WO2024017312A1 - 侧钻工具 - Google Patents

侧钻工具 Download PDF

Info

Publication number
WO2024017312A1
WO2024017312A1 PCT/CN2023/108253 CN2023108253W WO2024017312A1 WO 2024017312 A1 WO2024017312 A1 WO 2024017312A1 CN 2023108253 W CN2023108253 W CN 2023108253W WO 2024017312 A1 WO2024017312 A1 WO 2024017312A1
Authority
WO
WIPO (PCT)
Prior art keywords
string
pipe string
cross
energy
branch pipe
Prior art date
Application number
PCT/CN2023/108253
Other languages
English (en)
French (fr)
Inventor
徐梓辰
杨忠华
万晓跃
Original Assignee
万晓跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万晓跃 filed Critical 万晓跃
Publication of WO2024017312A1 publication Critical patent/WO2024017312A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/006Accessories for drilling pipes, e.g. cleaners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1078Stabilisers or centralisers for casing, tubing or drill pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/01Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0411Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion specially adapted for anchoring tools or the like to the borehole wall or to well tube
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0421Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion using multiple hydraulically interconnected pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock

Definitions

  • the present invention relates to the technical field of drilling equipment, and in particular, to a sidetracking tool.
  • the windowed sidetracking technology is a key technology for oil and gas production.
  • the inclined device is first anchored in the main wellbore. Under the action of the steering mechanism, the branch drill string in the inclined device opens the window and drills the well along the lateral direction of the main wellbore. .
  • the purpose of the present invention is to provide a sidetracking tool in which the branch pipe string and the outer pipe string can be controllably unlocked and locked, and the branch pipe string can be recovered into the outer pipe string after completing the branch well drilling operation.
  • the invention provides a side drilling tool, which includes: an outer pipe body, an oblique device, a branch pipe string, a drill bit, an inter-pipe transmission system, and a power supply system; the oblique device is fixedly connected to the outer pipe body, and the The drill bit is connected below the branch pipe string, and the outer diameter of the branch pipe string is smaller than the inner diameter of the outer pipe; the branch pipe string is inserted into the outer pipe body; the inter-pipe cross-transmission system includes inter-pipe communication device and/or pipe-to-pipe power cross-transmission device; the pipe-to-pipe cross-transmission system includes an inclined device end-pipe cross-transmission system and a drill string end-pipe cross-transmission system; the inclined device end-pipe cross-transmission system includes Oblique device end communication equipment and/or oblique device end power cross-transmission equipment.
  • the drill string end inter-pipe cross-transmission system includes drill string end communication equipment and/or drill string end power cross-transmission equipment; the oblique device The cross-transmission system between end pipes is provided on the outer pipe body or the oblique device, and the cross-transmission system between end pipes of the drill string is provided on the branch pipe string; the inter-pipe communication device includes an acoustic wireless communication device and an optical wireless communication device. , a combination of one or more of electromagnetic wireless communication devices or electrical connectors; the inter-tube power transmission device includes one or more of an electrical connector, a magnetic coupler or an electromagnetic wireless energy transfer device. The combination.
  • the inter-tube communication device includes drill string end communication equipment and oblique device end communication equipment; the oblique device end communication device is communicatively connected to the drill string end communication equipment, and the oblique device end communication device The communication equipment is connected to the underground functional device.
  • the electromagnetic wireless energy transfer device includes an energy transmitting circuit, an energy transmitting coil, an energy receiving coil, and an energy receiving circuit; the energy transmitting circuit is electrically connected to the energy transmitting coil, and the energy receiving coil is electrically connected to the energy transmitting coil.
  • the energy receiving circuit is electrically connected; the power supply system is electrically connected to the energy transmitting circuit, and the underground functional device is connected to the energy receiving circuit.
  • the power supply system is an underground generator, an underground battery or a main cable.
  • the power cross-transmission equipment at the inclined device end includes an energy receiving mechanism and an energy receiving circuit
  • the power cross-transmission equipment at the drill string end includes an energy transmitting mechanism and an energy transmitting control circuit.
  • the energy transmitting mechanism and the energy The emission control circuit is electrically connected.
  • the energy emission control circuit is used to convert the power supply in the drill string into high-frequency alternating current that can be supplied to the energy emission mechanism; the energy emission mechanism transmits the electric energy to the energy receiving mechanism through wireless power transmission, so The energy receiving mechanism is electrically connected to the energy receiving circuit.
  • the invention provides a side drilling tool, which includes: an outer pipe string, a branch pipe string and a locking mechanism.
  • the branch pipe string is arranged in the outer pipe string;
  • the outer pipe string includes a window sleeve and an anchoring a sub-section, the anchoring sub-section can be anchored in the main wellbore;
  • the branch pipe string includes a sidetrack bit, and the branch pipe string can move longitudinally within the outer pipe string along the branch pipe string
  • the side drill is opened through the window sleeve; the locking mechanism can detachably lock the branch pipe string and the outer pipe string.
  • the sidetracking tool includes an inter-pipe communication device.
  • the inter-pipe communication device includes an oblique device end communication device and a drill string end communication device.
  • the inter-pipe communication device is used to implement branch pipe strings. And the communication connection between the outer tube body and the ground control center.
  • the anchoring sub-joint includes an electric anchor, and the electric anchor is controlled by the inter-pipe communication device to anchor the outer pipe body to the casing or well wall.
  • a window or a groove is provided on the wall of the window sleeve, and the window sleeve further includes a guide body, the guide body is fixed near the window or groove, and the branch The pipe string can move downward along the guide body to pass through the window or slot window sidetrack.
  • the locking mechanism includes a second locking mechanism capable of detachably locking the branch pipe string and the outer pipe string.
  • the guide body is provided with a groove;
  • the second locking mechanism includes a hook and a hook A driving mechanism, the hook driving mechanism can drive the hook to expand and contract in the radial direction, and the hook can move upward along with the branch pipe string to enter the groove.
  • the groove is a sliding groove, and the width of the sliding groove decreases from bottom to top.
  • the outer surface of the branch pipe string is provided with a slot;
  • the locking mechanism includes a first locking mechanism, the first locking mechanism includes a first electromagnetic coil, a first spring piece and a lock.
  • the first spring piece and the first electromagnetic coil are connected to the locking slip and can drive the locking slip into the slot or to withdraw from the slot.
  • the electric anchor is an electric-driven hydraulic anchor.
  • the electric-driven hydraulic anchor includes a hydraulic pump, an anchoring telescopic claw, a thrust mechanism, and an anchoring hydraulic cylinder.
  • the hydraulic pump , anchoring telescopic claw, thrust mechanism, and anchoring hydraulic cylinder are arranged on the outer tube body.
  • the hydraulic pump includes a motor and a pump.
  • the hydraulic pump drives the anchoring hydraulic cylinder to push the thrust mechanism to move.
  • the thrust mechanism Its movement along the tool axis is converted into radial movement of the anchoring telescopic claw to achieve anchoring.
  • the electric anchor is an electric direct-drive anchor.
  • the electric direct-drive anchor includes a motor, a screw drive mechanism, a thrust mechanism and an anchoring telescopic claw.
  • the motor can drive
  • the screw drive mechanism converts the rotational power of the motor into thrust force to push the thrust mechanism to move along the tool axis.
  • the thrust mechanism can drive the anchoring telescopic claw to move in the radial direction and anchor the tool to the main wellbore wall.
  • the branch pipe string can be controllably slid out from the inside of the outer pipe string for branch well drilling, and the locking mechanism can control the combination and release between the outer pipe string and the branch pipe string.
