WO2024016947A1 - 传输优化方法、设备、控制器及可读存储介质 - Google Patents

传输优化方法、设备、控制器及可读存储介质 Download PDF

Info

Publication number
WO2024016947A1
WO2024016947A1 PCT/CN2023/102436 CN2023102436W WO2024016947A1 WO 2024016947 A1 WO2024016947 A1 WO 2024016947A1 CN 2023102436 W CN2023102436 W CN 2023102436W WO 2024016947 A1 WO2024016947 A1 WO 2024016947A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource pool
user configuration
network port
transmission
priority
Prior art date
Application number
PCT/CN2023/102436
Other languages
English (en)
French (fr)
Inventor
马伟伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024016947A1 publication Critical patent/WO2024016947A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/083Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability for increasing network speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]

Definitions

  • the present disclosure relates to the field of data transmission technology, and in particular to a transmission optimization method, equipment, controller and readable storage medium.
  • Deterministic network technology is the development direction of the new generation network communication system and an important driving force for the network, industry, agriculture and service industries.
  • the formation of a "deterministic network+" technological and industrial landscape is of great significance for thousands of industries to further move towards high-quality development of digitalization, networking, and intelligence.
  • IIOT International Internet of Things, Industrial Internet field
  • QoS Quality of Service
  • the data transmission of traditional industrial field-level equipment is based on QoS transmission.
  • the traffic is divided into multiple priorities or multiple service classes. After the packets are classified, other QoS features can be applied to different classifications.
  • Industrial products usually provide 4 or more Ethernet ports.
  • Different networks will access different industrial equipment or terminals.
  • Different terminals or industrial equipment have different QoS according to different business needs.
  • Traditional QoS services can only When the priority of a certain network service is set, the data transmission efficiency is low, and the data transmission time, transmission delay, etc. cannot be accurately controlled.
  • the present disclosure proposes a transmission optimization method, equipment, controller and readable storage medium.
  • inventions of the present disclosure provide a transmission optimization method, which is applied to a transmission device.
  • the transmission device includes a plurality of peripheral network ports.
  • the method includes: obtaining a user configuration file and performing operations on the user configuration file. Analyze and process to obtain user configuration requirements; generate multiple resource pools according to the user configuration requirements, wherein each resource pool sets corresponding weight parameters; set the corresponding weight parameters for each peripheral network port according to the user configuration requirements The network port priority; connect each peripheral network port to a target resource pool according to the user configuration requirements, and the weight parameter of the target resource pool is consistent with the network port priority of the peripheral network port.
  • embodiments of the present disclosure also provide a transmission device, including: a network management module configured to obtain user configuration files and parse the user configuration files to obtain user configuration requirements; network input and output management A module configured to generate multiple resource pools according to the user configuration requirements, wherein each resource pool is set with a corresponding weight parameter; and a network port corresponding to each of the peripheral network ports is set according to the user configuration requirements.
  • a network management module configured to obtain user configuration files and parse the user configuration files to obtain user configuration requirements
  • network input and output management A module configured to generate multiple resource pools according to the user configuration requirements, wherein each resource pool is set with a corresponding weight parameter; and a network port corresponding to each of the peripheral network ports is set according to the user configuration requirements.
  • Priority Connect each peripheral network port to a target resource pool according to the user configuration requirements, and the weight parameter of the target resource pool corresponds to the network port priority of the peripheral network port one-to-one.
  • an embodiment of the present disclosure also provides a controller, including: a memory, a processor, and a controller stored in the memory.
  • a computer program is stored in the memory and can be run on the processor. When the processor executes the computer program, the transmission optimization method as described in the first aspect is implemented.
  • embodiments of the present disclosure also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the steps described in the first aspect. transmission optimization method.
  • Figure 1 is a schematic diagram of a system architecture platform for executing a transmission optimization method provided by an embodiment of the present disclosure
  • Figure 2 is a flow chart of a transmission optimization method provided by an embodiment of the present disclosure
  • Figure 3 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • Figure 4 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • Figure 5 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • Figure 6 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a transmission device provided by another embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a transmission device provided by another embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a network IO management module provided by an embodiment of the present disclosure.
  • Figure 10 is an overall flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • orientation descriptions such as up, down, front, back, left, right, etc., are based on the orientation or position relationships shown in the drawings and are only In order to facilitate the description of the present disclosure and simplify the description, it is not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation on the present disclosure.
  • QoS Quality of Servicee, Quality of Service
  • the data transmission of traditional industrial field-level equipment is based on QoS transmission.
  • the traffic is divided into multiple priorities or multiple service classes.
  • Other QoS features can be applied to different classifications.
  • Industrial products usually provide 4 or more Ethernet ports.
  • Different networks will access different industrial equipment or terminals.
  • Different terminals or industrial equipment have different QoS according to different business needs.
  • Traditional QoS services can only When the priority of a certain network service is set, the data transmission efficiency is low, and the data transmission time, transmission delay, etc. cannot be accurately controlled.
  • the transmission device includes multiple peripheral network ports.
  • the transmission device obtains the user configuration file and parses the user configuration file.
  • Each peripheral network port is connected to the target resource pool, and the weight parameter of the target resource pool corresponds to the network port priority of the peripheral network port.
  • Different devices are connected to transmission devices through different peripheral network ports.
  • the data transmission of devices under some network ports requires more transmission time and lower transmission delay; while the data transmission of devices under some network ports requires The requirements for transmission time, transmission delay, etc.
  • the user configuration file is generated according to the user's needs. By obtaining the user configuration file and parsing the user configuration file, the user configuration requirements are obtained. Multiple resource pools are generated according to the user configuration requirements. Each The resource pool sets corresponding weight parameters, that is, each resource pool has a corresponding transmission priority. Resource pools with higher priority have more transmission time and lower transmission delay. Similarly, each resource pool is set according to user configuration requirements.
  • the network port priority corresponding to each peripheral network port. For each peripheral network port, connect the peripheral network port to the target resource pool according to user configuration requirements.
  • the weight parameters of the target resource pool correspond to the network port priority one-to-one.
  • peripheral network ports corresponding to the devices that require more transmission time and lower transmission delay are connected to the higher priority resource pool, and the peripheral network ports corresponding to the devices that require less transmission time, transmission delay, etc.
