WO2024017031A1 - 一种基于光伏板的电池直接充电方法、装置、系统及设备 - Google Patents

一种基于光伏板的电池直接充电方法、装置、系统及设备 Download PDF

Info

Publication number
WO2024017031A1
WO2024017031A1 PCT/CN2023/105154 CN2023105154W WO2024017031A1 WO 2024017031 A1 WO2024017031 A1 WO 2024017031A1 CN 2023105154 W CN2023105154 W CN 2023105154W WO 2024017031 A1 WO2024017031 A1 WO 2024017031A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic panel
photovoltaic
series
pin
switch
Prior art date
Application number
PCT/CN2023/105154
Other languages
English (en)
French (fr)
Inventor
修磊然
Original Assignee
北京磊然循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210901190.9A external-priority patent/CN115117995A/zh
Application filed by 北京磊然循环科技有限公司 filed Critical 北京磊然循环科技有限公司
Publication of WO2024017031A1 publication Critical patent/WO2024017031A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Definitions

  • the invention belongs to the field of new energy technology, and specifically relates to a direct battery charging method, device, system and equipment based on photovoltaic panels.
  • Rechargeable Battery also known as rechargeable battery or storage battery, refers to a battery that can be activated by charging to continue to use the active material after the battery is discharged.
  • the existing process of charging secondary batteries generally includes: first converting alternating current into direct current, then appropriately regulating the voltage of the direct current, and finally using the voltage-regulated direct current to charge the battery.
  • this battery charging method will cause greater power loss and require higher hardware costs.
  • Photovoltaic panels also known as photovoltaic panel components, are a power generation device that generates direct current when exposed to sunlight. They are composed of thin solid photovoltaic cells that are almost entirely made of semiconductor materials (such as silicon). Since photovoltaic panels output direct current, how to use photovoltaic panels to directly charge secondary batteries to reduce power consumption, improve charging efficiency, and reduce hardware costs is an urgent topic for those skilled in the field to study.
  • the purpose of the present invention is to provide a direct battery charging method, device, system, control equipment and computer-readable storage medium based on photovoltaic panels to solve the problems of large power loss and high hardware cost in existing battery charging methods. .
  • a direct battery charging method based on photovoltaic panels is provided, which is executed by a voltage conversion controller of a charging system, wherein the charging system also includes a photovoltaic panel voltage conversion circuit, a direct charging switch and a secondary battery,
  • the photovoltaic panel voltage conversion circuit includes one photovoltaic panel series branch or at least two photovoltaic panel series branches with the same number of photovoltaic panels in series and the number of photovoltaic panels in series can be adjusted synchronously.
  • the one photovoltaic panel series branch or Each of the at least two photovoltaic panel series branches includes a plurality of photovoltaic panels connected in series and having the same properties, and the voltage conversion controller is respectively communicatively connected to the photovoltaic panel voltage conversion circuit.
  • the positive electrode of each photovoltaic panel series branch is electrically connected to the positive input terminal of the direct charging switch, and the negative electrode of each photovoltaic panel series branch is electrically connected to the direct charging switch.
  • the negative input terminal of the direct charging switch is electrically connected to the positive electrode of the secondary battery, and the negative output terminal of the direct charging switch is electrically connected to the negative electrode of the secondary battery;
  • the battery direct charging method includes the following steps S1 to S5:
  • step S1 According to the battery charging demand voltage of the secondary battery, the current number of photovoltaic panels in series and the current maximum power point voltage of each photovoltaic panel series branch, determine the maximum power point of the photovoltaic panel series branch.
  • the target number of photovoltaic panels in series whose voltage matches the battery charging requirement voltage is then executed in step S2;
  • step S2 Determine whether the target number of photovoltaic panels in series is equal to the current number of photovoltaic panels in series. If so, execute step S4; otherwise, execute step S3;
  • step S3 Generate a first control signal according to the target number of photovoltaic panels in series, and transmit the first control signal to the photovoltaic panel voltage conversion circuit, so that the photovoltaic panel voltage conversion circuit responds to the first control signal, enable each of the The number of photovoltaic panel series connections in the photovoltaic panel series branch is adjusted to the target number of photovoltaic panel series connections, and then step S4 is performed;
  • step S4 Based on the current branch voltage and current branch current of each photovoltaic panel series branch, determine whether the one photovoltaic panel series branch or the at least two photovoltaic panel series branches are currently in normal condition, If yes, then execute step S5;
  • S5. Generate a second control signal, and transmit the second control signal to the direct charging switch, so that the direct charging switch, after responding to the second control signal, causes the photovoltaic panel to be connected in series to a branch or
  • the at least two photovoltaic panel series branches and the secondary battery form a charging circuit.
  • a new scheme for charging secondary batteries using direct current from photovoltaic panels is provided, that is, first based on the battery charging demand voltage of the secondary battery and the current number of photovoltaic panels in series of each photovoltaic panel series branch and The current maximum power point voltage is used to adjust the number of photovoltaic panels in series of each photovoltaic panel series branch to ensure that the maximum power point voltage of each photovoltaic panel series branch can match the battery charging demand voltage, and then determine When each photovoltaic panel series branch is currently in normal condition, the direct charging switch is controlled to be turned on to form a charging loop.
  • the DC power of the photovoltaic panel can be used to directly charge the secondary battery, skipping the DC power and inverting it into AC power and AC power.
  • the conversion process of rectification into direct current can achieve the purpose of reducing power consumption, improving charging efficiency and reducing hardware costs.
  • the charging system also includes a photovoltaic inverter and a power grid
  • the voltage conversion controller is also communicatively connected to the photovoltaic inverter
  • the positive electrode of each photovoltaic panel series branch The positive input terminal of the photovoltaic inverter is also electrically connected to each other, and the negative electrode of each photovoltaic panel series branch is also electrically connected to the negative input terminal of the photovoltaic inverter and the AC input terminal of the photovoltaic inverter.
  • the battery direct charging method also includes the following step S6 after step S5: S6. Generate a third control signal and transmit the third control signal to the photovoltaic inverter.
  • the photovoltaic inverter enters the battery charging mode for cooperating with the voltage conversion controller after responding to the third control signal: on the one hand, according to the battery charging demand current of the secondary battery, around the maximum The power point voltage adjusts the current delivered to the secondary battery in real time so that the battery charging voltage always works at the maximum power point. On the other hand, the remaining photovoltaic power generation of the photovoltaic panel voltage conversion circuit is inverted and delivered to the power grid. .
  • the charging system also includes a DC-DC step-up and step-down circuit
  • the voltage conversion controller is also communicatively connected to the DC-DC step-up and step-down circuit
  • the photovoltaic panels are connected in series.
  • the positive poles of the branches are also electrically connected to the positive input terminals of the DC-DC step-up and buck circuits
  • the negative poles of the photovoltaic panel series branches are also electrically connected to the negative input terminals of the DC-DC step-up and step-down circuits.
  • the The battery direct charging method also includes the following steps after step S5: generating an eighth control signal, and transmitting the eighth control signal to the DC-DC step-up and step-down circuit, so that the DC-DC step-up and step-down circuit After responding to the eighth control signal, the voltage circuit boosts or steps down the remaining photovoltaic power generation of the photovoltaic panel voltage conversion circuit and delivers it to the secondary battery.
  • step S6 the method further includes the following steps S711 to S714:
  • step S711 Determine whether the battery charging demand voltage of the secondary battery matches the current maximum power point voltage of each photovoltaic panel series branch. If not, execute step S712;
  • step S6 the method further includes the following steps S721 to S726:
  • step S722 According to the battery status data of the secondary battery, if it is found that the secondary battery needs to stop charging, execute step S722;
  • step S722. Adjust and reduce the current size until the current size is no greater than the preset current threshold, then execute step S723;
  • step S725. Generate a fifth control signal, and transmit the fifth control signal to the photovoltaic panel voltage conversion circuit, so that after the photovoltaic panel voltage conversion circuit responds to the fifth control signal, the photovoltaic
  • the number of photovoltaic panels in series in the panel series branch is adjusted to the maximum adjustable value, and then step S726 is executed;
  • the voltage of the photovoltaic panel series branch is determined based on the battery charging demand voltage of the secondary battery, the current number of photovoltaic panels in series and the current maximum power point voltage of each of the photovoltaic panel series branches.
  • the target number of photovoltaic panels connected in series to make the maximum power point voltage match the battery charging demand voltage includes:
  • the current number of photovoltaic panels in series and the current maximum power point voltage of each photovoltaic panel series branch determine the maximum The target number of photovoltaic panels in series whose power point voltage matches the battery charging demand voltage is triggered. Otherwise, a reminder message is generated and displayed to indicate that the battery is not currently rechargeable.
  • the method further includes:
  • a reminder message indicating that it is not currently rechargeable is triggered and displayed.
  • a photovoltaic panel-based battery direct charging device which is suitable for being arranged in a voltage conversion controller of a charging system, wherein the charging system further includes a photovoltaic panel voltage conversion circuit, a direct charging switch and a second Secondary battery, the photovoltaic panel voltage conversion circuit includes one photovoltaic panel series branch or at least two photovoltaic panel series branches with the same number of photovoltaic panels in series and the number of photovoltaic panels in series can be adjusted synchronously, and the one photovoltaic panel is connected in series.
  • the branches or each of the photovoltaic panel series branches in the at least two photovoltaic panel series branches respectively contain a plurality of photovoltaic panels connected in series and having the same properties, and the voltage conversion controller is respectively connected to the photovoltaic panels through communication.
  • the voltage conversion circuit and the direct charging switch, the positive electrodes of each photovoltaic panel series branch are electrically connected to the positive input terminal of the direct charging switch, and the negative electrodes of each photovoltaic panel series branch are electrically connected to the The negative input terminal of the direct charging switch, the positive output terminal of the direct charging switch is electrically connected to the positive electrode of the secondary battery, and the direct charging switch The negative output terminal of the charging switch is electrically connected to the negative electrode of the secondary battery;
  • the battery direct charging device includes a target number determination module, a first judgment module, a first trigger module, a second judgment module and a second trigger module;
  • the target number determination module is communicatively connected to the first judgment module, and is used to determine the battery charging demand voltage of the secondary battery and the current photovoltaic panel series number and current maximum power point of each photovoltaic panel series branch. voltage, determine the target number of photovoltaic panels in series of the photovoltaic panel series branch and make the maximum power point voltage match the battery charging demand voltage, and then start the first judgment module;
  • the first judgment module is respectively communicatively connected to the first trigger module and the second judgment module, and is used to judge whether the target number of photovoltaic panels in series is equal to the current number of photovoltaic panels in series. If so, start the The second judgment module, otherwise starts the first trigger module;
  • the first trigger module is communicatively connected to the second judgment module, and is used to generate a first control signal according to the target number of photovoltaic panels in series, and transmit the first control signal to the photovoltaic panel voltage conversion circuit. , so that after the photovoltaic panel voltage conversion circuit responds to the first control signal, the photovoltaic panel series number of each photovoltaic panel series branch is adjusted to the photovoltaic panel series target number, and then starts the third 2.
  • Judgment module is communicatively connected to the second judgment module, and is used to generate a first control signal according to the target number of photovoltaic panels in series, and transmit the first control signal to the photovoltaic panel voltage conversion circuit.
  • the second judgment module is communicatively connected to the second trigger module, and is used to judge the photovoltaic panel series branch or the photovoltaic panel series branch according to the current branch voltage and current branch current of each photovoltaic panel series branch. Whether the at least two photovoltaic panel series branches are currently in normal condition, and if so, start the second trigger module;
  • the second trigger module is used to generate a second control signal and transmit the second control signal to the direct charging switch, so that the direct charging switch causes the direct charging switch to respond to the second control signal.
  • One photovoltaic panel series branch or the at least two photovoltaic panel series branches and the secondary battery form a charging circuit.
  • the charging system also includes a photovoltaic inverter and a power grid
  • the voltage conversion controller is also communicatively connected to the photovoltaic inverter
  • the positive electrode of each photovoltaic panel series branch The positive input terminal of the photovoltaic inverter is also electrically connected to each other, and the negative electrode of each photovoltaic panel series branch is also electrically connected to the negative input terminal of the photovoltaic inverter and the AC input terminal of the photovoltaic inverter.
  • the virtual device further includes a third trigger module communicatively connected to the second trigger module;
  • the third trigger module is configured to trigger the generation of a third control signal after transmitting the second control signal to the direct charging switch, and transmit the third control signal to the photovoltaic inverter, so that After responding to the third control signal, the photovoltaic inverter enters the battery charging mode for cooperating with the voltage conversion controller: on the one hand, according to the battery charging demand current of the secondary battery, around the maximum power point voltage The current delivered to the secondary battery is adjusted in real time so that the battery charging voltage always operates at the maximum power point. On the other hand, the remaining photovoltaic power generation of the photovoltaic panel voltage conversion circuit is inverted and delivered to the power grid.
  • a charging system including a voltage conversion controller, a photovoltaic panel voltage conversion circuit, a direct charging switch and a secondary battery
  • the photovoltaic panel voltage conversion circuit includes a photovoltaic panel series branch or At least two photovoltaic panel series branches with the same number of photovoltaic panels in series and the number of photovoltaic panels in series can be adjusted synchronously, the one photovoltaic panel series branch or each of the photovoltaic panels in the at least two photovoltaic panel series branches.
  • the series branches respectively include a plurality of photovoltaic panels connected in series and having the same properties.
  • the voltage conversion controller is respectively connected to the photovoltaic panel voltage conversion circuit and the direct charging switch.
  • Each of the photovoltaic panel series branches The positive electrodes are electrically connected to the positive input terminal of the direct charging switch, the negative electrodes of each photovoltaic panel series branch are electrically connected to the negative input terminal of the direct charging switch, and the positive output terminal of the direct charging switch is electrically connected. Place The positive electrode of the secondary battery, and the negative output terminal of the direct charging switch is electrically connected to the negative electrode of the secondary battery;
  • the voltage conversion controller is used to perform the battery direct charging method as described in the first aspect or any possible design in the first aspect.
  • the photovoltaic panel voltage conversion circuit includes K series branches of the photovoltaic panels, wherein the series branches of the photovoltaic panels include There are N photovoltaic panels connected in series along the direction from the positive electrode to the negative electrode and M switches arranged sequentially along the direction from the positive electrode to the negative electrode.
  • the M switches the mth switch is along the direction from the positive electrode to the negative electrode. is the first switcher, and the Mth switcher among the M switches along the direction from the positive pole to the negative pole is the second switcher, K represents a positive integer, M represents a positive integer not less than 2, and m represents less than M is a positive integer;
  • the first switch includes pin No. 1, pin No. 2, pin No. 3, pin No. 4, pin No. 5 and pin No. 6, and has: when the first switch is in the In the first state, only pin No. 3 is electrically connected to pin No. 4 and pin No. 2 is electrically connected to pin No. 6. When the first switch is in the second state, only pin No. 1 is electrically connected respectively. Connect pins 2 and 3 and pin 4 electrically connect to pin 5;
  • the second switcher includes pin No. 2, pin No. 3, pin No. 4, pin No. 5 and pin No. 6, and has: when the second switcher is in the first state , only pin No. 3 is electrically connected to pin No. 4 and pin No. 2 is electrically connected to pin No. 6, and when the second switch is in the second state, only pin No. 3 is electrically connected to pin 6 Pin No. 4 and pin No. 4 are electrically connected to pin No. 5;
  • the positive electrode of the M+1th photovoltaic panel among the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to pin 3 of the Mth switch.
  • the negative electrode of the Mth photovoltaic panel in the direction from the positive electrode to the negative electrode is electrically connected to pin 4 of the Mth switch, and the m+1th photovoltaic panel in the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to pin 4 of the Mth switch.
  • the positive electrode of the board is electrically connected to pin 3 of the m-th switch, and the negative electrode of the m-th photovoltaic panel among the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to the m-th switch. Pin 4;
  • the corresponding pin No. 1 of the m-th switch and the corresponding pin No. 2 of the M switches pins and the corresponding positive electrode of the first photovoltaic panel along the direction from the positive electrode to the negative electrode are respectively electrically connected to the positive input terminal of the photovoltaic inverter, and the corresponding pins 6 of the M switches are electrically connected to all The positive input terminal of the photovoltaic inverter;
  • the corresponding No. 2 pins of the M switches and the corresponding first pin along the direction from the positive pole to the negative pole The positive poles of the photovoltaic panels are electrically connected to the No. 5 pin of the first switch in the direction from the positive pole to the negative pole in the photovoltaic panel series branch described in item k-1, and the corresponding pins in the direction from the positive pole to the negative pole.