  • the locking mechanism is in the locked state; after the drilling tool is lowered to the predetermined well depth, the outer pipe string is anchored through the anchor sub-section; during the sidetracking operation, the locking mechanism is in the unlocked state, and the branch pipe The column slides out from the inside of the outer pipe string to drill the branch well; after completing the branch well drilling operation, the branch pipe string can be recovered to the inside of the outer pipe string for locking.
  • the locking mechanism can controllably return to the locked state, and the branch pipe string passes through The locking mechanism locks again.
  • Figure 1 is a schematic structural diagram of the side drilling tool provided by the present invention.
  • Figure 2 is a cross-sectional view of the side drilling tool provided by the present invention.
  • Figure 3 is a schematic structural diagram of the branch pipe string in the sidetracking tool provided by the present invention.
  • Figure 4 is a schematic structural diagram of an embodiment of the first locking mechanism in the side drilling tool provided by the present invention.
  • Figure 5 is a schematic structural diagram of the second locking mechanism in the side drilling tool provided by the present invention.
  • Figure 6 is a perspective view of the guide body in the side drilling tool provided by the present invention.
  • Figure 7 is a partial enlarged view of C in Figure 5;
  • Figure 8 is a schematic structural diagram of the anchor sub-joint in the sidetracking tool provided by the present invention.
  • Figure 9 is a schematic structural diagram of another embodiment of the first locking mechanism in the side drilling tool provided by the present invention.
  • Figure 10 is a schematic diagram of the inter-tube communication device in the sidetracking tool provided by the present invention.
  • Figure 11 is a partial schematic diagram of the inter-tube communication device in the sidetracking tool provided by the present invention.
  • Figure 12 is a schematic diagram of the inter-tube power cross-transmission device in the sidetracking tool provided by the present invention.
  • Locking slip 614. The first limiting mechanism; 621. First hydraulic cylinder; 622. Hydraulic piston; 623. Return spring; 63. Card slot; 70. Second locking mechanism; 71. Hook; 72. Hook driving mechanism 73. Groove; 731. Sliding groove; 732. Guide slope; 80. Fixed centralizer; 800. Inter-pipe power cross-transmission device; 81. Energy transmitting mechanism; 82. Energy transmitting control circuit; 83. Energy receiving mechanism; 84. Energy receiving circuit; 86. Motor control circuit; 87. Motor; 88. Hydraulic pump; 89. Thrust mechanism; 44. Anchor telescopic claw; 890. Anchor hydraulic cylinder; 90. Inter-pipe communication device; 91. Communication equipment at the inclined device end; 92. Communication equipment at the drill string end; 93. Downlink command receiving device; 94. Battery; 95. Local communication cable.
  • the present invention provides a side drilling tool, as shown in Figures 1 to 9, including: an outer pipe string 10, a branch pipe string 50 and a locking mechanism.
  • the branch pipe string 50 is arranged in the outer pipe string 10; the outer pipe string 10 includes a window sleeve 21 and an anchoring sub-section 40.
  • the anchoring sub-section 40 can be anchored in the main wellbore; the branch pipe string 50 includes a sidetrack bit 54, and the branch pipe string 50 can branch along the outer pipe string 10.
  • the pipe string 50 moves longitudinally and is drilled through the window opening sleeve 21; the locking mechanism can detachably lock the branch pipe string 50 and the outer pipe string 10.
  • the branch pipe string 50 can controllably slide out from the inside of the outer pipe string 10 to drill the branch well.
  • the locking mechanism can control the combination and release between the outer pipe string 10 and the branch pipe string 50.
  • the locking mechanism is locked, , the branch pipe is fixed inside the outer pipe string 10; when the locking mechanism is unlocked, the branch pipe string 50 can be controlled to slide out or retract into the interior of the outer pipe string 10.
  • the locking mechanism is in a locked state.
  • the position can be adjusted by logging, and the outer pipe string 10 can be anchored through the anchor sub-joint 40; during the sidetracking operation, The locking mechanism is in the unlocked state, and the branch pipe string 50 slides out from the inside of the outer pipe string 10 to drill the branch well; after completing the branch well drilling operation, the branch pipe string 50 can be recovered to the inside of the outer pipe string 10 for locking.
  • the mechanism returns to the locked state in a controllable manner, and the branch pipe string 50 is locked again through the locking mechanism to facilitate salvage of the outer pipe string.
  • the outer pipe string 10 includes a locking sub-section 11, a transition drill pipe 12, a window sleeve 21 and an anchoring sub-section 40 distributed from top to bottom.
  • the adjacent drill pipes and sub-sections They can all be threaded and fixed; the locking nipple 11 located at the upper end of the outer pipe string 10 can be connected to the upper drill string 101 .
  • the anchor sub-joint 40 located at the lower end of the outer pipe string 10 can be connected to the deflector 13, and the anchor sub-joint 40 and the deflector 13 can be directly connected; the anchor sub-joint 40 can also be connected to the deflector 13 through other downhole drilling tools. Connections to downhole power drilling tools such as turbines or screws.
  • the transition drill pipe 12 can be a conventional drill pipe and can be composed of several rigid drill pipes, ensuring that its length is greater than the design length of the branch wellbore to meet the needs of accommodating the branch pipe string 50 .
  • the branch pipe string 50 includes a locking head 52, a sidetracking string 53 and a sidetracking bit 54 distributed from top to bottom.
  • the locking head 52, the sidetracking string 53 and the drill bit can be Threaded or hinged connection, the sidetrack string 53 can be any flexible drill string that can achieve stable steering drilling of the branch wellbore; the locking head 52 located at the upper end of the branch string 50 can be threaded with the upper drilling string 51 connect.
  • a window 211 or a groove is provided on the wall of the window sleeve 21 .
  • the window sleeve 21 also includes a guide body 30 .
  • the guide body 30 is fixed near the window 211 or the groove.
  • the branch pipe string 50 can move along the guide body 30 Move downward to pass through window 211 or slotted window side drill.
  • the guide body 30 is provided with a liquid flow channel 31 that penetrates up and down.
  • the guide body 30 is provided with a guide slope 32 , and the guide slope 32 faces the window 211 .
  • Outer pipe string 10 and branch pipe string 50 The internal flow channels are independent of each other.
  • the liquid flow channel 31 serves as a circulation channel for drilling fluid.
  • the liquid flow channel 31 includes a flow gap 311 and a liquid flow channel 312, and an annular space between the outer pipe string 10 and the branch pipe string 50.
  • the gap is the flow gap 311, and the liquid flow channel 312 is provided inside the guide body 30. Normally, pipe scraping is performed before the above operations to ensure the inner diameter of the casing.
  • the locking mechanism includes a second locking mechanism 70 that can detachably lock the branch pipe string 50 and the outer pipe string 10 .
  • the second locking mechanism 70 is in a locked state.
  • the position can be adjusted by logging and the anchoring of the outer pipe string 10 is completed; during the sidetracking operation, the second locking mechanism 70 is in a locked state.
  • the locking mechanisms 70 are all in an unlocked state, and the branch pipe string 50 slides out from the inside of the outer pipe string 10 to drill the branch well; after completing the branch well drilling operation, the branch pipe string 50 is recovered to the inside of the outer pipe string 10, and the second lock The tightening mechanism 70 is restored to the locked state.
  • the second locking mechanism 70 is close to the sidetrack bit 54. As shown in FIG. 2, the second locking mechanism 70 is disposed at the bottom of the branch pipe string 50 near the sidetrack bit 54.
  • the window 211 on the window sleeve 21 can also be provided with a blocking structure for sealing, so as to isolate the inner cavity of the window sleeve 21 from the external annulus.
  • the second locking mechanism 70 can lock the branch pipe string 50 inside the outer pipe string 10.
  • the control form of the second locking mechanism 70 can include but is not limited to any form of mechanical control, hydraulic control, electric control, electromagnetic control, etc. .
  • the guide body 30 is provided with a groove 73; the second locking mechanism 70 includes a hook 71 and a hook driving mechanism 72.
  • the hook driving mechanism 72 can drive the hook 71 to expand and contract in the radial direction, and the hook 71 can follow the branch pipe string 50 Move upward into groove 73.
  • the hook driving mechanism 72 may be a hydraulic cylinder.
  • the groove 73 is provided on the guide slope 32 of the guide body 30. As shown in Figures 2, 3, 5 and 7, the opening of the groove 73 faces downward. Further, the groove 73 is a sliding groove 731. As shown in FIGS. 5 and 6 , the width of the sliding groove 731 decreases from bottom to top. The hook 71 can slide freely in the sliding groove 731. When the hook 71 slides to the uppermost end of the sliding groove 731, the hook 71 can hang the guide 30, and the branch pipe string 50 remains coaxial with the outer pipe string 10 at this time. The sliding groove 731 helps ensure that the hook 71 can smoothly enter the groove 73 to catch the guide body 30 when the branch pipe string 50 is retrieved into the outer pipe string 10 .
