WO2024016636A1 - 一种高速大电流滑动载流摩擦磨损试验机及试验方法 - Google Patents

一种高速大电流滑动载流摩擦磨损试验机及试验方法 Download PDF

Info

Publication number
WO2024016636A1
WO2024016636A1 PCT/CN2023/075087 CN2023075087W WO2024016636A1 WO 2024016636 A1 WO2024016636 A1 WO 2024016636A1 CN 2023075087 W CN2023075087 W CN 2023075087W WO 2024016636 A1 WO2024016636 A1 WO 2024016636A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
current
friction
speed
testing machine
Prior art date
Application number
PCT/CN2023/075087
Other languages
English (en)
French (fr)
Inventor
左雪
朱锐
周元凯
王智勇
张明朗
倪侃
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2024016636A1 publication Critical patent/WO2024016636A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks

Definitions

  • the invention relates to a friction and wear testing machine and a testing method, in particular to a high-speed, high-current sliding current-carrying friction and wear testing machine and a testing method.
  • Patent application number 202010588717.8 discloses a current-carrying friction and wear testing machine and testing system, which only performs insulation treatment between the slider detection devices, while ignoring the insulation measures on the driving device and the side of the turntable. This will not only cause obvious test result errors, but also cause greater damage to the current-carrying friction and wear testing machine when the current is large.
  • the patent application number is 202010488327.3, which discloses a current-carrying friction and wear testing machine, a testing system and a testing method.
  • the front end of the force-adding shaft has two symmetrical specimens, making it difficult to accurately position the specimen and the disc. Friction track, prone to eccentric wear.
  • the purpose of the invention is to provide a high-speed, high-current sliding current-carrying friction and wear testing machine and a testing method that can meet a variety of working conditions and ensure long-term and stable current-carrying friction and wear testing.
  • the present invention includes a driving device and a loading device.
  • the output end of the driving device is connected to a first sample.
  • the loading device is equipped with a second sample.
  • the loading device drives the second sample to rise and fall.
  • the first sample and the second sample contact to form a friction pair, and the driving device and the loading device cooperate to cause the second sample to generate different friction trajectories on the surface of the first sample.
  • the output end of the driving device is connected to a torque sensor, the other end of the torque sensor is connected to a conductive slip ring, the other end of the conductive slip ring is connected to the first clamp, the first clamp is installed with the first sample, and the first sample is connected to the first clamp.
  • One end is connected to the spherical bearing through a copper shaft, and the copper shaft and the spherical bearing adopt a clearance fit.
  • Fixing rings are installed on the outer circumferential surfaces of the first clamp and the first sample, and the first sample is a disc sample.
  • the spherical bearing is installed on a conductive copper plate, and a current introduction column is provided on the conductive copper plate.
  • the loading device includes a Z-axis lifting platform.
  • An X-axis displacement platform is installed above the Z-axis lifting platform.
  • a rotating beam and a fixed beam are installed on the top of the X-axis displacement platform.
  • Pulleys are installed at the same end of the rotating beam and the fixed beam. , there is a weight connected under the pulley on the fixed beam.
  • a laser displacement sensor is installed on the side of the fixed beam close to the pulley to monitor the position of the rotating beam at all times during the friction process. Once the friction pair is eccentrically worn, the X-axis displacement platform will advance toward the disk sample to perform active compensation. , so that the friction pair always maintains good contact, and reduces high temperature and ablation damage caused by arcs.
  • a three-axis acceleration sensor is installed on the other end of the rotating beam away from the pulley to collect vibration signals in the X, Y, and Z directions during the test.
  • a second clamp is installed on one end of the rotating beam close to the disk sample, and a second sample is clamped on the second clamp.
  • the second sample is a block sample, and a current derivation column is provided at the bottom of the second clamp.
  • a ceramic insulating plate is provided between the second clamp and the rotating beam.
  • a first positioning ball and a second positioning ball are installed on the top of the X-axis displacement platform to play the role of positioning and fixation.
  • a sliding current-carrying friction and wear test method including the following steps:
  • the spherical bearing is installed on the outside of the conductive copper shaft.
  • the spherical bearing and the conductive copper shaft have a clearance fit.
  • Conductive lubricant is added between the two, so that the contact resistance between the spherical bearing and the conductive copper shaft is small and lubrication is achieved.
  • the spherical bearing also has the function of supporting and aligning, which can compensate for the angular deviation of the copper shaft, suppress the outer circumference of the copper shaft during high-speed rotation, and can achieve high speeds of 6,000 rpm and 800 A current. Current carrying test shows that when the conductive copper shaft is heated, it can freely extend along the axial direction in the spherical bearing and expand in the radial gap;