  • the interface is connected to a lower priority resource pool to improve transmission efficiency, accurately control data transmission time and transmission delay, and improve user experience.
  • Figure 1 is a schematic diagram of a system architecture platform for executing a transmission optimization method provided by an embodiment of the present disclosure.
  • the system architecture platform 100 of the embodiment of the present disclosure includes one or more processors 110 and a memory 120.
  • processors 110 and a memory 120 are taken as an example.
  • the processor 110 and the memory 120 may be connected through a bus or other means.
  • the connection through a bus is taken as an example.
  • the memory 120 can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory 120 may include high-speed random access memory and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 120 may include memory 120 located remotely relative to the processor 110 , and these remote memories may be connected to the system architecture platform 100 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the device structure shown in Figure 1 does not constitute a limitation on the system architecture platform 100, and may include more or less components than shown, or combine certain components, or arrange different components. .
  • Figure 2 is a flow chart of a transmission optimization method provided by an embodiment of the present disclosure.
  • the transmission optimization method provided by an embodiment of the present disclosure includes but is not limited to step S200, step S210, step S220 and step S230.
  • Step S200 obtain the user configuration file and parse the user configuration file to obtain user configuration requirements
  • Step S210 Generate multiple resource pools according to user configuration requirements, wherein each resource pool sets corresponding weight parameters
  • Step S220 Set the network port priority corresponding to each peripheral network port according to user configuration requirements
  • Step S230 Connect each peripheral network port to the target resource pool according to user configuration requirements.
  • the weight parameter of the target resource pool corresponds to the network port priority of the peripheral network port one-to-one.
  • the transmission optimization method is applied to the transmission device.
  • the transmission device includes multiple peripheral network ports, and each peripheral network port is connected to multiple devices.
  • the transmission device obtains the user configuration file and parses the user configuration file to obtain user configuration requirements.
  • the transmission device includes a network configuration interface in the form of WebUI (Website User Interface, network product interface design), and completes the network configuration on the network configuration interface. Configuration, generate user configuration files.
  • the user configuration requirements can be obtained by parsing the user configuration file.
  • the user configuration requirements include the target number of resource pools.
  • the transmission device generates multiple resource pools based on the target number. Each resource pool sets corresponding weight parameters, that is, each resource The pool has a corresponding transmission priority, and a weight parameter corresponds to a transmission priority.
  • the transmission device sets the network port priority corresponding to each peripheral network port according to user configuration requirements. For each peripheral network port, the network port priority is set according to user configuration requirements.
  • Each peripheral network port is connected to the target resource pool, where the weight parameter of the target resource pool corresponds to the priority of the network port.
  • a higher-priority peripheral network port is connected to a higher-priority resource pool, and the data from the peripheral network port is stored in the resource pool. Since the resource pool has a higher priority, it has more resources when transmitting data. More data transmission time and lower transmission delay.
  • the target resource pool has a corresponding transmission priority. Connect devices that require more data transmission time and/or lower transmission latency to higher priority.
  • the peripheral network port of the same level when transmitting data, the data transmission efficiency is improved, the data transmission time and transmission delay are accurately controlled, and the data with low priority still uses the channel with higher priority, resulting in higher priority. There is a situation where the data needs to be queued and waiting to be sent to improve the user experience.
  • the transmission device obtains the user configuration file and parses the user configuration file to obtain the user configuration requirements.
  • the user configuration requirements specify that five resource pools need to be generated, among which resource pool No. 1 corresponds to the first weight parameter, That is, the first transmission priority is the highest transmission priority.
  • Resource pool No. 2 corresponds to the second weight parameter, which is the second transmission priority;
  • resource pool No. 3 corresponds to the third weight parameter, which is the third transmission priority;
  • resource pool No. 4 corresponds to the third weight parameter, which is the third transmission priority.
  • the pool corresponds to the fourth weight parameter, that is, the fourth transmission priority;
  • the fifth resource pool corresponds to the fifth weight parameter, that is, the fifth transmission priority, which is the lowest transmission priority.
  • the user configuration requirements specify the network port priorities of the five peripheral network ports.
  • the No. 1 peripheral network port corresponds to the first network port priority; the No. 2 peripheral network port corresponds to the second network port priority; and the No. 3 peripheral network port corresponds to The priority of the third network port; the fourth peripheral network port corresponds to the fourth network port priority; the first peripheral network port corresponds to the first network port priority; the transmission device connects the first peripheral network port to the first resource according to user configuration requirements
  • the peripheral network port No. 2 is connected to the resource pool No. 2; the peripheral network port No. 3 is connected to the resource pool No. 3; the peripheral network port No. 4 is connected to the resource pool No. 4; the peripheral network port No. 5 is connected to the resource pool No. 5.
  • devices with higher transmission time and/or transmission delay requirements can be connected to the No. 1 peripheral network port, and devices connected to the No. 1 peripheral network port can achieve more transmission time and/or lower transmission delay.
  • Data transmission; devices with low transmission time and/or transmission delay requirements can be connected to the fifth peripheral network port.
  • a switch box (SWITCH BOX) module is provided in the transmission device for connecting each peripheral network port to the target resource pool.
  • the peripheral network port is first connected to the switch box module.
  • each resource pool will also be connected to the switching box module.
  • the switching box module switches and connects each peripheral network port to the corresponding transmission priority according to the network port priority of each peripheral network port. For the target resource pool, when the network port priority of the peripheral network port and/or the transmission priority of the resource pool changes, the switching connection can be quickly completed again through the switching box module, which greatly improves the efficiency of the connection.
  • the above-mentioned user configuration requirements include but are not limited to the target number of resource pools, that is, the number information of the resource pools; the weight parameters corresponding to each resource pool, that is, the weight parameter information of the resource pools; and Resource pool and external Set the corresponding relationship between network ports.
  • the corresponding relationship includes but is not limited to the network port priority of each peripheral network port and the connection strategy between the network port and the resource pool.
  • connection strategy between the network port and the resource pool is that the network port with higher network port priority is connected to the resource pool with higher transmission priority, that is, connected to the resource pool with higher weight parameters;
  • a network port with a lower priority is connected to a resource pool with a lower transmission priority, that is, to a resource pool with lower weight parameters.
  • resource pools include but are not limited to first-in-first-out queue (FIFO, First in First out) resource pools.
  • FIFO first-in-first-out queue
