WO2024017207A1 - 极板组件、氧气处理装置以及冰箱 - Google Patents

极板组件、氧气处理装置以及冰箱 Download PDF

Info

Publication number
WO2024017207A1
WO2024017207A1 PCT/CN2023/107750 CN2023107750W WO2024017207A1 WO 2024017207 A1 WO2024017207 A1 WO 2024017207A1 CN 2023107750 W CN2023107750 W CN 2023107750W WO 2024017207 A1 WO2024017207 A1 WO 2024017207A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
treatment device
oxygen treatment
protection mechanism
oxygen
Prior art date
Application number
PCT/CN2023/107750
Other languages
English (en)
French (fr)
Inventor
苗建林
朱小兵
李春阳
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024017207A1 publication Critical patent/WO2024017207A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to controlled atmosphere preservation technology, and in particular to an electrode plate assembly, an oxygen treatment device and a refrigerator.
  • Controlled atmosphere preservation technology is a technology that extends the storage life of food by adjusting the composition of ambient gases.
  • the oxygen treatment device can process oxygen through the electrochemical reaction of the electrode to create a low-oxygen preservation atmosphere or a high-oxygen preservation atmosphere.
  • the object of the present invention is to provide an improved electrode plate assembly, oxygen treatment device and refrigerator, which can use a pressure protection mechanism to protect the electrode plate, reduce or avoid the deformation of the electrode plate under pressure, and improve the structural stability of the electrode plate.
  • the present invention provides an electrode plate assembly for an oxygen treatment device, including an electrode plate and a pressure protection mechanism.
  • the electrode plate is used to process oxygen by performing an electrochemical reaction under the action of electrolysis voltage; pressure
  • the protection mechanism surrounds both sides of the plate surface of the electrode plate to clamp the electrode plate, thereby preventing the electrode plate from deforming.
  • the pressure protection mechanism has a porous area defining a plurality of holes to allow the electrode plate to contact the surrounding environment through the porous area; and the porous area is evenly distributed on both sides of the surface of the electrode plate. side.
  • the pressure protection mechanism includes a frame part surrounding the edge of the electrode plate and a face frame part laid flat on both sides of the plate surface of the electrode plate; the porous area is located on the face frame part; and The edge of the electrode plate is embedded and clamped in the frame part.
  • the surface frame portion laid flat on each side of the electrode plate surface includes a plurality of staggered support ribs, and each of the support ribs is respectively disposed across an inner peripheral surface of the frame portion. Between different parts; and the gaps between adjacent support ribs form the porous area.
  • the plurality of support ribs include a plurality of first support ribs arranged at intervals along the first direction and a plurality of second support ribs arranged at intervals along the second direction.
  • the face frame part, the frame part and the electrode plate are integrally injection molded; and an annular groove is formed on the frame part into which the edge of the electrode plate is embedded to achieve assembly.
  • the electrode plate includes a power connection end protruding upward from the main plate surface; and a power connection shell is provided above the frame portion, and a groove is formed inside the power connection shell to pass through the groove.
  • the connector passes through the power connection shell.
  • the pressure protection mechanism is made of flame retardant material.
  • the present invention also provides an oxygen treatment device, which is used to treat oxygen through electrochemical reaction under the action of electrolysis voltage, and includes a shell and a plate assembly for the oxygen treatment device as described above. .
  • the present invention also provides a refrigerator, which includes a box shell and an oxygen treatment device as described above.
  • a storage space is formed inside the box shell.
  • the oxygen treatment device is used to pass the oxygen under the action of electrolysis voltage.
  • An electrochemical reaction is performed to process the oxygen in the storage space.
  • the beneficial effects of the present invention are: the polar plate assembly, oxygen treatment device and refrigerator of the present invention use a pressure protection mechanism to wrap around both sides of the electrode plate to clamp the electrode plate to form a polar plate assembly.
  • the pressure protection mechanism can Provide support for the surface of the electrode plate, so that the surface of the electrode plate can enhance its pressure resistance under the support of the pressure protection mechanism.
  • the solution of the present invention uses a pressure protection mechanism to protect the electrode plate, which can reduce or avoid the deformation of the electrode plate under pressure and improve the structural stability and performance stability of the electrode plate.
  • a porous area is provided on the pressure protection mechanism to allow the electrode plate to contact the surrounding environment, so that the electrode plate can contact the gas and gas in the surrounding environment through the porous area.
  • the liquid is conducive to reducing or avoiding the adverse effects of the pressure protection mechanism on the electrochemical reaction of the electrode plate, so that the electrode plate can normally perform the oxygen processing function under the protection of the pressure protection mechanism.
  • the pressure protection mechanism since the porous areas of the pressure protection mechanism are evenly distributed on both sides of the electrode plate, the pressure protection mechanism with the porous area can be in contact with multiple locations of the electrode plate. Therefore, the pressure protection mechanism has high structural strength and can play a good supporting role without affecting the contact between the electrode plate and the surrounding environment, preventing the electrode plate from deforming under pressure.
  • the pressure protection mechanism of the present invention can also improve the stability of the electrical connection structure between the electrode plate and the external power supply.
  • Figure 1 is a schematic structural diagram of a plate assembly for an oxygen treatment device according to one embodiment of the present invention
  • FIG 2 is a schematic structural diagram of the plate assembly used in the oxygen treatment device shown in Figure 1 from another perspective;
  • FIG 3 is a schematic exploded view of the plate assembly used in the oxygen treatment device shown in Figure 1;
  • Figure 4 is a schematic structural diagram of the pressure protection mechanism of the plate assembly of the oxygen treatment device shown in Figure 1;
  • Figure 5 is a schematic cross-sectional view of the pressure protection mechanism of the plate assembly of the oxygen treatment device shown in Figure 4;
  • Figure 6 is a schematic front view of the housing of the oxygen treatment device according to one embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of the housing of an oxygen treatment device according to an embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a plate assembly 40 for an oxygen treatment device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the plate assembly 40 for the oxygen treatment device shown in FIG. 1 from another perspective.
