WO2024014580A1 - Method for providing information for artificial intelligence-based cancer diagnosis using biomarker expressed in exosome - Google Patents

Method for providing information for artificial intelligence-based cancer diagnosis using biomarker expressed in exosome Download PDF

Info

Publication number
WO2024014580A1
WO2024014580A1 PCT/KR2022/010342 KR2022010342W WO2024014580A1 WO 2024014580 A1 WO2024014580 A1 WO 2024014580A1 KR 2022010342 W KR2022010342 W KR 2022010342W WO 2024014580 A1 WO2024014580 A1 WO 2024014580A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
present
hidden layer
neural network
deep neural
Prior art date
Application number
PCT/KR2022/010342
Other languages
French (fr)
Korean (ko)
Inventor
이왕재
이희원
Original Assignee
이왕재바이오연구소 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이왕재바이오연구소 주식회사 filed Critical 이왕재바이오연구소 주식회사
Publication of WO2024014580A1 publication Critical patent/WO2024014580A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding

Definitions

  • the present invention relates to a method for diagnosing cancer by analyzing circulating tumor cells, and more specifically, to a composition, diagnostic kit, and diagnostic method for diagnosing cancer using the gene methylation level of circulating tumor cells.
  • Cancer is one of the most common causes of death worldwide. Approximately 10 million new cases occur each year, accounting for approximately 12% of all deaths, making it the third most common cause of death.
  • cancer markers such as antibodies.
  • the diagnostic market using antibodies has been rapidly increasing since 1980, and is used in the development of highly efficient diagnostic kits and diagnostic techniques due to its excellent sensitivity as it can detect proteins specifically expressed according to diseases or symptoms even in very small amounts. .
  • antibodies that have both specificity and sensitivity to proteins (antigens) expressed by diseases and symptoms.
  • several considerations can be taken to maximize the efficiency of the antibody. First, comparing the primary sequence of the antigen to be generated and selecting one with strong heterogeneity between the animal species of the antigen and the immune animal can maximize the immune response.
  • high-titer antibodies when using the sequence of a human protein, high-titer antibodies can be obtained by selecting an animal with high heterogeneity from the sequence and inducing an immune response.
  • the quality of the antigen may vary depending on the characteristics and three-dimensional structure of the antigen due to post-translational modifications in the sequence, so select the antigen in consideration.
  • special consideration when using a partial peptide as an antigen rather than using the entire protein as an antigen, special consideration must be taken when selecting it.
  • exosomes one of the extracellular vesicles, are nano-sized vesicles with the same composition as the outer cell wall. Exosomes were discovered about 30 years ago and were initially recognized as a mechanism for removing waste from cells. According to research over the past 10 years, it is known to play a functional role in mediating biologically important cell-cell communication and cellular immunity.
  • the present inventors developed a diagnostic method that can diagnose cancer with high accuracy by analyzing the methylation of genes in exosomes and completed the present invention.
  • the present invention includes the steps of isolating an exosome fraction from a biological sample isolated from a subject of interest;
  • the object of the present invention is to provide a method and device for providing information for diagnosing cancer, further comprising calculating the probability of cancer occurring in the subject using a learned deep neural network.
  • a method of providing information for cancer diagnosis is provided.
  • the method includes the steps of isolating an exosome fraction from a biological sample isolated from a subject of interest; And measuring the expression level of the biomarker in the exosome fraction.
  • the biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP Elav-like family member 6, leptin, glutathione S-transferase P1, and neural pentraxin. 2, P16, and high-affinity choline transporter 1.
  • the method may further include calculating the likelihood of cancer occurring in the subject using a learned deep neural network.
  • the deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer.
  • an information provision device for cancer diagnosis can be provided.
  • the device includes a sample processing unit for isolating an exosome fraction from a biological sample isolated from a target individual; And it may include a measuring unit that measures methylation of nucleotide molecules in the exosome fraction.
  • the device may further include an arithmetic unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
  • Cancer can be diagnosed through the method and device for providing information for cancer diagnosis according to the present invention, and whether a candidate substance can be used as a cancer treatment can be confirmed through a screening method.
  • Figure 1 shows a deep neural network with three hidden layers according to an embodiment of the present invention.
  • Figure 2 shows a deep neural network with four hidden layers according to an embodiment of the present invention.
  • a method of providing information for cancer diagnosis is provided.
  • the method includes the steps of isolating an exosome fraction from a biological sample isolated from a subject of interest; And measuring the expression level of the biomarker in the exosome fraction.
  • the biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP Elav-like family member 6, leptin, glutathione S-transferase P1, and neural pentraxin. 2, P16, and high-affinity choline transporter 1.
  • the method may further include calculating the likelihood of cancer occurring in the subject using a learned deep neural network.
  • the deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer.
  • an information provision device for cancer diagnosis can be provided.
  • the device includes a sample processing unit for isolating an exosome fraction from a biological sample isolated from a target individual; And it may include a measuring unit that measures methylation of nucleotide molecules in the exosome fraction.
  • the device may further include an arithmetic unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
  • a device may be a general device (or object) connected to a gateway and applied to IoT (Internet of Things). Additionally, in this specification, device may be used interchangeably with 'equipment' or 'apparatus', and 'device', 'equipment', and 'apparatus' may be described with the same expression.
  • a method for providing information for cancer diagnosis is provided.
  • cancer to “tumor” is a disease characterized by rapid and uncontrolled growth of mutant cells, and the cancer includes breast cancer, ovarian cancer, colon cancer, stomach cancer, liver cancer, pancreatic cancer, cervical cancer, thyroid cancer, Parathyroid cancer, lung cancer, non-small cell lung cancer, prostate cancer, gallbladder cancer, biliary tract cancer, non-Hodgkin lymphoma, Hodgkin lymphoma, blood cancer, bladder cancer, kidney cancer, melanoma, colon cancer, bone cancer, skin cancer, head and neck cancer, uterine cancer, rectal cancer, Brain tumor, perianal cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal cancer, vulvar carcinoma, esophageal cancer, small intestine cancer, endocrine cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, ureteral carcinoma, renal cell carcinoma, renal pelvic carcinoma, central It may be a nervous system tumor, spinal cord tumor, brainstem
  • the terms “marker” or “biomarker” are those that can detect changes in a living organism and objectively measure the normal or pathological state of the living organism, the degree of response to a drug, etc.
  • diagnosis refers to determining a subject's susceptibility to a specific disease or condition, determining whether the subject currently has a specific disease or condition, and determining whether the subject currently has a specific disease or condition. Predicting or determining the prognosis of an affected subject, or therametrics (e.g., monitoring the condition of a subject to provide information about treatment efficacy).
  • the term "individual” refers to any living organism that develops or is likely to develop cancer, and specific examples include mammals including mice, monkeys, cows, pigs, mini-pigs, livestock, humans, etc., and farmed fish. It may include, but is not limited to, etc.
  • sample and “biological sample” refer to any material, biological fluid, tissue, or cell derived from an individual that has developed or is suspected of having cancer.
  • the biological sample is whole blood. (whole blood), leukocytes, peripheral blood mononuclear cells, buffy coat, plasma, serum, sputum, tears, mucus ( mucus, nasal washes, nasal aspirate, breath, urine, semen, saliva, peritoneal washings, ascites, Cystic fluid, meningeal fluid, amniotic fluid, glandular fluid, pancreatic fluid, lymph fluid, pleural fluid, nipple aspirate ), bronchial aspirate, synovial fluid, joint aspirate, organ secretions, or cerebrospinal fluid.
  • the biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP Elav-like family member 6, leptin, glutathione S-transferase P1, and neuronal pentraxin 2.
  • P16, and high-affinity choline transporter 1, and the biomarker may be shown in Table 1 below.
  • the expression level of the biomarker may include an agent that measures the expression level of the protein represented by SEQ ID NO: 1 to 8 or the gene encoding the same, and the exosome is produced in the endosomal compartment of most eukaryotic cells.
  • Extracellular vesicles (EV), and the isolation method may be included without limitation.
  • the term "detection" may be used to measure and compare the presence or absence of a biomarker to be detected, concentration in a biological sample, expression level, etc., and an increase in the level of the biomarker as a result of the detection encodes the biomarker.
  • increasing the number of genes that are activated increasing gene transcription (e.g., by placing genes under the control of a constitutive promoter), increasing translation of genes, knocking out competing genes, or combinations of these and/or other methods. It can be done by a number of methods, and it can be measuring the expression level of exosomal biomarkers.
  • Agents for detecting the biomarkers of the present invention are not particularly limited, but include, for example, a group consisting of antibodies, oligopeptides, ligands, PNA (peptide nucleic acids) and aptamers that specifically bind to the biomarkers. It may include one or more selected types.
  • the “antibody” refers to a substance that specifically binds to an antigen and causes an antigen-antibody reaction.
  • the antibodies of the present invention include polyclonal antibodies, monoclonal antibodies, and recombinant antibodies.
  • the antibody can be easily produced using techniques well known in the art.
  • polyclonal antibodies can be produced by methods well known in the art, which include injecting the protein antigen into an animal and collecting blood from the animal to obtain serum containing the antibody.
  • These polyclonal antibodies can be produced from any animal, such as goats, rabbits, sheep, monkeys, horses, pigs, cows, dogs, etc.
  • monoclonal antibodies can be produced using hybridoma methods or phage antibody library technology well known in the art.
  • Antibodies prepared by the above method can be separated and purified using methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, and affinity chromatography. Additionally, antibodies of the invention include intact forms with two full-length light chains and two full-length heavy chains, as well as functional fragments of the antibody molecule.
  • a functional fragment of an antibody molecule refers to a fragment that possesses at least an antigen-binding function, and includes Fab, F(ab'), F(ab')2, and Fv.
  • PNA Peptide Nucleic Acid
  • DNA has a phosphate-ribose sugar backbone
  • PNA has a repeated N-(2-aminoethyl)-glycine backbone linked by peptide bonds, which greatly increases its binding force and stability to DNA or RNA and is used in molecular biology. , is used in diagnostic analysis and antisense therapy.
  • the “aptamer” is an oligonucleic acid or peptide molecule.
  • the agent for measuring the expression level of genes encoding the biomarkers may include one or more selected from the group consisting of primers, probes, and antisense nucleotides that specifically bind to the genes.