  • the laser displacement sensor of the present invention can monitor the position of the rotating beam at all times during the test.
  • the X-axis displacement platform will actively compensate in the direction of the disk sample so that the rotating beam is always in the correct position.
  • Parallel to the disk sample, the end faces of the friction pair remain in close contact, reducing high temperature and ablation damage caused by arcs;
  • the present invention is equipped with two positioning balls to facilitate the loading and weighing of block samples during the test process, and can accurately restore the position when the test is paused to continue the test;
  • the motor and the Z-axis electric lifting platform of the present invention can work at the same time, accurately designing multiple friction paths to adapt to various complex working conditions such as high-speed rail pantograph systems;
  • the coupling of the present invention is also used for insulation and heat insulation, so that the current and heat of the disc clamp will not be transferred to the conductive slip ring and torque sensor, and plays a protective role.
  • the friction interface of the second sample is 400 degrees Celsius, and the testing machine can operate stably when the temperature at the coupling is lower than 280 degrees Celsius.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic diagram of the loading device of the present invention.
  • Figure 3 is a schematic diagram of the contact state of the friction pair of the present invention.
  • Figure 4 is a schematic diagram of the friction pair separation state of the present invention.
  • FIG. 5 is a schematic diagram of the connection method between the heat dissipation copper shaft and the disk sample of the present invention
  • Figure 6 is a schematic diagram of the zigzag friction trajectory of the present invention.
  • Figure 7 is a schematic diagram of the "S" shaped friction trajectory of the present invention.
  • the present invention includes a driving device 1 and a loading device 12.
  • the output end of the driving device 1 is connected to a disk sample 7.
  • a block sample 9 is installed on the loading device 12.
  • the block sample 9 is connected to the disk.
  • Sample 7 contacts to form a friction pair.
  • the driving device 1 includes a motor 101.
  • the output shaft of the motor 101 is equipped with a lower pulley 102.
  • the lower pulley 102 forms a transmission connection with the upper pulley 103 through a transmission belt 104.
  • the output shaft of the upper pulley 103 is connected with a torque Sensor 2.
  • the other end of the torque sensor 2 is connected to a conductive slip ring 3.
  • the torque sensor 2 is powered by the conductive slip ring 3.
  • the other end of the conductive slip ring 3 is connected to the disk clamp 6 through a coupling 4.
  • the coupling 4 is a plum blossom.
  • the middle connecting part of coupling 4 is replaced with PEEK material, which can provide good insulation and high temperature resistance, so that the current and heat of the disc clamp will not be transferred to the conductive slip ring and torque sensor, causing to a protective effect.
  • PEEK material which can provide good insulation and high temperature resistance, so that the current and heat of the disc clamp will not be transferred to the conductive slip ring and torque sensor, causing to a protective effect.
  • the shaft of the disc clamp 6 passes through the ceramic bearing seat 5.
  • the end face of the disc clamp 6 is connected to the disc sample 7.
  • the disc sample 7 is fixed to the disc clamp 6 by screws and nuts.
  • the other end of the disc sample 7 is connected to the spherical bearing 8 through the conductive copper shaft 20.
  • the spherical bearing 8 and the conductive copper shaft 20 are clearance fit.
  • Conductive lubricant is added between the two, so that the spherical bearing 8 and the conductive copper shaft 20 are connected.
  • the contact resistance between them is small, which plays the role of lubrication and enhanced conductivity.
  • the spherical bearing also has the function of supporting and aligning, which can compensate for the angular deviation of the copper shaft and suppress the outer circumference of the copper shaft during high-speed rotation. It can achieve 6000 rpm/ Minutes of high-speed and current-carrying tests at 800 A current show that when the conductive copper shaft is heated, it can freely extend along the axial direction in the spherical bearing and expand in the radial gap.
  • a fixing ring 21 is installed on the outer circumferential surface of the disk clamp 6 and the disk sample 7 to prevent the disk sample 7 from breaking during high-speed friction when the disk sample 7 is a brittle material.
  • the center of the disk sample 7 passes through the conductive copper shaft 20.
  • the threaded rod of the conductive copper shaft 20 is connected to the threaded hole in the center of the disk clamp 6.
  • a spherical bearing 8 is installed on the outside of the conductive copper shaft 20.
  • the outer side of the spherical bearing 8 is laterally installed on the conductive copper plate 22 through nuts.
  • the bottom of the conductive copper plate 22 is fixed on the insulating plate 24.
