WO2024016167A1 - 掌纹掌静脉生物识别装置及身份认证方法 - Google Patents

掌纹掌静脉生物识别装置及身份认证方法 Download PDF

Info

Publication number
WO2024016167A1
WO2024016167A1 PCT/CN2022/106521 CN2022106521W WO2024016167A1 WO 2024016167 A1 WO2024016167 A1 WO 2024016167A1 CN 2022106521 W CN2022106521 W CN 2022106521W WO 2024016167 A1 WO2024016167 A1 WO 2024016167A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
palm
image
retroreflected
polarization direction
Prior art date
Application number
PCT/CN2022/106521
Other languages
English (en)
French (fr)
Inventor
李镇旭
李岳林
徐华斌
Original Assignee
青岛奥美克生物信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛奥美克生物信息科技有限公司 filed Critical 青岛奥美克生物信息科技有限公司
Priority to PCT/CN2022/106521 priority Critical patent/WO2024016167A1/zh
Publication of WO2024016167A1 publication Critical patent/WO2024016167A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Definitions

  • the present disclosure relates to a palm print and palm vein biometric identification device and an identity authentication method.
  • the human body's palm print information can be collected to achieve identity authentication, and the human body's palm vein information can also be collected to achieve identity authentication.
  • the palmprint recognition method collects the texture features on the palm surface and extracts the feature point data. Compared with fingerprint recognition, palmprint recognition collects a larger area and has richer feature points, so that the recognition and comparison process can be completed more accurately.
  • the technical principle of palmprint recognition is to place the palm on a collection plane (usually a glass prism) through contact, use lighting to illuminate the palm area, and use an image shooting device to capture the palm surface texture pattern (i.e. palmprint).
  • the feature points of the texture are extracted from them to form a feature template.
  • the collected palm feature point data is compared with the stored feature point template. When the comparison result is greater than the set threshold, the identity authentication is successful.
  • the human palm is not completely flat, and there are depressions in the palm area and protrusions in the thumb area, it is difficult to obtain perfect surface information through this contact method of obtaining palm prints.
  • the size of the equipment collection area must be at least larger than the human palm, which will undoubtedly increase the size of the equipment.
  • Palm vein recognition is an emerging technology in the field of biometric identification. It uses image equipment to collect vein patterns below the surface of the palm skin, and extracts feature points from them to form feature template data, which is used to identify identities. Because its biometric information is hidden inside the palm tissue, its biometric information is not easily stolen compared to fingerprint recognition, palmprint recognition, and face recognition, and is therefore considered to have higher security. Specifically, it adopts the principle that the deoxygenated hemoglobin in blood vessels has a stronger absorption capacity of specific wavelength light sources than other biological tissues in the body. Near-infrared lighting is used to illuminate the human palm area, and the palm is photographed with the help of an image shooting device. The tissue below the skin of the palm will form a highlighted area in the image.
  • veins absorb near-infrared light sources to form dark images.
  • the feature points of the vein lines are extracted to form a feature template.
  • the collected palm vein feature point data is compared with the stored feature point template. When the comparison result is greater than the set threshold, the identity authentication is successful.
  • the thickness of palm vein lines and the ability of specific wavelength light sources to penetrate the skin and epidermal tissue will affect the effect of vein imaging. Therefore, for special groups (slender hand veins and thick hand fat layers), the effect of vein imaging depends on The high resolution of the image and the strong illumination emitted by the device.
  • palm print and palm vein recognition simultaneously can obtain and use two different biometric information of the palm at the same time to further improve the recognition accuracy. Therefore, obtaining the characteristic information of palm prints and palm veins at the same time, and combining the characteristic information of the two for identification, can not only eliminate the shortcomings of the two methods, but also ensure faster recognition speed and better accuracy than a single method. .
  • the two biometric information are independent in different parts of the human body.
  • the image sensor that obtains the face image and the image sensor that obtains the fingerprint image are two independent devices. They do not need to be executed at the same time. Only two biometric characteristics need to be predetermined. Just belong to the same person.
  • the present disclosure aims to provide technology based on obtaining palmprint and palm vein images at the same time and in the same space.
  • Palm lines and palm vein lines exist on the skin surface and inside the skin of the human palm. Therefore, when obtaining these two feature information at the same time and space, it is necessary to observe the inside and outside of the palm at the same time. From the perspective of optical image imaging principles, it is difficult to simultaneously obtain images of the palm skin surface and the inside of the palm and separate the two feature information under the condition of one light source.
  • the Chinese patent application CN102567707A and the US patent application US2019/0392189A1 provide detection methods for palm prints and palm veins, but they cannot solve the problem of acquiring images at the same time.
  • the first method uses illumination light of two different wavelengths to be emitted at the same time (for example, as shown in Figure 1, it is collected at the same time but cannot be collected in the same space);
  • the method is to alternately emit illumination light of the same wavelength (for example, as shown in Figure 2, it is collected in the same space but cannot be collected at the same time).
  • an active light source is used to simultaneously emit near-infrared light and visible light to illuminate the human hand, and a palm vein image is formed through an infrared image acquisition device and a palm vein image is formed through a visible light image acquisition device Form palmprint image.
  • the first method In the process of capturing palm print images and palm vein images, if the first method is adopted, mutual interference effects caused by two different lighting light characteristics will occur. Because the skin on the surface of the human palm can reflect part of the light, most of the skin color we see every day is the image formed by the light reflected on the skin surface in the human eye. Long-wave light, such as near-infrared light, can penetrate the skin surface and reach the interior of the palm tissue 2-3mm below the skin, forming scattered light. Therefore, as in the first method, the simplest technology is to use two wavelength bands of illumination light sources, such as using visible light illumination to capture palm print images and using near-infrared illumination to capture palm vein images.
  • the visible light reflected from the surface of the palm skin is stronger, forming a brighter palm texture image in the image.
  • the near-infrared penetrates the skin, it is scattered inside the tissue, and the final vein image is weaker.
  • the difference between the two images is quite large. It has a negative impact on later operations and comparisons.
  • the near-infrared illumination reaches the palm surface, part of it will pass through the skin, and the other part will be reflected back into the lens through the reflection of the skin surface. Therefore, in the light path imaging of near-infrared illumination, the texture of the palm skin surface will also be shown. The result is that the separation of palm prints and palm veins is not obvious, as shown in Figure 4. The palm prints and palm veins are not clearly separated.
  • the technical content disclosed in US Patent US2019/0392189A1 uses an illumination light source, and the illumination light source emits light alternately, and uses one or two image sensors, corresponding to the time when the two illumination are turned on. Images are acquired to form alternately captured palm print and palm vein images. Because the lighting light alternately flashes, there are objective lighting start-up times and shutdown times, and when the lighting is on, the image sensor has to complete the exposure and shooting of one frame of image, so it is difficult to achieve high frame rate shooting.
  • the algorithm needs to calculate the coordinates of the palmprint feature point data and the coordinates of the palm vein feature point data of the same palm, which increases the amount of calculation.
  • the existence of time difference will lead to different imaging positions of the palmprint image and the palm vein image. Normalizing to the same coordinate system also requires more distortion correction calculations, which reduces recognition speed.
  • the present disclosure provides a palm print and palm vein biometric identification device and an identity authentication method.
  • a palm print and palm vein biometric identification device includes:
  • An illumination light source the illumination light source is used to emit illumination light in the near-infrared band
  • a polarizing unit the polarizing unit is used to form the illuminating light into polarized light, and the polarized light is emitted to the palm;
  • An imaging unit receives the retroreflected light from the palm, and is used to converge the retroreflected light to a focal plane;