  • higher priority resource pools include but are not limited to having more transmission time, lower transmission delay, lower transmission packet loss, higher transmission reliability, etc., according to the embodiment of the present disclosure There is no specific limit on this.
  • Figure 3 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • the transmission optimization method provided by this embodiment of the disclosure includes but is not limited to step S300.
  • Step S300 Generate multiple resource pools according to the target number, and configure each resource pool according to the weight parameters corresponding to each resource pool.
  • the transmission optimization method is applied to the transmission equipment.
  • the transmission equipment includes multiple peripheral network ports, and each peripheral network port is connected to multiple devices.
  • the user configuration requirements are not the preset configuration requirements
  • the user Configuration requirements obtain the target number of resource pools, the weight parameters corresponding to each resource pool, and each weight parameter corresponds to a transmission priority.
  • Multiple resource pools are generated based on the obtained target number, and each resource pool is obtained based on Corresponding weight parameters are configured for each resource pool.
  • the transmission device will identify the obtained user configuration requirements. If the user configuration requirements are not the preset configuration requirements, the user configuration file will be parsed. If the parsing is successful, a resource pool will be generated based on the user configuration requirements.
  • the weight parameter of each resource pool is one, and the transmission priority of each resource pool is the first transmission priority.
  • the transmission device obtains The user configuration requirements are different from the preset configuration requirements, that is, the user configuration file is parsed. If the parsing is successful, the user configuration requirements are to generate four resource pools.
  • the first resource pool corresponds to the first weight parameter, that is, the first The transmission priority is the highest transmission priority.
  • Resource pool No. 2 corresponds to the second weight parameter, which is the second transmission priority;
  • resource pool No. 3 corresponds to the third weight parameter, which is the third transmission priority;
  • resource pool No. 4 corresponds to the third transmission priority.
  • the four weight parameters that is, the fourth transmission priority, is the lowest transmission priority; the first weight parameter is four, the second weight parameter is three; the third weight parameter is two; the fourth weight parameter is one, according to user configuration requirements Generate four resource pools and configure each resource pool according to the weight parameters corresponding to each resource pool.
  • Figure 4 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • the transmission optimization method provided by this embodiment of the disclosure includes but is not limited to step S400.
  • Step S400 If the parsing fails, a preset number of resource pools are generated, in which the weight parameters corresponding to each resource pool are the same.
  • the transmission optimization method is applied to the transmission equipment.
  • the transmission equipment includes multiple peripheral network ports, and each peripheral network port is connected to multiple devices.
  • the configuration file is parsed. If the parsing fails, the transmission device generates a preset number of resource pools.
  • the weight parameters corresponding to each resource pool are the same, that is, the transmission priority corresponding to each resource pool is the same.
  • the preset configuration requirement is to generate three resource pools
  • the weight parameter of each resource pool is one
  • the transmission priority corresponding to each resource pool is the same
  • the user configuration requirement obtained by the transmission device is The default configuration requirement is to parse the user configuration file. If the parsing fails, three resource pools will be generated.
  • the weight parameter of each resource pool is one, and the corresponding transmission priority of each resource pool is the same. , at this time, the peripheral network port connected to any resource pool has the same data transmission performance.
  • Figure 5 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • the transmission optimization method provided by this embodiment of the disclosure includes but is not limited to step S500.
  • Step S500 if the resolution fails, the network port priority corresponding to each peripheral network port is set to the same priority, and each peripheral network port is connected to any resource pool.
  • the transmission optimization method is applied to the transmission equipment.
  • the transmission equipment includes multiple peripheral network ports, and each peripheral network port is connected to multiple devices.
  • the user configuration requirements are preset user configuration requirements, that is, for The user configuration file is parsed. If the parsing fails, the priority of the network port corresponding to each peripheral network port is set to the same priority, and each peripheral network port is connected to any one of the resource pools.
  • the user configuration file is parsed. If the parsing fails, the network port priority corresponding to each peripheral network port is processed according to the preset user requirements. settings, and the priority of the network ports corresponding to each peripheral network port is the same, and each peripheral network port is connected to any resource pool.
  • FIG. 6 is a sub-step flow chart of a transmission optimization method provided by another embodiment of the present disclosure.
  • the transmission optimization method provided by this embodiment of the disclosure includes but is not limited to step S600 and step S610.
  • Step S600 obtain the total data sending time of all resource pools
  • Step S610 Determine the exclusive data sending time of each resource pool based on the weight parameter and the total data sending time.
  • the transmission optimization method is applied to the transmission device.
  • the transmission device includes multiple peripheral network ports. Each peripheral network port is connected to multiple devices.
  • the transmission device obtains the total time of sending data of all resource pools and the data based on User configuration requirements obtain the weight parameters corresponding to each resource pool, and determine the exclusive data sending time of each resource pool based on the weight parameters and the total time to send data.
  • a resource pool with a higher weight parameter has a higher transmission priority.
  • the resource pool has more exclusive data sending time, that is, the device corresponding to the peripheral network port connected to the resource pool can perform the transmission. Data transmission with more transmission time and/or lower transmission delay, improve data transmission efficiency, and accurately control data transmission time and/or transmission delay.
  • the time slice that is, the total time to send data
  • 1s 1000ms
  • the transmission priorities corresponding to the first resource pool to the fourth resource pool are the first transmission priority to the Four transmission priorities
  • the corresponding weights from the first transmission priority to the fourth transmission priority are 4, 3, 2, and 1 in order.
  • the time slice that the resource pool can exclusively send data is :
  • the resource pool needs to ensure the time exclusive efficiency of each resource pool to ensure the priority scheduling timeliness of the corresponding peripheral network port, that is, a higher priority resource pool has a higher exclusive sending data time.
  • Peripheral network ports with higher network port priority are connected to higher priority resource pools to improve data transmission efficiency and accurately control data transmission time and/or transmission delay.
  • the first exclusive sending data time corresponding to the first resource pool is greater than the second exclusive sending time corresponding to the second resource pool.
  • the first resource pool has better transmission performance than the second resource pool.
  • Figure 7 is a schematic structural diagram of a transmission device provided by another embodiment of the present disclosure.
  • the transmission device includes a network management module 700 and a network input and output management module 710.
  • the network management module 700 is connected to the network input and output management module 710.
  • the network management module 700 is configured to obtain the user configuration file and configure the user configuration file.
  • the configuration file is parsed to obtain the user configuration requirements;