  • the “primer” is a fragment that recognizes the target gene sequence and includes forward and reverse primer pairs, but is preferably a primer pair that provides analysis results with specificity and sensitivity. High specificity can be granted when the nucleic acid sequence of the primer is a sequence that is inconsistent with the non-target sequence present in the sample, so that the primer amplifies only the target gene sequence containing the complementary primer binding site and does not cause non-specific amplification. .
  • the “probe” refers to a substance that can specifically bind to a target substance to be detected in a sample, and refers to a substance that can specifically confirm the presence of the target substance in the sample through the binding.
  • the type of probe is not limited as it is a material commonly used in the art, but is preferably PNA (peptide nucleic acid), LNA (locked nucleic acid), peptide, polypeptide, protein, RNA or DNA, and most preferably is PNA.
  • the probe is a biomaterial that is derived from or similar to living organisms or includes those manufactured in vitro, such as enzymes, proteins, antibodies, microorganisms, animal and plant cells and organs, nerve cells, DNA, and It may be RNA, DNA includes cDNA, genomic DNA, and oligonucleotides, RNA includes genomic RNA, mRNA, and oligonucleotides, and examples of proteins may include antibodies, antigens, enzymes, peptides, etc.
  • LNA Locked nucleic acids
  • LNA nucleosides contain the common nucleic acid bases of DNA and RNA and can form base pairs according to the Watson-Crick base pairing rules. However, due to the 'locking' of the molecule due to the methylene bridge, LNA does not form the ideal shape in Watson-Crick bonding.
  • LNA When LNA is included in a DNA or RNA oligonucleotide, the LNA can pair with the complementary nucleotide chain more quickly and increase the stability of the double helix.
  • the "antisense” refers to a sequence of nucleotide bases in which an antisense oligomer hybridizes with a target sequence in RNA by Watson-Crick base pairing, typically allowing the formation of an mRNA and RNA:oligomer heteroduplex within the target sequence. and oligomers having an intersubunit backbone. Oligomers may have exact or approximate sequence complementarity to the target sequence.
  • the method may further include calculating the likelihood of cancer occurring in the individual using a learned deep neural network.
  • the calculation may be to divide the individual into a risk group with a high possibility of developing cancer and a control group.
  • the “control group” may refer to a general population that does not develop cancer, an entire population of subjects that develop cancer, or a population that shows a good prognosis among subjects that develop cancer.
  • the deep neural network is a type of artificial neural network and includes a convolution layer, a pooling layer, a ReLu layer, and a transpose layer that allows deep learning learning.
  • Convolutional layer Unpooling layer, 1x1 convolutional layer, Skip connection, Global Average Pooling (GAP) layer, Fully Connected layer, SVM (support Vector Machine), LSTM (long short term memory)
  • GAP Global Average Pooling
  • SVM support Vector Machine
  • LSTM long short term memory
  • It may be a neural network including one or more layers or elements selected from the group consisting of Atrous Convolution, Atrous Spatial Pyramid Pooling, Separable Convolution, and Bilinear Upsampling, It may further include a batch normalization operation at the front end. For example, as shown in FIG.
  • the deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer.
  • first hidden layer hidden layer 1
  • second hidden layer hidden layer 1
  • third hidden layer hidden layer 1
  • fourth hidden layer hidden layer 1
  • output layer the expression level of the biomarker of the present invention can be input into the input layer.
  • the deep neural network may be learned by a backpropagation learning algorithm, and the learning data may include data on the expression level of the biomarker of the present invention and result data on whether cancer actually occurs.
  • the learning data is data input for learning of a deep neural network, and for learning, information about the error between the predicted value obtained by processing the information by the deep neural network and the actual result is required. Accordingly, the learning data must necessarily include actual results.
  • the learning data may require patient-specific data above a certain standard value to ensure that the weight coefficients of the deep neural network are derived at a sufficiently reliable level. Thereafter, the diagnostic device may perform an operation of generating an initial prediction value that predicts the probability of developing cancer using a deep neural network.
  • the training unit may perform an operation to modify the weight coefficient based on the error between the derived initial prediction value and the actual result value input as learning data.
  • the operation may be an operation using a backpropagation algorithm.
  • each node of the first to third hidden layers may receive a value that is a result of calculation by all nodes and weights of the input layer.
  • each node of the first to fourth hidden layers may receive a result calculated by all nodes and weights of the input layer.
  • each node of the hidden layers can determine whether or not it is activated using an activation function.
  • Each node in the hidden layer is determined to be activated when the corresponding value satisfies a certain standard or deactivated when it does not meet a certain standard, and this is performed based on the activation function. Additionally, in the process of connecting each node of the hidden layer to the positive and negative nodes of the output layer, corresponding weight coefficients may exist. Therefore, if the weights in the deep neural network can be set differently, the weight coefficients applied at the stage between the input layer and the output layer can be set in various ways. For example, a neural network with first to third hidden layers as shown in FIG. 1 may have a maximum of 5,184 weight coefficients, and a neural network with first to fourth hidden layers as shown in FIG. 2 may have a maximum of 46,656 weight coefficients. You can.
  • the training unit modifies the weights starting from the weight coefficients applied at the stage closest to the output layer, and when all inputs of the prepared learning data are completed, the final calculated coefficients are fixed as the weight coefficients of the deep neural network to obtain the learned deep layer.
  • the neural network model can be completed.
  • the data for learning the deep neural network may further include one or more selected from the group consisting of the individual's weight, gender, and age, which are risk factors other than the biomarker.
  • an apparatus for diagnosing cancer can be provided.
  • the device includes a sample processing unit for isolating an exosome fraction from a biological sample isolated from a subject of interest; And it may include a measuring unit that measures methylation of nucleotide molecules in the exosome fraction.
  • the device may further include a calculation unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
  • the device may further include a training unit that receives learning data and performs learning.
  • the learning data may be individually input by the user, or may be input collectively from patient data separately stored in a server computer of a medical institution.
  • the training unit may directly receive data corresponding to learning data (training cohort) or test data (test cohort). Additionally, according to various embodiments, the training unit may receive a user manipulation to change an item of data to be input. In addition, patient data according to various embodiments may be input into the training unit, and the data may be in digital form.
  • the device may further include a storage unit.
  • the storage unit may include, for example, internal memory or external memory.
  • Internal memory includes, for example, volatile memory (e.g., dynamic RAM (DRAM), static RAM (SRAM), or synchronous dynamic RAM (SDRAM), etc.), non-volatile memory (e.g., OTPROM (one time programmable ROM), programmable ROM (PROM), erasable and programmable ROM (EPROM), electrically erasable and programmable ROM (EEPROM), mask ROM, flash ROM, flash memory (such as NAND flash or NOR flash, etc.), hard drive, Or it may include at least one of a solid state drive (SSD).
  • the external memory may be a flash drive, for example, compact flash (CF), secure digital (SD), or Micro-SD. It may further include (micro secure digital), Mini-SD (mini secure digital), xD (extreme digital), MMC (multi-media card), or memory stick, etc. External memory can be stored through various interfaces.
  • the patient data may be extracted by a reader from only data corresponding to risk factors from information collected from other electronic devices or external servers (e.g., related medical institution servers).
  • information transmitted through the communication unit may include information that does not correspond to test results, such as the patient's name, date of birth, and smoking status, and result information for a specific test.
  • the patient data can be input to the training unit to extract only the data items required to perform a cancer diagnosis.
  • the deep neural network can compare the values of positive and negative nodes and calculate the one with the larger value as the final result. For example, the comparison may compare the size of the difference between the values of the positive node and the negative node, or if it is determined that the positive value is greater than or equal to the reference value or the negative value is less than the reference value, the corresponding probability of occurrence of cancer may be calculated.
  • the calculation unit can calculate the most effective risk factors to reduce the probability of cancer occurrence based on the deep neural network.
  • the calculation unit may generate comparison data by changing the value of a specific item selected from each risk factor data at regular intervals. Thereafter, the electronic device can compare the predicted value generated by inputting the raw data into the deep neural network with the predicted value generated by inputting the comparison data into the deep neural network, and if the predicted value (e.g., positive) generated by the raw data is compared. If the predicted values (e.g., negative) generated by the data are calculated differently, data values for each risk factor item for which the two values begin to be calculated differently can be calculated and provided to the user.
  • continuous data can be expressed as mean and standard deviation (SD), and cancer incidence factors can be determined from retrospective data using a model of the training cohort.
  • SD standard deviation
  • the function of displaying data input to the device and results calculated as a result of the operation of a deep neural network can be performed. Additionally, the display unit may calculate data regarding the probability of a result processed by a deep neural network according to various embodiments. For example, according to various embodiments, the deep neural network not only predicts whether cancer will occur, but also provides information about the probability of cancer occurring if it will occur, or the probability of cancer not occurring if it is predicted not to occur. can be calculated together.
  • the display unit may include a panel, a hologram device, or a projector.
  • the panel may be composed of a touch panel and one module.
  • Holographic devices can display three-dimensional images in the air using the interference of light.
  • a projector can display images by projecting light onto a screen.
  • the screen may be located, for example, inside or outside the electronic device.
  • the display unit may further include a control circuit for controlling a panel, a hologram device, or a projector.
  • the device may further include a communication unit.
  • the communication unit can use a network to transmit and receive data with other user electronic devices or other servers, and the type of the network is not particularly limited.
  • the network may be an Internet Protocol (IP) network that provides large data transmission and reception services through the Internet Protocol (IP), or an All IP network that integrates different IP networks.
  • IP Internet Protocol
  • the network includes a wired network, a Wibro (Wireless Broadband) network, a mobile communication network including WCDMA, a mobile communication network including a HSDPA (High Speed Downlink Packet Access) network and an LTE (Long Term Evolution) network, and LTE advanced (LTE-A).
  • the communication unit may support a communication function for receiving methylation information to be input into a deep neural network learned from another electronic device or an external server. Additionally, the communication unit may transmit the information processing results of the deep neural network to another electronic device or external server.
  • the device may further include a control unit, and the control unit may also be called a processor, controller, microcontroller, microprocessor, microcomputer, etc. You can. Meanwhile, the control unit may be implemented by hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • Software code can be stored in memory and driven by a control unit.
  • the memory may be located inside or outside the user terminal and server, and may exchange data with the control unit through various known means.
  • a screening method for a cancer treatment drug can be provided.
  • the steps include treating a sample isolated from a target individual or a cancer disease animal model with a candidate substance; and confirming the expression level of the biomarker in a sample treated with the candidate substance or a cancer disease animal model. It may be to provide a method of screening a drug for the prevention or treatment of cancer, including: " “Candidate substance” may include without limitation substances that can improve or beneficially change the prognosis when applied to cancer patients, and the candidate substance may include synthetic substances as well as natural substances, but is not limited thereto.
