WO2024014763A1 - Method for forming multi-material structure - Google Patents

Method for forming multi-material structure Download PDF

Info

Publication number
WO2024014763A1
WO2024014763A1 PCT/KR2023/009344 KR2023009344W WO2024014763A1 WO 2024014763 A1 WO2024014763 A1 WO 2024014763A1 KR 2023009344 W KR2023009344 W KR 2023009344W WO 2024014763 A1 WO2024014763 A1 WO 2024014763A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
supplying
area
tool path
Prior art date
Application number
PCT/KR2023/009344
Other languages
French (fr)
Korean (ko)
Inventor
김대중
Original Assignee
주식회사 에이엠솔루션즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이엠솔루션즈 filed Critical 주식회사 에이엠솔루션즈
Publication of WO2024014763A1 publication Critical patent/WO2024014763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a method of forming a multi-material structure, and more specifically, the step of supplying and melting a first material through a nozzle moving along a tool path on one surface to form a first layer, and depositing a first layer on another surface. supplying and melting a second material through a nozzle moving along the tool path to deposit a second layer, wherein the first layer is formed of a metal layer and the second layer is formed of a metal oxide layer.
  • the step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process gas supply step of supplying a process gas to the area where the first material is supplied simultaneously with the first material supply step.
  • It includes a supply step, wherein the process gas includes an inert gas, and the step of laminating the second layer includes a second material supply step of supplying a second material on the surface, and a second material supply step simultaneously with the second material supply step. It includes a first gas supply step of supplying a first gas to the area where the material is supplied, and the first gas contains oxygen, thereby obtaining a structure having a layer with a high oxygen fraction on the outer surface, through which a high diameter It relates to a method of forming a multi-material structure that can produce a structure with characteristics such as durability, wear resistance, corrosion resistance, etc.
  • a 3D printer reduces design errors by manufacturing a shape created using 3D computer-aided design (CAD, etc.) and makes it easier to manufacture objects than casting.
  • CAD computer-aided design
  • metal lamination as shown in Figure 1.
  • the processing technology is a technology that stacks three-dimensional shapes using metal powder and metal wire.
  • Conventional metal additive manufacturing was carried out by creating a layer-based toolpath in CAM S/W and applying process variables such as input materials and heat source settings, and the technology was developed by applying different physical properties and process variables for each layer. did.
  • Additive manufacturing technology is a technology that creates layers of input materials by simultaneously injecting heat sources, materials, and process gases at specific points on the base material.
  • the process gas in the above process is an inert gas such as argon or nitrogen gas, or an equivalent gas, which suppresses the formation of oxides on the surface of the material and thereby ensures stacking stability.
  • Additive manufacturing technology with these characteristics has a limitation in that it cannot use materials with a high oxygen content, and to overcome this limitation, methods that apply additional processes such as pre-heating and post-heating to control the amount of heat input and cooling rate are used. Although developed, a fundamental solution has not been found.
  • Patent Document 1 Korean Patent Publication No. 10-2331728 (2021.11.23.)
  • the present invention is intended to solve the problems of the prior art described above,
  • the object of the present invention is to deposit a first layer by supplying and melting a first material through a nozzle moving along a tool path on one surface, and forming a first layer through a nozzle moving along a tool path on another surface. It includes the step of supplying and melting two materials to laminate a second layer, wherein the first layer is formed of a metal layer and the second layer is formed of a metal oxide layer, so that durability is improved through metal additive manufacturing.
  • a method of forming a material structure is provided.
  • the step of laminating the second layer includes supplying a second material to the surface, supplying a first gas to the area where the second material is supplied at the same time as the step of supplying the second material.
  • a method of forming a multi-material structure comprising a step of supplying a first gas, wherein the first gas contains oxygen, and a metal oxide layer can be formed on the outside of the product during the metal lamination process without any additional process. .
  • the step of laminating the first layer includes supplying a first material to the surface, supplying a process gas to the area where the first material is supplied at the same time as the first material supply step. It includes a process gas supply step, wherein the process gas includes an inert gas, thereby providing a method of forming a multi-material structure that prevents oxide generation during the stacking process of the metal layer.
  • the object of the present invention is to convert the supplied process gas into the first gas, or to easily convert the lamination of the metal layer and the metal oxide layer by further comprising a gas conversion step of converting the supplied first gas into the process gas.
  • the object of the present invention is that the first material and the second material are metal powders or alloy powders containing the same metal element, and the metal elements are titanium (Ti), zirconium (Zr), aluminum (Al), and copper (Cu). ), chromium (Cr), and provides a method of forming a multi-material structure that is easy to bond by placing a metal layer between the substrate and the outermost ceramic layer.
  • the purpose of the present invention is to stack the first layer by supplying and melting the first material on the substrate, and to laminate the second layer by supplying and melting the first material on the substrate.
  • a method of forming a multi-material structure having a structure of a base-metal layer-metal oxide layer is provided by supplying a first gas containing oxygen and stacking a second layer of metal oxide.
  • the purpose of the present invention is to provide a method of forming a multi-material structure in which the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, enabling three-dimensional metal stacking.
  • the purpose of the present invention is to quickly form the structure of the base-metal layer-metal oxide layer by allowing the steps of stacking the first layer and the step of stacking the second layer to be performed alternately while the nozzle moves along the tool path.
  • the aim is to provide a method of forming an economical multi-material structure by stacking.
  • the object of the present invention further includes a mapping step of mapping a first layer area and a second layer area to a tool path, wherein a step of stacking the first layer is performed in the first layer area on the tool path, and a second layer area is stacked.
  • the step of laminating the second layer is performed, and the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first layer.
  • the present invention is implemented by an embodiment having the following configuration.
  • the present invention includes the steps of supplying and melting a first material through a nozzle moving along a tool path on one surface to deposit a first layer, and forming a tool path on another surface.
  • the step of laminating the second layer includes supplying a second material to the surface, and simultaneously supplying the second material to the area where the second material is supplied. It includes a first gas supply step of supplying one gas, and the first gas includes oxygen.
  • the step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process to the area where the first material is supplied simultaneously with the first material supply step.
  • the present invention is characterized by further comprising a gas conversion step of converting the supplied process gas into the first gas, or converting the supplied first gas into the process gas.
  • the first material and the second material are metal powders or alloy powders containing the same metal element, and the metal elements are titanium (Ti), zirconium (Zr), aluminum (Al), It is characterized as being one of copper (Cu) and chromium (Cr).
  • the step of laminating the first layer is to supply and melt the first material on the substrate to laminate the first layer
  • the step of laminating the second layer is to layer the first material on the first layer. It is characterized by supplying a second material and supplying a first gas containing oxygen to stack a second layer of metal oxide.
  • the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle.
  • the nozzle moves along the tool path, and the step of laminating the first layer and the step of laminating the second layer are performed alternately.
  • it further includes a mapping step of mapping the first layer area and the second layer area to the tool path, and a step of stacking the first layer is performed in the first layer area on the tool path, , Characterized in that the step of laminating the second layer is performed in the second layer region.
  • the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first gas, When the nozzle enters the first layer area from the second layer area, the supplied gas is converted from the first gas to the process gas.
  • the present invention has the following effects through the above-described configuration.
  • the present invention provides the steps of supplying and melting a first material through a nozzle moving along a tool path on one surface to deposit a first layer, and applying a second material through a nozzle moving along a tool path on another surface.
  • the step of laminating the second layer includes supplying a second material to the surface, supplying a first gas to the area where the second material is supplied simultaneously with the step of supplying the second material. It includes a first gas supply step, wherein the first gas contains oxygen, enabling the formation of a metal oxide layer on the outside of the product during the metal stacking process without any additional process.
  • the step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process of supplying a process gas to the area where the first material is supplied simultaneously with the first material supply step. It includes a gas supply step, and the process gas contains an inert gas and has the effect of preventing oxide generation during the stacking process of the metal layer.
  • the present invention further includes a gas conversion step of converting the supplied process gas into the first gas, or converting the supplied first gas into the process gas, thereby providing the effect of easily converting the lamination of the metal layer and the metal oxide layer. give.
  • the first material and the second material are metal powders or alloy powders containing the same metal element, and the metal elements are titanium (Ti), zirconium (Zr), aluminum (Al), copper (Cu), It is made of chromium (Cr) and has the effect of facilitating bonding by placing a metal layer between the substrate and the outermost ceramic layer.
  • a first material is supplied and melted on a substrate to laminate the first layer
  • a second material is supplied on the first layer.
  • the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, enabling three-dimensional metal stacking.
  • the steps of stacking the first layer and the steps of stacking the second layer are performed alternately, thereby quickly stacking the structure of the base-metal layer-metal oxide layer. It is economical.
  • the present invention further includes a mapping step of mapping a first layer area and a second layer area to a tool path, where a step of stacking the first layer is performed in the first layer area on the tool path, and the second layer area is
  • the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first gas. It has the effect of providing a method of forming a multi-material structure that converts the gas supplied when the nozzle enters from the second layer area to the first layer area from the first gas to the process gas.
  • Figure 1 is a conceptual diagram of additive manufacturing according to the prior art.
  • Figure 2 is a flow chart of a method of forming a multi-material structure according to an embodiment of the present invention.
  • 3 and 4 are cross-sections of a multi-material structure that is a product formed by the method (S) of forming a multi-material structure according to the present invention.
  • Figure 5 is a diagram showing a 3D printing device for carrying out the present invention.
  • Figure 6 is a diagram illustrating generating a toolpath according to an embodiment of the present invention.
  • Figure 7 is a diagram showing a toolpath being formed in 3D image data.
  • Figure 8 is a cross-section taken along line A-A' of Figure 7 according to an embodiment of the present invention.
  • Figure 9 is a cross-section taken along line A-A' of Figure 7 according to another embodiment of the present invention.
  • Figure 10 is a flow chart of the first layer stacking step (S30) and the second layer stacking step (S50) in one embodiment of the present invention.
  • the method (S) of forming a multi-material structure receives a three-dimensional image of the product formed through 3D printing or cladding, generates a tool path, which is the movement path of the nozzle, and creates a three-dimensional image.
  • the first material and process gas are supplied to the surface and heated to deposit the first layer, and the first layer containing oxygen is deposited.
  • a structure with a layer with a high oxygen content can be obtained on the outer surface, thereby creating a structure with characteristics such as high hardness, wear resistance, and corrosion resistance.
  • metal or alloy powder is supplied as a material, an inert or inert gas containing argon and nitrogen is used as a process gas, and a gas containing oxygen is preferably used as the first gas. do.
  • the material can be replaced with wire, filament, etc., and depending on the material, a suitable process gas with low activity of the material can be used, and a metal oxide layer or ceramic layer on the outer surface can be used.
  • a gas other than oxygen may be replaced as the first gas to form a layer.
  • the product may include a substrate 10, a first layer 20, and a second layer 30.
  • the substrate 10 may be a metal, but may also be a non-metallic material such as ceramic or plastic.
  • the first layer 20 may be laminated on one surface of the substrate 10 .
  • the first material 21 is supplied to the substrate with the heat source 25 and melts on the surface to form a molten pool. As it cools and hardens, the first layer 20 is formed on the surface of the substrate 10. .
  • the first material 21 may be a metal powder or an alloy powder, and the heat source 25 is preferably a laser.
  • inert or inert gas is introduced as the process gas 23 to suppress oxide formation and improve stackability. It is desirable to use a gas that has low reactivity or does not react with the first material, such as argon (Ar) or nitrogen (N 2 ), as the process gas.
  • the second layer 30 may be laminated on the first layer 20.
  • the second material 31 is supplied on the first layer with the heat source 35 to form a molten pool on the surface, and as it cools and hardens, the second layer 30 can be formed by stacking.
  • the second material 31 may be a metal powder or an alloy powder, and the heat source 35 is preferably a laser.
  • the first gas 33 containing oxygen is supplied so that the second layer 30 can be formed as a metal oxide layer.
  • the first layer 20 may be formed of a metal layer
  • the second layer may be formed of a metal oxide layer.
  • the first material 21 and the second material 31 may be metal powders or alloy powders containing the same metal element. Additionally, the first material 21 and the second material 31 may be substantially the same metal powder or alloy powder.
  • a first layer 20 of zirconium (Zr) may be formed on a substrate 10 made of titanium (Ti), and a second layer 30 of zirconia may be formed on the first layer. . That is, the second layer 20, which is an oxide layer of the same metal, may be formed on the first layer 20, which is a metal layer.
  • the product according to the present invention has a structure of base material - metal layer - metal oxide layer, so that a product with increased durability can be formed through cladding.
  • the first layer 20 may be omitted and the second layer 30 may be laminated on the substrate 10.
  • the substrate 10 may be substantially the same metal layer as the first layer 20. That is, by supplying oxygen together with zirconium powder on the zirconium substrate 10, the second layer 30 of zirconia can be formed to have a structure of a metal substrate and a metal oxide layer.
  • the substrate 10 is shown to have the shape of a flat plate, but in one embodiment of the present invention, the substrate 10 has a curved and irregular surface, and the first layer 20 and the second layer 20 have a curved surface.
  • Two layers 30 may be laminated on the substrate.
  • the base material 10 may be an implant screw made of titanium or titanium alloy.
  • the first layer 20 and the second layer 30 are not laminated in the shape of a flat surface, but are a base material with a curved surface as described later. It can be stacked to surround (10).
  • the first layer 20 may be laminated on the surface of the first or second layer rather than the substrate 10, and the second layer 30 may be laminated on the surface of the first layer 20 instead of the first layer 20. It may also be laminated on the surface of the substrate or the second layer. Furthermore, as described above, the first layer 20 may be omitted and the second layer 30 may be laminated on the metal substrate 10.
  • the 3D printing device includes a 3D printer 60 and a controller 50.
  • the controller 50 is configured to manage and control the overall operation of the 3D printer 60, and forms a tool path for producing a product corresponding to the input 3D modeling data and 3D image data through a layering process, Through numerical analysis, the material can be specified or the product can be divided into a metal layer, metal oxide layer, or ceramic layer according to the desired physical properties of the product, and the supply amount of materials and gas provided through the 3D printer can be controlled.
  • the controller 10 may be driven by at least one processor and may include a data conversion unit 51, a tool path generation unit 53, a numerical analysis unit 54, and a supply control unit 55. there is.
  • the data conversion unit 51 may be provided to convert the input 3D image data into stereoscopic data in a format such as STL.
  • the converted three-dimensional data includes information about the vertices of each mesh and information about the surface formed by the mesh.
  • the tool path generator 53 is configured to render a 3D model from three-dimensional modeling data and generate a tool path, which is a movement path of a nozzle during additive manufacturing.
  • the toolpath generator 53 slices the rendered 3D modeling data and 3D image data (D) into a plurality of faces and creates a slice in the area where each face intersects the 3D image data (D).
  • a tool path, which is the moving path of the nozzle, is created by drawing a plurality of line segments according to a predetermined algorithm.
  • the surface slicing the 3D image data (D) may be a curved surface or two or more flat surfaces
  • the tool path may be a curved surface or a surface that intersects at a predetermined angle. It can be formed on two or more planes.
  • the tool path can fill the intersecting area in a zigzag direction, and filling the intersecting area with other shapes, including concentric circle shapes, is not excluded from the scope of rights. .
  • the size and porosity of the toolpath can be adjusted by adjusting the spacing of line segments filled along the intersecting area.
  • the numerical analysis unit 54 is equipped to perform numerical analysis according to an objective function, and determines the material of the product through numerical analysis or determines the thickness of the metal layer, metal oxide layer, or ceramic layer of the product.
  • the thickness can be determined.
  • the numerical analysis unit 54 can specify an objective function according to the optimization goal of the physical properties of the shape of the 3D image data, and perform numerical analysis according to the determined objective function to determine the material for forming the product.
  • the determined material can be laminated on the surface of the substrate in a cladding manner.
  • the material to be determined (including the first material and the second material) may be a metal powder.
  • the metal includes an alloy, and metal powder or alloy powder may be supplied as the first material or the second material.
  • it is a material that increases durability when it reacts with oxygen to form a metal oxide layer, such as titanium (Ti), zirconium (Zr), aluminum (Al), copper (Cu), chromium (Cr), or alloys thereof. It can be determined by the supplied materials. In the case of titanium and zirconium alloys, free composition is possible within a range that satisfactorily forms a metal oxide layer such as titanium oxide and zirconia.
  • the supply control unit 55 is configured to control the type, amount, speed, etc. of the material supplied through the nozzle in the 3D printer 60, and controls the supply speed and amount of the material through the powder supply command from the supply control unit 55. This is delivered in real time.
  • the supply control unit 55 can control the supply of gas including the process gas and the first gas along with the supply of the material containing the metal element.
  • the amount of process gas and/or first gas input can be adjusted and changed to ensure a smooth lamination process. can be performed.
  • the 3D printer forms a product through additive manufacturing, preferably by spraying metal powder through a nozzle and then using a heating means such as a laser. Additive manufacturing can be performed by welding it on the surface.
  • the 3D printer 60 can supply and mix multiple types of materials and then spray them through a nozzle, and can supply process gas and first gas, which are different gases supplied for the lamination process, through a blower.
  • the 3D printer may include a material supply unit 61, a nozzle 62, a process gas supply unit 63, a first gas supply unit 64, a blower 65, a heating unit 66, and a jig 67. .
  • the material supply unit 61 is a part that stores and supplies powder to be sprayed for additive manufacturing, and may be provided in plural numbers depending on the type of material. In another embodiment of the present invention, wire, filament, etc. are supplied rather than metal powder. It may be equipped to do so. Materials may be stored in a container having a predetermined volume of the material supply unit 61, and materials may be supplied to the nozzle 62. Materials as different metal or alloy powders may be present in the plurality of containers 61a and 61b. It can be saved. The material supply unit 61 may mix and supply different materials.
  • the material supply unit 61 can control the amount and/or speed of the material being discharged by adjusting the degree of opening and closing of the container and the rotation speed of the motor, and can adjust the amount and/or speed of the material by adjusting the vibration frequency when the material is discharged. You can also adjust .
  • the nozzle 62 is coupled to one side of the 3D printer and is provided to discharge or spray the supplied material onto the surface.
  • the nozzle 62 can be controlled to move along the tool path described above.
  • the nozzle 62 can be controlled to move back and forth, left and right, and move up and down to perform xyz axis movement, and its rotation may be controlled to change the discharge angle of the material toward the product held in the jig 67.
  • the process gas supply unit 63 is configured to supply an inert or inert gas to the area where the first material is supplied to prevent oxide generation when stacking the first layer 20, such as argon (Ar), nitrogen (N 2 ) Gases such as can be stored and supplied.
  • an inert or inert gas such as argon (Ar), nitrogen (N 2 ) Gases such as can be stored and supplied.
  • the first gas supply unit 64 is configured to supply a first gas containing oxygen to the area where the second material is supplied to form a metal oxide layer when stacking the second layer 30. Stores and supplies gas.
  • the blower 65 supplies the process gas or first gas delivered from the process gas supply unit 63 or the first gas supply unit 64 to the area where the first material is supplied.
  • the heating unit 66 is provided at one end of the nozzle 62 to heat the material sprayed onto the surface to melt it.
  • the heating unit 66 can heat the material by irradiating a laser, and the laser can be irradiated in a pulse manner depending on the stacking method.
  • Heating portion 66 may be of other configurations suitable for melting material on the surface.
  • the jig 67 is configured to hold a product or a substrate and, together with a nozzle that discharges material, can tilt or rotate the held product or substrate to stack products in a three-dimensional shape.
  • the method (S) of forming a multi-material structure includes a tool path generation step (S10), a mapping step (S20), and a first It may include a layer stacking step (S30), a gas conversion step (S40), and a second layer stacking step (S50).
  • the tool path generation step (S10) is a process of receiving 3D image data including 3D modeling, slicing the 3D image data into a plurality of slices, and determining the movement path of the nozzle.
  • the tool path generator 13 It can be performed by rendering the input 3D image data as a 3D object and then performing slicing on multiple surfaces.
  • a tool path which is a movement path of the nozzle, can be generated by drawing a plurality of line segments according to a predetermined algorithm in the area where the 3D image data (P) and each plane intersect. At this time, the toolpath may be formed on a curved surface or two or more planes that intersect at a predetermined angle, as shown in FIG. 7, or may be formed on one plane.
  • the toolpath (T) can be stored as an array with 3D coordinate values and data necessary for the lamination process.
  • each tool path T1 and T2 may be formed only within a portion where the first layer 20 or the second layer 30 is formed.
  • first layer 20 and the second layer 30 When forming the first layer 20 and the second layer 30 with a constant or constantly changing thickness on the preformed substrate 10, tilting or rotating the substrate 10 or the product through the jig 67 If this is easy and the z-axis movement and rotation of the nozzle 62 can be controlled in detail, durability can be increased by forming the tool path as described above.
  • the 3D image data can be sliced into multiple planes, and a toolpath can be formed on each plane.
  • the tool paths T3 and T4 are the first layer region (where the first layer 20 is formed) It is formed over the second layer area (A2), which is the part where A1) and the second layer 30 are formed, and the first layer area (A1) defined according to 3D image data in the mapping step (S20) described later.
  • the second layer area A2 may be mapped on the in-plane toolpath.
  • the mapping step (S20) is a process of mapping the first layer area and the second layer area defined according to 3D image data to the toolpath.
  • the first layer area and the second layer area defined by coordinates are mapped onto the toolpath. corresponds to
  • the first layer area and the second layer area can be mapped to a tool path corresponding to the coordinates along with the component ratio of the material, and at this time, the first layer area can be mapped to the coordinates of each tool path together with the , values corresponding to the second layer area or gas components during the lamination process can be mapped and stored.
  • the first layer area (A1) and the second layer area (A2) can be defined according to the shape and size of the 3D image data and the results of numerical analysis.
  • the first layer area (A1) is a part that forms a metal layer through the supply of the first material and process gas during the lamination process
  • the second layer area (A2) is a part that forms the metal layer through the supply of the second material and first gas during the lamination process. This is the part that forms the metal oxide layer.
  • a first layer area (A1) of a predetermined thickness is defined on the 3D image data to surround the three-dimensional shaped substrate 10, and a predetermined thickness of the outer portion of the product is defined as a second layer area (A2). It can be defined on 3D image data.
  • the first layer stacking step (S30) is a step of supplying and melting the first material through a nozzle moving along the tool path on one surface to deposit the first layer, as described above.
  • the first material which is a metal or alloy powder
  • the first layer area A1 is supplied to the first layer area A1 and heated to form a molten pool, and then cooled to form a portion of the first layer as a metal layer.
  • the first layer can be formed by supplying the first material and process gas to the tool path.
  • the first layer stacking step (S30) may form a first layer by supplying a first material on the surface of the substrate 10, but the surface of the first layer 20 or the second layer ( The first layer can be formed by supplying the first material on the surface of 30). That is, as in the case shown in FIG. 8, when the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, and the tool path T1 is formed only within the first layer area A1, the first layer area A1 In the first layer stacking step (S30), the first layer can be stacked by supplying and melting the first material on the substrate 10. In comparison, as shown in FIG.
  • the tool paths T3 and T4 are formed on one plane, and the first layer area A1 and the second layer area A2 are mapped simultaneously within one tool path.
  • the first layer in the first layer stacking step (S30), the first layer can be stacked by supplying and melting the first material on the surface of the substrate 10, the first layer 20, or the second layer 30.
  • the first layer stacking step (S30) includes a first material supply step (S31), a process gas supply step (S33), and a heating step (S35).
  • the first material supply step (S31) is a process of supplying the first material on the surface of the substrate 10, the first layer 20, or the second layer 30, and the first material supplied from the material supply unit 61 1 This can be performed by supplying the material through the nozzle 62.
  • the process gas supply step (S33) is a process of supplying process gas through the blower 65 to the area where the first material is supplied. It is performed simultaneously with the first material supply step (S31), so that the process gas is supplied to the area where the first material is supplied. The formation of oxides can be prevented.
  • the process gas may be an inert gas such as argon or neon, a less reactive gas such as nitrogen may be used, or a mixture of these may be used.
  • the heating step (S35) is to melt the first material on the surface by heating the area where the first material is supplied, and the first material can be heated through laser irradiation using the heating unit 66.
  • the gas conversion step (S40) is a process of converting the gas supplied through the blower 65 to the area where the first material or second material is supplied, converting the process gas into the first gas, or converting the supplied gas into the first gas.
  • the first gas can be converted into process gas.
  • the gas conversion step (S40) blocks the process gas supplied from the process gas supply unit 63 to the blower 65 and receives the first gas from the first gas supply unit 64, or the first gas supply unit 64 The flow of the first gas can be blocked and the process gas can be supplied from the process gas supply unit 63.
  • a 3-way valve is installed between the process gas supply unit 63, the first gas supply unit 64 and the blower 65, and the operation of the valve is controlled by the supply control unit 55 so that the supplied gas can be converted.
  • the gas conversion step (S40) is performed when the nozzle 62 moves from the first layer area (A1) mapped on the tool path to the second layer area (A2), from the second layer area (A2) to the first layer area. It is not excluded that it is performed when moving to (A1) and performed multiple times in the method of forming a multi-material structure according to the present invention.
  • the lamination process is completed on one toolpath and then the lamination process is started on another toolpath, it may be performed if the information about the first layer and the second layer mapped to each toolpath is different.
  • the second layer stacking step (S50) is a step of supplying and melting a second material through a nozzle moving along a tool path on one surface to stack the second layer. As described above, the second layer is stacked using a metal or alloy powder. This is the step of heating the second material while supplying it to the second layer area A2 to form a molten pool and then cooling it to form a portion of the first layer as a metal layer.
  • the second layer when the second layer area is mapped on the tool path, the second layer can be formed by supplying the second material and the first gas to the tool path.
  • the second layer stacking step (S50) may form the second layer by supplying a second material on the surface of the first layer 20, but the surface or substrate of the second layer 30 ( 10) A second layer can also be formed on the surface by supplying a second material. That is, as in the case shown in FIG. 8, when the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, and the tool path T2 is formed only within the second layer area A2, the second layer area A2 In the two-layer stacking step (S50), the second layer can be stacked by supplying and melting the second material on the first layer 20. In comparison, as shown in FIG.
  • the tool paths T3 and T4 are formed on one plane, and the first layer area A1 and the second layer area A2 are mapped simultaneously within one tool path.
  • the second layer stacking step (S50) the second layer can be stacked by supplying and melting the second material on the surface of the substrate 10, the first layer 20, or the second layer 30. . Accordingly, the first layer stacking step (S30) and the second layer stacking step (S50) may be performed alternately.
  • the second layer stacking step (S50) includes a second material supply step (S51), a first gas supply step (S53), and a heating step (S55).
  • the second material supply step (S51) is a process of supplying the second material on the surface of the substrate 10, the first layer 20, or the second layer 30, and the second material supplied from the material supply unit 61 2 This can be performed by supplying the material through the nozzle 62.
  • the first gas supply step (S53) is a process of supplying the first gas through the blower 65 to the area where the second material is supplied, and is performed simultaneously with the second material supply step (S51) to supply the second material.
  • the first gas may be oxygen or a gas containing oxygen.
  • the heating step (S55) is to melt the second material on the surface by heating the area where the second material is supplied, and the second material can be heated through laser irradiation using the heating unit 66.
  • the first layer stacking step (S30) and the gas conversion step (S40) are omitted, and the second layer stacking step (S50) of stacking the second layer on the substrate 10 is performed. It could be.
  • the substrate 10 is a metal layer
  • a second material such as the substrate 10 is laminated on the substrate 10 instead of laminating the first layer, thereby substantially forming a metal oxide layer on the same substrate as the first layer 20. is to form.
  • the second layer 30 of zirconia is formed by supplying oxygen along with zirconium powder through the second layer stacking step (S50) on the zirconium substrate 10.
  • a substrate made of metal - can have a structure of a metal oxide layer.