  • the conductive copper plate 22 is provided with a current introduction column 23.
  • the current introduction column 23 is the inlet of the current, which flows through the conductive copper plate.
  • the three parallel circuits are conductive copper shaft 20-plate sample 7, conductive
  • the copper shaft 20 - disk clamp 6 - disk sample 7 and the conductive copper shaft 20 - disk clamp 6 and the outer circumferential surface of the disk sample 7 - fixed ring 21 are all electrified and have smaller resistance. At the same time, they avoid insulating materials and can withstand greater current.
  • the loading device 12 includes an X-axis displacement platform 121, a Y-axis displacement platform 122 and a Z-axis electric lifting platform 123.
  • a Y-axis displacement platform 122 is installed on the top of the Z-axis electric lifting platform 123, and the Y-axis displacement platform 122 is installed on the top.
  • An X-axis displacement platform 121 is installed.
  • a rotating beam 124 and a fixed beam 125 are installed on the top of the X-axis displacement platform 121.
  • the rotating beam 124 rotates in the horizontal direction around the rotating axis 14 and the thrust bearing 17.
  • the rotating beam 124 and the fixed beam 125 are identical.
  • Pulleys 126 are respectively installed at the ends, and a weight 127 is connected below the pulley 126 on the fixed beam 125.
  • the weight 127 is wound around the pulleys 126 at the ends of the rotating beam 124 and the fixed beam 125 through the traction of the wire rope to exert force on the friction pair. load.
  • a laser displacement sensor 19 is installed above the side of the fixed beam 125 close to the pulley 126. The laser displacement sensor 19 can monitor the position of the rotating beam 124 at all times during the friction process. Once the friction pair is eccentrically worn, the X-axis displacement platform 121 will move to the disk. The sample direction is advanced and active compensation is performed to maintain good contact between the friction pairs at all times and reduce high temperature and ablation damage caused by arcs.
  • a three-axis acceleration sensor 13 is installed on the other end of the rotating beam 124 away from the pulley to collect vibration signals in the X, Y, and Z directions during the test.
  • a block clamp 10 is installed on one end of the rotating beam 124 close to the disk sample 7.
  • the block clamp 10 is installed on the rotating beam 124 through ceramic screws.
  • the block clamp 10 clamps the block sample 9.
  • a current derivation column is provided at the bottom of the block clamp 10. 18.
  • a ceramic insulating plate 11 is provided between the block clamp 10 and the rotating beam 124.
  • the block clamp 10 and the rotating beam 124 are connected through special screws.
  • the outer layer of the special screws is made of ceramic material and the center is made of alloy steel material, which has a good insulation effect. At the same time, it can withstand large torque and is not easy to be broken.
  • the top of the X-axis displacement platform 121 is equipped with a first positioning ball 15 and a second positioning ball 16.
  • the positioning balls respectively match the circular grooves at the bottom of the rotating beam 124 and play the role of positioning and fixation.
  • the distance between the rotating shaft 14 and the pulley 126 at the end of the rotating beam 124 is twice the distance between the rotating shaft 14 and the block clamp 10 .
  • the rotating beam 124 and the pulley 126 at the end of the fixed beam 125 form a pulley set, and the loading force That is four times the gravity of the weight.
  • the testing machine of the present invention can simultaneously set the rotation speed of the motor 101 and the lifting frequency of the Z-axis electric lifting platform 123, so that the friction pair can complete a single friction form in the radial or tangential direction, and can also develop radial and tangential friction at the same time. .
  • the block sample 9 can present different friction trajectories on the surface of the disk sample 7 .
  • the friction track of the friction pair can be regarded as a composite of the motor rotation and the up and down reciprocating motion of the Z-axis electric lifting table.
  • motor rotation is simplified into linear motion.
  • the method of designing the zigzag friction trajectory is to set the motor speed V 1 and the Z-axis electric lifting table speed V 2 to constant values, and the zigzag angle ⁇ is the two sides of ⁇ in the figure. times, due to You can get the zigzag angle
  • the size of the zigzag angle ⁇ of the friction trajectory can be controlled, and the height of the zigzag shape of the friction trajectory is determined by the lifting stroke of the Z-axis electric lifting table.
  • the zigzag friction path can be used to simulate the current-carrying friction and wear between the pantograph and the catenary wires in the high-speed rail pantograph system.
  • the "S"-shaped friction path can be used to simulate the current-carrying friction and wear between the overhead rigid suspension and the pantograph in the overhead rigid suspension bus system of the urban rail transit subway. It should be noted that the “S”-shaped friction trajectory design method here is not the only method.
  • the test method of the present invention includes the following steps:
  • S1 Use an electronic analytical balance to weigh the block sample, and install the block sample on the block fixture 10;