  • the lower end of the guide groove 73 is provided with a guide slope 732, so that even if the hook 71 deviates from the direction of the groove 73, it can be aligned under the action of the guide slope 732, and then completes the suspension along the groove 73 to the top to ensure that The hook 71 can accurately enter the sliding groove 731.
  • the branch pipe string 50 is locked and unlocked inside the outer pipe string 10 .
  • the locking mechanism includes a first locking mechanism 60 disposed above the second locking mechanism 70 .
  • first locking mechanism 60 or the second locking mechanism 70 can be selected as the locking mechanism. In some cases, it can also be The first locking mechanism 60 and the second locking mechanism 70 are provided at the same time.
  • control form of the first locking mechanism 60 may include but is not limited to any form of mechanical control, hydraulic control, electric control, electromagnetic control, etc.
  • the control form of the first locking mechanism 60 can adopt hydraulic control: the outer surface of the locking head 52 is provided with a slot 63; the first locking mechanism 60 includes a first hydraulic cylinder 621, a hydraulic piston 622 and a return spring 623.
  • the hydraulic cylinder 621 is provided on the locking nipple 11 .
  • the return spring 623 and the first hydraulic cylinder 621 are connected with the hydraulic piston 622 and can drive the hydraulic piston 622 into the card slot 63 or out of the card slot 63 .
  • the hydraulic piston 622 retracts to the inside of the locking nipple 11 under the action of the return spring 623.
  • the first locking mechanism 60 is in an unlocked state, and the branch pipe string 50 can be moved outside.
  • the inside of the pipe string 10 slides freely.
  • the hydraulic source of the first hydraulic cylinder 621 may be a surface or bottom-hole hydraulic source, and the first hydraulic cylinder 621 and the hydraulic source are connected and sealed through hydraulic pipelines or flow channels.
  • the outer surface of the locking head 52 is provided with a number of longitudinally distributed slots 63 , and accordingly, a multi-stage hydraulic piston 622 and a plurality of return springs 623 are provided.
  • the arrangement of the first hydraulic cylinder 621 and the return spring 623 is not limited to one type.
  • the first hydraulic cylinder 621 can be disposed close to the inner wall of the locking nipple 11
  • the return spring 623 can be disposed close to the locking nipple 11 . 11
  • the hydraulic piston 622 extends out of the inside of the locking nipple 11 under the action of the return spring 623, and the pressing piston enters the clamping position on the outer surface of the locking head 52.
  • the branch pipe string 50 is locked inside the outer pipe string 10 to remain fixed.
  • the first locking mechanism 60 , the second locking mechanism 70 and the anchoring system can all be hydraulically controlled.
  • the hydraulic control system includes surface and/or bottom-hole hydraulic sources, hydraulic lines and hydraulic actuators.
  • the hydraulic actuators are hydraulic actuators.
  • the first locking mechanism 60, the second locking mechanism 70 or the anchor drive mechanism 42 are controlled.
  • the control form of the first locking mechanism 60 adopts electromagnetic control: the outer surface of the locking head 52 is provided with a slot 63; the first locking mechanism 60 includes a first electromagnetic coil 611 and a first elastic piece 612. and the locking slip 613.
  • the first spring piece 612 and the first electromagnetic coil 611 are connected with the locking slip 613 and can drive the locking slip 613 into the card slot 63 or withdraw from the card slot 63.
  • the first electromagnetic coil 611 , the first elastic piece 612 and the locking slip 613 are all arranged inside the locking nipple 11 , and are evenly distributed around the circumference.
  • the first electromagnetic coil 611 is electrically connected to the ground through a connecting circuit.
  • the locking slip 613 In the free state, the locking slip 613 extends out of the inner wall surface of the locking nipple 11 under the restriction of the first elastic piece 612 and enters the slot 63, so that the branch pipe string 50 is locked inside the outer pipe string 10; when the power is turned on, When the first electromagnetic coil 611 generates magnetic force to attract the locking slip 613 to move toward the side close to the first electromagnetic coil 611, the first spring piece 612 overcomes the elastic potential energy and is compressed to achieve unlocking; when locking is required, the ground cuts off the electrical signal, so that The magnetic force of the first electromagnetic coil 611 disappears. At this time, the first elastic piece 612 releases the accumulated elastic potential energy and pushes the locking slip. 613 moves toward the side away from the first electromagnetic coil 611 to return to the free state to complete locking. Further, the first locking mechanism 60 also includes a first limiting mechanism 614 capable of limiting the displacement of the locking slip 613 .
  • the sidetracking tool can controllably anchor the outer pipe string 10 in the main wellbore.
  • the anchor sub-joint 40 starts to act.
  • the control form of the anchor sub-joint 40 may include but is not limited to any form of mechanical control, hydraulic control, electric control, electromagnetic control, etc.
  • the anchoring sub 40 includes an anchoring sub housing 41.
  • the anchoring sub housing 41 is equipped with an anchoring driving mechanism 42, a second elastic piece 43 and an anchoring telescopic claw 44.
  • the anchoring telescopic claw 44 is installed on the anchoring sub housing 41.
  • the claw 44 can be retracted inside the anchoring sub-joint 40 under the restriction of the second elastic piece 43, and the anchoring driving mechanism 42 can drive the anchoring telescopic claw 44 to move outward to anchor to the main wellbore wall.
  • the anchoring driving mechanism 42 includes a second electromagnetic coil 421.
  • the control form of the anchoring nipple 40 adopts electromagnetic control.
  • the second electromagnetic coil 421 is electrically connected to the ground through a connecting circuit.
  • the second electromagnetic coil 421, the second elastic piece 43 and the anchoring telescopic claw 44 are all arranged inside the anchoring nipple 40, and are evenly distributed around the circumference.
  • the anchoring telescopic claw 44 In the free state, the anchoring telescopic claw 44 is retracted inside the anchoring sub-joint 40 under the restriction of the second elastic piece 43, and the outer pipe string 10 can be drilled normally; when anchoring is required, the anchoring telescopic claw 44 extends out to anchor.
  • the second electromagnetic coil 421 When energized, the second electromagnetic coil 421 generates magnetic force to attract the anchoring telescopic claw 44 to move toward the side closer to the second electromagnetic coil 421.
  • the second spring piece 43 overcomes the elastic potential energy and is compressed to complete the anchoring; when the anchoring needs to be released, the ground is cut off.
  • the electrical signal causes the magnetic force of the second electromagnetic coil 421 to disappear.
  • the anchoring telescopic claw 44 is pushed to move toward the side away from the second electromagnetic coil 421 to return to the free state, completing the release of the jam.
  • the anchoring nipple 40 is provided with a second limiting mechanism 45 that limits the displacement of the anchoring telescopic claw 44 .
  • a fixed centralizer 80 is provided between the outer pipe string 10 and the branch pipe string 50 to ensure the stability of the branch pipe string 50 .
  • several fixed centralizers 80 are provided in the annular gap between the branch pipe string 50 and the outer pipe string 10 , and the lowermost fixed centralizer 80 is located at the upper end of the window sleeve 21 .
  • the fixed centralizer 80 may also be replaced with other centralizing devices and/or centralizing methods.
  • the diagonal guide is an oblique device.
  • the sidetracking tool includes a communication system.
  • the communication system includes: oblique device end communication equipment 91 and drill string end communication equipment 92, which can realize the communication between the branch pipe string 50 and the outer pipe string 10 and the ground control center. communication connection.
  • the second electromagnetic coil 421 is electrically connected to the oblique device end communication device 91 , and the anchoring of the outer pipe string 10 is controlled through the second electromagnetic coil 421 .
  • the sidetracking tool includes: an outer pipe body, an inclination, a branch pipe string, a drill bit, an inter-pipe cross-transmission system, and a power supply system;
  • the oblique device is fixedly connected to the outer pipe body, the drill bit is connected below the branch pipe string, and the outer diameter of the branch pipe string is smaller than the inner diameter of the outer pipe string; the branch pipe string is inserted into the Said outer tube body;
  • the inter-pipe cross-transmission system includes an inter-pipe communication device and/or an inter-pipe power cross-transmission device;
  • the pipe-to-pipe cross-transmission system includes the pipe-to-pipe cross-transmission system at the oblique device end and the drill string end-to-pipe cross-transmission system;
  • the cross-transmission system between pipes at the inclined device end includes communication equipment at the inclined device end and/or power cross-transmission equipment at the inclined device end,