  • FIG. 3 is a schematic exploded view of the plate assembly 40 for the oxygen treatment device shown in FIG. 1 .
  • the plate assembly 40 as a whole can be used as an electrode of the oxygen treatment device and is assembled to a designated position of the oxygen treatment device to perform the oxygen treatment function during the electrochemical reaction.
  • the plate assembly 40 may generally include an electrode plate 700 and a pressure protection mechanism 900 .
  • the electrode plate 700 is used to process oxygen by performing electrochemical reactions under the action of electrolysis voltage, such as consuming oxygen and/or generating oxygen, thereby regulating the oxygen content in the space.
  • the electrode plate 700 may be in a plate shape, such as a plate-shaped electrode.
  • the surface of the electrode plate 700 may be a flat surface.
  • the electrochemical reaction type of the electrode plate 700 is not specifically limited in this embodiment, as long as oxygen can be used as a reactant or product, for example, oxygen reduction reaction, or oxidation reaction of oxygen-containing ions, etc.
  • the pressure protection mechanism 900 wraps around both sides of the electrode plate 700 to clamp the electrode plate 700 to prevent the electrode plate 700 from deforming. "Clamping" means that the interaction force is generated between the pressure protection mechanism 900 and the surface of the electrode plate 700 to keep the surface of the electrode plate 700 flat.
  • the pressure protection mechanism 900 is in contact with both sides of the electrode plate 700 at the same time, thereby playing a clamping role.
  • the specific shape of the pressure protection mechanism 900 is not specifically limited in this embodiment, as long as it surrounds both sides of the electrode plate 700 .
  • the pressure protection mechanism 900 may include a first panel disposed on one side of the electrode plate 700 and a second panel disposed on the other side of the electrode plate 700; or the pressure protection mechanism 900 may be formed to surround the electrode.
  • the board surface and edge protective frame structure of the board 700 may be formed to surround the electrode.
  • the pressure protection mechanism 900 is used to wrap around both sides of the electrode plate 700 to clamp the electrode plate 700 to form the electrode plate assembly 40.
  • the pressure protection mechanism 900 can provide support for the plate surface of the electrode plate 700, so that The plate surface of the electrode plate 700 can enhance its pressure resistance under the support of the pressure protection mechanism 900 .
  • the solution of this embodiment uses the pressure protection mechanism 900 to protect the electrode plate 700, which can reduce or avoid the deformation of the electrode plate 700 under pressure, and improve the structural stability and performance stability of the electrode plate 700.
  • the pressure protection mechanism 900 has a porous area defining a plurality of holes 910 to allow the electrode plate 700 to contact the surrounding environment through the porous area. And the porous areas are evenly distributed on both sides of the electrode plate 700 .
  • the holes 910 in the porous area can serve as windows for the plate surface of the electrode plate 700 to contact the surrounding environment. For example, gas or liquid in the environment where the electrode plate 700 is located can contact the surface of the electrode plate 700 through the holes 910 .
  • the electrode plate 700 can be contacted with gases and liquids in the surrounding environment through the porous area, which is beneficial to reducing or avoiding the impact of the pressure protection mechanism 900 on the electrode plate.
  • the electrochemical reaction produces adverse effects, causing the electrode plate 700 to normally perform the oxygen treatment function under the protection of the pressure protection mechanism 900 .
  • the porous areas of the pressure protection mechanism 900 are evenly distributed on both sides of the electrode plate 700, the porous areas The pressure protection mechanism 900 can generate force with multiple points of the electrode plate 700. Therefore, the pressure protection mechanism 900 has high structural strength and can provide good support without affecting the contact between the electrode plate 700 and the surrounding environment. Function to prevent the electrode plate 700 from deforming under pressure.
  • the pressure protection mechanism 900 includes a frame portion 920 surrounding the edge of the electrode plate 700 and a face frame portion 940 laid flat on both sides of the electrode plate 700 .
  • the edge of the electrode plate 700 is embedded in and clamped by the frame portion 920 . That is to say, the pressure protection mechanism 900 is clamped on both sides of the plate surface of the electrode plate 700 and clamps the edges of the electrode plate 700 to form a comprehensive protection structure.
  • the porous area is located on the surface frame portion 940 so that the surface of the electrode plate 700 is in contact with the surrounding environment.
  • the frame part 920 may be annular.
  • the face frame part 940 may be laid flat on the inner circumferential area of the annular frame part 920 .
  • a gap is formed between the two face frame portions 940 to accommodate the electrode plate 700 .
  • the pressure protection mechanism 900 can not only be used as a comprehensive protective structure to completely surround the electrode plate 700, assisting the electrode plate 700 in improving its ability to resist external pressure impacts, but also can be used to fix and assemble the electrode plate 700 to the oxygen treatment system.
  • the connection structure of the device can cleverly reduce the difficulty of assembling the electrode plate 700 relative to the oxygen treatment device.
  • the electrode plate 700 only needs to be assembled to the pressure protection mechanism 900 first, and then the pressure protection mechanism 900 is fixed to the oxygen treatment device. During the assembly process of the oxygen treatment device, the electrode plate 700 does not need to be directly assembled to the oxygen treatment device.
  • the face frame part 940 is integrally injection molded with the frame part 920 and the electrode plate 700, so as to be connected to, embedded in, or clamped with each other. That is to say, the entire pressure protection mechanism 900 can be manufactured using an injection molding process.
  • the frame portion 920 is formed with an annular groove 922 in which the edge of the power supply plate 700 is embedded to achieve assembly.
  • the electrode plate 700 can be embedded in the face frame part 940 and the frame part 920 during the molding process, so that the edge of the electrode plate 700 is embedded in the face frame part 940, and the electrode plate 700
  • the board surface is embedded between the two surface frame parts 940 to be clamped.
  • Manufacturing the pressure protection mechanism 900 through an integrated molding process is beneficial to simplifying the manufacturing process of the pressure protection mechanism 900 , omitting the connection process between the frame part 920 and the face frame part 940 , and improving the mechanical strength of the pressure protection mechanism 900 .