  • the network input and output management module 710 is configured to generate multiple resource pools according to the user configuration requirements, in which each resource pool is set with corresponding weight parameters; each resource pool is set according to the user configuration requirements.
  • the network port priority corresponding to the peripheral network port connect each peripheral network port according to user configuration requirements To the target resource pool, the weight parameter of the target resource pool corresponds one-to-one with the network port priority of the peripheral network port.
  • Figure 8 is a schematic structural diagram of a transmission device provided by another embodiment of the present disclosure.
  • the transmission device includes a NET CM module (network management module) and a NET IO MANAGER module. It consists of three parts: (network IO management module) and NET DEV DRIVER module (network device driver module).
  • the NET DEV DRIVER module handles the kernel space of the operating system, mainly each network card driver module, which is responsible for the initialization of the network card chip, the establishment and startup of the data structure of the read and write queue, etc.; the NET IO MANAGER module is mainly responsible for each network card driver Coordinate and manage the read and write data, redistribute bandwidth, and provide a responsive configuration interface to the NET CM module; the NET CM module works in conjunction with the NET IO MANAGER module to provide the upper layer with corresponding configuration interfaces for different network cards.
  • the device is configured.
  • FIG. 9 is a schematic structural diagram of a network IO management module provided by an embodiment of the present disclosure.
  • NET IO MANAGEER is mainly composed of two modules, a resource pool module and a SWITCH BOX (switching box) module.
  • Module 1 Resource Pool Module There can be multiple resource pools. Resource pools include but are not limited to first-in-first-out queue (FIFO, First in First out) resource pools, which respectively represent IO (Input/Output, input/output) with different transmission priorities.
  • FIFO first-in-first-out queue
  • FIFO2 ⁇ FIFO4 decreases in sequence;
  • SWITCH BOX switching box
  • SWITCH BOX switching box
  • the /TX (Receive/Transmit, receive/send) queue is connected to the resource pool queue corresponding to the transmission priority, so that the read and write data of the network card directly enters the FIFO resource pool corresponding to the transmission priority.
  • the NET CM module is connected to the NET IO MANAGEER module to complete the configuration of the NET IO MANAGEER module.
  • the NET CM module consists of two parts: the NET CM main program part; the main program is the NET CM
  • the core is mainly used to read user configuration information, obtain the number of resource pool FIFOs, weight information, etc.; obtain the configuration information of SWITCH BOX; after obtaining the above information, convert it into special commands and send them to NET IO MANAGEER module.
  • NET CM configuration file part includes the number information of the resource pool FIFO, the weight information of the resource pool FIFO, the SWITCH BOX configuration information, and the corresponding relationship between the network card and the FIFO resource pool;
  • Step 101 After the system is powered on, NET IO MANAGER module initialization, the main work includes the establishment of resource pools FIFO1 ⁇ FIFO4, the initialization of the default SWITCH BOX module, and the initialization of resources related to the network card;
  • Step 102 NET CM module initialization, the main work includes the resources of its own module Create and read the configuration file information to obtain the user SWITCH BOX configuration information table;
  • Step 103 If reading the information fails, it proves that there is no need to modify the default configuration, and there is no requirement for network card scheduling priority, that is, network port priority, then the data of all network cards All packages are submitted to resource pool FITO1;
  • Step 104 If the information is read successfully, it proves that the default configuration needs to be modified, and there is a need for network card scheduling priority;
  • Step 105 If the information is read successfully, it proves that the default configuration needs to be modified, and there is a need for network card scheduling priority;
  • an embodiment of the present disclosure provides a controller, which includes: a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor and memory may be connected via a bus or other means.
  • controller in this embodiment may include the processor and memory in the embodiment shown in Figure 1.
  • the two belong to the same concept, so they have the same implementation principles and beneficial effects. Here No more details.
  • the non-transitory software programs and instructions required to implement the transmission optimization method of the above embodiment are stored in the memory, and when executed by the processor, the transmission optimization method of the above embodiment is executed.
  • controller of the embodiment of the present disclosure can perform the transmission optimization method of the above embodiment
  • implementation and technical effects of the controller of the embodiment of the present disclosure can be referred to the transmission optimization method of any of the above embodiments. implementation and technical effects.
  • an embodiment of the present disclosure also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Execution by a processor in the controller embodiment can cause the above-mentioned processor to execute the transmission optimization method of any of the above embodiments, for example, execute the above-described method steps S200 and S230 in Figure 2 and the method steps in Figure 3 S300, method step S400 in Fig. 4, method step S500 in Fig. 5, method step S600 to step S610 in Fig. 6, and method step 101 to step 106 in Fig. 10.
  • Embodiments of the present disclosure include that the transmission device includes multiple peripheral network ports, the transmission device obtains the user configuration file and parses the user configuration file to obtain the user configuration requirements; and generates multiple resource pools according to the user configuration requirements, wherein each Set the corresponding weight parameters for the resource pool; set the network port priority corresponding to each peripheral network port according to the user configuration requirements; connect each peripheral network port to the target resource pool according to the user configuration requirements.
  • the weight parameters of the target resource pool are the same as
  • the network port priorities of peripheral network ports correspond one to one. Different devices are connected to transmission devices through different peripheral network ports. The data transmission of devices under some network ports requires more transmission time and lower transmission delay; while the data transmission of devices under some network ports requires The requirements for transmission time, transmission delay, etc. are not high.
  • the user configuration file is generated according to the user's needs. By obtaining the user configuration file and parsing the user configuration file, the user configuration requirements are obtained. Multiple resource pools are generated according to the user configuration requirements. Each The resource pool sets corresponding weight parameters, that is, each resource pool has a corresponding transmission priority. Resource pools with higher priority have more transmission time and lower transmission delay. Similarly, each resource pool is set according to user configuration requirements.
  • the network port priority corresponding to each peripheral network port. For each peripheral network port, connect the peripheral network port to the target resource pool according to user configuration requirements.
  • the weight parameters of the target resource pool correspond to the network port priority one-to-one.
  • peripheral network ports corresponding to the devices that require more transmission time and lower transmission delay are connected to the higher priority resource pool, and the peripheral network ports corresponding to the devices that require less transmission time, transmission delay, etc.
  • the interface is connected to a lower priority resource pool to improve transmission efficiency, accurately control data transmission time and transmission delay, and improve user experience.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, magnetic tape, disk storage or other magnetic storage device, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • Computer storage media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开公开了一种传输优化方法、设备、控制器及可读存储介质,传输优化方法包括获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求(S200);根据用户配置需求生成多个资源池,其中,每个资源池设置对应的权重参数(S210);根据用户配置需求设置每个外设网口对应的网口优先级(S220);根据用户配置需求将每个外设网口连接至目标资源池,目标资源池的权重参数与外设网口的网口优先级一一对应(S230)。

