WO2024016888A1 - 重复传输次数确定方法、装置及存储介质 - Google Patents

重复传输次数确定方法、装置及存储介质 Download PDF

Info

Publication number
WO2024016888A1
WO2024016888A1 PCT/CN2023/099542 CN2023099542W WO2024016888A1 WO 2024016888 A1 WO2024016888 A1 WO 2024016888A1 CN 2023099542 W CN2023099542 W CN 2023099542W WO 2024016888 A1 WO2024016888 A1 WO 2024016888A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeated
transmission times
repeated transmissions
indication information
offset value
Prior art date
Application number
PCT/CN2023/099542
Other languages
English (en)
French (fr)
Inventor
张向东
苗金华
费永强
孙建成
许萌
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024016888A1 publication Critical patent/WO2024016888A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method, device and storage medium for determining the number of repeated transmissions.
  • NTN Non-Terrestrial Network
  • coverage enhancement can be achieved, for example, through repeated transmissions.
  • the number of repeated transmissions can be indicated to the terminal device in the TN network.
  • terminal equipment with the same power in the NTN network requires stronger coverage enhancement than in the TN network.
  • the present disclosure provides a method, device and storage medium for determining the number of repeated transmissions.
  • embodiments of the present disclosure provide a method for determining the number of repeated transmissions, including:
  • Receive first indication information the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions
  • the first parameter is used to determine a first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • using the first parameter to determine the first number of repeated transmissions includes:
  • the number of repeated transmissions indicated by the second indication information in the first list of repeated transmission times is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • using the first parameter to determine the first number of repeated transmissions includes:
  • the number of repeated transmissions indicated by the third indication information is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the sum of the number of candidate repeated transmissions and the first offset value is determined to be the first number of repeated transmissions.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • receiving the first indication information includes:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • embodiments of the present disclosure provide a method for determining the number of repeated transmissions, including:
  • Send first indication information the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions
  • the first parameter is used to determine the first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the method further includes:
  • Send second indication information where the number of repeated transmissions in the first list of repeated transmission times indicated by the second indication information is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the method further includes:
  • Send third indication information the number of repeated transmissions in the second list of repeated transmission times indicated by the third indication information is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the first number of repeated transmissions is the sum of the number of candidate repeated transmissions and the first offset value.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • sending the first indication information includes:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • embodiments of the present disclosure provide a terminal device, including a memory, a transceiver, and a processor:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • Receive first indication information the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions
  • the first parameter is used to determine a first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the processor is specifically configured to perform the following operations:
  • the number of repeated transmissions indicated by the second indication information in the first list of repeated transmission times is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the processor is specifically configured to perform the following operations:
  • the number of repeated transmissions indicated by the third indication information is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the sum of the number of candidate repeated transmissions and the first offset value is determined to be the first number of repeated transmissions.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the processor is specifically configured to perform the following operations:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • an embodiment of the present disclosure provides a network device, including a memory, a transceiver, and a processor:
  • Memory used to store computer programs
  • transceiver used to send and receive data under the control of the processor
  • processor used to read the computer program in the memory and perform the following operations:
  • Send first indication information the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions
  • the first parameter is used to determine the first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the processor is further configured to perform the following operations:
  • Send second indication information where the number of repeated transmissions in the first list of repeated transmission times indicated by the second indication information is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the processor is further configured to perform the following operations:
  • the number of repeated transmissions in the second list of repeated transmission times is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the first number of repeated transmissions is the sum of the number of candidate repeated transmissions and the first offset value.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the processor is specifically configured to perform the following operations:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • an embodiment of the present disclosure provides a device for determining the number of repeated transmissions, including:
  • a receiving unit configured to receive first indication information, the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions;
  • a processing unit configured to use the first parameter to determine a first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the processing unit is specifically used to:
  • the number of repeated transmissions indicated by the second indication information in the first list of repeated transmission times is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the processing unit is specifically used to:
  • the number of repeated transmissions indicated by the third indication information is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the sum of the number of candidate repeated transmissions and the first offset value is determined to be the first number of repeated transmissions.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the receiving unit is specifically configured to:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • an embodiment of the present disclosure provides a device for determining the number of repeated transmissions, including:
  • a sending unit configured to send first indication information, the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions;
  • the first parameter is used to determine the first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the sending unit is also used to:
  • Send second indication information where the number of repeated transmissions in the first list of repeated transmission times indicated by the second indication information is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the sending unit is also used to:
  • Send third indication information where the third indication information indicates that the number of repeated transmissions in the second list of repeated transmission times is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the first number of repeated transmissions is the sum of the number of candidate repeated transmissions and the first offset value.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the sending unit is specifically used to:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • the present disclosure provides a computer-readable storage medium that stores a computer program, and the computer program is used to cause a computer to execute the method described in the first aspect or the second aspect.
  • the present disclosure provides a method, device and storage medium for determining the number of repeated transmissions.
  • the first indication information is received through a terminal device, and the first parameter is used to determine the first number of repeated transmissions according to the instructions of the first indication information, because
  • the first parameter in this embodiment is a parameter set to meet greater coverage enhancement requirements. Therefore, using the first number of repeated transmissions determined by the first parameter can ensure that the repeated transmission requirements of the NTN network are met, thereby ensuring that the NTN Larger network coverage enhancement needs.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of 4-step RACH provided by an embodiment of the present disclosure
  • Figure 3 is a flow chart of a method for determining the number of repeated transmissions provided by an embodiment of the present disclosure
  • Figure 4 is a schematic diagram 1 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram 2 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure
  • Figure 6 is a schematic diagram 3 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure
  • Figure 7 is a schematic diagram 4 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of the implementation of the first message carrying first indication information provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a device for determining the number of repeated transmissions provided by an embodiment of the present disclosure
  • Figure 12 is a schematic second structural diagram of a device for determining the number of repeated transmissions provided by an embodiment of the present disclosure.
  • the term "and/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone. these three situations.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar to it.
  • Embodiments of the present disclosure provide beam indication methods and devices to reduce beam update delays.
  • the method and the device are based on the concept of the same application. Since the method and the device have similar principles for solving problems, the device and the device are The implementation of the methods can be referred to each other, and the duplication will not be repeated.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS Universal mobile telecommunication system
  • WiMAX microwave access
  • 5G New Radio, NR 5G New Radio
  • EPS Evolved Packet System
  • 5GS 5G system
  • EPS Evolved Packet System
  • 5GS 5G system
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, etc.
  • the names of terminal equipment may also be different.
  • the terminal equipment may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the Radio Access Network (RAN).
  • the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (also known as a "cell phone").
  • Wireless terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal user terminal
  • user agent user agent
  • user device user device
  • the network device involved in the embodiment of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • a base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or it can be named by another name.
  • the network device may be used to exchange received air frames and Internet Protocol (IP) packets with each other and serve as a router between the wireless terminal device and the rest of the access network, where the remainder of the access network may include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices also coordinate attribute management of the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (CDMA). ), or it can be a network device (NodeB) in a Wide-band Code Division Multiple Access (WCDMA), or an evolutionary network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), or It is a Home evolved Node B (HeNB), a relay node, a femto, a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, and the centralized units and distributed units may also be arranged geographically separately.
  • Network equipment and terminal equipment can each use one or more antennas for multi-input multi-output (MIMO) transmission.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO,MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoding transmission or beamforming transmission, etc.
  • Non-terrestrial network Non Terrestrial Network, NTN
  • NTN Non Terrestrial Network
  • HAP satellites and High-AlTItude Platforms
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the satellite (Satellite)/Unmanned Aerial System (UAS) platform (platform) and the gateway (gateway) are connected through a feeder link, and the gateway is connected to the data network (Data Network).
  • the feeder circuit can also be called a feeder circuit.
  • the satellite/UAV system platform sends beams to the ground to form a beam coverage area (Beam Footprint), and each elliptical area corresponds to a beam coverage area.
  • UEs within the beam coverage area can communicate with satellite/UAV systems through service links.
  • the satellite in the transparent forwarding mode, the satellite only transparently forwards the signal without any processing.
  • the terminal and the gateway communicate, that is, the satellite only performs frequency conversion, wireless signal amplification and other operations on the uplink/downlink signal. Its function is similar to a radio frequency relay.
  • the satellite in the regenerative communication mode, can detect the received signal information and process and forward it, completing the functions of the base station and connecting the terminal and the gateway. That is, the satellite can perform frequency conversion, wireless signal amplification, encoding/modulation, demodulation/decoding and other functions on uplink/downlink signals. In other words, the satellite can have all or part of the functions of gNB and can regenerate signals.
  • Random access can include four-step random access (can also be called four-step random access channel, or can also be called simply 4-step RACH) and two-step random access (can also be called two-step random access channel , or it can also be referred to as 2-step RACH).
  • 4-step RACH random access channel
  • 2-step RACH two-step random access channel
  • FIG. 2 is a schematic flow chart of 4-step RACH provided by an embodiment of the present disclosure.
  • 4-step RACH has been defined in detail in the existing protocol TS38.300, and this disclosure only briefly describes it. See Figure 2, the method can include:
  • the terminal device sends Msg1 to the network device.
  • Msg1 (Message1, Message 1) can also be called msg1, or MSG1.
  • the random access preamble can also be called a random access preamble sequence, or preamble, or preamble sequence.
  • the preamble and the time-frequency resource (RACH Occasion, referred to as RO, random access channel opportunity) occupied by sending the preamble are called physical random access channel (PRACH) resources.
  • RACH Occasion referred to as RO, random access channel opportunity
  • the terminal device can select an RO and a preamble, and send the selected preamble on the selected RO.
  • the base station can specify PRACH resources and/or preamble, and the base station can estimate the timing advance (TA) based on the preamble sent by the terminal device, and the terminal device transmission.
  • TA timing advance
  • the network device may broadcast available PRACH resources through system information.
  • the network device sends Msg2 to the terminal device.
  • Msg2 (Message2, Message 2) can also be called msg2, or MSG2.
  • Msg2 contains the time-frequency resources determined by the network device to be used by the terminal device for sending the payload.
  • the terminal device After the terminal device sends Msg1, it can open a random access response time window (ra-Response Window) and monitor the random access radio network temporary identifier (RA-RNTI) within the random access response time window. ) scrambled physical downlink control channel (PDCCH).
  • ra-Response Window a random access response time window
  • RA-RNTI random access radio network temporary identifier
  • RA-RNTI is related to the PRACH time-frequency resource used by the terminal equipment to send Msg1.
  • the terminal device After the terminal device successfully receives the RA-RNTI scrambled PDCCH, the terminal device can obtain the physical downlink shared channel (PDSCH) scheduled by the PDCCH, which includes a random access response (random access response, RAR) .
  • PDSCH physical downlink shared channel
  • RAR random access response
  • RAR can include the following information:
  • the RAR subheader contains a back-off indicator (BI), which is used to indicate the back-off time for retransmitting Msg1.
  • BI back-off indicator
  • RAPID in RAR the preamble index received in the network response.
  • the RAR payload contains a timing advance group (TAG), which is used to adjust upstream timing.
  • TAG timing advance group
  • Uplink (UL) grant used to schedule the uplink resource indication of Msg3.
  • Temporary cell radio network temporary identifier used for scrambling the PDCCH for scheduling Msg4 and scheduling Msg3 retransmission.
  • the terminal receives the RAR-RNTI scrambled PDCCH and the RAR contains the preamble index sent by itself, the terminal considers that it has successfully received the random access response.
  • the terminal device sends Msg3 to the network device.
  • Msg3 (Message3, Message 3) can also be called msg3, or MSG3.
  • Msg3 is the first scheduled transmission in the random access process, sending payload, such as RRC connection request message, tracking area update message, etc.
  • Msg3 can notify the network device what event triggered the RACH process. For example, if it is an initial access random process, Msg3 will carry the UE ID and establishment cause; if it is RRC reestablishment, it will carry the connected UE identification and establishment cause.
  • the network device sends Msg4 to the terminal device.
  • Msg4 (Message4, Message 4) can also be called msg4, or MSG4.
  • Msg4 is used to indicate whether the terminal device successfully accesses the network device.
  • Msg4 can have the following two functions: one is to resolve competition conflicts. The other is that the network device transmits RRC configuration messages to the terminal device. There are two ways to resolve contention conflicts: one is that if the terminal equipment carries C-RNTI in Msg3, Msg4 is scheduled with PDCCH scrambled by C-RNTI. The other is that if the terminal device does not carry C-RNTI in Msg3, such as initial access, Msg4 is scheduled with the PDCCH scrambled by TC-RNTI. The conflict is resolved by the terminal device receiving the PDSCH of Msg4 and matching the PDSCH in the PDSCH.