  • Pin No. 1 of the w-th switch is electrically connected to pin No.
  • the No. 5 pins of the corresponding M switches are electrically connected to the negative input terminals of the photovoltaic inverters respectively;
  • the x-th switch in each of the photovoltaic panel series branches along the direction from the positive pole to the negative pole is synchronously controlled by the voltage conversion controller, and when the x-th switch is in the first state
  • only the yth switch along the direction from the positive pole to the negative pole can be in the second state, where x is a positive integer not greater than M, and y is a positive integer less than x.
  • a control device including a memory, a processor and a transceiver that are communicated in sequence, wherein, The memory is used to store computer programs, the transceiver is used to send and receive messages, and the processor is used to read the computer program and execute the battery direct charging method as described in the first aspect or any possible design in the first aspect.
  • a computer-readable storage medium is provided. Instructions are stored on the computer-readable storage medium. When the instructions are run on a computer, the instructions are executed as in the first aspect or any possible design in the first aspect.
  • the battery charging method described above is direct.
  • a sixth aspect provides a computer program product containing instructions, which when the instructions are run on a computer, cause the computer to execute the battery direct charging method as described in the first aspect or any possible design in the first aspect.
  • the present invention provides a new scheme for charging secondary batteries using direct current from photovoltaic panels, that is, first based on the battery charging demand voltage of the secondary battery and the current number of photovoltaic panel series connections in each photovoltaic panel series branch. and the current maximum power point voltage to adjust the number of photovoltaic panels in series of each photovoltaic panel series branch to ensure that the maximum power point voltage of each photovoltaic panel series branch can match the battery charging demand voltage, and then When it is determined that each of the photovoltaic panel series branches is currently in normal condition, the direct charging switch is controlled to be turned on to form a charging loop.
  • the DC power of the photovoltaic panel can be used to directly charge the secondary battery, skipping the inversion of the DC power into AC power and
  • the conversion process of AC power rectification into DC power can achieve the purpose of reducing power consumption, improving charging efficiency and reducing hardware costs;
  • the photovoltaic inverter can be used to dynamically coordinate battery charging, so that the battery charging voltage always works at the maximum power point, effectively improving charging efficiency and photovoltaic power generation utilization;
  • Charging can be automatically terminated during the charging process and the photovoltaic inverter can be restored from charging mode to normal operating mode;
  • Figure 1 is a schematic flow chart of the direct charging method for batteries based on photovoltaic panels provided by the present invention.
  • Figure 2 is a schematic structural diagram of a battery direct charging device based on photovoltaic panels provided by the present invention.
  • FIG. 3 is a schematic structural diagram of the charging system provided by the present invention.
  • FIG. 4 is a schematic structural diagram of the control device provided by the present invention.
  • first, second, etc. may be used herein to describe various objects, these objects should not be limited by these terms. These terms are only used to distinguish one object from another. For example, a first object may be referred to as a second object, and similarly a second object may be referred to as a first object, without departing from the scope of example embodiments of the invention.
  • the direct battery charging method based on photovoltaic panels provided in the first aspect of this embodiment can be, but is not limited to, executed by a voltage conversion controller of the charging system that has certain computing resources, such as a microcontroller, It is executed by control units such as microcontroller, FPGA (Field Programmable Gate Array, field programmable logic gate array) or PLC (Programmable Logic Controller, programmable logic controller).
  • a voltage conversion controller of the charging system that has certain computing resources, such as a microcontroller, It is executed by control units such as microcontroller, FPGA (Field Programmable Gate Array, field programmable logic gate array) or PLC (Programmable Logic Controller, programmable logic controller).
  • the charging system also includes but is not limited to a photovoltaic panel voltage conversion circuit, a direct charging switch and a secondary battery (such as a car battery, etc.), wherein the photovoltaic panel voltage conversion circuit includes a photovoltaic Panel series branches or at least two photovoltaic panel series branches with the same number of photovoltaic panels in series and the number of photovoltaic panels in series can be adjusted synchronously.
  • the photovoltaic panel series branch or the at least two photovoltaic panel series branches Each photovoltaic panel series branch includes a plurality of photovoltaic panels connected in series and having the same properties, and the voltage conversion controller is respectively communicatively connected to the photovoltaic panel voltage conversion circuit and the direct charging switch.
  • the positive poles of the photovoltaic panel series branches are electrically connected to the positive input terminal V+ of the direct charging switch, and the negative poles of each photovoltaic panel series branch are electrically connected to the negative input terminal V- of the direct charging switch.
  • the positive output terminal of the charging switch is electrically connected to the positive electrode of the secondary battery, and the negative output terminal of the direct charging switch is electrically connected to the negative electrode of the secondary battery.
  • the photovoltaic panel-based battery direct charging method may, but is not limited to, include the following steps S1 to S5.
  • step S1 According to the battery charging demand voltage of the secondary battery, the current number of photovoltaic panels in series and the current maximum power point voltage of each photovoltaic panel series branch, determine the maximum power point of the photovoltaic panel series branch. The target number of photovoltaic panels in series whose voltage matches the battery charging requirement voltage is then executed, and then step S2 is performed.
  • the battery charging demand voltage may be but is not limited to the BMS (BATTERY MANAGEMENT SYSTEM, battery management system) battery system from the secondary battery; as shown in Figure 3, the voltage conversion controller passes CAN (Controller Area Network, Controller Area Network) and DC (Direct Current, Chinese abbreviation for DC current) buses are electrically connected to the BMS battery system of the secondary battery, so that the voltage conversion controller can receive signals from the BMS battery system battery status data (which includes but is not limited to the battery charging demand voltage, battery charging demand current and battery status voltage of the secondary battery), and then obtains the battery status of the secondary battery from the battery status data Charging requirement voltage.
  • BMS Battery Management System
  • DC Direct Current, Chinese abbreviation for DC current
  • the current number of photovoltaic panels in series can be sensed through, but is not limited to, the control results of the photovoltaic panel voltage conversion circuit.
  • the current maximum power point voltage can be, but is not limited to, determining the maximum power point voltage of each photovoltaic panel series branch in real time through a conventional maximum power point tracking algorithm, which is an interval value with an upper and lower offset range, for example [312V,328V].
  • the triggering condition of step S1 may be, but is not limited to, finding that the secondary battery needs to be charged according to the battery status voltage or receiving a charging request from the BMS battery system, and so on.
  • the specific determination process of the target number of photovoltaic panels in series includes but is not limited to: first, determine a single photovoltaic panel according to the current number of photovoltaic panels in series and the current maximum power point voltage of each photovoltaic panel series branch.
  • the current maximum power point voltage of the photovoltaic panel (which is also an interval value with an upper and lower offset range, such as [38V, 42V]), and then based on the battery charging demand voltage of the secondary battery and the single photovoltaic panel
  • the current maximum power point voltage determines the target number of photovoltaic panel series connections in the photovoltaic panel series branch so that the maximum power point voltage matches the battery charging demand voltage.
  • the battery charging demand voltage of the secondary battery is 240V
  • the current maximum power point voltage of the single photovoltaic panel is [38V, 42V]. Since 240V belongs to the interval [228V, 252V], if the photovoltaic panel When the maximum power point voltage of the series branch is [228V, 252V], it is considered to match the battery charging demand voltage.
  • the target number of photovoltaic panels in series can be determined to be 6. In this way, through the construction and application of the aforementioned voltage linear database (that is, the current maximum power point voltage of a single photovoltaic panel), the currently required target number of photovoltaic panels in series can be accurately determined.
  • step S1 specifically, according to the battery charging demand voltage of the secondary battery, the current number of photovoltaic panels in series and the current maximum power point voltage of each photovoltaic panel series branch, the series connection of the photovoltaic panels is determined.
  • the target number of photovoltaic panels in series of the branch and making the maximum power point voltage match the battery charging demand voltage, including but not limited to: based on the maximum power of each photovoltaic panel series branch recorded in the most recent unit period point voltage to determine whether the secondary battery can be charged; if so, based on the battery charging demand voltage of the secondary battery and the current number of photovoltaic panels in series and the current maximum power point of each photovoltaic panel series branch.
  • the most recent unit period may be, but is not limited to, the most recent 1 minute, the most recent 3 minutes, the most recent 10 minutes, etc. Since the maximum power point voltage of each photovoltaic panel series branch recorded in the latest unit period can reflect recent weather changes (such as ambient temperature and illumination, etc.), if it is found that there is If the weather changes badly or violently, it may be deemed unsuitable for charging. For example, the maximum power point voltage on cloudy days will generally be lower. Even if the number of photovoltaic panels in series is adjusted to the maximum value, it cannot match the battery charging demand voltage. This is It is not suitable to directly charge the secondary battery, and the reminder information will be generated and displayed.
  • step S2 Determine whether the target number of photovoltaic panels in series is equal to the current number of photovoltaic panels in series. If so, execute step S4; otherwise, execute step S3.
  • step S2 for example, if the target number of photovoltaic panels in series is 6 and the current number of photovoltaic panels in series is also 6, there is no need to adjust the number of photovoltaic panels in series in each photovoltaic panel series branch. Step S3 is skipped. Otherwise, step S3 needs to be performed to adjust the number of photovoltaic panels in series in each of the photovoltaic panel series branches.
  • step S3 Generate a first control signal according to the target number of photovoltaic panels in series, and transmit the first control signal to the photovoltaic panel voltage conversion circuit, so that the photovoltaic panel voltage conversion circuit responds to the first control
  • the number of photovoltaic panel series connections in each of the photovoltaic panel series branches is adjusted to the target number of photovoltaic panel series connections, and then step S4 is performed.
  • the photovoltaic panel voltage conversion circuit may, but is not limited to, include K series branches of the photovoltaic panels, wherein the series branches of the photovoltaic panels include a series circuit connected in series along the direction from the positive electrode to the negative electrode.
  • N photovoltaic panels and M switches arranged sequentially along the direction from the positive electrode to the negative electrode.
  • the M switches the mth switch along the direction from the positive electrode to the negative electrode is the first switcher.
  • the first The switch includes pin No. 1, pin No. 2, pin No. 3, pin No. 4, pin No. 5 and pin No. 6, and has: when the first switch is in the first state, Only pin No. 3 is electrically connected to pin No. 4 and pin No. 2 is electrically connected to pin No. 6. When the first switch is in the second state, only pin No. 1 is electrically connected to pin No. 2. Pin No. 3 and Pin No. 4 are electrically connected to Pin No. 5; the second switcher includes Pin No. 2, Pin No. 3, Pin No. 4, Pin No.
  • the positive electrode of the m+1th photovoltaic panel among the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to Pin No. 3 of the Mth switcher.
  • the negative electrode of the m-th photovoltaic panel among the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to the No. 4 pin of the m-th switch; for the K series branches of the photovoltaic panels
  • the first photovoltaic panel series branch corresponds to the No. 1 pin of the m-th switch, the corresponding No. 2 pin of the M switchers and the corresponding pin No. 1 along the direction from the positive pole to the negative pole.
  • the positive electrode of the first photovoltaic panel is electrically connected to the positive input terminal V+ of the photovoltaic inverter, and the corresponding No. 6 pins of the M switches are electrically connected to the positive input terminal V+ of the photovoltaic inverter. ;
  • the corresponding No. 2 pins of the M switches and the corresponding first pin along the direction from the positive pole to the negative pole The positive electrodes of each photovoltaic panel are respectively electrically connected to the No.
  • Pin No. 1 of the w-th switch is electrically connected to pin No. 5 of the w+1-th switch in the photovoltaic panel series branch described in item k-1 and along the direction from the positive pole to the negative pole, corresponding to Pins 6 of the M switches are electrically connected to the positive input terminal V+ of the photovoltaic inverter respectively, where k is a positive integer greater than 1 and not greater than K, and w is a positive number greater than 1 and not greater than M.
  • each new photovoltaic panel series branch includes a series of photovoltaic panels connected in series along the direction from the positive electrode to the negative electrode.
  • the photovoltaic panel voltage conversion circuit includes three photovoltaic panel series branches, and the photovoltaic panel series branches include eight photovoltaic panels connected in series in the direction from the positive electrode to the negative electrode. and in order from the positive pole to the negative pole
  • the corresponding three switches are JK31 ⁇ JK33 respectively, among which, JK31 and JK32 are the first switchers respectively, and JK33 is the second switcher; at the same time, JK11 ⁇ JK31 are a group of switches synchronously controlled by the voltage conversion controller.
  • the target number of photovoltaic panels in series is 6, it is possible to generate a method for putting the second switch group and the first switch group in the second state and making the third switch group be in the the first control signal in the first state, and then transmit the first control signal to each switch in the photovoltaic panel voltage conversion circuit through the switch control line, so that when the each switch responds to the After the first control signal, the number of photovoltaic panels in series of each photovoltaic panel series branch is adjusted to 6 respectively (that is, for the first photovoltaic panel series branch on the left, PV13 ⁇ PV18 are connected in series; for The second photovoltaic panel series branch in the middle has PV23 ⁇ PV28 connected in series; the photovoltaic panel series branch mentioned in the third photovoltaic panel series branch on the right has PV33 ⁇ PV38 connected in series); at the same time: photovoltaic panel PV11 ⁇ PV31 will form the first new photovoltaic panel series branch, and the photovoltaic panels PV12 ⁇ P
  • step S4. Based on the current branch voltage and current branch current of each photovoltaic panel series branch, determine whether the one photovoltaic panel series branch or the at least two photovoltaic panel series branches are currently in normal condition, If yes, execute step S5.
  • step S4 the specific judgment method is the existing conventional method. For example, if it is found that the current branch voltage and/or the current branch current of a certain photovoltaic panel series branch exceeds the preset corresponding threshold or is lower than the preset If the other corresponding threshold is , it is considered that a certain photovoltaic panel series branch is in an abnormal condition, and a fault problem is diagnosed.
  • the method after determining whether the one photovoltaic panel series branch or the at least two photovoltaic panel series branches are currently in normal condition, the method also includes but is not limited to: if it is determined that the one photovoltaic panel series branch If any photovoltaic panel series branch among the at least two photovoltaic panel series branches is currently in an abnormal condition, it will trigger the generation and display of reminder information indicating that it is not currently rechargeable, wherein the reminder information can be It is not limited to the current branch voltage value and current branch current value of the photovoltaic panel series branch that has been diagnosed and determined, and is in abnormal conditions.
  • S5. Generate a second control signal, and transmit the second control signal to the direct charging switch, so that the direct charging switch, after responding to the second control signal, causes the photovoltaic panel to be connected in series to a branch or
  • the at least two photovoltaic panel series branches and the secondary battery form a charging circuit.
  • the second control signal is a control signal used to control the conduction of the direct charging switch.
  • a new solution for charging the secondary battery using the direct current of the photovoltaic panel is provided, that is, first according to the battery charging requirements of the secondary battery
  • the current number of photovoltaic panels in series of each photovoltaic panel series branch and the current maximum power point voltage are used to adjust the number of photovoltaic panels in series of each photovoltaic panel series branch to ensure the The maximum power point voltage can match the battery charging demand voltage, and then when it is determined that each photovoltaic panel series branch is currently in normal condition, the direct charging switch is controlled to conduct to form a charging loop, and the photovoltaic inverter is controlled to enter the battery Charging mode, so that the DC power from the photovoltaic panel can be used to directly charge the secondary battery, skipping the conversion process of DC inversion into AC power and AC rectification into DC power, thereby reducing power consumption, improving charging efficiency and reducing hardware costs. Purpose.
  • this embodiment also provides a possible design of how to cooperate with battery charging, that is, when the charging system also includes a photovoltaic inverter and a power grid, and the voltage conversion control
  • the device is also communicatively connected to the photovoltaic inverter, the positive electrodes of each photovoltaic panel series branch are also electrically connected to the positive input terminals of the photovoltaic inverter, and the negative electrodes of each photovoltaic panel series branch are also respectively
  • the battery direct charging method further includes the following step S6 after step S5.
  • S6 Generate a third control signal, and transmit the third control signal to the photovoltaic inverter, so that the photovoltaic inverter enters the process to cooperate with the voltage conversion after responding to the third control signal.
  • the battery charging mode of the controller on the one hand, according to the battery charging demand current of the secondary battery, the current delivered to the secondary battery is adjusted in real time around the maximum power point voltage, so that the battery charging voltage always works at the maximum power point. On the other hand, the remaining photovoltaic power generation of the photovoltaic panel voltage conversion circuit is inverted and transmitted to the power grid.
  • step S6 the voltage conversion controller is electrically connected to the photovoltaic inverter through the CAN/RS485 communication line, so that it can receive inverter status data from the photovoltaic inverter.
