺旋滚刷表面具有螺旋状布置的刷毛;当隔水材料在旋转的上下螺旋滚刷之间经过时,受到螺旋滚刷的沿螺旋滚刷旋转方向的刷刮拉动和沿螺滚刷轴向的拉伸增宽;所述刷刮能够清洁隔水材料表面。真空吸尘器包括吸嘴,所述吸嘴靠近并清洁螺旋滚刷。滚筒连接总成包括一组两个配合工作的电热熔接滚筒110;经过两个电热熔接滚筒之间的两层隔水材料被熔接。实施例14的工作原理:每次在已经铺设的隔水材料一侧增加铺设一列隔水材料时,包括出清铺设机一侧现场、在铺设机内装入隔水材料后,装上所述横向加宽拼接装置,再用手工将所述已铺设的隔水材料装入拉伸清洁总成和滚筒连接总成;再将本次的隔水材料侧边装入滚筒连接总成,最后关闭罩壳。然后启用电热熔接总成并启动铺设机铺设隔水材料,随着铺设机的前进,所述加宽拼接装置的罩壳将前方的泥土抬起,罩壳内的拉伸清洁总成拉起前次铺设的隔水材料边缘并实施清理,并与本次铺设的隔水材料的边缘进行熔接。实施例14的有益效果:本发明隔水材料横向加宽拼接装置,能够利用螺旋滚刷在运动中一次性完成前面铺设的隔水材料的拾取、清洁、拉伸增宽和两层隔水材料的热熔接。采用两组以上螺旋滚刷能够增加清洁裕量。在一个可能的设计中,实施例14中的热熔接改变为超声波焊接、粘接或者缝接。在一个可能的设计中,实施例14中改为不连接的叠放拼接,包括仅仅采用一组螺旋滚刷向外拉动并清洁本次铺设的隔水材料的边缘。
图14给出实施例15。制造一个隔水材料轴向压缩台,包括若干个电辊筒13,其中心线与图面垂直,其两端的电辊筒至少一端能够整体向上转动一个大倾角。实施例15的工作过程:成卷/沓隔水材料15放置在所述轴向压缩台上后,令所述两端电辊筒中的至少一端电辊筒整体向上转动一个大倾角并且与中间部分各存在一个过渡的弧形段,令所述电辊筒转动将隔水材料推向中间,隔水材料受到沿其轴向的压缩长度缩短。实施例15有益效果:隔水材料轴向压缩台,能够对长度60米以上的成沓隔水材料实施轴向压缩,压缩效果直观可控。经过轴向压缩的隔水材料卷/沓具有恢复其原始长度的趋势,适应后续各种横向拉长的情况包括遇到基础表面不平整而产生拉扯时不容易损坏。在一个可能的设计中,对成沓隔水材料的轴向压缩在装入铺设机时实现,包括在图1.5中令辊筒传送阵列的电辊筒具有沿输送方向线性的速度梯度,越靠前速度越慢,使整沓隔水材料经受压缩。这样做更为简单、实际效果更好。
图15给出实施例16。制造一台自推进干式铺设机2,包括铺设机、铺设机壳体5上大致水平安置的前置和后置螺旋推进器111。螺旋推进器能够做上下左右摆动包括利用两维舵机和两维液压器件驱动行进铺设隔水材料14。铺设机包括模块化的壳体,壳体通过两端的法兰端面相互连接来增加作业面宽度;壳体上开有沿其中心线方向布置的输出端口;壳体内部在底部设置有辊筒传送阵列;隔水材料成沓安置在辊筒传送阵列上,并能从输出端口输出。实施例16用于在地下铺设隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动、令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气。在一个可能的设计中,并采用拖拉机通过缆索33和桅杆69辅助拖动铺设机2。实施例16的有益效果:本发明的自推进干式铺设机利用前排螺旋推进器和后排螺旋推进器推进,结构简单,适用于在沙漠中铺设隔水材料。