  • the drill string end pipe-to-pipe cross-transmission system includes drill string end communication equipment and/or drill string end power cross-transmission equipment;
  • the cross-transfer system between pipes at the end of the inclined device is provided on the outer pipe body or the inclined device, and the cross-transmission system between pipes at the end of the drill string is provided on the branch pipe string;
  • the inter-pipe communication device includes one or a combination of one or more of an acoustic wireless communication device, an electromagnetic wireless communication device or an electrical connector;
  • the inter-pipe power cross-transmission device includes one or a combination of one or more of an electrical connector, a magnetic coupler, or an electromagnetic wireless energy transfer device.
  • the information and energy transmission channel between the branch pipe string and the outer pipe body can be opened, and cross-pipe string power transmission and cross-pipe string control between the branch pipe string and the outer pipe body can be realized.
  • One of the branch pipe string and the outer pipe body can provide power to the downhole functional device in the other, or one of the branch pipe string and the outer pipe body can control the downhole functional device of the other.
  • Downhole functional devices can be electric anchors, electric hydraulic anchors, guidance control devices, locking devices, drilling devices, pressure measurement devices, attitude measurement devices, axial displacement sensors, angular position sensors, and other branch drilling devices. Supporting equipment.
  • the power cross-transmission equipment at the inclined device end includes an energy receiving mechanism 83 and an energy receiving circuit 84
  • the power cross-transmission equipment at the drill string end includes an energy transmitting mechanism 81 and an energy transmission control circuit 82 ,
  • the energy emission control circuit is electrically connected to the underground generator, or the energy emission control circuit is electrically connected to the power supply at the wellhead end through a cable;
  • the energy emission mechanism is electrically connected to the energy emission control circuit, and the energy emission control circuit is used to convert the power supply in the drill string into high-frequency alternating current that can be supplied to the energy emission mechanism;
  • the energy transmitting mechanism transmits electrical energy to the energy receiving mechanism through wireless energy transfer.
  • the energy receiving circuit is electrically connected to the downhole functional device and is used to provide power to the downhole functional device;
  • the energy receiving mechanism is electrically connected to the energy receiving circuit, and the energy receiving circuit converts the high-frequency alternating current induced by the energy receiving mechanism into the power required by the underground functional device.
  • the energy receiving circuit may be electrically connected to the downhole functional device for powering the downhole functional device.
  • the energy receiving circuit converts the high-frequency alternating current sensed by the energy receiving mechanism into the power required by the downhole functional device.
  • the energy transmitting mechanism, energy transmitting circuit, energy receiving mechanism, and energy receiving circuit related to wireless energy transmission are all mature existing technologies and are widely used in mobile phone wireless charging, car wireless charging, bicycle wireless charging, and robot wireless charging. , which will not be described again here.
  • the energy wireless transmission frequency in the present invention is optimal between 5KHz and 500KHz, which is more suitable for underground working conditions.
  • the inter-tube communication device includes a drill string end communication device and an inclined device end communication device; the inclined device end communication device is communicatively connected to the drill string end communication device, and the inclined device end communication device is connected to the downhole communication device.
  • Inter-pipe communication devices can use wireless communication.
  • the communication equipment at the drill string end can communicate with the wellhead end through communication cables, mud pulsers, acoustic wave remote transmission or electromagnetic wave remote transmission devices. Since the communication between the downhole and the wellhead inside the drill string is a mature technology, there is no need in the present invention. Again.
  • the communication cable includes a downhole end connected to a signal transmitting circuit and a wellhead end connected to a communication terminal outside the wellhead.
  • the communication equipment on the side of the oblique device is a pressure gauge, turbine or flow meter. It controls the pressure and flow changes of the drilling fluid at the wellhead and transmits signals downward.
  • the communication equipment on the side of the oblique device further identifies the changes in pressure and flow and interprets the changes in pressure and flow issued at the wellhead.
  • the control instructions and the principle of this device are in the prior art and will not be described in detail in the present invention.
  • the electromagnetic wireless energy transfer device includes an energy transmitting circuit, an energy transmitting coil, an energy receiving coil, and an energy receiving circuit; the energy transmitting circuit is electrically connected to the energy transmitting coil, and the energy receiving coil is electrically connected to the energy receiving circuit. Electrical connection; the power supply system is electrically connected to the energy transmitting circuit, the underground functional device is connected to the energy receiving circuit, and the power supply system is an underground generator, an underground battery or a main cable.
  • the main cable includes a downhole end connected to the energy transmitting circuit and a wellhead end connected to a power source outside the wellhead.
  • the energy transmitting circuit converts the electric energy provided by the power supply system into alternating current.
  • the alternating current is converted into electromagnetic energy or magnetic energy through the energy transmitting coil.
  • the energy receiving coil converts the received electromagnetic energy or magnetic energy into alternating current.
  • the energy receiving coil The circuit converts the alternating current into a form of electrical energy usable by the underground functional device, and generally converts it into direct current through rectification to supply power to the underground functional device.
  • the inter-pipe communication device is an integral part of the communication system. As shown in Figures 10 and 11, the inter-pipe communication device includes oblique device end communication equipment 91 and drill string end communication equipment 92, which can realize the branch pipe string 50 and the outer pipe body. 10. Communication connection with the ground control center. The electric anchor is controlled by the inter-pipe communication device to anchor the outer pipe body to the casing or well wall;
  • the inter-tube communication device 90 includes a drill string end communication device 92 and an oblique device end communication device 91; the oblique device end communication device 91 is communicatively connected to the drill string end communication device 92, and the oblique device end communication device passes through a local
  • the communication cable 95 is connected to the electric anchor.
  • the oblique device end communication device 91 uses a pressure gauge, turbine or flow meter to receive instructions from the wellhead, and controls the pressure and flow changes of the drilling fluid at the wellhead to transmit the signal downward, and further transmits the signal through the oblique device.
  • the terminal communication device 91 recognizes this change in pressure and flow and interprets the control instructions issued at the wellhead.
  • the principle of this device is an existing technology and will not be described in detail in the present invention.
  • an underground battery 94 is used as a power supply system to supply power to the electric anchor.
  • the electric anchor is an electric-driven hydraulic anchor;
  • the electric-driven hydraulic anchor includes a hydraulic pump 88, an anchoring telescopic claw 44, a thrust mechanism 89, and an anchoring hydraulic cylinder 890.
  • the hydraulic pump 88, the anchoring telescopic claw 44, the thrust mechanism 89, and the anchoring hydraulic cylinder 890 are arranged on the outer tube body.
  • the hydraulic pump includes a motor 87 and a pump.
  • the hydraulic pump 88 drives the anchoring hydraulic cylinder 890 to push.
  • the thrust mechanism 89 moves, and the thrust mechanism 89 converts its movement along the tool axis into the radial movement of the anchoring telescopic claw 44 to achieve anchoring.
  • This embodiment also includes an anchor return spring, and the anchoring telescopic claw 44 can be retracted inside the anchoring sub-section under the restriction of the anchor return spring.
  • the anchor return spring may be annular and disposed inside the anchor telescopic claw 44 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种侧钻工具,该侧钻工具包括:外管柱(10)、斜向装置、分支管柱(50)、钻头(54)、管间跨传系统、电源系统;斜向装置与外管柱固定连接,钻头连接于分支管柱下方,分支管柱外直径小于外管体内直径;分支管柱插入设置于外管体内;管间跨传系统包括管间通讯装置(90)和/或管间电力跨传装置(800);管间跨传系统包括斜向装置端管间跨传系统和钻柱端管间跨传系统;斜向装置端管间跨传系统包括斜向装置端通讯设备(91)和/或斜向装置端电力跨传设备,钻柱端管间跨传系统包括钻柱端通讯设备(92)和/或钻柱端电力跨传设备;斜向装置端管间跨传系统设置于外管柱或斜向装置上,钻柱端管间跨传系统设置于分支管柱上。