  • the frame part 920 and the face frame part 940 may not be an integral part, and may be connected and fixed as an integral part.
  • Methods of connection and fixation include but are not limited to any of the following methods or a combination thereof: screwing, bonding, welding and riveting.
  • the face frame portion 940 laid flat on each side of the electrode plate 700 includes a plurality of staggered support ribs, and each support rib is respectively disposed across the inner peripheral surface of the frame portion 920 between different parts. And the gaps between adjacent support ribs form porous areas.
  • the frame part 920 may be in the shape of a square ring and include four frames connected end to end. Each support rib may extend from the inner peripheral surface of one frame of the frame part 920 to the inner peripheral surface of the other frame.
  • the inner peripheral surface of the frame portion 920 refers to the surface of the frame portion 920 facing the inner area of the ring.
  • FIG. 4 is a schematic structure of a pressure protection mechanism 900 for the plate assembly 40 of the oxygen treatment device shown in FIG. 1 picture.
  • FIG. 5 is a schematic cross-sectional view of the pressure protection mechanism 900 of the plate assembly 40 of the oxygen treatment device shown in FIG. 4 .
  • the plurality of support ribs include a plurality of first support ribs 942a arranged at intervals along the first direction and a plurality of second support ribs 942b arranged at intervals along the second direction. Since the first direction is different from the second direction, an included angle is formed between the first support rib 942a and the second support rib 942b.
  • the four frames of the frame part 920 may include two lengthwise frames and two widthwise frames
  • the first support ribs 942a may extend from one lengthwise frame to a widthwise frame
  • the second support ribs 942b It can extend from another frame in the length direction to another frame in the width direction, thereby forming an included angle with the first support rib 942a.
  • the electrode plate 700 includes a power terminal 720 extending upwardly from its main body plate.
  • the power terminal 720 is used to connect to an external power source, thereby establishing an electrical connection between the electrode plate 700 and the external power source.
  • a power connection shell 960 is provided above the frame portion 920 .
  • a through groove 922 is formed inside the power connection shell 960 to provide a power connection cavity for the power connection end 720 to be inserted therein.
  • the power connection shell 960 is provided with a power connection through hole 964 connected to the power connection cavity, for the power connection terminal 720 or the electrical plug connector connected to the power connection terminal 720 to pass through the power connection shell 960 .
  • the electrical plug connector may be, for example, a wire or other component with a conductive function.
  • the power terminal 720 passing out of the power shell 960 or the electrical plug connector of the power terminal 720 can be connected to an external power source through wires.
  • the pressure protection mechanism 900 of this embodiment not only has the function of protecting the electrode plate 700, but also provides an electrical connection place for the electrode plate 700 to establish an electrical connection with an external power source, thereby solving the difficulty of electrical connection due to the surrounding electrode plate 700. The problem.
  • the power connection shell 960 is located above the frame part 920, when the frame part 920 is fixedly assembled to the installation port 530 of the oxygen treatment device, and the frame part 920 and the electrode plate 700 jointly close the installation port 530, the power connection shell 960 It can be exposed to the outside of the electrolytic chamber, and the electrical connection terminal 720 located in the electrical connection shell 960 will not cause electrical connection failure due to alkali creeping problems.
  • the pressure protection mechanism 900 can improve the stability of the electrical connection structure between the electrode plate 700 and the external power supply.
  • the pressure protection mechanism 900 is made of flame retardant material.
  • the pressure protection mechanism 900 may be made of a flame-retardant material that meets the requirements of the glow wire 750 needle flame test, or a flame-retardant material that reaches the HB level.
  • the pressure protection mechanism 900 can be used to a greater extent. Resist changes in physical properties, thereby reducing or avoiding damage to surrounding components due to heat generated by the electrochemical reaction of the electrode plate 700 of the oxygen treatment device, and improving the use safety and structural stability of the device.
  • the pressure protection mechanism 900 is made of the above flame-retardant material. Even if the operating current of the electrode plate 700 exceeds the preset threshold, the oxygen treatment device and its surrounding components will not be damaged due to excessive temperature.
  • the preset threshold can be any value within the range of 0.1 ⁇ 0.2A.
  • An embodiment of the present invention also provides an oxygen treatment device, which includes a housing 500 and an electrode plate assembly 40 for the oxygen treatment device as in any of the above embodiments, and may further include a counter electrode plate.
  • Figure 6 is a schematic front view of the housing 500 of the oxygen treatment device according to one embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a housing 500 of an oxygen treatment device according to an embodiment of the present invention.
  • the polarity of the electrode plate 700 may be anode or cathode. In some alternative embodiments, electrode plate 700 is a cathode.
  • the polarity of the counter electrode plate is opposite to that of the electrode plate 700, and is disposed in the housing 500 for performing electrochemical reactions under the action of electrolysis voltage, thereby cooperating with the electrode plate 700 to process oxygen.
  • the electrode plate 700 may be used to consume oxygen through an electrochemical reaction under the action of an electrolytic voltage.
  • the counter electrode plate is used to provide reactants (eg, electrons) to the electrode plate 700 through electrochemical reactions under the action of electrolysis voltage and generate oxygen.
  • the housing 500 defines an electrolytic chamber for containing electrolyte.
  • the electrolytic chamber can contain alkaline electrolyte, such as 1 mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • Oxygen in the air can undergo a reduction reaction at the electrode plate 700, namely: O2+2H2O+4e- ⁇ 4OH-.
  • the counter electrode plate is disposed in the electrolysis chamber and configured to provide reactants to the electrode plate 700 through electrochemical reactions and generate oxygen.
  • the OH- generated by the counter electrode plate can undergo an oxidation reaction at the electrode plate 700 and generate oxygen, that is: 4OH- ⁇ O2+2H2O+4e-.