图16给出实施例17。在荒漠中修建带隔水层的人工河。用挖掘机1开挖荒漠到足够深度;并将所挖土方用筛选装置112筛选分离出石块113、小石子114和泥土47并用螺旋输送器87将其输送到人工河43两侧大坝44上。将余下的石块、小石子和泥土按照个体体积从大到小顺序从下向上填埋形成河床底部基础27;再在河床基础包括两侧坡面115上铺设隔水材料14形成隔水层;再包括在隔水材料上面连续堆叠泥土袋116。泥土袋包括用土工布制成、内部装满泥土。隔水材料和泥土袋构成隔水层;隔水层将荒漠分隔为隔水层上面的河床和隔水层下面的基础,隔水层阻挡河床和基础之间水的流动。河床及泥土袋上面包括留存有底泥。底泥包括作为河道自清洁系统的一部分。筛选装置的内容参考现有技术。
在一个可能的设计中,河道坡面设置成阶梯状117,这样堆叠泥土袋更加整齐稳固。在一个可能的设计中,实施例17在人工河43底设置输水干管118包括用于输送含盐弃水。在一个可能的设计中,实施例17人工河的隔水材料采用网架结构119增强的空中铺设机2,所述铺设机依靠大坝44上面的车辆以及在建人工河中的工程机械负荷并前行。在一个可能的设计中,实施例17中的隔水材料在坡面下面以小水平倾角铺设如图16.3中双线虚线示。这种将隔水材料下移放平的做法避免了大倾角隔水材料可能产生滑坡的问题。在一个可能的设计中,围海造田,并在坝埂处修造梯田人图16.3粗线虚线示。
图17给出实施例18。制造一台分筛螺旋输送器,包括螺旋叶片24、输送槽道87、筛网120和动力头。螺旋叶片包括螺旋输送铣刀;螺旋叶片包括有轴和无轴两种,后者更不容易堵塞;输送槽道容纳一个以上的螺旋叶片,其包括后板121和旁板122;筛网包括各种钢至筛网,其包括与输送槽道一体制作;动力头包括减速马达和液压马达。实施例18的工作过程:无论是荒漠、旱地还是沼泽,螺旋输送器在行进中铣削/打浆并提升泥土,当泥土经过筛网,绝大部分经过网孔过筛。少量筛上物送到指定位置带处置。令筛网包括梯度筛网即网孔沿泥土前进方向单调变大。过筛的泥土包括由专门通道123分配。专门通道包括分类容器或者通向分类容器的滑槽和物料输送器包括螺旋输送器。实施例18有益效果:合并完成了对泥土中不同尺寸成分物体的分选。在一个可能的设计中,实施例18的筛网与一个振动源传动连接,以提高分选效率。