Abstract

The present invention relates to a method for forming a multi-material structure having improved durability through metal additive manufacturing, the method comprising: a step for supplying a first material onto a surface through a nozzle that moves along a tool path, and melting the first material to laminate a first layer; and a step for supplying a second material onto another surface through a nozzle that moves along a tool path, and melting the second material to laminate a second layer, wherein the first layer is formed as a metal layer and the second layer is formed as a metal oxide layer.

Description

다중재료 구조체의 형성방법Method for forming multi-material structures
본 발명은 다중재료 구조체의 형성방법에 관한 것으로 더욱 상세하게는, 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제1재료를 공급하고 용융시켜 제1층을 적층하는 단계, 다른 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제2재료를 공급하고 용융시켜 제2층을 적층하는 단계를 포함하며, 상기 제1층은 금속 층으로 형성되고, 상기 제2층은 금속 산화물 층으로 형성되도록 하되, 상기 제1층을 적층하는 단계는 표면 상에 제1재료를 공급하는 제1재료 공급단계, 상기 제1재료 공급단계와 동시에 제1재료가 공급되는 영역에 공정가스를 공급하는 공정가스 공급단계를 포함하고, 상기 공정가스는 불활성 가스를 포함하고, 상기 제2층을 적층하는 단계는 표면 상에 제2재료를 공급하는 제2재료 공급단계, 상기 제2재료 공급단계와 동시에 제2재료가 공급되는 영역에 제1가스를 공급하는 제1가스 공급단계를 포함하고, 상기 제1가스는 산소를 포함하도록 함으로써 외곽 표면에 산소분율이 많은 층을 가지는 구조체를 얻을 수 있고, 이를 통해 고경도, 내마모, 내식 등과 같은 특성을 가지는 구조체를 제작할 수 있는 다중재료 구조체의 형성방법에 관한 것이다.The present invention relates to a method of forming a multi-material structure, and more specifically, the step of supplying and melting a first material through a nozzle moving along a tool path on one surface to form a first layer, and depositing a first layer on another surface. supplying and melting a second material through a nozzle moving along the tool path to deposit a second layer, wherein the first layer is formed of a metal layer and the second layer is formed of a metal oxide layer. However, the step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process gas supply step of supplying a process gas to the area where the first material is supplied simultaneously with the first material supply step. It includes a supply step, wherein the process gas includes an inert gas, and the step of laminating the second layer includes a second material supply step of supplying a second material on the surface, and a second material supply step simultaneously with the second material supply step. It includes a first gas supply step of supplying a first gas to the area where the material is supplied, and the first gas contains oxygen, thereby obtaining a structure having a layer with a high oxygen fraction on the outer surface, through which a high diameter It relates to a method of forming a multi-material structure that can produce a structure with characteristics such as durability, wear resistance, corrosion resistance, etc.
3D프린터는 3차원 컴퓨터 지원 설계(CAD 등)를 이용해 만든 형상을 실물로 제작하여 설계 오차를 줄이고 주조 등의 제조에 비해 간편하게 목적물을 제조할 수 있도록 하며, 이중 도 1에 도시된 것과 같은 금속적층가공 기술은 기존 폴리머 소재를 사용하는 3D 프린팅 기술과는 달리 금속 파우더 및 금속 와이어를 이용하여 3차원의 형상을 적층하는 기술이다. 종래의 금속적층가공은 CAM S/W에서 레이어 기반 툴패스를 생성하고 투입재료, 열원 설정과 같은 공정변수를 적용하는 방식으로 진행되었으며, 레이어별로 다른 물성 및 공정변수를 적용하는 방식으로 기술이 발전하였다. A 3D printer reduces design errors by manufacturing a shape created using 3D computer-aided design (CAD, etc.) and makes it easier to manufacture objects than casting. Among these, metal lamination as shown in Figure 1. Unlike 3D printing technology that uses existing polymer materials, the processing technology is a technology that stacks three-dimensional shapes using metal powder and metal wire. Conventional metal additive manufacturing was carried out by creating a layer-based toolpath in CAM S/W and applying process variables such as input materials and heat source settings, and the technology was developed by applying different physical properties and process variables for each layer. did.
적층가공 기술은 모재 상에 특정 점에 열원과 재료, 공정가스를 동시에 투입하여 투입재료의 층을 만드는 기술이다. 상기 공정에서의 공정가스는 아르곤, 질소 가스 등과 같은 비활성, 혹은 그에 준하는 가스를 투입하여 재료 표면에 산화물 형성을 억제하고 이를 통해 적층 안정성을 확보하는 역할을 한다. 이러한 특징을 가지는 적층가공기술은 산소분율이 높은 재료를 사용하지 못하는 한계를 가지며, 해당 한계를 극복하기 위해 전가열, 후가열 등 입열량 및 냉각속도를 조절하는 방식의 추가 공정을 적용하는 공법들이 개발되었으나, 근본적인 해결책은 도출되지 않은 상태이다.Additive manufacturing technology is a technology that creates layers of input materials by simultaneously injecting heat sources, materials, and process gases at specific points on the base material. The process gas in the above process is an inert gas such as argon or nitrogen gas, or an equivalent gas, which suppresses the formation of oxides on the surface of the material and thereby ensures stacking stability. Additive manufacturing technology with these characteristics has a limitation in that it cannot use materials with a high oxygen content, and to overcome this limitation, methods that apply additional processes such as pre-heating and post-heating to control the amount of heat input and cooling rate are used. Although developed, a fundamental solution has not been found.
또한 임플란트, 기계 부품 등 적층공정을 통해 형성되는 생성물을 외부 환경으로부터 보호할 필요가 있는 경우, 최외곽 표면에 산화물 피막을 형성하여 내부를 보호할 수 있다. 이러한 생성물 표면에 산화물을 형성하는 것에 추가적인 공정이 필요하고 시간이 오래 걸리는 문제가 있다.Additionally, when it is necessary to protect products formed through a lamination process, such as implants or mechanical parts, from the external environment, the inside can be protected by forming an oxide film on the outermost surface. There is a problem that forming oxides on the surface of these products requires additional processes and takes a long time.
(특허문헌 1) 한국등록특허공보 제10-2331728호(2021.11.23.)(Patent Document 1) Korean Patent Publication No. 10-2331728 (2021.11.23.)
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로,The present invention is intended to solve the problems of the prior art described above,
본 발명의 목적은, 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제1재료를 공급하고 용융시켜 제1층을 적층하는 단계, 다른 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제2재료를 공급하고 용융시켜 제2층을 적층하는 단계를 포함하며, 상기 제1층은 금속 층으로 형성되고, 상기 제2층은 금속 산화물 층으로 형성되도록 하여 금속 적층가공을 통해 내구성이 향상된 다중재료 구조체의 형성방법을 제공하는 것이다.The object of the present invention is to deposit a first layer by supplying and melting a first material through a nozzle moving along a tool path on one surface, and forming a first layer through a nozzle moving along a tool path on another surface. It includes the step of supplying and melting two materials to laminate a second layer, wherein the first layer is formed of a metal layer and the second layer is formed of a metal oxide layer, so that durability is improved through metal additive manufacturing. A method of forming a material structure is provided.
본 발명의 목적은, 상기 제2층을 적층하는 단계는 표면 상에 제2재료를 공급하는 제2재료 공급단계, 상기 제2재료 공급단계와 동시에 제2재료가 공급되는 영역에 제1가스를 공급하는 제1가스 공급단계를 포함하고, 상기 제1가스는 산소를 포함하여 다른 부가적인 과정 없이 금속적층 과정에서 생성물의 외곽에 금속산화물 층의 형성이 가능한 다중재료 구조체의 형성방법을 제공하는 것이다.The purpose of the present invention is that the step of laminating the second layer includes supplying a second material to the surface, supplying a first gas to the area where the second material is supplied at the same time as the step of supplying the second material. A method of forming a multi-material structure is provided, comprising a step of supplying a first gas, wherein the first gas contains oxygen, and a metal oxide layer can be formed on the outside of the product during the metal lamination process without any additional process. .
본 발명의 목적은, 상기 제1층을 적층하는 단계는 표면 상에 제1재료를 공급하는 제1재료 공급단계, 상기 제1재료 공급단계와 동시에 제1재료가 공급되는 영역에 공정가스를 공급하는 공정가스 공급단계를 포함하고, 상기 공정가스는 불활성 가스를 포함하여 금속층의 적층과정에서 산화물 생성을 방지하는 다중재료 구조체의 형성방법을 제공하는 것이다.The purpose of the present invention is that the step of laminating the first layer includes supplying a first material to the surface, supplying a process gas to the area where the first material is supplied at the same time as the first material supply step. It includes a process gas supply step, wherein the process gas includes an inert gas, thereby providing a method of forming a multi-material structure that prevents oxide generation during the stacking process of the metal layer.
본 발명의 목적은, 공급되는 공정가스를 상기 제1가스로 변환시키거나, 또는 공급되는 제1가스를 공정가스로 변환시키는 가스변환 단계를 더 포함하여 금속층과 금속산화물 층의 적층이 간편하게 전환되는 다중재료 구조체의 형성방법을 제공하는 것이다.The object of the present invention is to convert the supplied process gas into the first gas, or to easily convert the lamination of the metal layer and the metal oxide layer by further comprising a gas conversion step of converting the supplied first gas into the process gas. To provide a method of forming a multi-material structure.
본 발명의 목적은, 상기 제1재료와 제2재료는 동일한 금속원소를 포함하는 금속 분말 또는 합금 분말이고, 상기 금속원소는 티타늄(Ti), 지르코늄(Zr), 알루미늄(Al), 구리(Cu), 크롬(Cr) 중 하나이도록 하여 기재와 최외곽 세라믹 층 사이에 금속층을 두어 결합이 용이한 다중재료 구조체의 형성방법을 제공하는 것이다.The object of the present invention is that the first material and the second material are metal powders or alloy powders containing the same metal element, and the metal elements are titanium (Ti), zirconium (Zr), aluminum (Al), and copper (Cu). ), chromium (Cr), and provides a method of forming a multi-material structure that is easy to bond by placing a metal layer between the substrate and the outermost ceramic layer.
본 발명의 목적은, 상기 제1층을 적층하는 단계는 기재 상에 제1재료를 공급하고 용융시켜 제1층을 적층하고, 상기 제2층을 적층하는 단계는 제1층 상에 제2재료를 공급하고 산소를 포함하는 제1가스를 공급하여 금속산화물의 제2층을 적층함으로써 기재-금속층-금속산화물 층의 구조를 가지는 다중재료 구조체의 형성방법을 제공하는 것이다.The purpose of the present invention is to stack the first layer by supplying and melting the first material on the substrate, and to laminate the second layer by supplying and melting the first material on the substrate. A method of forming a multi-material structure having a structure of a base-metal layer-metal oxide layer is provided by supplying a first gas containing oxygen and stacking a second layer of metal oxide.
본 발명의 목적은, 상기 툴패스는 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되어 입체적인 금속적층이 가능한 다중재료 구조체의 형성방법을 제공하는 것이다.The purpose of the present invention is to provide a method of forming a multi-material structure in which the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, enabling three-dimensional metal stacking.
본 발명의 목적은, 상기 노즐이 툴패스를 따라 이동하면서, 상기 제1층을 적층하는 단계와 제2층을 적층하는 단계가 교번적으로 수행되도록 함으로써 기재-금속층-금속산화물 층의 구조를 빠르게 적층하여 경제성이 있는 다중재료 구조체의 형성방법을 제공하는 것이다.The purpose of the present invention is to quickly form the structure of the base-metal layer-metal oxide layer by allowing the steps of stacking the first layer and the step of stacking the second layer to be performed alternately while the nozzle moves along the tool path. The aim is to provide a method of forming an economical multi-material structure by stacking.
본 발명의 목적은, 제1층 영역과 제2층 영역을 툴패스에 맵핑하는 맵핑단계를 더 포함하고, 상기 툴패스 상의 제1층 영역에서는 제1층을 적층하는 단계가 수행되며, 제2층 영역에서는 제2층을 적층하는 단계가 수행되고, 상기 가스변환단계는, 툴패스를 따라 이동하는 노즐이 제1층 영역에서 제2층 영역으로 진입할 때 공급되는 가스를 공정가스에서 제1가스로 변환하고, 상기 노즐이 제2층 영역에서 제1층 영역으로 진입할 때 공급되는 가스를 제1가스에서 공정가스로 변환하는 다중재료 구조체의 형성방법을 제공하는 것이다.The object of the present invention further includes a mapping step of mapping a first layer area and a second layer area to a tool path, wherein a step of stacking the first layer is performed in the first layer area on the tool path, and a second layer area is stacked. In the layer area, the step of laminating the second layer is performed, and the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first layer. To provide a method of forming a multi-material structure that converts the gas supplied when the nozzle enters from the second layer area to the first layer area and converts the first gas into a process gas.
본 발명은 앞서 본 목적을 달성하기 위해서 다음과 같은 구성을 가진 실시예에 의해서 구현된다.In order to achieve the above-described object, the present invention is implemented by an embodiment having the following configuration.
본 발명의 일 실시예에 따르면, 본 발명은, 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제1재료를 공급하고 용융시켜 제1층을 적층하는 단계, 다른 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제2재료를 공급하고 용융시켜 제2층을 적층하는 단계를 포함하며, 상기 제1층은 금속 층으로 형성되고, 상기 제2층은 금속 산화물 층으로 형성되는 것을 특징으로 한다.According to one embodiment of the present invention, the present invention includes the steps of supplying and melting a first material through a nozzle moving along a tool path on one surface to deposit a first layer, and forming a tool path on another surface. A step of supplying and melting a second material through a moving nozzle to deposit a second layer, wherein the first layer is formed of a metal layer and the second layer is formed of a metal oxide layer. do.
본 발명의 일 실시예에 따르면, 상기 제2층을 적층하는 단계는 표면 상에 제2재료를 공급하는 제2재료 공급단계, 상기 제2재료 공급단계와 동시에 제2재료가 공급되는 영역에 제1가스를 공급하는 제1가스 공급단계를 포함하고, 상기 제1가스는 산소를 포함하는 것을 특징으로 한다.According to one embodiment of the present invention, the step of laminating the second layer includes supplying a second material to the surface, and simultaneously supplying the second material to the area where the second material is supplied. It includes a first gas supply step of supplying one gas, and the first gas includes oxygen.