  • a polarizing light splitter that forms transmitted light and reflected light based on differences in polarization directions of light from the imaging unit, wherein the transmitted light propagates through the polarizing light splitter, and the reflected light passes through The polarization splitter reflects and then propagates;
  • a first image sensor that receives the transmitted light from the polarization splitter to form one of a palmprint image and a palm vein image
  • a second image sensor receives the reflected light from the polarization splitting part to form the other one of a palmprint image and a palm vein image.
  • the polarization direction of the transmitted light is the same as the polarization direction of the palm light
  • the polarization direction of the reflected light is the same as the polarization direction of the retroreflected light vertical
  • the polarization direction of the transmitted light is perpendicular to the polarization direction of the palm light, and the polarization direction of the reflected light is the same as the polarization direction of the retroreflected light.
  • the palm print and palm vein biometric identification device further includes an optical color filter portion disposed between the palm and the first image sensor and/or the second image sensor. in the light path between the two to filter out light in other wavelength bands than the desired light band.
  • the optical color filter part is provided between the palm and the imaging unit, and between the imaging unit and the polarization splitter part, Disposed between the polarization light splitter and the first image sensor, and/or between the polarization light splitter and the second image sensor.
  • the near-infrared band ranges from 760 nm to 1100 nm.
  • the illumination light is configured such that a part of the polarized light is reflected by the surface of the palm to form a first retroreflective light, and the polarized light is Another part of the light penetrates the palm skin and reaches the inside of the palm tissue to form a second retroreflected light through scattering and diffuse reflection, wherein the polarization direction of the first retroreflected light is the same as the polarization direction of the polarized light, and the third retroreflected light
  • the two retroreflected light rays include at least a second sub-retroreflected light ray perpendicular to the polarization direction of the polarized light ray.
  • the second retroreflected light further includes a second sub-retroreflected light that has the same polarization direction as the polarized light.
  • the polarizing light splitting part is coated with a polarizing light splitting film to separate the light from the imaging unit into the transmitted light and the reflected light.
  • the polarizing light splitting film is configured to transmit the first retroreflected light and the second sub-retroreflected light with the same polarization direction as the polarized light. to form the transmitted light ray, and reflect the second sub-retroreflected light perpendicular to the polarization direction of the polarized light to form the reflected light; or
  • the polarizing light splitting film is configured to transmit a second sub-retroreflected light perpendicular to the polarization direction of the polarized light to form the transmitted light, and to allow the first retroreflected light and the polarized light to The second sub-retroreflected light with the same polarization direction is reflected to form the reflected light.
  • the palm print and palm vein biometric identification device further includes a distance sensor, the distance sensor is used to measure the distance of the palm, so that when the distance of the palm is less than a predetermined distance, the lighting is turned on a light source, the first image sensor and the second image sensor.
  • an identity authentication method using a biometric device based on palm prints and palm veins as described in any one of the above includes:
  • Final identity authentication is implemented based on the first identity authentication and the second identity authentication.
  • the palm print and palm vein recognition method described in this disclosure has a more advanced and effective composition and method than the existing technology that simply uses the "1+1" method to achieve multi-modal recognition. Its purpose is to completely eliminate the possibility of falsifying data in the life recognition process, thereby greatly improving the accuracy of life recognition and improving the security of biometric technology.
  • the method described in this disclosure implements a technology based on obtaining palmprint and palm vein image acquisition at the same time and in the same space.
  • Figure 1 is a schematic diagram of a palm print and palm vein recognition method in the prior art.
  • Figure 2 is a schematic diagram of a palm print and palm vein recognition method in the prior art.
  • Figure 3 is the identification result according to the prior art.
  • Figure 4 is the recognition result according to the prior art.
  • Figure 5 is a schematic diagram of a palm print and palm vein biometric identification device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of filtering of an optical color filter according to an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of a palm print and palm vein biometric identification device according to an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of a palm print and palm vein biometric identification device according to an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of a palm print and palm vein biometric identification device according to an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of a palm print and palm vein biometric identification method according to an embodiment of the present disclosure.
  • cross-hatching and/or shading in drawings is often used to make boundaries between adjacent parts clear.
  • the presence or absence of cross-hatching or shading does not convey or indicate any knowledge of the specific materials, material properties, dimensions, proportions, commonalities between the components shown and/or any other characteristics of the components, Any preferences or requirements for attributes, properties, etc.
  • the size and relative sizes of components may be exaggerated for clarity and/or descriptive purposes. While example embodiments may be implemented differently, a specific process sequence may be performed in a different order than that described. For example, two consecutively described processes may be performed substantially concurrently or in the reverse order of that described.
  • the same reference numerals represent the same components.
  • an element When an element is referred to as being “on,” “on,” “connected to” or “coupled to” another element, it can be directly on, directly connected to, or directly connected to the other element. Either directly coupled to said other component, or intervening components may be present. However, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element, there are no intervening elements present.
  • the term “connected” may refer to a physical connection, an electrical connection, etc., with or without intervening components.
  • spatially relative terms such as “on”, “higher” and “side (e.g., as in “sidewall”), are used to describe one component in relation to another (other) component as illustrated in the figures Relationship.
  • spatially relative terms are intended to encompass various orientations of the device in use, operation, and/or manufacture. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features.
  • the exemplary term “below” may encompass both orientations “above” and “below.”
  • the device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a palm print and palm vein biometric identification device capable of clearly collecting palm print and palm vein information at the same time and in the same space is provided.
  • the palm print and palm vein biometric identification device 10 may include an illumination light source 100, a polarization unit 200, an imaging unit 300, a polarization splitter 400, a first image sensor 500, and a second image sensor 600.
  • the illumination light source can be used to emit illumination light in the near-infrared band, for example, the near-infrared band ranges from 760 nm to 1100 nm. Different from the existing technology, only the illumination light in the near-infrared band can be used to collect palmprint characteristic information and palm vein characteristic information.
  • a polarization unit 200 may be provided in the light path of the illumination light reaching the palm of the subject, where the polarization unit 200 may be used to polarize the light emitted by the illumination light source to form polarized light.
  • This polarized light can illuminate the surface of the palm skin.
  • a part of the polarized light is reflected by the skin surface of the palm to form the first retroreflected light S1, and the polarization direction of the first retroreflected light S1 is the same as the polarization direction of the polarized light.
  • Another part of the polarized light penetrates the skin of the palm and reaches the interior of the palm tissue to form light through scattering and diffuse reflection.
  • Its polarization direction changes and includes the second sub-retroreflected light P1 perpendicular to the polarization direction of the polarized light, and the polarized light P1.
  • the second sub-retroreflected light S2 has the same polarization direction.
  • the combined light of the second sub-retroreflected light P1 and the second sub-retroreflected light S2 passes through the palm skin surface again and enters the imaging lens 300 together with the first retroreflected light S1 reflected by the palm surface.
  • only one illumination light and one imaging lens are used, and the first retroreflected light and the second retroreflected light are received through one imaging lens.