  • inverter status data includes but is not limited to the working mode of the photovoltaic inverter and the current maximum power point voltage, current branch voltage and current branch current of each photovoltaic panel series branch
  • the current maximum power point voltage of each photovoltaic panel series branch is obtained from the inverter status data.
  • the battery charging demand current may also be, but is not limited to, coming from the BMS (BATTERY MANAGEMENT SYSTEM, battery management system) battery system of the secondary battery, and is obtained in real time from the battery status data received in real time.
  • the specific way for the photovoltaic inverter to cooperate with the voltage conversion controller to adjust the current size is an existing conventional way, for example, according to the battery charging demand current control PWM (Pulse width modulation, pulse width modulation) signal
  • PWM Pulse width modulation, pulse width modulation
  • the duty cycle is adjusted to achieve the purpose of adjusting the current size.
  • the remaining photovoltaic power generation specifically includes the photovoltaic power generation of the one photovoltaic panel series branch or the at least two photovoltaic panel series branches that is not sent to the secondary battery and the at least one new photovoltaic panel.
  • the total photovoltaic power generation of the series branch (if it exists).
  • the specific way in which the photovoltaic inverter inverts the remaining photovoltaic power generated by the photovoltaic panel voltage conversion circuit and transmits it to the power grid is its essential work and will not be described again here.
  • the photovoltaic inverter can be used to dynamically coordinate battery charging, so that the battery charging voltage always works at the maximum power point, effectively improving charging efficiency and photovoltaic power generation utilization.
  • the charging system further includes a DC-DC step-up and step-down circuit
  • the voltage conversion controller is also communicatively connected to the DC-DC step-up and step-down circuit
  • the positive electrodes of each photovoltaic panel series branch are also The positive input terminal of the DC-DC step-up and step-down circuit is electrically connected respectively
  • the negative pole of each photovoltaic panel series branch is also electrically connected to the negative input terminal of the DC-DC step-up and step-down circuit
  • the DC -The positive output terminal of the DC buck-boost circuit is electrically connected to the positive pole of the secondary battery, and the negative output terminal of the DC-DC buck-boost circuit is electrically connected
  • the battery direct charging method also includes the following steps after step
  • this embodiment also provides a possible design two of how to dynamically adapt the battery charging demand voltage during the charging process. That is, after executing step S6, the method also includes but does not It is limited to the following steps S711 to S714.
  • step S711. Determine whether the battery charging demand voltage of the secondary battery matches the current maximum power point voltage of each photovoltaic panel series branch. If not, perform step S712.
  • step S711 for example, if the battery charging demand voltage is 240V, the current maximum power point voltage of each photovoltaic panel series branch is reduced to about 180V due to changes in environmental temperature, illumination and other factors. At this time, it can be determined that there is a mismatch, and it is necessary to adjust and increase the number of photovoltaic panels in series in each of the photovoltaic panel series branches (for example, from 6 to 8) in order to increase the maximum power point voltage.
  • step S712. Adjust and reduce the current size until the current size is no greater than the preset current threshold, then perform step S713.
  • step S712 the current can be adjusted and reduced through conventional cooperation between the photovoltaic inverter and the voltage conversion controller, so as to stop inputting power to the secondary battery.
  • step S713 specifically, the fourth control signal is a control signal used to control the direct charging switch to turn off.
  • the purpose of dynamically adapting the battery charging demand voltage during the charging process can be achieved, so that the photovoltaic panel series branch always charges the secondary battery at the maximum power point, ensuring high charging efficiency.
  • this embodiment also provides a possible design three of how to automatically terminate charging during the charging process. That is, after executing step S6, the method also includes but is not limited to the following steps: S721 ⁇ S726.
  • step S721. According to the battery status data of the secondary battery, if it is found that the secondary battery needs to stop charging, execute step S722.
  • step S721 for example, if based on the battery status data of the secondary battery, it is found that the charge is full or the battery status voltage has been equal to/greater than the maximum power point voltage of each photovoltaic panel series branch, Then it can be considered that the secondary battery needs to stop charging.
  • step S724 as shown in Figure 3, for example, the maximum adjustable value is 8.
  • step S725. Generate a fifth control signal, and transmit the fifth control signal to the photovoltaic panel voltage conversion circuit, so that after the photovoltaic panel voltage conversion circuit responds to the fifth control signal, the photovoltaic
  • the number of photovoltaic panels in series in the panel series branch is adjusted to the maximum adjustable value, and then step S726 is performed.
  • step S725 as shown in Figure 3, for example, the fifth control signal is used to cause the first switch group, the second switch group and the third switch group to A control signal in the first state.
  • step S726 since the number of photovoltaic panel series connections in each photovoltaic panel series branch has been adjusted to the maximum adjustable value, no new photovoltaic panel series branch is generated, and the photovoltaic panel voltage conversion circuit The total photovoltaic power generation is also the total photovoltaic power generation of the at least two photovoltaic panel series branches.
  • charging can be automatically terminated during the charging process, and the photovoltaic inverter can be restored from the charging mode to the normal operating mode.
  • the amount of electricity delivered to the grid can also be adjusted according to the power demand of the grid. That is, in order to realize the function of using the secondary battery to supply power to the grid, a seventh control signal can also be generated, and The seventh control signal is transmitted to a DC switch whose two ends are respectively electrically connected to the secondary battery and the photovoltaic inverter, so that after responding to the seventh control signal, the DC switch conducts the position on the The power supply path between the secondary battery and the photovoltaic inverter. At this time, the photovoltaic inverter can invert the stored energy of the secondary battery and transport it to the power grid, and then the secondary battery can be utilized.
  • the power storage function realizes the purpose of storing excess electric energy during the day when there is sufficient light, and supplying energy to the power grid on rainy days or at night, playing the role of peak reduction and valley filling for the power grid.
  • the second aspect of this embodiment provides a virtual device that implements the battery direct charging method described in the first aspect or any possible design of the first aspect, and is suitable for voltage conversion control arranged in the charging system.
  • the charging system also includes a photovoltaic panel voltage conversion circuit, a direct charging switch and a secondary battery, and the photovoltaic panel voltage conversion circuit includes a photovoltaic panel series branch or a photovoltaic panel series branch with the same number of photovoltaic panels in series. At least two photovoltaic panel series branches in which the number of photovoltaic panels in series can be adjusted synchronously.
  • the one photovoltaic panel series branch or each of the at least two photovoltaic panel series branches includes a plurality of photovoltaic panel series branches.
  • Photovoltaic panels are connected in series and have the same properties.
  • the voltage conversion controller is respectively communicatively connected to the photovoltaic panel voltage conversion circuit and the direct charging switch.
  • the positive electrode of each photovoltaic panel series branch is electrically connected to the direct charging switch.
  • the positive input terminal of the charging switch, and the negative electrodes of each photovoltaic panel series branch are electrically connected to the negative input terminal of the direct charging switch,
  • the positive output terminal of the direct charging switch is electrically connected to the positive electrode of the secondary battery, and the negative output terminal of the direct charging switch is electrically connected to the negative electrode of the secondary battery;
  • the virtual device includes a target number determination module, a first judgment module, a first trigger module, a second judgment module and a second trigger module;
  • the target number determination module is communicatively connected to the first judgment module, and is used to determine the battery charging demand voltage of the secondary battery and the current photovoltaic panel series number and current maximum power point of each photovoltaic panel series branch. voltage, determine the target number of photovoltaic panels in series of the photovoltaic panel series branch and make the maximum power point voltage match the battery charging demand voltage, and then start the first judgment module;
  • the first judgment module is respectively communicatively connected to the first trigger module and the second judgment module, and is used to judge whether the target number of photovoltaic panels in series is equal to the current number of photovoltaic panels in series. If so, start the The second judgment module, otherwise starts the first trigger module;
  • the first trigger module is communicatively connected to the second judgment module, and is used to generate a first control signal according to the target number of photovoltaic panels in series, and transmit the first control signal to the photovoltaic panel voltage conversion circuit. , so that after the photovoltaic panel voltage conversion circuit responds to the first control signal, the photovoltaic panel series number of each photovoltaic panel series branch is adjusted to the photovoltaic panel series target number, and then starts the third 2.
  • Judgment module is communicatively connected to the second judgment module, and is used to generate a first control signal according to the target number of photovoltaic panels in series, and transmit the first control signal to the photovoltaic panel voltage conversion circuit.
  • the second judgment module is communicatively connected to the second trigger module, and is used to judge the photovoltaic panel series branch or the photovoltaic panel series branch according to the current branch voltage and current branch current of each photovoltaic panel series branch. Whether the at least two photovoltaic panel series branches are currently in normal condition, and if so, start the second trigger module;
  • the second trigger module is used to generate a second control signal and transmit the second control signal to the direct charging switch, so that the direct charging switch causes the direct charging switch to respond to the second control signal.
  • One photovoltaic panel series branch or the at least two photovoltaic panel series branches and the secondary battery form a charging circuit.
  • the charging system also includes a photovoltaic inverter and a power grid
  • the voltage conversion controller is also communicatively connected to the photovoltaic inverter
  • the positive electrode of each photovoltaic panel series branch The positive input terminal of the photovoltaic inverter is also electrically connected to each other, and the negative electrode of each photovoltaic panel series branch is also electrically connected to the negative input terminal of the photovoltaic inverter and the AC input terminal of the photovoltaic inverter.
  • the virtual device further includes a third trigger module communicatively connected to the second trigger module;
  • the third trigger module is configured to trigger the generation of a third control signal after transmitting the second control signal to the direct charging switch, and transmit the third control signal to the photovoltaic inverter, so that After responding to the third control signal, the photovoltaic inverter enters the battery charging mode for cooperating with the voltage conversion controller: on the one hand, according to the battery charging demand current of the secondary battery, around the maximum power point voltage The current delivered to the secondary battery is adjusted in real time so that the battery charging voltage always operates at the maximum power point. On the other hand, the remaining photovoltaic power generation of the photovoltaic panel voltage conversion circuit is inverted and delivered to the power grid.
  • the third aspect of this embodiment provides a charging system that implements the battery direct charging method described in the first aspect or any possible design of the first aspect, including a voltage conversion controller, a photovoltaic panel voltage Conversion circuit, direct charging switch and secondary battery, wherein the photovoltaic panel voltage conversion circuit includes a photovoltaic panel series branch or at least two photovoltaic panels with the same number of photovoltaic panels in series and the number of photovoltaic panels in series can be adjusted synchronously Series branch, the photovoltaic panel series branch or the Each of the at least two photovoltaic panel series branches includes a plurality of photovoltaic panels connected in series and having the same properties, and the voltage conversion controller is respectively communicatively connected to the photovoltaic panel voltage conversion circuit and all photovoltaic panel series branches.
  • the photovoltaic panel voltage conversion circuit includes a photovoltaic panel series branch or at least two photovoltaic panels with the same number of photovoltaic panels in series and the number of photovoltaic panels in series can be adjusted synchronous
  • the positive electrodes of each photovoltaic panel series branch are electrically connected to the positive input terminal of the direct charging switch, and the negative electrodes of each photovoltaic panel series branch are electrically connected to the negative electrode of the direct charging switch.
  • Input terminal, the positive output terminal of the direct charging switch is electrically connected to the positive electrode of the secondary battery, and the negative output terminal of the direct charging switch is electrically connected to the negative electrode of the secondary battery; the voltage conversion controller is used to The battery direct charging method as described in the first aspect or any possible design of the first aspect is performed.
  • the photovoltaic panel voltage conversion circuit includes K series branches of the photovoltaic panels, wherein the series branches of the photovoltaic panels include There are N photovoltaic panels connected in series along the direction from the positive electrode to the negative electrode and M switches arranged sequentially along the direction from the positive electrode to the negative electrode.
  • the M switches the mth switch is along the direction from the positive electrode to the negative electrode. is the first switcher, and the Mth switcher among the M switches along the direction from the positive pole to the negative pole is the second switcher, K represents a positive integer, M represents a positive integer not less than 2, and m represents less than M is a positive integer;
  • the first switch includes pin No. 1, pin No. 2, pin No. 3, pin No. 4, pin No. 5 and pin No. 6, and has: when the first switch is in the In the first state, only pin No. 3 is electrically connected to pin No. 4 and pin No. 2 is electrically connected to pin No. 6. When the first switch is in the second state, only pin No. 1 is electrically connected respectively. Connect pins 2 and 3 and pin 4 electrically connect to pin 5;
  • the second switcher includes pin No. 2, pin No. 3, pin No. 4, pin No. 5 and pin No. 6, and has: when the second switcher is in the first state , only pin No. 3 is electrically connected to pin No. 4 and pin No. 2 is electrically connected to pin No. 6, and when the second switch is in the second state, only pin No. 3 is electrically connected to pin 6 Pin No. 4 and pin No. 4 are electrically connected to pin No. 5;
  • the positive electrode of the M+1th photovoltaic panel among the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to pin 3 of the Mth switch.
  • the negative electrode of the Mth photovoltaic panel in the direction from the positive electrode to the negative electrode is electrically connected to pin 4 of the Mth switch, and the m+1th photovoltaic panel in the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to pin 4 of the Mth switch.
  • the positive electrode of the board is electrically connected to pin 3 of the m-th switch, and the negative electrode of the m-th photovoltaic panel among the N photovoltaic panels along the direction from the positive electrode to the negative electrode is electrically connected to the m-th switch. Pin 4;
  • the corresponding pin No. 1 of the m-th switch and the corresponding pin No. 2 of the M switches pin and the corresponding positive electrode of the first photovoltaic panel along the direction from the positive electrode to the negative electrode are respectively electrically connected to the positive input terminal V+ of the photovoltaic inverter, and the corresponding No. 6 pins of the M switches are electrically connected respectively.
  • the corresponding No. 2 pins of the M switches and the corresponding first pin along the direction from the positive pole to the negative pole The positive poles of the photovoltaic panels are electrically connected to the No. 5 pin of the first switch in the direction from the positive pole to the negative pole in the photovoltaic panel series branch described in item k-1, and the corresponding pins in the direction from the positive pole to the negative pole.
  • Pin No. 1 of the w-th switch is electrically connected to pin No.
  • the corresponding No. 5 pins of the M switches are electrically connected to the negative input terminal V of the photovoltaic inverter respectively.
  • the x-th switch in each of the photovoltaic panel series branches along the direction from the positive pole to the negative pole is synchronously controlled by the voltage conversion controller, and when the x-th switch is in the first state
  • only the yth switch along the direction from the positive pole to the negative pole can be in the second state, where x is a positive integer not greater than M, and y is a positive integer less than x.
  • the fourth aspect of this embodiment provides a control device that performs the battery direct charging method as described in the first aspect or any possible design of the first aspect, including a memory, a processor, and a memory connected through communication in sequence. and a transceiver, wherein the memory is used to store a computer program, the transceiver is used to send and receive messages, and the processor is used to read the computer program and execute the first aspect or any possible design in the first aspect.
  • the battery direct charging method is used to store a computer program, the transceiver is used to send and receive messages, and the processor is used to read the computer program and execute the first aspect or any possible design in the first aspect.
  • the memory may include, but is not limited to, random access memory (Random-Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash Memory), first-in first-out memory (First Input First Output, FIFO) and/or First Input Last Output, FILO, etc.;
  • the processor may be, but is not limited to, a microprocessor of the STM32F105 series.
  • the control device may also include, but is not limited to, a power module, a display screen and other necessary components.
  • the fifth aspect of this embodiment provides a computer-readable storage medium that stores instructions for the battery direct charging method as described in the first aspect or any of the possible designs of the first aspect, that is, the computer-readable storage medium stores Instructions are stored, and when the instructions are run on the computer, the battery direct charging method as described in the first aspect or any possible design of the first aspect is executed.
  • the computer-readable storage medium refers to a carrier for storing data, which may include, but is not limited to, a floppy disk, an optical disk, a hard disk, a flash memory, a USB disk, and/or a memory stick (Memory Stick) and other computer-readable storage media.
  • the computer may Is a general-purpose computer, special-purpose computer, computer network or other programmable device.
  • the sixth aspect of this embodiment provides a computer program product containing instructions.
  • the computer When the instructions are run on a computer, the computer is caused to execute the battery direct method as described in the first aspect or any of the possible designs of the first aspect. Charging method.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network or other programmable devices.