Description

传输优化方法、设备、控制器及可读存储介质
相关申请的交叉引用
本公开基于申请号为202210841034.8、申请日为2022年07月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及数据传输技术领域,特别涉及一种传输优化方法、设备、控制器及可读存储介质。
背景技术
确定性网络技术是新一代网络通信体系发展方向,是网络、工业、农业和服务业的重要推动力。形成“确定性网络+”的技术和产业格局对千行百业朝着数字化、网络化、智能化的高质量发展方向进一步迈进具有重要意义。尤其是随着IIOT(Industrial Internet of Things,工业互联网领域)的快速发展,不同的设备进行互联、不同的业务同时并发进行,对于QoS(Quality of Servicee,服务质量)提出了更多的要求。传统的工业现场级设备的数据传输是基于QoS传输的,基于流量分类原理,就是将流量划分为多个优先级或多个服务类,在报文分类后,就可以将其它的QoS特性应用到不同的分类。工业类产品通常提供4个或者更多以太网口,不同的网络会接入不同的工业设备或者终端,不同的终端或者工业设备根据业务的不同需要有不同的QoS,传统的QoS服务只能对某项网络服务进行优先级设定,数据传输效率低下,无法对数据传输时间、传输时延等作出准确控制。
发明内容
本公开提出一种传输优化方法、设备、控制器及可读存储介质。
第一方面,本公开实施例提供了一种传输优化方法,应用于传输设备,所述传输设备包括多个外设网口,所述方法包括:获取用户配置文件并对所述用户配置文件进行解析处理,得到用户配置需求;根据所述用户配置需求生成多个资源池,其中,每个所述资源池设置对应的权重参数;根据所述用户配置需求设置每个所述外设网口对应的网口优先级;根据所述用户配置需求将每个所述外设网口连接至目标资源池,所述目标资源池的所述权重参数与所述外设网口的网口优先级一一对应。
第二方面,本公开实施例还提供了一种传输设备,包括:网络管理模块,被设置为获取用户配置文件并对所述用户配置文件进行解析处理,得到用户配置需求;网路输入输出管理模块,被设置为根据所述用户配置需求生成多个资源池,其中,每个所述资源池设置对应的权重参数;根据所述用户配置需求设置每个所述外设网口对应的网口优先级;根据所述用户配置需求将每个所述外设网口连接至目标资源池,所述目标资源池的所述权重参数与所述外设网口的网口优先级一一对应。
第三方面,本公开实施例还提供了一种控制器,包括:存储器、处理器及存储在所述存 储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上第一方面所述的传输优化方法。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面所述的传输优化方法。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本公开一个实施例提供的用于执行传输优化方法的系统架构平台的示意图;
图2是本公开一个实施例提供的传输优化方法的流程图;
图3是本公开另一个实施例提供的传输优化方法的子步骤流程图;
图4是本公开另一个实施例提供的传输优化方法的子步骤流程图;
图5是本公开另一个实施例提供的传输优化方法的子步骤流程图;
图6是本公开另一个实施例提供的传输优化方法的子步骤流程图;
图7是本公开另一个实施例提供的传输设备的结构示意图;
图8是本公开另一个实施例提供的传输设备的结构示意图;
图9是本公开一个实施例提供的网络IO管理模块的结构示意图;
图10是本公开另一个实施例提供的传输优化方法的整体流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本公开的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的内容合理确定上述词语在本公开中的含义。
目前,随着IIOT(Industrial Internet of Things,工业互联网领域)的快速发展,不同的设备进行互联、不同的业务同时并发进行,对于QoS(Quality of Servicee,服务质量)提出了 更多的要求。传统的工业现场级设备的数据传输是基于QoS传输的,基于流量分类原理,就是将流量划分为多个优先级或多个服务类,在报文分类后,就可以将其它的QoS特性应用到不同的分类。工业类产品通常提供4个或者更多以太网口,不同的网络会接入不同的工业设备或者终端,不同的终端或者工业设备根据业务的不同需要有不同的QoS,传统的QoS服务只能对某项网络服务进行优先级设定,数据传输效率低下,无法对数据传输时间、传输时延等作出准确控制。
基于上述情况,本公开实施例提出一种传输优化方法、设备、控制器及可读存储介质,传输设备包括多个外设网口,传输设备获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求;根据用户配置需求生成多个资源池,其中,每个资源池设置对应的权重参数;根据用户配置需求设置每个外设网口对应的网口优先级;根据用户配置需求将每个外设网口连接至目标资源池,目标资源池的权重参数与外设网口的网口优先级一一对应。不同的设备通过不同的外设网口连接至传输设备,有的网口下的设备的数据传输需要更多的传输时间,更低的传输时延;而有的网口下的设备的数据传输对于传输时间、传输时延等要求不高,根据用户的需求生成用户配置文件,通过获取用户配置文件,并对用户配置文件解析得到用户配置需求,按照用户配置需求生成多个资源池,每个资源池设置对应的权重参数,即每个资源池具有对应的传输优先级,较高优先级的资源池具有更多的传输时间和更低的传输时延,同样地,根据用户配置需求设置每个外设网口对应的网口优先级,对于每个外设网口,根据用户配置需求将外设网口连接至目标资源池,目标资源池的权重参数与网口优先级一一对应,这样,对需要更多传输时间、更低传输时延的设备对应的外设网口连接至较高优先级的资源池,对于传输时间、传输时延等要求不高的设备对应的外设网口连接至较低优先级的资源池,提高传输效率,精确控制数据传输时间和传输时延,提高用户使用体验。
下面结合附图,对本公开实施例作进一步的阐述。
如图1所示,图1是本公开一个实施例提供的用于执行传输优化方法的系统架构平台的示意图。
本公开实施例的系统架构平台100包括一个或多个处理器110和存储器120,图1中以一个处理器110及一个存储器120为例。
处理器110和存储器120可以通过总线或者其他方式连接,图1中以通过总线连接为例。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可包括相对于处理器110远程设置的存储器120,这些远程存储器可以通过网络连接至该系统架构平台100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,图1中示出的装置结构并不构成对系统架构平台100的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图2所示,图2是本公开一个实施例提供的传输优化方法的流程图,本公开实施例提供的传输优化方法,包括但不限于步骤S200、步骤S210、步骤S220和步骤S230。
步骤S200,获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求;
步骤S210,根据用户配置需求生成多个资源池,其中,每个资源池设置对应的权重参数;
步骤S220,根据用户配置需求设置每个外设网口对应的网口优先级;
步骤S230,根据用户配置需求将每个外设网口连接至目标资源池,目标资源池的权重参数与外设网口的网口优先级一一对应。