  • the imaging unit 300 can be used to converge the light from the palm information collection area onto the focal plane. After the illumination light irradiates the palm, its polarization direction will change, so the first retroreflected light and the second retroreflected light can be collected by the imaging unit 300 converge on the same focal plane. Therefore, it is possible to avoid the situation in the prior art of using two illumination light sources of different wavelength bands and needing to use two imaging units to converge the two types of light.
  • the polarization splitting part 400 receives the light from the imaging unit 300, and the light includes the first retroreflected light and the second retroreflected light.
  • the polarization splitter 400 forms a transmitted light and a reflected light based on the difference in polarization direction of the light from the imaging unit 300.
  • the transmitted light propagates through the polarizing splitter, and the reflected light propagates after being reflected by the polarizing splitter.
  • the transmitted light may have the same polarization direction as the polarized light and the reflected light may be perpendicular to the polarization direction of the polarized light, or the transmitted light may be perpendicular to the polarization direction of the polarized light and the reflected light may have the same polarization direction as the polarized light.
  • the polarizing beam splitting part 400 may be in the form of a polarizing beam splitting prism, and may be made through a coating process. For example, a polarizing dichroic film is coated in a prism. Depending on the polarization direction of the light, the light with the same polarization direction as the polarized light will pass through the dichroic film to form a first light path (reflected light/transmitted light), and the polarized light with the same polarization direction will be formed. The vertically polarized light is reflected to the second optical path (transmitted light/reflected light).
  • a polarizing beam splitter prism divides light into two light paths, reflection and transmission, according to different polarization directions, to form images respectively.
  • the film system can be set to the following two different functions.
  • the first function is to allow the first retroreflected light S1 and the second sub-retroreflected light S2 to pass through to form a transmitted light, thereby forming an imaging corresponding to S-polarized light (S1+S2) on the first image sensor 500.
  • the image is displayed as Obvious palmprint lines (imaging of the first retroreflected light S1) and weak vein lines (imaging of the second retroreflected light S2).
  • the second sub-retroreflected light P1 is reflected, and the reflected light reaches the second image sensor 600 to form obvious vein patterns. Since the S-polarized light reflected from the surface of the palm skin passes through the polarizing beam splitter prism and does not reach the second image sensor 600 , the palm vein image formed by the second image sensor 600 does not display palm print lines.
  • the second function is to allow the second sub-retroreflected light P1 to pass through, thereby forming an image of the P1 polarized light on the first image sensor 500.
  • the image is displayed as an obvious vein pattern, and the first retroreflected light S1 and the second sub-retroreflected light S1 are formed.
  • the sub-retroreflected light S2 is reflected, and the reflected light reaches the second image sensor 600, forming obvious palmprint lines (imaging of the first retro-reflected light S1) and weak vein lines (imaging of the second sub-retro-reflected light S2). Since the S-polarized light reflected by the skin on the palm surface is reflected by the polarizing beam splitter prism and does not reach the first image sensor 500 , the palm vein image formed by the first image sensor 500 does not display the palm print information.
  • the coating surface of the polarizing beam splitter prism is formed using different coating settings.
  • the first image sensor and the second image sensor are only used for light reception.
  • the positions of the first image sensor and the second image sensor Can be exchanged.
  • an optical color filter 700 may be provided, and the optical color filter 700 may be disposed in the optical path between the palm and the first image sensor and/or the second image sensor to filter out the desired Light of other wavelength bands than the light band.
  • the optical color filter portion 700 is disposed between the palm and the imaging unit, between the imaging unit and the polarization splitter, between the polarization splitter and the first image sensor, and/or between the polarization splitter and the second image sensor. between image sensors.
  • the optical color filter part 700 may be in the form of an optical color filter.
  • the coating parameters can be set to allow light of wavelengths emitted by the illumination source to pass through, and to block light in other wavelength bands from passing through. By only allowing light in the light band emitted by the illumination source to pass through, the influence of light in other bands such as visible light on imaging can be eliminated, thereby forming a clear palm vein image.
  • the optical color filter 700 is configured as a bandpass filter, allowing light in the wavelength band emitted by the illumination light source to pass through, and blocking light in other wavelength bands from passing through, thereby eliminating external stray light and simultaneously improving the quality of the vein image and Palm print image quality.
  • FIG. 5 shows the case where the optical color filter part 700 is provided between the imaging unit 300 and the polarization splitting part 400.
  • FIG. 7 shows a situation where the optical color filter 700 is provided between the palm and the imaging unit 300 .
  • the transmitted ray may be the ray of the first retroreflected ray S1 and the second sub-reflected ray S2 and the reflected ray may be the ray of the second sub-reflected ray P1, or the reflected ray may be the first retroreflected ray P1.
  • the reflected light ray S1 and the second sub-reflected light ray S2 and the transmitted light ray may be the light ray of the second sub-reflected light ray P1.
  • the optical color filter part 700 may also be provided between the polarization splitting part 400 and the first image sensor 500 and/or the second image sensor 600 .
  • FIG. 8 shows a case where the optical color filter section 700 is provided between the polarization splitter section 400 and the first image sensor 500.
  • the polarization splitter 400 is configured to allow the second sub-retroreflected light P1 to pass through, so that the first retroreflected light S1 and the second sub-retroreflected light S2 are reflected.
  • the transmitted light according to the second sub-retroreflected light P1 is filtered through the optical color filter 700 to eliminate external stray light, thereby forming a clear palm vein image in the first image sensor 500 .
  • the reflected light formed by the reflection of the first retroreflected light S1 and the second sub-retroreflected light S2 forms a palmprint image on the second image sensor 600 .
  • FIG. 9 shows a case where the optical color filter section 700 is provided in the polarization splitting section 400 and the second image sensor 600 .
  • the polarization splitter 400 is configured to allow the second sub-retroreflected light P1 to be reflected, so that the first retroreflected light S1 and the second sub-retroreflected light S2 are transmitted.
  • the reflected light according to the second sub-retroreflected light P1 is filtered through the optical color filter 700 to eliminate external stray light, thereby forming a clear palm vein image in the second image sensor 600 .
  • the transmitted light formed by the first retroreflected light S1 and the second sub-retroreflected light S2 forms a palmprint image on the first image sensor 500 .
  • a distance sensor 800 may also be included.
  • the distance sensor 800 is used to measure the distance of the palm, so that when the distance of the palm is less than a predetermined distance, the illumination light source 100, the first image sensor 500 and the second image sensor are turned on. 600.
  • palmprint images and palm vein images can be collected at the same time and in the same space under the condition of using a light source to complete the characteristics of the palm print and palm vein multi-modal biometric recognition process.
  • the process of information extraction can effectively solve the problems existing in the existing technology.
  • an identity authentication method is also provided.
  • the identity authentication method may use the biometric identification device of palm print and palm vein as described above.
  • the identity authentication method M100 may include the following steps.
  • the biometric recognition device may be used to continuously detect whether a palm approaches the biometric recognition device.
  • the distance sensor 800 is used for measurement.
  • the process proceeds to step S104.
  • the illumination source 100, the first image sensor 500 and the second image sensor 600 are turned on. .
  • step S106 an image is formed by the first image sensor.
  • step S108 an image formed by the first image sensor is compared with pre-stored feature information of the image.
  • step S110 the comparison result is output, thus completing the first identity authentication.
  • step S112 another image is formed by the second image sensor.
  • step S114 the other image formed by the second image sensor is compared with the pre-stored feature information of the other image.
  • step S116 the comparison result is output, thus completing the second identity authentication.
  • the above-mentioned one image and the other image may be a palm print image or a palm vein image.
  • step S118 final identity authentication may be implemented based on the first identity authentication and the second identity authentication, and the identity authentication result may be output.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.