Abstract

本发明公开了一种基于光伏板的电池直接充电方法、装置、系统及设备,涉及新能源技术领域。所述方法是先根据二次电池的电池充电需求电压和各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压来调整所述各条光伏板串联支路的光伏板串联数,确保所述各条光伏板串联支路的的最大功率点电压能够匹配所述电池充电需求电压,然后在判定所述各条光伏板串联支路当前都处于正常情况时,控制直充开关导通构成充电回路,如此可以利用光伏板的直流电对二次电池进行直接充电,跳过直流电逆变为交流电和交流电整流为直流电的转换过程,进而可实现减小功耗、提升充电效率和降低硬件成本的目的。

Description

一种基于光伏板的电池直接充电方法、装置、系统及设备 技术领域
本发明属于新能源技术领域,具体涉及一种基于光伏板的电池直接充电方法、装置、系统及设备。
背景技术
二次电池(Rechargeable Battery)又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。现有对二次电池进行充电的过程一般是:先将交流电转换成直流电,然后对直流电进行适当的调压,最后利用经过调压的直流电对电池进行充电。但是这种电池充电方式将产生较大的功率损耗,同时需要投入较高的硬件成本。
光伏板,也称光伏板组件,是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于光伏板是输出直流电,如何利用光伏板对二次电池进行直接充电,进而实现减小功耗、提升充电效率和降低硬件成本的目的,是本领域技术人员亟需研究的课题。
发明内容
本发明的目的是提供一种基于光伏板的电池直接充电方法、装置、系统、控制设备及计算机可读存储介质,用以解决现有电池充电方式所存在功率损耗较大以及硬件成本高的问题。
为了实现上述目的,本发明采用以下技术方案:
第一方面,提供了一种基于光伏板的电池直接充电方法,由充电系统的电压转换控制器执行,其中,所述充电系统还包括有光伏板电压转换电路、直充开关和二次电池,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;
所述电池直接充电方法,包括有如下步骤S1~S5:
S1.根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,然后执行步骤S2;
S2.判断所述光伏板串联目标数是否等于所述当前光伏板串联数,若是,则执行步骤S4,否则执行步骤S3;
S3.根据所述光伏板串联目标数,生成第一控制信号,并将所述第一控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第一控制信号后,使所述各条 光伏板串联支路的光伏板串联数分别调整至所述光伏板串联目标数,然后执行步骤S4;
S4.根据所述各条光伏板串联支路的当前支路电压及当前支路电流,判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况,若是,则执行步骤S5;
S5.生成第二控制信号,并将所述第二控制信号传送至所述直充开关,以便所述直充开关在响应所述第二控制信号后,使所述一条光伏板串联支路或所述至少两条光伏板串联支路与所述二次电池构成充电回路。
基于上述发明内容,提供了一种利用光伏板的直流电对二次电池进行充电的新方案,即先根据二次电池的电池充电需求电压和各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压来调整所述各条光伏板串联支路的光伏板串联数,确保所述各条光伏板串联支路的的最大功率点电压能够匹配所述电池充电需求电压,然后在判定所述各条光伏板串联支路当前都处于正常情况时,控制直充开关导通构成充电回路,如此可以利用光伏板的直流电对二次电池进行直接充电,跳过直流电逆变为交流电和交流电整流为直流电的转换过程,进而可实现减小功耗、提升充电效率和降低硬件成本的目的。
在一个可能的设计中,当所述充电系统还包括有光伏逆变器和电网,并且所述电压转换控制器还通信连接所述光伏逆变器,所述各条光伏板串联支路的正极还分别电连接所述光伏逆变器的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述光伏逆变器的负极输入端子,以及所述光伏逆变器的交流输出端子电连接所述电网时,所述电池直接充电方法还包括有在步骤S5之后的如下步骤S6:S6.生成第三控制信号,并将所述第三控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第三控制信号后,进入用于配合所述电压转换控制器的电池充电模式:一方面根据所述二次电池的电池充电需求电流,围绕最大功率点电压实时调整输送至所述二次电池的电流大小,使电池充电电压始终工作在最大功率点,另一方面将所述光伏板电压转换电路的剩余光伏发电量逆变输送至所述电网。
在一个可能的设计中,当所述充电系统还包括有DC-DC升降压电路,并且所述电压转换控制器还通信连接所述DC-DC升降压电路,所述各条光伏板串联支路的正极还分别电连接所述DC-DC升降压电路的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述DC-DC升降压电路的负极输入端子,以及所述DC-DC升降压电路的正极输出端子电连接所述二次电池的正极,所述DC-DC升降压电路的负极输出端子电连接所述二次电池的负极时,所述电池直接充电方法还包括有在步骤S5之后的如下步骤:生成第八控制信号,并将所述第八控制信号传送至所述DC-DC升降压电路,以便所述DC-DC升降压电路在响应所述第八控制信号后,对所述光伏板电压转换电路的剩余光伏发电量进行升压或降压并输送至所述二次电池。
在一个可能的设计中,在执行步骤S6之后,所述方法还包括有如下步骤S711~S714:
S711.判断所述二次电池的电池充电需求电压与所述各条光伏板串联支路的当前最大功率点电压是否匹配,若否,则执行步骤S712;
S712.调整降低所述电流大小,直到在所述电流大小不大于预设的电流阈值后,执行步骤S713;
S713.生成第四控制信号,并将所述第四控制信号传送至所述直充开关,以便所述直充开关在响应所述第四控制信号后,切断所述充电回路,然后执行步骤S714;
S714.返回执行步骤S1~S6。
在一个可能的设计中,在执行步骤S6之后,所述方法还包括有如下步骤S721~S726:
S721.根据所述二次电池的电池状态数据,若发现所述二次电池需要停止充电,则执行步骤S722;
S722.调整降低所述电流大小,直到在所述电流大小不大于预设的电流阈值后,执行步骤S723;
S723.生成第四控制信号,并将所述第四控制信号传送至所述直充开关,以便所述直充开关在响应所述第四控制信号后,切断所述充电回路,然后执行步骤S724;
S724.判断所述各条光伏板串联支路的当前光伏板串联数是否等于最大可调整数值,若是,则执行步骤S726,否则执行步骤S725;
S725.生成第五控制信号,并将所述第五控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第五控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述最大可调整数值,然后执行步骤S726;
S726.生成第六控制信号,并将所述第六控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第六控制信号后,进入正常工作模式:将所述光伏板电压转换电路的全部光伏发电量逆变输送至所述电网。
在一个可能的设计中,根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,包括:
根据在最近单位时段内记录的且所述各条光伏板串联支路的最大功率点电压,判断是否能向所述二次电池充电;
若能,则根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,否则触发生成并展示用于指示当前不可充电的提醒信息。
在一个可能的设计中,在判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况之后,所述方法还包括:
若判定所述一条光伏板串联支路或所述至少两条光伏板串联支路中有任意一条光伏板串联支路当前处于不正常情况,则触发生成并展示用于指示当前不可充电的提醒信息。
第二方面,提供了一种基于光伏板的电池直接充电装置,适用于布置在充电系统的电压转换控制器中,其中,所述充电系统还包括有光伏板电压转换电路、直充开关和二次电池,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直 充开关的负极输出端子电连接所述二次电池的负极;
所述电池直接充电装置,包括有目标数确定模块、第一判断模块、第一触发模块、第二判断模块和第二触发模块;
所述目标数确定模块,通信连接所述第一判断模块,用于根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,然后启动所述第一判断模块;
所述第一判断模块,分别通信连接所述第一触发模块和所述第二判断模块,用于判断所述光伏板串联目标数是否等于所述当前光伏板串联数,若是,则启动所述第二判断模块,否则启动所述第一触发模块;
所述第一触发模块,通信连接所述第二判断模块,用于根据所述光伏板串联目标数,生成第一控制信号,并将所述第一控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第一控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述光伏板串联目标数,然后启动所述第二判断模块;
所述第二判断模块,通信连接所述第二触发模块,用于根据所述各条光伏板串联支路的当前支路电压及当前支路电流,判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况,若是,则启动所述第二触发模块;
所述第二触发模块,用于生成第二控制信号,并将所述第二控制信号传送至所述直充开关,以便所述直充开关在响应所述第二控制信号后,使所述一条光伏板串联支路或所述至少两条光伏板串联支路与所述二次电池构成充电回路。
在一个可能的设计中,当所述充电系统还包括有光伏逆变器和电网,并且所述电压转换控制器还通信连接所述光伏逆变器,所述各条光伏板串联支路的正极还分别电连接所述光伏逆变器的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述光伏逆变器的负极输入端子,以及所述光伏逆变器的交流输出端子电连接所述电网时,所述虚拟装置还包括有通信连接所述第二触发模块的第三触发模块;
所述第三触发模块,用于在将所述第二控制信号传送至所述直充开关之后触发生成第三控制信号,并将所述第三控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第三控制信号后,进入用于配合所述电压转换控制器的电池充电模式:一方面根据所述二次电池的电池充电需求电流,围绕最大功率点电压实时调整输送至所述二次电池的电流大小,使电池充电电压始终工作在最大功率点,另一方面将所述光伏板电压转换电路的剩余光伏发电量逆变输送至所述电网。
第三方面,提供了一种充电系统,包括有电压转换控制器、光伏板电压转换电路、直充开关和二次电池,其中,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所 述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;
所述电压转换控制器,用于执行如第一方面或第一方面中任意可能设计所述的电池直接充电方法。
在一个可能的设计中,当所述充电系统还包括有光伏逆变器时,所述光伏板电压转换电路包括有K条所述光伏板串联支路,其中,所述光伏板串联支路包括有沿从正极至负极方向依次串联的N个光伏板和沿从正极至负极方向依次布置的M个切换器,所述M个切换器中的且沿从正极至负极方向的第m个切换器为第一切换器,所述M个切换器中的且沿从正极至负极方向的第M个切换器为第二切换器,K表示正整数,M表示不小于2的正整数,m表示小于M的正整数;
所述第一切换器包括有1号引脚、2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第一切换器处于第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第一切换器处于第二状态时,仅有1号引脚分别电连接2号引脚和3号引脚以及4号引脚电连接5号引脚;
所述第二切换器包括有2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第二切换器处于所述第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第二切换器处于所述第二状态时,仅有3号引脚电连接6号引脚以及4号引脚电连接5号引脚;
所述N个光伏板中的且沿从正极至负极方向的第M+1个光伏板的正极电连接所述第M个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第M个光伏板的负极电连接所述第M个切换器的4号引脚,所述N个光伏板中的且沿从正极至负极方向的第m+1个光伏板的正极电连接所述第m个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第m个光伏板的负极电连接所述第m个切换器的4号引脚;
针对K条所述光伏板串联支路中的第一条所述光伏板串联支路,对应的所述第m个切换器的1号引脚、对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接所述光伏逆变器的正极输入端子,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子;
针对K条所述光伏板串联支路中的第k条所述光伏板串联支路,对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第一个切换器的5号引脚,对应的且沿从正极至负极方向的第w个切换器的1号引脚电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第w+1个切换器的5号引脚,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子,其中,k为大于1且不大于K的正整数,w为大于1且不大于M的正整数;
针对K条所述光伏板串联支路中的第K条所述光伏板串联支路,对应的所述M个切换器的5号引脚分别电连接所述光伏逆变器的负极输入端子;
各条所述光伏板串联支路中的且沿从正极至负极方向的第x个切换器同步受控于所述电压转换控制器,并且当所述第x个切换器处于所述第一状态时,仅有沿从正极至负极方向的第y个切换器能够处于所述第二状态,其中,x为不大于M的正整数,y为小于x的正整数。
第四方面,提供了一种控制设备,包括有依次通信连接的存储器、处理器和收发器,其中, 所述存储器用于存储计算机程序,所述收发器用于收发消息,所述处理器用于读取所述计算机程序,执行如第一方面或第一方面中任意可能设计所述的电池直接充电方法。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,执行如第一方面或第一方面中任意可能设计所述的电池直接充电方法。