在本公开实施例中,传输优化方法应用于传输设备,传输设备包括多个外设网口,每个外设网口下连接多个设备。传输设备获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求,其中,传输设备包括WebUI(Website User Interface,网络产品界面设计)形式的网络配置界面,在网络配置界面上完成网络的配置,生成用户配置文件。对用户配置文件进行解析处理即可得到用户配置需求,用户配置需求中包括资源池的目标数目,传输设备根据目标数目生成多个资源池,每个资源池设置对应的权重参数,即每个资源池具有对应的传输优先级,一个权重参数对应一个传输优先级,传输设备根据用户配置需求设置每个外设网口对应的网口优先级,对于每个外设网口,根据用户配置需求将每个外设网口连接至目标资源池,其中,目标资源池的权重参数与网口优先级一一对应。较高优先级的外设网口连接至较高优先级的资源池,该外设网口的数据存入该资源池,由于资源池具有较高优先级,在进行数据的传输时,拥有更多的数据传输时间和更低传输时延。根据网口优先级将每个外设网口连接至目标资源池,目标资源池具有对应的传输优先级,将需要更多数据传输时间和/或更低传输时延的设备连接至较高优先级的外设网口中,在进行数据传输时,提高数据的传输效率,精确控制数据传输时间和传输时延,减少优先级不高的数据仍使用优先级较高的通道,导致优先级较高的数据需排队等候发送的情况出现,提升用户使用体验。
在一实施方式中,传输设备获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求,用户配置需求中指明需要生成五个资源池,其中,一号资源池对应第一权重参数,即第一传输优先级,为最高传输优先级,二号资源池对应第二权重参数,即第二传输优先级;三号资源池对应第三权重参数,即第三传输优先级;四号资源池对应第四权重参数,即第四传输优先级;五号资源池对应第五权重参数,即第五传输优先级,为最低传输优先级。并且用户配置需求中指明五个外设网口的网口优先级,一号外设网口对应第一网口优先级;二号外设网口对应第二网口优先级;三号外设网口对应第三网口优先级;四号外设网口对应第四网口优先级;一号外设网口对应第一网口优先级;传输设备根据用户配置需求将一号外设网口连接至一号资源池;二号外设网口连接至二号资源池;三号外设网口连接至三号资源池;四号外设网口连接至四号资源池;五号外设网口连接至五号资源池。这样对传输时间和/或传输时延具有较高需求的设备即可连接至一号外设网口,连接至一号外设网口的设备即可进行更多传输时间和/更低传输时延的数据传输;对传输时间和/或传输时延需求较低的设备即可连接至五号外设网口。
另外,在本公开另一实施例中,传输设备中设有一个切换盒(SWITCH BOX)模块,用于将每个外设网口连接至目标资源池,外设网口先与切换盒模块进行连接,在资源池生成后,每个资源池亦会和切换盒模块进行连接,切换盒模块根据每个外设网口的网口优先级将每个外设网口切换连接至对应传输优先级的目标资源池,当外设网口的网口优先级和/或资源池的传输优先级发生更改,都可以通过切换盒模块重新快速完成切换连接,大大提高了连接的效率。
另外,在本公开实施例中,上述的用户配置需求包括但不限于资源池的目标数目,即资源池的个数信息;每个资源池对应的权重参数,即资源池的权重参数信息;以及资源池与外 设网口的对应关系,对应关系包括但不限于每个外设网口的网口优先级,网口与资源池之间的连接策略。而网口与资源池之间的连接策略在本公开实施例中为较高网口优先级的网口连接至较高传输优先级的资源池中,即连接至较高权重参数的资源池中;较低网口优先级的网口连接至较低传输优先级的资源池中,即连接至较低权重参数的资源池中。
另外,资源池包括但不限于先入先出队列(FIFO,First in First out)资源池。
另外,较高优先级的资源池括但不限于具有更多的传输时间、更低的传输时延,还可包括更低的传输丢包,更高的传输可靠性等等,本公开实施例对此不作具体限定。
如图3所示,图3是本公开另一个实施例提供的传输优化方法的子步骤流程图,本公开实施例提供的传输优化方法,包括但不限于步骤S300。
步骤S300,根据目标数目生成多个资源池,并根据每个资源池对应的权重参数配置每个资源池。
在本公开实施例中,传输优化方法应用于传输设备,传输设备包括多个外设网口,每个外设网口下连接多个设备,当用户配置需求不为预设配置需求,根据用户配置需求获取资源池的目标数目,每个资源池对应的权重参数,而每个权重参数对应一个传输优先级,根据获取到的目标数目生成多个资源池,并根据获取到的每个资源池对应的权重参数配置每个资源池。传输设备会对获取到的用户配置需求进行识别,如果用户配置需求不为预设配置需求,即对用户配置文件进行解析,在解析成功的情况下,则根据用户配置需求生成资源池。
在一实施方式中,如果预设配置需求为生成三个资源池,每个资源池的权重参数均为一,每个资源池的传输优先级均为第一传输优先级,当传输设备获取到的用户配置需求与预设配置需求不相同,即对用户配置文件进行解析,在解析成功的情况下,用户配置需求为生成四个资源池,一号资源池对应第一权重参数,即第一传输优先级,为最高传输优先级,二号资源池对应第二权重参数,即第二传输优先级;三号资源池对应第三权重参数,即第三传输优先级;四号资源池对应第四权重参数,即第四传输优先级,为最低传输优先级;第一权重参数为四,第二权重参数为三;第三权重参数为二;第四权重参数为一,则按照用户配置需求生成四个资源池,并根据每个资源池对应的权重参数配置每个资源池。
如图4所示,图4是本公开另一个实施例提供的传输优化方法的子步骤流程图,本公开实施例提供的传输优化方法,包括但不限于步骤S400。
步骤S400,在解析失败的情况下,生成预设数目的资源池,其中,每个资源池对应的权重参数相同。
在本公开实施例中,传输优化方法应用于传输设备,传输设备包括多个外设网口,每个外设网口下连接多个设备,当用户配置需求为预设配置需求,即对用户配置文件进行解析处理,在解析失败的情况下,传输设备生成预设数目的资源池,每个资源池对应的权重参数相同,即每个资源池对应的传输优先级相同。在一实施方式中,如果预设配置需求为生成三个资源池,每个资源池的权重参数均为一,每个资源池对应的传输优先级相同,当传输设备获取到的用户配置需求为预设配置需求,即对用户配置文件进行解析处理,在解析失败的情况下,则会生成三个资源池,每个资源池的权重参数均为一,每个资源池对应的传输优先级相同,此时,外设网口连接至任意一个资源池均具有相同的数据传输性能。
如图5所示,图5是本公开另一个实施例提供的传输优化方法的子步骤流程图,本公开实施例提供的传输优化方法,包括但不限于步骤S500。
步骤S500,在解析失败的情况下,每个外设网口对应的网口优先级设置为相同优先级,将每个外设网口连接至任意一个资源池。
在本公开实施例中,传输优化方法应用于传输设备,传输设备包括多个外设网口,每个外设网口下连接多个设备,当用户配置需求为预设用户配置需求,即对用户配置文件进行解析处理,在解析失败的情况下,每个外设网口对应的网口优先级设置为相同优先级,将每个外设网口连接至任意一个所述资源池。在一实施方式中,当用户配置需求为预设配置需求,即对用户配置文件进行解析处理,在解析失败的情况下,每个外设网口对应的网口优先级按照预设用户需求进行设定,并且每个外设网口对应的网口优先级相同,每个外设网口连接至任意一个资源池。
如图6所示,图6是本公开另一个实施例提供的传输优化方法的子步骤流程图,本公开实施例提供的传输优化方法,包括但不限于步骤S600和步骤S610。
步骤S600,获取所有资源池的发送数据总时间;
步骤S610,根据权重参数和发送数据总时间确定每个资源池的独占发送数据时间。
在本公开实施例中,传输优化方法应用于传输设备,传输设备包括多个外设网口,每个外设网口下连接多个设备,传输设备获取所有资源池的发送数据总时间以及根据用户配置需求获取每个资源池对应的权重参数,根据权重参数和发送数据总时间确定每个资源池的独占发送数据时间。较高权重参数的资源池具有较高的传输优先级,在进行数据发送时,该资源池具有更多的独占数据发送时间,即连接至该资源池的外设网口对应的设备即可进行更多传输时间和/更低传输时延的数据传输,提高数据的传输效率,精确控制数据传输时间和/或传输时延。
在一实施方式中,以时间片即发送数据总时间为基本资源,以1s(1000ms)为基本细分单位,以四个资源池为例,共分为四个传输优先级,每个优先级对应权重定义为n,则1s内的时间片可以计算为:T(ms)=1000*n/10假设第一资源池至第四资源池对应的传输优先级依次为第一传输优先级至第四传输优先级,第一传输优先级至第四传输优先级对应的权重依次为4、3、2、1,则一个基本时间周期1000s内,资源池可以独占的时间片即独占发送数据时间为:第一资源池为1000*4/10=400ms;第二资源池为1000*3/10=300ms;第三资源池为1000*2/10=200ms;第四资源池为1000*1/10=100ms;资源池内部需要保证每个资源池的时间独占效率,以此来保证实现对应外设网口的优先调度时效性,即较高优先级的资源池具有较高的独占发送数据时间,较高网口优先级的外设网口连接至较高优先级的资源池,提高数据的传输效率,精确控制数据传输时间和/或传输时延。