Abstract

本公开提供一种掌纹掌静脉生物识别装置,包括:照明光源,发射近红外波段的照明光线;偏振单元,将照明光线形成为偏振光线,偏振光线发射至手掌;成像单元,接收来自手掌的回射光线,并且将回射光线汇聚至焦平面;偏振分光部,基于来自成像单元的光线的偏振方向的不同,来形成透射光线和反射光线;第一图像传感器,接收来自偏振分光部的透射光线,以便形成掌纹图像和掌静脉图像中的一种图像;及第二图像传感器,接收来自偏振分光部的反射光线,以便形成另一种图像。本公开还提供了一种身份认证方法。通过本公开的非接触式技术方案,使用一种光源照明,同时间且同空间地采集掌纹图像和掌静脉图像。

Description

掌纹掌静脉生物识别装置及身份认证方法 技术领域
本公开涉及一种掌纹掌静脉生物识别装置及身份认证方法。
背景技术
生物识别过程中可以采集人体的掌纹信息来实现身份认证,也可以采集人体的掌静脉信息来实现身份认证。
掌纹识别方式是通过采集手掌表面的纹路特征,提取其中的特征点数据。相比于指纹识别而言,手掌掌纹识别所采集的面积更大,特征点更为丰富,从而可以更准确地完成识别比对过程。掌纹识别的技术原理是通过接触式的方式,将手掌放置在采集平面上(通常为玻璃棱镜),使用照明灯光照亮手掌区域,借助图像拍摄装置拍摄手掌表面纹路图案(即掌纹),从中提取纹路的特征点,形成特征模板。进行身份认证过程中,将采集的手掌特征点数据与存储的特征点模板进行比对,当比对结果大于设定阈值时,则表示身份认证成功。但是由于人的手掌不是完全的平面,存在手心区域的凹陷和拇指区域的突起等,这种接触式获取掌纹的方法,很难获得完美的表面信息。并且设备采集区域的尺寸至少要大于人体手掌,这会无疑会增加设备的尺寸。
掌静脉识别方式是生物识别领域中的新兴技术,通过图像设备采集手掌皮肤表面以下的静脉纹路,并从中提取特征点形成特征模板数据,用于鉴别身份。由于其生物特征信息隐藏在手掌组织内部,因此相比于指纹识别、掌纹识别和人脸识别等而言,其特征信息不易被盗取,因此被认为具备更高的安全性。具体采用血管中脱氧血红蛋白对特定波长光源吸收能力强于体内其他生物组织的原理,使用近红外照明照亮人体手掌区域,借助图像拍摄装置拍摄手掌,手掌皮肤以下组织会在图像当中形成高亮区域,而静脉血管吸收近红外光源形成暗部影像。通过获取手掌静脉的图像,从中提取静脉纹路的特征点,形成特征模板。进行身份认证过程中,将采集的手掌静脉特征点数据与存储的特征点模板进行比对,当比对结果大于设定阈值时,则表示身份认证成功。但是掌静脉纹路的粗细、特定波长光源穿透皮肤和表皮组织的能力都会影响静脉成像 的效果,因此对于特殊人群(手部静脉血管纤细、手部脂肪层较厚)而言,静脉成像效果依赖图像高分辨率和设备发出的强照明。
对于掌纹特征信息而言,由于掌纹处于皮肤表面,很容易被观察和获取,因此有具有信息被盗用和伪造的危险;并且手掌上的伤痕、灰尘、油污等表面异物,会增加识别失败的次数,误识率会相应的提高。掌静脉特征信息日常几乎无法观察到,也很难通过一般手段获取,所以其特征信息被伪造风险较低,但是由于每个人的静脉分布不同,掌静脉信息不清晰、血管细的情况也有一定比例的存在,因此也会增加识别失败的次数,误识率也会相应的提高。
相比于单独使用掌纹识别或掌静脉识别,采用掌纹掌静脉同时识别,可以同时获取并使用手掌的两种不同生物特征信息来进一步提高识别准确率。因此,同时获取掌纹和掌静脉特征信息,并结合二者的特征信息进行识别,既可以消除两种方式各自存在的缺点,又可以确保比单一方式更快的识别速度和更优的准确度。
在生物识别的多模态识别方式中,如人脸识别与指纹识别的多模态识别方式、人脸识别与虹膜识别的多模态识别方式,两种生物特征信息是处于人体不同部位的独立特征,获取的是相互完全独立的特征信息,因此在这些方式中多获取方式和要求比较宽松。例如在人脸识别和指纹识别的多模态识别方式中,获取人脸图像的图像传感器和获取指纹图像的图像传感器是独立的两种设备,不需要同时执行,只需要预先确定两种生物特征属于同一个人即可。与现有方式相比,本公开旨在提供基于同时间、同空间获取掌纹和掌静脉图像的技术。
掌纹纹路和掌静脉纹路存在与人体手掌的皮肤表面和皮肤内部,因此当同时间、同空间地获取这两种特征信息,就需要同时观察手掌内部和外部。从光学图像成像原理而言,难以在一种光源的情况下实现同时获取手掌皮肤表面和手掌内部的图像且分离两种特征信息。在中国专利申请CN102567707A及美国专利申请US2019/0392189A1提供了对掌纹及掌静脉的检测方式,但无法解决同时间获取图像的问题。
目前存在的掌纹掌静脉识别方式,主要分为两种,第一种方式为采用同时发射两种不同波长的照明光线(例如图1所示,同时采集但无法同空间采集);第二种方式为交替地发射相同波长的照明光线(例如图2所示,同空间采集但无法同时采集)。
在第一种方式中,为了获取掌纹图像和掌静脉图像,通过主动光源 同时发射近红外光线和可见光线,对人手进行照射,并且通过红外图像采集装置形成掌静脉图像以及通过可见光图像采集装置形成掌纹图像。
在拍摄掌纹图像和掌静脉图像的过程中,如果采用如第一种方式,则会产生两种不同特性的照明光线带来的相互干扰效果。因人体的手掌表面皮肤的存在,可以反射一部分光,所以我们日常所能看到的肤色,大部分是由于皮肤表面反射的光在人眼中所形成的图像。而长波光线,如近红外光线,可以穿透皮肤表面,到达皮肤以下2-3mm的手掌组织内部,形成散射光。因此如第一种方式中,最简单的技术是采用两种波段的照明光源,例如使用可见光照明拍摄掌纹图像,使用近红外照明拍摄掌静脉图像。但是,采用两种照明光源拍摄掌纹图像和掌静脉图像的方法,两种照明光线经过手掌反射和散射,在到达图像传感器的光路上,要设置光学滤色器件,从而阻隔另一光路中所使用的波段的照明光进入到本光路当中,从而形成对图像的干扰。同时,由于波长不同,通过镜头后成像的焦点位置不同,采用同光轴、使用分光棱镜区分不同波长的光的光路设计,会形成两种照明成像到图像传感器后,图像分辨率不同。因此需要两种不同镜头实现成像,并针对波长做光学设计,以满足两路光线均达到设计分辨率,但这会使用到两种镜头,出现无法同空间拍摄的问题,如图3所示的拍摄手掌的视场差异。
两种光线照明情况下,手掌皮肤表面反射的可见光更强,在图像当中会形成较亮的手掌纹路图像,而近红外穿透皮肤后,又经过组织内部散射,最终呈现的静脉图像较弱,两幅图像之间的差异性较大。对于后期的运算和比对形成了负面影响。同时,近红外照明到达手掌表面时,一部分会穿过皮肤,另一部分会通过皮肤表面反射作用,反射回镜头内部,因此在近红外照明的光路成像当中,也会呈现出手掌皮肤表面的纹路,形成掌纹掌静脉分离不明显的效果,如图4所示的掌纹掌静脉区分不明显的情况。
在第二种方式中,例如美国专利US2019/0392189A1中所公开的技术内容,采用一个照明光源,并且该照明光源交替发射光线,采用一个或两个图像传感器,分别对应两种照明开启的时间进行图像获取,从而形成交替拍摄的掌纹和掌静脉图像。由于照明光线交替闪烁,客观存在的照明启动时间、关闭时间,并且照明点亮时,图像传感器要完成一帧图像的曝光、拍摄成像,故难以实现高帧率的拍摄。
此外在第二种方式中,无法实现掌纹和掌静脉图像的同时拍摄,算 法需要计算同一只手掌的掌纹特征点数据的坐标和掌静脉特征点数据的坐标,增加了运算量。并且由于镜头畸变等客观存在,对于运动过程中的手掌,时间差的存在,会导致掌纹图像和掌静脉图像成像的位置不同,归一到同一坐标系也需要更多的畸变校正计算,降低了识别速度。掌纹和掌静脉图像存在时间差,在非接触方式手掌拍摄,用户的手掌在三维空间中不受限制,手掌位置会持续变化,故掌纹和掌静脉图像所呈现出的手掌在图像当中的坐标会有较大差异,这种差异会增加算法计算量,降低比对、识别的速度。也无法有效地实现多模态同时采集所形成的活体检测功能。
发明内容
为了解决上述技术问题之一,本公开提供了一种掌纹掌静脉生物识别装置及身份认证方法。
根据本公开的一个方面,一种掌纹掌静脉生物识别装置,包括:
照明光源,所述照明光源用于发射近红外波段的照明光线;
偏振单元,所述偏振单元用于将所述照明光线形成为偏振光线,所述偏振光线发射至手掌;