Description

侧钻工具
相关申请
本申请要求专利申请号为202210847661.2、申请日为2022年07月19日、发明名称为“侧钻工具”的中国发明专利的优先权。
技术领域
本发明涉及钻井装备的技术领域,尤其涉及一种侧钻工具。
背景技术
通过对主井眼开窗侧钻,进行分支井钻井,可将主井眼周围的油层开采出来,从而提高油井油藏的开采效率,开窗侧钻技术是油气开采的关键技术。开窗侧钻过程中,先将斜向装置锚定在主井眼中,斜向装置中的分支钻柱在导向机构的作用下,对斜向装置进行开窗并沿主井眼的侧向钻井。
发明内容
本发明的目的是提供一种侧钻工具,分支管柱与外管柱能够可控地解锁和锁紧,在完成分支井钻井作业之后分支管柱能够回收至外管柱内部。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种侧钻工具,包括:外管体、斜向装置、分支管柱、钻头、管间跨传系统、电源系统;所述斜向装置与所述外管体固定连接,所述钻头连接于所述分支管柱下方,所述分支管柱外直径小于所述外管体内直径;所述分支管柱插入设置于所述外管体内;所述管间跨传系统包括管间通讯装置和/或管间电力跨传装置;所述管间跨传系统包括斜向装置端管间跨传系统和钻柱端管间跨传系统;所述斜向装置端管间跨传系统包括斜向装置端通讯设备和/或斜向装置端电力跨传设备,所述钻柱端管间跨传系统包括钻柱端通讯设备和/或钻柱端电力跨传设备;所述斜向装置端管间跨传系统设置于外管体或斜向装置上,所述钻柱端管间跨传系统设置于分支管柱上;所述管间通讯装置包括声学无线通讯装置、光无线通讯装置、电磁无线通讯装置或电接头中的一种或多种的组合;所述管间电力跨传装置包括电接头、磁耦合器或电磁无线能量传递装置中的一种或多种 的组合。
在优选的实施方式中,管间通讯装置包括钻柱端通讯设备、斜向装置端通讯设备;所述斜向装置端通讯设备与所述钻柱端通讯设备通讯连接,所述斜向装置端通讯设备与井下功能装置通讯连接。
在优选的实施方式中,电磁无线能量传递装置包括能量发射电路、能量发射线圈、能量接收线圈、能量接收电路;所述能量发射电路与所述能量发射线圈电连接,所述能量接收线圈与所述能量接收电路电连接;所述电源系统与所述能量发射电路电连接,井下功能装置与所述能量接收电路相连接,所述电源系统为井下发电机、井下电池或主电缆。
在优选的实施方式中,所述斜向装置端电力跨传设备包括能量接收机构和能量接收电路,所述钻柱端电力跨传设备包括能量发射机构和能量发射控制电路,能量发射机构与能量发射控制电路电连接,能量发射控制电路用于将钻柱内的电源电力转换为可以高频交流电供应给能量发射机构;能量发射机构通过无线电能传递的方式将电能跨传至能量接收机构,所述能量接收机构与所述能量接收电路之间电连接。
本发明提供一种侧钻工具,包括:外管柱、分支管柱和锁紧机构,所述分支管柱设置于所述外管柱内;所述外管柱包括开窗套筒和锚定短节,所述锚定短节能够锚定于主井眼内;所述分支管柱包括侧钻钻头,所述分支管柱能够在所述外管柱内沿所述分支管柱的纵向活动并经所述开窗套筒开窗侧钻;所述锁紧机构能够将所述分支管柱与所述外管柱可解脱地锁定。
在优选的实施方式中,所述侧钻工具包括管间通讯装置,所述管间通讯装置包括斜向装置端通讯设备和钻柱端通讯设备,所述管间通讯装置用于实现分支管柱和外管体与地面控制中心之间的通讯连接。
在优选的实施方式中,所述锚定短节包括电动锚定器,通过所述管间通讯装置控制所述电动锚定器实现外管体与套管或井壁的锚定。
在优选的实施方式中,所述开窗套筒的筒壁上开设有窗口或槽,所述开窗套筒还包括导向体,所述导向体固定于所述窗口或槽附近,所述分支管柱能够沿所述导向体向下活动以穿过所述窗口或槽开窗侧钻。
在优选的实施方式中,所述锁紧机构包括第二锁紧机构,所述第二锁紧机构能够将所述分支管柱与所述外管柱可解脱地锁定。
在优选的实施方式中,所述导向体设置有沟槽;所述第二锁紧机构包括挂钩和挂钩 驱动机构,所述挂钩驱动机构能够驱动所述挂钩沿径向伸缩,所述挂钩能够随所述分支管柱向上活动至进入所述沟槽中。
在优选的实施方式中,所述沟槽为滑动沟槽,所述滑动沟槽的宽度自下往上缩小。
在优选的实施方式中,所述分支管柱的外表面设置有卡槽;所述锁紧机构包括第一锁紧机构,所述第一锁紧机构包括第一电磁线圈、第一弹片和锁紧卡瓦,所述第一弹片和所述第一电磁线圈与所述锁紧卡瓦连接且能够驱动所述锁紧卡瓦进入所述卡槽或者从所述卡槽中退出。
在优选的实施方式中,所述电动锚定器为电驱液压锚定器,所述电驱液压锚定器包括液压泵、锚定伸缩爪、推力机构、锚定液压缸,所述液压泵、锚定伸缩爪、推力机构、锚定液压缸设置于所述外管体,所述液压泵包括电机和泵,所述液压泵驱动所述所述锚定液压缸推动推力机构运动,推力机构将其沿工具轴线的运动转化为锚定伸缩爪的径向运动,实现锚定。
在优选的实施方式中,所述电动锚定器为电力直驱锚定器,所述电力直驱锚定器包括电机、丝杠驱动机构、推力机构和锚定伸缩爪,所述电机能驱动丝杠驱动机构将电机的旋转动力转化为推力推动推力机构沿工具轴线运动,所述推力机构能够驱动所述锚定伸缩爪沿径向运动,并将工具锚定于主井眼井壁。
本发明的特点及优点是:
分支管柱能够可控地由外管柱内部滑出进行分支井钻进,锁紧机构可控制外管柱和分支管柱之间的结合与解脱。下钻过程中,锁紧机构处于锁闭状态;钻具下入至预定井深后,并通过锚定短节完成外管柱的锚定;侧钻作业期间,锁紧机构处于解锁状态,分支管柱由外管柱内部滑出进行分支井钻进;在完成分支井钻井作业之后,分支管柱能够回收至外管柱内部进行锁定,锁紧机构可控地恢复锁闭状态,分支管柱通过锁紧机构再次锁紧。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1为本发明提供的侧钻工具的结构示意图;
图2为本发明提供的侧钻工具的剖视图;
图3为本发明提供的侧钻工具中的分支管柱的结构示意图;
图4为本发明提供的侧钻工具中的第一锁紧机构一实施方式的结构示意图;
图5为本发明提供的侧钻工具中的第二锁紧机构的结构示意图;
图6为本发明提供的侧钻工具中的导向体的斜视图;
图7为图5中C处的局部放大图;
图8为本发明提供的侧钻工具中的锚定短节的结构示意图;
图9为本发明提供的侧钻工具中的第一锁紧机构又一实施方式的结构示意图。
图10为本发明提供的侧钻工具中的管间通讯装置示意图;
图11为本发明提供的侧钻工具中的管间通讯装置局部示意图;
图12为本发明提供的侧钻工具中的管间电力跨传装置示意图。
附图标号说明:
10、外管柱;11、锁紧短节;12、过渡钻杆;13、引斜;101、上部钻柱;
21、开窗套筒;211、窗口;
30、导向体;31、液流流道;311、流通间隙;312、液流通道;32、导向斜面;
40、锚定短节;41、锚定短节壳体;42、锚定驱动机构;421、第二电磁线圈;43、
第二弹片;44、锚定伸缩爪;45、第二限位机构;
50、分支管柱;51、送钻管柱;52、锁紧头;53、侧钻管柱;54、侧钻钻头;
60、第一锁紧机构;
611、第一电磁线圈;612、第一弹片;613、锁紧卡瓦;614、第一限位机构;
621、第一液压缸;622、液压活塞;623、复位弹簧;63、卡槽;
70、第二锁紧机构;71、挂钩;72、挂钩驱动机构
73、沟槽;731、滑动沟槽;732、导引斜面;80、固定扶正器;
800、管间电力跨传装置;81、能量发射机构;82、能量发射控制电路;83、能量
接收机构;84、能量接收电路;
86、电机控制电路;87、电机;88、液压泵;
89、推力机构;44、锚定伸缩爪;890、锚定液压缸;
90、管间通讯装置;
91、斜向装置端通讯设备;92、钻柱端通讯设备;93、下传指令接收装置;94、电