另外,当第一资源池对应的第一传输优先级大于第二资源池对应的第二传输优先级,第一资源池对应的第一独占发送数据时间大于第二资源池对应的第二独占发送数据时间,第一资源池相较于第二资源池具有更优的传输性能。
如图7所示,图7是本公开另一个实施例提供的传输设备的结构示意图。
在本公开实施例中,传输设备包括网络管理模块700和网络输入输出管理模块710,网络管理模块700和网络输入输出管理模块710连接,网络管理模块700,被设置为获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求;网络输入输出管理模块710,被设置为根据用户配置需求生成多个资源池,其中,每个资源池设置对应的权重参数;根据用户配置需求设置每个外设网口对应的网口优先级;根据用户配置需求将每个外设网口连接 至目标资源池,目标资源池的权重参数与外设网口的网口优先级一一对应。
另外,如图8所示,图8是本公开另一个实施例提供的传输设备的结构示意图,在本公开另一实施例中,传输设备包括NET CM模块(网络管理模块)、NET IO MANAGER模块(网络IO管理模块)和NET DEV DRIVER模块(网络设备驱动模块)3个部分组成。其中,NET DEV DRIVER模块,处理操作系统的内核空间,主要是各个网卡驱动模块,负责网卡芯片的初始化、读写队列的数据结构的建立和启动等;NET IO MANAGER模块,主要是对各个网卡驱动的读写数据进行统筹管理,并且进行带宽再分配,并且向上对NET CM模块提供响应的配置接口;NET CM模块,与NET IO MANAGER模块配合工作,为上层提供相应的配置接口,对不同的网卡设备进行配置。
另外,如图9所示,图9是本公开一个实施例提供的网络IO管理模块的结构示意图,NET IO MANAGEER主要由两个模块组成,资源池模块和SWITCH BOX(切换盒)模块。模块1资源池模块:资源池可以有多个,资源池包括但不限于先入先出队列(FIFO,First in First out)资源池,分别代表不同传输优先级的IO(Input/Output,输入/输出)队列,在本公开实施例中,有4个FIFO,其中FIFO1的传输优先级最高,会优先调度将位于其中的数据包传输到TCP/IP(Transmission Control Protocol/Internet Protocol,传输控制协议/互联协议)协议栈,FIFO2~FIFO4的传输优先级依次降低;模块2:SWITCH BOX(切换盒)模块主要用来将网卡NET1~NET4即第一外设网口至第四外设网口等的RX/TX(Receive/Transmit,接收/发送)队列与对应传输优先级的资源池队列相连,使得网卡的读写数据直接进入对应传输优先级的FIFO资源池。
另外,在本公开实施例中,NET CM模块与NET IO MANAGEER模块连接,用来完成NET IO MANAGEER模块的配置工作,NET CM模块由两个部分组成:NET CM主程序部分;主程序是NET CM的核心,主要用来读取用户配置信息,获得资源池FIFO的个数、权重信息等;获得SWITCH BOX的配置信息;在获得以上信息后,将其转化为特殊的命令,发送给NET IO MANAGEER模块。NET CM配置文件部分:包含资源池FIFO的个数信息、资源池FIFO的权重信息和SWITCH BOX配置信息,网卡与FIFO资源池的对应关系;
如图10所示,基于上述实施例的传输设备的结构和网络IO管理模块的结构,图10是本公开另一个实施例提供的传输优化方法的整体流程图,步骤101:系统上电后,NET IO MANAGER模块初始化,主要的工作包括资源池FIFO1~FIFO4的建立、默认的SWITCH BOX模块的初始化,以及和网卡相关的资源初始化;步骤102:NET CM模块初始化,主要的工作包括自身模块的资源建立、读取配置文件信息,获得用户SWITCH BOX配置信息表;步骤103:如果读取信息失败,证明不需要修改默认配置,没有网卡调度优先级即网口优先级的需求,那么所有网卡的数据包全部提交给资源池FITO1;步骤104:如果读取信息成功,证明需要修改默认配置,有网卡调度优先级的需求;步骤105:解析配置文件的信息,根据配置信息,发送相应的配置命令给NET IO MANAGER模块;步骤106:NET IO MANAGER模块根据获得的配置,将不同网卡的数据包分别提交给资源池FITO1或者FIFO2~FIFO4。通过以上流程,完成了NET CM模块,NET IO MANAGER模块和SWITCH BOX模块三个模块的相互配合,实现了对不同网卡的优先级设定和调度,满足工业领域的实时性差异需求。
基于上述的传输优化方法,下面分别提出本公开的控制器及计算机可读存储介质的各个实施例。
另外,本公开的一个实施例提供了一种控制器,该控制器包括:处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序。
处理器和存储器可以通过总线或者其他方式连接。
需要说明的是,本实施例中的控制器,可以包括如图1所示实施例中的处理器和存储器,两者属于相同的构思,因此两者具有相同的实现原理以及有益效果,此处不再详述。
实现上述实施例的传输优化方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的传输优化方法。
值得注意的是,由于本公开实施例的控制器能够执行上述实施例的传输优化方法,因此,本公开实施例的控制器的实施方式和技术效果,可以参照上述任一实施例的传输优化方法的实施方式和技术效果。
此外,本公开的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述控制器实施例中的一个处理器执行,可使得上述处理器执行上述任一实施例的传输优化方法,例如,执行以上描述的图2中的方法步骤S200和步骤S230、图3中的方法步骤S300、图4中的方法步骤S400、图5中的方法步骤S500、图6中的方法步骤S600至步骤S610、图10中的方法步骤101至步骤106。
本公开实施例包括,传输设备包括多个外设网口,传输设备获取用户配置文件并对用户配置文件进行解析处理,得到用户配置需求;根据用户配置需求生成多个资源池,其中,每个资源池设置对应的权重参数;根据用户配置需求设置每个外设网口对应的网口优先级;根据用户配置需求将每个外设网口连接至目标资源池,目标资源池的权重参数与外设网口的网口优先级一一对应。不同的设备通过不同的外设网口连接至传输设备,有的网口下的设备的数据传输需要更多的传输时间,更低的传输时延;而有的网口下的设备的数据传输对于传输时间、传输时延等要求不高,根据用户的需求生成用户配置文件,通过获取用户配置文件,并对用户配置文件解析得到用户配置需求,按照用户配置需求生成多个资源池,每个资源池设置对应的权重参数,即每个资源池具有对应的传输优先级,较高优先级的资源池具有更多的传输时间和更低的传输时延,同样地,根据用户配置需求设置每个外设网口对应的网口优先级,对于每个外设网口,根据用户配置需求将外设网口连接至目标资源池,目标资源池的权重参数与网口优先级一一对应,这样,对需要更多传输时间、更低传输时延的设备对应的外设网口连接至较高优先级的资源池,对于传输时间、传输时延等要求不高的设备对应的外设网口连接至较低优先级的资源池,提高传输效率,精确控制数据传输时间和传输时延,提高用户使用体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、 CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本公开的若干实施方式进行了说明,但本公开并不局限于上述实施方式,熟悉本领域的技术人员在不违背本公开范围的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本公开权利要求所限定的范围内。