  • the electrode plate 700 can be connected with the air flow of the storage space 810, so that the electrode plate 700 uses the oxygen in the storage space 810 as a reactant to perform an electrochemical reaction; when using When the oxygen treatment device provides oxygen to the storage space 810 , the counter electrode plate or the electrolytic chamber can be connected to the storage space 810 by air flow, so that the counter electrode plate can provide the electrochemical reaction product to the storage space 810 .
  • An installation opening 530 is provided on the side wall of the housing 500 .
  • the pressure protection mechanism 900 equipped with the electrode plate 700 is fixedly assembled to the periphery of the installation opening 530 to jointly close the installation opening 530 with the electrode plate 700 and define an electrolytic chamber for containing electrolyte with the housing 500 .
  • the pole plate assembly 40 can cover the inside or outside of the installation opening 530 to seal the installation opening 530 .
  • the "inside” and “outside” of the installation opening 530 are relative to the housing 500.
  • the inside of the installation opening 530 refers to the side of the installation opening 530 facing the internal space of the housing 500
  • the outside of the installation opening 530 is Refers to the side of the installation opening 530 facing the external space of the housing 500 .
  • the outer periphery of the mounting opening 530 is surrounded by an annular protrusion 540 that protrudes toward the outside of the housing 500 and is annular.
  • the frame part 920 and the annular protrusion 540 of the pressure protection mechanism 900 are fixed by hot plate welding.
  • the frame portion 920 of the pressure protection mechanism 900 is correspondingly formed with an annular protrusion 926 that is opposite to the annular protrusion 540 and is annular.
  • the annular protrusion 540 and the annular collar 926 may be fixed together by heat fusion.
  • the frame part 920 of the pressure protection mechanism 900 is an annular frame surrounding the electrode plate 700, and the frame part 920 of the pressure protection mechanism 900 and the periphery of the installation opening 530 of the housing 500 are assembled into one body through hot plate welding, due to the welding strength It has high fastness and reliable fastness. Therefore, compared with the assembly solution using snap connection or screw connection, the solution of this embodiment can enhance the sealing performance of the oxygen treatment device and reduce or avoid the problem of electrolyte leakage.
  • the housing 500 may be integrally formed by injection molding.
  • the pressure protection mechanism 900 and the housing 500 are made of the same material. When objects of the same material are assembled together through hot plate welding, high welding strength can be ensured. And reduce the difficulty of welding process.
  • the casing 500 is also made of a flame-retardant material, which enables the casing 500 itself to obtain roughly the same ability to resist changes in physical properties with heat as the flame-retardant frame, thus Improve the use safety and structural stability of the entire oxygen treatment device, and ensure that the surrounding components or the use environment of the entire oxygen treatment device are in a state of high safety factor.
  • the flame retardant material includes ABS and a flame retardant, for example, it may be a flame retardant ABS material.
  • the pressure protection mechanism 900 and the annular protrusion 540 (or the entire housing 500) may each be made of flame-retardant ABS material.
  • Adding a flame retardant to ABS can become a flame retardant material with good flame retardant effect.
  • the shell 500 made of the flame retardant material and the pressure protection mechanism 900 assembled on the shell 500 perform electrochemistry on the electrode plate 700 No obvious deformation will occur during the reaction, and it has excellent structure retention properties.
  • the housing 500 may be provided with an exhaust port for exhausting oxygen generated by the electrochemical reaction of the electrode plate.
  • the housing 500 can also be provided with a liquid replenishing port, which can be connected with the liquid storage device to allow the liquid contained in the liquid storage device to flow into the housing 500 .
  • a liquid storage chamber connected to the electrolytic chamber may be formed on one side of the electrolytic chamber of the housing 500.
  • a communication port may be formed between the electrolytic chamber and the liquid storage chamber.
  • the fluid replenishing port is connected to the liquid storage chamber to transport liquid to the liquid storage chamber, thereby achieving the purpose of replenishing fluid to the electrolytic chamber.
  • a liquid level switch may be provided in the liquid storage chamber to open and close the liquid path between the liquid replenishing port and the liquid storage chamber according to the liquid level in the liquid storage chamber.
  • the number of the installation openings 530 may be multiple. Each opening may be provided with an electrode plate, and each electrode plate may be opposite to a pair of electrode plates.
  • FIG. 7 is a schematic structural diagram of the refrigerator 30 according to one embodiment of the present invention.
  • the refrigerator 30 may generally include a case 800 and an oxygen treatment device as any of the above.
  • a storage space 810 is formed inside the box.
  • the oxygen treatment device is used to process oxygen in the storage space 810 by performing electrochemical reactions under the action of electrolysis voltage, such as consuming oxygen in the storage space 810 and/or providing oxygen to the storage space 810 .
  • the electrode plate When the oxygen treatment device is used to consume the oxygen in the storage space 810, the electrode plate can be connected with the air flow of the storage space 810, so that the electrode plate uses the oxygen in the storage space 810 as the reactant to perform an electrochemical reaction;
  • the counter electrode plate or the electrolytic chamber can be connected with the storage space 810 in airflow, so that the oxygen generated by the electrochemical reaction of the electrode plate can be provided to the storage space 810.
  • the electrode plate assembly 40, the oxygen treatment device and the refrigerator 30 of the present invention use the pressure protection mechanism 900 to wrap around both sides of the electrode plate 700 to clamp the electrode plate 700 to form the electrode plate assembly 40.
  • the pressure protection mechanism 900 can Provide support for the plate surface of the electrode plate 700 so that the plate surface of the electrode plate 700 can enhance its pressure resistance under the support of the pressure protection mechanism 900 .
  • the solution of the present invention uses the pressure protection mechanism 900 to protect the electrode plate 700, which can reduce or avoid the deformation of the electrode plate 700 under pressure, and improve the structural stability and performance stability of the electrode plate 700.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种极板组件(40)、氧气处理装置以及冰箱(30),其中极板组件(40)包括电极板(700)和压力保护机构(900),电极板(700)用于在电解电压的作用下通过进行电化学反应处理氧气;压力保护机构(900)包绕电极板(700)的板面两侧以夹持电极板(700),从而防止电极板(700)产生形变。通过利用压力保护机构(900)包绕电极板(700)的板面两侧以夹持电极板(700),从而形成极板组件(40),压力保护机构(900)可以为电极板(700)的板面提供支撑,使电极板(700)的板面能够在压力保护机构(900)的支撑作用下增强抗压能力,可减少或避免电极板(700)受压发生形变,提高电极板(700)的结构和性能稳定性。