  • CCCH Common control channel
  • SDU service data unit
  • the PUSCH of Msg3 includes the initial transmission scheduled by RAR and the retransmission scheduled by TC-RNTI.
  • the current implementation is to configure four possible times of repeated transmissions in RRC signaling, and then indicate the repeated transmissions using the above configuration in the RAR or TC-RNTI scrambled DCI. Which of the times is used to determine the number of repeated transmissions of Msg3's PUSCH.
  • all possible times of repeated transmission can include: 1, 2, 3, 4, 7, 8, 12, 16.
  • it can be configured or specified in the following way:
  • NumberOfMsg3-Repetitions-r17:: ENUMERATED ⁇ n1,n2,n3,n4,n7,n8,n12,n16 ⁇
  • the high two bits (2MSBs) of the MCS (Modulation and Coding Scheme) carried in DCI scrambled by RAR or TC-RNTI indicate which value in numberOfMsg3-RepetitionsList-r17 is used.
  • the high two bits of MCS can be any of the following: 00, 01, 10, 11. for example:
  • the instruction uses the first value in numberOfMsg3-RepetitionsList-r17;
  • the instruction uses the second value in numberOfMsg3-RepetitionsList-r17;
  • the instruction uses the third value in numberOfMsg3-RepetitionsList-r17;
  • the instruction uses the 4th value in numberOfMsg3-RepetitionsList-r17;
  • numberOfMsg3-RepetitionsList-R17 is: ⁇ n1, n4, n8, n16 ⁇ , which means that four repeated transmission times of 1, 4, 8, and 16 are selected from multiple repeated transmission times.
  • the current instruction is to use the second value in numberOfMsg3-RepetitionsList-r17.
  • the actual number of repeated transmissions of Msg3 is configured to be 4.
  • UEs with the same transmit power may require stronger coverage enhancement in the NTN network than in the TN network.
  • UE1 and UE2 there are currently UE1 and UE2. It is assumed that the surrounding environments of UE1 and UE2 are the same, for example, they are both in a basement or a closed space. Among them, UE1 is connected to the TN and UE2 is connected to the NTN, so the coverage enhancement requirements required by UE2 are greater than those required by UE1.
  • the coverage enhancement method currently adopted in TN networks (that is, the related implementation of the Rel-17 coverage enhancement topic introduced above) may be difficult to meet the coverage enhancement requirements in NTN networks.
  • the present disclosure proposes the following technical concept: introducing a unique number of repeated transmissions for the NTN network, or introducing an offset value for the NTN network based on the relevant implementation of the currently configured number of repeated transmissions, so as to It is guaranteed that the determined number of repeated transmissions can meet the coverage enhancement requirements of the NTN network.
  • FIG. 3 is a flow chart of a method for determining the number of repeated transmissions provided by an embodiment of the present disclosure.
  • the method includes:
  • S301 Receive first indication information.
  • the first indication information is used to instruct using the first parameter to determine the number of repeated transmissions.
  • the terminal device may receive first indication information from the network device, and the first indication information may instruct the terminal device to use the first parameter to determine the number of repeated transmissions.
  • the first parameter can be understood as a parameter set in order to satisfy a larger number of repeated transmissions than the existing number of repeated transmissions.
  • the first indication information is used to indicate using the first parameter to determine the number of repeated transmissions, specifically: the first indication information has two states, the first state of the first indication information indicates using No. A parameter determines the number of repeated transmissions; the second state of the first indication information indicates not to use the first parameter to determine the number of repeated transmissions. Then, the first indication information is received, and the first indication information is used to indicate using the first parameter to determine the number of repeated transmissions, specifically: receiving the first indication information, and the first status of the first indication information is used to indicate using the first parameter to determine the number of repetitions. Number of transfers. For example, the first indication information is an information bit.
  • the information bit When the information bit is set to 1, it represents the first state of the first indication information; when the information bit is set to 0, it represents the second state of the first indication information. Alternatively, when the information bit is set to 0, it represents the first state of the first indication information; when the information bit is set to 1, it represents the second state of the first indication information.
  • the first parameter in this embodiment may include a newly set set of repeated transmission times and/or a list of repeated transmission times.
  • the first parameter in this embodiment may also include at least one offset value to ensure that based on the existing number of repeated transmissions, it can be effectively determined based on the first parameter that a greater number of times is greater than the existing number of repeated transmissions.
  • the number of repeated transmissions is to meet the requirements for greater coverage enhancement of the NTN network.
  • the existing number of repeated transmissions can be understood as the number of repeated transmissions already supported in the TN network.
  • the first parameter can also be any parameter that can satisfy a larger number of repeated transmissions. This embodiment does not limit the specific implementation of the first parameter.
  • the terminal device After receiving the first indication information, the terminal device uses the first parameter to determine the first number of repeated transmissions based on the first indication information. If the first indication information contains two states, and the first state of the first indication information indicates that the first parameter is used to determine the number of repeated transmissions, the first parameter is used to determine the first number of repeated transmissions according to the first indication information, specifically as follows: , if the first indication information is in the first state, the first parameter is used to determine the first number of repeated transmissions; otherwise, if the first indication information is in the second state, the first parameter is not used to determine the first number of repeated transmissions.
  • the first number of repeated transmissions can be understood as the number of times of repeated transmission of the first information.
  • the first information can be the PUSCH of Msg3 introduced above, or it can be any information that needs to be repeatedly transmitted.
  • the specific content that needs to be repeatedly transmitted There is no limit to the specific content that needs to be repeatedly transmitted.
  • a method for determining the number of repeated transmissions includes: receiving first indication information, where the first indication information is used to instruct using a first parameter to determine the number of repeated transmissions.
  • the first number of repeated transmissions is determined using the first parameter.
  • the first parameter is used to determine the first number of repeated transmissions, because the first parameter in this embodiment is set to meet greater coverage enhancement requirements. parameter, therefore using the first number of repeated transmissions determined by the first parameter can ensure that the repeated transmission requirements of the NTN network are met, and thus the larger coverage enhancement requirements of the NTN network can be ensured.
  • the first parameter in this embodiment.
  • the first number of repeated transmissions is determined. Implementation methods are introduced in detail.
  • the first parameter may include a first set of repeated transmission times and/or a first list of repeated transmission times.
  • the first set of repeated transmission times can be understood as a newly defined set of repeated transmission times, and the "new definition" here is relative to the existing second set of repeated transmission times.
  • the first set of repeated transmission times can be called NumberOfMsg3-Repetitions-NTN.
  • the first set of repeated transmission times includes multiple repeated transmission times, and the multiple repeated transmission times are newly configured. All possible number of retransmissions.
  • the number of repeated transmissions in the first set of repeated transmission times may be greater than the number of repeated transmissions in the second set of repeated transmission times.
  • at least the number of repeated transmissions in the first set of repeated transmission times cannot be less than or equal to the number of repeated transmissions in the second set of repeated transmission times.
  • the minimum number of repeated transmissions in the first set of repeated transmission times may be greater than the maximum number of repeated transmissions in the second set of repeated transmission times. Or it may also be that the maximum number of repeated transmissions in the first set of repeated transmission times is greater than the maximum number of repeated transmissions in the second set of repeated transmission times.
  • the first set of repeated transmission times may include the following repeated transmission times: 20, 24, 28, 32, 40, 48, 52, 60, and 64.
  • the configuration implementation of the first set of repeated transmission times can be, for example:
  • NumberOfMsg3-Repetitions-NTN:: ENUMERATED ⁇ n20,n24,n28,n32,n40,n48,n52,n60,n64 ⁇ .
  • the minimum number of repeated transmissions, 20, in the first set of repeated transmission times is also greater than the maximum number of repeated transmissions, 16, in the second set of repeated transmission times.
  • the specific implementation of the number of repeated transmissions included in the first set of repeated transmission times can be selected and set according to actual needs, as long as it can provide a higher number of repeated transmissions than the existing number of repeated transmissions. A large number of repeated transmissions is sufficient.
  • the first repeated transmission times list can be understood as a newly defined repeated transmission times list, and the "new definition" here is also relative to the existing second repeated transmission times list.
  • the first repeated transmission times list actually includes a plurality of repeated transmission times selected from the first repeated transmission times set.
  • the first repeated transmission times list includes the current number of repeated transmissions in order to meet greater repeated transmission requirements. , the selected number of possible repeated transmissions.
  • the first list of repeated transmission times can be called numberOfMsg3-RepetitionsList-NTN, which can be expressed as:
  • the first repeated transmission times list may be equal to ⁇ n20, n32, n48, n64 ⁇ , which means that four of 20, 32, 48, and 64 are selected from the first repeated transmission times set. Number of repeat transfers.
  • the number of repeated transmissions included in the first list of repeated transmission times can be selected according to actual needs, as long as the number of repeated transmissions in the first list of repeated transmission times is from the first set of repeated transmission times. Just choose.
  • the first set of repeated transmission times included in the first parameter and the first list of repeated transmission times are in an "and/or" relationship.
  • the first parameter may only include the first set of repeated transmission times,
  • the repeated transmission times list still reuses the existing second repeated transmission times list numberOfMsg3-RepetitionsList-r17.
  • multiple repeat transmission times can be selected from the first repeat transmission count set to obtain a second repeat transmission count list, and then the second repeat transmission count list can be obtained. Determine the number of repeated transmissions in the number list.
  • the second set of repeated transmission times can be understood as the first set of repeated transmission times.
  • the first parameter may also include only the first repeated transmission times list.
  • the set of repeated transmission times still uses the existing second set of repeated transmission times NumberOfMsg3-Repetitions-r17.
  • the number of repeated transmissions included in the second set of repeated transmission times can be expanded, so that the second set of repeated transmission times includes a larger number of repeated transmissions on the basis of the existing number of repeated transmissions. frequency.
  • multiple larger repeated transmission times can be selected from the second repeated transmission times set to obtain the first repeated transmission times list, and then in the first repeated transmission times list Determine the number of repeated transmissions.
  • the expanded second set of repeated transmission times can be understood as the first set of repeated transmission times.
  • the first parameter may also include a first list of repeated transmission times and a first set of repeated transmission times.
  • multiple repeated transmission times can be selected from the first repeated transmission times set to obtain a first repeated transmission times list, and then the first repeated transmission times list Determine the number of repeated transmissions.
  • the first set of repeated transmission times and the first list of repeated transmission times in this embodiment can also be understood as being set for the NTN network. That is to say, a set of repeated transmission times and a list of repeated transmission times are specially set for the NTN network to ensure that the greater coverage enhancement requirements of the NTN network are met.
  • the terminal equipment has greater demand for coverage enhancement, then the first set of repeated transmission times and/or the first repetition can also be used under the TN network.
  • the second set of repeated transmission times and the second list of repeated transmission times in this embodiment can also be understood as being set for the TN network. But similarly, in the NTN network scenario, if the coverage enhancement requirement of the terminal device is not great, then the second repeated transmission number set and/or the second repeated transmission number list can also be used in the NTN network to determine the appropriate repeated transmission times. frequency.
  • the first set of repeated transmission times and the first list of repeated transmission times introduced above may be determined by the network device and sent to the terminal device.
  • the network device can send the first set of repeated transmission times and the first list of repeated transmission times introduced above to the terminal equipment in all NTN cells, or the terminal equipment can only send the first repeated transmission times set to the terminal equipment in the NTN cell that supports greater coverage enhancement requirements.
  • the terminal device sends the first set of repeated transmission times and the first list of repeated transmission times introduced above, or the network device can also send the first set of repeated transmission times introduced above and the first set of repeated transmission times to the terminal equipment of the TN cell that supports greater coverage enhancement requirements.
  • the specific sending method of the first repeated transmission times list may depend on the specific implementation of the network device, and this embodiment does not limit this.
  • Optional, such as the first repeat The set of transmission times is specified by the protocol and does not need to be sent to the terminal device by the network.
  • the first set of repeated transmission times and/or the first list of repeated transmission times can be sent in an NTN-specific system message (such as SIB19), where SIB is a system information block (system information block).
  • NTN-specific system messages can also be expanded and implemented accordingly with the development of technology.
  • the protocol includes two sets of repeated transmission times, namely the first set of repeated transmission times NumberOfMsg3-Repetitions-NTN and the first set of repeated transmission times NumberOfMsg3-Repetitions-NTN. 2. The set of repeated transmission times NumberOfMsg3-Repetitions-r17.
  • the protocol includes two lists of repeated transmission times, namely the first list of repeated transmission times numberOfMsg3-RepetitionsList-NTN and the second list of repeated transmission times numberOfMsg3-RepetitionsList. -R17.