成像单元,所述成像单元接收来自所述手掌的回射光线,并且用于将所述回射光线汇聚至焦平面;
偏振分光部,所述偏振分光部基于来自所述成像单元的光线的偏振方向的不同,来形成透射光线和反射光线,其中所述透射光线透过所述偏振分光部传播,所述反射光线经由所述偏振分光部反射后传播;
第一图像传感器,所述第一图像传感器接收来自所述偏振分光部的所述透射光线,以便形成掌纹图像和掌静脉图像中的一种图像;以及
第二图像传感器,所述第二图像传感器接收来自所述偏振分光部的所述反射光线,以便形成掌纹图像和掌静脉图像中的另一种图像。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述透射光线的偏振方向与所述手掌光线的偏振方向相同,并且所述反射光线的偏振方向与所述回射光线的偏振方向垂直;或者
所述透射光线的偏振方向与所述手掌光线的偏振方向垂直,并且所述反射光线的偏振方向与所述回射光线的偏振方向相同。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,还包 括光学滤色部,所述光学滤色部设置在所述手掌、至所述第一图像传感器和/或第二图像传感器之间的光路中,以滤除所需光线波段之外的其他波段的光线。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述光学滤色部设置在所述手掌与所述成像单元之间、设置在所述成像单元与所述偏振分光部之间、设置在所述偏振分光部与所述第一图像传感器之间、和/或设置在所述偏振分光部与所述第二图像传感器之间。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述近红外波段的范围为760nm~1100nm。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述照明光线设置成使得所述偏振光线中的一部分光线由所述手掌的表面反射形成第一回射光线,以及使得所述偏振光线中的另一部分光线穿透手掌皮肤到达手掌组织内部经由散射和漫反射形成第二回射光线,其中所述第一回射光线的偏振方向与所述偏振光线的偏振方向相同,所述第二回射光线至少包括与所述偏振光线的偏振方向垂直的第二子回射光线。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述第二回射光线还包括与所述偏振光线的偏振方向相同的第二子回射光线。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述偏振分光部镀有偏振分光膜,以便将来自所述成像单元的光线分成所述透射光线和所述反射光线。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,所述偏振分光膜设置成使得所述第一回射光线、和与所述偏振光线的偏振方向相同的第二子回射光线透过,以形成所述透射光线,并且使得与所述偏振光线的偏振方向垂直的第二子回射光线反射,以形成所述反射光线;或者
所述偏振分光膜设置成使得与所述偏振光线的偏振方向垂直的第二子回射光线透过,以形成所述透射光线,并且使得所述第一回射光线、和与所述偏振光线的偏振方向相同的第二子回射光线反射,以形成所述反射光线。
根据本公开至少一个实施方式的掌纹掌静脉生物识别装置,还包括距离传感器,所述距离传感器用于测量所述手掌的距离,以便当所 述手掌的距离小于预定距离时,开启所述照明光源、所述第一图像传感器和第二图像传感器。
根据本公开的另一方面,一种使用如上任一项所述的掌纹掌静脉的生物识别装置的身份认证方法,包括:
获取所述第一图像传感器形成的一种图像,并且与所述一种图像的预存储特征信息进行比对,以基于所述一种图像来进行第一身份认证;
获取所述第二图像传感器形成的另一种图像,并且与所述另一种图像的预存储特征信息进行比对,以基于所述另一种图像来进行第二身份认证;以及
基于所述第一身份认证和所述第二身份认证来实现最终身份认证。
本公开所描述的掌纹掌静脉识别方法,相比于现有的单纯采用“1+1”方式实现多模态识别的技术而言,具有更为先进和有效的构成和方法。其目的在于完全消除活体识别过程中伪造数据的可能,从而大大提高活体识别准确率,提高生物识别技术的安全性。为此本公开所述方法实现了基于同时间、同空间获取掌纹和掌静脉图像采集的技术。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1是现有技术的一种掌纹掌静脉识别方式的示意图。
图2是现有技术的一种掌纹掌静脉识别方式的示意图。
图3是根据现有技术的识别结果。
图4是根据现有技术的识别结果。
图5是根据本公开一个实施方式的掌纹掌静脉生物识别装置的示意图。
图6是根据本公开实施方式的光学滤色部的滤光示意图。
图7是根据本公开一个实施方式的掌纹掌静脉生物识别装置的示意图。
图8是根据本公开一个实施方式的掌纹掌静脉生物识别装置的示意图。
图9是根据本公开一个实施方式的掌纹掌静脉生物识别装置的示意 图。
图10是根据本公开一个实施方式的掌纹掌静脉生物识别方法的示意图。
具体实施方式
下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开的技术方案。
除非另有说明,否则示出的示例性实施方式/实施例将被理解为提供可以在实践中实施本公开的技术构思的一些方式的各种细节的示例性特征。因此,除非另有说明,否则在不脱离本公开的技术构思的情况下,各种实施方式/实施例的特征可以另外地组合、分离、互换和/或重新布置。
在附图中使用交叉影线和/或阴影通常用于使相邻部件之间的边界变得清晰。如此,除非说明,否则交叉影线或阴影的存在与否均不传达或表示对部件的具体材料、材料性质、尺寸、比例、示出的部件之间的共性和/或部件的任何其它特性、属性、性质等的任何偏好或者要求。此外,在附图中,为了清楚和/或描述性的目的,可以夸大部件的尺寸和相对尺寸。当可以不同地实施示例性实施例时,可以以不同于所描述的顺序来执行具体的工艺顺序。例如,可以基本同时执行或者以与所描述的顺序相反的顺序执行两个连续描述的工艺。此外,同样的附图标记表示同样的部件。
当一个部件被称作“在”另一部件“上”或“之上”、“连接到”或“结合到”另一部件时,该部件可以直接在所述另一部件上、直接连接到或直接结合到所述另一部件,或者可以存在中间部件。然而,当部件被称作“直接在”另一部件“上”、“直接连接到”或“直接结合到”另一部件时,不存在中间部件。为此,术语“连接”可以指物理连接、电气连接等,并且具有或不具有中间部件。
为了描述性目的,本公开可使用诸如“在……之下”、“在……下方”、“在……下”、“下”、“在……上方”、“上”、“在……之上”、“较高的”和“侧 (例如,如在“侧壁”中)”等的空间相对术语,从而来描述如附图中示出的一个部件与另一(其它)部件的关系。除了附图中描绘的方位之外,空间相对术语还意图包含设备在使用、操作和/或制造中的不同方位。例如,如果附图中的设备被翻转,则被描述为“在”其它部件或特征“下方”或“之下”的部件将随后被定位为“在”所述其它部件或特征“上方”。因此,示例性术语“在……下方”可以包含“上方”和“下方”两种方位。此外,设备可被另外定位(例如,旋转90度或者在其它方位处),如此,相应地解释这里使用的空间相对描述语。
这里使用的术语是为了描述具体实施例的目的,而不意图是限制性的。如这里所使用的,除非上下文另外清楚地指出,否则单数形式“一个(种、者)”和“所述(该)”也意图包括复数形式。此外,当在本说明书中使用术语“包含”和/或“包括”以及它们的变型时,说明存在所陈述的特征、整体、步骤、操作、部件、组件和/或它们的组,但不排除存在或附加一个或更多个其它特征、整体、步骤、操作、部件、组件和/或它们的组。还要注意的是,如这里使用的,术语“基本上”、“大约”和其它类似的术语被用作近似术语而不用作程度术语,如此,它们被用来解释本领域普通技术人员将认识到的测量值、计算值和/或提供的值的固有偏差。