Description

极板组件、氧气处理装置以及冰箱 技术领域
本发明涉及气调保鲜技术,特别是涉及极板组件、氧气处理装置以及冰箱。
背景技术
气调保鲜技术是通过调节环境气体成分来延长食品贮藏寿命的技术。氧气处理装置可以通过电极的电化学反应来处理氧气,营造出低氧保鲜气氛或者高氧保鲜气氛。
发明人认识到,对于氧气处理装置的电极而言,由于电化学反应涉及氧气,随着电化学反应的进行,反应腔内的气压等压力条件产生变化,电极会在压力作用下发生形变,这会影响电极的工作性能,甚至会导致电极失效、反应腔漏液等问题。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的目的在于提供一种改进的极板组件、氧气处理装置以及冰箱,其能够利用压力保护机构保护电极板,减少或避免电极板受压发生形变,提高电极板的结构稳定性。
为实现上述目的,本发明提供了一种用于氧气处理装置的极板组件,包括电极板和压力保护机构,所述电极板用于在电解电压的作用下通过进行电化学反应处理氧气;压力保护机构包绕所述电极板的板面两侧,以夹持所述电极板,从而防止所述电极板产生形变。
进一步地,所述压力保护机构具有限定出多个孔的多孔区域,以允许所述电极板通过所述多孔区域与周围环境接触;且所述多孔区域均匀分布于所述电极板的板面两侧。
进一步地,所述压力保护机构包括环绕所述电极板的边沿的边框部以及平铺于所述电极板的板面两侧的面框部;所述多孔区域位于所述面框部上;且所述电极板的边沿嵌入并被夹持于所述边框部。
进一步地,平铺于所述电极板板面每一侧的所述面框部包括多个错位排布的支撑筋,每一所述支撑筋分别跨设于所述边框部的内周面的不同部位之间;且相邻所述支撑筋之间的空隙形成所述多孔区域。
进一步地,多个所述支撑筋包括沿第一方向依次间隔排布的多个第一支撑筋以及沿第二方向依次间隔排布的多个第二支撑筋。
进一步地,所述面框部与所述边框部以及所述电极板一体注塑成型;且所述边框部上形成有供所述电极板的边沿嵌入其中以实现装配的环状的凹槽。
进一步地,所述电极板包括自其主体板面向上凸出延伸的接电端;且所述边框部的上方相应设置有接电壳,所述接电壳的内部形成贯通所述凹槽以供所述接电端插入其中的接电腔;且所述接电壳上开设有连通所述接电腔的接电通孔,以供所述接电端或连接所述接电端的电插接件经其穿出所述接电壳。
进一步地,所述压力保护机构由阻燃材料制成。
为实现上述目的,本发明还提供了一种氧气处理装置,其用于在电解电压的作用下通过电化学反应处理氧气,且包括壳体以及如上所述的用于氧气处理装置的极板组件。
为实现上述目的,本发明还提供了一种冰箱,包括箱壳以及如上所述的氧气处理装置,所述箱壳内部形成储物空间,所述氧气处理装置用于在电解电压的作用下通过进行电化学反应处理所述储物空间内的氧气。
本发明的有益效果是:本发明的极板组件、氧气处理装置以及冰箱,通过利用压力保护机构包绕电极板的板面两侧,以夹持电极板,形成极板组件,压力保护机构可以为电极板的板面提供支撑,使电极板的板面能够在压力保护机构的支撑作用下增强抗压能力。基于此,本发明的方案,利用压力保护机构保护电极板,可减少或避免电极板受压发生形变,提高电极板的结构稳定性和性能稳定性。
进一步地,本发明的极板组件、氧气处理装置以及冰箱,通过在压力保护机构上设置多孔区域以允许所述电极板与周围环境接触,可使电极板通过多孔区域接触周围环境中的气体和液体,有利于减少或避免压力保护机构对电极板的电化学反应产生不利影响,使电极板在压力保护机构的保护作用下正常发挥氧气处理功能。
进一步地,本发明的极板组件、氧气处理装置以及冰箱,由于压力保护机构的多孔区域均匀分布于电极板的板面两侧,具有多孔区域的压力保护机构能够与电极板的多个位点产生作用力,因此,该压力保护机构具有较高的结构强度,能够在不影响电极板与周围环境接触的基础上发挥良好的支撑作用,防止电极板受压产生形变。
进一步地,本发明的极板组件、氧气处理装置以及冰箱,当边框部的上方设置接电壳时,接电壳可以裸露于氧气处理装置的电解腔的外部,处于接电壳内的接电端不会因发生爬碱问题而导致电连接故障。因此,本发明的压力保护机构还能够提高电极板与外部电源之间的电连接结构的稳定性。
附图说明
图1是本发明一个实施例的用于氧气处理装置的极板组件的示意性结构图;
图2是图1所示的用于氧气处理装置的极板组件的另一视角的示意性结构图;
图3是图1所示的用于氧气处理装置的极板组件的示意性分解图;
图4是图1所示的用于氧气处理装置的极板组件的压力保护机构的示意性结构图;
图5是图4所示的用于氧气处理装置的极板组件的压力保护机构的示意性剖视图;
图6是本发明一个实施例的氧气处理装置的壳体的示意性主视图;
图7是本发明一个实施例的氧气处理装置的壳体的示意性结构图;
图8是本发明一个实施例的冰箱的示意性结构图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
下面参照图1至图8来描述本发明实施例的极板组件40、氧气处理装置以及冰箱30。本发明实施例提供了一种用于氧气处理装置的极板组件40。图1是根据本发明一个实施例的用于氧气处理装置的极板组件40的示意性结构图。图2是图1所示的用于氧气处理装置的极板组件40的另一视角的示意性结构图。图3是图1所示的用于氧气处理装置的极板组件40的示意性分解图。极板组件40整体上可作为氧气处理装置的电极,并装配至氧气处理装置的指定位置,以在电化学反应过程中发挥氧气处理功能。极板组件40一般性地可包括电极板700和压力保护机构900。
其中,电极板700用于在电解电压的作用下通过进行电化学反应处理氧气,例如消耗氧气和/或产生氧气,从而起到调节空间内的氧气含量的作用。电极板700可以呈板状,例如板状电极。电极板700的板面可以为平整的板面。
电极板700的电化学反应类型本实施例不做具体限定,只要能够以氧气作为反应物或者生成物均可,例如,氧还原反应,或者含氧离子的氧化反应,等等。
压力保护机构900包绕电极板700的板面两侧,以夹持电极板700,从而防止电极板700产生形变。“夹持”是指,压力保护机构900与电极板700的板面之间产生相互作用力,使电极板700的板面保持平整。压力保护机构900同时与电极板700的板面两侧接触,从而起到夹持作用。
压力保护机构900的具体形状本实施例不做具体限定,只要其包绕住电极板700的板面两侧即可。例如,压力保护机构900可以包括设置在电极板700的板面一侧的第一面板以及设置在电极板700的板面另一侧的第二面板;或者压力保护机构900可以为包绕住电极板700的板面以及边沿的护框结构。
采用上述方案,通过利用压力保护机构900包绕电极板700的板面两侧,以夹持电极板700,形成极板组件40,压力保护机构900可以为电极板700的板面提供支撑,使电极板700的板面能够在压力保护机构900的支撑作用下增强抗压能力。基于此,本实施例的方案,利用压力保护机构900保护电极板700,可减少或避免电极板700受压发生形变,提高电极板700的结构稳定性和性能稳定性。
在一些可选的实施例中,压力保护机构900具有限定出多个孔910的多孔区域,以允许电极板700通过多孔区域与周围环境接触。且多孔区域均匀分布于电极板700的板面两侧。多孔区域的孔910可以作为电极板700的板面与周围环境接触的窗口。例如,电极板700所在环境中的气体或液体可以通过孔910与电极板700的板面接触。