池;95、局部通讯缆。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明 的具体实施方式。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明提供了一种侧钻工具,如图1-图9所示,包括:外管柱10、分支管柱50和锁紧机构,分支管柱50设置于外管柱10内;外管柱10包括开窗套筒21和锚定短节40,锚定短节40能够锚定于主井眼内;分支管柱50包括侧钻钻头54,分支管柱50能够在外管柱10内沿分支管柱50的纵向活动并经开窗套筒21开窗侧钻;锁紧机构能够将分支管柱50与外管柱10可解脱地锁定。
分支管柱50能够可控地由外管柱10内部滑出进行分支井钻进,锁紧机构可控制外管柱10和分支管柱50之间的结合与解脱,当锁紧机构锁紧时,分支管固定于外管柱10内部;当锁紧机构解锁时,分支管柱50可受控地滑出或收回到外管柱10内部。下钻过程中,锁紧机构处于锁闭状态,钻具下入至预定井深后,可进行测井调整方位,并通过锚定短节40完成外管柱10的锚定;侧钻作业期间,锁紧机构处于解锁状态,分支管柱50由外管柱10内部滑出进行分支井钻进;在完成分支井钻井作业之后,分支管柱50能够回收至外管柱10内部进行锁定,锁紧机构可控地恢复锁闭状态,分支管柱50通过锁紧机构再次锁紧,方便对外管柱进行打捞。
如图1和图2所示,外管柱10包括自上而下分布的锁紧短节11、过渡钻杆12、开窗套筒21和锚定短节40,相邻钻杆和短节之间均可以螺纹连接固定;位于外管柱10上端的锁紧短节11可与上部钻柱101连接。位于外管柱10下端的锚定短节40可以连接引斜13,锚定短节40与引斜13之间可以直接连接;锚定短节40还可以通过其他井下钻具来与引斜13连接,如涡轮或螺杆等井底动力钻具。过渡钻杆12可为常规钻杆,可由若干刚性钻杆组成,保证其长度大于分支井眼的设计长度,以满足容纳分支管柱50的需求。
如图2和图3所示,分支管柱50包括自上而下分布的锁紧头52、侧钻管柱53和侧钻钻头54,锁紧头52、侧钻管柱53和钻头可采用螺纹或者铰接连接,侧钻管柱53可为任意一种能够实现分支井眼稳定导向钻进的柔性钻柱;位于分支管柱50上端的锁紧头52可通过螺纹与上部送钻管柱51连接。
进一步地,开窗套筒21的筒壁上开设有窗口211或槽,开窗套筒21还包括导向体30,导向体30固定于窗口211或槽附近,分支管柱50能够沿导向体30向下活动以穿过窗口211或槽开窗侧钻。在一实施例中,导向体30设置有上下贯通的液流流道31。导向体30设有导向斜面32,并且导向斜面32朝向窗口211。外管柱10和分支管柱50 的内部流道是相互独立的,主井眼钻井作业时,钻井液可通过液流通道312顺利向下流入引斜13进入井眼完成循环。液流流道31作为钻井液的流通通道,具体地,如图5所示,液流流道31包括流通间隙311和液流通道312,外管柱10和分支管柱50之间的环空间隙即为流通间隙311,液流通道312设于导向体30内部。通常情况下,上述作业前进行刮管作业,以保障套管的内通径。
在一些实施方式中,锁紧机构包括第二锁紧机构70,第二锁紧机构70能够将分支管柱50与外管柱10可解脱地锁定。下钻过程中,第二锁紧机构70均处于锁闭状态,钻具下入至预定井深后,可进行测井调整方位,并完成外管柱10的锚定;侧钻作业期间,第二锁紧机构70均处于解锁状态,分支管柱50由外管柱10内部滑出进行分支井钻进;在完成分支井钻井作业之后,分支管柱50回收至外管柱10内部,第二锁紧机构70均恢复锁闭状态。优选地,第二锁紧机构70靠近侧钻钻头54,如图2所示,第二锁紧机构70设置于分支管柱50底部近侧钻钻头54位置。开窗套筒21上的窗口211也可以设置封堵结构以进行封堵,以将开窗套筒21的内腔与外部环空隔开。
第二锁紧机构70可将分支管柱50锁定在外管柱10内部,第二锁紧机构70的控制形式可以包括但不仅限于机械控制、液压控制、电动控制、电磁控制等的任何一种形式。在一些实施方式中,导向体30设置有沟槽73;第二锁紧机构70包括挂钩71和挂钩驱动机构72,挂钩驱动机构72能够驱动挂钩71沿径向伸缩,挂钩71能够随分支管柱50向上活动至进入沟槽73中。当挂钩71伸出或缩回时,分支管柱50随之与导向体30锁定或脱钩。挂钩驱动机构72可以为液压缸。
沟槽73设置于导向体30的导向斜面32,如图2、图3、图5和图7所示,沟槽73的开口朝下。进一步地,沟槽73为滑动沟槽731,如图5和图6所示,滑动沟槽731的宽度自下往上缩小。挂钩71可在滑动沟槽731内自由滑动,当挂钩71滑动至滑动沟槽731最上端时,挂钩71即可挂住导向体30,分支管柱50此时与外管柱10保持同轴。通过滑动沟槽731,有利于确保当分支管柱50回收至外管柱10内部时挂钩71能顺利进入到沟槽73中以挂住导向体30。导向沟槽73的最下端设置有导引斜面732,使得挂钩71即使偏离沟槽73方位,也能在导引斜面732的作用下摆正,继而沿着沟槽73直至顶部完成悬挂,以确保挂钩71能够准确进入滑动沟槽731。
分支管柱50在外管柱10内部完成锁紧和解锁。在一些实施方式中,锁紧机构包括第一锁紧机构60,第一锁紧机构60设置于第二锁紧机构70的上方。该侧钻工具中,锁紧机构可以选用第一锁紧机构60或第二锁紧机构70中任一个,在一些情况下,也可以 同时设置第一锁紧机构60和第二锁紧机构70。
为实现分支管柱50的锁定和解锁,第一锁紧机构60的控制形式可以包括但不仅限于机械控制、液压控制、电动控制、电磁控制等的任何一种形式。
第一锁紧机构60的控制形式可以采用液压控制:锁紧头52的外表面设置有卡槽63;第一锁紧机构60包括第一液压缸621、液压活塞622和复位弹簧623,第一液压缸621设置于锁紧短节11,复位弹簧623和第一液压缸621与液压活塞622连接且能够驱动液压活塞622进入卡槽63或者从卡槽63中退出。当第一液压缸621内部保持低压时,液压活塞622在复位弹簧623的作用下缩回至锁紧短节11的内部,此时第一锁紧机构60处于解锁状态,分支管柱50可在外管柱10内部自由滑行。具体地,第一液压缸621的液压源可以是地面或井底液压源,第一液压缸621与液压源之间通过液压管线或流道进行连接和密封。如图4所示,锁紧头52的外表面设置有若干纵向分布的卡槽63,相应地,设置有多级液压活塞622和多个复位弹簧623。
第一液压缸621及复位弹簧623的设置方式不限于一种,例如:第一液压缸621可以设置在靠近锁紧短节11的内壁面一侧,复位弹簧623则设置在靠近锁紧短节11的外壁面一侧,当第一液压缸621内部保持低压时,液压活塞622在复位弹簧623的作用下伸出锁紧短节11的内部,压活塞进入到锁紧头52外表面的卡槽63内,分支管柱50锁定在外管柱10内部保持固定。
第一锁紧机构60、第二锁紧机构70和锚定系统可以均为液压控制,液压控制系统包括地面和/或井底液压源、液压线路和液压执行机构,液压执行机构即为采用液压控制的第一锁紧机构60、第二锁紧机构70或锚定驱动机构42。
在另一些实施方式中,第一锁紧机构60的控制形式采用电磁控制:锁紧头52的外表面设置有卡槽63;第一锁紧机构60包括第一电磁线圈611、第一弹片612和锁紧卡瓦613,第一弹片612和第一电磁线圈611与锁紧卡瓦613连接且能够驱动锁紧卡瓦613进入卡槽63或者从卡槽63中退出。如图9所示,第一电磁线圈611、第一弹片612和锁紧卡瓦613均设置于锁紧短节11内部,并呈圆周均匀分布。第一电磁线圈611通过连接电路与地面电连接。自由状态时,锁紧卡瓦613在第一弹片612的限制下伸出锁紧短节11的内壁面并进入到卡槽63内时,使分支管柱50锁定在外管柱10内部;当通电时,第一电磁线圈611产生磁力吸引锁紧卡瓦613朝靠近第一电磁线圈611一侧移动,第一弹片612克服弹性势能被压缩,实现解锁;当需要锁定时,地面切断电信号,使得第一电磁线圈611磁力消失,此时,第一弹片612释放蓄积的弹性势能,推动锁紧卡瓦 613朝远离第一电磁线圈611的一侧移动恢复自由状态完成锁定。进一步地,第一锁紧机构60还包括能够限制锁紧卡瓦613位移的第一限位机构614。