  • the expression level may be the expression level in exosomes of the sample derived from the model.
  • the measurement of the expression level may be performed multiple times.
  • the present invention relates to a method for diagnosing cancer by analyzing circulating tumor cells, and more specifically, to a composition, diagnostic kit, and diagnostic method for diagnosing cancer using the gene methylation level of circulating tumor cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Oncology (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Evolutionary Biology (AREA)
  • Epidemiology (AREA)
  • Data Mining & Analysis (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioethics (AREA)
  • Artificial Intelligence (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for providing information for cancer diagnosis, the method comprising the steps of: isolating an exosome fraction from a biological sample isolated from an individual of interest; and measuring the expression level of a biomarker in the exosome fraction.

Description

엑소좀에서 발현되는 바이오 마커를 이용하는 인공지능 기반 암 진단용 정보제공 방법Artificial intelligence-based cancer diagnosis information provision method using biomarkers expressed in exosomes
본 발명은 순환 종양 세포를 분석하여 암을 진단하는 방법에 관한 것으로, 구체적으로는 순환 종양 세포의 유전자 메틸화 수준을 이용하는 암 진단용 조성물, 진단 키트 및 진단 방법에 관한 것이다. The present invention relates to a method for diagnosing cancer by analyzing circulating tumor cells, and more specifically, to a composition, diagnostic kit, and diagnostic method for diagnosing cancer using the gene methylation level of circulating tumor cells.
암은 전세계적으로 가장 보편적인 사망원인 중의 하나이다. 약 천만 건의 새로운 케이스가 매년 발생하며, 전체 사망원인의 약 12%를 차지하여 세 번째로 많은 사망의 원인이 되고 있다.Cancer is one of the most common causes of death worldwide. Approximately 10 million new cases occur each year, accounting for approximately 12% of all deaths, making it the third most common cause of death.
이러한 암을 조기에 진단하기 위한 방법 중 하나로, 항체 등 암 마커를 이용하는 방법이 있다. 항체를 이용한 진단 시장은 1980년 이후로 급속히 증가되고 있으며 질병이나 증상에 따라 특이적으로 발현되는 단백질을 극소량으로도 검출할 수 있어 민감도가 우수해 높은 효율의 진단 키트 개발 및 진단 기법에 활용되고 있다. 이를 위해서는 질환 및 증상에 의해 발현되는 단백질(항원)에 특이성과 민감도를 모두 갖춘 항체 개발이 필수적이다. 특이성과 민감도를 갖춘 항체를 생성하기 위해서는 몇 가지 고려하여 항체의 효율을 극대화할 수 있다. 첫 번째, 생성하려는 항원의 1차 서열을 비교하여 항원의 동물종과 면역동물이 이질성이 강한 것을 선택하는 것이 면역 반응을 극대화할 수 있다. 예를 들어 사람 단백질의 서열을 활용할 경우 그 서열과 이질성이 높은 동물을 선정하여 면역 반응을 유도하는 것이 높은 역가의 항체를 얻을 수 있다. 두 번째, 항원의 서열에서 번역 후 변형에 따른 수식으로의 특성과 입체 구조에 따른 항원으로서 질이 달라질 수 있으므로 고려해서 선택한다. 특히 단백질 전체를 항원으로 사용하지 않고 일부 펩타이드 형태로 항원으로 사용할 때는 특히 고려하여 선택하여야 한다. One way to diagnose such cancer early is to use cancer markers such as antibodies. The diagnostic market using antibodies has been rapidly increasing since 1980, and is used in the development of highly efficient diagnostic kits and diagnostic techniques due to its excellent sensitivity as it can detect proteins specifically expressed according to diseases or symptoms even in very small amounts. . To achieve this, it is essential to develop antibodies that have both specificity and sensitivity to proteins (antigens) expressed by diseases and symptoms. In order to generate an antibody with specificity and sensitivity, several considerations can be taken to maximize the efficiency of the antibody. First, comparing the primary sequence of the antigen to be generated and selecting one with strong heterogeneity between the animal species of the antigen and the immune animal can maximize the immune response. For example, when using the sequence of a human protein, high-titer antibodies can be obtained by selecting an animal with high heterogeneity from the sequence and inducing an immune response. Second, the quality of the antigen may vary depending on the characteristics and three-dimensional structure of the antigen due to post-translational modifications in the sequence, so select the antigen in consideration. In particular, when using a partial peptide as an antigen rather than using the entire protein as an antigen, special consideration must be taken when selecting it.
또한 이에 최근에는 DNA 메틸화 측정을 통하여 암을 진단하는 방법들이 제시되고 있다. 특정 유전자가 과메틸화되어 있을 때, 그 유전자의 발현은 차단(gene silencing)되게 된다. 이는 생체 내에서 유전자의 단백질 지정 코딩서열(coding sequence)에 돌연변이(mutation)가 없이도 그 유전자의 기능이 소실되는 주요 기전이며, 인체 암에서 다수의 종양억제 유전자(tumor suppressor genes)의 기능이 소실되는 원인으로 해석되고 있다. 따라서, 종양관련 유전자의 메틸화를 통하여 암의 진단과 조기진단, 발암위험의 예측, 암의 예후 예측, 치료 후 추적조사, 항암요법에 대한 반응 예측 등 다방면으로 이용될 수 있는 방안이 연구되고 있으나, 정확한 발암 기전에 대해서는 논란이 있다.Additionally, recently, methods for diagnosing cancer by measuring DNA methylation have been proposed. When a specific gene is hypermethylated, the expression of that gene is blocked (gene silencing). This is the main mechanism by which the function of a gene is lost in vivo without a mutation in the protein coding sequence of the gene, and the function of many tumor suppressor genes is lost in human cancer. It is interpreted as the cause. Therefore, methods that can be used in various fields such as cancer diagnosis and early diagnosis, prediction of carcinogenesis risk, prediction of cancer prognosis, follow-up after treatment, and prediction of response to anticancer therapy are being studied through methylation of tumor-related genes. There is controversy about the exact mechanism of carcinogenesis.
한편, 세포 외 소포체(extracellular vesicle)중 하나인 엑소좀은 세포 외벽과 동일한 구성으로 된 나노 크기의 vesicle이다. 엑소좀은 약 30년 전에 발견됐고 처음에는 세포에서 노폐물을 제거하는 메커니즘으로 인식됐다. 최근 10년간 연구에 따르면 생물학적으로 중요한 세포-세포 간의 커뮤니케이션 및 세포성 면역을 중재하는 기능적 역할을 수행하는 것으로 알려져 있다. Meanwhile, exosomes, one of the extracellular vesicles, are nano-sized vesicles with the same composition as the outer cell wall. Exosomes were discovered about 30 years ago and were initially recognized as a mechanism for removing waste from cells. According to research over the past 10 years, it is known to play a functional role in mediating biologically important cell-cell communication and cellular immunity.
이에 본 발명자들은 엑소좀 속 유전자의 메틸화를 분석하여 높은 정확도로 암을 진단할 수 있는 진단 방법을 개발하여 본 발명을 완성하였다. Accordingly, the present inventors developed a diagnostic method that can diagnose cancer with high accuracy by analyzing the methylation of genes in exosomes and completed the present invention.
따라서, 본 발명은 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 단계; 및 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 계산하는 단계;를 더 포함하는 것을 포함하는 암 진단용 정보제공 방법 및 장치를 제공하는 것을 목적으로 한다. Therefore, the present invention includes the steps of isolating an exosome fraction from a biological sample isolated from a subject of interest; The object of the present invention is to provide a method and device for providing information for diagnosing cancer, further comprising calculating the probability of cancer occurring in the subject using a learned deep neural network.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다. The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 암 진단을 위한 정보 제공 방법이 제공된다.In order to achieve the above object, according to an embodiment of the present invention, a method of providing information for cancer diagnosis is provided.
또한 본 발명에서, 상기 방법은, 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 단계; 및 상기 엑소좀 분획 내 바이오 마커의 발현 수준을 측정하는 단계;를 포함하는 것일 수 있다.Additionally, in the present invention, the method includes the steps of isolating an exosome fraction from a biological sample isolated from a subject of interest; And measuring the expression level of the biomarker in the exosome fraction.
또한 본 발명에서, 상기 바이오 마커는, 인지질 수송 ATPase IB, 베타-1,3-갈락토실트랜스퍼라제 6, CUGBP 엘라브-유사 패밀리 멤버 6, 렙틴, 글루타티온 S-트랜스퍼라제 P1, 신경 펜트랙신 2, P16 및 고친화성 콜린 수송체 1로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것일 수 있다.In addition, in the present invention, the biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP Elav-like family member 6, leptin, glutathione S-transferase P1, and neural pentraxin. 2, P16, and high-affinity choline transporter 1.
또한 본 발명에서, 상기 방법은, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 계산하는 단계;를 더 포함하는 것일 수 있다.Additionally, in the present invention, the method may further include calculating the likelihood of cancer occurring in the subject using a learned deep neural network.
또한 본 발명에서, 상기 심층 신경망은, 데이터가 입력되는 입력층(input layer); 제1 은닉층(hidden layer 1); 제2 은닉층(hidden layer 1); 제3 은닉층(hidden layer 1); 제4 은닉층(hidden layer 1); 및 출력층(output layer);으로 구성되는 것일 수 있다.Additionally, in the present invention, the deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer.
본 발명의 다른 실시예에 따르면, 암 진단용 정보제공 장치에 관한 것를 제공할 수 있다.According to another embodiment of the present invention, an information provision device for cancer diagnosis can be provided.
또한 본 발명에서, 상기 장치는, 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 시료 가공부; 및 상기 엑소좀 분획 내 뉴클레오티드 분자의 메틸화를 측정하는 측정부;를 포함하는 것일 수 있다.Additionally, in the present invention, the device includes a sample processing unit for isolating an exosome fraction from a biological sample isolated from a target individual; And it may include a measuring unit that measures methylation of nucleotide molecules in the exosome fraction.