通过在压力保护机构900上设置多孔区域以允许电极板700与周围环境接触,可使电极板700通过多孔区域接触周围环境中的气体和液体,有利于减少或避免压力保护机构900对电极板的电化学反应产生不利影响,使电极板700在压力保护机构900的保护作用下正常发挥氧气处理功能。
由于压力保护机构900的多孔区域均匀分布于电极板700的板面两侧,具有多孔区域的 压力保护机构900能够与电极板700的多个位点产生作用力,因此,该压力保护机构900具有较高的结构强度,能够在不影响电极板700与周围环境接触的基础上发挥良好的支撑作用,防止电极板700受压产生形变。
在一些可选的实施例中,压力保护机构900包括环绕电极板700的边沿的边框部920以及平铺于电极板700的板面两侧的面框部940。电极板700的边沿嵌入并被夹持于边框部920。也就是说,压力保护机构900既夹持在电极板700的板面两侧,又夹持着电极板700的边沿,形成全面型的保护结构。多孔区域位于面框部940上,以便电极板700的板面与周围环境接触。
本实施例中,面框部940为两个,且分布于电极板700的板面两侧,以夹持电极板700。边框部920可以呈环状。面框部940可以平铺于环状边框部920的内圈区域。两个面框部940之间形成间隔,以容纳电极板700。
采用上述方案,压力保护机构900既可以作为全面型的保护结构将电极板700全面地包绕起来,辅助电极板700提升抵抗外界压力冲击的能力,又可以作为将电极板700固定装配至氧气处理装置的连接结构,可巧妙地降低电极板700相对于氧气处理装置的装配难度。电极板700仅需要先装配至压力保护机构900,然后再将压力保护机构900固定至氧气处理装置即可。在氧气处理装置的装配过程中,电极板700无需直接装配至氧气处理装置。
在一些进一步的示例中,面框部940与边框部920以及电极板700一体注塑成型,从而相互连接或者相互嵌入或者实现夹持。也就是说,整个压力保护机构900可以利用注塑成型工艺制造出来。
边框部920上形成有供电极板700的边沿嵌入其中以实现装配的环状的凹槽922。当面框部940与边框部920一体成型时,电极板700可以在面框部940与边框部920的成型过程中嵌入其中,使电极板700的边沿嵌入面框部940中,并使电极板700的板面嵌入两个面框部940之间,以被夹持。
通过一体成型工艺制造压力保护机构900,有利于简化压力保护机构900的制造工序,省略边框部920与面框部940之间的连接工序,且提高压力保护机构900的机械强度。
当然,在另一些实施例中,边框部920和面框部940也可以不为一体件,且可以连接固定成一体。连接固定的方式包括但不限于以下任一方式或其组合:螺接、粘接、焊接和铆接。
在一些可选的实施例中,平铺于电极板700板面每一侧的面框部940包括多个错位排布的支撑筋,每一支撑筋分别跨设于边框部920的内周面的不同部位之间。且相邻支撑筋之间的空隙形成多孔区域。
如图1-4所示,例如,边框部920可以呈方环状,且包括依次首尾相接的四个边框。每一支撑筋可以自边框部920的一个边框的内周面延伸至另一边框的内周面。边框部920的内周面是指边框部920朝向其环内区域的一面。
图4是图1所示的用于氧气处理装置的极板组件40的压力保护机构900的示意性结构 图。图5是图4所示的用于氧气处理装置的极板组件40的压力保护机构900的示意性剖视图。在一个示例中,多个支撑筋包括沿第一方向依次间隔排布的多个第一支撑筋942a以及沿第二方向依次间隔排布的多个第二支撑筋942b。由于第一方向不同于第二方向,因此,第一支撑筋942a与第二支撑筋942b之间形成夹角。
例如,边框部920的四个边框可包括两个长度方向的边框和两个宽度方向的边框,第一支撑筋942a可以自一个长度方向的边框延伸至一个宽度方向的边框,第二支撑筋942b可以自另一个长度方向的边框延伸至另一个宽度方向的边框,从而与第一支撑筋942a形成夹角。
在一些可选的实施例中,电极板700包括自其主体板面向上凸出延伸的接电端720。该接电端720用于与外部的电源相连接,从而将电极板700与外部的电源建立电连接。
边框部920的上方相应设置有接电壳960,接电壳960的内部形成贯通凹槽922以供接电端720插入其中的接电腔。接电壳960上开设有连通接电腔的接电通孔964,以供接电端720或连接接电端720的电插接件经其穿出接电壳960。其中,电插接件例如可以为导线或者具有导电功能的其他部件。穿出接电壳960的接电端720或者接电端720的电插接件可以通过导线连接至外部的电源。
换言之,本实施例的压力保护机构900既具备保护电极板700的功能,又为电极板700与外部的电源建立电连接提供接电场所,解决了电极板700因被包绕而导致接电困难的问题。
并且,由于接电壳960位于边框部920的上方,当将边框部920固定装配至氧气处理装置的安装口530,并使边框部920与电极板700共同封闭安装口530时,接电壳960可以裸露于电解腔的外部,处于接电壳960内的接电端720不会因发生爬碱问题而导致电连接故障。
因此,采用上述结构,压力保护机构900能够提高电极板700与外部电源之间的电连接结构的稳定性。
压力保护机构900由阻燃材料制成。例如,压力保护机构900可以由符合灼热丝750针焰测试要求的阻燃材料制成,或者由阻燃等级达到HB等级的阻燃材料制成。
采用上述结构,通过在电极板700的周边包绕具有阻燃功能的压力保护机构900,当该压力保护机构900吸收电极板700进行电化学反应时所产生的热量时,能够在较大程度上抵抗物性变化,从而减少或避免氧气处理装置的电极板700因进行电化学反应发热而导致周围部件损毁,提高装置的使用安全性和结构稳定性。
使用上述阻燃材料制成压力保护机构900,即使电极板700的工作电流超过预设阈值,也不会导致氧气处理装置及其周围部件因温度过高而发生损毁。预设阈值可以为0.1~0.2A范围内的任意值。
本发明实施例还提供了一种氧气处理装置,其包括壳体500以及如以上任一实施例的用于氧气处理装置的极板组件40,还可以进一步地包括对电极板。图6是根据本发明一个实施例的氧气处理装置的壳体500的示意性主视图。图7是根据本发明一个实施例的氧气处理装置的壳体500的示意性结构图。
电极板700的极性可以为阳极或阴极。在一些可选的实施例中,电极板700为阴极。对电极板的极性与电极板700的极性相反,且设置于壳体500内,用于在电解电压的作用下进行电化学反应,从而与电极板700配合以处理氧气。电极板700可以用于在电解电压的作用下通过电化学反应消耗氧气。对电极板则用于在电解电压的作用下通过电化学反应向电极板700提供反应物(例如,电子)且生成氧气。
壳体500内限定出用于盛装电解液的电解腔。电解腔内可以盛装碱性电解液,例如1mol/L的NaOH,其浓度可以根据实际需要进行调整。空气中的氧气可以在电极板700处发生还原反应,即:O2+2H2O+4e-→4OH-。对电极板设置于电解腔内,并配置成通过电化学反应向电极板700提供反应物,且生成氧气。例如,对电极板产生的OH-可以在电极板700处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-。
以上关于电极板700和对电极板的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的氧气处理装置的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