Abstract

本发明公开了一种高速大电流滑动载流摩擦磨损试验机及试验方法,包括驱动装置和加载装置,驱动装置的输出端连接有第一试样,加载装置上安装有第二试样,通过加载装置带动第二试样升降,第一试样和第二试样接触形成摩擦副,驱动装置和加载装置配合使第二试样在第一试样表面产生不同的摩擦轨迹。本发明通过在导电铜轴外侧安装关节轴承,二者之间加入导电润滑剂,起到润滑、增强导电性、支撑、补偿角偏差、抑制高速下圆跳动和保证热膨胀空间的作用;激光位移传感器在试验过程中能够时刻监测旋转横梁的位置,当摩擦副表面因磨损发生偏磨现象时,X轴位移平台将向盘试样的方向主动补偿,使摩擦副的端面保持紧密接触,减少电弧引起的高温与烧蚀损伤等。

Description

一种高速大电流滑动载流摩擦磨损试验机及试验方法 技术领域
本发明涉及一种摩擦磨损试验机及试验方法,尤其涉及一种高速大电流滑动载流摩擦磨损试验机及试验方法。
背景技术
载流摩擦磨损是指存在电流通过接触界面的条件下摩擦副之间的摩擦学行为,其通常存在于高速铁路的受电弓/接触网系统、航天导电滑环和电磁轨道炮等关键场合。电因素的介入使得载流摩擦磨损的过程更为复杂,接触元件在机械磨损与载流摩损的耦合作用下,表面更容易遭受破坏,由电弧侵蚀引起的熔融和喷溅现象将进一步加剧摩擦副表面的磨损状态。目前,为了提高载流摩擦副的抗磨性和导电性能,针对摩擦副的材料以及温度、润滑、载荷、速度、电流等摩擦工况条件开展了广泛地研究。因此,通过研制载流摩擦磨损试验机研究载流摩擦学的相关理论与技术问题具有深远的社会意义和经济效益。
专利申请号为202010588717.8公开了一种载流摩擦磨损试验机及试验系统,仅在滑块检测装置之间做了绝缘处理,而忽略了驱动装置以及转盘一侧的绝缘措施。这不仅会造成明显的试验结果误差,当电流较大时,还会对载流摩擦磨损试验机产生较大的破坏。专利申请号为202010488327.3公开了一种载流摩擦磨损试验机、试验系统及其试验方法,加力轴前端为两个对称的试样,难以进行精准地定位以控制试样与圆盘之间的摩擦轨迹,易发生偏磨。此外,虽然设置了压力传感器来检测加载装置是否受损,但无法从根本上避免长期的使用导致加载装置的损坏问题,且使装置整体更为复杂化。上述试验装置难以适应高速和大电流工况下高温与电弧等对试验机零部件与试样的破坏。
由于接触线的之字形布置,高铁接触线与碳滑板间既有纵向相对运动也有横向往复运动。现有试验机无法模拟复杂的运动形式。大电流产生高温,载流回路与其他结构之间需要可靠绝缘和绝热。高速转动时的导电结构振动剧烈,角偏差增大,现有技术无法解决高速转动和高温下的可靠导电。
发明内容
发明目的:本发明目的是提供一种高速大电流滑动载流摩擦磨损试验机及试验方法,能满足多种工况条件,保证长期稳定的载流摩擦磨损试验的进行。
技术方案:本发明包括驱动装置和加载装置,所述驱动装置的输出端连接有第一试样,所述加载装置上安装有第二试样,通过加载装置带动第二试样升降,所述第一试样和第二试样接触形成摩擦副,所述驱动装置和加载装置配合使第二试样在第一试样表面产生不同的摩擦轨迹。
所述驱动装置的输出端连接有扭矩传感器,扭矩传感器的另一端连接有导电滑环,导电滑环另一端与第一夹具连接,第一夹具上安装有第一试样,第一试样另一端通过铜轴与关节轴承连接,铜轴与关节轴承采用间隙配合。
所述第一夹具与第一试样的外圆面上安装有固定环,所述第一试样为盘试样。
所述关节轴承安装在导电铜板上,所述导电铜板上设置有电流导入柱。
所述加载装置包括Z轴升降台,Z轴升降台上方安装有X轴位移平台,X轴位移平台顶部安装有旋转横梁和固定横梁,所述旋转横梁和固定横梁的同一端部分别安装有滑轮,固定横梁上的滑轮下方连接有砝码。
所述固定横梁靠近滑轮一侧的上方安装有激光位移传感器,在摩擦过程中时刻监测旋转横梁的位置,一旦发生摩擦副偏磨现象,X轴位移平台将向盘试样方向推进,进行主动补偿,使摩擦副时刻保持良好的接触,并减少电弧引起的高温与烧蚀损伤等。
所述旋转横梁远离滑轮的另一端安装有三轴加速度传感器,用以采集试验过程中的X、Y、Z三个方向的振动信号。
所述旋转横梁靠近盘试样的一端安装有第二夹具,第二夹具上夹持有第二试样,所述第二试样为块试样,所述第二夹具底部设有电流导出柱,第二夹具与旋转横梁之间设置有陶瓷绝缘板。
所述X轴位移平台顶部安装有第一定位滚珠和第二定位滚珠,起定位与固定的作用。
一种滑动载流摩擦磨损试验方法,包括以下步骤:
S1:称量块试样的重量,将块试样安装于第二夹具上;
S2:将旋转横梁固定于第一定位滚珠处,调节Y轴位移平台与Z轴升降台,确定接触位置;