또한 본 발명에서, 상기 장치는, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 산출하는 연산부;를 더 포함하는 것일 수 있다. Additionally, in the present invention, the device may further include an arithmetic unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
본 발명에 따른 암 진단을 위한 정보제공 방법 및 장치를 통하여 암을 진단할 수 있고, 스크리닝 방법을 통하여 후보 물질을 암 치료제로 사용할 수 있는지 여부를 확인할 수 있다.Cancer can be diagnosed through the method and device for providing information for cancer diagnosis according to the present invention, and whether a candidate substance can be used as a cancer treatment can be confirmed through a screening method.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 발명의 일 실시예에 따른 3개의 은닉층을 가진 심층 신경망을 나타낸 것이다. Figure 1 shows a deep neural network with three hidden layers according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 4개의 은닉층을 가진 심층 신경망을 나타낸 것이다. Figure 2 shows a deep neural network with four hidden layers according to an embodiment of the present invention.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 암 진단을 위한 정보 제공 방법이 제공된다.In order to achieve the above object, according to an embodiment of the present invention, a method of providing information for cancer diagnosis is provided.
또한 본 발명에서, 상기 방법은, 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 단계; 및 상기 엑소좀 분획 내 바이오 마커의 발현 수준을 측정하는 단계;를 포함하는 것일 수 있다.Additionally, in the present invention, the method includes the steps of isolating an exosome fraction from a biological sample isolated from a subject of interest; And measuring the expression level of the biomarker in the exosome fraction.
또한 본 발명에서, 상기 바이오 마커는, 인지질 수송 ATPase IB, 베타-1,3-갈락토실트랜스퍼라제 6, CUGBP 엘라브-유사 패밀리 멤버 6, 렙틴, 글루타티온 S-트랜스퍼라제 P1, 신경 펜트랙신 2, P16 및 고친화성 콜린 수송체 1로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것일 수 있다.In addition, in the present invention, the biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP Elav-like family member 6, leptin, glutathione S-transferase P1, and neural pentraxin. 2, P16, and high-affinity choline transporter 1.
또한 본 발명에서, 상기 방법은, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 계산하는 단계;를 더 포함하는 것일 수 있다.Additionally, in the present invention, the method may further include calculating the likelihood of cancer occurring in the subject using a learned deep neural network.
또한 본 발명에서, 상기 심층 신경망은, 데이터가 입력되는 입력층(input layer); 제1 은닉층(hidden layer 1); 제2 은닉층(hidden layer 1); 제3 은닉층(hidden layer 1); 제4 은닉층(hidden layer 1); 및 출력층(output layer);으로 구성되는 것일 수 있다.Additionally, in the present invention, the deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer.
본 발명의 다른 실시예에 따르면, 암 진단용 정보제공 장치에 관한 것를 제공할 수 있다.According to another embodiment of the present invention, an information provision device for cancer diagnosis can be provided.
또한 본 발명에서, 상기 장치는, 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 시료 가공부; 및 상기 엑소좀 분획 내 뉴클레오티드 분자의 메틸화를 측정하는 측정부;를 포함하는 것일 수 있다.Additionally, in the present invention, the device includes a sample processing unit for isolating an exosome fraction from a biological sample isolated from a target individual; And it may include a measuring unit that measures methylation of nucleotide molecules in the exosome fraction.
또한 본 발명에서, 상기 장치는, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 산출하는 연산부;를 더 포함하는 것일 수 있다. Additionally, in the present invention, the device may further include an arithmetic unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail. Prior to this, the terms or words used in this specification and patent claims should not be construed as limited to their usual or dictionary meanings, and the inventor must appropriately use the concept of the term to explain his or her invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined clearly. Accordingly, the configuration described in the embodiments described in this specification is only one of the most preferred embodiments of the present invention and does not represent the entire technical idea of the present invention, so at the time of filing this application, various equivalents and It should be understood that variations may exist.
한편, 본 명세서에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 명세서에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.Meanwhile, each description and embodiment disclosed in this specification may also be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present application. Additionally, the scope of the present invention cannot be considered limited by the specific description described below.
또한 본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Additionally, the terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어'있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 '직접 연결되어'있다거나 '직접 접속되어'있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be 'connected' or 'connected' to another component, it is understood that it may be directly connected or connected to the other component, but that other components may exist in between. It should be. On the other hand, when it is mentioned that a component is 'directly connected' or 'directly connected' to another component, it should be understood that there are no other components in between.
또한, 본 명세서에서, 디바이스는 게이트웨이(gateway)에 연결되어 IoT(Internet of Things)에 적용되는 일반적인 장치(또는 사물)일 수 있다. 또한, 본 명세서에서 디바이스(device)는 '기기' 또는 '장치'와 혼용될 수 있으며, '디바이스', '기기' 및 '장치'는 동일한 표현으로 기재되어 있을 수 있다. Additionally, in this specification, a device may be a general device (or object) connected to a gateway and applied to IoT (Internet of Things). Additionally, in this specification, device may be used interchangeably with 'equipment' or 'apparatus', and 'device', 'equipment', and 'apparatus' may be described with the same expression.
본 발명의 일 구현 예에 따르면, 암 진단을 위한 정보 제공 방법이 제공된다.According to one embodiment of the present invention, a method for providing information for cancer diagnosis is provided.
본 발명에서, "암" 내지 "종양"은 변종 세포의 신속하고 제어되지 않은 성장을 특징으로 하는 질병으로서, 상기 암은 유방암, 난소암, 대장암, 위암, 간암, 췌장암, 자궁경부암, 갑상선암, 부갑상선암, 폐암, 비소세포성폐암, 전립선암, 담낭암, 담도암, 비호지킨 림프종, 호지킨 림프종, 혈액암, 방광암, 신장암, 흑색종, 결장암, 골암, 피부암, 두경부암, 자궁암, 직장암, 뇌종양, 항문부근암, 나팔관암종, 자궁내막암종, 질암, 음문암종, 식도암, 소장암, 내분비선암, 부신암, 연조직 육종, 요도암, 음경암, 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계 종양, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종인 것일 수 있다.In the present invention, “cancer” to “tumor” is a disease characterized by rapid and uncontrolled growth of mutant cells, and the cancer includes breast cancer, ovarian cancer, colon cancer, stomach cancer, liver cancer, pancreatic cancer, cervical cancer, thyroid cancer, Parathyroid cancer, lung cancer, non-small cell lung cancer, prostate cancer, gallbladder cancer, biliary tract cancer, non-Hodgkin lymphoma, Hodgkin lymphoma, blood cancer, bladder cancer, kidney cancer, melanoma, colon cancer, bone cancer, skin cancer, head and neck cancer, uterine cancer, rectal cancer, Brain tumor, perianal cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal cancer, vulvar carcinoma, esophageal cancer, small intestine cancer, endocrine cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, ureteral carcinoma, renal cell carcinoma, renal pelvic carcinoma, central It may be a nervous system tumor, spinal cord tumor, brainstem glioma, or pituitary adenoma.
본 발명에서, 용어 "마커" 내지 "바이오 마커"는 생명체의 변화를 탐지할 수 있어 생명체의 정상 또는 병리적인 상태, 약물에 대한 반응 정도 등을 객관적으로 측정할 수 있는 것이다.In the present invention, the terms “marker” or “biomarker” are those that can detect changes in a living organism and objectively measure the normal or pathological state of the living organism, the degree of response to a drug, etc.
본 발명에서, 용어 "진단"은 특정 질병 또는 질환에 대한 대상(subject)의 감수성(susceptibility)을 판정하는 것, 대상이 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 대상의 예후(prognosis)를 예측 내지 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다.In the present invention, the term "diagnosis" refers to determining a subject's susceptibility to a specific disease or condition, determining whether the subject currently has a specific disease or condition, and determining whether the subject currently has a specific disease or condition. Predicting or determining the prognosis of an affected subject, or therametrics (e.g., monitoring the condition of a subject to provide information about treatment efficacy).
본 발명에서, 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 단계; 및 상기 엑소좀 분획 내 바이오 마커의 발현 수준을 측정하는 단계;를 포함하는 것일 수 있다.In the present invention, isolating an exosome fraction from a biological sample isolated from an individual of interest; And measuring the expression level of the biomarker in the exosome fraction.
본 발명에서, 용어 "개체"는 암이 발병되거나 발병될 가능성이 있는 모든 생물체를 의미하며, 구체적인 예로, 마우스, 원숭이, 소, 돼지, 미니돼지, 가축, 인간 등을 포함하는 포유동물, 양식어류 등을 포함할 수 있으며, 이에 제한되는 것은 아니다.In the present invention, the term "individual" refers to any living organism that develops or is likely to develop cancer, and specific examples include mammals including mice, monkeys, cows, pigs, mini-pigs, livestock, humans, etc., and farmed fish. It may include, but is not limited to, etc.
본 발명에서, 용어 "시료" 내지 "생물학적 시료"는 암이 발생하거나 발생한 것으로 의심되는 개체로부터 유래된 임의의 물질, 생물학적 체액, 조직 또는 세포를 의미하는 것으로, 예를 들면, 상기 생물학적 시료는 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions) 또는 뇌척수액(cerebrospinal fluid)에서 유래한 것을 포함할 수 있다.In the present invention, the terms “sample” and “biological sample” refer to any material, biological fluid, tissue, or cell derived from an individual that has developed or is suspected of having cancer. For example, the biological sample is whole blood. (whole blood), leukocytes, peripheral blood mononuclear cells, buffy coat, plasma, serum, sputum, tears, mucus ( mucus, nasal washes, nasal aspirate, breath, urine, semen, saliva, peritoneal washings, ascites, Cystic fluid, meningeal fluid, amniotic fluid, glandular fluid, pancreatic fluid, lymph fluid, pleural fluid, nipple aspirate ), bronchial aspirate, synovial fluid, joint aspirate, organ secretions, or cerebrospinal fluid.
본 발명에서, 상기 바이오 마커는, 인지질 수송 ATPase IB, 베타-1,3-갈락토실트랜스퍼라제 6, CUGBP 엘라브-유사 패밀리 멤버 6, 렙틴, 글루타티온 S-트랜스퍼라제 P1, 신경 펜트랙신 2, P16 및 고친화성 콜린 수송체 1로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것일 수 있고, 상기 바이오 마커는 하기 표 1과 같이 나타낼 수 있다.In the present invention, the biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP Elav-like family member 6, leptin, glutathione S-transferase P1, and neuronal pentraxin 2. , P16, and high-affinity choline transporter 1, and the biomarker may be shown in Table 1 below.