当利用氧气处理装置消耗储物空间810内的氧气时,可使电极板700与储物空间810气流连通,以便电极板700利用储物空间810内的氧气为反应物进行电化学反应;当利用氧气处理装置向储物空间810提供氧气时,可使对电极板或者电解腔与储物空间810气流连通,以便对电极板将其进行电化学反应的生成物向储物空间810提供。
壳体500的侧壁上开设有安装口530。装配有电极板700的压力保护机构900固定装配至安装口530的周缘,以与电极板700共同封闭安装口530,且与壳体500限定出用于盛装电解液的电解腔。
极板组件40可以覆盖在安装口530的内侧或外侧,从而起到封闭安装口530的作用。其中,安装口530的“内侧”和“外侧”是相对于壳体500而言的,例如安装口530的内侧是指安装口530朝向壳体500内部空间的一侧,安装口530的外侧是指安装口530朝向壳体500外部空间的一侧。
在一些进一步的实施例中,安装口530的外周环绕有朝向壳体500外部凸出且呈环状的环状凸起540。且压力保护机构900的边框部920与环状凸起540之间通过热板焊接固定。压力保护机构900的边框部920上相应形成有与环状凸起540相对且呈环状的环状凸圈926。环状凸起540和环状凸圈926可以通过热熔固定到一起。
当压力保护机构900的边框部920为包绕电极板700的环状边框,且压力保护机构900的边框部920与壳体500的安装口530周缘通过热板焊接装配成一体时,由于焊接强度高,牢度可靠,因此,与采用卡接或者螺接等方式进行装配的方案相比,本实施例的方案能够增强氧气处理装置的密封性能,减少或避免电解液泄露问题。
壳体500可以通过注塑一体成型。在一些可选的实施例中,压力保护机构900与壳体500的材质相同。当相同材质的物件通过热板焊接装配成一体时,可保证较高的焊接强度, 且降低焊接的工艺难度。
当压力保护机构900与壳体500的材质相同时,壳体500也由阻燃材料制成,这使得壳体500本身也能获得与阻燃框大致相当的抵抗物性随热量变化的能力,从而提升整个氧气处理装置的使用安全性和结构稳定性,确保整个氧气处理装置的周围部件或使用环境处于较高安全系数的状态。
在一些可选的实施例中,阻燃材料包括ABS和阻燃剂,例如可以为阻燃ABS材料。压力保护机构900和环状凸起540(或者整个壳体500)可以分别由阻燃ABS材料制成。
在ABS中添加阻燃剂,可成为具备良好阻燃效果的阻燃材料,由该阻燃材料制成的壳体500以及装配于壳体500上的压力保护机构900在电极板700进行电化学反应时不会发生明显的形变,具备优良的结构保持性能。
壳体500上可以开设有排气口,用于排出对电极板的电化学反应所产生的氧气。壳体500上还可以开设有补液口,该补液口可以与储液装置相连通,用于允许储液装置所盛装的液体流入壳体500内。壳体500的电解腔的一侧可以形成有与电解腔连通的储液腔,例如,电解腔与储液腔之间可以形成有连通口。补液口连通储液腔,以向储液腔输送液体,从而起到向电解腔补液的目的。储液腔内可以设置有液位开关,用于根据储液腔内的液位通断补液口与储液腔之间的液路。
安装口530的数量可以为多个,每个开口处分别可以设置有一个电极板,且每个电极板分别与一对电极板相对。
本发明实施例还提供了一种冰箱30。图7是根据本发明一个实施例的冰箱30的示意性结构图。冰箱30一般性地可包括箱壳800和如以上任一项的氧气处理装置。
其中,箱体的内部形成储物空间810。氧气处理装置用于在电解电压的作用下通过进行电化学反应处理储物空间810内的氧气,例如消耗储物空间810内的氧气,和/或向储物空间810提供氧气。
当利用氧气处理装置消耗储物空间810内的氧气时,可使电极板与储物空间810气流连通,以便电极板利用储物空间810内的氧气为反应物进行电化学反应;当利用氧气处理装置向储物空间810提供氧气时,可使对电极板或者电解腔与储物空间810气流连通,以便将对电极板进行电化学反应生成的氧气向储物空间810提供。
本发明的极板组件40、氧气处理装置以及冰箱30,通过利用压力保护机构900包绕电极板700的板面两侧,以夹持电极板700,形成极板组件40,压力保护机构900可以为电极板700的板面提供支撑,使电极板700的板面能够在压力保护机构900的支撑作用下增强抗压能力。基于此,本发明的方案,利用压力保护机构900保护电极板700,可减少或避免电极板700受压发生形变,提高电极板700的结构稳定性和性能稳定性。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同 替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种用于氧气处理装置的极板组件,包括:
    电极板,用于在电解电压的作用下通过进行电化学反应处理氧气;和
    压力保护机构,包绕所述电极板的板面两侧,以夹持所述电极板,从而防止所述电极板产生形变。
  2. 根据权利要求1所述的用于氧气处理装置的极板组件,其特征在于,所述压力保护机构具有限定出多个孔的多孔区域,以允许所述电极板通过所述多孔区域与周围环境接触;且所述多孔区域均匀分布于所述电极板的板面两侧。
  3. 根据权利要求2所述的用于氧气处理装置的极板组件,其特征在于,所述压力保护机构包括环绕所述电极板的边沿的边框部以及平铺于所述电极板的板面两侧的面框部;所述多孔区域位于所述面框部上;且所述电极板的边沿嵌入并被夹持于所述边框部。
  4. 根据权利要求3所述的用于氧气处理装置的极板组件,其特征在于,平铺于所述电极板板面每一侧的所述面框部包括多个错位排布的支撑筋,每一所述支撑筋分别跨设于所述边框部的内周面的不同部位之间;且相邻所述支撑筋之间的空隙形成所述多孔区域。
  5. 根据权利要求4所述的用于氧气处理装置的极板组件,其特征在于,多个所述支撑筋包括沿第一方向依次间隔排布的多个第一支撑筋以及沿第二方向依次间隔排布的多个第二支撑筋。
  6. 根据权利要求3所述的用于氧气处理装置的极板组件,其特征在于,所述面框部与所述边框部以及所述电极板一体注塑成型;且所述边框部上形成有供所述电极板的边沿嵌入其中以实现装配的环状的凹槽。
  7. 根据权利要求6所述的用于氧气处理装置的极板组件,其特征在于,所述电极板包括自其主体板面向上凸出延伸的接电端;且所述边框部的上方相应设置有接电壳,所述接电壳的内部形成贯通所述凹槽以供所述接电端插入其中的接电腔;且所述接电壳上开设有连通所述接电腔的接电通孔,以供所述接电端或连接所述接电端的电插接件经其穿出所述接电壳。
  8. 根据权利要求1所述的用于氧气处理装置的极板组件,其特征在于,所述压力保护机构由阻燃材料制成。
  9. 一种氧气处理装置,其用于在电解电压的作用下通过电化学反应处理氧气,且包括:
    壳体,以及
    如权利要求1-8中任一项所述的用于氧气处理装置的极板组件。
  10. 一种冰箱,包括:
    箱壳,其内部形成储物空间;以及
    如权利要求9所述的氧气处理装置,所述氧气处理装置用于在电解电压的作用下通过进行电化学反应处理所述储物空间内的氧气。
PCT/CN2023/107750 2022-07-18 2023-07-17 极板组件、氧气处理装置以及冰箱 WO2024017207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210844290.2 2022-07-18
CN202210844290.2A CN117450723A (zh) 2022-07-18 2022-07-18 极板组件、氧气处理装置以及冰箱