根据本公开的实施方式,提供了一种能够满足同时间、同空间清晰采集掌纹掌静脉信息的掌纹掌静脉生物识别装置。
根据本公开的一个实施方式,掌纹掌静脉生物识别装置10可以包括照明光源100、偏振单元200、成像单元300、偏振分光部400、第一图像传感器500、第二图像传感器600。
照明光源可以用于发射近红外波段的照明光线,例如近红外波段的范围为760nm~1100nm。与现有技术不同,可以仅采用该近红外波段的照明光线来实现掌纹特性信息和掌静脉特征信息的采集。
此外,在照明光线到达作为被拍摄体的手掌的光路中可以设置有偏振单元200,其中该偏振单元200可以用于将照明光源发出的光线进行偏振,来形成偏振光线。该偏振光线可以照射到手掌皮肤的表面。其中在本公开中偏振光线中的一部分光线由手掌的皮肤表面反射形成第一回射光线S1,第一回射光线S1的偏振方向与偏振光线的偏振方向相同。偏振光线中的另一部分光线穿透手掌皮肤到达手掌组织内部经由散射和漫反射形成光线,其偏振方向发生改变,并且包括与偏振光线的偏振方向垂直的第二子回射光线P1、和与偏振光线的偏振方向 相同的第二子回射光线S2。第二子回射光线P1和第二子回射光线S2的组合光线(第二回射光线)再次穿过手掌皮肤表面,与手掌表面反射的第一回射光线S1一同进入成像镜头300中。
在本公开中,仅采用一种照明光线和一个成像镜头,通过一个成像镜头来接收第一回射光线和第二回射光线。
成像单元300可以用于将手掌信息采集区域的光线汇聚到焦平面上,照明光线照射到手掌之后其偏振方向会发生变化,所以通过成像单元300可以将第一回射光线和第二回射光线汇聚到同一焦平面上。因此可以避免现有技术中采用两种不同波段的照明光源,需要使用两个成像单元来对两种光线进行汇聚的情况。
偏振分光部400接收来自成像单元300的光线,该光线包括第一回射光线和第二回射光线。偏振分光部400基于来自成像单元300的光线的偏振方向的不同,来形成透射光线和反射光线,其中透射光线透过偏振分光部传播,反射光线经由偏振分光部反射后传播。
例如透射光线可以与偏振光线的偏振方向相同而反射光线可以与偏振光线的偏振方向垂直,或者透射光线可以与偏振光线的偏振方向垂直而反射光线可以与偏振光线的偏振方向相同。
偏振分光部400可以为偏振分光棱镜的形式,可以通过镀膜加工的工艺制成。例如在棱镜内镀偏振分光膜,根据光线的偏振方向的不同,将与偏振光线的偏振方向相同的光线,透过分光膜形成第一光路(反射光线/透射光线),将与偏振光线的偏振方向垂直的偏振光线,反射至第二光路(透射光线/反射光线)。
具体而言,偏振分光棱镜根据偏振方向的不同,将光线分成反射和透射两条光路,分别形成图像。通过镀膜加工的技术,可以将膜系设置为以下两种不同的功能。
第一功能为允许第一回射光线S1和第二子回射光线S2透过形成透射光线,从而在第一图像传感器500上形成对应于S偏振光(S1+S2)的成像,图像显示为明显的掌纹纹路(第一回射光线S1的成像)和微弱的静脉纹路(第二子回射光线S2的成像)。将第二子回射光线P1反射,反射光线到达第二图像传感器600,形成明显的静脉纹路。由于手掌皮肤表面反射形成的S偏振光透过偏振分光棱镜,不会到达第二图像传感器600中,故在第二图像传感器600所形成的掌静脉图像中不会显示掌纹纹路。
第二功能为允许将第二子回射光线P1透过,从而在第一图像传感器500上形成对于P1偏振光的成像,图像显示为明显的静脉纹路,将第一回射光线S1和第二子回射光线S2反射,反射光线到达第二图像传感器600,形成明显的掌纹纹路(第一回射光线S1的成像)和微弱的静脉纹路(第二子回射光线S2的成像)。由于手掌表面皮肤反射形成的S偏振光经偏振分光棱镜反射,不会到达第一图像传感器500中,故在第一图像传感器500所形成的掌静脉图像当中不会显示掌纹纹路信息。
在本公开中,仅是在偏振分光棱镜的镀膜面,采用不同镀膜设置而形成,方案中第一图像传感器和第二图像传感器仅用于光线接收,第一图像传感器与第二图像传感器的位置可以交换。
根据本公开的进一步实施方式,可以设置有光学滤色部700,光学滤色部700可以设置在手掌、至第一图像传感器和/或第二图像传感器之间的光路中,以滤除所需光线波段之外的其他波段的光线。例如光学滤色部700设置在手掌与成像单元之间、设置在成像单元与偏振分光部之间、设置在偏振分光部与第一图像传感器之间、和/或设置在偏振分光部与第二图像传感器之间。
光学滤色部700可以为光学滤色片的形式。其镀膜参数可以设置为允许照明光源所发出波长的光线通过,截止其他波段光线通过。通过仅允许照明光源所发出的光线波段的光线通过,可以消除诸如可见光等其他波段的光线对成像的影响,从而可以形成清晰的掌静脉图像。例如图6所示,光学滤色部700配置为带通滤色片,允许照明光源所发出的波段的光线通过,截止其他波段的光线通过,可以将外界杂散光消除,同时提升静脉图像质量和掌纹图像质量。
在图5中示出了光学滤色部700设置在成像单元300与偏振分光部400之间的情况。图7示出了光学滤色部700设置在手掌与成像单元300之间的情况。在这两种情况下,透射光线可以为第一回射光线S1和第二子回射光线S2的光线且反射光线可以为第二子回射光线P1的光线,或者反射光线可以为第一回射光线S1和第二子回射光线S2的光线且透射光线可以为第二子回射光线P1的光线。
此外,在本公开中也可以将光学滤色部700设置在偏振分光部400、与第一图像传感器500和/或第二图像传感器600之间。
例如在图8示出了光学滤色部700设置在偏振分光部400与第一 图像传感器500之间的情况。在该情况下,将偏振分光部400配置成允许第二子回射光线P1透过,而使得第一回射光线S1和第二子回射光线S2进行反射。根据第二子回射光线P1的透射光线经由光学滤色部700滤光,消除外界杂散光,从而在第一图像传感器500中形成清晰的掌静脉图像。通过第一回射光线S1和第二子回射光线S2反射形成的反射光线在第二图像传感器600形成掌纹图像。
例如在图9中示出了光学滤色部700设置在偏振分光部400与第二图像传感器600的情况。在该情况下,将偏振分光部400配置成允许第二子回射光线P1反射,而使得第一回射光线S1和第二子回射光线S2进行透射。根据第二子回射光线P1的反射光线经由光学滤色部700滤光,消除外界杂散光,从而在第二图像传感器600中形成清晰的掌静脉图像。通过第一回射光线S1和第二子回射光线S2透射形成的透射光线在第一图像传感器500形成掌纹图像。
根据本公开的进一步实施方式,还可以包括距离传感器800,距离传感器800用于测量手掌的距离,以便当手掌的距离小于预定距离时,开启照明光源100、第一图像传感器500和第二图像传感器600。
通过本公开的非接触式技术方案,可以在使用一种光源照明的情况下,同时间且同空间地采集掌纹图像和掌静脉图像,完成掌纹掌静脉多模态生物识别过程当中的特征信息提取的过程,可以有效地解决现有技术中所存在的问题。
根据本公开的另一实施方式,还提供了一种身份认证方法。其中该身份认证方法可以使用如上描述的掌纹掌静脉的生物识别装置。
如图10所示,该身份认证方法M100可以包括以下步骤。
在步骤S102中,生物识别装置可以用于持续检测是否有手掌接近生物识别装置。例如采用距离传感器800进行测量,当距离传感器800检测到手掌的距离小于预设距离时,则转入步骤S104,在该步骤中,开启照明光源100、第一图像传感器500和第二图像传感器600。
在步骤S106中,通过第一图像传感器形成一种图像,在步骤S108中,将第一图像传感器形成的一种图像预该一种图像的预存储特征信息进行比对。在步骤S110中,输出比对结果,这样完成第一身份认证。
在步骤S112中,通过第二图像传感器形成另一种图像,在步骤S114中,将第二图像传感器形成的另一种图像预该另一种图像的预存储特征信息进行比对。在步骤S116中,输出比对结果,这样完成第二 身份认证。
其中上述的一种图像和另一种图像可以为掌纹图像或掌静脉图像。
在步骤S118中,可以基于第一身份认证和第二身份认证来实现最终身份认证,并且输出身份认证结果。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (10)