서열번호sequence number ProteinProtein GeneGene
1One 인지질 수송 ATPase IB (Phospholipid-transporting ATPase IB)Phospholipid-transporting ATPase IB ATP8A2ATP8A2
22 베타-1,3-갈락토실트랜스퍼라제 6 (BetaGal beta 1, 3-galactosyltransferase polypeptide 6)Beta-1,3-galactosyltransferase 6 (BetaGal beta 1, 3-galactosyltransferase polypeptide 6) B3GALT6 B3GALT6
33 CUGBP 엘라브-유사 패밀리 멤버 6 (CUGBP Elav-like family member 6)CUGBP Elav-like family member 6 CELF6 CELF6
44 렙틴 (Leptin)Leptin LEPLEP
55 글루타티온 S-트랜스퍼라제 P1 (Glutathione S-transferase P1)Glutathione S-transferase P1 GSTP1GSTP1
66 신경 펜트랙신 2(Neuronal Pentraxin 2) Neuronal Pentraxin 2 NPTX2 NPTX2
77 P16P16 CDKN2ACDKN2A
88 고친화성 콜린 수송체 1 (High affinity choline transporter 1)High affinity choline transporter 1 SLC5A7SLC5A7
상기 바이오 마커의 발현 수준은 상기 서열번호 1 내지 8로 표시되는 단백질 또는 이를 암호화하는 유전자의 발현 수준을 측정하는 제제를 포함하는 것일 수 있고, 상기 엑소좀은 대부분의 진핵 세포의 엔도솜 구획에서 생성되는 세포외 소포체(Extracellular vesicle; EV)로, 그 단리 방법은 제한없이 포함될 수 있다. The expression level of the biomarker may include an agent that measures the expression level of the protein represented by SEQ ID NO: 1 to 8 or the gene encoding the same, and the exosome is produced in the endosomal compartment of most eukaryotic cells. Extracellular vesicles (EV), and the isolation method may be included without limitation.
일 예로, 상기 측정 과정은 40세 내지 70세 사이의 췌장암 환자(n=50)와 정상인(n=80)으로부터 혈청 샘플을 얻어, centrifugal filter unit을 사용하여 엑소좀(extracellular vesicle)을 농축시킨 후, 엑소좀 속에 발현된 서열번호 1 내지 8의 바이오 마커에 대한 다중 면역분석(Multiplexed Immunoassay)을 수행하여 정량적으로 검출하는 것일 수 있다.As an example, the measurement process involves obtaining serum samples from pancreatic cancer patients (n=50) and normal people (n=80) between the ages of 40 and 70, concentrating exosomes (extracellular vesicles) using a centrifugal filter unit, and then , it may be quantitatively detected by performing multiplexed immunoassay on the biomarkers of SEQ ID NOs: 1 to 8 expressed in exosomes.
본 발명에서, 용어 "검출"은 검출하고자 하는 바이오 마커의 존재 여부, 생물학적 시료 내의 농도, 발현 수준 등을 측정하고 비교하기 위한 것일 수 있고, 상기 검출 결과 바이오 마커 수준의 증가는 상기 바이오 마커를 인코딩하는 유전자의 수의 증가, 유전자 전사의 증가(예를 들어, 구성성 프로모터의 제어 하에 유전자를 배치함으로써), 유전자의 번역의 증가, 경쟁 유전자의 낙아웃 또는 이들 및/또는 다른 방법의 조합을 포함하는 다수의 방법에 의할 수 있고, 엑소좀 바이오 마커의 발현 수준을 측정하는 것일 수 있다. In the present invention, the term "detection" may be used to measure and compare the presence or absence of a biomarker to be detected, concentration in a biological sample, expression level, etc., and an increase in the level of the biomarker as a result of the detection encodes the biomarker. increasing the number of genes that are activated, increasing gene transcription (e.g., by placing genes under the control of a constitutive promoter), increasing translation of genes, knocking out competing genes, or combinations of these and/or other methods. It can be done by a number of methods, and it can be measuring the expression level of exosomal biomarkers.
본 발명의 바이오 마커들을 검출하는 제제는 특별히 제한하지는 않으나, 예를 들면 상기 바이오 마커에 특이적으로 결합하는 항체, 올리고펩티드, 리간드, PNA(peptide nucleic acid) 및 앱타머(aptamer)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.Agents for detecting the biomarkers of the present invention are not particularly limited, but include, for example, a group consisting of antibodies, oligopeptides, ligands, PNA (peptide nucleic acids) and aptamers that specifically bind to the biomarkers. It may include one or more selected types.
본 발명에 상기 "항체"는 항원과 특이적으로 결합하여 항원-항체 반응을 일으키는 물질을 가리킨다. 본 발명의 상기 항체는 다클론 항체, 단클론 항체 및 재조합 항체를 모두 포함한다. 상기 항체는 당업계에 널리 공지된 기술을 이용하여 용이하게 제조될 수 있다. 예를 들어, 다클론 항체는 상기 단백질의 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 과정을 포함하는 당업계에 널리 공지된 방법에 의해 생산될 수 있다. 이러한 다클론 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등의 임의의 동물로부터 제조될 수 있다. 또한, 단클론 항체는 당업계에 널리 공지된 하이브리도마 방법 또는 파지 항체 라이브러리 기술을 이용하여 제조될 수 있다. 상기 방법으로 제조된 항체는 겔 전기영동, 투석, 염 침전, 이온교환 크로마토그래피, 친화성 크로마토그래피 등의 방법을 이용하여 분리, 정제될 수 있다. 또한, 본 발명의 항체는 2개의 전장의 경쇄 및 2개의 전장의 중쇄를 갖는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란, 적어도 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, F(ab'), F(ab')2 및 Fv 등이 있다.In the present invention, the “antibody” refers to a substance that specifically binds to an antigen and causes an antigen-antibody reaction. The antibodies of the present invention include polyclonal antibodies, monoclonal antibodies, and recombinant antibodies. The antibody can be easily produced using techniques well known in the art. For example, polyclonal antibodies can be produced by methods well known in the art, which include injecting the protein antigen into an animal and collecting blood from the animal to obtain serum containing the antibody. These polyclonal antibodies can be produced from any animal, such as goats, rabbits, sheep, monkeys, horses, pigs, cows, dogs, etc. Additionally, monoclonal antibodies can be produced using hybridoma methods or phage antibody library technology well known in the art. Antibodies prepared by the above method can be separated and purified using methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, and affinity chromatography. Additionally, antibodies of the invention include intact forms with two full-length light chains and two full-length heavy chains, as well as functional fragments of the antibody molecule. A functional fragment of an antibody molecule refers to a fragment that possesses at least an antigen-binding function, and includes Fab, F(ab'), F(ab')2, and Fv.
본 발명에서 상기 "PNA(Peptide Nucleic Acid)"는 인공적으로 합성된, DNA 또는 RNA와 비슷한 중합체를 가리키며, 1991년 덴마크 코펜하겐 대학교의 Nielsen, Egholm, Berg와 Buchardt 교수에 의해 처음으로 소개되었다. DNA는 인산-리보스당 골격을 갖는데 반해, PNA는 펩티드 결합에 의해 연결된 반복된 N-(2-아미노에틸)-글리신 골격을 가지며, 이로 인해 DNA 또는 RNA에 대한 결합력과 안정성이 크게 증가되어 분자 생물학, 진단 분석 및 안티센스 치료법에 사용되고 있다. 또한, 상기 "앱타머"는 올리고핵산 또는 펩티드 분자이다.In the present invention, "Peptide Nucleic Acid (PNA)" refers to an artificially synthesized polymer similar to DNA or RNA, and was first introduced by Professors Nielsen, Egholm, Berg and Buchardt at the University of Copenhagen, Denmark in 1991. While DNA has a phosphate-ribose sugar backbone, PNA has a repeated N-(2-aminoethyl)-glycine backbone linked by peptide bonds, which greatly increases its binding force and stability to DNA or RNA and is used in molecular biology. , is used in diagnostic analysis and antisense therapy. Additionally, the “aptamer” is an oligonucleic acid or peptide molecule.
본 발명에서 상기 바이오 마커들을 코딩하는 유전자의 발현 수준을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머, 프로브 및 안티센스 뉴클레오티드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. In the present invention, the agent for measuring the expression level of genes encoding the biomarkers may include one or more selected from the group consisting of primers, probes, and antisense nucleotides that specifically bind to the genes.
본 발명에서 상기 "프라이머"는 표적 유전자 서열을 인지하는 단편으로서, 정방향 및 역방향의 프라이머 쌍을 포함하나, 바람직하게는, 특이성 및 민감성을 가지는 분석 결과를 제공하는 프라이머 쌍이다. 프라이머의 핵산 서열이 시료 내 존재하는 비-표적 서열과 불일치하는 서열이어서, 상보적인 프라이머 결합 부위를 함유하는 표적 유전자 서열만 증폭하고 비특이적 증폭을 유발하지 않는 프라이머일 때, 높은 특이성이 부여될 수 있다.In the present invention, the “primer” is a fragment that recognizes the target gene sequence and includes forward and reverse primer pairs, but is preferably a primer pair that provides analysis results with specificity and sensitivity. High specificity can be granted when the nucleic acid sequence of the primer is a sequence that is inconsistent with the non-target sequence present in the sample, so that the primer amplifies only the target gene sequence containing the complementary primer binding site and does not cause non-specific amplification. .
본 발명에서 상기 "프로브"란 시료 내의 검출하고자 하는 표적 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 상기 결합을 통하여 특이적으로 시료 내의 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. 프로브의 종류는 당업계에서 통상적으로 사용되는 물질로서 제한은 없으나, 바람직하게는 PNA(peptide nucleic acid), LNA(locked nucleic acid), 펩티드, 폴리펩티드, 단백질, RNA 또는 DNA일 수 있으며, 가장 바람직하게는 PNA이다. 보다 구체적으로, 상기 프로브는 바이오 물질로서 생물에서 유래되거나 이와 유사한 것 또는 생체 외에서 제조된 것을 포함하는 것으로, 예를 들어, 효소, 단백질, 항체, 미생물, 동식물 세포 및 기관, 신경세포, DNA, 및 RNA일 수 있으며, DNA는 cDNA, 게놈 DNA, 올리고뉴클레오타이드를 포함하며, RNA는 게놈 RNA, mRNA, 올리고뉴클레오타이드를 포함하며, 단백질의 예로는 항체, 항원, 효소, 펩티드 등을 포함할 수 있다.In the present invention, the “probe” refers to a substance that can specifically bind to a target substance to be detected in a sample, and refers to a substance that can specifically confirm the presence of the target substance in the sample through the binding. The type of probe is not limited as it is a material commonly used in the art, but is preferably PNA (peptide nucleic acid), LNA (locked nucleic acid), peptide, polypeptide, protein, RNA or DNA, and most preferably is PNA. More specifically, the probe is a biomaterial that is derived from or similar to living organisms or includes those manufactured in vitro, such as enzymes, proteins, antibodies, microorganisms, animal and plant cells and organs, nerve cells, DNA, and It may be RNA, DNA includes cDNA, genomic DNA, and oligonucleotides, RNA includes genomic RNA, mRNA, and oligonucleotides, and examples of proteins may include antibodies, antigens, enzymes, peptides, etc.