第六方面,提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使所述计算机执行如第一方面或第一方面中任意可能设计所述的电池直接充电方法。
有益效果:
(1)本发明创造提供了一种利用光伏板的直流电对二次电池进行充电的新方案,即先根据二次电池的电池充电需求电压和各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压来调整所述各条光伏板串联支路的光伏板串联数,确保所述各条光伏板串联支路的的最大功率点电压能够匹配所述电池充电需求电压,然后在判定所述各条光伏板串联支路当前都处于正常情况时,控制直充开关导通构成充电回路,如此可以利用光伏板的直流电对二次电池进行直接充电,跳过直流电逆变为交流电和交流电整流为直流电的转换过程,进而可实现减小功耗、提升充电效率和降低硬件成本的目的;
(2)可通过光伏逆变器来动态配合电池充电,使电池充电电压始终工作在最大功率点,有效提升充电效率和光伏发电量利用率;
(3)可实现在充电过程中动态适配电池充电需求电压的目的,使光伏板串联支路始终在最大功率点对所述二次电池进行充电,确保充电高效率;
(4)可在充电过程中自动终止充电,并使所述光伏逆变器从充电模式恢复为正常工作模式;
(5)经过具体实验对比,当将前述电池直接充电方法应用于给汽车电池充电时,充电效率达到99%,并且相比较于充电桩,由于省去了充电模块等硬件,可以降低60%左右的硬件成本,利于有效推动光伏储能和新能源汽车的发展,便于实际应用和推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的基于光伏板的电池直接充电方法的流程示意图。
图2为本发明提供的基于光伏板的电池直接充电装置的结构示意图。
图3为本发明提供的充电系统的结构示意图。
图4为本发明提供的控制设备的结构示意图。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图和实施例或现有技术的描述对本发明作简单地介绍,显而易见地,下面关于附图结构的描述仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在此需要说明的是,对于这些实施例方式的说明用于帮助理解本发明,但并不构成对本发明的限定。
应当理解,尽管本文可能使用术语第一和第二等等来描述各种对象,但是这些对象不应当受到这些术语的限制。这些术语仅用于区分一个对象和另一个对象。例如可以将第一对象称作第二对象,并且类似地可以将第二对象称作第一对象,同时不脱离本发明的示例实施例的范围。
应当理解,对于本文中可能出现的术语“和/或”,其仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、单独存在B或者同时存在A和B等三种情况;对于本文中可能出现的术语“/和”,其是描述另一种关联对象关系,表示可以存在两种关系,例如,A/和B,可以表示:单独存在A或者同时存在A和B等两种情况;另外,对于本文中可能出现的字符“/”,一般表示前后关联对象是一种“或”关系。
如图1所示,本实施例第一方面提供的且基于光伏板的电池直接充电方法,可以但不限于由充电系统的且具有一定计算资源的电压转换控制器执行,例如由微控制器、单片机、FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)或PLC(Programmable Logic Controller,可编程逻辑控制器)等控制单元执行。如图3所示,所述充电系统还包括但不限于有光伏板电压转换电路、直充开关和二次电池(例如汽车电池等)等,其中,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子V+,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子V-,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极。如图1所示,所述基于光伏板的电池直接充电方法,可以但不限于包括有如下步骤S1~S5。
S1.根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,然后执行步骤S2。
在所述步骤S1中,所述电池充电需求电压可以但不限于来自所述二次电池的BMS(BATTERY MANAGEMENT SYSTEM,电池管理系统)电池系统;如图3所示,所述电压转换控制器通过CAN(Controller Area Network,控制器局域网络)及DC(Direct Current,中文简称直流电流)总线电连接所述二次电池的BMS电池系统,如此所述电压转换控制器可接收来自所述BMS电池系统的电池状态数据(其包含但不限于有所述二次电池的电池充电需求电压、电池充电需求电流和电池状态电压等内容),然后从所述电池状态数据中获取所述二次电池的电池充电需求电压。所述当前光伏板串联数可以但不限于通过对所述光伏板电压转换电路的控制结果来感知。 所述当前最大功率点电压可以但不限于通过常规的最大功率点跟踪算法实时确定所述各条光伏板串联支路的最大功率点电压,其为一个具有上下偏移范围的区间值,例如为[312V,328V]。此外,所述步骤S1的触发条件可以但不限于为根据所述电池状态电压发现所述二次电池需要充电或收到来自所述BMS电池系统的充电请求,等等。
在所述步骤S1中,所述光伏板串联目标数的具体确定过程包括但不限于为:先根据所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定单个光伏板的当前最大功率点电压(其也为一个具有上下偏移范围的区间值,例如为[38V,42V]),然后根据所述二次电池的电池充电需求电压和所述单个光伏板的当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数。举例的,若所述二次电池的电池充电需求电压为240V,所述单个光伏板的当前最大功率点电压为[38V,42V],由于240V属于区间[228V,252V],若所述光伏板串联支路的最大功率点电压为[228V,252V]时,则视为与所述电池充电需求电压匹配,此时可确定所述光伏板串联目标数为6。如此通过前述电压线性数据库(即单个光伏板的当前最大功率点电压)的构建及应用,可以精准确定当前所需的光伏板串联目标数。
在所述步骤S1中,具体的,根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,包括但不限于有:根据在最近单位时段内记录的且所述各条光伏板串联支路的最大功率点电压,判断是否能向所述二次电池充电;若能,则根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,否则触发生成并展示用于指示当前不可充电的提醒信息。详细的,所述最近单位时段可以但不限于为最近1分钟、最近3分钟或最近10分钟等。由于在最近单位时段内记录的且所述各条光伏板串联支路的最大功率点电压能够反映最近的天气变化情况(例如环境温度和光照度等),因此若据此发现在最近单位时段内存在天气变化恶劣或剧烈的情况,就可认定不适合充电,例如阴天的最大功率点电压会普遍较低,即使将光伏板串联数调整为最大值也不能与所述电池充电需求电压匹配,此时就不适合向所述二次电池直接充电,会触发生成并展示所述提醒信息。
S2.判断所述光伏板串联目标数是否等于所述当前光伏板串联数,若是,则执行步骤S4,否则执行步骤S3。
在所述步骤S2中,举例的,若所述光伏板串联目标数为6,所述当前光伏板串联数也为6,则无需调整所述各个光伏板串联支路的光伏板串联数,可跳过步骤S3,反之就需要执行步骤S3来调整所述各个光伏板串联支路的光伏板串联数。
S3.根据所述光伏板串联目标数,生成第一控制信号,并将所述第一控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第一控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述光伏板串联目标数,然后执行步骤S4。
在所述步骤S3中,为了具体实现光伏板串联数可调目的,优选的,当所述充电系统还包 括有光伏逆变器时,所述光伏板电压转换电路可以但不限于包括有K条所述光伏板串联支路,其中,所述光伏板串联支路包括有沿从正极至负极方向依次串联的N个光伏板和沿从正极至负极方向依次布置的M个切换器,所述M个切换器中的且沿从正极至负极方向的第m个切换器为第一切换器,所述M个切换器中的且沿从正极至负极方向的第M个切换器为第二切换器,K表示正整数,M表示不小于2的正整数,m表示小于M的正整数;所述第一切换器包括有1号引脚、2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第一切换器处于第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第一切换器处于第二状态时,仅有1号引脚分别电连接2号引脚和3号引脚以及4号引脚电连接5号引脚;所述第二切换器包括有2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第二切换器处于所述第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第二切换器处于所述第二状态时,仅有3号引脚电连接6号引脚以及4号引脚电连接5号引脚;所述N个光伏板中的且沿从正极至负极方向的第M+1个光伏板的正极电连接所述第M个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第M个光伏板的负极电连接所述第M个切换器的4号引脚,所述N个光伏板中的且沿从正极至负极方向的第m+1个光伏板的正极电连接所述第m个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第m个光伏板的负极电连接所述第m个切换器的4号引脚;针对K条所述光伏板串联支路中的第一条所述光伏板串联支路,对应的所述第m个切换器的1号引脚、对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接所述光伏逆变器的正极输入端子V+,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子V+;针对K条所述光伏板串联支路中的第k条所述光伏板串联支路,对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第一个切换器的5号引脚,对应的且沿从正极至负极方向的第w个切换器的1号引脚电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第w+1个切换器的5号引脚,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子V+,其中,k为大于1且不大于K的正整数,w为大于1且不大于M的正整数;针对K条所述光伏板串联支路中的第K条所述光伏板串联支路,对应的所述M个切换器的5号引脚分别电连接所述光伏逆变器的负极输入端子V-;各条所述光伏板串联支路中的且沿从正极至负极方向的第x个切换器同步受控于所述电压转换控制器,并且当所述第x个切换器处于所述第一状态时,仅有沿从正极至负极方向的第y个切换器能够处于所述第二状态,其中,x为不大于M的正整数,y为小于x的正整数。如此通过前述光伏板及切换器(其具体可以但不限于为具有多引脚端子的接触器)的布置设计,不但可以使各条所述光伏板串联支路的光伏板串联数在区间[N-M,N]上任意调整,还可将切换下的多个光伏板重新组成至少一条新光伏板串联支路(各条所述新光伏板串联支路分别包括有沿从正极至负极方向依次串联的K个光伏板),并使各条所述新光伏板串联支路的正负极也与所述光伏逆变器的正负极输入端子对接,以便将所述至少一条新光伏板串联支路的全部光伏发电量逆变输送至所述电网(即通过所述光伏逆变器实现),进而确保所有光伏板始终都在工作。
如图3所示,举例的,所述光伏板电压转换电路包括有3条所述光伏板串联支路,所述光伏板串联支路包括有沿从正极至负极方向依次串联的8个光伏板和沿从正极至负极方向依次 布置的3个切换器,即针对左侧的第一条所述光伏板串联支路,对应的8个光伏板分别为PV11~PV18,对应的3个切换器分别为JK11~JK13,其中,JK11和JK12分别为第一切换器,JK13为第二切换器;针对中间的第二条所述光伏板串联支路,对应的8个光伏板分别为PV21~PV28,对应的3个切换器分别为JK21~JK23,其中,JK21和JK22分别为第一切换器,JK23为第二切换器;针对右侧的第三条所述光伏板串联支路,对应的8个光伏板分别为PV31~PV38,对应的3个切换器分别为JK31~JK33,其中,JK31和JK32分别为第一切换器,JK33为第二切换器;同时由于JK11~JK31为一组同步受控于所述电压转换控制器的第一切换器组;JK12~JK32为一组同步受控于所述电压转换控制器的第二切换器组;JK13~JK33为一组同步受控于所述电压转换控制器的第三切换器组;当所述第二切换器组同步处于所述第一状态时,仅有所述第一切换器组能够同步处于所述第二状态;当所述第三切换器组同步处于所述第一状态时,仅有所述第二切换器组和所述第一切换器组能够同步处于所述第二状态,由此可使各条所述光伏板串联支路的光伏板串联数在区间[5,8]上任意调整。同时若所述光伏板串联目标数为6,则可生成用于使所述第二切换器组和所述第一切换器组处于所述第二状态以及使所述第三切换器组处于所述第一状态的所述第一控制信号,然后通过切换器控制线将所述第一控制信号传送至所述光伏板电压转换电路中的各个切换器,以便在所述各个切换器响应所述第一控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至6(即针对左侧的第一条所述光伏板串联支路,有PV13~PV18依次串联;针对中间的第二条所述光伏板串联支路,有PV23~PV28依次串联;针对右侧的第三条所述光伏板串联支路,有PV33~PV38依次串联);同时还有:光伏板PV11~PV31会组成第一条所述新光伏板串联支路,光伏板PV12~PV32会组成第二条所述新光伏板串联支路,得到两条并联的且正负极也与所述光伏逆变器的正负极输入端子对接的所述新光伏板串联支路,以便将这两条所述新光伏板串联支路的全部光伏发电量逆变输送至所述电网。
S4.根据所述各条光伏板串联支路的当前支路电压及当前支路电流,判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况,若是,则执行步骤S5。
在所述步骤S4中,具体判断方式为现有常规方式,例如,若发现某条光伏板串联支路的当前支路电压和/或当前支路电流超过预设的对应阈值或低于预设的另一对应阈值,则认为该某条光伏板串联支路处于不正常情况,诊断存在故障问题。此外,在判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况之后,所述方法还包括但不限于有:若判定所述一条光伏板串联支路或所述至少两条光伏板串联支路中有任意一条光伏板串联支路当前处于不正常情况,则触发生成并展示用于指示当前不可充电的提醒信息,其中,所述提醒信息可以但不限于包含有诊断确定的故障问题和处于不正常情况的光伏板串联支路的当前支路电压数值及当前支路电流数值等内容。
S5.生成第二控制信号,并将所述第二控制信号传送至所述直充开关,以便所述直充开关在响应所述第二控制信号后,使所述一条光伏板串联支路或所述至少两条光伏板串联支路与所述二次电池构成充电回路。