图18给出实施例19。制造一台配置振动筛一体挖斗的挖掘机1,包括履带底盘、机械臂和振动筛一体挖斗。振动筛一体挖斗包括挖斗4、设置于挖斗内的一层以上振动筛筛网120、振动源124、筛上物旁路通道92和盖板90;振动源包括混凝土震动棒的振动器件。实施例19的工作过程:振动筛一体挖斗每次挖土后移到筛上物铺设位置,打开底部的盖板将过筛的泥土堆集作为耕作层26,然后转移地方将振动筛一体挖斗各层筛上物125按照颗粒尺寸越小位置越高的要求倾倒在挖土形成的土坑中进行分层铺设形成基础27,如图18.4所示。每铺设一层找平压实一次如图18.2示;并在铺设过筛物和各层筛上物时同步用铺设机铺设一层以上隔水材料14。有益效果:振动筛一体挖斗提供一种将荒漠改造为良田的技术手段,比普通挖斗多花数秒钟时间,就完成多规格的荒漠成分分离和铺设,包括在挖、转移、卸料和铺设的同时进行分离。在一个可能的设计中,实施例19包括两台铺设机2、一台推土机126和一个可移动分选平台。两台铺设机2通过驱动轴杆23与推土机传动连接能被推土机驱动行进;铺设机前端铲板模12推动其前方的泥土;配置激光接收器28接收基站的准直信号用于空间定位。可移动分选平台包括履带底盘、推土铲斗和自卸振动筛127,自卸振动筛包括一层以上筛网121、振动源、过筛物存储空间、过筛物旁路通道92和盖板;自卸振动筛通过一个以上液压调节器件与履带底盘连接,其水平倾角能够调节用于斜料;可移动分选平台用于对挖斗转移的过筛物再次进行细分出细土和筛上物;先将筛上物倾倒于前后两排铺设机之间;然后打开盖板将细土倾倒于上层隔水材料上作耕作层。其有益效果包括能够提供砂石的分层铺设形成新的基础及其平整压实、能够通过分离提供两层隔水材料之间的充填物。在一个可能的设计中,实施例19及其改进型的振动筛一体挖斗和自卸振动筛均配置应变片及力传感器。以记录每次物料的各种成分的重量。在一个可能的设计中,实施例19及其改进型的前后两排铺设机均配置应变片及力传感器。以实时了解铺设过程中下面各部分的基础密度。在一个可能的设计中,实施例19将分选出的石块用制沙机制沙并作为新的基础。在一个可能的设计中,实施例19采用种植钵进行种植,解决耕壤不足问题。
图19给出实施例20。制造一台吹胀管翻堆铺设系统,包括驱动设备、铺设机和弯头铺设机37、驱动设备包括拖拉机或者卷扬机和缆索。在第一端,设置有水沉槽开挖器128、护板机械手、辅助隔水材料盘箱129和/或者塑料薄膜管盘箱130、电热转盘或者涂胶器、水位控制总成。水沉槽开挖器通过驱动轴杆23与铺设机连接,开挖水沉槽131;水沉槽的横截面包括为一个深和长边均为数厘米的等腰四边形。辅助隔水材料盘箱、塑料薄膜管盘箱分别放置辅助隔水材料和塑料薄膜管。水管清洁器包括真空吸嘴模板132,真空吸嘴模板的上、下两个抽吸界面的表面形状分别与隔水材料和吹胀管133表面相吻合;有关内容可参考现有技术。电热转盘58用于隔水材料与吹胀管的热熔接。涂胶器用于在隔水材料与吹胀管之间涂布黏结材料,其包括注胶界面和加压滚筒134。水位控制总成在隔水材料铺设完成之前保证吹胀管内部存水防止被风吹乱,在隔水材料铺设完成后负责将吹胀管吸瘪。在第二端,设置有水管清洁器、第二电热转盘或者第二涂胶器;水管清洁器包括重叠区域吸嘴模板。实施例20工作过程包括第一端和第二端:第一端,铺设带吹胀管的隔水材料:所述铺设系统被驱动行进,边开挖出水沉槽、边铺设带吹胀管的隔水材料。