  1. 一种掌纹掌静脉生物识别装置,其特征在于,包括:
    照明光源,所述照明光源用于发射近红外波段的照明光线;
    偏振单元,所述偏振单元用于将所述照明光线形成为偏振光线,所述偏振光线发射至手掌;
    成像单元,所述成像单元接收来自所述手掌的回射光线,并且用于将所述回射光线汇聚至焦平面;
    偏振分光部,所述偏振分光部基于来自所述成像单元的光线的偏振方向的不同,来形成透射光线和反射光线,其中所述透射光线透过所述偏振分光部传播,所述反射光线经由所述偏振分光部反射后传播;
    第一图像传感器,所述第一图像传感器接收来自所述偏振分光部的所述透射光线,以便形成掌纹图像和掌静脉图像中的一种图像;以及
    第二图像传感器,所述第二图像传感器接收来自所述偏振分光部的所述反射光线,以便形成掌纹图像和掌静脉图像中的另一种图像。
  2. 如权利要求1所述的掌纹掌静脉生物识别装置,其特征在于,
    所述透射光线的偏振方向与所述手掌光线的偏振方向相同,并且所述反射光线的偏振方向与所述回射光线的偏振方向垂直;或者
    所述透射光线的偏振方向与所述手掌光线的偏振方向垂直,并且所述反射光线的偏振方向与所述回射光线的偏振方向相同。
  3. 如权利要求1所述的掌纹掌静脉生物识别装置,其特征在于,还包括光学滤色部,所述光学滤色部设置在所述手掌、至所述第一图像传感器和/或第二图像传感器之间的光路中,以滤除所需光线波段之外的其他波段的光线。
  4. 如权利要求3所述的掌纹掌静脉的生物识别装置,其特征在于,所述光学滤色部设置在所述手掌与所述成像单元之间、设置在所述成像单元与所述偏振分光部之间、设置在所述偏振分光部与所述第一图像传感器之间、和/或设置在所述偏振分光部与所述第二图像传感器之间。
  5. 如权利要求1所述的掌纹掌静脉的生物识别装置,其特征在于,所述近红外波段的范围为760nm~1100nm。
  6. 如权利要求1所述的掌纹掌静脉的生物识别装置,其特征在于,所述照明光线设置成使得所述偏振光线中的一部分光线由所述手掌的表面反射形成第一回射光线,以及使得所述偏振光线中的另一部分光线穿透手掌皮肤到达手掌组织内部经由散射和漫反射形成第二回射光线,其中所述第一回射光线的偏振方向与所述偏振光线的偏振方向相同,所述第二回射光线至少包括与所述偏振光线的偏振方向垂直的第二子回射光线。
  7. 如权利要求6所述掌纹掌静脉的生物识别装置,其特征在于,
    可选地,所述第二回射光线还包括与所述偏振光线的偏振方向相同的第二子回射光线;
    可选地,所述偏振分光部镀有偏振分光膜,以便将来自所述成像单元的光线分成所述透射光线和所述反射光线。
  8. 如权利要求7所述的掌纹掌静脉的生物识别装置,其特征在于,
    所述偏振分光膜设置成使得所述第一回射光线、和与所述偏振光线的偏振方向相同的第二子回射光线透过,以形成所述透射光线,并且使得与所述偏振光线的偏振方向垂直的第二子回射光线反射,以形成所述反射光线;或者
    所述偏振分光膜设置成使得与所述偏振光线的偏振方向垂直的第二子回射光线透过,以形成所述透射光线,并且使得所述第一回射光线、和与所述偏振光线的偏振方向相同的第二子回射光线反射,以形成所述反射光线。
  9. 如权利要求1至8中任一项所述的掌纹掌静脉的生物识别装置,其特征在于,还包括距离传感器,所述距离传感器用于测量所述手掌的距离,以便当所述手掌的距离小于预定距离时,开启所述照明光源、所述第一图像传感器和第二图像传感器。
  10. 一种使用如权利要求1至9中任一项所述的掌纹掌静脉的生物 识别装置的身份认证方法,其特征在于,包括:
    获取所述第一图像传感器形成的一种图像,并且与所述一种图像的预存储特征信息进行比对,以基于所述一种图像来进行第一身份认证;
    获取所述第二图像传感器形成的另一种图像,并且与所述另一种图像的预存储特征信息进行比对,以基于所述另一种图像来进行第二身份认证;以及
    基于所述第一身份认证和所述第二身份认证来实现最终身份认证。
PCT/CN2022/106521 2022-07-19 2022-07-19 掌纹掌静脉生物识别装置及身份认证方法 WO2024016167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106521 WO2024016167A1 (zh) 2022-07-19 2022-07-19 掌纹掌静脉生物识别装置及身份认证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106521 WO2024016167A1 (zh) 2022-07-19 2022-07-19 掌纹掌静脉生物识别装置及身份认证方法