  • the network device can also use the high two bits of the MCS carried in the RAR or TC-RNTI scrambled DCI to indicate which of the repeated transmission times to use in the repeated transmission times list, but because there are currently two Repeated transmission times list, so it is necessary to further indicate to the terminal device which repeated transmission times list is used to determine the number of repeated transmissions.
  • the network device can determine whether the terminal device needs a greater number of repeated transmissions to transmit Msg3. If necessary, the network device can send first indication information to the terminal device, and the first indication information instructs the terminal The device uses the first set of repeated transmission times and the first repeated transmission number list to determine the first number of repeated transmissions. Alternatively, the network device may send a first status of the first indication information to the terminal device, and the first status of the first indication information instructs the terminal device to use the first set of repeated transmission times and the first repeated transmission number list to determine the first repeated transmission. frequency.
  • the network device may not send the first indication information. If the terminal device does not receive the first indication information, the terminal device may use the second repetition The first number of repeated transmissions is determined by using a set of transmission times and a second list of repeated transmission times. Alternatively, the network device may send a second state of the first indication information to the terminal device, and the second state of the first indication information instructs the terminal device to use the second set of repeated transmission times and the second list of repeated transmission times to determine the first repeated transmission. frequency.
  • the network device determines whether Msg3 requires a larger number of repeated transmissions, it actually needs to determine whether the number of repeated transmissions required to transmit Msg3 is greater than the existing maximum number of repeated transmissions in R17. That is to say, the existing There are not enough retransmissions in R17.
  • the judgment can be implemented, for example, by the network device judging the coverage enhancement requirements of the terminal device based on the quality of the received preamble signal sent by the terminal device, and determining the coverage enhancement requirements required to transmit Msg3 based on the coverage enhancement requirements of the terminal device. Number of repeat transfers. And determine whether to send the first indication information to the terminal device according to the number of repeated transmissions required to transmit Msg3.
  • the network device may determine whether the terminal device requires coverage enhancement by receiving the preamble from the terminal device, or determine that the terminal device requires smaller coverage enhancement. In this case, the network device may not provide the signal to the terminal device.
  • the terminal device sends the first indication information, or the network device can send the second status of the first indication information to the terminal device so that the terminal device does not perform greater coverage enhancement, or according to the traditional second set of repeated transmission times and the second The list of repeated transmission times is used to determine the first number of repeated transmissions.
  • the network device may send the first indication information to the terminal device, or the network device may send the first status of the first indication information to the terminal device, so that the terminal device
  • the first number of repeated transmissions is determined according to the first set of repeated transmission times and the first list of repeated transmission times.
  • the terminal device determines the first number of repeated transmissions in the first repeated transmission number list, for example, it can first obtain the second indication information, and then determine the number of repeated transmissions indicated by the second indication information in the first repeated transmission number list. Determine the first number of repeated transmissions.
  • the second indication information may be, for example, the RAR or TC-RNTI scrambled DCI introduced above, and the high two bits of the MCS carried therein will indicate which number of repeated transmissions in the first list of repeated transmission times is to be used.
  • the implementation of the terminal device using the first set of repeated transmission times and the first repeated transmission number list to determine the first number of repeated transmissions is introduced below with a specific example.
  • FIG. 4 is a schematic diagram 1 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure.
  • the current second set of repeated transmission times includes: 1, 2, 3, 4, 7, 8, 12, and 16.
  • the second repeated transmission number list selected in the second repeated transmission number set includes: 1, 4, 8, and 16.
  • the current set of first repeated transmission times includes: 20, 24, 28, 32, 40, 48, 52, 60, 64.
  • the first list of repeated transmission times selected from the first repeated transmission times set includes: 20, 32, 48, and 64.
  • the terminal device may determine that the network device instructs it to use the first set of repeated transmission times and the first list of repeated transmission times to determine the first The number of repeated transmissions, so the terminal device can determine that the first number of repeated transmissions is determined 32 in the first number of repeated transmissions list.
  • the terminal device may determine that the network device instructs it to determine by using the second set of repeated transmission times and the second list of repeated transmission times.
  • the first number of repeated transmissions therefore the terminal device can determine that the first number of repeated transmissions is 4 determined in the second number of repeated transmissions list.
  • the method for determining the number of repeated transmissions provided by the embodiment of the present disclosure, by newly configuring the first set of repeated transmission times and the first list of repeated transmission times, can include a greater number of repeated transmissions than in R17 in the first set of repeated transmission times, so that It is guaranteed that the first repeated transmission times list can be selected from the first repeated transmission times set, and then the first repeated transmission times can be selected from the first repeated transmission times list, which can effectively meet greater coverage enhancement requirements.
  • the terminal device in this embodiment receives the first indication information sent by the network device, it will use the first repeated transmission number list to determine the number of repeated transmissions, To ensure that greater repeated transmission needs can be met, and when the terminal device does not receive the first instruction information sent by the network device, it will still determine the number of repeated transmissions according to the traditional first repeated transmission times list, so it also effectively guarantees It is compatible with existing coverage enhancement solutions and also ensures that the appropriate number of repeated transmissions can be determined for the terminal device.
  • the following describes an implementation in which the first information includes at least one offset value.
  • At least one first offset value in this embodiment may be determined by the network device and sent to the terminal device.
  • the network device can send at least one offset value to terminal devices in all NTN cells, or the terminal device can also send at least one offset value only to terminal devices in NTN cells that support greater coverage enhancement requirements, or the network The device may also send at least one offset value to the terminal device of the TN cell that supports greater coverage enhancement requirements.
  • the specific sending method may depend on the specific implementation of the network device, and this embodiment does not limit this.
  • At least one offset value may be sent in an NTN-specific system message (such as SIB19), or any other NTN-specific system message may be used, which is not limited in this embodiment.
  • NTN-specific system message such as SIB19
  • the network device will still normally configure the second set of repeated transmission times and the second list of repeated transmission times introduced above. For example, it can be configured through BWP-UplinkCommon.
  • the offset value is configured for the terminal device, the offset value is not used every time the terminal device determines the number of repeated transmissions, but only when it is determined that the terminal device needs a greater number of repeated transmissions. Instructs the end device to use the offset value.
  • the network device can, for example, determine whether the terminal device needs a larger number of repeated transmissions to transmit Msg3. If necessary, the network device can send the first instruction information to the terminal device, and the first instruction information instructs the terminal device. The offset value is used to determine the first number of repeated transmissions.
  • the network device may not send the first indication information. If the terminal device does not receive the first indication information, the terminal device may not use the offset. value to determine the first number of repeated transmissions, that is to say, the first number of repeated transmissions is determined in a traditional way.
  • the network device determines whether Msg3 requires a larger number of repeated transmissions, its implementation method is similar to the above introduction, and will not be described again here.
  • the terminal device can first obtain the third indication information, and then determine the number of times indicated by the third indication information in the second list of repeated transmission times.
  • the number of repeated transmissions is the number of candidate repeated transmissions, and then the actual first number of repeated transmissions is determined based on the number of candidate repeated transmissions and the first offset value.
  • the sum of the number of candidate repeated transmissions and the first offset value is the first number of repeated transmissions; or, it can also be determined that the product of the number of candidate repeated transmissions and the first offset value is The first number of repeated transmissions.
  • This embodiment does not limit the specific calculation method of the number of candidate repeated transmissions and the first offset value. As long as the number of candidate repeated transmissions and the first offset value are calculated, a first repetition larger than the number of candidate repeated transmissions can be obtained. The number of transmissions is enough, and its specific calculation method can be selected and set according to actual needs.
  • the first offset value here can be understood from An offset value selected from at least one offset value used to determine the actual number of repeated transmissions.
  • the third indication information can be, for example, the RAR or TC-RNTI scrambled DCI introduced above, and the high two bits of the MCS carried therein will indicate which repeat transmission in the second repetition number list is used. frequency.
  • Figure 5 is a second implementation schematic diagram of determining the number of repeated transmissions provided by an embodiment of the present disclosure.
  • the current second set of repeated transmission times includes: 1, 2, 3, 4, 7, 8, 12, and 16.
  • the second repeated transmission number list selected in the second repeated transmission number set includes: 1, 4, 8, and 16.
  • the first offset value is the offset value included in the first parameter.
  • the first parameter only includes the offset value V1
  • V1 is the first offset value in this embodiment.
  • the terminal device can determine that the network device instructs it to use the offset value to determine the first number of repeated transmissions, so the terminal device can determine the first number of repeated transmissions according to the candidate
  • the number of repeated transmissions and the first offset value are used to determine the first number of repeated transmissions. For example, as shown in Figure 5, the sum of the candidate repeated transmission number 4 and the first offset value V1 can be determined as the first repeated transmission number, and the first repeated transmission number is equal to 4+V1.
  • the terminal device may determine that the network device indicates that it does not use the offset value to determine the first number of repeated transmissions, so the terminal device The candidate number of repeated transmissions may be directly determined as the first number of repeated transmissions. Therefore, referring to Figure 5, the first number of repeated transmissions is equal to 4.
  • FIG. 6 is a schematic diagram 3 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure.
  • the current second set of repeated transmission times includes: 1, 2, 3, 4, 7, 8, 12, and 16.
  • the second repeated transmission number list selected in the second repeated transmission number set includes: 1, 4, 8, and 16.
  • the first parameter includes multiple offset values, and at the same time, there is a corresponding relationship between the multiple offset values in this embodiment and the multiple repeated transmission times in the second repetition list.
  • the first parameter includes four offset values, namely V1, V2, V3, and V4, and there are four repeated transmission times in the second repetition list.
  • V1 is the offset value corresponding to the number of repeated transmissions 1
  • V2 is the offset value corresponding to the number of repeated transmissions 4
  • V3 is the offset value corresponding to the number of repeated transmissions 8
  • V4 is the offset value corresponding to the number of repeated transmissions 16.
  • the first offset value is the offset value corresponding to the number of candidate repeated transmissions.
  • the number of candidate repeated transmissions is 4, then it can be determined that the first offset value is V2.
  • the terminal device can determine that the network device instructs it to use the offset value to determine the first number of repeated transmissions, so the terminal device can determine the first number of repeated transmissions according to the candidate
  • the number of repeated transmissions and the first offset value are used to determine the first number of repeated transmissions.
  • the sum of the candidate repeated transmission number 4 and the first offset value V2 can be determined as the first repeated transmission number, and the first repeated transmission number is equal to 4+V2.
  • the terminal device may determine that the network device indicates that it does not use the offset value to determine the first number of repeated transmissions, so the terminal device The candidate number of repeated transmissions may be directly determined as the first number of repeated transmissions. Therefore, referring to Figure 6, the first number of repeated transmissions is equal to 4.
  • FIG. 7 is a schematic diagram 4 of the implementation of determining the number of repeated transmissions provided by an embodiment of the present disclosure.
  • the current second set of repeated transmission times includes: 1, 2, 3, 4, 7, 8, 12, and 16.
  • the second repeated transmission number list selected in the second repeated transmission number set includes: 1, 4, 8, and 16.
  • the first parameter includes five offset values, namely V1, V2, V3, V4, and V5.
  • the first offset value may be the offset value indicated by the fourth indication information, as shown in Figure 5.
  • the fourth indication information indicates that the offset value V3 is used, then the first offset value can be determined The value is V3.
  • the terminal device can determine that the network device instructs it to use the offset value to determine the first number of repeated transmissions, so the terminal device can determine the first number of repeated transmissions according to the candidate
  • the number of repeated transmissions and the first offset value are used to determine the first number of repeated transmissions.
  • the sum of the candidate repeated transmission number 4 and the first offset value V3 can be determined as the first repeated transmission number, and the first repeated transmission number is equal to 4+V3.
  • the terminal device may determine that the network device indicates that it does not use the offset value to determine the first number of repeated transmissions, so the terminal device The candidate number of repeated transmissions may be directly determined as the first number of repeated transmissions. Therefore, referring to Figure 7, the first number of repeated transmissions is equal to 4.
  • the offset value is indicated through the fourth indication information
  • the method for determining the number of repeated transmissions configures at least one offset value for the terminal device.
  • the terminal device can instruct the terminal device to select from the second list of repeated transmission times.
  • the number of candidate repeated transmissions, and the first offset value to determine the actual first offset value, thereby effectively providing a greater number of repeated transmissions and thereby meeting greater coverage enhancement requirements.
  • the terminal equipment can be instructed whether to use an offset value to determine the first number of repeated transmissions, thereby ensuring compatibility with the existing method of determining the number of repeated transmissions, and at the same time effectively ensuring that the terminal can
  • the device determines the appropriate number of repeat transmissions.
  • the terminal device may, for example, receive a first message, where the first message carries the first indication information in this embodiment.
  • the first message is at least one of the following messages: RAR, TC-RNTI scrambled DCI.