在所述步骤S5中,具体的,所述第二控制信号即为用于控制所述直充开关导通的控制信号。
由此基于前述步骤S1~S5所描述的且基于光伏板的电池直接充电方法,提供了一种利用光伏板的直流电对二次电池进行充电的新方案,即先根据二次电池的电池充电需求电压和各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压来调整所述各条光伏板串联支路的光伏板串联数,确保所述各条光伏板串联支路的的最大功率点电压能够匹配所述电池充电需求电压,然后在判定所述各条光伏板串联支路当前都处于正常情况时,控制直充开关导通构成充电回路,以及控制光伏逆变器进入电池充电模式,如此可以利用光伏板的直流电对二次电池进行直接充电,跳过直流电逆变为交流电和交流电整流为直流电的转换过程,进而可实现减小功耗、提升充电效率和降低硬件成本的目的。
本实施例在前述第一方面的技术方案基础上,还提供了一种如何配合电池充电的可能设计一,即当所述充电系统还包括有光伏逆变器和电网,并且所述电压转换控制器还通信连接所述光伏逆变器,所述各条光伏板串联支路的正极还分别电连接所述光伏逆变器的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述光伏逆变器的负极输入端子,以及所述光伏逆变器的交流输出端子电连接所述电网时,所述电池直接充电方法还包括有在步骤S5之后的如下步骤S6。
S6.生成第三控制信号,并将所述第三控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第三控制信号后,进入用于配合所述电压转换控制器的电池充电模式:一方面根据所述二次电池的电池充电需求电流,围绕最大功率点电压实时调整输送至所述二次电池的电流大小,使电池充电电压始终工作在最大功率点,另一方面将所述光伏板电压转换电路的剩余光伏发电量逆变输送至所述电网。
在所述步骤S6中,如图3所示,所述电压转换控制器通过CAN/RS485通信线电连接所述光伏逆变器,如此可接收来自所述光伏逆变器的逆变器状态数据(其包含但不限于有所述光伏逆变器的工作模式和所述各条光伏板串联支路的当前最大功率点电压、当前支路电压及当前支路电流等内容),然后从所述逆变器状态数据中获取所述各条光伏板串联支路的当前最大功率点电压。所述电池充电需求电流也可以但不限于来自所述二次电池的BMS(BATTERY MANAGEMENT SYSTEM,电池管理系统)电池系统,并从实时接收的所述电池状态数据中实时获取。所述光伏逆变器配合所述电压转换控制器对所述电流大小进行调整的具体方式为现有常规方式,例如根据所述电池充电需求电流控制PWM(Pulse width modulation,脉冲宽度调制)信号的占空比,进而实现调整所述电流大小的目的。所述剩余光伏发电量具体包含有所述一条光伏板串联支路或所述至少两条光伏板串联支路的且未输送至所述二次电池的光伏发电量和所述至少一条新光伏板串联支路(若其存在)的全部光伏发电量。此外,所述光伏逆变器将所述光伏板电压转换电路的剩余光伏发电量逆变输送至所述电网的具体方式为其本质工作,于此不再赘述。
由此基于前述的可能设计一,可通过光伏逆变器来动态配合电池充电,使电池充电电压始终工作在最大功率点,有效提升充电效率和光伏发电量利用率。另外,当所述充电系统还包括有DC-DC升降压电路,并且所述电压转换控制器还通信连接所述DC-DC升降压电路,所述各条光伏板串联支路的正极还分别电连接所述DC-DC升降压电路的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述DC-DC升降压电路的负极输入端子,以及所述DC-DC升降压电路的正极输出端子电连接所述二次电池的正极,所述DC-DC升降压电路的负极输出端子电连 接所述二次电池的负极时,所述电池直接充电方法还包括有在步骤S5之后的如下步骤:生成第八控制信号,并将所述第八控制信号传送至所述DC-DC升降压电路,以便所述DC-DC升降压电路在响应所述第八控制信号后,对所述光伏板电压转换电路的剩余光伏发电量进行升压或降压并输送至所述二次电池。前述的DC-DC升降压电路的具体电路结构可参照现有电压升降电路实现。
本实施例在前述可能设计一的技术方案基础上,还提供了一种在充电过程中如何动态适配电池充电需求电压的可能设计二,即在执行步骤S6之后,所述方法还包括但不限于有如下步骤S711~S714。
S711.判断所述二次电池的电池充电需求电压与所述各条光伏板串联支路的当前最大功率点电压是否匹配,若否,则执行步骤S712。
在所述步骤S711中,举例的,若所述电池充电需求电压为240V,由于环境温度和光照度等因素的变化使得所述各条光伏板串联支路的当前最大功率点电压降低为180V左右,此时就可判定不匹配,有必要调整增加所述各条光伏板串联支路的光伏板串联数(例如从6个增加到8个),以便提高最大功率点电压。
S712.调整降低所述电流大小,直到在所述电流大小不大于预设的电流阈值后,执行步骤S713。
在所述步骤S712中,具体可通过所述光伏逆变器与所述电压转换控制器的常规配合方式,来调整降低所述电流大小,以便停止向所述二次电池输入电量。
S713.生成第四控制信号,并将所述第四控制信号传送至所述直充开关,以便所述直充开关在响应所述第四控制信号后,切断所述充电回路,然后执行步骤S714。
在所述步骤S713中,具体的,所述第四控制信号即为用于控制所述直充开关截止的控制信号。
S714.返回执行步骤S1~S6。
由此基于前述的可能设计二,可实现在充电过程中动态适配电池充电需求电压的目的,使光伏板串联支路始终在最大功率点对所述二次电池进行充电,确保充电高效率。
本实施例在前述可能设计一的技术方案基础上,还提供了一种在充电过程中如何自动终止充电的可能设计三,即在执行步骤S6之后,所述方法还包括但不限于有如下步骤S721~S726。
S721.根据所述二次电池的电池状态数据,若发现所述二次电池需要停止充电,则执行步骤S722。
在所述步骤S721中,举例的,若根据所述二次电池的电池状态数据,发现充电已满或者电池状态电压已经恒等于/大于所述各条光伏板串联支路的最大功率点电压,则可认为所述二次电池需要停止充电。
S722.调整降低所述电流大小,直到在所述电流大小不大于预设的电流阈值后,执行步骤 S723。
S723.生成第四控制信号,并将所述第四控制信号传送至所述直充开关,以便所述直充开关在响应所述第四控制信号后,切断所述充电回路,然后执行步骤S724。
S724.判断所述各条光伏板串联支路的当前光伏板串联数是否等于最大可调整数值,若是,则执行步骤S726,否则执行步骤S725。
在所述步骤S724中,如图3所示,举例的,所述最大可调整数值为8。
S725.生成第五控制信号,并将所述第五控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第五控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述最大可调整数值,然后执行步骤S726。
在所述步骤S725中,如图3所示,举例的,所述第五控制信号为用于使所述第一切换器组、所述第二切换器组和所述第三切换器组分别处于所述第一状态的控制信号。
S726.生成第六控制信号,并将所述第六控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第六控制信号后,进入正常工作模式:将所述光伏板电压转换电路的全部光伏发电量逆变输送至所述电网。
在所述步骤S726中,由于所述各条光伏板串联支路的光伏板串联数已分别调整至所述最大可调整数值,因此无新光伏板串联支路生成,所述光伏板电压转换电路的全部光伏发电量也即为所述至少两条光伏板串联支路的全部光伏发电量。
由此基于前述的可能设计三,可在充电过程中自动终止充电,并使所述光伏逆变器从充电模式恢复为正常工作模式。
此外,在给储能电池充电时还可根据电网的用电需求调整输送给电网的电量,即为了实现利用所述二次电池向所述电网供电的功能,还可以生成第七控制信号,并将所述第七控制信号传送至两端分别电连接所述二次电池和所述光伏逆变器的直流开关,以便所述直流开关在响应所述第七控制信号后,导通位于所述二次电池与所述光伏逆变器之间的供电通路,此时所述光伏逆变器可以将所述二次电池的蓄电量逆变输送至所述电网,进而可以利用所述二次电池的储电功能,实现在光照充足的白天存储多余电能,而在阴雨天或夜间向电网供能的目的,为所述电网起到消峰填谷的作用。
如图2所示,本实施例第二方面提供了一种实现第一方面或第一方面中任一可能设计所述的电池直接充电方法的虚拟装置,适用于布置在充电系统的电压转换控制器中,其中,所述充电系统还包括有光伏板电压转换电路、直充开关和二次电池,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子, 所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;所述虚拟装置,包括有目标数确定模块、第一判断模块、第一触发模块、第二判断模块和第二触发模块;
所述目标数确定模块,通信连接所述第一判断模块,用于根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,然后启动所述第一判断模块;
所述第一判断模块,分别通信连接所述第一触发模块和所述第二判断模块,用于判断所述光伏板串联目标数是否等于所述当前光伏板串联数,若是,则启动所述第二判断模块,否则启动所述第一触发模块;
所述第一触发模块,通信连接所述第二判断模块,用于根据所述光伏板串联目标数,生成第一控制信号,并将所述第一控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第一控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述光伏板串联目标数,然后启动所述第二判断模块;
所述第二判断模块,通信连接所述第二触发模块,用于根据所述各条光伏板串联支路的当前支路电压及当前支路电流,判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况,若是,则启动所述第二触发模块;
所述第二触发模块,用于生成第二控制信号,并将所述第二控制信号传送至所述直充开关,以便所述直充开关在响应所述第二控制信号后,使所述一条光伏板串联支路或所述至少两条光伏板串联支路与所述二次电池构成充电回路。
在一个可能的设计中,当所述充电系统还包括有光伏逆变器和电网,并且所述电压转换控制器还通信连接所述光伏逆变器,所述各条光伏板串联支路的正极还分别电连接所述光伏逆变器的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述光伏逆变器的负极输入端子,以及所述光伏逆变器的交流输出端子电连接所述电网时,所述虚拟装置还包括有通信连接所述第二触发模块的第三触发模块;
所述第三触发模块,用于在将所述第二控制信号传送至所述直充开关之后触发生成第三控制信号,并将所述第三控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第三控制信号后,进入用于配合所述电压转换控制器的电池充电模式:一方面根据所述二次电池的电池充电需求电流,围绕最大功率点电压实时调整输送至所述二次电池的电流大小,使电池充电电压始终工作在最大功率点,另一方面将所述光伏板电压转换电路的剩余光伏发电量逆变输送至所述电网。
本实施例第二方面提供的前述装置的工作过程、工作细节和技术效果,可以参见第一方面或第一方面中任一可能设计所述的电池直接充电方法,于此不再赘述。
如图3所示,本实施例第三方面提供了一种实现第一方面或第一方面中任一可能设计所述的电池直接充电方法的充电系统,包括有电压转换控制器、光伏板电压转换电路、直充开关和二次电池,其中,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述 至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;所述电压转换控制器,用于执行如第一方面或第一方面中任一可能设计所述的电池直接充电方法。
在一个可能的设计中,当所述充电系统还包括有光伏逆变器时,所述光伏板电压转换电路包括有K条所述光伏板串联支路,其中,所述光伏板串联支路包括有沿从正极至负极方向依次串联的N个光伏板和沿从正极至负极方向依次布置的M个切换器,所述M个切换器中的且沿从正极至负极方向的第m个切换器为第一切换器,所述M个切换器中的且沿从正极至负极方向的第M个切换器为第二切换器,K表示正整数,M表示不小于2的正整数,m表示小于M的正整数;
所述第一切换器包括有1号引脚、2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第一切换器处于第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第一切换器处于第二状态时,仅有1号引脚分别电连接2号引脚和3号引脚以及4号引脚电连接5号引脚;
所述第二切换器包括有2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第二切换器处于所述第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第二切换器处于所述第二状态时,仅有3号引脚电连接6号引脚以及4号引脚电连接5号引脚;
所述N个光伏板中的且沿从正极至负极方向的第M+1个光伏板的正极电连接所述第M个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第M个光伏板的负极电连接所述第M个切换器的4号引脚,所述N个光伏板中的且沿从正极至负极方向的第m+1个光伏板的正极电连接所述第m个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第m个光伏板的负极电连接所述第m个切换器的4号引脚;
针对K条所述光伏板串联支路中的第一条所述光伏板串联支路,对应的所述第m个切换器的1号引脚、对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接所述光伏逆变器的正极输入端子V+,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子V+;
针对K条所述光伏板串联支路中的第k条所述光伏板串联支路,对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第一个切换器的5号引脚,对应的且沿从正极至负极方向的第w个切换器的1号引脚电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第w+1个切换器的5号引脚,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子V+,其中,k为大于1且不大于K的正整数,w为大于1且不大于M的正整数;
针对K条所述光伏板串联支路中的第K条所述光伏板串联支路,对应的所述M个切换器的5号引脚分别电连接所述光伏逆变器的负极输入端子V-;
各条所述光伏板串联支路中的且沿从正极至负极方向的第x个切换器同步受控于所述电压转换控制器,并且当所述第x个切换器处于所述第一状态时,仅有沿从正极至负极方向的第y个切换器能够处于所述第二状态,其中,x为不大于M的正整数,y为小于x的正整数。
本实施例第三方面提供的前述系统的工作过程、工作细节和技术效果,可以参见第一方面或第一方面中任一可能设计所述的电池直接充电方法,于此不再赘述。