본 발명의 일 실시예에 따르면, 상기 제1층을 적층하는 단계는 표면 상에 제1재료를 공급하는 제1재료 공급단계, 상기 제1재료 공급단계와 동시에 제1재료가 공급되는 영역에 공정가스를 공급하는 공정가스 공급단계를 포함하고, 상기 공정가스는 불활성 가스를 포함하는 것을 특징으로 한다.According to one embodiment of the present invention, the step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process to the area where the first material is supplied simultaneously with the first material supply step. A process gas supply step of supplying gas, wherein the process gas includes an inert gas.
본 발명의 일 실시예에 따르면, 본 발명은 공급되는 공정가스를 상기 제1가스로 변환시키거나, 또는 공급되는 제1가스를 공정가스로 변환시키는 가스변환 단계를 더 포함하는 것을 특징으로 한다.According to one embodiment of the present invention, the present invention is characterized by further comprising a gas conversion step of converting the supplied process gas into the first gas, or converting the supplied first gas into the process gas.
본 발명의 일 실시예에 따르면, 상기 제1재료와 제2재료는 동일한 금속원소를 포함하는 금속 분말 또는 합금 분말이고, 상기 금속원소는 티타늄(Ti), 지르코늄(Zr), 알루미늄(Al), 구리(Cu), 크롬(Cr) 중 하나인 것을 특징으로 한다.According to one embodiment of the present invention, the first material and the second material are metal powders or alloy powders containing the same metal element, and the metal elements are titanium (Ti), zirconium (Zr), aluminum (Al), It is characterized as being one of copper (Cu) and chromium (Cr).
본 발명의 일 실시예에 따르면, 상기 제1층을 적층하는 단계는 기재 상에 제1재료를 공급하고 용융시켜 제1층을 적층하고, 상기 제2층을 적층하는 단계는 제1층 상에 제2재료를 공급하고 산소를 포함하는 제1가스를 공급하여 금속산화물의 제2층을 적층하는 것을 특징으로 한다.According to one embodiment of the present invention, the step of laminating the first layer is to supply and melt the first material on the substrate to laminate the first layer, and the step of laminating the second layer is to layer the first material on the first layer. It is characterized by supplying a second material and supplying a first gas containing oxygen to stack a second layer of metal oxide.
본 발명의 일 실시예에 따르면, 상기 툴패스는 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되는 것을 특징으로 한다.According to one embodiment of the present invention, the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle.
본 발명의 일 실시예에 따르면, 본 발명은 상기 노즐이 툴패스를 따라 이동하면서, 상기 제1층을 적층하는 단계와 제2층을 적층하는 단계가 교번적으로 수행되는 것을 특징으로 한다.According to one embodiment of the present invention, the nozzle moves along the tool path, and the step of laminating the first layer and the step of laminating the second layer are performed alternately.
본 발명의 일 실시예에 따르면, 제1층 영역과 제2층 영역을 툴패스에 맵핑하는 맵핑단계를 더 포함하고, 상기 툴패스 상의 제1층 영역에서는 제1층을 적층하는 단계가 수행되며, 제2층 영역에서는 제2층을 적층하는 단계가 수행되는 것을 특징으로 한다.According to one embodiment of the present invention, it further includes a mapping step of mapping the first layer area and the second layer area to the tool path, and a step of stacking the first layer is performed in the first layer area on the tool path, , Characterized in that the step of laminating the second layer is performed in the second layer region.
본 발명의 일 실시예에 따르면, 상기 가스변환단계는, 툴패스를 따라 이동하는 노즐이 제1층 영역에서 제2층 영역으로 진입할 때 공급되는 가스를 공정가스에서 제1가스로 변환하고, 상기 노즐이 제2층 영역에서 제1층 영역으로 진입할 때 공급되는 가스를 제1가스에서 공정가스로 변환하는 것을 특징으로 한다.According to one embodiment of the present invention, the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first gas, When the nozzle enters the first layer area from the second layer area, the supplied gas is converted from the first gas to the process gas.
본 발명은 전술한 구성을 통해 다음과 같은 효과를 가진다.The present invention has the following effects through the above-described configuration.
본 발명은, 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제1재료를 공급하고 용융시켜 제1층을 적층하는 단계, 다른 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제2재료를 공급하고 용융시켜 제2층을 적층하는 단계를 포함하며, 상기 제1층은 금속 층으로 형성되고, 상기 제2층은 금속 산화물 층으로 형성되도록 하여 금속 적층가공을 통해 내구성이 향상된 다중재료 구조체의 형성방법을 제공하는 효과가 있다.The present invention provides the steps of supplying and melting a first material through a nozzle moving along a tool path on one surface to deposit a first layer, and applying a second material through a nozzle moving along a tool path on another surface. Comprising the step of supplying and melting a second layer, wherein the first layer is formed of a metal layer and the second layer is formed of a metal oxide layer, thereby providing a multi-material structure with improved durability through metal additive manufacturing. It has the effect of providing a method of forming .
본 발명은, 상기 제2층을 적층하는 단계는 표면 상에 제2재료를 공급하는 제2재료 공급단계, 상기 제2재료 공급단계와 동시에 제2재료가 공급되는 영역에 제1가스를 공급하는 제1가스 공급단계를 포함하고, 상기 제1가스는 산소를 포함하여 다른 부가적인 과정 없이 금속적층 과정에서 생성물의 외곽에 금속산화물 층의 형성이 가능하다.In the present invention, the step of laminating the second layer includes supplying a second material to the surface, supplying a first gas to the area where the second material is supplied simultaneously with the step of supplying the second material. It includes a first gas supply step, wherein the first gas contains oxygen, enabling the formation of a metal oxide layer on the outside of the product during the metal stacking process without any additional process.
본 발명은, 상기 제1층을 적층하는 단계는 표면 상에 제1재료를 공급하는 제1재료 공급단계, 상기 제1재료 공급단계와 동시에 제1재료가 공급되는 영역에 공정가스를 공급하는 공정가스 공급단계를 포함하고, 상기 공정가스는 불활성 가스를 포함하여 금속층의 적층과정에서 산화물 생성을 방지하는 효과를 가진다.In the present invention, the step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process of supplying a process gas to the area where the first material is supplied simultaneously with the first material supply step. It includes a gas supply step, and the process gas contains an inert gas and has the effect of preventing oxide generation during the stacking process of the metal layer.
본 발명은, 공급되는 공정가스를 상기 제1가스로 변환시키거나, 또는 공급되는 제1가스를 공정가스로 변환시키는 가스변환 단계를 더 포함하여 금속층과 금속산화물 층의 적층이 간편하게 전환되는 효과를 준다.The present invention further includes a gas conversion step of converting the supplied process gas into the first gas, or converting the supplied first gas into the process gas, thereby providing the effect of easily converting the lamination of the metal layer and the metal oxide layer. give.
본 발명은, 상기 제1재료와 제2재료는 동일한 금속원소를 포함하는 금속 분말 또는 합금 분말이고, 상기 금속원소는 티타늄(Ti), 지르코늄(Zr), 알루미늄(Al), 구리(Cu), 크롬(Cr) 중 하나이도록 하여 기재와 최외곽 세라믹 층 사이에 금속층을 두어 결합이 용이한 효과를 수반한다.In the present invention, the first material and the second material are metal powders or alloy powders containing the same metal element, and the metal elements are titanium (Ti), zirconium (Zr), aluminum (Al), copper (Cu), It is made of chromium (Cr) and has the effect of facilitating bonding by placing a metal layer between the substrate and the outermost ceramic layer.
본 발명은, 상기 제1층을 적층하는 단계는 기재 상에 제1재료를 공급하고 용융시켜 제1층을 적층하고, 상기 제2층을 적층하는 단계는 제1층 상에 제2재료를 공급하고 산소를 포함하는 제1가스를 공급하여 금속산화물의 제2층을 적층함으로써 기재-금속층-금속산화물 층의 구조를 가지는 다중재료 구조체의 형성방법을 제공하는 효과가 있다.In the present invention, in the step of laminating the first layer, a first material is supplied and melted on a substrate to laminate the first layer, and in the step of laminating the second layer, a second material is supplied on the first layer. There is an effect of providing a method of forming a multi-material structure having a structure of a base-metal layer-metal oxide layer by supplying a first gas containing oxygen and stacking a second layer of metal oxide.
본 발명은, 상기 툴패스는 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되어 입체적인 금속적층이 가능하다.In the present invention, the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, enabling three-dimensional metal stacking.
본 발명은, 상기 노즐이 툴패스를 따라 이동하면서, 상기 제1층을 적층하는 단계와 제2층을 적층하는 단계가 교번적으로 수행되도록 함으로써 기재-금속층-금속산화물 층의 구조를 빠르게 적층하여 경제성이 있다.In the present invention, while the nozzle moves along the tool path, the steps of stacking the first layer and the steps of stacking the second layer are performed alternately, thereby quickly stacking the structure of the base-metal layer-metal oxide layer. It is economical.
본 발명은, 제1층 영역과 제2층 영역을 툴패스에 맵핑하는 맵핑단계를 더 포함하고, 상기 툴패스 상의 제1층 영역에서는 제1층을 적층하는 단계가 수행되며, 제2층 영역에서는 제2층을 적층하는 단계가 수행되고, 상기 가스변환단계는, 툴패스를 따라 이동하는 노즐이 제1층 영역에서 제2층 영역으로 진입할 때 공급되는 가스를 공정가스에서 제1가스로 변환하고, 상기 노즐이 제2층 영역에서 제1층 영역으로 진입할 때 공급되는 가스를 제1가스에서 공정가스로 변환하는 다중재료 구조체의 형성방법을 제공하는 효과를 가진다.The present invention further includes a mapping step of mapping a first layer area and a second layer area to a tool path, where a step of stacking the first layer is performed in the first layer area on the tool path, and the second layer area is In the step of laminating the second layer, the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first gas. It has the effect of providing a method of forming a multi-material structure that converts the gas supplied when the nozzle enters from the second layer area to the first layer area from the first gas to the process gas.
도 1은 종래기술에 따른 적층가공의 개념도Figure 1 is a conceptual diagram of additive manufacturing according to the prior art.
도 2는 본 발명의 일 실시예에 따른 다중재료 구조체의 형성방법의 흐름도Figure 2 is a flow chart of a method of forming a multi-material structure according to an embodiment of the present invention.
도 3 및 도 4는 본 발명에 의한 다중재료 구조체의 형성방법(S)에 의해 형성되는 생성물인 다중재료 구조체의 일 단면3 and 4 are cross-sections of a multi-material structure that is a product formed by the method (S) of forming a multi-material structure according to the present invention.
도 5는 본 발명을 실시하기 위한 3D프린팅 장치를 나타낸 도면Figure 5 is a diagram showing a 3D printing device for carrying out the present invention.
도 6은 본 발명의 일 실시예에 따라 툴패스를 생성하는 것을 도시한 도면Figure 6 is a diagram illustrating generating a toolpath according to an embodiment of the present invention.
도 7은 3차원 이미지 데이터에 툴패스가 형성되는 것을 도시한 도면Figure 7 is a diagram showing a toolpath being formed in 3D image data.
도 8은 본 발명의 일 실시예에 따른 도 7의 A-A' 단면Figure 8 is a cross-section taken along line A-A' of Figure 7 according to an embodiment of the present invention.
도 9는 본 발명의 다른 일 실시예에 따른 도 7의 A-A' 단면Figure 9 is a cross-section taken along line A-A' of Figure 7 according to another embodiment of the present invention.
도 10은 본 발명의 일 실시예에 제1층 적층단계(S30)와 제2층 적층단계(S50)의 흐름도Figure 10 is a flow chart of the first layer stacking step (S30) and the second layer stacking step (S50) in one embodiment of the present invention.
이하에서는 본 발명에 따른 3D프린터 노즐 및 3D 프린터를 첨부된 도면을 참조하여 상세히 설명한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대해 상세한 설명은 생략한다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니고, 다른 구성요소 또한 더 포함할 수 있는 것을 의미하며, 명세서에 기재된 "~부" 등의 용어는 적어도 하나 이상의 기능이나 동작을 처리하는 단위를 의미한다. 또한, 어떤 구성요소간 "연결"된다고 할 때, 이는 구성요소끼리 직접 접촉하며 체결된다는 것에 한정되는 것이 아니라 다른 구성요소를 통하여 체결되는 것을 포함하며, 체결되어있지 않더라도 소정의 힘이나 에너지를 전달할 수 있도록 배치된다는 것을 의미할 수 있다. "제1~", "제2~"와 같은 용어는 동일하거나 실질적으로 동일한 구성을 순서를 달리 표기하기 위해 사용될 수 있고 "제1", "제2" 등을 표시하지 않은 구성과 실질적으로 같은 구성으로 해석될 수 있다. 이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상세히 설명한다.Hereinafter, the 3D printer nozzle and 3D printer according to the present invention will be described in detail with reference to the attached drawings. Additionally, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted. It should be noted that like elements in the drawings are represented by like symbols wherever possible. Additionally, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention are omitted. Unless otherwise specified, all terms in this specification have the same general meaning as understood by a person skilled in the art to which the present invention pertains, and if there is a conflict with the meaning of the terms used in this specification, this specification Follow the definitions used in the specification. Throughout the specification, when a part "includes" a certain component, this does not mean excluding other components unless specifically stated to the contrary, but also means that other components may also be included. Terms such as “~unit” described mean a unit that processes at least one function or operation. In addition, when certain components are said to be "connected," this is not limited to the components being directly contacted and fastened to each other, but also includes being connected through other components, and even if not connected, a certain amount of force or energy can be transmitted. It may mean that it is arranged so that Terms such as "1st~" and "2nd~" may be used to indicate the same or substantially the same configuration in a different order, and may be used to indicate the same or substantially the same configuration as the configuration without "1st", "2nd", etc. It can be interpreted as a composition. Hereinafter, the present invention will be described in detail by explaining preferred embodiments of the present invention with reference to the accompanying drawings.