S3:移动X轴位移平台,使盘试样与块试样紧密接触,悬挂砝码加载后,将第一定位滚珠拧低至不再起定位固定的作用;
S4:根据试验要求,设置驱动装置的转速与Z轴升降台的升降频率,通入设定电流, 打开扭矩传感器,开始载流摩擦磨损试验;
S5:试验过程中如需称量块试样的重量,暂停驱动装置与Z轴升降台的运动,断开电流,抬升第一定位滚珠和第二定位滚珠,将旋转横梁拨动至第二定位滚珠处,取出块试样后进行称量;
S6:称量完成后,将块试样安装入第二夹具的原位置,将旋转横梁拨回第一定位滚珠处并拧低,启动驱动装置与Z轴升降台并通入电流,继续载流摩擦磨损试验。
有益效果:
1)本发明通过在导电铜轴外侧安装关节轴承,关节轴承与导电铜轴为间隙配合,二者之间加入导电润滑剂,使得关节轴承与导电铜轴之间接触电阻较小,起到润滑与增强导电性的作用,关节轴承还具有支撑和调心功能,可以补偿铜轴的角偏差,抑制高速转动时铜轴外圆跳动,可实现6000转/分钟的高转速和800安电流下的载流试验,当导电铜轴受热时可在关节轴承中沿轴向自由伸长、在径向间隙内膨胀;
2)本发明的激光位移传感器在试验过程中能够时刻监测旋转横梁的位置,当摩擦副表面因磨损发生偏磨现象时,X轴位移平台将向盘试样的方向主动补偿,使旋转横梁始终与盘试样平行,摩擦副的端面保持紧密接触,减少电弧引起的高温与烧蚀损伤等;
3)本发明设置了两个定位滚珠方便了试验过程中块试样的装取和称重,并能精准恢复试验暂停时的位置以继续试验;
4)本发明的电机与Z轴电动升降台可以同时工作,精准设计多种摩擦路径,以适应高铁弓网系统等多种复杂工况;
5)本发明的联轴器除传递扭矩外,还用于绝缘和绝热,使盘夹具的电流和热量不会传递到导电滑环和扭矩传感器上,起到保护作用,在第一试样和第二试样摩擦界面为400摄氏度,联轴器处温度低于280摄氏度时,试验机可稳定运行。
附图说明
图1为本发明的整体结构示意图;
图2为本发明的加载装置示意图;
图3为本发明的摩擦副接触状态示意图;
图4为本发明的摩擦副分离状态示意图;
图5为本发明的散热铜轴与盘试样的连接方式示意图;
图6为本发明的“之”字形摩擦轨迹示意图;
图7为本发明的“S”字形摩擦轨迹示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1至图5所示,本发明包括驱动装置1、加载装置12,驱动装置1的输出端连接有盘试样7,加载装置12上安装有块试样9,块试样9与盘试样7接触形成摩擦副。
如图1所示,驱动装置1包括电机101,电机101输出轴安装有下带轮102,下带轮102通过传动带104与上带轮103形成传动连接,上带轮103的输出轴连接有扭矩传感器2,扭矩传感器2的另一端连接有导电滑环3,扭矩传感器2通过导电滑环3进行供电,导电滑环3另一端通过联轴器4与盘夹具6连接,联轴器4为梅花式联轴器,联轴器4的中间连接部分替换为PEEK材料,能起到良好的绝缘与耐高温的效果,使盘夹具的电流和热量不会传递到导电滑环和扭矩传感器上,起到保护作用。盘夹具6与联轴器4之间设有陶瓷轴承座5,盘夹具6的轴穿过陶瓷轴承座5,盘夹具6端面连接有盘试样7,盘试样7通过螺钉和螺母固定于盘夹具6上,盘试样7另一端通过导电铜轴20与关节轴承8连接,关节轴承8与导电铜轴20为间隙配合,二者之间加入导电润滑剂,使得关节轴承与导电铜轴之间接触电阻较小,起到润滑与增强导电性的作用,关节轴承还具有支撑和调心功能,可以补偿铜轴的角偏差,抑制高速转动时铜轴外圆跳动,可实现6000转/分钟的高转速和800安电流下的载流试验,当导电铜轴受热时可在关节轴承中沿轴向自由伸长、在径向间隙内膨胀。
如图5所示,盘夹具6与盘试样7的外圆面上安装有固定环21,防止盘试样7为脆性材料时在高转速摩擦过程中发生断裂。盘试样7中心穿过导电铜轴20,导电铜轴20的螺纹杆与盘夹具6中心的螺纹孔连接,导电铜轴20外侧安装有关节轴承8,关节轴承8与导电铜轴20之间有0.05mm缝隙,用于加入导电润滑剂,使得关节轴承8与导电铜轴20之间的接触更加紧密,并起到一定的润滑与增强导电性的作用。关节轴承8外侧通过螺母横向安装在导电铜板22上,导电铜板22底部固定在绝缘板24上,导电铜板22上设有电流导入柱23,电流导入柱23为电流的流入口,流经导电铜板22与关节轴承8后,经过三个并联电路,再经过块试样9和块夹具10后,最后由电流导出柱18流出,三个并联电路分别为导电铜轴20-盘试样7,导电铜轴20-盘夹具6-盘试样7以及导电铜轴20-盘夹具6、盘试样7的外圆面-固定环21,整体带电,电阻更小,同时避免了绝缘材料,能承受更大的电流。