본 발명에서 상기 "LNA(Locked nucleic acids)"란, 2'-O, 4'-C 메틸렌 브릿지를 포함하는 핵산 아날로그를 의미한다. LNA 뉴클레오사이드는 DNA와 RNA의 일반적 핵산 염기를 포함하며, Watson-Crick 염기 쌍 규칙에 따라 염기 쌍을 형성할 수 있다. 하지만, 메틸렌 브릿지로 인한 분자의 'locking'으로 인해, LNA는 Watson-Crick 결합에서 이상적 형상을 형성하지 못하게 된다. LNA가 DNA 또는 RNA 올리고뉴클레오티드에 포함되면, LNA는 보다 빠르게 상보적 뉴클레오티드 사슬과 쌍을 이루어 이중 나선의 안정성을 높일 수 있다. 본 발명에서 상기 "안티센스"는 안티센스 올리고머가 왓슨-크릭 염기쌍 형성에 의해 RNA 내의 표적 서열과 혼성화되어, 표적서열 내에서 전형적으로 mRNA와 RNA:올리고머 헤테로이중체의 형성을 허용하는, 뉴클레오티드 염기의 서열 및 서브유닛 간 백본을 갖는 올리고머를 의미한다. 올리고머는 표적 서열에 대한 정확한 서열 상보성 또는 근사 상보성을 가질 수 있다.In the present invention, “LNA (Locked nucleic acids)” refers to nucleic acid analogs containing 2'-O, 4'-C methylene bridges. LNA nucleosides contain the common nucleic acid bases of DNA and RNA and can form base pairs according to the Watson-Crick base pairing rules. However, due to the 'locking' of the molecule due to the methylene bridge, LNA does not form the ideal shape in Watson-Crick bonding. When LNA is included in a DNA or RNA oligonucleotide, the LNA can pair with the complementary nucleotide chain more quickly and increase the stability of the double helix. In the present invention, the "antisense" refers to a sequence of nucleotide bases in which an antisense oligomer hybridizes with a target sequence in RNA by Watson-Crick base pairing, typically allowing the formation of an mRNA and RNA:oligomer heteroduplex within the target sequence. and oligomers having an intersubunit backbone. Oligomers may have exact or approximate sequence complementarity to the target sequence.
본 발명에서, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 계산하는 단계;를 더 포함하는 것일 수 있다.In the present invention, the method may further include calculating the likelihood of cancer occurring in the individual using a learned deep neural network.
본 발명에서, 상기 계산은 상기 개체를 암 발생 가능성이 높은 위험군과 대조군으로 나누는 것일 수 있고. 상기 "대조군"은 암이 발병되지 않은 일반 개체, 암이 발생한 개체 전체 개체군 또는 암이 발생한 개체 중 양호한 예후를 보이는 개체군을 의미하는 것일 수 있다.In the present invention, the calculation may be to divide the individual into a risk group with a high possibility of developing cancer and a control group. The “control group” may refer to a general population that does not develop cancer, an entire population of subjects that develop cancer, or a population that shows a good prognosis among subjects that develop cancer.
본 발명에서, 상기 심층 신경망은(Deep Neural Network)은 인공 신경망(Artificial Neural Network)의 일종으로, 딥러닝 학습을 허여하는 컨볼루션 레이어(convolution layer), 풀링 레이어(Pooling layer), ReLu 레이어, Transpose 컨볼루션 레이어, 언풀링레이어(Unpooling layer), 1x1 컨볼루션 레이어, 스킵 연결(Skip connection), Global Average Pooling(GAP) 레이어, Fully Connected 레이어, SVM(support Vector Machine), LSTM(long Short term Memory), Atrous 컨볼루션(Atrous Convolution), Atrous Spatial Pyramid Pooling, Separable Convolution, Bilinear Upsampling로 이루어진 군에서 선택된 어느 하나 이상의 레이어(layer)나 엘리먼트(element)를 포함하는 뉴럴 네트워크(neural network)인 것일 수 있고, 앞단에 배치 정규화(Batch normalization) 연산을 더 포함하는 것일 수 있다. 일 예로, 도 1에서와 같이, 상기 심층 신경망은, 데이터가 입력되는 입력층(input layer); 제1 은닉층(hidden layer 1); 제2 은닉층(hidden layer 1); 제3 은닉층(hidden layer 1); 제4 은닉층(hidden layer 1); 및 출력층(output layer);으로 구성되는 것일 수 있다. 이때, 상기 입력층에 본 발명의 바이오 마커의 발현 수준을 입력할 수 있다.In the present invention, the deep neural network is a type of artificial neural network and includes a convolution layer, a pooling layer, a ReLu layer, and a transpose layer that allows deep learning learning. Convolutional layer, Unpooling layer, 1x1 convolutional layer, Skip connection, Global Average Pooling (GAP) layer, Fully Connected layer, SVM (support Vector Machine), LSTM (long short term memory) , It may be a neural network including one or more layers or elements selected from the group consisting of Atrous Convolution, Atrous Spatial Pyramid Pooling, Separable Convolution, and Bilinear Upsampling, It may further include a batch normalization operation at the front end. For example, as shown in FIG. 1, the deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer. At this time, the expression level of the biomarker of the present invention can be input into the input layer.
본 발명에서, 상기 심층 신경망은 역전파 학습 알고리즘에 의해 학습된 것일 수 있고, 상기 학습 데이터는 본 발명의 바이오 마커의 발현 수준에 관한 데이터와, 실제 암 발생 여부에 대한 결과 데이터를 포함할 수 있다. 상기 학습 데이터는 심층 신경망의 학습을 위해 입력되는 데이터이며, 학습을 위해서는 심층 신경망이 정보를 처리하여 얻은 예측값과 실제 결과값과의 오차에 대한 정보가 필요하다. 이에 따라 학습 데이터에는 실제 결과값이 필수적으로 포함되어야 한다. 또한 상기 학습 데이터는 심층 신경망의 가중치 계수가 충분히 신뢰성을 갖는 수준으로 도출되도록 하기 위해 일정 기준치 이상의 환자별 데이터가 요구될 수 있다. 이후 상기 진단 장치는 심층 신경망을 이용하여 암 발병 확률을 예측하는 초기 예측값을 생성하는 동작을 수행할 수 있다. 이후 상기 트레이닝부는 상기 도출된 초기 예측값과 학습 데이터로써 입력된 실제 결과값과의 오차를 기반으로 가중치 계수를 수정하는 동작을 수행할 수 있다. 상기 동작은 역전파 알고리즘을 이용한 동작일 수 있다. 일 예로, 도 1에서 도시된 바와 같이 제1 은닉층 내지 제3 은닉층의 각 노드는 입력층의 전체 노드와 가중치에 의해 계산된 결과인 값을 수신할 수 있다. 또는, 도 1에서 도시된 바와 같이 제1 은닉층 내지 제4 은닉층의 각 노드는 입력층의 전체 노드와 가중치에 의해 계산된 결과값을 수신할 수 있다. 이후 상기 은닉층들의 각 노드는 활성화 함수에 의해 활성화 여부를 판단할 수 있다. 은닉층의 각 노드는 해당 값이 일정 기준치를 만족하여 활성화되거나 혹은 만족하지 못함에 따라 비활성화되는 것을 결정하게 되고 이는 활성화 함수에 기반하여 수행된다. 그리고 은닉층의 각 노드에서 출력층의 positive 노드와 negative 노드로 연결되는 과정에도 각각에 상응하는 가중치 계수가 존재할 수 있다. 그러므로 상기 심층 신경망에서 가중치를 각각 다르게 각각 다르게 설정할 수 있는 경우, 입력층과 출력층 사이 단계에서 적용되는 가중치 계수는 다양하게 설정될 수 있다. 일 예로, 도 1과 같이 제1 은닉층 내지 제3 은닉층을 가진 신경망에서는 최대 5,184개의 가중치 계수를 가질 수 있고, 도 2와 같이 제1 은닉층 내지 제4 은닉층을 가진 신경망에서는 최대 46,656개의 가중치 계수를 가질 수 있다.In the present invention, the deep neural network may be learned by a backpropagation learning algorithm, and the learning data may include data on the expression level of the biomarker of the present invention and result data on whether cancer actually occurs. . The learning data is data input for learning of a deep neural network, and for learning, information about the error between the predicted value obtained by processing the information by the deep neural network and the actual result is required. Accordingly, the learning data must necessarily include actual results. In addition, the learning data may require patient-specific data above a certain standard value to ensure that the weight coefficients of the deep neural network are derived at a sufficiently reliable level. Thereafter, the diagnostic device may perform an operation of generating an initial prediction value that predicts the probability of developing cancer using a deep neural network. Thereafter, the training unit may perform an operation to modify the weight coefficient based on the error between the derived initial prediction value and the actual result value input as learning data. The operation may be an operation using a backpropagation algorithm. For example, as shown in FIG. 1, each node of the first to third hidden layers may receive a value that is a result of calculation by all nodes and weights of the input layer. Alternatively, as shown in FIG. 1, each node of the first to fourth hidden layers may receive a result calculated by all nodes and weights of the input layer. Afterwards, each node of the hidden layers can determine whether or not it is activated using an activation function. Each node in the hidden layer is determined to be activated when the corresponding value satisfies a certain standard or deactivated when it does not meet a certain standard, and this is performed based on the activation function. Additionally, in the process of connecting each node of the hidden layer to the positive and negative nodes of the output layer, corresponding weight coefficients may exist. Therefore, if the weights in the deep neural network can be set differently, the weight coefficients applied at the stage between the input layer and the output layer can be set in various ways. For example, a neural network with first to third hidden layers as shown in FIG. 1 may have a maximum of 5,184 weight coefficients, and a neural network with first to fourth hidden layers as shown in FIG. 2 may have a maximum of 46,656 weight coefficients. You can.