如图4所示,本实施例第四方面提供了一种执行如第一方面或第一方面中任一可能设计所述的电池直接充电方法的控制设备,包括有依次通信连接的存储器、处理器和收发器,其中,所述存储器用于存储计算机程序,所述收发器用于收发消息,所述处理器用于读取所述计算机程序,执行如第一方面或第一方面中任一可能设计所述的电池直接充电方法。具体举例的,所述存储器可以但不限于包括随机存取存储器(Random-Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、闪存(Flash Memory)、先进先出存储器(First Input First Output,FIFO)和/或先进后出存储器(First Input Last Output,FILO)等等;所述处理器可以但不限于采用型号为STM32F105系列的微处理器。此外,所述控制设备还可以但不限于包括有电源模块、显示屏和其它必要的部件。
本实施例第四方面提供的前述控制设备的工作过程、工作细节和技术效果,可以参见第一方面或第一方面中任一可能设计所述的电池直接充电方法,于此不再赘述。
本实施例第五方面提供了一种存储包含如第一方面或第一方面中任一可能设计所述的电池直接充电方法的指令的计算机可读存储介质,即所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,执行如第一方面或第一方面中任一可能设计所述的电池直接充电方法。其中,所述计算机可读存储介质是指存储数据的载体,可以但不限于包括软盘、光盘、硬盘、闪存、优盘和/或记忆棒(Memory Stick)等计算机可读存储介质,所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。
本实施例第五方面提供的前述计算机可读存储介质的工作过程、工作细节和技术效果,可以参见如第一方面或第一方面中任一可能设计所述的电池直接充电方法,于此不再赘述。
本实施例第六方面提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使所述计算机执行如第一方面或第一方面中任一可能设计所述的电池直接充电方法。其中,所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于光伏板的电池直接充电方法,其特征在于,由充电系统的电压转换控制器执行,其中,所述充电系统还包括有光伏板电压转换电路、直充开关和二次电池,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;
    所述电池直接充电方法,包括有如下步骤S1~S5:
    S1.根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,然后执行步骤S2;
    S2.判断所述光伏板串联目标数是否等于所述当前光伏板串联数,若是,则执行步骤S4,否则执行步骤S3;
    S3.根据所述光伏板串联目标数,生成第一控制信号,并将所述第一控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第一控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述光伏板串联目标数,然后执行步骤S4;
    S4.根据所述各条光伏板串联支路的当前支路电压及当前支路电流,判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况,若是,则执行步骤S5;
    S5.生成第二控制信号,并将所述第二控制信号传送至所述直充开关,以便所述直充开关在响应所述第二控制信号后,使所述一条光伏板串联支路或所述至少两条光伏板串联支路与所述二次电池构成充电回路。
  2. 根据权利要求1所述的电池直接充电方法,其特征在于,当所述充电系统还包括有光伏逆变器和电网,并且所述电压转换控制器还通信连接所述光伏逆变器,所述各条光伏板串联支路的正极还分别电连接所述光伏逆变器的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述光伏逆变器的负极输入端子,以及所述光伏逆变器的交流输出端子电连接所述电网时,所述电池直接充电方法还包括有在步骤S5之后的如下步骤S6:S6.生成第三控制信号,并将所述第三控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第三控制信号后,进入用于配合所述电压转换控制器的电池充电模式:一方面根据所述二次电池的电池充电需求电流,围绕最大功率点电压实时调整输送至所述二次电池的电流大小,使电池充电电压始终工作在最大功率点,另一方面将所述光伏板电压转换电路的剩余光伏发电量逆变输送至所述电网;和/或,当所述充电系统还包括有DC-DC升降压电路,并且所述电压转换控制器还通信连接所述DC-DC升降压电路,所述各条光伏板串联支路的正极还分别电连接所述DC-DC升降压电路的正极输入端子,所述各条光伏板串联支路的负极还分别电连接所述DC-DC升降压电路的负极输入端子,以及所述DC-DC升降压电路的正极输出端子电连接所述二次电池的正极,所述DC-DC升降压电路的负极输出端子电连接所述二次电池的负极时,所述电池直接充电方法还包括有在步骤S5之后的如下步骤:生成第八控制信号,并将所述第八控制信号传送至所述DC-DC 升降压电路,以便所述DC-DC升降压电路在响应所述第八控制信号后,对所述光伏板电压转换电路的剩余光伏发电量进行升压或降压并输送至所述二次电池。
  3. 根据权利要求2所述的电池直接充电方法,其特征在于,在执行步骤S6之后,所述方法还包括有如下步骤S711~S714:
    S711.判断所述二次电池的电池充电需求电压与所述各条光伏板串联支路的当前最大功率点电压是否匹配,若否,则执行步骤S712;
    S712.调整降低所述电流大小,直到在所述电流大小不大于预设的电流阈值后,执行步骤S713;
    S713.生成第四控制信号,并将所述第四控制信号传送至所述直充开关,以便所述直充开关在响应所述第四控制信号后,切断所述充电回路,然后执行步骤S714;
    S714.返回执行步骤S1~S6;
    和/或,在执行步骤S6之后,所述方法还包括有如下步骤S721~S726:
    S721.根据所述二次电池的电池状态数据,若发现所述二次电池需要停止充电,则执行步骤S722;
    S722.调整降低所述电流大小,直到在所述电流大小不大于预设的电流阈值后,执行步骤S723;
    S723.生成第四控制信号,并将所述第四控制信号传送至所述直充开关,以便所述直充开关在响应所述第四控制信号后,切断所述充电回路,然后执行步骤S724;
    S724.判断所述各条光伏板串联支路的当前光伏板串联数是否等于最大可调整数值,若是,则执行步骤S726,否则执行步骤S725;
    S725.生成第五控制信号,并将所述第五控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第五控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述最大可调整数值,然后执行步骤S726;
    S726.生成第六控制信号,并将所述第六控制信号传送至所述光伏逆变器,以便所述光伏逆变器在响应所述第六控制信号后,进入正常工作模式:将所述光伏板电压转换电路的全部光伏发电量逆变输送至所述电网。
  4. 根据权利要求1所述的电池直接充电方法,其特征在于,根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,包括:根据在最近单位时段内记录的且所述各条光伏板串联支路的最大功率点电压,判断是否能向所述二次电池充电;若能,则根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,否则触发生成并展示用于指示当前不可充电的提醒信息。
  5. 根据权利要求1所述的电池直接充电方法,其特征在于,在判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况之后,所述方法还包括:若判定所述一条光伏板串联支路或所述至少两条光伏板串联支路中有任意一条光伏板串联支路当前处于不正常情况,则触发生成并展示用于指示当前不可充电的提醒信息。
  6. 一种基于光伏板的电池直接充电装置,其特征在于,适用于布置在充电系统的电压转换控制器中,其中,所述充电系统还包括有光伏板电压转换电路、直充开关和二次电池,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;
    所述电池直接充电装置,包括有目标数确定模块、第一判断模块、第一触发模块、第二判断模块和第二触发模块;
    所述目标数确定模块,通信连接所述第一判断模块,用于根据所述二次电池的电池充电需求电压和所述各条光伏板串联支路的当前光伏板串联数及当前最大功率点电压,确定所述光伏板串联支路的且使最大功率点电压匹配所述电池充电需求电压的光伏板串联目标数,然后启动所述第一判断模块;
    所述第一判断模块,分别通信连接所述第一触发模块和所述第二判断模块,用于判断所述光伏板串联目标数是否等于所述当前光伏板串联数,若是,则启动所述第二判断模块,否则启动所述第一触发模块;
    所述第一触发模块,通信连接所述第二判断模块,用于根据所述光伏板串联目标数,生成第一控制信号,并将所述第一控制信号传送至所述光伏板电压转换电路,以便所述光伏板电压转换电路在响应所述第一控制信号后,使所述各条光伏板串联支路的光伏板串联数分别调整至所述光伏板串联目标数,然后启动所述第二判断模块;
    所述第二判断模块,通信连接所述第二触发模块,用于根据所述各条光伏板串联支路的当前支路电压及当前支路电流,判断所述一条光伏板串联支路或所述至少两条光伏板串联支路当前是否都处于正常情况,若是,则启动所述第二触发模块;
    所述第二触发模块,用于生成第二控制信号,并将所述第二控制信号传送至所述直充开关,以便所述直充开关在响应所述第二控制信号后,使所述一条光伏板串联支路或所述至少两条光伏板串联支路与所述二次电池构成充电回路。
  7. 一种充电系统,其特征在于,包括有电压转换控制器、光伏板电压转换电路、直充开关和二次电池,其中,所述光伏板电压转换电路包括有一条光伏板串联支路或具有相同光伏板串联数的且光伏板串联数可同步调整的至少两条光伏板串联支路,所述一条光伏板串联支路或所述至少两条光伏板串联支路中的各条光伏板串联支路分别包含有多个串联的且具有相同属性的光伏板,所述电压转换控制器分别通信连接所述光伏板电压转换电路和所述直充开关,所述各条光伏板串联支路的正极分别电连接所述直充开关的正极输入端子,所述各条光伏板串联支路的负极分别电连接所述直充开关的负极输入端子,所述直充开关的正极输出端子电连接所述二次电池的正极,所述直充开关的负极输出端子电连接所述二次电池的负极;
    所述电压转换控制器,用于执行如权利要求1~5中任意一项所述的电池直接充电方法。
  8. 如权利要求7所述的充电系统,其特征在于,当所述充电系统还包括有光伏逆变器时, 所述光伏板电压转换电路包括有K条所述光伏板串联支路,其中,所述光伏板串联支路包括有沿从正极至负极方向依次串联的N个光伏板和沿从正极至负极方向依次布置的M个切换器,所述M个切换器中的且沿从正极至负极方向的第m个切换器为第一切换器,所述M个切换器中的且沿从正极至负极方向的第M个切换器为第二切换器,K表示正整数,M表示不小于2的正整数,m表示小于M的正整数;
    所述第一切换器包括有1号引脚、2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第一切换器处于第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第一切换器处于第二状态时,仅有1号引脚分别电连接2号引脚和3号引脚以及4号引脚电连接5号引脚;
    所述第二切换器包括有2号引脚、3号引脚、4号引脚、5号引脚和6号引脚,并有:当所述第二切换器处于所述第一状态时,仅有3号引脚电连接4号引脚以及2号引脚电连接6号引脚,而当所述第二切换器处于所述第二状态时,仅有3号引脚电连接6号引脚以及4号引脚电连接5号引脚;
    所述N个光伏板中的且沿从正极至负极方向的第M+1个光伏板的正极电连接所述第M个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第M个光伏板的负极电连接所述第M个切换器的4号引脚,所述N个光伏板中的且沿从正极至负极方向的第m+1个光伏板的正极电连接所述第m个切换器的3号引脚,所述N个光伏板中的且沿从正极至负极方向的第m个光伏板的负极电连接所述第m个切换器的4号引脚;
    针对K条所述光伏板串联支路中的第一条所述光伏板串联支路,对应的所述第m个切换器的1号引脚、对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接所述光伏逆变器的正极输入端子,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子;
    针对K条所述光伏板串联支路中的第k条所述光伏板串联支路,对应的所述M个切换器的2号引脚和对应的且沿从正极至负极方向的第一个光伏板的正极分别电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第一个切换器的5号引脚,对应的且沿从正极至负极方向的第w个切换器的1号引脚电连接第k-1条所述光伏板串联支路中的且沿从正极至负极方向的第w+1个切换器的5号引脚,对应的所述M个切换器的6号引脚分别电连接所述光伏逆变器的正极输入端子,其中,k为大于1且不大于K的正整数,w为大于1且不大于M的正整数;
    针对K条所述光伏板串联支路中的第K条所述光伏板串联支路,对应的所述M个切换器的5号引脚分别电连接所述光伏逆变器的负极输入端子;
    各条所述光伏板串联支路中的且沿从正极至负极方向的第x个切换器同步受控于所述电压转换控制器,并且当所述第x个切换器处于所述第一状态时,仅有沿从正极至负极方向的第y个切换器能够处于所述第二状态,其中,x为不大于M的正整数,y为小于x的正整数。
  9. 一种控制设备,其特征在于,包括有依次通信连接的存储器、处理器和收发器,其中,所述存储器用于存储计算机程序,所述收发器用于收发消息,所述处理器用于读取所述计算机程序,执行如权利要求1~5中任意一项所述的电池直接充电方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,执行如权利要求1~5中任意一项所述的电池直接充电方法。
PCT/CN2023/105154 2022-07-22 2023-06-30 一种基于光伏板的电池直接充电方法、装置、系统及设备 WO2024017031A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210860551 2022-07-22
CN202210860551.X 2022-07-22
CN202210901190.9 2022-07-28
CN202210901190.9A CN115117995A (zh) 2022-07-28 2022-07-28 一种基于光伏板的电池直接充电方法、装置、系统及设备
CN202211244257.2 2022-10-11
CN202211244257.2A CN115425732B (zh) 2022-07-22 2022-10-11 一种基于光伏板的电池直接充电方法、装置、系统及设备