通过锚定短节40,该侧钻工具能够可控地完成外管柱10在主井眼内锚定,当主井眼钻至预定井深需要开窗侧钻时,锚定短节40开始动作,完成锚定,锚定短节40的控制形式可以包括但不仅限于机械控制、液压控制、电动控制、电磁控制等的任何一种形式。锚定短节40包括锚定短节壳体41,在一些实施方式中,锚定短节壳体41上安装有锚定驱动机构42、第二弹片43和锚定伸缩爪44,锚定伸缩爪44能够在第二弹片43的限制下缩回在锚定短节40内部,锚定驱动机构42能够驱动锚定伸缩爪44朝外活动以锚定于主井眼井壁。锚定驱动机构42包括第二电磁线圈421,锚定短节40的控制形式采用电磁控制,第二电磁线圈421通过连接电路与地面电连接。第二电磁线圈421、第二弹片43和锚定伸缩爪44均设置于锚定短节40内部,并呈圆周均匀分布。自由状态时,锚定伸缩爪44在第二弹片43的限制下缩回在锚定短节40内部,外管柱10可以正常钻进;在需要锚定时,锚定伸缩爪44伸出锚定短节40外壁面。当通电时,第二电磁线圈421产生磁力吸引锚定伸缩爪44朝靠近第二电磁线圈421一侧移动,第二弹片43克服弹性势能被压缩,完成锚定;当需要解除锚定时,地面切断电信号,使得第二电磁线圈421磁力消失,此时,由于第二弹片43释放蓄积的弹性势能,推动锚定伸缩爪44朝远离第二电磁线圈421的一侧移动恢复自由状态,完成解卡。需要说明的是,当锚定短节40完成锚定后,开窗套筒21上的窗口211位置应处于设计开窗侧钻位置。优选地,锚定短节40设置有限制锚定伸缩爪44位移的第二限位机构45。
如图3所示,外管柱10与分支管柱50之间设置有固定扶正器80,以确保分支管柱50的稳定性。优选地,分支管柱50与外管柱10的环空间隙内设置有若干固定扶正器80,并且最下端的固定扶正器80位于开窗套筒21的上端。固定扶正器80也可以替换为其他扶正装置和/或扶正方法。
引斜即为斜向装置。
如图2所示,该侧钻工具包括通讯系统,通讯系统包括:斜向装置端通讯设备91和钻柱端通讯设备92,能实现分支管柱50和外管柱10与地面控制中心之间的通讯连接。具体地,第二电磁线圈421与斜向装置端通讯设备91电连接,通过第二电磁线圈421控制外管柱10的锚定。
在一实施方式中,侧钻工具包括:外管体、引斜、分支管柱、钻头、管间跨传系统、电源系统;
所述斜向装置与所述外管体固定连接,所述钻头连接于所述分支管柱下方,所述分支管柱外直径小于所述外管体内直径;所述分支管柱插入设置于所述外管体内;
如图10-图12所示,所述管间跨传系统包括管间通讯装置和/或管间电力跨传装置;
所述管间跨传系统包括斜向装置端管间跨传系统和钻柱端管间跨传系统;
所述斜向装置端管间跨传系统包括斜向装置端通讯设备和/或斜向装置端电力跨传设备,
所述钻柱端管间跨传系统包括钻柱端通讯设备和/或钻柱端电力跨传设备;
所述斜向装置端管间跨传系统设置于外管体或斜向装置上,所述钻柱端管间跨传系统设置于分支管柱上;
所述管间通讯装置包括声学无线通讯装置、电磁无线通讯装置或电接头中的一种或多种的组合;
所述管间电力跨传装置包括电接头、磁耦合器或电磁无线能量传递装置中的一种或多种的组合。
该实施方式中,可以实现打通了分支管柱和外管体之间的信息和能量传递通道,实现分支管柱和外管体之间的跨管柱电能传递和跨管柱控制。可以由分支管柱和外管体的一方为另一方内的井下功能装置供电,或者由分支管柱和外管体的一方控制另外一方的井下功能装置。
井下功能装置可以为电动锚定器、电驱液压锚定器、导向控制装置、锁紧装置、送钻装置、压力测量装置、姿态测量装置、轴向位移传感器、角度位置传感器、及其他分支钻井配套装置。
进一步地,如图12所示,所述斜向装置端电力跨传设备包括能量接收机构83和能量接收电路84,所述钻柱端电力跨传设备包括能量发射机构81和能量发射控制电路82,
所述能量发射控制电路与井下发电机电连接,或者所述能量发射控制电路通过电缆与井口端的电源电连接;
能量发射机构与能量发射控制电路电连接,能量发射控制电路用于将钻柱内的电源电力转换为可以高频交流电供应给能量发射机构;
能量发射机构通过无线电能传递的方式将电能跨传至能量接收机构,
所述能量接收电路与所述井下功能装置电连接,用于为井下功能装置供电;
所述能量接收机构与所述能量接收电路之间电连接,所述能量接收电路将能量接收机构感应到的高频交流电转换为井下功能装置所需的电源。
所述能量接收电路可以与所述井下功能装置电连接,用于为井下功能装置供电,所述能量接收电路将能量接收机构感应到的高频交流电转换为井下功能装置所需的电源。
所述无线能量传输有关的能量发射机构、能量发射电路、能量接收机构、能量接收电路均为成熟的现有技术,在手机无线充电、汽车无线充电、自行车无线充电、机器人无线充电中广为应用,此处不再赘述。本发明中能量无线传输频率在5KHz-500KHz之间最佳,更适宜井下的工况环境。
进一步地,管间通讯装置包括钻柱端通讯设备、斜向装置端通讯设备;斜向装置端通讯设备与所述钻柱端通讯设备通讯连接,所述斜向装置端通讯设备与所述井下功能装置通讯连接。管间通讯装置可以采用无线通讯。
钻柱端通讯设备通过通讯缆、泥浆脉冲器、声波遥传或电磁波遥传装置均能实现与井口端的通讯,由于在钻柱内部实现井下和井口间的通讯属于成熟技术,因此本发明中不再赘述。
具体地,通讯缆包括井下端和井口端,所述井下端连接信号发射电路,所述井口端连接井口外的通讯终端。
斜向装置端通讯设备为压力计或涡轮或流量计,通过井口处控制钻井液的压力流量变化向下传递信号,进一步通过斜向装置端通讯设备识别这种压力流量的变化解读井口处下达的控制指令,该装置原理为现有技术,本发明不做赘述。
进一步地,电磁无线能量传递装置包括能量发射电路、能量发射线圈、能量接收线圈、能量接收电路;所述能量发射电路与所述能量发射线圈电连接,所述能量接收线圈与所述能量接收电路电连接;所述电源系统与所述能量发射电路电连接,所述井下功能装置与所述能量接收电路相连接,所述电源系统为井下发电机、井下电池或主电缆。
具体地,主电缆包括井下端和井口端,所述井下端连接能量发射电路,所述井口端连接井口外的电源。所述能量发射电路将电源系统提供的电能转化为交流电,所述交流电通过能量发射线圈转化为电磁能或磁能,所述能量接收线圈将接收到的电磁能或者磁能转化为交流电,所述能量接收电路将所述交流电转化为井下功能装置可用的电能形式,一般通过整流转化为直流电向井下功能装置供电。
管间通讯装置为通讯系统的组成部分,如图10和图11所示,管间通讯装置包括斜向装置端通讯设备91和钻柱端通讯设备92,能实现分支管柱50和外管体10与地面控制中心之间的通讯连接,通过所述管间通讯装置控制电动锚定器实现外管体与套管或井壁的锚定;
管间通讯装置90包括钻柱端通讯设备92、斜向装置端通讯设备91;斜向装置端通讯设备91与所述钻柱端通讯设备92通讯连接,所述斜向装置端通讯设备通过局部通讯缆95与所述电动锚定器通讯连接。
本实施例中,所述斜向装置端通讯设备91采用压力计或涡轮或流量计接收来自井口下传的指令,通过井口处控制钻井液的压力流量变化向下传递信号,进一步通过斜向装置端通讯设备91识别这种压力流量的变化解读井口处下达的控制指令,该装置原理为现有技术,本发明不做赘述。
本实施例中,采用井下电池94作为电源系统为所述电动锚定器供电。
如图11所示,所述电动锚定器为电驱液压锚定器;所述电驱液压锚定器包括液压泵88、锚定伸缩爪44、推力机构89、锚定液压缸890,所述液压泵88、锚定伸缩爪44、推力机构89、锚定液压缸890设置于所述外管体,所述液压泵包括电机87和泵,所述液压泵88驱动锚定液压缸890推动推力机构89运动,推力机构89将其沿工具轴线的运动转化为锚定伸缩爪44的径向运动,实现锚定。
本实施例还包括锚定器复位弹簧,所述锚定伸缩爪44能够在锚定器复位弹簧的限制下缩回在所述锚定短节内部。具体地,锚定器复位弹簧可以为环形,设置于锚定伸缩爪44的内侧。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化与修改,均应属于本发明保护的范围。