如图2所示,加载装置12包括X轴位移平台121、Y轴位移平台122和Z轴电动升降台123,Z轴电动升降台123顶部安装有Y轴位移平台122,Y轴位移平台122顶部安装有X轴位移平台121,X轴位移平台121顶部安装有旋转横梁124和固定横梁125,旋转横梁124围绕着旋转轴14和推力轴承17在水平方向旋转,旋转横梁124和固定横梁125的同一端部分别安装有滑轮126,固定横梁125上的滑轮126下方连接有砝码127,砝码127通过钢丝绳的牵引缠绕于旋转横梁124和固定横梁125端部的滑轮126上,以对摩擦副施加载荷。固定横梁125靠近滑轮126一侧的上方安装有激光位移传感器19,激光位移传感器19能在摩擦过程中时刻监测旋转横梁124的位置,一旦发生摩擦副偏磨现象,X轴位移平台121将向盘试样方向推进,进行主动补偿,使摩擦副时刻保持良好的接触,并减少电弧引起的高温与烧蚀损伤等。旋转横梁124远离滑轮的另一端安装有三轴加速度传感器13,用以采集试验过程中的X、Y、Z三个方向的振动信号。
旋转横梁124靠近盘试样7的一端安装有块夹具10,块夹具10通过陶瓷螺钉安装于旋转横梁124上,块夹具10上夹持有块试样9,块夹具10底部设有电流导出柱18。块夹具10与旋转横梁124之间设置有陶瓷绝缘板11,块夹具10与旋转横梁124之间通过特制螺钉连接,特制螺钉外层为陶瓷材料,中心为合金钢材料,起到良好绝缘效果的同时能承受较大的扭矩,不易被折断。
如图3和图4所示,X轴位移平台121顶部安装有第一定位滚珠15和第二定位滚珠16,定位滚珠分别与旋转横梁124底部的圆槽相匹配,起定位与固定的作用,拨动旋转横梁124至第一定位滚珠15和第二定位滚珠16分别使摩擦副处于接触状态与分离状态,方便了试验过程中块试样9的装取和称重,并能精准恢复试验暂停时的位置以继续试验。本实施例中旋转轴14距旋转横梁124端部滑轮126的距离为旋转轴14与块夹具10之间距离的两倍,旋转横梁124与固定横梁125端部的滑轮126组成了滑轮组,加载力即为砝码重力的四倍。
本发明的试验机可以同时设定电机101的转速与Z轴电动升降台123的升降频率,使得摩擦副既可以完成径向或切向单一的摩擦形式,也可以同时展开径向和切向摩擦。配置合适的电机转速和Z轴电动升降台的升降频率,即可使块试样9在盘试样7表面呈现不同的摩擦轨迹。
摩擦副摩擦轨迹可以看作由电机转动与Z轴电动升降台上下往复运动复合而成。本实施例为方便说明,将电机转动简化为直线运动。
如图6所示,设计“之”字形摩擦轨迹的方法为:设置电机的转速V1和Z轴电动升降台的速度V2为恒定值,“之”字形夹角α为图中θ的两倍,由于可以得到“之”字形角度通过调节电机的转速和Z轴电动升降台的升降速度可以控制摩擦轨迹的“之”字形夹角α的大小,而摩擦轨迹的“之”字形的高度由Z轴电动升降台升降的行程来决定。“之”字形的摩擦路径可用以模拟高铁弓网系统中受电弓与接触网导线之间载流摩擦磨损。
如图7所示,设计“S”字形摩擦轨迹的方法为:设置电机的转速V1为恒定值,Z轴电动升降台升降的速度为:V2=AcosT,其中,T为一个升降周期,A指升降台速度大小的调节参数,A决定了Z轴电动升降台的升降行程,即控制了摩擦轨迹的“S”字形高度。此时的“S”字形的摩擦路径L为L=AsinT。“S”字形的摩擦路径可用以模拟城市轨道交通地铁的架空刚性悬挂汇流排系统中架空式刚性悬挂和受电弓之间载流摩擦磨损。需要说明的是,这里的“S”字形摩擦轨迹的设计方法并非唯一方法。
本发明的试验方法包括如下的步骤:
S1:利用电子分析天平称量块试样的重量,将块试样安装于块夹具10上;
S2:将旋转横梁124固定于第一定位滚珠15处,如图3所示,调节Y轴位移平台122与Z轴电动升降台123,确定合适的接触位置;
S3:移动X轴位移平台121,使盘试样7与块试样9紧密接触,悬挂砝码127加载后,将第一定位滚珠15拧低至不再起定位固定的作用;
S4:根据试验要求,设置电机101的转速与Z轴电动升降台123的升降频率,通入设定电流,打开扭矩传感器等,开始载流摩擦磨损试验;
S5:试验过程中如需称量块试样的重量,暂停电机101与Z轴电动升降台123的运动,断开电流,抬升第一定位滚珠15和第二定位滚珠16,将旋转横梁124拨动至第二定位滚珠16处,如图4所示,取出块试样后进行称量;
S6:称量完成后,将块试样安装入块夹具10的原位置,将旋转横梁124拨回第一定位滚珠处并拧低,启动电机101与Z轴电动升降台123并通入电流,继续载流摩擦磨损试验。