Publications (1)

Publication Number Publication Date
WO2024017207A1 true WO2024017207A1 (zh) 2024-01-25

Family

ID=89578624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107750 WO2024017207A1 (zh) 2022-07-18 2023-07-17 极板组件、氧气处理装置以及冰箱

Country Status (2)

Country Link
CN (1) CN117450723A (zh)
WO (1) WO2024017207A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323050B1 (ko) * 2013-01-08 2013-10-29 윤생진 자동차를 포함한 기계 장치용 산소-수소 혼합가스 발생장치
CN109850386A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN214694386U (zh) * 2021-04-14 2021-11-12 佛山市悦来粤健康科技有限公司 一种水电解氢氧分离发生器
CN216409399U (zh) * 2021-05-20 2022-04-29 青岛海尔电冰箱有限公司 冰箱
CN218884404U (zh) * 2022-07-18 2023-04-18 青岛海尔电冰箱有限公司 氧气处理装置以及具有其的冰箱
CN219037283U (zh) * 2022-07-18 2023-05-16 青岛海尔电冰箱有限公司 用于冰箱的氧气处理装置的极板组件、用于冰箱的氧气处理装置以及冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323050B1 (ko) * 2013-01-08 2013-10-29 윤생진 자동차를 포함한 기계 장치용 산소-수소 혼합가스 발생장치
CN109850386A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN214694386U (zh) * 2021-04-14 2021-11-12 佛山市悦来粤健康科技有限公司 一种水电解氢氧分离发生器
CN216409399U (zh) * 2021-05-20 2022-04-29 青岛海尔电冰箱有限公司 冰箱
CN218884404U (zh) * 2022-07-18 2023-04-18 青岛海尔电冰箱有限公司 氧气处理装置以及具有其的冰箱
CN219037283U (zh) * 2022-07-18 2023-05-16 青岛海尔电冰箱有限公司 用于冰箱的氧气处理装置的极板组件、用于冰箱的氧气处理装置以及冰箱

Also Published As

Publication number Publication date
CN117450723A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
KR102461030B1 (ko) 리튬 배터리 커버 플레이트 풀 러그 조립 구조
WO2022037127A1 (zh) 一种电池外壳、二次电池以及电池包
KR20130031532A (ko) 배터리 팩
CA2442436A1 (en) Fuel cell
WO2024017207A1 (zh) 极板组件、氧气处理装置以及冰箱
CN219037283U (zh) 用于冰箱的氧气处理装置的极板组件、用于冰箱的氧气处理装置以及冰箱
WO2022000545A1 (zh) 扣式电池
WO2023071182A1 (zh) 一种衣物处理设备
WO2024114829A1 (zh) 电池顶盖组件及电池
CN218884404U (zh) 氧气处理装置以及具有其的冰箱
WO2023124678A1 (zh) 冰箱
WO2022242241A1 (zh) 冰箱及其电解除氧装置
WO2021227566A1 (zh) 制氧装置及具有该制氧装置的空调器
ES2189439T3 (es) Reactor electroquimico multicelda bipolar y separado por membranas.
JP4776788B2 (ja) 燃料電池
KR20230023236A (ko) 연료전지용 엔드셀 히터 및 이를 포함하는 연료전지
CN117450719A (zh) 氧气处理装置以及具有其的冰箱
JP2002216823A (ja) 燃料電池
JPH09237633A (ja) 燃料電池及びこれに使用するセパレータ
CN113782782A (zh) 电池管理装置
JP5078598B2 (ja) 燃料電池スタック
CN221449873U (zh) 可拆卸式电子雾化设备
CN215682660U (zh) 电加热组件和具有其的空气调节设备
CN220042180U (zh) 电池盖板、电池以及电池包
CN220086205U (zh) 一种无盖板电池壳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842270

Country of ref document: EP

Kind code of ref document: A1