상기 트레이닝부는 이와 같은 과정을 통해 가중치를 출력 레이어와 가까운 단계에서 적용되는 가중치 계수부터 수정하며, 준비된 학습 데이터의 입력이 모두 완료되면 최종적으로 산출된 계수를 심층 신경망의 가중치 계수로 고정하여 학습된 심층 신경망 모델을 완성할 수 있다.Through this process, the training unit modifies the weights starting from the weight coefficients applied at the stage closest to the output layer, and when all inputs of the prepared learning data are completed, the final calculated coefficients are fixed as the weight coefficients of the deep neural network to obtain the learned deep layer. The neural network model can be completed.
본 발명에서, 상기 심층 신경망의 학습을 위한 데이터는, 상기 바이오 마커 외의 위험 인자인 개체의 체중, 성별 및 나이로 구성된 군에서 선택된 어느 하나 이상을 더 포함하는 것일 수 있다. In the present invention, the data for learning the deep neural network may further include one or more selected from the group consisting of the individual's weight, gender, and age, which are risk factors other than the biomarker.
본 발명의 다른 구현 예에 따르면, 암 진단을 위한 장치를 제공할 수 있다.According to another embodiment of the present invention, an apparatus for diagnosing cancer can be provided.
본 발명에서, 상기 장치는, 목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 시료 가공부; 및 상기 엑소좀 분획 내 뉴클레오티드 분자의 메틸화를 측정하는 측정부;를 포함하는 것일 수 있다.In the present invention, the device includes a sample processing unit for isolating an exosome fraction from a biological sample isolated from a subject of interest; And it may include a measuring unit that measures methylation of nucleotide molecules in the exosome fraction.
본 발명에서, 상기 장치는, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 산출하는 연산부;를 더 포함하는 것일 수 있다.In the present invention, the device may further include a calculation unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
본 발명에서, 상기 장치는 학습 데이터를 입력받아 학습을 수행하는 트레이닝부를 더 포함할 수 있다. 이 때 상기 학습 데이터는 사용자에 의해 개별 입력될 수도 있으나, 별도로 의료기관 서버 컴퓨터에 저장된 환자 데이터로부터 일괄적으로 입력될 수도 있다. In the present invention, the device may further include a training unit that receives learning data and performs learning. At this time, the learning data may be individually input by the user, or may be input collectively from patient data separately stored in a server computer of a medical institution.
본 발명의 실시 예에 따른 상기 트레이닝부는 학습 데이터(트레이닝 코호트) 또는 테스트 데이터(테스트 코호트)에 대응하는 자료를 직접 입력 받을 수 있다. 또한 다양한 실시 예에 따라 상기 트레이닝부는 투입될 데이터의 항목을 변경하기 위한 사용자 조작을 수신할 수 있다. 이 밖에도 다양한 실시예에 따른 환자 데이터를 상기 트레이닝부에 입력할 수 있고, 상기 데이터는 디지털 형태일 수 있다.The training unit according to an embodiment of the present invention may directly receive data corresponding to learning data (training cohort) or test data (test cohort). Additionally, according to various embodiments, the training unit may receive a user manipulation to change an item of data to be input. In addition, patient data according to various embodiments may be input into the training unit, and the data may be in digital form.
본 발명에서, 상기 장치는 저장부를 더 포함할 수 있다. 상기 저장부는 예를 들면, 내장 메모리 또는 외장 메모리를 포함할 수 있다. 내장메모리는, 예를 들면, 휘발성 메모리(예: DRAM(dynamic RAM), SRAM(static RAM), 또는 SDRAM(synchronous dynamic RAM) 등), 비휘발성 메모리(non-volatile Memory)(예: OTPROM(one time programmable ROM), PROM(programmable ROM), EPROM(erasable and programmable ROM), EEPROM(electrically erasable and programmable ROM), mask ROM, flash ROM, 플래시 메모리(예: NAND flash 또는 NOR flash 등), 하드 드라이브, 또는 솔리드 스테이트 드라이브(solid state drive; SSD) 중 적어도 하나를 포함할 수 있다. 상기 외장 메모리는 플래시 드라이브(flash drive), 예를 들면, CF(compact flash), SD(secure digital), Micro-SD(micro secure digital), Mini-SD(mini secure digital), xD(extreme digital), MMC(multi-media card) 또는 메모리 스틱(memory stick) 등을 더 포함할 수 있다. 외장 메모리는 다양한 인터페이스를 통하여 전자 장치와 기능적으로 및/또는 물리적으로 연결될 수 있다.In the present invention, the device may further include a storage unit. The storage unit may include, for example, internal memory or external memory. Internal memory includes, for example, volatile memory (e.g., dynamic RAM (DRAM), static RAM (SRAM), or synchronous dynamic RAM (SDRAM), etc.), non-volatile memory (e.g., OTPROM (one time programmable ROM), programmable ROM (PROM), erasable and programmable ROM (EPROM), electrically erasable and programmable ROM (EEPROM), mask ROM, flash ROM, flash memory (such as NAND flash or NOR flash, etc.), hard drive, Or it may include at least one of a solid state drive (SSD).The external memory may be a flash drive, for example, compact flash (CF), secure digital (SD), or Micro-SD. It may further include (micro secure digital), Mini-SD (mini secure digital), xD (extreme digital), MMC (multi-media card), or memory stick, etc. External memory can be stored through various interfaces. May be functionally and/or physically connected to an electronic device.
본 발명에서, 상기 환자 데이터는 판독부에 의해 타 전자장치 또는 외부 서버(예, 관련 의료기관 서버)로부터 수집된 정보들 중에서 위험인자에 해당하는 데이터들만을 추출하는 동작을 수행할 수 있다. 예컨대, 통신부를 통해 전달되는 정보는 환자의 이름, 생년월일, 흡연 유무 등 검사 결과에 해당하지 않는 정보 및 특정 검사에 대한 결과 정보가 해당될 수 있다. 그러나 이러한 많은 다양한 항목들 중 암 예측과 관계가 없는 항목들이 존재할 수 있으므로, 상기 환자 데이터는 트레이닝부에 투입되어 암의 진단을 수행하기 위해 요구되는 데이터의 항목만을 추출할 수 있다. In the present invention, the patient data may be extracted by a reader from only data corresponding to risk factors from information collected from other electronic devices or external servers (e.g., related medical institution servers). For example, information transmitted through the communication unit may include information that does not correspond to test results, such as the patient's name, date of birth, and smoking status, and result information for a specific test. However, since there may be items unrelated to cancer prediction among these many various items, the patient data can be input to the training unit to extract only the data items required to perform a cancer diagnosis.
본 발명에서, 상기 심층 신경망은 positive 노드와 negative 노드의 값을 비교하여 큰 값을 갖는 쪽을 최종 결과로 산출할 수 있다. 일 예로, 상기 비교는 positive 노드와 negative 노드의 값의 차이의 크기를 비교하거나 positive 값이 기준치 이상이거나 또는 negative 값이 기준치 미만인 것으로 판단되면, 그에 대응하는 암 발생 확률을 계산할 수 있다. In the present invention, the deep neural network can compare the values of positive and negative nodes and calculate the one with the larger value as the final result. For example, the comparison may compare the size of the difference between the values of the positive node and the negative node, or if it is determined that the positive value is greater than or equal to the reference value or the negative value is less than the reference value, the corresponding probability of occurrence of cancer may be calculated.
본 발명에서, 상기 연산부는 상기 심층 신경망을 기반으로 암 발생 확률을 저하시키기 위해 가장 효과적인 위험인자를 산출할 수 있다. 상기 연산부는 각 위험인자 데이터들 중 선별된 특정 항목의 값을 일정 간격으로 변경하여 비교 데이터를 생성할 수 있다. 이후, 상기 전자장치는 원 데이터를 심층 신경망에 투입하여 생성된 예측값과 비교 데이터를 심층 신경망에 투입하여 생성된 예측값을 비교할 수 있으며, 만약, 원 데이터에 의해 생성된 예측값(예컨대, positive)이 비교 데이터에 의해 생성된 예측값(예컨대, negative)이 서로 다르게 산출되면, 두 값이 다르게 산출되기 시작하는 위험인자 항목별 데이터 수치를 산출하고 이를 사용자에게 제공할 수 있다. In the present invention, the calculation unit can calculate the most effective risk factors to reduce the probability of cancer occurrence based on the deep neural network. The calculation unit may generate comparison data by changing the value of a specific item selected from each risk factor data at regular intervals. Thereafter, the electronic device can compare the predicted value generated by inputting the raw data into the deep neural network with the predicted value generated by inputting the comparison data into the deep neural network, and if the predicted value (e.g., positive) generated by the raw data is compared. If the predicted values (e.g., negative) generated by the data are calculated differently, data values for each risk factor item for which the two values begin to be calculated differently can be calculated and provided to the user.
본 발명에서, 연속 데이터는 평균 및 표준 편차(standard deviation; SD)로 표시될 수 있으며, 암 발생 인자는 트레이닝 코호트의 모델을 사용하여 후향적 데이터로 결정될 수 있다. In the present invention, continuous data can be expressed as mean and standard deviation (SD), and cancer incidence factors can be determined from retrospective data using a model of the training cohort.
본 발명에서, 상기 장치에 투입되는 데이터 및 심층 신경망의 동작 결과 산출된 결과를 표시하는 기능을 수행할 수 있다. 또한 상기 표시부는 다양한 실시 예에 따라 심층 신경망에 처리한 결과의 확률에 관한 데이터를 산출할 수 있다. 예컨대, 상기 심층 신경망은 다양한 실시 예에 따라, 암 발생 여부에 관한 예측뿐 아니라, 암이 발생할 것이라면 그 발생 확률이 얼마인지, 또는 발생하지 않을 것으로 예측된다면 발생하지 않을 확률이 얼마인지에 대한 정보를 함께 산출할 수 있다. In the present invention, the function of displaying data input to the device and results calculated as a result of the operation of a deep neural network can be performed. Additionally, the display unit may calculate data regarding the probability of a result processed by a deep neural network according to various embodiments. For example, according to various embodiments, the deep neural network not only predicts whether cancer will occur, but also provides information about the probability of cancer occurring if it will occur, or the probability of cancer not occurring if it is predicted not to occur. can be calculated together.