Claims (10)

  1. 一种高速大电流滑动载流摩擦磨损试验机,其特征在于,包括驱动装置和加载装置,所述驱动装置的输出端连接有第一试样,所述加载装置上安装有第二试样,通过加载装置带动第二试样升降,所述第一试样和第二试样接触形成摩擦副,所述驱动装置和加载装置配合使第二试样在第一试样表面产生不同的摩擦轨迹。
  2. 根据权利要求1所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述驱动装置的输出端连接有扭矩传感器,扭矩传感器的另一端连接有导电滑环,导电滑环另一端与第一夹具连接,第一夹具上安装有第一试样,第一试样另一端通过铜轴与关节轴承连接,所述关节轴承与铜轴采用间隙配合。
  3. 根据权利要求2所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述第一夹具与第一试样的外圆面上安装有固定环。
  4. 根据权利要求2所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述关节轴承安装在导电铜板上,所述导电铜板上设置有电流导入柱。
  5. 根据权利要求1所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述加载装置包括Z轴升降台,Z轴升降台上方安装有X轴位移平台,X轴位移平台顶部安装有旋转横梁和固定横梁,所述旋转横梁和固定横梁的同一端部分别安装有滑轮,固定横梁上的滑轮下方连接有砝码。
  6. 根据权利要求5所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述固定横梁靠近滑轮一侧的上方安装有激光位移传感器。
  7. 根据权利要求5所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述旋转横梁远离滑轮的另一端安装有三轴加速度传感器。
  8. 根据权利要求7所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述旋转横梁靠近盘试样的一端安装有第二夹具,第二夹具上夹持有第二试样,所述第二夹具底部设有电流导出柱。
  9. 根据权利要求5所述的一种高速大电流滑动载流摩擦磨损试验机,其特征在于,所述X轴位移平台顶部安装有第一定位滚珠和第二定位滚珠。
  10. 基于权利要求1~9任一项所述的一种滑动载流摩擦磨损试验方法,其特征在于,包括以下步骤:
    S1:称量第二试样的重量,将第二试样安装于第二夹具上;
    S2:将旋转横梁固定于第一定位滚珠处,调节Y轴位移平台与Z轴升降台,确定接 触位置;
    S3:移动X轴位移平台,使第一试样与第二试样紧密接触,悬挂砝码加载后,将第一定位滚珠拧低至不再起定位固定的作用;
    S4:根据试验要求,设置驱动装置的转速与Z轴升降台的升降频率,通入设定电流,打开扭矩传感器,开始载流摩擦磨损试验;
    S5:试验过程中如需称量第二试样的重量,暂停驱动装置与Z轴升降台的运动,断开电流,抬升第一定位滚珠和第二定位滚珠,将旋转横梁拨动至第二定位滚珠处,取出块第二试样后进行称量;
    S6:称量完成后,将第二试样安装入第二夹具的原位置,将旋转横梁拨回第一定位滚珠处并拧低,启动驱动装置与Z轴升降台并通入电流,继续载流摩擦磨损试验。
PCT/CN2023/075087 2022-07-22 2023-02-09 一种高速大电流滑动载流摩擦磨损试验机及试验方法 WO2024016636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210865673.8A CN115201045A (zh) 2022-07-22 2022-07-22 一种高速大电流滑动载流摩擦磨损试验机及试验方法
CN202210865673.8 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024016636A1 true WO2024016636A1 (zh) 2024-01-25

Family

ID=83584642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075087 WO2024016636A1 (zh) 2022-07-22 2023-02-09 一种高速大电流滑动载流摩擦磨损试验机及试验方法

Country Status (2)