도 2를 참고하면, 본 발명에 의한 다중재료 구조체의 형성방법(S)은 3D프린팅 또는 클래딩을 통하여 형성되는 생성물의 3차원 이미지를 전달받고 노즐의 이동경로인 툴패스를 생성하고, 3차원 이미지 데이터에 따라 정의되거나 결정되는 생성물의 금속층 영역과 금속산화물 층 영역을 툴패스에 맵핑한 후, 제1재료와 공정가스를 표면에 공급하고 가열하여 제1층을 적층하고, 산소를 포함하는 제1가스와 제2재료를 표면에 공급하면서 가열하여 제2층을 적층함으로써 외곽 표면에 산소분율이 많은 층을 가지는 구조체를 얻을 수 있고, 이를 통해 고경도, 내마모, 내식 등과 같은 특성을 가지는 구조체를 제작할 수 있는 특징을 가진다. 상기 다중재료 구조체의 형성방법(S)은 금속 또는 합금 분말을 재료로 공급하고 아르곤, 질소를 포함하는 비활성 또는 불활성 가스를 공정가스로 사용하고, 산소를 포함하는 가스를 제1가스로 사용함이 바람직하다. 그러나 본 발명은 통상의 기술자에게 이해될 수 있는 범위에서 재료가 와이어, 필라멘트 등으로 대체될 수 있고, 재료에 따라 재료의 활성도가 낮은 적합한 공정가스를 사용할 수도 있으며, 외곽 표면에 금속산화물 층 또는 세라믹 층이 형성되도록 산소가 아닌 다른 가스를 제1가스로 대체할 수도 있다.Referring to Figure 2, the method (S) of forming a multi-material structure according to the present invention receives a three-dimensional image of the product formed through 3D printing or cladding, generates a tool path, which is the movement path of the nozzle, and creates a three-dimensional image. After mapping the metal layer area and metal oxide layer area of the product defined or determined according to the data to the tool path, the first material and process gas are supplied to the surface and heated to deposit the first layer, and the first layer containing oxygen is deposited. By supplying gas and a second material to the surface and heating them to deposit a second layer, a structure with a layer with a high oxygen content can be obtained on the outer surface, thereby creating a structure with characteristics such as high hardness, wear resistance, and corrosion resistance. It has features that can be manufactured. In the method (S) of forming the multi-material structure, metal or alloy powder is supplied as a material, an inert or inert gas containing argon and nitrogen is used as a process gas, and a gas containing oxygen is preferably used as the first gas. do. However, in the present invention, to the extent that can be understood by those skilled in the art, the material can be replaced with wire, filament, etc., and depending on the material, a suitable process gas with low activity of the material can be used, and a metal oxide layer or ceramic layer on the outer surface can be used. A gas other than oxygen may be replaced as the first gas to form a layer.
먼저, 도 3 및 도 4를 참고하여 본 발명에 의한 다중재료 구조체의 형성방법(S)에 의해 형성되는 생성물인 다중재료 구조체를 설명하도록 한다. 상기 생성물은 기재(10), 제1층(20), 제2층(30)을 포함할 수 있다. 여기서 기재(10)란 금속일 수 있으나, 세라믹, 플라스틱 등의 비금속 물질이어도 무방하다. 도 3에서와 같이, 제1층(20)은 기재(10)의 일 표면 상에 적층될 수 있다. 기재 상에 제1재료(21)가 열원(25)과 함께 공급되어 표면 상에서 용융되어 용융풀을 형성하고, 냉각 후 경화됨에 따라 제1층(20)이 기재(10) 표면상에 적층형성된다. 상기 제1재료(21)는 금속 분말 또는 합금 분말일 수 있으며, 열원(25)은 레이저가 사용됨이 바람직하다. 이 과정에서 산화물 생성을 억제하여 적층성을 향상시키기 위해 비활성 또는 불활성 기체를 공정가스(23)로 투입한다. 공정가스는 아르곤(Ar), 질소(N2) 등 반응성이 낮거나 제1재료와 반응하지 않는 기체를 사용함이 바람직하다.First, the multi-material structure, which is a product formed by the method (S) of forming a multi-material structure according to the present invention, will be described with reference to FIGS. 3 and 4. The product may include a substrate 10, a first layer 20, and a second layer 30. Here, the substrate 10 may be a metal, but may also be a non-metallic material such as ceramic or plastic. As shown in FIG. 3 , the first layer 20 may be laminated on one surface of the substrate 10 . The first material 21 is supplied to the substrate with the heat source 25 and melts on the surface to form a molten pool. As it cools and hardens, the first layer 20 is formed on the surface of the substrate 10. . The first material 21 may be a metal powder or an alloy powder, and the heat source 25 is preferably a laser. In this process, inert or inert gas is introduced as the process gas 23 to suppress oxide formation and improve stackability. It is desirable to use a gas that has low reactivity or does not react with the first material, such as argon (Ar) or nitrogen (N 2 ), as the process gas.
다음으로, 제2층(30)은 제1층(20) 상에 적층될 수 있다. 제1층 상에 제2재료(31)가 열원(35)과 함께 공급되어 표면 상에서 용융풀을 형성하고, 냉각 후 경화됨에 따라 제2층(30)이 적층형성될 수 있다. 상기 제2재료(31)는 금속 분말 또는 합금 분말일 수 있으며, 열원(35)은 레이저가 사용됨이 바람직하다. 이 과정에서, 산소를 포함하는 제1가스(33)가 공급되어 제2층(30)이 금속산화물 층으로 형성될 수 있다. 이에 따라, 제1층(20)은 금속 층으로 형성되고, 제2층은 금속산화물 층으로 형성될 수 있다.Next, the second layer 30 may be laminated on the first layer 20. The second material 31 is supplied on the first layer with the heat source 35 to form a molten pool on the surface, and as it cools and hardens, the second layer 30 can be formed by stacking. The second material 31 may be a metal powder or an alloy powder, and the heat source 35 is preferably a laser. In this process, the first gas 33 containing oxygen is supplied so that the second layer 30 can be formed as a metal oxide layer. Accordingly, the first layer 20 may be formed of a metal layer, and the second layer may be formed of a metal oxide layer.
본 발명의 바람직한 일 실시예에서, 제1재료(21)와 제2재료(31)는 동일한 금속원소를 포함하는 금속 분말 또는 합금 분말일 수 있다. 또한, 제1재료(21)와 제2재료(31)는 실질적으로 동일한 금속 분말 또는 합금 분말일 수 있다. 일 실시예에서, 티타늄(Ti) 소재의 기재(10) 상에 지르코늄(Zr)의 제1층(20)이 형성되고, 제1층 상에 지르코니아의 제2층(30)이 형성될 수 있다. 즉 금속 층으로서의 제1층(20) 상에 동일한 금속의 산화물 층인 제2층(20)이 형성될 수 있다. 본 발명에 따른 생성물이 기재 - 금속 층 - 금속산화물 층의 구조를 가지도록 하여 클래딩을 통해 내구성이 증대된 생성물을 형성할 수 있도록 한다. 본 발명의 다른 일 실시예에서는, 기재(10) 상에 제1층(20)을 생략하고 제2층(30)이 적층될 수도 있다. 이 경우 상기 기재(10)가 실질적으로 제1층(20)과 같은 금속층일 수 있다. 즉, 지르코늄 기재(10) 상에 지르코늄 분말과 함께 산소를 공급함으로써 지르코니아의 제2층(30)을 형성함으로써 금속 재질의 기재 - 금속산화물 층의 구조를 가지도록 할 수 있는 것이다.In a preferred embodiment of the present invention, the first material 21 and the second material 31 may be metal powders or alloy powders containing the same metal element. Additionally, the first material 21 and the second material 31 may be substantially the same metal powder or alloy powder. In one embodiment, a first layer 20 of zirconium (Zr) may be formed on a substrate 10 made of titanium (Ti), and a second layer 30 of zirconia may be formed on the first layer. . That is, the second layer 20, which is an oxide layer of the same metal, may be formed on the first layer 20, which is a metal layer. The product according to the present invention has a structure of base material - metal layer - metal oxide layer, so that a product with increased durability can be formed through cladding. In another embodiment of the present invention, the first layer 20 may be omitted and the second layer 30 may be laminated on the substrate 10. In this case, the substrate 10 may be substantially the same metal layer as the first layer 20. That is, by supplying oxygen together with zirconium powder on the zirconium substrate 10, the second layer 30 of zirconia can be formed to have a structure of a metal substrate and a metal oxide layer.
또한 도 3 및 도 4에서 기재(10)가 평평한 판의 형상을 가지도록 도시되어 있으나, 본 발명의 일 실시예에서는 기재(10)가 곡면, 비정형 표면을 가지고, 제1층(20) 및 제2층(30)이 기재 상에 적층될 수도 있다. 특히 상기 기재(10)는 티타늄 또는 티타늄 합금 소재의 임플란트 스크류일 수도 있으며, 이때 제1층(20) 및 제2층(30)은 평평한 면의 형상으로 적층되지 않고 후술하는 바와 같이 곡면을 가진 기재(10)를 감싸도록 적층될 수 있다. 나아가 후술하는 바와 같이, 제1층(20)이 기재(10)가 아닌 제1층 또는 제2층의 표면 상에 적층될 수도 있으며, 제2층(30)이 제1층(20)이 아닌 기재 또는 제2층의 표면 상에 적층될 수도 있다. 나아가 상술한 바와 같이 제1층(20)이 생략되고 금속 기재(10) 상에 제2층(30)이 적층될 수도 있다.In addition, in FIGS. 3 and 4, the substrate 10 is shown to have the shape of a flat plate, but in one embodiment of the present invention, the substrate 10 has a curved and irregular surface, and the first layer 20 and the second layer 20 have a curved surface. Two layers 30 may be laminated on the substrate. In particular, the base material 10 may be an implant screw made of titanium or titanium alloy. In this case, the first layer 20 and the second layer 30 are not laminated in the shape of a flat surface, but are a base material with a curved surface as described later. It can be stacked to surround (10). Furthermore, as will be described later, the first layer 20 may be laminated on the surface of the first or second layer rather than the substrate 10, and the second layer 30 may be laminated on the surface of the first layer 20 instead of the first layer 20. It may also be laminated on the surface of the substrate or the second layer. Furthermore, as described above, the first layer 20 may be omitted and the second layer 30 may be laminated on the metal substrate 10.
다음으로, 도 5를 참고하여 본 발명을 실시하기 위한 3D프린팅 장치의 주요 구성을 설명하면, 상기 3D프린팅 장치는 3D프린터(60) 및 제어기(50)를 포함한다.Next, the main configuration of the 3D printing device for carrying out the present invention will be described with reference to FIG. 5. The 3D printing device includes a 3D printer 60 and a controller 50.
상기 제어기(50)는 3D프린터(60)의 전반적인 동작을 관리하고 제어하도록 구성되며, 인풋되는 3D모델링 데이터, 3차원 이미지 데이터에 대응하는 생성물을 적층공정을 통해 제작하기 위한 툴패스를 형성하고, 수치해석을 통해 생성물의 목적하는 물성에 따라 재료를 특정하거나 생성물을 금속 층과 금속산화물 층 또는 세라믹 층으로 나눌 수 있으며, 3D프린터를 통해 제공되는 재료 및 가스의 공급량을 제어할 수 있다. 이를 위해 상기 제어기(10)는 적어도 하나 이상의 프로세서에 의해 구동될 수 있으며, 데이터변환부(51), 툴패스 생성부(53), 수치해석부(54) 및 공급제어부(55)를 포함할 수 있다.The controller 50 is configured to manage and control the overall operation of the 3D printer 60, and forms a tool path for producing a product corresponding to the input 3D modeling data and 3D image data through a layering process, Through numerical analysis, the material can be specified or the product can be divided into a metal layer, metal oxide layer, or ceramic layer according to the desired physical properties of the product, and the supply amount of materials and gas provided through the 3D printer can be controlled. To this end, the controller 10 may be driven by at least one processor and may include a data conversion unit 51, a tool path generation unit 53, a numerical analysis unit 54, and a supply control unit 55. there is.
상기 데이터변환부(51)는 입력된 3차원 이미지 데이터를 STL 등의 형식을 가지는 입체조형 데이터로 변환하도록 구비될 수 있다. 변환된 입체조형 데이터는 각 메쉬의 꼭지점의 정보, 메쉬가 형성하는 면에 대한 정보를 포함한다.The data conversion unit 51 may be provided to convert the input 3D image data into stereoscopic data in a format such as STL. The converted three-dimensional data includes information about the vertices of each mesh and information about the surface formed by the mesh.
상기 툴패스생성부(53)는 입체조형 데이터로부터 3차원 모델을 렌더링하고, 적층가공 시 노즐의 이동 경로인 툴패스를 생성하는 구성이다. 도 4를 참고하면, 상기 툴패스생성부(53)는 렌더링된 3D모델링 데이터, 3차원 이미지 데이터(D)를 복수의 면으로 슬라이싱하고 3차원 이미지 데이터(D)와 각 면이 교차하는 영역에 대해 소정 알고리즘을 따라 복수의 선분을 그어 노즐의 이동경로인 툴패스를 생성한다. 도 6에서는 슬라이싱하는 복수의 면이 평면으로 도시되었지만, 후술하는 바와 같이 3차원 이미지 데이터(D)를 슬라이싱하는 면이 곡면이나 둘 이상의 평면일 수 있으며, 툴패스가 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성될 수 있다. 도 4에 도시된 바와 같이 본 발명의 일 실시예에서 상기 툴패스는 교차하는 영역을 지그재그 방향으로 채울 수 있으며, 동심원 형상 등을 포함하는 다른 형상으로 교차하는 영역을 채우는 것을 권리범위에서 배제하지 않는다. 상기 툴패스는 교차하는 영역을 따라 채워지는 선분의 간격을 조정함으로써 크기와 기공률 등을 조절할 수 있다. The tool path generator 53 is configured to render a 3D model from three-dimensional modeling data and generate a tool path, which is a movement path of a nozzle during additive manufacturing. Referring to FIG. 4, the toolpath generator 53 slices the rendered 3D modeling data and 3D image data (D) into a plurality of faces and creates a slice in the area where each face intersects the 3D image data (D). A tool path, which is the moving path of the nozzle, is created by drawing a plurality of line segments according to a predetermined algorithm. In FIG. 6, a plurality of slicing surfaces are shown as flat surfaces, but as will be described later, the surface slicing the 3D image data (D) may be a curved surface or two or more flat surfaces, and the tool path may be a curved surface or a surface that intersects at a predetermined angle. It can be formed on two or more planes. As shown in FIG. 4, in one embodiment of the present invention, the tool path can fill the intersecting area in a zigzag direction, and filling the intersecting area with other shapes, including concentric circle shapes, is not excluded from the scope of rights. . The size and porosity of the toolpath can be adjusted by adjusting the spacing of line segments filled along the intersecting area.
다시 도 5를 참고하면, 상기 수치해석부(54)는 목적함수에 따라 수치해석을 수행하도록 구비되며, 수치해석을 통해 생성물의 재료를 결정하거나 생성물의 금속 층 두께, 금속산화물 층 또는 세라믹 층의 두께를 결정할 수 있다. 상기 수치해석부(54)는 3차원 이미지 데이터의 형상이 가지는 물성의 최적화 목표에 따른 목적함수를 지정하고, 정해진 목적함수에 따라 수치해석을 수행하여 생성물의 형성을 위한 재료를 결정할 수 있다. 결정된 재료는 기재의 표면 상에 클래딩 방식으로 적층형성 될 수 있다. 바람직한 일 실시예에서, 결정되는 재료(제1재료와 제2재료를 포함한다)는 금속 분말일 수 있다. 여기서, 금속은 합금을 포함하여 금속 분말 또는 합금 분말이 제1재료 또는 제2재료로 공급될 수 있다. 특히 산소와 반응을 통해 금속산화물 층을 형성하는 경우 내구성이 증가하는 재료로, 티타늄(Ti), 지르코늄(Zr), 알루미늄(Al), 구리(Cu), 크롬(Cr) 또는 이들의 합금 등이 공급되는 재료로 결정될 수 있다. 티타늄 및 지르코늄 합금의 경우 산화티타늄, 지르코니아 등 금속산화물 층을 양호하게 형성하는 범위 내에서 자유로운 조성이 가능하다. Referring again to FIG. 5, the numerical analysis unit 54 is equipped to perform numerical analysis according to an objective function, and determines the material of the product through numerical analysis or determines the thickness of the metal layer, metal oxide layer, or ceramic layer of the product. The thickness can be determined. The numerical analysis unit 54 can specify an objective function according to the optimization goal of the physical properties of the shape of the 3D image data, and perform numerical analysis according to the determined objective function to determine the material for forming the product. The determined material can be laminated on the surface of the substrate in a cladding manner. In a preferred embodiment, the material to be determined (including the first material and the second material) may be a metal powder. Here, the metal includes an alloy, and metal powder or alloy powder may be supplied as the first material or the second material. In particular, it is a material that increases durability when it reacts with oxygen to form a metal oxide layer, such as titanium (Ti), zirconium (Zr), aluminum (Al), copper (Cu), chromium (Cr), or alloys thereof. It can be determined by the supplied materials. In the case of titanium and zirconium alloys, free composition is possible within a range that satisfactorily forms a metal oxide layer such as titanium oxide and zirconia.