铺设带吹胀管的隔水材料包括以下4种方式之一及其组合:1)在隔水材料的边缘处下侧热熔接一条辅助隔水材料135包括在辅助隔水材料两边产生两条热熔接缝并形成一个吹胀管;吹胀管在铺设隔水材料时被置入水沉槽;2)在隔水材料的边缘处下侧热熔接一条辅助隔水材料包括在辅助隔水材料两边产生两条热熔接缝并在吹胀管中置入一根塑料薄膜管136,形成一个双层吹胀管,包括内层塑料薄膜管和外层由隔水材料和辅助隔水材料热熔接形成的吹胀管;双层吹胀管在铺设隔水材料时被置入水沉槽;3)在隔水材料的边缘处连接包括热熔接或者黏结一根塑料薄膜管;塑料薄膜管在铺设隔水材料铺设时被置入水沉槽;4)在隔 水材料的边缘处上面放置或者连接包括热熔接和拼接一条吹胀管,吹胀管铺设时被置入水沉槽。要求对易铺设的隔水材料覆盖泥土时保持水沉槽边上数十厘米处即相邻隔水材料拼接重叠处尽量没有泥土。对吹胀管注水增重防止被风吹乱。第二端,在所述吹胀管上覆盖隔水材料完成两层隔水材料的拼接:如图19.1所示,并根据不同情况选用以下内容:先用水管清洁器对吹胀管进行表面清洁包括用真空吸嘴模板吸干吹胀管表面如图19.1两排箭头示,然后:对两层隔水材料的拼接黏结处涂胶并使用一个加压滚筒加压使之贴合,或者使用电热转盘熔接机两层隔水材料,为保证吹胀管不滑脱,用加压滚筒约束吹胀管。用泥土覆盖在两层隔水材料上、在铺设完成后吸瘪吹胀管。显然,这样的拼接状态能够满足苛刻的隔水要求。即使少量水汽留存吹胀管,仍然起到密封条的作用,阻挡隔水材料14下面基础27与上面耕作层26之间的水的流动。图19.2的双线虚线圆表示塑料薄膜水管盘箱移到铺设机前面,这样吹胀管就能够放置在隔水材料上面。放置隔水材料的宽度以最终形成直径数厘米的吹胀管为准。吹胀管的直径以其在水沉槽中伸展平直不滚动为好。实施例20有益效果:以开挖水沉槽、泥土翻堆不干涉水沉槽和设备少量改变的代价实现相邻两块隔水材料的多种拼接。
图20给出实施例21。制造一个用水沉槽留存泥水实现重叠拼接的铺设系统,包括驱动设备和铺设机2。在第一端,设置有水沉槽开挖器和护板机械手137;在第二端,设置有重叠区域吸嘴模板138;驱动设备包括拖拉机或者卷扬机和缆索;水沉槽开挖器包括通过驱动轴杆于铺设机连接,开挖水沉槽131;水沉槽的横截面包括为一个深和长边均为数厘米的等腰四边形。护板机械手包括一块长1米量级宽0.5~0,8米的钢板,一个大号的泥工粉刀,用于对水沉槽边上的翻堆泥土47压实抹平保持形状。重叠区域吸嘴模板下面的外形与水沉槽处的地面形状相吻合,并含有吸孔,所述吸孔与一个负压源连通;用于在铺设拼接处上面的隔水材料时将下面已铺设的隔水材料提吸起来,并以其平面法线相对前进方向呈30~60度刮过下面的隔水材料,清除所述隔水材料上的泥土。实施例21的工作过程分为第一端和第二端两部分;第一端,包括挖出水沉槽,将隔水材料放入水沉槽并用水和/或者泥土压住隔水材料防风;第二端,包括清理重叠处的第一层隔水材料上表面并将部分第二层隔水材料14覆盖其上,实现重叠拼接。实施例21有益效果:以泥土翻堆不干涉水沉槽、增加护坡板和重叠区域吸嘴模板的代价,实现0.5米以上宽度的重叠拼接。