  • Figure 8 is a schematic diagram of the implementation of the first message carrying the first indication information provided by an embodiment of the present disclosure.
  • RAR includes fields such as timing advance command (Timing advance command), uplink grant (UL grant), TC-RNTI and so on.
  • RAR There is also a reserved bit in RAR.
  • the first indication information can be carried in this reserved bit of RAR.
  • the CSI request field in the UL grant is currently not used and can also be used to carry the first indication information.
  • the CSI request field is currently not used, so it can be used to carry the first indication information.
  • the first message is TC-RNTI scrambled DCI
  • this embodiment does not limit the actual implementation of the first message. As long as there is a reserved bit in the first message, it can be used to carry the first instruction in this embodiment. Information is enough. On this basis, the specific implementation method of the first message can be selected and set according to actual needs.
  • the reserved bit in the first message introduced above when the reserved bit in the first message introduced above is 1, it can mean that the network device instructs the terminal device to use the first parameter to determine the number of repeated transmissions.
  • the fourth indication information for indicating the first offset value introduced above can also be carried in the first message, and its implementation manner is similar to the first indication information currently introduced. This No further details will be given.
  • the fourth instruction information may also be instruction information sent separately. This embodiment does not limit the specific implementation manner of the fourth instruction information.
  • the above embodiments mainly introduce the relevant implementations on the terminal device side.
  • the relevant implementations on the network device side are all corresponding. Therefore, the specific implementation on the network device side will not be described again in this disclosure.
  • the method for determining the number of repeated transmissions configures a first parameter for the terminal device, where the first parameter may include a newly configured set of repeated transmission times and/or a list of repeated transmission times, or a third One parameter may also include at least one offset value, and then instruct the terminal device to use the first parameter to determine the actual number of repeated transmissions, so that based on the currently configured coverage enhancement technology, the terminal device can be provided with repeated transmissions relative to the existing ones.
  • a larger number of repeated transmissions can effectively support higher coverage enhancement requirements in NTN scenarios, thereby ensuring that UEs can access the NTN network even when the channel quality is poor.
  • Figure 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure. As shown in Figure 9, the device includes: a memory 901, a transceiver 902 and a processor 903.
  • Memory 901 used to store computer programs
  • Transceiver 902 used to send and receive data under the control of processor 903;
  • Processor 903 used to read the computer program stored in the memory 901 and perform the following operations:
  • Receive first indication information the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions
  • the first parameter is used to determine a first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the processor 903 is specifically configured to perform the following operations:
  • the number of repeated transmissions indicated by the second indication information in the first list of repeated transmission times is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the processor 903 is specifically configured to perform the following operations:
  • the number of repeated transmissions indicated by the third indication information is a candidate retransmission number.
  • the number of repeated transmissions, the second list of repeated transmission times is set for the terrestrial network;
  • the sum of the number of candidate repeated transmissions and the first offset value is determined to be the first number of repeated transmissions.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the processor 903 is specifically configured to perform the following operations:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • Figure 10 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure. As shown in Figure 10, the device includes: a memory 1001, a transceiver 1002 and a processor 1003.
  • Memory 1001 used to store computer programs
  • Transceiver 100 used to send and receive data under the control of processor 1003;
  • Processor 1003 used to read the computer program stored in the memory 1001 and perform the following operations:
  • Send first indication information the first indication information being used to instruct using the first parameter to determine the number of repeated transmissions
  • the first parameter is used to determine the first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the processor 1003 is also configured to perform the following operations:
  • Send second indication information where the second indication information indicates that the number of repeated transmissions in the first list of repeated transmission times is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the processor 1003 is also configured to perform the following operations:
  • the number of repeated transmissions in the second list of repeated transmission times is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the first number of repeated transmissions is the sum of the number of candidate repeated transmissions and the first offset value.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The number of repeated transmissions of the candidate The corresponding offset value; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the processor 1003 is specifically configured to perform the following operations:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • FIG. 11 is a schematic structural diagram of a device for determining the number of repeated transmissions provided by an embodiment of the present disclosure. As shown in Figure 11, the device includes:
  • the receiving unit 1101 is configured to receive first indication information, where the first indication information is used to instruct the use of the first parameter to determine the number of repeated transmissions;
  • the processing unit 1102 is configured to use the first parameter to determine the first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • processing unit 1102 is specifically used to:
  • the number of repeated transmissions indicated by the second indication information in the first list of repeated transmission times is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • processing unit 1102 is specifically used to:
  • the number of repeated transmissions indicated by the third indication information is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the sum of the number of candidate repeated transmissions and the first offset value is determined to be the first number of repeated transmissions.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the receiving unit 1101 is specifically used to:
  • the first message is at least one of the following messages: random access response message RAR, temporary cell Downlink control information DCI scrambled by the wireless network temporary identifier TC-RNTI.
  • Figure 12 is a schematic second structural diagram of a device for determining the number of repeated transmissions provided by an embodiment of the present disclosure. As shown in Figure 12, the device includes:
  • Sending unit 1201, configured to send first indication information, where the first indication information is used to instruct using the first parameter to determine the number of repeated transmissions;
  • the first parameter is used to determine the first number of repeated transmissions.
  • the first parameter includes a first set of repeated transmission times and/or a first list of repeated transmission times
  • the first set of repeated transmission times and/or the first list of repeated transmission times are set for non-terrestrial networks.
  • the sending unit 1201 is also used to:
  • Send second indication information where the number of repeated transmissions in the first list of repeated transmission times indicated by the second indication information is the first number of repeated transmissions.