Claims (10)

  1. 一种传输优化方法,应用于传输设备,所述传输设备包括多个外设网口,所述方法包括:
    获取用户配置文件并对所述用户配置文件进行解析处理,得到用户配置需求;
    根据所述用户配置需求生成多个资源池,其中,每个所述资源池设置对应的权重参数;
    根据所述用户配置需求设置每个所述外设网口对应的网口优先级;
    根据所述用户配置需求将每个所述外设网口连接至目标资源池,所述目标资源池的所述权重参数与所述外设网口的网口优先级一一对应。
  2. 根据权利要求1所述的传输优化方法,其中,所述用户配置需求包括所述资源池的目标数目、每个所述资源池对应的权重参数以及所述资源池与所述外设网口的对应关系,其中,所述对应关系包括每个所述外设网口的所述网口优先级。
  3. 根据权利要求2所述的传输优化方法,其中,所述根据所述用户配置需求生成多个资源池,包括:
    根据所述目标数目生成多个所述资源池,并根据所述每个所述资源池对应的权重参数配置每个所述资源池。
  4. 根据权利要求1所述的传输优化方法,其中,在所述获取用户配置文件并对所述用户配置文件进行解析处理之后,所述方法还包括
    在解析失败的情况下,生成预设数目的所述资源池,其中,每个所述资源池对应的所述权重参数相同。
  5. 根据权利要求4所述的传输优化方法,其中,所述方法还包括:
    在解析失败的情况下,每个所述外设网口对应的网口优先级设置为相同优先级,将每个所述外设网口连接至任意一个所述资源池。
  6. 根据权利要求3或4所述的传输优化方法,其中,所述方法还包括:
    获取所有所述资源池的发送数据总时间;
    根据所述权重参数和所述发送数据总时间确定每个所述资源池的独占发送数据时间。
  7. 根据权利要求1所述的传输优化方法,其特征在于,所述资源池为先进先出队列资源池。
  8. 一种传输设备,包括:
    网络管理模块,被设置为获取用户配置文件并对所述用户配置文件进行解析处理,得到用户配置需求;
    网络输入输出管理模块,被设置为根据所述用户配置需求生成多个资源池,其中,每个所述资源池设置对应的权重参数;根据所述用户配置需求设置每个所述外设网口对应的网口优先级;根据所述用户配置需求将每个所述外设网口连接至目标资源池,所述目标资源池的所述权重参数与所述外设网口的网口优先级一一对应。
  9. 一种控制器,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7中任意一项所述的传输优化方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所 述计算机可执行指令用于使计算机执行如权利要求1至7中任意一项所述的传输优化方法。
PCT/CN2023/102436 2022-07-18 2023-06-26 传输优化方法、设备、控制器及可读存储介质 WO2024016947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210841034.8A CN117459394A (zh) 2022-07-18 2022-07-18 传输优化方法、设备、控制器及可读存储介质
CN202210841034.8 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016947A1 true WO2024016947A1 (zh) 2024-01-25

Family

ID=89580464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102436 WO2024016947A1 (zh) 2022-07-18 2023-06-26 传输优化方法、设备、控制器及可读存储介质

Country Status (2)

Country Link
CN (1) CN117459394A (zh)
WO (1) WO2024016947A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195699A1 (en) * 2013-01-08 2014-07-10 Apple Inc. Maintaining i/o priority and i/o sorting
CN107306232A (zh) * 2016-04-22 2017-10-31 华为技术有限公司 网络设备、控制器、队列管理方法及流量管理芯片
CN114201427A (zh) * 2022-02-18 2022-03-18 之江实验室 一种并行式确定性数据处理装置及方法
CN114461393A (zh) * 2022-01-26 2022-05-10 阿波罗智能技术(北京)有限公司 多任务调度方法、装置、电子设备、系统及自动驾驶车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195699A1 (en) * 2013-01-08 2014-07-10 Apple Inc. Maintaining i/o priority and i/o sorting
CN107306232A (zh) * 2016-04-22 2017-10-31 华为技术有限公司 网络设备、控制器、队列管理方法及流量管理芯片
CN114461393A (zh) * 2022-01-26 2022-05-10 阿波罗智能技术(北京)有限公司 多任务调度方法、装置、电子设备、系统及自动驾驶车辆
CN114201427A (zh) * 2022-02-18 2022-03-18 之江实验室 一种并行式确定性数据处理装置及方法

Also Published As

Publication number Publication date
CN117459394A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
US10891177B2 (en) Message management method and device, and storage medium
US10868767B2 (en) Data transmission method and apparatus in optoelectronic hybrid network
US10826830B2 (en) Congestion processing method, host, and system
EP2530599B1 (en) Method and mobile terminal for realizing audio transmission
KR101670642B1 (ko) 클라이언트 디바이스 상에서의 패킷 송신을 스케줄링하기 위한 시스템 및 방법
US20180210752A1 (en) Accelerator virtualization method and apparatus, and centralized resource manager
CN107220200B (zh) 基于动态优先级的时间触发以太网数据管理系统及方法
US10609125B2 (en) Method and system for transmitting communication data
US20080086575A1 (en) Network interface techniques
US20200252337A1 (en) Data transmission method, device, and computer storage medium
US9515963B2 (en) Universal network interface controller
WO2021185083A1 (zh) Vnf实例化方法及装置
US9413672B2 (en) Flow control for network packets from applications in electronic devices
CN115643318A (zh) 命令执行方法、装置、设备及计算机可读存储介质
CN112000446A (zh) 一种数据传输的方法及机器人
WO2024016947A1 (zh) 传输优化方法、设备、控制器及可读存储介质
WO2018103565A1 (en) Methods and systems for data transmission
CN110753008A (zh) 基于dpaa的网络数据处理装置和方法
CN115344350A (zh) 云服务系统的节点设备及资源处理方法
CN111245794B (zh) 数据传输方法和装置
WO2021022947A1 (zh) 一种部署虚拟机的方法及相关装置
CN113438218A (zh) 基于some/ip协议的通信方法及装置、存储介质、终端
CN116074784A (zh) 车载数据传输方法、装置和存储介质
WO2024061179A1 (zh) 逻辑绑定口的管理方法、装置、系统及存储介质
WO2023065853A1 (zh) 数据传输方法、装置、设备、存储介质及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842013

Country of ref document: EP

Kind code of ref document: A1