Claims (14)

  1. 一种侧钻工具,其中,包括:外管体、斜向装置、分支管柱、钻头、管间跨传系统、电源系统;
    所述斜向装置与所述外管体固定连接,所述钻头连接于所述分支管柱下方,所述分支管柱外直径小于所述外管体内直径;所述分支管柱插入设置于所述外管体内;
    所述管间跨传系统包括管间通讯装置和/或管间电力跨传装置;
    所述管间跨传系统包括斜向装置端管间跨传系统和钻柱端管间跨传系统;
    所述斜向装置端管间跨传系统包括斜向装置端通讯设备和/或斜向装置端电力跨传设备,
    所述钻柱端管间跨传系统包括钻柱端通讯设备和/或钻柱端电力跨传设备;
    所述斜向装置端管间跨传系统设置于外管体或斜向装置上,所述钻柱端管间跨传系统设置于分支管柱上;
    所述管间通讯装置包括声学无线通讯装置、光无线通讯装置、电磁无线通讯装置或电接头中的一种或多种的组合;
    所述管间电力跨传装置包括电接头、磁耦合器或电磁无线能量传递装置中的一种或多种的组合。
  2. 根据权利要求1所述的侧钻工具,其中,管间通讯装置包括钻柱端通讯设备、斜向装置端通讯设备;所述斜向装置端通讯设备与所述钻柱端通讯设备通讯连接,所述斜向装置端通讯设备与井下功能装置通讯连接。
  3. 根据权利要求1所述的侧钻工具,其中,电磁无线能量传递装置包括能量发射电路、能量发射线圈、能量接收线圈、能量接收电路;所述能量发射电路与所述能量发射线圈电连接,所述能量接收线圈与所述能量接收电路电连接;所述电源系统与所述能量发射电路电连接,井下功能装置与所述能量接收电路相连接,所述电源系统为井下发电机、井下电池或主电缆。
  4. 根据权利要求1所述的侧钻工具,其中,
    所述斜向装置端电力跨传设备包括能量接收机构和能量接收电路,所述钻柱端电力跨传设备包括能量发射机构和能量发射控制电路,
    能量发射机构与能量发射控制电路电连接,能量发射控制电路用于将钻柱内的电源电力转换为可以高频交流电供应给能量发射机构;
    能量发射机构通过无线电能传递的方式将电能跨传至能量接收机构,
    所述能量接收机构与所述能量接收电路之间电连接。
  5. 一种侧钻工具,其中,包括:外管柱、分支管柱和锁紧机构,所述分支管柱设置于所述外管柱内;所述外管柱包括开窗套筒和锚定短节,所述锚定短节能够锚定于主井眼内;
    所述分支管柱包括侧钻钻头,所述分支管柱能够在所述外管柱内沿所述分支管柱的纵向活动并经所述开窗套筒开窗侧钻;所述锁紧机构能够将所述分支管柱与所述外管柱可解脱地锁定。
  6. 根据权利要求5所述的侧钻工具,其中,所述侧钻工具包括管间通讯装置,所述管间通讯装置包括斜向装置端通讯设备和钻柱端通讯设备,所述管间通讯装置用于实现分支管柱和外管体与地面控制中心之间的通讯连接。
  7. 根据权利要求6所述的侧钻工具,其中,所述锚定短节包括电动锚定器,通过所述管间通讯装置控制所述电动锚定器实现外管体与套管或井壁的锚定。
  8. 根据权利要求5所述的侧钻工具,其中,所述开窗套筒的筒壁上开设有窗口或槽,所述开窗套筒还包括导向体,所述导向体固定于所述窗口或槽附近,所述分支管柱能够沿所述导向体向下活动以穿过所述窗口或槽开窗侧钻。
  9. 根据权利要求8所述的侧钻工具,其中,所述锁紧机构包括第二锁紧机构,所述第二锁紧机构能够将所述分支管柱与所述外管柱可解脱地锁定。
  10. 根据权利要求9所述的侧钻工具,其中,所述导向体设置有沟槽;所述第二锁紧机构包括挂钩和挂钩驱动机构,所述挂钩驱动机构能够驱动所述挂钩沿径向伸缩,所述挂钩能够随所述分支管柱向上活动至进入所述沟槽中。
  11. 根据权利要求10所述的侧钻工具,其中,所述沟槽为滑动沟槽,所述滑动沟槽的宽度自下往上缩小。
  12. 根据权利要求5所述的侧钻工具,其中,所述分支管柱的外表面设置有卡槽;所述锁紧机构包括第一锁紧机构,所述第一锁紧机构包括第一电磁线圈、第一弹片和锁紧卡瓦,所述第一弹片和所述第一电磁线圈与所述锁紧卡瓦连接且能够驱动所述锁紧卡瓦进入所述卡槽或者从所述卡槽中退出。
  13. 根据权利要求7所述的侧钻工具,其中,所述电动锚定器为电驱液压锚定器,所述电驱液压锚定器包括液压泵、锚定伸缩爪、推力机构、锚定液压缸,所述液压泵、锚定伸缩爪、推力机构、锚定液压缸设置于所述外管体,所述液压泵包括电机和泵,所述液压泵驱动所述所述锚定液压缸推动推力机构运动,推力机构将其沿工具轴线的运动 转化为锚定伸缩爪的径向运动,实现锚定。
  14. 根据权利要求7所述的侧钻工具,其中,所述电动锚定器为电力直驱锚定器,所述电力直驱锚定器包括电机、丝杠驱动机构、推力机构和锚定伸缩爪,所述电机能驱动丝杠驱动机构将电机的旋转动力转化为推力推动推力机构沿工具轴线运动,所述推力机构能够驱动所述锚定伸缩爪沿径向运动,并将工具锚定于主井眼井壁。
PCT/CN2023/108253 2022-07-19 2023-07-19 侧钻工具 WO2024017312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210847661.2 2022-07-19
CN202210847661.2A CN117449768A (zh) 2022-07-19 2022-07-19 侧钻工具

Publications (1)

Publication Number Publication Date
WO2024017312A1 true WO2024017312A1 (zh) 2024-01-25

Family

ID=89584205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108253 WO2024017312A1 (zh) 2022-07-19 2023-07-19 侧钻工具

Country Status (2)

Country Link
CN (1) CN117449768A (zh)
WO (1) WO2024017312A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2718196Y (zh) * 2004-07-30 2005-08-17 中国石化集团中原石油勘探局钻井工程技术研究院 一种开窗侧钻用斜向器
CN101660391A (zh) * 2008-08-29 2010-03-03 中国石油天然气集团公司 一种径向水平钻井装置
RU2677520C1 (ru) * 2018-03-20 2019-01-17 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Устройство для повторного входа в боковой ствол скважины
CN111852444A (zh) * 2020-06-11 2020-10-30 中国海洋石油集团有限公司 随钻近钻头测量下短节以及随钻近钻头测量装置
CN113153151A (zh) * 2021-02-24 2021-07-23 万晓跃 一种柔性导向钻井工具
CN114109249A (zh) * 2021-10-13 2022-03-01 中国石油大学(北京) 连续管柔性钻杆超短半径径向钻井管柱、系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2718196Y (zh) * 2004-07-30 2005-08-17 中国石化集团中原石油勘探局钻井工程技术研究院 一种开窗侧钻用斜向器
CN101660391A (zh) * 2008-08-29 2010-03-03 中国石油天然气集团公司 一种径向水平钻井装置
RU2677520C1 (ru) * 2018-03-20 2019-01-17 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Устройство для повторного входа в боковой ствол скважины
CN111852444A (zh) * 2020-06-11 2020-10-30 中国海洋石油集团有限公司 随钻近钻头测量下短节以及随钻近钻头测量装置
CN113153151A (zh) * 2021-02-24 2021-07-23 万晓跃 一种柔性导向钻井工具
CN114109249A (zh) * 2021-10-13 2022-03-01 中国石油大学(北京) 连续管柔性钻杆超短半径径向钻井管柱、系统及方法

Also Published As

Publication number Publication date
CN117449768A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
US6923273B2 (en) Well system
AU743707B2 (en) Well system
CA2136559C (en) Bottom hole drilling assembly
US5353872A (en) System, support for carrying out measurings and/or servicings in a wellbore or in a well in the process of being drilled and uses thereof
EP1297240B1 (en) A method for drilling with casing
US7681642B2 (en) Method for logging after drilling
US7475742B2 (en) Method for drilling with casing
US9347277B2 (en) System and method for communicating between a drill string and a logging instrument
US8258975B2 (en) Communication system for communication with and remote activation of downhole tools and devices used in association with wells for production of hydrocarbons
EP0049668A2 (en) Method and apparatus for conducting logging or perforating operations in a borehole
CA2508852A1 (en) Drilling method
RU2587205C2 (ru) Поршневая тянущая система, используемая в подземных скважинах
WO2023060223A2 (en) Kickover tool
WO2024017312A1 (zh) 侧钻工具
WO2022081020A1 (en) Establishing sidetracks in a well
RU2678252C2 (ru) Способ создания перфорационных каналов в обсаженной скважине
US20230349249A1 (en) Improved downhole anchor system
OA10965A (en) Logging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842374

Country of ref document: EP

Kind code of ref document: A1