  • the first parameter includes at least one offset value.
  • the sending unit 1201 is also used to:
  • Send third indication information where the third indication information indicates that the number of repeated transmissions in the second list of repeated transmission times is the number of candidate repeated transmissions, and the second list of repeated transmission times is set for the terrestrial network;
  • the first number of repeated transmissions is the sum of the number of candidate repeated transmissions and the first offset value.
  • the first parameter includes an offset value, then the first offset value is the offset value included in the first parameter; or,
  • the first parameter includes a plurality of offset values, and there is a corresponding relationship between the plurality of offset values and the plurality of repeated transmission times in the second repeated transmission times list, then the first offset value is the The offset value corresponding to the number of repeated transmissions of the candidate; or,
  • the first offset value is the offset value indicated by the fourth indication information.
  • the sending unit 1201 is specifically used to:
  • the first message is at least one of the following messages: a random access response message RAR, and downlink control information DCI scrambled by the temporary cell radio network temporary identifier TC-RNTI.
  • each functional unit in various embodiments of the present disclosure can be integrated into one processing unit, or each unit can exist physically alone, or it can be two or two.
  • the above units are integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
  • Embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is used to cause the computer to execute the method executed by the terminal or network device in the above method embodiment.
  • Computer-readable storage media can be any available media or data storage devices that can be accessed by a computer, including but not limited to magnetic storage (such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memories (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memories such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • An embodiment of the present disclosure also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program is executed by a processor, the method executed by the terminal or network device in the above method embodiment is implemented.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, magnetic disk storage, optical storage, and the like) embodying computer-usable program code therein.
  • a computer-usable storage media including, but not limited to, magnetic disk storage, optical storage, and the like
  • processor-executable instructions may also be stored in a processor-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the generation of instructions stored in the processor-readable memory includes the manufacture of the instruction means product, the instruction device implements the function specified in one process or multiple processes in the flow chart and/or one block or multiple blocks in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby causing the computer or other programmable device to
  • the instructions that are executed provide steps for implementing the functions specified in a process or processes of the flowchart diagrams and/or a block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种重复传输次数确定方法、装置及存储介质。该方法包括:接收第一指示信息,第一指示信息用于指示使用第一参数确定重复传输次数;使用第一参数确定第一重复传输次数。通过接收第一指示信息,并根据第一指示信息的指示,使用第一参数来确定第一重复传输次数,因为本实施例中的第一参数是为了可以满足更大的覆盖增强需求所设置的参数,因此使用第一参数确定的第一重复传输次数,可以保证满足NTN网络的重复传输需求,进而可以保证NTN网络较大的覆盖增强需求。

Description

重复传输次数确定方法、装置及存储介质
本公开要求于2022年7月22日提交中国专利局、申请号为202210868787.8、申请名称为“重复传输次数确定方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种重复传输次数确定方法、装置及存储介质。
背景技术
为了实现全球无线接入覆盖,目前提出了非地面网络(Non Terrestrial Network,NTN)架构,其实现主要是依托于卫星,为卫星下方的广大区域提供无线接入服务。
在地面网络(Terrestrial Network,TN)网络中,覆盖增强例如可以通过重复传输来实现,比如说可以在TN网络中为终端设备指示重复传输次数。然而,因为卫星系统的传播距离较长,相同功率的终端设备在NTN网络中,比在TN网络中需要更强的覆盖增强。
所以目前TN网络中的覆盖增强方式,难以满足NTN网络中的覆盖增强需求。
发明内容
本公开提供一种重复传输次数确定方法、装置及存储介质。
第一方面,本公开实施例提供一种重复传输次数确定方法,包括:
接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
使用所述第一参数确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述使用所述第一参数确定第一重复传输次数,包括:
获取第二指示信息;
确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述使用所述第一参数确定第一重复传输次数,包括:
获取第三指示信息;
确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述接收第一指示信息,包括:
接收第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
第二方面,本公开实施例提供一种重复传输次数确定方法,包括:
发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
所述第一参数用于确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述方法还包括:
发送第二指示信息,所述第二指示信息所指示的、所述第一重复传输次数列表中的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述方法还包括:
发送第三指示信息,所述第三指示信息所指示的、所述第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述发送第一指示信息,包括:
发送第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
第三方面,本公开实施例提供一种终端设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
使用所述第一参数确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述处理器具体用于执行以下操作:
获取第二指示信息;
确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述处理器具体用于执行以下操作:
获取第三指示信息;
确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述处理器具体用于执行以下操作:
接收第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
第四方面,本公开实施例提供一种网络设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
所述第一参数用于确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述处理器还用于执行以下操作:
发送第二指示信息,所述第二指示信息所指示的所述第一重复传输次数列表中的重复传输次数为第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述处理器还用于执行以下操作:
发送第三指示信息,第三指示信息所指示的,所述第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述处理器具体用于执行以下操作:
发送第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
第五方面,本公开实施例提供一种重复传输次数确定装置,包括:
接收单元,用于接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
处理单元,用于使用所述第一参数确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述处理单元具体用于:
获取第二指示信息;
确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述处理单元具体用于:
获取第三指示信息;
确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述接收单元具体用于:
接收第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
第六方面,本公开实施例提供一种重复传输次数确定装置,包括:
发送单元,用于发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
所述第一参数用于确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述发送单元还用于:
发送第二指示信息,所述第二指示信息所指示的所述第一重复传输次数列表中的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述发送单元还用于:
发送第三指示信息,所述第三指示信息所指示的,所述第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述发送单元具体用于:
发送第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
第七方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使计算机执行第一方面或第二方面所述的方法。
本公开提供一种重复传输次数确定方法、装置及存储介质,该方法中通过终端设备接收第一指示信息,并根据第一指示信息的指示,使用第一参数来确定第一重复传输次数,因为本实施例中的第一参数是为了可以满足更大的覆盖增强需求所设置的参数,因此使用第一参数确定的第一重复传输次数,可以保证满足NTN网络的重复传输需求,进而可以保证NTN网络较大的覆盖增强需求。
应当理解,上述发明内容部分中所描述的内容并非旨在限定本发明的实施例的关键或重要特征,亦非用于限制本发明的范围。本发明的其它特征将通过以下的描述变得容易理解。
附图说明
为了更清楚地说明本公开或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的通信系统的架构示意图;
图2为本公开实施例提供的4-step RACH的流程示意图;
图3为本公开实施例提供的重复传输次数确定方法的流程图;
图4为本公开实施例提供的确定重复传输次数的实现示意图一;
图5为本公开实施例提供的确定重复传输次数的实现示意图二;
图6为本公开实施例提供的确定重复传输次数的实现示意图三;
图7为本公开实施例提供的确定重复传输次数的实现示意图四;
图8为本公开实施例提供的第一消息携带第一指示信息的实现示意图;
图9为本公开实施例提供的终端设备的结构示意图;
图10为本公开实施例提供的网络设备的结构示意图;
图11为本公开实施例提供的重复传输次数确定装置的结构示意图一;
图12为本公开实施例提供的重复传输次数确定装置的结构示意图二。
具体实施方式
本发明实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了波束指示方法及装置,用以降低波束更新的时延。其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和 方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以 是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
为了更好的理解本公开的技术方案,下面对本公开所涉及的相关技术进行进一步的详细介绍。
为了实现全球无线接入覆盖,目前提出了非地面网络(Non Terrestrial Network,NTN)架构,其中非地面网络,顾名思义是相对于传统的地面网络而言,采用典型的如卫星和高空平台(HAP:satellites and High-AlTItude Platforms)参与布网的技术。
下面结合图1对本公开的通信场景进行说明,图1为本公开实施例提供的通信系统的架构示意图。
如图1所示,卫星(Satellite)/无人机系统(unmanned AeriaI system,简称UAS)平台(platform)与网关(gateway)之间,通过馈线链路(Feeder Link)连接,网关连接到数据网(Data Network)。其中馈线电路还可以称为馈电电路。
卫星/无人机系统平台向地面发送波束,以形成波束覆盖区域(Beam Footprint),每个椭圆形区域对应一个波束覆盖区域。波束覆盖区域内的UE可与卫星/无人机系统之间通过服务链路(Service Link)进行数据通信。
在卫星通信中,存在两种工作模式,分别是透明转发模式和再生通信模式,下面对这两种工作模式分别进行说明。
其中,在透明转发模式中,卫星仅仅透明转发信号,不做任何处理,终端和网关进行通信,即卫星仅对上行/下行信号执行频率变换、无线信号放大等操作,其功能类似射频中继。
以及,在再生通信模式中,卫星可以检测出接收信号的信息并进行处理转发,完成基站的功能,连接终端和网关。即卫星可以对上行/下行信号执行频率变换、无线信号放大、编码/调制、解调/译码等功能。也就是说卫星可以具有gNB全部或者部分功能,可以对信号进行再生。
在上述介绍内容的基础上,下面对NTN网络和TN网络的覆盖增强的相关实现进行介绍。
目前,针对TN网络的覆盖增强是基于Rel-17NR覆盖增强(coverage enhancement)来实现的。而针对NTN的覆盖增强的实现还没有明确的解决方案,当前可以考虑以Rel-17NR覆盖增强课题的研究成果为基础来实现,主要是考虑较长传播时延和卫星移动相关的覆盖增强技术。
下面试图对Rel-17的覆盖增强课题进行说明,在介绍之前,因为下述内容涉及随机接入过程的相关实现,因此首先对随机接入过程进行介绍。
随机接入可以包括四步随机接入(还可以称为四步随机接入信道,或者,还可以简称为4-step RACH)和两步随机接入(还可以称为两步随机接入信道,或者还可以简称为2-step RACH)。下面主要对4-step RACH的过程进行详细说明。
图2为本公开实施例提供的4-step RACH的流程示意图。4-step RACH在现有的协议TS38.300中已经详细定义,本公开只是简单进行了描述。请参见图2,该方法可以包括:
S201、终端设备向网络设备发送Msg1。