Publications (1)

Publication Number Publication Date
WO2024016167A1 true WO2024016167A1 (zh) 2024-01-25

Family

ID=89616745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106521 WO2024016167A1 (zh) 2022-07-19 2022-07-19 掌纹掌静脉生物识别装置及身份认证方法

Country Status (1)

Country Link
WO (1) WO2024016167A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150356339A1 (en) * 2014-06-09 2015-12-10 Lawrence Livermore National Security, Llc Multimodal Imaging System And Method For Non-Contact Identification of Multiple Biometric Traits
US20160287144A1 (en) * 2014-01-31 2016-10-06 Fujitsu Frontech Limited Image capturing apparatus and authentication apparatus
CN211529168U (zh) * 2019-11-22 2020-09-18 上海掌腾信息科技有限公司 用于掌静脉识别系统的消除反光装置
CN112557413A (zh) * 2020-11-24 2021-03-26 中国科学院西安光学精密机械研究所 一种光伏电池板隐裂检测相机及检测方法
CN113963384A (zh) * 2021-09-26 2022-01-21 盛视科技股份有限公司 掌纹掌静脉采集模块、采集装置及识别系统
CN216014318U (zh) * 2021-09-26 2022-03-11 盛视科技股份有限公司 静脉生物特征采集装置及基于静脉特征的认证装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160287144A1 (en) * 2014-01-31 2016-10-06 Fujitsu Frontech Limited Image capturing apparatus and authentication apparatus
US20150356339A1 (en) * 2014-06-09 2015-12-10 Lawrence Livermore National Security, Llc Multimodal Imaging System And Method For Non-Contact Identification of Multiple Biometric Traits
CN211529168U (zh) * 2019-11-22 2020-09-18 上海掌腾信息科技有限公司 用于掌静脉识别系统的消除反光装置
CN112557413A (zh) * 2020-11-24 2021-03-26 中国科学院西安光学精密机械研究所 一种光伏电池板隐裂检测相机及检测方法
CN113963384A (zh) * 2021-09-26 2022-01-21 盛视科技股份有限公司 掌纹掌静脉采集模块、采集装置及识别系统
CN216014318U (zh) * 2021-09-26 2022-03-11 盛视科技股份有限公司 静脉生物特征采集装置及基于静脉特征的认证装置

Similar Documents

Publication Publication Date Title
CA2591622C (en) Combined total-internal-reflectance and tissue imaging systems and methods
US8175346B2 (en) Whole-hand multispectral biometric imaging
KR101349892B1 (ko) 다중 생체인식 다중 스펙트럼 이미저
US8831297B2 (en) Contactless multispectral biometric capture
EP1839233B1 (en) Biometric recognition/verification using multispectral imaging
KR101433882B1 (ko) 생체계측 센서
KR101433715B1 (ko) 확실한 지문 획득을 위한 시스템 및 방법
US20110007951A1 (en) System and method for identification of fingerprints and mapping of blood vessels in a finger
Lee et al. A study of touchless fingerprint recognition system
JP2002513188A (ja) 無接触で手のひらや指の線すじを認識するシステム
AU2006285023A1 (en) Biometric sensors
TWI537838B (zh) The authentication device, an authentication method and an authentication prism
WO2008154589A2 (en) Contactless multispectral biometric capture
WO2013146760A1 (ja) 認証装置、認証用プリズム体及び認証方法
KR20140124868A (ko) 스펙트럼 생체인식 센서
CN106815554B (zh) 内指纹快速成像和生物识别系统和方法
WO2013146759A1 (ja) 認証装置、認証用プリズム体及び認証方法
WO2024016167A1 (zh) 掌纹掌静脉生物识别装置及身份认证方法
JP2008527544A (ja) マルチスペクトル画像化を用いるバイオメトリック認識/検証
CN117456565A (zh) 掌纹掌静脉生物识别装置及身份认证方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951445

Country of ref document: EP

Kind code of ref document: A1