Claims (10)

  1. 建造理水区域的方法,其特征在于对自然区域划出一个目标地区,对目标地区的至少部分土地铺设隔水材料形成隔水层改造成隔水区域,隔水区域包括隔水农地;目标地区其余未改造的土地为原貌区域;隔水区域和原貌区域的合集称为理水区域,理水区域包括城市、乡村、田地、原野、高地、地表水域和荒漠;理水区域中隔水区域的面积和占比不限;隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动,令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;耕作层的厚度不限;隔水材料包括但不限于农用地膜、土工布和隔水的泥沙袋铺设层;隔水材料的铺设方式不限,包括连续铺设和碎片化铺设;在上述铺设隔水材料建成隔水区域基础上,还包括叠加以下3点之一及其组合:1)对隔水农地的耕作层土壤进行平整清理去除石块、进行清洗以去除盐碱及其它有害物质包括但不限于含砷物质;2)对理水区域配套增雨系统,利用其雨水渗漏小、以及大陆性气候凌晨气温低容易增雨的特点,通过增雨持续增加降雨量;3)对理水区域配套水利设施包括修建水库和人工河、合理利用地下水和地表水。
  2. 理水区域,其特征在于对自然区域划出一个目标地区,对目标地区的至少部分土地铺设隔水材料形成隔水层改造成隔水区域,隔水区域包括隔水农地;目标地区其余未改造的土地为原貌区域;隔水农地和原貌区域的合集称为理水区域;理水区域中隔水区域的面积和占比不限;隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动,令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;耕作层的厚度不限;隔水材料包括但不限于农用地膜、土工布和隔水的泥沙袋铺设层;隔水材料的铺设方式不限,包括连续铺设和碎片化铺设。
  3. 隔水农地,其特征在于包括梯田和种植水面,其面积不限;隔水农地全部或者大部分地下铺设有隔水材料,隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动,令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;耕作层的厚度不限;隔水材料包括但不限于农用地膜;隔水材料的铺设方式不限,包括连续铺设和碎片化铺设;隔水农地并包括在种植季节开始时开采地下水灌溉并启动可持续增雨。
  4. 理水农地翻堆铺设系统,其特征在于包括取土翻堆设备、铺设机和控制系统;用于在地下铺设隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动、令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;取土翻堆设备包括下列5种设备之一及其组合:1)挖斗式挖掘机;2)振动筛一体挖斗的挖掘机;3)可移动筛分平台;4)铣刀螺旋输送器阵列及与其接力输送泥土的泥土输送设备;5)铣刀打浆器阵列及以其为吸入界面的泥浆泵;铺设机包括模块化的壳体,壳体通过两端的法兰端面相互连接来增加作业面宽度;壳体上开有沿其中心线方向布置的输出端口;壳体内部在底部设置有辊筒传送阵列;隔水材料成沓安置在辊筒传送阵列上,并能从输出端口输出;采用外部工程机械推动或者拉动铺设机行进实施隔水材料铺设。
  5. 地下翻堆铺设系统,其特征在于包括驱动牵引设备、在地下作业的铺设机和控制系统;用于在地下铺设隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动、令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气;驱动牵引设备包括外部的拖拉机、卷扬机、推土机驱动牵引铺设机行进;或者,铺设机自带向前伸出安装的螺旋钻头和/或者在壳体上面和/或者下面安装的螺旋推进器,驱动铺设机行进;铺设机包括模块化的壳体;壳体通过两端的法兰端面相互连接来增加作业面宽度;壳体上开有沿其中心线方向布置的通长输出端口;壳体内部在底 部设置有辊筒传送阵列;隔水材料成沓安置在辊筒传送阵列上,并能从输出端口输出。
  6. 铺设机隔水材料加长装置,其特征在于包括面板和控制系统,配套上吹气管排、下吹气管排和隔水材料状态探测器,用于将隔水材料末段和新装入的隔水材料初始段热熔接加长;面板宽度与壳体宽度持平;面板布置于铺设机壳体内输出端口上方;面板上面均布有若干个电磁铁、气孔和电热熔接器;电磁铁包括为条向电磁铁,条向电磁铁的长度方向与面板的宽度同向;气孔通过自控阀与正压源和负压源连通;气孔与负压源连通时,靠近面板前的隔水材料初始段前后两侧因为大气压力与负压源的压差被压在面板前的末段上;气孔与正压源连通时,对其前方的末段产生吹力;电热熔接器在工作状态时其工作表面温度升高能够将紧贴其上的两层隔水材料加热熔接在一起;