Msg1(Message1,消息1)还可以称为msg1、或MSG1。
Msg1用于传输随机接入前导,随机接入前导还可以称为随机接入前导序列、或preamble、或preamble序列。
在本公开实施例中,preamble以及发送preamble所占用的时频资源(RACH Occasion,简称RO,随机接入信道机会)称作为物理随机接入信道(physical random access channel,PRACH)资源。
可选的,终端设备可以选择RO、以及选取一个preamble,并在选择的RO上发送选取的preamble。若随机接入的方式为基于非竞争的随机接入,则可以由基站指定PRACH资源和/或preamble,基站可以基于终端设备发送的preamble估计定时提前量(timing advance,TA)、以及终端设备传输Msg3所需的上行授权大小。
例如,网络设备可以通过系统信息广播可用的PRACH资源。
S202、网络设备向终端设备发送Msg2。
Msg2(Message2,消息2)还可以称为msg2、或MSG2。
其中,Msg2包含了网络设备确定给终端设备用于发送净荷(payload)所使用的时频资源。
终端设备发送Msg1之后,可以开启一个随机接入响应时间窗(ra-Response Window),在该随机接入响应时间窗内监测随机接入无线网络临时标识(random access radio network temporary identifier,RA-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)。
其中,RA-RNTI与终端设备发送Msg1所使用的PRACH时频资源有关。
在终端设备成功接收到RA-RNTI加扰的PDCCH之后,终端设备能够获得该PDCCH调度的物理下行共享信道(physical downlink shared channel,PDSCH),其中包含了随机接入响应(random access response,RAR)。其中,RAR中可以包括如下信息:
RAR的子头中包含回退指示(back-off indicator,BI),用于指示重传Msg1的回退时间。
RAR中的RAPID:网络响应收到的preamble index。
RAR的净荷(payload)中包含定时提前组(timing advance group,TAG),用于调整上行定时。
上行(up link,UL)grant:用于调度Msg3的上行资源指示。
临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI):用于加扰调度Msg4和调度Msg3重传的PDCCH。
如果终端接收到RAR-RNTI加扰的PDCCH,并且RAR中包含了自己发送的preamble index,则终端认为成功接收了随机接入响应。
对于基于非竞争的随机接入,终端成功接收Msg2后,随机接入过程结束。对于基于竞争的随机接入,终端设备成功接收Msg2后,还需要继续传输Msg3和接收Msg4。
S203、终端设备向网络设备发送Msg3。
Msg3(Message3,消息3)还可以称为msg3、或MSG3。
其中,Msg3是随机接入过程中的第一个调度传输,发送净荷(payload),例如,RRC连接请求消息、跟踪区域更新消息等。
Msg3可以通知网络设备该RACH过程是由什么事件触发。例如,如果是初始接入随机过程,则在Msg3中会携带UE ID和成立原因(establishment cause);如果是RRC重建,则会携带连接态UE标示和成立原因(establishment cause)。
需要说明的是,若不同的终端设备在S301中选择了相同的preamble并且在相同的时频资源上发送该preamble,则该不同的终端设备在相同的时频资源上发送净荷,进而导致资源使用冲突。
S204、网络设备向终端设备发送Msg4。
Msg4(Message4,消息4)还可以称为msg4、或MSG4。
其中,Msg4用于指示该终端设备是否成功的接入到该网络设备。
Msg4可以具有如下两个作用:一个是解决竞争冲突。另一个是网络设备向终端设备传输RRC配置消息。竞争冲突解决有以下两种方式:一种是如果终端设备在Msg3中携带了C-RNTI,则Msg4用C-RNTI加扰的PDCCH调度。另一种是如果终端设备在Msg3中未携带C-RNTI,比如是初始接入,则Msg4用TC-RNTI加扰的PDCCH调度,冲突的解决是终端设备接收Msg4的PDSCH,通过匹配PDSCH中的公共控制信道(common control channel,CCCH)服务数据单元(service data unit,SDU)。
在上述介绍的随机接入过程的基础上,下面对Rel-17的覆盖增强课题进行介绍。
其中,覆盖增强可以通过重复传输来实现。在随机接入过程中,对于Msg3的PUSCH,支持的最大重复传输次数为16。其中,Msg3的PUSCH包括RAR调度的初传和TC-RNTI调度的重传。
在指示Msg3的PUSCH的重复传输次数时,目前的实现方式是在RRC信令中配置四个可能的重复传输次数,然后在RAR或者TC-RNTI加扰的DCI中,指示使用上述配置的重复传输次数中的哪一个,从而完成Msg3的PUSCH的重复传输次数的确定。
其中,“在RRC信令中配置四个可能的重复传输次数”具体为:
首先,配置或者规定所有可能的重复传输次数,比如说所有可能的重复传输次数可以包括:1、2、3、4、7、8、12、16,其比如说可以通过如下方式配置或者规定:
NumberOfMsg3-Repetitions-r17::=ENUMERATED{n1,n2,n3,n4,n7,n8,n12,n16}
然后,从上述可能的重复传输次数中选择四个,作为Msg3的PUSCH可能使用的重复传输次数,其比如说可以通过如下方式配置:
numberOfMsg3-RepetitionsList-r17 SEQUENCE(SIZE(4))OF NumberOfMsg3-Repetitions-r17
而“在RAR或者TC-RNTI加扰的DCI中,指示使用上述配置的重复传输次数中的哪一个”的具体实现可以为:
通过RAR或者TC-RNTI加扰的DCI中携带的MCS(Modulation and Coding Scheme,调制与编码策略)的高两比特(2MSBs),指示使用numberOfMsg3-RepetitionsList-r17中的哪个取值。
其中,MCS的高两比特可以为如下中的任一种:00、01、10、11。比如:
当MCS的高两比特为00的时候,指示采用numberOfMsg3-RepetitionsList-r17中的第1个取值;
当MCS的高两比特为01的时候,指示采用numberOfMsg3-RepetitionsList-r17中的第2个取值;
当MCS的高两比特为10的时候,指示采用numberOfMsg3-RepetitionsList-r17中的第3个取值;
当MCS的高两比特为11的时候,指示采用numberOfMsg3-RepetitionsList-r17中的第4个取值;
比如说numberOfMsg3-RepetitionsList-R17的取值为:{n1,n4,n8,n16},也就是说在多个重复传输次数中选择了1、4、8、16这四个重复传输次数。
以及假设RAR或者TC-RNTI加扰的DCI中MCS的2MSBs取值为01,则可以确定当前是指示采用numberOfMsg3-RepetitionsList-r17中的第2个取值。也就是说配置Msg3的实际重复传输次数就是4。
在上述介绍内容的基础上,此处要说明的是,基于卫星系统较长传播距离的特点,相同发射功率的UE在NTN网络中,比在TN网络中可能需要更强的覆盖增强。比如当前存在UE1和UE2,假设UE1和UE2的周围环境相同,例如同样处于地下室或者封闭空间。其中UE1接入TN,UE2接入NTN,那么UE2需要的覆盖增强需求,要比UE1需要的覆盖增强需求大。
因此目前在TN网络中采用的覆盖增强方式(也就是上述介绍的Rel-17的覆盖增强课题的相关实现),可能难以满足NTN网络中的覆盖增强需求。
基于现有技术中的问题,本公开提出了如下技术构思:为NTN网络引入特有的重复传输次数,或者在目前配置的重复传输次数的相关实现的基础上,为NTN网络引入偏移值,以保证确定的重复传输次数可以满足NTN网络的覆盖增强需求。
下面结合具体的实施例对本公开提供的重复传输次数确定方法进行介绍。图3为本公开实施例提供的重复传输次数确定方法的流程图。
如图3所示,该方法包括:
S301、接收第一指示信息,第一指示信息用于指示使用第一参数确定重复传输次数。
在本实施例中,终端设备可以接收来自网络设备的第一指示信息,第一指示信息可以指示终端设备使用第一参数来确定重复传输次数。其中,第一参数可以理解为,为了满足比现有的重复传输次数更大的重复传输次数所设置的参数。
在一种可能的实现方式中,第一指示信息用于指示使用第一参数确定重复传输次数,具体为:所述第一指示信息有两个状态,第一指示信息的第一状态,指示使用第 一参数确定重复传输次数;第一指示信息的第二状态,指示不使用第一参数确定重复传输次数。则,接收第一指示信息,第一指示信息用于指示使用第一参数确定重复传输次数,具体为:接收第一指示信息,第一指示信息的第一状态用于指示使用第一参数确定重复传输次数。比如,第一指示信息为1比特信息位,该比特信息位设置为1时,代表第一指示信息的第一状态;该比特信息位设置为0时,代表第一指示信息的第二状态。或者,该比特信息位设置为0时,代表第一指示信息的第一状态;该比特信息位设置为1时,代表第一指示信息的第二状态。
在一种可能的实现方式中,本实施例中的第一参数可以包括新设置的重复传输次数集合和/或重复传输次数列表。或者,本实施例中的第一参数还可以包括至少一个偏移值,以保证在现有的重复传输次数的基础上,基于第一参数可以有效的确定相对于现有的重复传输次数更大的重复传输次数,以满足NTN网络更大的覆盖增强的要求。所述现有的重复传输次数,可以理解为TN网络中已经支持的重复传输次数。
或者,第一参数还可以为任意的、可以满足更大的重复传输次数的参数,本实施例对第一参数的具体实现方式不做限定。
S302、使用第一参数确定第一重复传输次数。
终端设备在接收到第一指示信息之后,就会根据第一指示信息,使用第一参数来确定第一重复传输次数。如果第一指示信息包含两个状态,并且第一指示信息的第一状态指示使用第一参数确定重复传输次数时,根据第一指示信息,使用第一参数来确定第一重复传输次数,具体为,如果第一指示信息为第一状态,则使用第一参数来确定第一重复传输次数;否则,如果第一指示信息为第二状态,则不使用第一参数来确定第一重复传输次数。
其中,第一重复传输次数就可以理解为是重复传输第一信息的次数,第一信息,比如说可以是上述介绍的Msg3的PUSCH,或者其还可以是任意的需要重复传输的信息,本实施例对需要重复传输的具体内容也不做限定。
本公开实施例提供的重复传输次数确定方法,包括:接收第一指示信息,第一指示信息用于指示使用第一参数确定重复传输次数。使用第一参数确定第一重复传输次数。通过接收第一指示信息,并根据第一指示信息的指示,使用第一参数来确定第一重复传输次数,因为本实施例中的第一参数是为了可以满足更大的覆盖增强需求所设置的参数,因此使用第一参数确定的第一重复传输次数,可以保证满足NTN网络的重复传输需求,进而可以的保证NTN网络较大的覆盖增强需求。
在上述介绍内容的基础上,可以理解的是,本实施例中的第一参数存在多种可能的实现方式,下面针对第一参数的各种可能的实现方式下,确定第一重复传输次数的实现方式进行详细介绍。
在一种可能的实现方式中,第一参数可以包括第一重复传输次数集合和/或第一重复传输次数列表。
其中,第一重复传输次数集合可以理解为新定义的重复传输次数集合,此处的“新定义”是相对于现有的第二重复传输次数集合而言的。
比如说可以将第一重复传输次数集合称为NumberOfMsg3-Repetitions-NTN,在第一重复传输次数集合中包括多个重复传输次数,其中的多个重复传输次数是新配置的 所有可能的重复传输次数。
以及协议中本身存在NumberOfMsg3-Repetitions-r17,此处将其称作第二重复传输次数集合,在第二重复传输次数集合中包括现有的配置的所有可能的重复传输次数。
可以理解的是,因为设置第一参数的目的是为了满足更大的覆盖增强需求,因此第一重复传输次数集合中的重复传输次数,可以大于第二重复传输次数集合中的重复传输次数。或者,第一重复传输次数集合中的重复传输次数至少不能全部小于或者等于第二重复传输次数集合中的重复传输次数。
比如说可以是第一重复传输次数集合中最小的重复传输次数,大于第二重复传输次数集合中最大的重复传输次数。或者还可以是第一重复传输次数集合中最大的重复传输次数,大于第二重复传输次数集合中的最大的重复传输次数。
此处可以进行举例说明,比如说第一重复传输次数集合中可以包括如下重复传输次数:20、24、28、32、40、48、52、60、64。那么第一重复传输次数集合的配置实现比如说可以为:
NumberOfMsg3-Repetitions-NTN::=ENUMERATED{n20,n24,n28,n32,n40,n48,n52,n60,n64}。
那么基于上述介绍的NumberOfMsg3-Repetitions-r17可以确定的是,第一重复传输次数集合中最小的重复传输次数20,也是大于第二重复传输次数集合中最大的重复传输次数16的。
在实际实现过程中,在第一重复传输次数集合中所包括的重复传输次数的具体实现,可以根据实际需求进行选择和设置,只要其可以提供相较于现有的重复传输次数而言,更大的重复传输次数即可。
以及,第一重复传输次数列表可以理解为新定义的重复传输次数列表,此处的“新定义”同样是相对于现有的第二重复传输次数列表而言的。
其中,第一重复传输次数列表,实际上就包括的是从第一重复传输次数集合中选择的多个重复传输次数,第一重复传输次数列表中包括的是当前为了满足更大的重复传输需求,所选择出来的可能使用的重复传输次数。
比如说可以将第一重复传输次数列表称为numberOfMsg3-RepetitionsList-NTN,其可以表示为:
numberOfMsg3-RepetitionsList-NTN SEQUENCE(SIZE(4))OF NumberOfMsg3-Repetitions-NTN。
在一个可能的示例中,第一重复传输次数列表比如说可以等于{n20,n32,n48,n64},也就表示从第一重复传输次数集合中选择了20、32、48、64这四个重复传输次数。
在实际实现过程中,在第一重复传输次数列表中所包括的重复传输次数,可以根据实际需求进行选择,只要第一重复传输次数列表中的重复传输次数,是从第一重复传输次数集合中选择的即可。
此处需要进一步说明的是,在第一参数中所包括的第一重复传输次数集合和、第一重复传输次数列表是“和/或”的关系。
因此,在一种可能的实现方式中,第一参数中可以仅包括第一重复传输次数集合, 则比如说重复传输次数列表仍是复用现有的第二重复传输次数列表numberOfMsg3-RepetitionsList-r17。
在这种情况下,在存在更大的覆盖增强需求的时候,比如说可以从第一重复传输次数集合中选择多个重复传输次数,从而得到第二重复传输次数列表,之后在第二重复传输次数列表中确定重复传输次数。此时,第二重复传输次数集合可以理解为第一重复传输次数集合。
在另一种可能的实现方式中,第一参数中还可以仅包括第一重复传输次数列表,则比如说重复传输次数集合仍是采用现有的第二重复传输次数集合NumberOfMsg3-Repetitions-r17。
在这种情况下,比如说可以对第二重复传输次数集合中包括的重复传输次数进行扩展,以使得第二重复传输次数集合在现有的重复传输次数的基础上,包括更大的重复传输次数。则在存在更大的覆盖增强需求的时候,比如说可以从第二重复传输次数集合中选择多个较大的重复传输次数,从而得到第一重复传输次数列表,之后在第一重复传输次数列表中确定重复传输次数。此时,扩展后的第二重复传输次数集合可以理解为第一重复传输次数集合。
在另一种可能的实现方式中,第一参数中还可以同时包括第一重复传输次数列表和第一重复传输次数集合。
在这种情况下,在存在更大的覆盖增强需求的时候,可以从第一重复传输次数集合中选择多个重复传输次数,从而得到第一重复传输次数列表,之后在第一重复传输次数列表中确定重复传输次数。
以及在一种可能的理解方式中,本实施例中的第一重复传输次数集合以及第一重复传输次数列表,还可以理解为针对NTN网络设置的。也就是说针对NTN网络特殊设置了重复传输次数集合和重复传输次数列表,以保证满足NTN网络更大的覆盖增强需求。
但是针对这种理解方式,需要进一步说明的是,在TN网络的场景下,如果终端设备存在更大的覆盖增强需求,那么TN网络下也可以使用第一重复传输次数集合和/或第一重复传输次数列表,以确定更大的重复传输次数。
以及本实施例中的第二重复传输次数集合和第二重复传输次数列表还可以理解为是针对TN网络设置的。但是同样的,在NTN网络的场景下,如果终端设备的覆盖增强需求不大,那么NTN网络下也可以使用第二重复传输次数集合和/或第二重复传输次数列表,以确定合适的重复传输次数。
在一种可能的实现方式中,上述介绍的第一重复传输次数集合以及第一重复传输次数列表,可以是网络设备确定并发送给终端设备的。
比如说网络设备可以向所有的NTN小区中的终端设备发送上述介绍的第一重复传输次数集合和第一重复传输次数列表,或者终端设备还可以仅向支持更大的覆盖增强需求的NTN小区的终端设备发送上述介绍的第一重复传输次数集合和第一重复传输次数列表,或者网络设备还可以向支持更大的覆盖增强需求的TN小区的终端设备发送上述介绍的第一重复传输次数集合和第一重复传输次数列表,具体的发送方式可以取决于网络设备的具体实现,本实施例对此不做限制。可选的,比如所述第一重复 传输次数集合是协议规定的,不需要网络发送给终端设备。
其中,第一重复传输次数集合和/或第一重复传输次数列表比如说可以在NTN专用的系统消息(比如说SIB19)中发送,其中SIB为系统信息块(system information block)。在实际实现过程中,NTN专用的系统消息还可以随着技术的发展进行相应的扩展和实现。
以及需要说明的是,上述针对R17设置的第二重复传输次数集合和第二重复传输次数列表,还是正常通过BWP-UplinkCommon(带宽部分-上行链路通用)配置的。
基于上述介绍的内容可以确定的是,若第一参数包括第一重复传输次数集合,则在协议中就包括两个重复传输次数集合,分别是第一重复传输次数集合NumberOfMsg3-Repetitions-NTN和第二重复传输次数集合NumberOfMsg3-Repetitions-r17。
以及,若第一参数包括第一重复传输次数列表,则在协议中就包括两个重复传输次数列表,分别是第一重复传输次数列表numberOfMsg3-RepetitionsList-NTN和第二重复传输次数列表numberOfMsg3-RepetitionsList-R17。
与上述介绍的类似,网络设备同样可以通过RAR或者TC-RNTI加扰的DCI中携带的MCS的高两比特,来指示采用重复传输次数列表中的哪一个重复传输次数,但是因为当前存在两个重复传输次数列表,因此还需要进一步为终端设备指示一下,采用哪个重复传输次数列表来确定重复传输次数。
在一种可能的实现方式中,网络设备可以判断终端设备传输Msg3是否需要更大的重复传输次数,如果需要的话,则网络设备可以向终端设备发送第一指示信息,第一指示信息就指示终端设备使用第一重复传输次数集合和第一重复传输次数列表来确定第一重复传输次数。或者,网络设备可以向终端设备发送第一指示信息的第一状态,第一指示信息的第一状态就指示终端设备使用第一重复传输次数集合和第一重复传输次数列表来确定第一重复传输次数。
或者,如果网络设备确定终端设备传输Msg3不需要更大的重复传输次数,则网络设备可以不发送第一指示信息,如果终端设备没有接收到第一指示信息的话,终端设备就可以使用第二重复传输次数集合和第二重复传输次数列表来确定第一重复传输次数。或者,网络设备可以向终端设备发送第一指示信息的第二状态,第一指示信息的第二状态就指示终端设备使用第二重复传输次数集合和第二重复传输次数列表来确定第一重复传输次数。