상기 공급제어부(55)는 3D프린터(60)에서 노즐을 통해 공급되는 재료의 종류, 양, 속도 등을 제어하는 구성으로, 공급제어부(55)에서의 분말공급지령을 통해 재료의 공급속도와 공급량이 실시간으로 전달된다. 상기 공급제어부(55)는 금속 원소를 포함하는 재료의 공급과 함께, 공정가스 및 제1가스를 포함하는 가스의 공급도 제어할 수 있다. 특히 재료를 가열하는 레이저의 빔 사이즈에 의해 조사면적이 변경되거나 툴패스 상의 소정 영역에서 필요한 생성물의 두께가 달라지는 경우, 투입되는 공정가스 및/또는 제1가스의 양을 조절 및 변경하여 원활한 적층공정을 수행할 수 있다.The supply control unit 55 is configured to control the type, amount, speed, etc. of the material supplied through the nozzle in the 3D printer 60, and controls the supply speed and amount of the material through the powder supply command from the supply control unit 55. This is delivered in real time. The supply control unit 55 can control the supply of gas including the process gas and the first gas along with the supply of the material containing the metal element. In particular, when the irradiation area changes depending on the beam size of the laser that heats the material or the thickness of the product required in a certain area on the tool path changes, the amount of process gas and/or first gas input can be adjusted and changed to ensure a smooth lamination process. can be performed.
도 5를 참고하여 본 발명의 실시를 위한 3D프린터(60)를 설명하면, 상기 3D프린터는 적층가공을 통해 생성물을 형성하며, 바람직하게는 금속분말을 노즐을 통해 분사한 후 레이저 등의 가열수단을 통해 표면에 용착시킴으로써 적층가공을 수행할 수 있다. 상기 3D프린터(60)는 복수 종류의 재료를 공급하여 혼합한 후 노즐을 통해 분사할 수 있고, 적층공정의 위해 공급되는 서로 다른 가스인 공정가스와 제1가스를 블로워를 통해 공급할 수 있다. 상기 3D프린터는 재료공급부(61), 노즐(62), 공정가스 공급부(63), 제1가스 공급부(64), 블로워(65), 가열부(66) 및 지그(67)를 포함할 수 있다.When explaining the 3D printer 60 for practicing the present invention with reference to FIG. 5, the 3D printer forms a product through additive manufacturing, preferably by spraying metal powder through a nozzle and then using a heating means such as a laser. Additive manufacturing can be performed by welding it on the surface. The 3D printer 60 can supply and mix multiple types of materials and then spray them through a nozzle, and can supply process gas and first gas, which are different gases supplied for the lamination process, through a blower. The 3D printer may include a material supply unit 61, a nozzle 62, a process gas supply unit 63, a first gas supply unit 64, a blower 65, a heating unit 66, and a jig 67. .
상기 재료공급부(61)는 적층가공을 위해 분사할 분말을 저장하고 공급하는 부분으로, 재료의 종류에 따라 복수개 구비될 수 있으며, 본 발명의 다른 실시예에서는 금속분말이 아닌 와이어, 필라멘트 등을 공급하도록 구비될 수도 있다. 상기 재료공급부(61)의 소정 부피를 가진 용기 내에 재료가 저장될 수 있으며, 노즐(62) 측으로 재료가 공급될 수 있는데, 복수의 용기(61a, 61b) 내에 서로 다른 금속 또는 합금 분말로서의 재료가 저장될 수 있다. 재료공급부(61)는 이종재료를 혼합하여 공급할 수도 있다. 재료공급부(61)는 상기 용기의 개폐 정도 및 모터의 회전속도를 조절함으로써 반출되는 재료의 양 및/또는 속도를 조절할 수 있으며, 재료가 반출될 때 진동 주파수를 조절하여 재료의 양 및/또는 속도를 조절할 수도 있다.The material supply unit 61 is a part that stores and supplies powder to be sprayed for additive manufacturing, and may be provided in plural numbers depending on the type of material. In another embodiment of the present invention, wire, filament, etc. are supplied rather than metal powder. It may be equipped to do so. Materials may be stored in a container having a predetermined volume of the material supply unit 61, and materials may be supplied to the nozzle 62. Materials as different metal or alloy powders may be present in the plurality of containers 61a and 61b. It can be saved. The material supply unit 61 may mix and supply different materials. The material supply unit 61 can control the amount and/or speed of the material being discharged by adjusting the degree of opening and closing of the container and the rotation speed of the motor, and can adjust the amount and/or speed of the material by adjusting the vibration frequency when the material is discharged. You can also adjust .
상기 노즐(62)은 3D프린터의 일측에 결합되어 공급된 재료를 표면상에 토출 내지 분사하도록 구비된다. 상기 노즐(62)은 상술한 툴패스를 따라 이동하도록 제어될 수 있다. 상기 노즐(62)은 전후좌우 이동, 상하이동하도록 제어되어 xyz축 이동을 수행할 수 있으며, 지그(67)에 파지된 생성물을 향한 재료의 토출각도가 변화하도록 회전이 제어될 수도 있다.The nozzle 62 is coupled to one side of the 3D printer and is provided to discharge or spray the supplied material onto the surface. The nozzle 62 can be controlled to move along the tool path described above. The nozzle 62 can be controlled to move back and forth, left and right, and move up and down to perform xyz axis movement, and its rotation may be controlled to change the discharge angle of the material toward the product held in the jig 67.
상기 공정가스 공급부(63)는 제1층(20)의 적층 시 산화물 생성을 방지하도록 비활성 또는 불활성 가스를 제1재료가 공급되는 영역에 공급하는 구성으로, 아르곤(Ar), 질소(N2)와 같은 기체를 저장하고 공급할 수 있다.The process gas supply unit 63 is configured to supply an inert or inert gas to the area where the first material is supplied to prevent oxide generation when stacking the first layer 20, such as argon (Ar), nitrogen (N 2 ) Gases such as can be stored and supplied.
상기 제1가스 공급부(64)는 제2층(30)의 적층 시, 금속산화물 층을 형성하도록 산소를 포함하는 제1가스를 제2재료가 공급되는 영역에 공급하는 구성으로, 산소를 포함하는 기체를 저장하고 공급한다.The first gas supply unit 64 is configured to supply a first gas containing oxygen to the area where the second material is supplied to form a metal oxide layer when stacking the second layer 30. Stores and supplies gas.
상기 블로워(65)는 공정가스 공급부(63) 또는 제1가스 공급부(64)로부터 전달되는 공정가스 또는 제1가스를 제1재료가 공급되는 영역에 공급한다.The blower 65 supplies the process gas or first gas delivered from the process gas supply unit 63 or the first gas supply unit 64 to the area where the first material is supplied.
상기 가열부(66)는 노즐(62) 측 일단에서 표면상에 분사되는 재료를 가열하여 용융상태로 만들도록 구비된다. 상기 가열부(66)는 레이저를 조사하여 재료를 가열할 수 있으며, 상기 레이저는 적층방식에 따라 펄스 방식으로 조사될 수 있다. 가열부(66)는 표면 상에서 재료를 용융시키기에 적합한 다른 구성일 수도 있다.The heating unit 66 is provided at one end of the nozzle 62 to heat the material sprayed onto the surface to melt it. The heating unit 66 can heat the material by irradiating a laser, and the laser can be irradiated in a pulse manner depending on the stacking method. Heating portion 66 may be of other configurations suitable for melting material on the surface.
상기 지그(67)는 생성물 또는 기재를 파지하는 구성으로, 재료를 토출하는 노즐과 함께 3차원 형상의 생성물 적층을 위하여 파지한 생성물 또는 기재를 기울이거나 회전시킬 수 있다.The jig 67 is configured to hold a product or a substrate and, together with a nozzle that discharges material, can tilt or rotate the held product or substrate to stack products in a three-dimensional shape.
다시 도 2를 참고하여 본 발명에 따른 다중재료 구조체의 형성방법(S)을 설명하면, 상기 다중재료 구조체의 형성방법(S)은 툴패스 생성단계(S10), 맵핑단계(S20), 제1층 적층단계(S30), 가스변환단계(S40), 제2층 적층단계(S50)를 포함할 수 있다.Referring again to FIG. 2 and explaining the method (S) of forming a multi-material structure according to the present invention, the method (S) of forming a multi-material structure includes a tool path generation step (S10), a mapping step (S20), and a first It may include a layer stacking step (S30), a gas conversion step (S40), and a second layer stacking step (S50).
상기 툴패스 생성단계(S10)는 3D 모델링을 포함한 3차원 이미지 데이터를 입력받고, 상기 3차원 이미지 데이터를 복수의 슬라이스로 슬라이싱하고 노즐의 이동경로를 결정하는 과정으로, 툴패스생성부(13)에서 수행될 수 있으며, 인풋받은 3차원 이미지 데이터를 3차원 객체로 렌더링한 후 복수의 면으로 슬라이싱을 수행할 수 있다. 상기 툴패스 생성단계(S10)는 3차원 이미지 데이터(P)와 각 평면이 교차하는 영역에 대해 소정 알고리즘을 따라 복수의 선분을 그어 노즐의 이동경로인 툴패스를 생성할 수 있다. 이때 툴패스는 도 7에 도시된 바와 같이 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되거나, 일 평면 상에 형성될 수 있다. 툴패스(T)는 3차원 좌표값과 적층공정에 필요한 데이터를 가진 배열로 저장될 수 있다.The tool path generation step (S10) is a process of receiving 3D image data including 3D modeling, slicing the 3D image data into a plurality of slices, and determining the movement path of the nozzle. The tool path generator 13 It can be performed by rendering the input 3D image data as a 3D object and then performing slicing on multiple surfaces. In the tool path generation step (S10), a tool path, which is a movement path of the nozzle, can be generated by drawing a plurality of line segments according to a predetermined algorithm in the area where the 3D image data (P) and each plane intersect. At this time, the toolpath may be formed on a curved surface or two or more planes that intersect at a predetermined angle, as shown in FIG. 7, or may be formed on one plane. The toolpath (T) can be stored as an array with 3D coordinate values and data necessary for the lamination process.
툴패스가 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되는 경우, 정의된 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면으로 3차원 이미지 데이터를 슬라이싱하고, 상기 곡면 또는 평면을 따라 적층공정 수행을 위한 툴패스가 형성된다. 일 실시예에서, 도 7 및 도 8에 도시된 바와 같이 각 툴패스(T1, T2)가 제1층(20)이나 제2층(30)이 형성되는 부분 내에서만 형성될 수 있다. 기형성된 기재(10) 상에 일정하거나 일정하게 변화하는 두께로 제1층(20) 및 제2층(30)을 형성하는 경우, 지그(67)를 통한 기재(10) 또는 생성물의 기울임 또는 회전이 용이하고, 노즐(62)의 z축 이동 및 회전을 세밀하게 제어할 수 있는 경우 툴패스를 상술한 바와 같이 형성하여 내구성을 증대시킬 수 있다.When the toolpath is formed on a curved surface or two or more planes that intersect at a predetermined angle, three-dimensional image data is sliced with a defined curved surface or two or more planes that intersect at a predetermined angle, and a lamination process is performed along the curved surface or plane. A toolpath for execution is formed. In one embodiment, as shown in FIGS. 7 and 8, each tool path T1 and T2 may be formed only within a portion where the first layer 20 or the second layer 30 is formed. When forming the first layer 20 and the second layer 30 with a constant or constantly changing thickness on the preformed substrate 10, tilting or rotating the substrate 10 or the product through the jig 67 If this is easy and the z-axis movement and rotation of the nozzle 62 can be controlled in detail, durability can be increased by forming the tool path as described above.
다음으로, 복수의 평면으로 3차원 이미지 데이터를 슬라이싱하고, 툴패스가 각 평면상에 형성될 수 있다. 3차원 형상을 가지는 기재(10)를 복수의 평면으로 슬라이싱하는 경우, 도 7 및 도 9에서와 같이 툴패스(T3, T4)는 제1층(20)이 형성되는 부분인 제1층 영역(A1)과 제2층(30)이 형성되는 부분인 제2층 영역(A2)에 걸쳐 형성되며, 후술하는 맵핑단계(S20)에서 3차원 이미지 데이터에 따라 정의된 제1층 영역(A1)과 제2층 영역(A2)이 평면 내 툴패스 상에 맵핑될 수 있다. Next, the 3D image data can be sliced into multiple planes, and a toolpath can be formed on each plane. When slicing the substrate 10 having a three-dimensional shape into a plurality of planes, as shown in FIGS. 7 and 9, the tool paths T3 and T4 are the first layer region (where the first layer 20 is formed) It is formed over the second layer area (A2), which is the part where A1) and the second layer 30 are formed, and the first layer area (A1) defined according to 3D image data in the mapping step (S20) described later. The second layer area A2 may be mapped on the in-plane toolpath.
상기 맵핑단계(S20)는 3차원 이미지 데이터에 따라 정의되는 제1층 영역과 제2층 영역을 툴패스에 맵핑하는 과정으로, 좌표별로 정의되는 제1층 영역과 제2층 영역을 툴패스 상에 대응시킨다. 적층공정의 재료로 이종재료를 사용하는 경우 제1층 영역과 제2층 영역이 재료의 성분비와 함께 좌표에 대응되는 툴패스에 맵핑될 수 있으며, 이때 각 툴패스의 좌표와 함께 제1층 영역, 제2층 영역에 대응되는 값이나 적층공정 시 가스의 성분 등이 맵핑되어 저장될 수 있다.The mapping step (S20) is a process of mapping the first layer area and the second layer area defined according to 3D image data to the toolpath. The first layer area and the second layer area defined by coordinates are mapped onto the toolpath. corresponds to When using heterogeneous materials as materials for the lamination process, the first layer area and the second layer area can be mapped to a tool path corresponding to the coordinates along with the component ratio of the material, and at this time, the first layer area can be mapped to the coordinates of each tool path together with the , values corresponding to the second layer area or gas components during the lamination process can be mapped and stored.
제1층 영역(A1)과 제2층 영역(A2)은 3차원 이미지 데이터의 형상과 크기, 수치해석 결과에 따라 정의될 수 있다. 제1층 영역(A1)은 적층공정 시 제1재료와 공정가스의 공급을 통해 금속층을 형성하도록 하는 부분이며, 제2층 영역(A2)은 적층공정 시 제2재료와 제1가스의 공급을 통해 금속산화물 층을 형성하도록 하는 부분이다. 일 실시예에서는, 3차원 형상의 기재(10)를 둘러싸도록 소정 두께의 제1층 영역(A1)이 3차원 이미지 데이터 상에서 정의되고, 생성물의 외곽 부분의 소정 두께가 제2층 영역(A2)으로 3차원 이미지 데이터 상에서 정의될 수 있다.The first layer area (A1) and the second layer area (A2) can be defined according to the shape and size of the 3D image data and the results of numerical analysis. The first layer area (A1) is a part that forms a metal layer through the supply of the first material and process gas during the lamination process, and the second layer area (A2) is a part that forms the metal layer through the supply of the second material and first gas during the lamination process. This is the part that forms the metal oxide layer. In one embodiment, a first layer area (A1) of a predetermined thickness is defined on the 3D image data to surround the three-dimensional shaped substrate 10, and a predetermined thickness of the outer portion of the product is defined as a second layer area (A2). It can be defined on 3D image data.