    上、下吹气管排分别布置在输出端口的上面和下面;上、下吹气管排通过自控阀连接正压源,其出气状态可调;下吹气管排用于吹动隔水材料末段和初始段飘起靠近面板;为了微调末段在面板上的位置,采用上吹气管排;上吹气管排通过自控阀与正压源连通,对于一个由下吹气管排吹动的末段,上吹气管排吹气能够将末段吹出一段向下鼓起的弧段,所述弧段起到将末段从面板往下拉的作用;即,末段最终在面板上的状态按照其在向上飘起时上吹气管排的状态变动而变动;利用这一现象调节末段在面板上的位移;末段上均布若干个小孔并含有顺磁材料;末段包括连接一片掺有顺磁材料粉末且不影响热熔接的塑料薄片;顺磁材料的布置方式不受限制;条状顺磁材料长度与壳体轴心线同向;负压源通过面板上的气孔和末段上的小孔实现对初始段的抽吸使初始段紧贴末段。
  7. 隔水材料横向加宽拼接装置,其特征在于包括罩壳、罩壳内存放隔水材料熔接部分的空间、拉伸清洁总成、滚筒连接总成和控制系统;安装于铺设机壳体外侧;用于将本次新铺设的隔水材料与前次已经铺设的隔水材料拼接;拉伸清洁总成包括一组以上、每组上下两个配合工作的螺旋滚刷,还包括安装于螺旋滚刷一侧的真空吸尘器;上下两个螺旋滚刷布置在隔水材料的上下两侧、螺旋滚刷表面具有螺旋状布置的刷毛;当隔水材料在旋转的上下螺旋滚刷之间经过时,受到螺旋滚刷的沿螺旋滚刷旋转方向的刷刮拉动和沿螺滚刷轴向的拉伸增宽;所述刷刮能够清洁隔水材料表面;真空吸尘器包括吸嘴,所述吸嘴靠近并清洁螺旋滚刷;滚筒连接总成包括一组两个配合工作的电热熔接滚筒;经过两个电热熔接滚筒之间的两层隔水材料被熔接。
  8. 自推进干式铺设机,其特征在于包括铺设机,铺设机壳体上大致水平安置的前置和后置螺旋推进器;螺旋推进器能够做上下左右摆动包括利用两维舵机和两维液压器件驱动铺设机行进铺设隔水材料;铺设机包括模块化的壳体,壳体通过两端的法兰端面相互连接来增加作业面宽度;壳体上开有沿其中心线方向布置的输出端口;壳体内部在底部设置有辊筒传送阵列;隔水材料成沓安置在辊筒传送阵列上,并能从输出端口输出;用于在地下铺设隔水材料将土地分为其上的耕作层和其下的基础,隔水材料阻挡水在耕作层与基础之间移动、令隔水农地中的雨水绝大部分通过蒸腾蒸发再度进入大气。
  9. 配置振动筛一体挖斗的挖掘机,其特征在于包括履带底盘、机械臂和振动筛一体挖斗;振动筛一体挖斗包括挖斗、设置于挖斗内的一层以上振动筛筛网、振动源、筛上物旁路通道和盖板;振动筛一体挖斗每次挖土后移到筛上物铺设位置,打开底部的盖板将过筛的泥土堆集作为耕作层,然后转移地方将振动筛一体挖斗各层筛上物按照颗粒尺寸越小位置越高的要求倾倒在挖土形成的土坑中进行分层铺设形成基础;每铺设一层找平压实一次;并在铺设过筛物和各层筛上物时同步用铺设机铺设一层以上隔水材料。
  10. 吹胀管翻堆铺设系统,其特征在于包括驱动设备、铺设机和弯头铺设机、驱动设备包括拖拉机或者卷扬机和缆索,铺设机的两端分别记为第一端和第二道;在第一端,设置有水沉槽开挖器、护板机械手、辅助隔水材料盘箱和/或者塑料薄膜管盘箱、电热转盘或者涂胶器、水位控制总成;水沉槽开挖器通过驱动轴杆与铺设机连接,开挖水沉槽;水沉槽的横截面包括为一个深和长边均为数厘米的等腰四边形;辅助隔水材料盘箱、塑料薄膜管盘箱分别放置辅助隔水材料和塑料薄膜管;水管清洁器包括真空吸嘴模板,真空吸嘴模板的上、下两个抽吸界面的表面形状分别与隔水材料和吹胀管表面相吻合;电热转盘58用于隔水材料与吹胀管的热熔接;涂胶器用于在隔水材料与吹胀管之间涂布黏结材料,其包括注胶界面和加压滚筒;水位控制总成在隔水材料铺设完成之前保证吹胀管内部存水防止被风吹乱,在隔水材料铺设完成后负责将吹胀管吸瘪;在第二端,设置有水管清洁器、第二电热转盘或者第二涂胶器;水管清洁器包括重叠区域吸嘴模板。
PCT/CN2023/108254 2022-07-20 2023-07-19 理水区域及方法和专用设备 WO2024017313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210863827.XA CN115606352A (zh) 2022-07-20 2022-07-20 理水区域及方法和隔水农地
CN202210863827.X 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024017313A1 true WO2024017313A1 (zh) 2024-01-25