其中,网络设备在判断Msg3是否需要更大的重复传输次数的时候,实际上是要确定传输Msg3所需要的重复传输次数是否大于现有的R17中的最大重复传输次数,也就是说现有的R17中的重复传输次数不够。
其判断的实现方式比如说可以是,网络设备基于接收到的终端设备发送的preamble信号的质量,来判断终端设备的覆盖增强需求,并根据终端设备的覆盖增强需求,来确定传输Msg3所需要的重复传输次数。并且根据传输Msg3所需要的重复传输次数来确定是否向终端设备发送第一指示信息。
例如网络设备可以通过接收终端设备的preamble,确定终端设备需要不需要覆盖增强,或者确定终端设备需要较小的覆盖增强,在这种情况下,网络设备可以不向终 端设备发送第一指示信息,或者网络设备可以向终端设备发送第一指示信息的第二状态,以使得终端设备不做更大的覆盖增强,或者根据传统的第二重复传输次数集合和第二重复传输次数列表来确定第一重复传输次数。
或者,若网络设备确定终端设备需要较大的覆盖增强,则网络设备可以向终端设备发送第一指示信息,或者,网络设备可以向终端设备发送第一指示信息的第一状态,以使得终端设备根据第一重复传输次数集合和第一重复传输次数列表来确定第一重复传输次数。
其中,终端设备在第一重复传输次数列表中确定第一重复传输次数的时候,比如说可以首先获取第二指示信息,之后确定第一重复传输次数列表中,第二指示信息指示的重复传输次数确定为第一重复传输次数。
其中,第二指示信息比如说可以是上述介绍的RAR或者TC-RNTI加扰的DCI,其中携带的MCS的高两比特会指示采用第一重复传输次数列表中的哪一个重复传输次数。
在上述介绍内容的基础上,下面结合一个具体的示例,对终端设备使用第一重复传输次数集合和第一重复传输次数列表来确定第一重复传输次数的实现进行介绍。
比如说可以结合图4进行理解,图4为本公开实施例提供的确定重复传输次数的实现示意图一。
如图4所示,假设当前的第二重复传输次数集合包括:1、2、3、4、7、8、12、16。以及在第二重复传输次数集合中选择的第二重复传输次数列表包括:1、4、8、16。
以及,假设当前的第一重复传输次数集合包括:20、24、28、32、40、48、52、60、64。以及在第一重复传输次数集合中选择的第一重复传输次数列表包括:20、32、48、64。
同时,假设RAR或者TC-RNTI加扰的DCI中MCS的2MSBs取值为01,则表示采用重复传输次数列表中的第二个重复传输次数,那么对应于第一重复传输次数列表就是32,对应于第二重复传输次数列表就是4。
在一种可能的实现方式中,如果终端设备接收到了网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其采用第一重复传输次数集合和第一重复传输次数列表来确定第一重复传输次数,因此终端设备可以确定第一重复传输次数是在第一重复传输次数列表中确定的32。
在另一种可能的实现方式中,如果终端设备没有接收到网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其采用第二重复传输次数集合和第二重复传输次数列表来确定第一重复传输次数,因此终端设备可以确定第一重复传输次数是在第二重复传输次数列表确定的4。
本公开实施例提供的重复传输次数确定方法,通过新配置第一重复传输次数集合和第一重复传输次数列表,在第一重复传输次数集合中可以包括比R17中更大的重复传输次数,从而保证可以在第一重复传输次数集合中选择得到第一重复传输次数列表,之后在第一重复传输次数列表中选择第一重复传输次数,可以有效的满足更大的覆盖增强需求。以及基于上述介绍可以确定的是,本实施例中的终端设备在接收到网络设备发送的第一指示信息的时候,会采用第一重复传输次数列表来确定重复传输次数, 以保证可以满足更大的重复传输需求,而终端设备在没有接收到网络设备发送的第一指示信息的时候,仍然会按照传统的第一重复传输次数列表来确定重复传输次数,因此还有效保证了和现有的覆盖增强方案的兼容,同时还保证了可以为终端设备确定合适的重复传输次数。
下面对第一信息包括至少一个偏移值的实现方式进行说明。
与上述介绍的类似,本实施例中的至少一个第一偏移值可以是网络设备确定并发送给终端设备的。
比如说网络设备可以向所有的NTN小区中的终端设备发送至少一个偏移值,或者终端设备还可以仅向支持更大的覆盖增强需求的NTN小区的终端设备发送至少一个偏移值,或者网络设备还可以向支持更大的覆盖增强需求的TN小区的终端设备发送至少一个偏移值,具体的发送方式可以取决于网络设备的具体实现,本实施例对此不做限制。
类似的,至少一个偏移值比如说可以在NTN专用的系统消息(比如说SIB19)中发送,或者还可以采用其余任意的NTN专用的系统消息,本实施例对此不做限定。
以及需要说明的是,网络设备还是会正常的配置上述介绍的第二重复传输次数集合和第二重复传输次数列表,比如说可以通过BWP-UplinkCommon配置。
可以理解的是,尽管为终端设备配置了偏移值,但是并不是每一次终端设备确定重复传输次数都要使用偏移值,而是在确定终端设备需要更大的重复传输次数的时候,才指示终端设备使用偏移值。
与上述介绍的类似,网络设备比如说可以判断终端设备传输Msg3是否需要更大的重复传输次数,如果需要的话,则网络设备可以向终端设备发送第一指示信息,第一指示信息就指示终端设备使用偏移值来确定第一重复传输次数。
或者,如果网络设备确定终端设备传输Msg3不需要更大的重复传输次数,则网络设备可以不发送第一指示信息,如果终端设备没有接收到第一指示信息的话,终端设备就可以不使用偏移值来确定第一重复传输次数,也就是说按照传统的方式来确定第一重复传输次数。
其中,网络设备在判断Msg3是否需要更大的重复传输次数的时候,其实现方式与上述介绍的类似,此处不再赘述。
在本实施例中,若终端设备需要根据偏移值确定第一重复传输次数,则比如说终端设备可以首先获取第三指示信息,之后确定第二重复传输次数列表中,第三指示信息指示的重复传输次数为候选重复传输次数,然后根据候选重复传输次数和第一偏移值,确定实际的第一重复传输次数。
在一种可能的实现方式中,比如说可以确定候选重复传输次数和第一偏移值之和为第一重复传输次数;或者,还可以确定候选重复传输次数和第一偏移值的乘积为第一重复传输次数。本实施例对候选重复传输次数和第一偏移值的具体运算方式不做限制,只要候选重复传输次数和第一偏移值进行运算之后,可以得到比候选重复传输次数更大的第一重复传输次数即可,其具体的运算方式可以根据实际需求进行选择和设置。
以及,因为在第一参数中包括至少一个偏移值,此处的第一偏移值就可以理解从 至少一个偏移值中选择的,用于确定实际重复传输次数的偏移值。
与上述介绍的类似,第三指示信息比如说可以是上述介绍的RAR或者TC-RNTI加扰的DCI,其中携带的MCS的高两比特会指示采用第二重复传输次数列表中的哪一个重复传输次数。
在上述介绍内容的基础上,下面结合几个具体的示例,对终端设备使用偏移值来确定第一重复传输次数的实现进行介绍,以及对第一偏移值的多种可能的实现方式进行说明。
比如说可以结合图5对第一参数中仅包括一个偏移值的情况进行理解,图5为本公开实施例提供的确定重复传输次数的实现示意图二。
如图5所示,假设当前的第二重复传输次数集合包括:1、2、3、4、7、8、12、16。以及在第二重复传输次数集合中选择的第二重复传输次数列表包括:1、4、8、16。
同时,假设RAR或者TC-RNTI加扰的DCI中MCS的2MSBs取值为01,则表示采用重复传输次数列表中的第二个重复传输次数,那么对应于第二重复传输次数列表就是4,那么可以确定候选重复传输次数就是4
以及假设在本实施例中,在第一参数中仅包括一个偏移值,那么第一偏移值就是第一参数中所包括的这个偏移值。比如说在图5的示例中,在第一参数中仅仅包括偏移值V1,那么V1就是本实施例中的第一偏移值。
在一种可能的实现方式中,如果终端设备接收到了网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其采用偏移值来确定第一重复传输次数,因此终端设备可以根据候选重复传输次数和第一偏移值来确定第一重复传输次数。比如说如图5所示,可以将候选重复传输次数4和第一偏移值V1之和,确定为第一重复传输次数,第一重复传输次数就等于4+V1。
在另一种可能的实现方式中,如果终端设备没有接收到网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其不采用偏移值来确定第一重复传输次数,因此终端设备可以直接将候选重复传输次数确定为第一重复传输次数。因此参照图5,第一重复传输次数就等于4。
再比如说可以结合图6对第一参数中包括多个偏移值的一种情况进行理解,图6为本公开实施例提供的确定重复传输次数的实现示意图三。
如图6所示,假设当前的第二重复传输次数集合包括:1、2、3、4、7、8、12、16。以及在第二重复传输次数集合中选择的第二重复传输次数列表包括:1、4、8、16。
同时,假设RAR或者TC-RNTI加扰的DCI中MCS的2MSBs取值为01,则表示采用重复传输次数列表中的第二个重复传输次数,那么对应于第二重复传输次数列表就是4,那么可以确定候选重复传输次数就是4
以及假设在本实施例中,在第一参数中包括多个偏移值,同时,本实施例中的多个偏移值和第二重复列表中的多个重复传输次数存在对应关系。比如说如图5所示,在第一参数中包括4个偏移值,分别是V1、V2、V3、V4,以及在第二重复列表中存在4个重复传输次数。其中V1是重复传输次数1对应的偏移值,V2是重复传输次数4对应的偏移值,V3是重复传输次数8对应的偏移值,V4是重复传输次数16对应的偏移值。
在这种情况下,第一偏移值就是候选重复传输次数所对应的偏移值,在当前的示例中,候选重复传输次数为4,那么可以确定第一偏移值就是V2。
在一种可能的实现方式中,如果终端设备接收到了网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其采用偏移值来确定第一重复传输次数,因此终端设备可以根据候选重复传输次数和第一偏移值来确定第一重复传输次数。比如说如图6所示,可以将候选重复传输次数4和第一偏移值V2之和,确定为第一重复传输次数,第一重复传输次数就等于4+V2。
在另一种可能的实现方式中,如果终端设备没有接收到网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其不采用偏移值来确定第一重复传输次数,因此终端设备可以直接将候选重复传输次数确定为第一重复传输次数。因此参照图6,第一重复传输次数就等于4。
再比如说可以结合图7对第一参数中包括多个偏移值的另一种情况进行理解,图7为本公开实施例提供的确定重复传输次数的实现示意图四。
如图7所示,假设当前的第二重复传输次数集合包括:1、2、3、4、7、8、12、16。以及在第二重复传输次数集合中选择的第二重复传输次数列表包括:1、4、8、16。
同时,假设RAR或者TC-RNTI加扰的DCI中MCS的2MSBs取值为01,则表示采用重复传输次数列表中的第二个重复传输次数,那么对应于第二重复传输次数列表就是4,那么可以确定候选重复传输次数就是4。
以及假设在本实施例中,在第一参数中包括多个偏移值。比如说如图5所示,在第一参数中包括5个偏移值,分别是V1、V2、V3、V4、V5。
在这种情况下,第一偏移值可以是通过第四指示信息指示的偏移值,如图5所示,比如说第四指示信息指示采用偏移值V3,那么可以确定第一偏移值就是V3。
在一种可能的实现方式中,如果终端设备接收到了网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其采用偏移值来确定第一重复传输次数,因此终端设备可以根据候选重复传输次数和第一偏移值来确定第一重复传输次数。比如说如图7所示,可以将候选重复传输次数4和第一偏移值V3之和,确定为第一重复传输次数,第一重复传输次数就等于4+V3。
在另一种可能的实现方式中,如果终端设备没有接收到网络设备发送的第一指示信息,那么终端设备可以确定网络设备指示其不采用偏移值来确定第一重复传输次数,因此终端设备可以直接将候选重复传输次数确定为第一重复传输次数。因此参照图7,第一重复传输次数就等于4。
针对当前这种通过第四指示信息指示偏移值的实现方式,在第一参数中包括的多个偏移值和第二重复列表中的多个重复传输次数可以不存在对应关系。或者,在第一参数中包括的多个偏移值和第二重复列表中的多个重复传输次数,仍然可以存在对应关系。也就是说即使第一参数中包括的多个偏移值和第二重复列表中的多个重复传输次数存在对应关系,仍然可以通过第四指示信息来指示第一偏移值。
本公开实施例提供的重复传输次数确定方法,通过为终端设备配置至少一个偏移值,在终端设备需要更大的重复传输次数的时候,可以指示终端设备根据从第二重复传输次数列表中选择的候选重复传输次数,以及第一偏移值,来确定实际的第一偏移 值,从而可以有效的提供更大的重复传输次数,进而满足更大的覆盖增强需求。以及可以根据终端设备实际的覆盖需求,指示终端设备是否采用偏移值来确定第一重复传输次数,从而可以在保证兼容现有的重复传输次数确定方式的基础上,同时有效的保证可以为终端设备确定合适的重复传输次数。
在上述介绍的各个实施例的基础上,下面再对终端设备接收第一指示信息的可能的实现方式进行说明。
在一种可能的实现方式中,终端设备比如说可以接收第一消息,在第一消息中携带了本实施例中的第一指示信息。
其中,第一消息为如下消息中的至少一种消息:RAR、TC-RNTI加扰的DCI。
下面结合图8对第一消息为RAR的时候,携带第一指示信息的实现方式进行理解,图8为本公开实施例提供的第一消息携带第一指示信息的实现示意图。
如图8所示,在RAR中包括定时提前量命令(Timing advance command)、上行授权(UL grant)、TC-RNTI等等字段。
以及在RAR中还存在一个预留位,比如说可以在RAR的这个预留位中携带第一指示信息。
或者,UL grant中的CSI request字段目前也是没有使用的,也可以用来携带第一指示信息。
比如说可以参照如下表1理解RAR中Grant内容的字段内容。
表1:
基于上述表1,其中的CSI request字段目前是没有使用的,因此可以用来携带第一指示信息。
或者,第一消息为TC-RNTI加扰的DCI时,在TC-RNTI加扰的DCI Format 0_0中也有多个bit的预留位,比如说New data indicator这个1比特的预留位,再比如说HARQ process number这个4比特的预留位,再比如Padding bits这个预留位。
在上述介绍内容的基础上,可以理解的是,本实施例对第一消息的实际实现方式不做限制,只要第一消息中存在预留位,可以用来携带本实施例中的第一指示信息即可,在此基础上,第一消息的具体实现方式可以根据实际需求进行选择和设置。
在一种可能的实现方式中,比如说上述介绍的第一消息中的预留位为1的时候,可以表示网络设备指示终端设备使用第一参数确定重复传输次数,第一消息中的预留位为0的时候,可以表示网络设备没有指示终端设备使用第一参数确定重复传输次数。
以及在可选的实现方式中,上述介绍的用于指示第一偏移值的第四指示信息同样可以是携带在第一消息中的,其实现方式与当前介绍的第一指示信息类似,此处不再赘述。或者第四指示信息还可以是单独发送的指示信息,本实施例对第四指示信息的具体实现方式不做限制。
以及,上述各实施例主要介绍的都是终端设备一侧的相关实现,实际上网络设备一侧的相关实现都是对应的,因此本公开中对网络设备一侧的具体实现不再赘述,其具体实现可以参照上述实施例的介绍。
综上所述,本公开实施例提供的重复传输次数确定方法,通过为终端设备配置第一参数,其中的第一参数可以包括新配置的重复传输次数集合和/或重复传输次数列表,或者第一参数还可以包括至少一个偏移值,之后指示终端设备使用第一参数确定实际的重复传输次数,从而可以在目前配置的覆盖增强技术的基础上,为终端设备提供相对于现有的重复传输次数更大的重复传输次数,进而可以有效的在NTN场景下支持更高的覆盖增强需求,从而尽量保证UE可以在信道质量恶劣的情况下也能够接入NTN网络。
图9为本公开实施例提供的终端设备的结构示意图。如图9所示,该设备包括:包括存储器901,收发机902和处理器903。
存储器901,用于存储计算机程序;
收发机902,用于在处理器903的控制下收发数据;
处理器903,用于读取存储器901中存储的计算机程序并执行以下操作:
接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
使用所述第一参数确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述处理器903具体用于执行以下操作:
获取第二指示信息;
确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述处理器903具体用于执行以下操作:
获取第三指示信息;
确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重 复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述处理器903具体用于执行以下操作:
接收第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
在此需要说明的是,本公开提供的上述设备,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图10为本公开实施例提供的网络设备的结构示意图。如图10所示,该设备包括:包括存储器1001,收发机1002和处理器1003。
存储器1001,用于存储计算机程序;
收发机1002,用于在处理器1003的控制下收发数据;
处理器1003,用于读取存储器1001中存储的计算机程序并执行以下操作:
发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
所述第一参数用于确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述处理器1003还用于执行以下操作:
发送第二指示信息,所述第二指示信息所指示的,所述第一重复传输次数列表中的重复传输次数为第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述处理器1003还用于执行以下操作:
发送第三指示信息,第三指示信息所指示的,所述第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数 所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述处理器1003具体用于执行以下操作:
发送第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
在此需要说明的是,本公开提供的上述设备,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图11为本公开实施例提供的重复传输次数确定装置的结构示意图一。如图11所示,该装置包括:
接收单元1101,用于接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
处理单元1102,用于使用所述第一参数确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述处理单元1102具体用于:
获取第二指示信息;
确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述处理单元1102具体用于:
获取第三指示信息;
确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述接收单元1101具体用于:
接收第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区 无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图12为本公开实施例提供的重复传输次数确定装置的结构示意图二。如图12所示,该装置包括:
发送单元1201,用于发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
所述第一参数用于确定第一重复传输次数。
在一种实施方式中,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
在一种实施方式中,所述发送单元1201还用于:
发送第二指示信息,所述第二指示信息所指示的所述第一重复传输次数列表中的重复传输次数为所述第一重复传输次数。
在一种实施方式中,所述第一参数包括至少一个偏移值。
在一种实施方式中,所述发送单元1201还用于:
发送第三指示信息,所述第三指示信息所指示的,所述第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
在一种实施方式中,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
在一种实施方式中,所述发送单元1201具体用于:
发送第一消息,所述第一消息携带所述第一指示信息;
所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个 以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序用于使计算机执行上述方法实施例中终端或网络设备执行的方法。
计算机可读存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本公开实施例还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现上述方法实施例中终端或网络设备执行的方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精 神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (39)

  1. 一种重复传输次数确定方法,其特征在于,应用于终端设备,包括:
    接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
    使用所述第一参数确定第一重复传输次数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
    其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
  3. 根据权利要求2所述的方法,其特征在于,所述使用所述第一参数确定第一重复传输次数,包括:
    获取第二指示信息;
    确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
  4. 根据权利要求1所述的方法,其特征在于,所述第一参数包括至少一个偏移值。
  5. 根据权利要求4所述的方法,其特征在于,所述使用所述第一参数确定第一重复传输次数,包括:
    获取第三指示信息;
    确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
    确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
  6. 根据权利要求5所述的方法,其特征在于,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
    所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
    所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述接收第一指示信息,包括:
    接收第一消息,所述第一消息携带所述第一指示信息;
    所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
  8. 一种重复传输次数确定方法,其特征在于,应用于网络设备,包括:
    发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
    所述第一参数用于确定第一重复传输次数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
    其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息所指示的所述第一重复传输次数列表中的重复传输次数为所述第一重复传输次数。
  11. 根据权利要求8所述的方法,其特征在于,所述第一参数包括至少一个偏移值。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    发送第三指示信息,所述第三指示信息所指示的第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
    所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
  13. 根据权利要求12所述的方法,其特征在于,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
    所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
    所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,所述发送第一指示信息,包括:
    发送第一消息,所述第一消息携带所述第一指示信息;
    所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
  15. 一种终端设备,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
    使用所述第一参数确定第一重复传输次数。
  16. 根据权利要求15所述的设备,其特征在于,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
    其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
  17. 根据权利要求16所述的设备,其特征在于,所述处理器具体用于执行以下操作:
    获取第二指示信息;
    确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
  18. 根据权利要求15所述的设备,其特征在于,所述第一参数包括至少一个偏移值。
  19. 根据权利要求18所述的设备,其特征在于,所述处理器具体用于执行以下操作:
    获取第三指示信息;
    确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
    确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
  20. 根据权利要求19所述的设备,其特征在于,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
    所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
    所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
  21. 根据权利要求15至20任一项所述的设备,其特征在于,所述处理器具体用于执行以下操作:
    接收第一消息,所述第一消息携带所述第一指示信息;
    所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
  22. 一种网络设备,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
    所述第一参数用于确定第一重复传输次数。
  23. 根据权利要求22所述的设备,其特征在于,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
    其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
  24. 根据权利要求23所述的设备,其特征在于,所述处理器还用于执行以下操作:
    发送第二指示信息,所述第二指示信息所指示的所述第一重复传输次数列表中的重复传输次数为第一重复传输次数。
  25. 根据权利要求22所述的设备,其特征在于,所述第一参数包括至少一个偏移值。
  26. 根据权利要求25所述的设备,其特征在于,所述处理器还用于执行以下操作:
    发送第三指示信息,第三指示信息所指示的第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
    所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
  27. 根据权利要求26所述的设备,其特征在于,所述第一参数包括一个偏移值,则所述第一偏移值为所述第一参数中所包括的所述偏移值;或者,
    所述第一参数包括多个偏移值,并且所述多个偏移值和所述第二重复传输次数列表中的多个重复传输次数存在对应关系,则所述第一偏移值为所述候选重复传输次数所对应的偏移值;或者,
    所述第一参数包括多个偏移值,则所述第一偏移值为通过第四指示信息指示的偏移值。
  28. 根据权利要求22至27任一项所述的设备,其特征在于,所述处理器具体用于执行以下操作:
    发送第一消息,所述第一消息携带所述第一指示信息;
    所述第一消息为如下消息中的至少一种消息:随机接入响应消息RAR、临时小区无线网络临时标识TC-RNTI加扰的下行控制信息DCI。
  29. 一种重复传输次数确定装置,其特征在于,应用于终端设备,包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
    处理单元,用于使用所述第一参数确定第一重复传输次数。
  30. 根据权利要求29所述的装置,其特征在于,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
    其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于:
    获取第二指示信息;
    确定所述第一重复传输次数列表中,所述第二指示信息指示的重复传输次数为所述第一重复传输次数。
  32. 根据权利要求29所述的装置,其特征在于,所述第一参数包括至少一个偏移值。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于:
    获取第三指示信息;
    确定第二重复传输次数列表中,所述第三指示信息指示的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
    确定所述候选重复传输次数和第一偏移值之和为所述第一重复传输次数。
  34. 一种重复传输次数确定装置,其特征在于,应用于网络设备,包括:
    发送单元,用于发送第一指示信息,所述第一指示信息用于指示使用第一参数确定重复传输次数;
    所述第一参数用于确定第一重复传输次数。
  35. 根据权利要求34所述的装置,其特征在于,所述第一参数包括第一重复传输次数集合和/或第一重复传输次数列表;
    其中,所述第一重复传输次数集合和/或所述第一重复传输次数列表为针对非地面网络设置的。
  36. 根据权利要求35所述的装置,其特征在于,所述发送单元还用于:
    发送第二指示信息,所述第二指示信息所指示的所述第一重复传输次数列表中的重复传输次数为所述第一重复传输次数。
  37. 根据权利要求34所述的装置,其特征在于,所述第一参数包括至少一个偏移值。
  38. 根据权利要求37所述的装置,其特征在于,所述发送单元还用于:
    发送第三指示信息,所述第三指示信息所指示的第二重复传输次数列表中的重复传输次数为候选重复传输次数,所述第二重复传输次数列表为针对地面网络设置的;
    所述第一重复传输次数为所述候选重复传输次数和第一偏移值之和。
  39. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至14任一项所述的方法。
PCT/CN2023/099542 2022-07-22 2023-06-09 重复传输次数确定方法、装置及存储介质 WO2024016888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210868787.8A CN117499932A (zh) 2022-07-22 2022-07-22 重复传输次数确定方法、装置及存储介质
CN202210868787.8 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024016888A1 true WO2024016888A1 (zh) 2024-01-25

Family

ID=89616937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099542 WO2024016888A1 (zh) 2022-07-22 2023-06-09 重复传输次数确定方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN117499932A (zh)
WO (1) WO2024016888A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112040558A (zh) * 2020-08-07 2020-12-04 中国信息通信研究院 一种随机接入过程中的上行数据传输方法和设备
US20210352712A1 (en) * 2020-05-06 2021-11-11 Qualcomm Incorporated Dynamic slot aggregation indication for random access procedure
CN114071776A (zh) * 2020-08-10 2022-02-18 大唐移动通信设备有限公司 通信方法、用户设备、网络设备及电子设备
CN114614875A (zh) * 2020-12-07 2022-06-10 展讯半导体(南京)有限公司 重复传输次数确定方法与装置、终端和网络设备
CN114698130A (zh) * 2020-12-25 2022-07-01 展讯半导体(南京)有限公司 无线通信方法与装置、终端和网络设备
CN114765896A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 Msg3传输方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352712A1 (en) * 2020-05-06 2021-11-11 Qualcomm Incorporated Dynamic slot aggregation indication for random access procedure
CN112040558A (zh) * 2020-08-07 2020-12-04 中国信息通信研究院 一种随机接入过程中的上行数据传输方法和设备
CN114071776A (zh) * 2020-08-10 2022-02-18 大唐移动通信设备有限公司 通信方法、用户设备、网络设备及电子设备
CN114614875A (zh) * 2020-12-07 2022-06-10 展讯半导体(南京)有限公司 重复传输次数确定方法与装置、终端和网络设备
CN114698130A (zh) * 2020-12-25 2022-07-01 展讯半导体(南京)有限公司 无线通信方法与装置、终端和网络设备
CN114765896A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 Msg3传输方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117499932A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
JP5221753B2 (ja) ランダムアクセス手順を行う方法及び装置
WO2019029498A1 (zh) 一种通信的方法和装置
US20170318596A1 (en) Device and Method of Handling Device-to-Device Communication
EP4085725B1 (en) Transmitting reports of random access procedure
US11076422B2 (en) Random access responding method and device, and random access method and device
US20190349144A1 (en) Transmission mode switching method and apparatus
US20200322901A1 (en) Device and Method of Handling Power Headroom Report for Multiple Time Intervals
US20230397020A1 (en) Method and apparatus for controlling data transmission, and storage medium
EP4266808A1 (en) Communication method and apparatus applicable to non-terrestrial network (ntn)
WO2019141233A1 (zh) 一种协作传输控制的方法、装置及系统
WO2022073237A1 (en) Mobility for small data transmission procedure
WO2024103798A1 (zh) 无线通信的方法及装置
JP2018523355A (ja) 効率的なランダムスケジューリング型チャネルアクセス
WO2024016888A1 (zh) 重复传输次数确定方法、装置及存储介质
WO2022156448A1 (zh) 一种信息确定方法、装置及存储介质
KR20200017780A (ko) 무선 통신 시스템에서 상향링크 데이터 보고 및 제어 채널의 동기화를 위한 장치 및 방법
WO2022082532A1 (en) Transmission of payload in a ra procedure
WO2023155653A1 (zh) Prach重复传输方法、设备、装置及存储介质
WO2023011030A1 (zh) 一种数据包激活方法、装置、网络设备和终端
WO2022152133A1 (zh) 数据传输方法、装置、网络设备、终端及存储介质
CN115174008B (zh) 数据传输方法、装置及存储介质
WO2023241181A1 (zh) 指示方法、终端及网络侧设备
WO2024093690A1 (zh) 一种信道占用时间的传输方法、装置、终端及网络设备
WO2023246528A1 (zh) Ssb传输方法、装置及存储介质
WO2023202628A1 (zh) 一种信息接收方法、信息发送方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841954

Country of ref document: EP

Kind code of ref document: A1