다시 도 2 및 도 10을 참고하면, 제1층 적층단계(S30)는 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제1재료를 공급하고 용융시켜 제1층을 적층하는 단계로서, 전술한 바와 같이 금속 또는 합금 분말인 제1재료를 제1층 영역(A1)에 공급하면서 가열하여 용융풀을 형성한 후 냉각시켜 금속층으로서의 제1층의 일부분을 형성하는 단계이다. 제1층 적층단계(S30)는 툴패스 상에 제1층 영역이 맵핑된 경우 상기 툴패스에 제1재료와 공정가스를 공급하여 제1층을 형성할 수 있다. 일 실시예에서, 제1층 적층단계(S30)는 기재(10)의 표면 상에 제1재료를 공급하여 제1층을 형성할 수 있으나, 제1층(20)의 표면이나 제2층(30)의 표면 상에도 제1재료를 공급하여 제1층을 형성할 수 있다. 즉, 도 8에 도시된 경우와 같이 툴패스가 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되면서, 상기 툴패스(T1)가 제1층 영역(A1) 내에서만 형성되는 경우 상기 제1층 적층단계(S30)는 기재(10) 상에 제1재료를 공급하고 용융시켜 제1층을 적층할 수 있다. 이와 비교하여, 도 9에 도시된 바와 같이 툴패스(T3, T4)가 일평면 상에 형성되면서, 하나의 툴패스 내에 제1층 영역(A1)과 제2층 영역(A2)이 동시에 맵핑되는 경우, 상기 제1층 적층단계(S30)는 기재(10), 제1층(20) 또는 제2층(30)의 표면 상에 제1재료를 공급하고 용융시켜 제1층을 적층할 수 있다. 상기 제1층 적층단계(S30)는 제1재료 공급단계(S31), 공정가스 공급단계(S33), 가열단계(S35)를 포함한다.Referring again to FIGS. 2 and 10, the first layer stacking step (S30) is a step of supplying and melting the first material through a nozzle moving along the tool path on one surface to deposit the first layer, as described above. As described above, the first material, which is a metal or alloy powder, is supplied to the first layer area A1 and heated to form a molten pool, and then cooled to form a portion of the first layer as a metal layer. In the first layer stacking step (S30), when the first layer area is mapped on the tool path, the first layer can be formed by supplying the first material and process gas to the tool path. In one embodiment, the first layer stacking step (S30) may form a first layer by supplying a first material on the surface of the substrate 10, but the surface of the first layer 20 or the second layer ( The first layer can be formed by supplying the first material on the surface of 30). That is, as in the case shown in FIG. 8, when the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, and the tool path T1 is formed only within the first layer area A1, the first layer area A1 In the first layer stacking step (S30), the first layer can be stacked by supplying and melting the first material on the substrate 10. In comparison, as shown in FIG. 9, the tool paths T3 and T4 are formed on one plane, and the first layer area A1 and the second layer area A2 are mapped simultaneously within one tool path. In this case, in the first layer stacking step (S30), the first layer can be stacked by supplying and melting the first material on the surface of the substrate 10, the first layer 20, or the second layer 30. . The first layer stacking step (S30) includes a first material supply step (S31), a process gas supply step (S33), and a heating step (S35).
상기 제1재료 공급단계(S31)는 기재(10), 제1층(20) 또는 제2층(30)의 표면 상에 제1재료를 공급하는 과정으로, 재료공급부(61)로부터 공급된 제1재료가 노즐(62)을 통해 공급되는 것으로 수행될 수 있다.The first material supply step (S31) is a process of supplying the first material on the surface of the substrate 10, the first layer 20, or the second layer 30, and the first material supplied from the material supply unit 61 1 This can be performed by supplying the material through the nozzle 62.
상기 공정가스 공급단계(S33)는 제1재료가 공급되는 영역에 블로어(65)를 통해 공정가스를 공급하는 과정으로, 상기 제1재료 공급단계(S31)와 동시에 수행됨으로써 제1재료의 적층 중 산화물 생성을 방지할 수 있다. 상술한 바와 같이 공정가스는 아르곤, 네온과 같은 불활성 가스일 수 있고, 질소와 같은 반응성이 낮은 가스를 사용할 수 있으며, 이들의 혼합물을 사용할 수도 있다. The process gas supply step (S33) is a process of supplying process gas through the blower 65 to the area where the first material is supplied. It is performed simultaneously with the first material supply step (S31), so that the process gas is supplied to the area where the first material is supplied. The formation of oxides can be prevented. As described above, the process gas may be an inert gas such as argon or neon, a less reactive gas such as nitrogen may be used, or a mixture of these may be used.
상기 가열단계(S35)는 제1재료가 공급되는 영역을 가열하여 제1재료를 표면 상에서 용융시키는 것으로, 가열부(66)를 이용한 레이저 조사를 통해 제1재료의 가열이 이루어질 수 있다.The heating step (S35) is to melt the first material on the surface by heating the area where the first material is supplied, and the first material can be heated through laser irradiation using the heating unit 66.
상기 가스변환단계(S40)는 제1재료 또는 제2재료가 공급되는 영역에 블로어(65)를 통해 공급되는 가스를 변환하는 과정으로, 공정가스를 상기 제1가스로 변환시키거나, 또는 공급되는 제1가스를 공정가스로 변환시킬 수 있다. 상기 가스변환단계(S40)는 공정가스 공급부(63)로부터 블로어(65)로 공급되는 공정가스를 차단하고 제1가스 공급부(64)로부터 제1가스를 공급받도록 하거나, 제1가스 공급부(64)로부터 제1가스 유동을 차단하고 공정가스 공급부(63)로부터 공정가스를 공급받을 수 있다. 이를 위해 공정가스 공급부(63), 제1가스 공급부(64)와 블로어(65) 사이에 3-way 밸브를 설치하고, 공급제어부(55)에 의해 밸브의 조작이 제어되는 것을 통해 공급되는 가스가 변환될 수 있다. 상기 가스변환단계(S40)는 노즐(62)이 툴패스 상에 맵핑된 제1층 영역(A1)에서 제2층 영역(A2)으로 이동할 때, 제2층 영역(A2)에서 제1층 영역(A1)으로 이동할 때 수행되어 본 발명에 따른 다중재료 구조체의 형성방법에서 복수회 수행되는 것을 배제하지 않는다. 또한 하나의 툴패스 상에서 적층공정이 완료된 후 다른 툴패스 상에서 적층공정을 시작할 때 각 툴패스에 맵핑된 제1층, 제2층에 대한 정보가 다른 경우 수행될 수도 있다.The gas conversion step (S40) is a process of converting the gas supplied through the blower 65 to the area where the first material or second material is supplied, converting the process gas into the first gas, or converting the supplied gas into the first gas. The first gas can be converted into process gas. The gas conversion step (S40) blocks the process gas supplied from the process gas supply unit 63 to the blower 65 and receives the first gas from the first gas supply unit 64, or the first gas supply unit 64 The flow of the first gas can be blocked and the process gas can be supplied from the process gas supply unit 63. For this purpose, a 3-way valve is installed between the process gas supply unit 63, the first gas supply unit 64 and the blower 65, and the operation of the valve is controlled by the supply control unit 55 so that the supplied gas can be converted. The gas conversion step (S40) is performed when the nozzle 62 moves from the first layer area (A1) mapped on the tool path to the second layer area (A2), from the second layer area (A2) to the first layer area. It is not excluded that it is performed when moving to (A1) and performed multiple times in the method of forming a multi-material structure according to the present invention. In addition, when the lamination process is completed on one toolpath and then the lamination process is started on another toolpath, it may be performed if the information about the first layer and the second layer mapped to each toolpath is different.
상기 제2층 적층단계(S50)는 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제2재료를 공급하고 용융시켜 제2층을 적층하는 단계로서, 전술한 바와 같이 금속 또는 합금 분말인 제2재료를 제2층 영역(A2)에 공급하면서 가열하여 용융풀을 형성한 후 냉각시켜 금속층으로서의 제1층의 일부분을 형성하는 단계이다. 제2층 적층단계(S50)는 툴패스 상에 제2층 영역이 맵핑된 경우 상기 툴패스에 제2재료와 제1가스를 공급하여 제2층을 형성할 수 있다. 일 실시예에서, 제2층 적층단계(S50)는 제1층(20)의 표면 상에 제2재료를 공급하여 제2층을 형성할 수 있으나, 제2층(30)의 표면이나 기재(10)의 표면 상에도 제2재료를 공급하여 제2층을 형성할 수 있다. 즉, 도 8에 도시된 경우와 같이 툴패스가 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되면서, 상기 툴패스(T2)가 제2층 영역(A2) 내에서만 형성되는 경우 상기 제2층 적층단계(S50)는 제1층(20) 상에 제2재료를 공급하고 용융시켜 제2층을 적층할 수 있다. 이와 비교하여, 도 9에 도시된 바와 같이 툴패스(T3, T4)가 일평면 상에 형성되면서, 하나의 툴패스 내에 제1층 영역(A1)과 제2층 영역(A2)이 동시에 맵핑되는 경우, 상기 제2층 적층단계(S50)는 기재(10), 제1층(20) 또는 제2층(30)의 표면 상에 제2재료를 공급하고 용융시켜 제2층을 적층할 수 있다. 이에 따라 상기 제1층 적층단계(S30)와 제2층 적층단계(S50)는 교번적으로 수행될 수 있다. 상기 제2층 적층단계(S50)는 제2재료 공급단계(S51), 제1가스 공급단계(S53), 가열단계(S55)를 포함한다.The second layer stacking step (S50) is a step of supplying and melting a second material through a nozzle moving along a tool path on one surface to stack the second layer. As described above, the second layer is stacked using a metal or alloy powder. This is the step of heating the second material while supplying it to the second layer area A2 to form a molten pool and then cooling it to form a portion of the first layer as a metal layer. In the second layer stacking step (S50), when the second layer area is mapped on the tool path, the second layer can be formed by supplying the second material and the first gas to the tool path. In one embodiment, the second layer stacking step (S50) may form the second layer by supplying a second material on the surface of the first layer 20, but the surface or substrate of the second layer 30 ( 10) A second layer can also be formed on the surface by supplying a second material. That is, as in the case shown in FIG. 8, when the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle, and the tool path T2 is formed only within the second layer area A2, the second layer area A2 In the two-layer stacking step (S50), the second layer can be stacked by supplying and melting the second material on the first layer 20. In comparison, as shown in FIG. 9, the tool paths T3 and T4 are formed on one plane, and the first layer area A1 and the second layer area A2 are mapped simultaneously within one tool path. In this case, in the second layer stacking step (S50), the second layer can be stacked by supplying and melting the second material on the surface of the substrate 10, the first layer 20, or the second layer 30. . Accordingly, the first layer stacking step (S30) and the second layer stacking step (S50) may be performed alternately. The second layer stacking step (S50) includes a second material supply step (S51), a first gas supply step (S53), and a heating step (S55).
상기 제2재료 공급단계(S51)는 기재(10), 제1층(20) 또는 제2층(30)의 표면 상에 제2재료를 공급하는 과정으로, 재료공급부(61)로부터 공급된 제2재료가 노즐(62)을 통해 공급되는 것으로 수행될 수 있다.The second material supply step (S51) is a process of supplying the second material on the surface of the substrate 10, the first layer 20, or the second layer 30, and the second material supplied from the material supply unit 61 2 This can be performed by supplying the material through the nozzle 62.
상기 제1가스 공급단계(S53)는 제2재료가 공급되는 영역에 블로어(65)를 통해 제1가스를 공급하는 과정으로, 상기 제2재료 공급단계(S51)와 동시에 수행됨으로써 제2재료의 적층과 함께 금속산화물을 생성하여 생성물의 외곽 표면을 금속산화물 층으로 적층하도록 할 수 있다. 상술한 바와 같이 제1가스는 산소이거나, 산소를 포함하는 가스일 수 있다. The first gas supply step (S53) is a process of supplying the first gas through the blower 65 to the area where the second material is supplied, and is performed simultaneously with the second material supply step (S51) to supply the second material. By creating metal oxide along with lamination, the outer surface of the product can be laminated with a metal oxide layer. As described above, the first gas may be oxygen or a gas containing oxygen.
상기 가열단계(S55)는 제2재료가 공급되는 영역을 가열하여 제2재료를 표면 상에서 용융시키는 것으로, 가열부(66)를 이용한 레이저 조사를 통해 제2재료의 가열이 이루어질 수 있다.The heating step (S55) is to melt the second material on the surface by heating the area where the second material is supplied, and the second material can be heated through laser irradiation using the heating unit 66.
본 발명의 다른 일 실시예에서는 상기 제1층 적층단계(S30) 및 가스변환단계(S40)가 생략되고, 기재(10) 상에 제2층을 적층하는 제2층 적층단계(S50)가 수행될 수도 있다. 상기 기재(10)가 금속층인 경우 제1층을 적층하는 대신 기재(10)와 같은 제2재료를 기재(10) 상에 적층함으로써 실질적으로 제1층(20)과 같은 기재 상에 금속산화물 층을 형성하는 것이다. 상술한 바와 같이, 본 발명의 다른 일 실시d예의 경우 지르코늄 기재(10) 상에 제2층 적층단계(S50)를 통해 지르코늄 분말과 함께 산소를 공급함으로써 지르코니아의 제2층(30)을 형성함으로써 금속 재질의 기재 - 금속산화물 층의 구조를 가지도록 할 수 있다.In another embodiment of the present invention, the first layer stacking step (S30) and the gas conversion step (S40) are omitted, and the second layer stacking step (S50) of stacking the second layer on the substrate 10 is performed. It could be. When the substrate 10 is a metal layer, a second material such as the substrate 10 is laminated on the substrate 10 instead of laminating the first layer, thereby substantially forming a metal oxide layer on the same substrate as the first layer 20. is to form. As described above, in the case of another embodiment d of the present invention, the second layer 30 of zirconia is formed by supplying oxygen along with zirconium powder through the second layer stacking step (S50) on the zirconium substrate 10. A substrate made of metal - can have a structure of a metal oxide layer.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 전술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다. The above detailed description is illustrative of the present invention. Additionally, the foregoing is intended to illustrate preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications can be made within the scope of the inventive concept disclosed in this specification, a scope equivalent to the written disclosure, and/or within the scope of technology or knowledge in the art. The above-described embodiments illustrate the best state for implementing the technical idea of the present invention, and various changes required for specific application fields and uses of the present invention are also possible. Accordingly, the detailed description of the invention above is not intended to limit the invention to the disclosed embodiments. Additionally, the appended claims should be construed to include other embodiments as well.