Family

ID=84857579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108254 WO2024017313A1 (zh) 2022-07-20 2023-07-19 理水区域及方法和专用设备

Country Status (2)

Country Link
CN (1) CN115606352A (zh)
WO (1) WO2024017313A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117964182A (zh) * 2024-04-02 2024-05-03 克拉玛依市三达新技术股份有限公司 一种油田稠油采出水资源化回用处理方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115606352A (zh) * 2022-07-20 2023-01-17 上海长语信息科技有限公司 理水区域及方法和隔水农地

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199030A (en) * 1977-07-18 1980-04-22 Martin Concrete Engineering Company Method and apparatus for farming row crops
CN201155119Y (zh) * 2008-01-31 2008-11-26 李怡 振动筛分铲斗
CN105052278A (zh) * 2014-07-27 2015-11-18 邱春燕 轨基机器人农地隔离种植方法及农地
CN211090553U (zh) * 2019-11-06 2020-07-28 方绪龙 一种用于土层下铺设塑膜的设备
CN213494825U (zh) * 2020-09-08 2021-06-22 成都大家液压机械有限公司 筛分挖斗和筛分系统
CN115606352A (zh) * 2022-07-20 2023-01-17 上海长语信息科技有限公司 理水区域及方法和隔水农地

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199030A (en) * 1977-07-18 1980-04-22 Martin Concrete Engineering Company Method and apparatus for farming row crops
CN201155119Y (zh) * 2008-01-31 2008-11-26 李怡 振动筛分铲斗
CN105052278A (zh) * 2014-07-27 2015-11-18 邱春燕 轨基机器人农地隔离种植方法及农地
CN211090553U (zh) * 2019-11-06 2020-07-28 方绪龙 一种用于土层下铺设塑膜的设备
CN213494825U (zh) * 2020-09-08 2021-06-22 成都大家液压机械有限公司 筛分挖斗和筛分系统
CN115606352A (zh) * 2022-07-20 2023-01-17 上海长语信息科技有限公司 理水区域及方法和隔水农地

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117964182A (zh) * 2024-04-02 2024-05-03 克拉玛依市三达新技术股份有限公司 一种油田稠油采出水资源化回用处理方法及装置

Also Published As

Publication number Publication date
CN115606352A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024017313A1 (zh) 理水区域及方法和专用设备
CA2039022C (en) Compact padding machine
US5261171A (en) Pipeline padding machine attachment for a vehicle
US4696607A (en) Slurry trench method and apparatus for constructing underground walls
CN87104708A (zh) 改进的挖沟机与构筑地下挡土墙的方法
CN103038426A (zh) 辅助海底采矿的方法和装置
AU2019200467A1 (en) Excavation devices and methods
CN103397646B (zh) 一种在滨湖区域快速填筑人工湿地的工艺方法
US3874101A (en) Dredger with adjustable endless digger and rotary mud slinger
CN106761802A (zh) 一种水下隧道顶管掘进装置及其施工法
US4470720A (en) Underwater trenching & pipelaying apparatus
CN117426169A (zh) 理水区域及专用设备和方法
CN117256391A (zh) 理水增雨法及汇水田野
CN117256236A (zh) 理水区域翻堆铺设系统
CN1081733A (zh) 河道干式清淤(开挖)法及设备
JP7107767B2 (ja) 浚渫ステーションおよび浚渫システム
CN106677242A (zh) 一种用于水下隧道的工程船及其施工法
Broughton et al. Subsurface drainage installation machinery and methods
CN207229112U (zh) 一种水下隧道顶管掘进装置
US10017916B2 (en) Earth working apparatus
RU2320915C2 (ru) Способ вскрытия заглубленной трубы (варианты)
CN114687323B (zh) 一种半库防渗高填方粉质壤土均质坝防渗漏施工方法
US4095358A (en) Apparatus for high-speed trench digging beside highways
CN217128352U (zh) 一种挖沟铺管设备
CN111609214A (zh) 一种水下管道铺设设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842375

Country of ref document: EP

Kind code of ref document: A1