Publications (1)

Publication Number Publication Date
WO2024017031A1 true WO2024017031A1 (zh) 2024-01-25

Family

ID=84206880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105154 WO2024017031A1 (zh) 2022-07-22 2023-06-30 一种基于光伏板的电池直接充电方法、装置、系统及设备

Country Status (2)

Country Link
CN (1) CN115425732B (zh)
WO (1) WO2024017031A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425732B (zh) * 2022-07-22 2024-03-12 北京磊然循环科技有限公司 一种基于光伏板的电池直接充电方法、装置、系统及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825548A (zh) * 2014-03-05 2014-05-28 中国华能集团清洁能源技术研究院有限公司 高效的光伏组件和光伏发电系统
US20140152107A1 (en) * 2011-08-01 2014-06-05 Tokyo Institute Of Technology Photovoltaic power generation system
CN105553391A (zh) * 2016-01-22 2016-05-04 成都瑞顶特科技实业有限公司 一种光伏储能电池发电系统及控制方法
CN108092601A (zh) * 2016-11-21 2018-05-29 丰郅(上海)新能源科技有限公司 光伏储能逆变一体化系统
CN108767044A (zh) * 2018-06-07 2018-11-06 北京汉能光伏投资有限公司 太阳能电池阵列配置方案生成方法及装置
CN115117995A (zh) * 2022-07-28 2022-09-27 北京磊然循环科技有限公司 一种基于光伏板的电池直接充电方法、装置、系统及设备
CN115425732A (zh) * 2022-07-22 2022-12-02 北京磊然循环科技有限公司 一种基于光伏板的电池直接充电方法、装置、系统及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2802014A1 (de) * 2011-03-19 2014-11-12 Adensis GmbH Wechselrichter
CN102611355B (zh) * 2012-03-13 2015-09-16 特变电工新疆新能源股份有限公司 一种光伏阵列汇流箱
CN102801201A (zh) * 2012-09-14 2012-11-28 南开大学 光伏充电桩自动控制系统
CN102931684A (zh) * 2012-11-09 2013-02-13 东华大学 一种光伏交直流智能配电箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140152107A1 (en) * 2011-08-01 2014-06-05 Tokyo Institute Of Technology Photovoltaic power generation system
CN103825548A (zh) * 2014-03-05 2014-05-28 中国华能集团清洁能源技术研究院有限公司 高效的光伏组件和光伏发电系统
CN105553391A (zh) * 2016-01-22 2016-05-04 成都瑞顶特科技实业有限公司 一种光伏储能电池发电系统及控制方法
CN108092601A (zh) * 2016-11-21 2018-05-29 丰郅(上海)新能源科技有限公司 光伏储能逆变一体化系统
CN108767044A (zh) * 2018-06-07 2018-11-06 北京汉能光伏投资有限公司 太阳能电池阵列配置方案生成方法及装置
CN115425732A (zh) * 2022-07-22 2022-12-02 北京磊然循环科技有限公司 一种基于光伏板的电池直接充电方法、装置、系统及设备
CN115117995A (zh) * 2022-07-28 2022-09-27 北京磊然循环科技有限公司 一种基于光伏板的电池直接充电方法、装置、系统及设备

Also Published As

Publication number Publication date
CN115425732A (zh) 2022-12-02
CN115425732B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CN101826741B (zh) 太阳能电池充电系统及控制方法
WO2011032500A1 (zh) 对多组蓄电池充电方法和其控制系统
CN102468755B (zh) 一种新能源供电系统控制器装置和控制方法
WO2024017031A1 (zh) 一种基于光伏板的电池直接充电方法、装置、系统及设备
CN109768561A (zh) 一种电动汽车控制方法及系统
CN103633727A (zh) 混合电力光伏储能系统逆控一体机
CN201750160U (zh) 太阳能供电并网一体装置
CN101958575A (zh) 一种太阳能发电蓄能和低谷用电蓄能自动控制节能系统
CN105529810A (zh) 储能式光伏电站光伏充电系统及其控制方法
CN107069785B (zh) 一种调度系统
CN206559123U (zh) 一种智能光伏发电系统
JP2001069688A (ja) 独立型太陽光発電システム及び発電方法
CN109167377A (zh) 基于梯次利用电池的光储充换电站系统
CN205141798U (zh) 一种自动化光伏电源智能管理模块
CN115117995A (zh) 一种基于光伏板的电池直接充电方法、装置、系统及设备
CN103956821A (zh) 光伏发电的储能模块混合调配系统及其控制方法
CN207766018U (zh) 一种基于mppt的太阳能智能充电系统
CN216121816U (zh) 一种混合储能电源装置
CN107154638B (zh) 锂电池充放电控制器
CN203339716U (zh) 一种在网式削峰填谷蓄能供电装置
CN107154781B (zh) 智能型光伏调度供电控制系统
CN205070585U (zh) 双电源供电模式的48V直流PoE照明供电系统
CN112311083A (zh) 多冗余分布式移动化电源供电系统
CN215835181U (zh) 负载供电系统
CN220447670U (zh) 一种新型的储能充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842096

Country of ref document: EP

Kind code of ref document: A1