Claims (13)

  1. 기재 또는 제1재료로 형성된 제1층의 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제2재료를 공급하고 용융시켜 제2층을 적층하는 단계를 포함하며, A step of supplying and melting a second material through a nozzle moving along a tool path on one surface of a substrate or a first layer formed of a first material, thereby laminating the second layer;
    상기 제2층은 금속 산화물 층으로 형성되는 것을 특징으로 하는 다중재료 구조체의 형성방법.A method of forming a multi-material structure, wherein the second layer is formed of a metal oxide layer.
  2. 제1항에 있어서, 상기 제2층을 적층하는 단계는 표면 상에 제2재료를 공급하는 제2재료 공급단계, 상기 제2재료 공급단계와 동시에 제2재료가 공급되는 영역에 제1가스를 공급하는 제1가스 공급단계를 포함하고, 상기 제1가스는 산소를 포함하는 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of claim 1, wherein the step of laminating the second layer includes supplying a second material to the surface, supplying a first gas to the area where the second material is supplied simultaneously with the step of supplying the second material. A method of forming a multi-material structure comprising the step of supplying a first gas, wherein the first gas contains oxygen.
  3. 제2항에 있어서, 일표면 상에 툴패스를 따라 이동하는 노즐을 통해 제1재료를 공급하고 용융시켜 제1층을 적층하는 단계를 더 포함하고,The method of claim 2, further comprising supplying and melting the first material through a nozzle moving along a tool path on one surface to deposit the first layer,
    상기 제1층을 적층하는 단계는 표면 상에 제1재료를 공급하는 제1재료 공급단계, 상기 제1재료 공급단계와 동시에 제1재료가 공급되는 영역에 공정가스를 공급하는 공정가스 공급단계를 포함하고, 상기 공정가스는 불활성 가스 또는 질소를 포함하는 것을 특징으로 하는 다중재료 구조체의 형성방법.The step of laminating the first layer includes a first material supply step of supplying the first material to the surface, and a process gas supply step of supplying a process gas to the area where the first material is supplied simultaneously with the first material supply step. A method of forming a multi-material structure, wherein the process gas includes an inert gas or nitrogen.
  4. 제3항에 있어서, 공급되는 공정가스를 상기 제1가스로 변환시키거나, 또는 공급되는 제1가스를 공정가스로 변환시키는 가스변환 단계를 더 포함하는 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of claim 3, further comprising a gas conversion step of converting the supplied process gas into the first gas or converting the supplied first gas into the process gas.
  5. 제4항에 있어서, 상기 제1재료와 제2재료는 동일한 금속원소를 포함하는 금속 분말 또는 합금 분말인 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of claim 4, wherein the first material and the second material are metal powders or alloy powders containing the same metal element.
  6. 제5항에 있어서, 상기 금속원소는 티타늄(Ti), 지르코늄(Zr), 알루미늄(Al), 구리(Cu), 크롬(Cr) 중 하나인 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of claim 5, wherein the metal element is one of titanium (Ti), zirconium (Zr), aluminum (Al), copper (Cu), and chromium (Cr).
  7. 제3항 내지 제6항 중 어느 한 항에 있어서, 상기 제1층을 적층하는 단계는 기재 상에 제1재료를 공급하고 용융시켜 제1층을 적층하고, 상기 제2층을 적층하는 단계는 제1층 상에 제2재료를 공급하고 산소를 포함하는 제1가스를 공급하여 금속산화물의 제2층을 적층하는 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of any one of claims 3 to 6, wherein the step of laminating the first layer includes supplying and melting a first material on a substrate to laminate the first layer, and laminating the second layer. A method of forming a multi-material structure, characterized by supplying a second material on the first layer and supplying a first gas containing oxygen to laminate the second layer of metal oxide.
  8. 제7항에 있어서, 상기 툴패스는 곡면 또는 소정 각도를 가지며 교차하는 둘 이상의 평면 상에 형성되는 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of claim 7, wherein the tool path is formed on a curved surface or two or more planes that intersect at a predetermined angle.
  9. 제7항에 따른 다중재료 구조체의 형성방법에 의해 형성된 다중재료 구조체.A multi-material structure formed by the method of forming a multi-material structure according to claim 7.
  10. 제4항 내지 제6항 중 어느 한 항에 있어서, 상기 노즐이 툴패스를 따라 이동하면서, 상기 제1층을 적층하는 단계와 제2층을 적층하는 단계가 교번적으로 수행되는 것을 특징으로 하는 다중재료 구조체의 형성방법.The method according to any one of claims 4 to 6, wherein while the nozzle moves along the tool path, the step of laminating the first layer and the step of laminating the second layer are performed alternately. Method for forming multi-material structures.
  11. 제10항에 있어서, 제1층 영역과 제2층 영역을 툴패스에 맵핑하는 맵핑단계를 더 포함하고, The method of claim 10, further comprising a mapping step of mapping the first layer area and the second layer area to the tool path,
    상기 툴패스 상의 제1층 영역에서는 제1층을 적층하는 단계가 수행되며, 제2층 영역에서는 제2층을 적층하는 단계가 수행되는 것을 특징으로 하는 다중재료 구조체의 형성방법.A method of forming a multi-material structure, wherein a step of laminating a first layer is performed in a first layer region on the tool path, and a step of laminating a second layer is performed in a second layer region.
  12. 제11항에 있어서, 상기 가스변환단계는, 툴패스를 따라 이동하는 노즐이 제1층 영역에서 제2층 영역으로 진입할 때 공급되는 가스를 공정가스에서 제1가스로 변환하고, 상기 노즐이 제2층 영역에서 제1층 영역으로 진입할 때 공급되는 가스를 제1가스에서 공정가스로 변환하는 것을 특징으로 하는 다중재료 구조체의 형성방법.The method of claim 11, wherein the gas conversion step converts the gas supplied when the nozzle moving along the tool path enters the first layer area into the second layer area from the process gas to the first gas, and the nozzle converts the gas into the first gas. A method of forming a multi-material structure, characterized in that the gas supplied when entering the first layer area from the second layer area is converted from the first gas to a process gas.
  13. 제10항에 따른 다중재료 구조체의 형성방법에 의해 형성된 다중재료 구조체.A multi-material structure formed by the method for forming a multi-material structure according to claim 10.
PCT/KR2023/009344 2022-07-13 2023-07-03 Method for forming multi-material structure WO2024014763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0086166 2022-07-13
KR1020220086166A KR20240009089A (en) 2022-07-13 2022-07-13 Method of Forming Multi-Material Structure