Country Link
CN (1) CN115201045A (zh)
WO (1) WO2024016636A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201045A (zh) * 2022-07-22 2022-10-18 江苏科技大学 一种高速大电流滑动载流摩擦磨损试验机及试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020062678A1 (en) * 2000-11-28 2002-05-30 Ahn Hyo Sok Fine friction and wear testing apparatus
CN201373828Y (zh) * 2009-03-24 2009-12-30 辽宁工程技术大学 滑动电接触磨耗实验装置
CN105259063A (zh) * 2015-09-30 2016-01-20 河南科技大学 一种载流摩擦单接触峰电弧试验机
CN110186799A (zh) * 2019-06-17 2019-08-30 中国科学院力学研究所 受电弓滑板载流摩擦磨损试验机及使用方法
CN111189637A (zh) * 2020-03-06 2020-05-22 清华大学天津高端装备研究院 一种轴承载流摩擦测试装置及方法
CN112067487A (zh) * 2020-09-18 2020-12-11 合肥鼎聚精密制造有限责任公司 一种端面摩擦磨损试验机及其试验方法
CN113281153A (zh) * 2021-05-21 2021-08-20 合肥工业大学 一种卫星导电滑环载流摩擦副精密测试装置
CN115201045A (zh) * 2022-07-22 2022-10-18 江苏科技大学 一种高速大电流滑动载流摩擦磨损试验机及试验方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020062678A1 (en) * 2000-11-28 2002-05-30 Ahn Hyo Sok Fine friction and wear testing apparatus
CN201373828Y (zh) * 2009-03-24 2009-12-30 辽宁工程技术大学 滑动电接触磨耗实验装置
CN105259063A (zh) * 2015-09-30 2016-01-20 河南科技大学 一种载流摩擦单接触峰电弧试验机
CN110186799A (zh) * 2019-06-17 2019-08-30 中国科学院力学研究所 受电弓滑板载流摩擦磨损试验机及使用方法
CN111189637A (zh) * 2020-03-06 2020-05-22 清华大学天津高端装备研究院 一种轴承载流摩擦测试装置及方法
CN112067487A (zh) * 2020-09-18 2020-12-11 合肥鼎聚精密制造有限责任公司 一种端面摩擦磨损试验机及其试验方法
CN113281153A (zh) * 2021-05-21 2021-08-20 合肥工业大学 一种卫星导电滑环载流摩擦副精密测试装置
CN115201045A (zh) * 2022-07-22 2022-10-18 江苏科技大学 一种高速大电流滑动载流摩擦磨损试验机及试验方法

Also Published As

Publication number Publication date
CN115201045A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2024016636A1 (zh) 一种高速大电流滑动载流摩擦磨损试验机及试验方法
CN106092794B (zh) 往复式双工位摩擦磨损试验机
CN202421000U (zh) 用于电接触材料载流摩擦磨损的试验机
CN108507480B (zh) 一种滑块轴承润滑油膜与摩擦力实时测量装置
CN201788086U (zh) 五自由度磁悬浮轴承机械试验台
CN110160784B (zh) 一种可调偏心的滑动轴承试验装置
CN108983009B (zh) 一种悬浮电磁铁静态性能测试平台及试验台
CN102307031A (zh) 一种永磁电磁相结合的磁悬浮直线运动平台
EP3020122A2 (en) Method for producing a kinetic energy storage system
CN102331349A (zh) 永磁轴承刚度测量装置
CN109000608B (zh) 一种新型圆柱形线圈表面平整度检测装置
Ghemari et al. Defects diagnosis by vibration analysis and improvement of vibration sensor measurement accuracy
JP2009275915A6 (ja) 転がり軸受、転がり軸受の転動体および転がり軸受付き装置
JP2009275915A (ja) 転がり軸受、転がり軸受の転動体および転がり軸受付き装置
CN107144251B (zh) 用于气浮转子陀螺仪动压马达间隙测量的自动施力装置及方法
CN107263215A (zh) 一种用于机床电主轴的偏心补偿系统
CN1935435A (zh) 放电加工装置
CN116858524B (zh) 一种弹性阻尼定位线夹的耗能性能测试装置及方法
Bryant et al. Wear rate reductions in carbon brushes, conducting current, and sliding against wavy copper surfaces
CN109612864B (zh) 一种用于旋转弯曲疲劳机的滑动摩擦疲劳试验装置
CN103573815B (zh) 微动台及气浮轴承
CN103235209A (zh) 实验用高速铁路弓网电磁噪声产生装置
He et al. Effect of magnetic field on the current-carrying friction and wear performance of C/Cu contact pairs
CN207832599U (zh) 高/低温-电磁场复合条件加载的纳米压痕测试仪器
CN108613810A (zh) 一种高速角接触球轴承温升检测试验装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841714

Country of ref document: EP

Kind code of ref document: A1