Publications (1)

Publication Number Publication Date
WO2024014763A1 true WO2024014763A1 (en) 2024-01-18

Family

ID=89537009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009344 WO2024014763A1 (en) 2022-07-13 2023-07-03 Method for forming multi-material structure

Country Status (2)

Country Link
KR (1) KR20240009089A (en)
WO (1) WO2024014763A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435351B1 (en) * 1995-07-06 2004-11-16 스미또모 가가꾸 고교 가부시끼가이샤 METHOD FOR PRODUCING METAL OXIDE POWDER
US20170271173A1 (en) * 2016-03-16 2017-09-21 Winbond Electronics Corp. Method for forming metallization structure
KR20190074535A (en) * 2017-12-20 2019-06-28 창원대학교 산학협력단 A three dimensional printing method using metal powder
KR20200054365A (en) * 2018-11-05 2020-05-20 한국세라믹기술원 Method for manufacturing 3d shaped ceramic using 3d printing and electron beam curing
KR20210008188A (en) * 2019-07-10 2021-01-21 한국생산기술연구원 Method of manufacturing metal/ceramic core/shell powder for 3D printing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102331728B1 (en) 2020-08-21 2021-12-02 한국생산기술연구원 Method of controlling structural anisotropy and improving mechanical properties of direct energy deposited metallic material via laser rescanning and 3d metal structure manufacture by its method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435351B1 (en) * 1995-07-06 2004-11-16 스미또모 가가꾸 고교 가부시끼가이샤 METHOD FOR PRODUCING METAL OXIDE POWDER
US20170271173A1 (en) * 2016-03-16 2017-09-21 Winbond Electronics Corp. Method for forming metallization structure
KR20190074535A (en) * 2017-12-20 2019-06-28 창원대학교 산학협력단 A three dimensional printing method using metal powder
KR20200054365A (en) * 2018-11-05 2020-05-20 한국세라믹기술원 Method for manufacturing 3d shaped ceramic using 3d printing and electron beam curing
KR20210008188A (en) * 2019-07-10 2021-01-21 한국생산기술연구원 Method of manufacturing metal/ceramic core/shell powder for 3D printing

Also Published As

Publication number Publication date
KR20240009089A (en) 2024-01-22

Similar Documents

Publication Publication Date Title
US10675655B2 (en) Device and method for powder distribution and additive manufacturing method using the same
Kumar Additive manufacturing processes
US5398193A (en) Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
RU2641578C2 (en) Application head in additive manufacturing
CN107457988B (en) Device and method for generatively producing three-dimensional objects
JP6634074B2 (en) Laser processing machine for additive manufacturing by laser sintering and corresponding method
Dickens Research developments in rapid prototyping
KR20000060365A (en) Variable deposition manufacturing method and apparatus
JP2005534543A (en) Device and method for manufacturing three-dimensional objects by generative manufacturing methods
RU2674588C2 (en) Method for additive welding and melting manufacture of three-dimensional products and installation for its implementation
WO1998022253A1 (en) Rapid manufacturing system with laser fusion of feedstock
CN110366485A (en) Utilize the 3D printing of injection forming
CN1411942A (en) Component and tissue controllable laser stereoforming method
CN105922571A (en) Plasma 3D rapid molding equipment and molding method
CN105922574A (en) Plasma fusion covering manufacture 3D printing equipment and method
CN105922566A (en) Plasma fusion covering direct manufacture 3D printing equipment and method
WO2024014763A1 (en) Method for forming multi-material structure
CN105922569B (en) A kind of plasma cladding manufacture rapid forming equipment and forming method
CN105922567B (en) A kind of constituency plasma founding rapid forming equipment and method
CN112475320B (en) Multi-spiral slicing method
CN111421203B (en) Surfacing forming method of metal thin-wall part
WO2017142284A1 (en) Laser scanner-based, large area three-dimensional printing apparatus, to which machining is applied
CN105946222B (en) A kind of plasma founding rapid forming equipment and forming method
WO2023211017A1 (en) Method for controlling introduction of different kinds of materials for lamination and system therefor
KR102574382B1 (en) 3D Printer Nozzle and 3D Printer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839857

Country of ref document: EP

Kind code of ref document: A1