본 발명에서, 상기 표시부는 패널, 홀로그램 장치 또는 프로젝터를 포함할 수 있다. 패널은 터치 패널과 하나의 모듈로 구성될 수도 있다. 홀로그램 장치는 빛의 간섭을 이용하여 입체 영상을 허공에 보여줄 수 있다. 프로젝터는 스크린에 빛을 투사하여 영상을 표시할 수 있다. 스크린은, 예를 들면, 전자 장치의 내부 또는 외부에 위치할 수 있다. 한 실시예에 따르면, 표시부는 패널, 홀로그램 장치, 또는 프로젝터를 제어하기 위한 제어 회로를 더 포함할 수 있다.In the present invention, the display unit may include a panel, a hologram device, or a projector. The panel may be composed of a touch panel and one module. Holographic devices can display three-dimensional images in the air using the interference of light. A projector can display images by projecting light onto a screen. The screen may be located, for example, inside or outside the electronic device. According to one embodiment, the display unit may further include a control circuit for controlling a panel, a hologram device, or a projector.
본 발명에서, 상기 장치는 통신부를 더 포함할 수 있다. 상기 통신부는 타 사용자 전자장치 또는 타 서버와의 데이터 송수신을 위해 네트워크를 이용할 수 있으며 상기 네트워크의 종류는 특별히 제한되지 않는다. 상기 네트워크는 예를 들어, 인터넷 프로토콜(IP)을 통하여 대용량 데이터의 송수신 서비스를 제공하는 아이피(Internet Protocol; IP)망 또는 서로 다른 IP 망을 통합한 올 아이피(All IP) 망 일 수 있다. 또한, 상기 네트워크는 유선망, Wibro(Wireless Broadband)망, WCDMA를 포함하는 이동통신망, HSDPA(High Speed Downlink Packet Access)망 및 LTE(Long Term Evolution) 망을 포함하는 이동통신망, LTE advanced(LTE-A), 5G(Five Generation)를 포함하는 이동통신망, 위성 통신망 및 와이파이(Wi-Fi)망 중 하나 이거나 또는 이들 중 적어도 하나 이상을 결합하여 이루어질 수 있다. 또한 상기 통신부는 타 전자장치 또는 외부 서버로부터 학습된 심층 신경망에 투입할 메틸화 정보를 수신하기 위한 통신 기능을 지원할 수 있다. 또한 상기 통신부는 심층 신경망의 정보 처리 결과를 타 전자장치 또는 외부 서버로 전송할 수 있다. In the present invention, the device may further include a communication unit. The communication unit can use a network to transmit and receive data with other user electronic devices or other servers, and the type of the network is not particularly limited. For example, the network may be an Internet Protocol (IP) network that provides large data transmission and reception services through the Internet Protocol (IP), or an All IP network that integrates different IP networks. In addition, the network includes a wired network, a Wibro (Wireless Broadband) network, a mobile communication network including WCDMA, a mobile communication network including a HSDPA (High Speed Downlink Packet Access) network and an LTE (Long Term Evolution) network, and LTE advanced (LTE-A). ), a mobile communication network including 5G (Five Generation), a satellite communication network, and a Wi-Fi network, or a combination of at least one of these. Additionally, the communication unit may support a communication function for receiving methylation information to be input into a deep neural network learned from another electronic device or an external server. Additionally, the communication unit may transmit the information processing results of the deep neural network to another electronic device or external server.
본 발명에서, 상기 장치는 제어부를 더 포함할 수 있고, 상기 제어부는 프로세서(Processor), 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 제어부는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어 또는 이들의 결합에 의해 구현될 수 있다. In the present invention, the device may further include a control unit, and the control unit may also be called a processor, controller, microcontroller, microprocessor, microcomputer, etc. You can. Meanwhile, the control unit may be implemented by hardware, firmware, software, or a combination thereof.
본 발명에서, 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 제어부에 의해 구동될 수 있다. 메모리는 상기 사용자 단말 및 서버 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 제어부와 데이터를 주고받을 수 있다.In the present invention, in the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. Software code can be stored in memory and driven by a control unit. The memory may be located inside or outside the user terminal and server, and may exchange data with the control unit through various known means.
본 발명에서, 생략된 나머지 기재들은 명세서의 나머지 기재와 마찬가지로 해석될 수 있다. In the present invention, the remaining omitted descriptions may be interpreted similarly to the remaining descriptions in the specification.
본 발명의 또 다른 구현 예에 따르면, 암 치료제에 대한 스크리닝 방법을 제공할 수 있다.According to another embodiment of the present invention, a screening method for a cancer treatment drug can be provided.
본 발명에서, 목적하는 개체로부터 분리한 시료 또는 암 질환 동물 모델에 후보 물질을 처리하는 단계; 및 상기 후보 물질이 처리된 시료 또는 암 질환 동물 모델에서 바이오 마커의 발현 수준을 확인하는 단계;를 포함하는 암의 예방 또는 치료용 약물을 스크리닝하는 방법을 제공하는 것일 수 있다.본 발명에서, "후보 물질"은 암 환자에 적용하여 예후를 호전시키거나 이롭게 변경할 수 있는 물질을 제한없이 포함될 수 있고, 상기 후보 물질은 천연 물질뿐만 아니라 합성 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다. In the present invention, the steps include treating a sample isolated from a target individual or a cancer disease animal model with a candidate substance; and confirming the expression level of the biomarker in a sample treated with the candidate substance or a cancer disease animal model. It may be to provide a method of screening a drug for the prevention or treatment of cancer, including: " “Candidate substance” may include without limitation substances that can improve or beneficially change the prognosis when applied to cancer patients, and the candidate substance may include synthetic substances as well as natural substances, but is not limited thereto.
본 발명에서, 상기 발현 수준은 상기 모델에서 유래한 시료의 엑소좀 내의 발현 수준일 수 있다.In the present invention, the expression level may be the expression level in exosomes of the sample derived from the model.
본 발명에서, 상기 발현 수준의 측정은 복수회에 걸쳐 수행되는 것일 수 있다.In the present invention, the measurement of the expression level may be performed multiple times.
본 발명에서, 생략된 나머지 기재들은 명세서의 나머지 기재와 마찬가지로 해석될 수 있다. In the present invention, the remaining omitted descriptions can be interpreted similarly to the remaining descriptions in the specification.
이상에서 본 발명에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the present invention has been described in detail above, the scope of the present invention is not limited thereto, and it is known in the art that various modifications and variations are possible without departing from the technical spirit of the present invention as set forth in the claims. It will be self-evident to those with knowledge.
본 발명은 순환 종양 세포를 분석하여 암을 진단하는 방법에 관한 것으로, 구체적으로는 순환 종양 세포의 유전자 메틸화 수준을 이용하는 암 진단용 조성물, 진단 키트 및 진단 방법에 관한 것이다. The present invention relates to a method for diagnosing cancer by analyzing circulating tumor cells, and more specifically, to a composition, diagnostic kit, and diagnostic method for diagnosing cancer using the gene methylation level of circulating tumor cells.

Claims (6)

  1. 암 진단을 위한 정보 제공 방법으로서,As a method of providing information for cancer diagnosis,
    목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 단계; 및 Isolating an exosome fraction from a biological sample isolated from a subject of interest; and
    상기 엑소좀 분획 내 바이오 마커의 발현 수준을 측정하는 단계;를 포함하는 것인, Measuring the expression level of the biomarker in the exosome fraction,
    방법.method.
  2. 제1항에 있어서,According to paragraph 1,
    상기 바이오 마커는, 인지질 수송 ATPase IB, 베타-1,3-갈락토실트랜스퍼라제 6, CUGBP 엘라브-유사 패밀리 멤버 6, 렙틴, 글루타티온 S-트랜스퍼라제 P1, 신경 펜트랙신 2, P16 및 고친화성 콜린 수송체 1로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것인, The biomarkers include phospholipid transport ATPase IB, beta-1,3-galactosyltransferase 6, CUGBP elabe-like family member 6, leptin, glutathione S-transferase P1, neuronal pentraxin 2, P16, and Gochin. Containing at least one selected from the group consisting of Martian choline transporter 1,
    방법.method.
  3. 제1항에 있어서,According to paragraph 1,
    상기 방법은, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 계산하는 단계;를 더 포함하는 것인, The method further includes calculating the likelihood of cancer occurring in the subject using a learned deep neural network.
    방법.method.
  4. 제3항에 있어서,According to paragraph 3,
    상기 심층 신경망은, 데이터가 입력되는 입력층(input layer); 제1 은닉층(hidden layer 1); 제2 은닉층(hidden layer 1); 제3 은닉층(hidden layer 1); 제4 은닉층(hidden layer 1); 및 출력층(output layer);으로 구성되는 것인, The deep neural network includes an input layer into which data is input; first hidden layer (hidden layer 1); second hidden layer (hidden layer 1); third hidden layer (hidden layer 1); fourth hidden layer (hidden layer 1); and an output layer;
    방법.method.
  5. 암 진단을 위한 장치로,As a device for cancer diagnosis,
    목적하는 개체로부터 분리된 생물학적 시료에서 엑소좀 분획을 단리하는 시료 가공부; 및 A sample processing unit for isolating an exosome fraction from a biological sample isolated from a target individual; and
    상기 엑소좀 분획 내 뉴클레오티드 분자의 메틸화를 측정하는 측정부;를 포함하는 것인, It includes a measuring unit that measures methylation of nucleotide molecules in the exosome fraction,
    장치.Device.
  6. 제5항에 있어서,According to clause 5,
    상기 장치는, 학습된 심층 신경망에 의해 상기 개체의 암 발생 가능성을 산출하는 연산부;를 더 포함하는 것인,The device further includes an arithmetic unit that calculates the likelihood of cancer occurring in the individual using a learned deep neural network.
    장치.Device.
PCT/KR2022/010342 2022-07-13 2022-07-15 Method for providing information for artificial intelligence-based cancer diagnosis using biomarker expressed in exosome WO2024014580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220086064 2022-07-13
KR10-2022-0086064 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014580A1 true WO2024014580A1 (en) 2024-01-18

Family

ID=89536928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010342 WO2024014580A1 (en) 2022-07-13 2022-07-15 Method for providing information for artificial intelligence-based cancer diagnosis using biomarker expressed in exosome

Country Status (1)

Country Link
WO (1) WO2024014580A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170102043A (en) * 2008-02-01 2017-09-06 더 제너럴 하스피탈 코포레이션 Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions
KR101968046B1 (en) * 2018-07-19 2019-04-11 (주) 바이오인프라생명과학 Complex biomarkers for early diagnosis of cancer
WO2019118389A1 (en) * 2017-12-12 2019-06-20 Trizell Limited Cdkn2a companion diagnostic for bladder cancer interferon therapy
KR20200136977A (en) * 2018-03-28 2020-12-08 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Identification of epigenetic changes in DNA isolated from exosomes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170102043A (en) * 2008-02-01 2017-09-06 더 제너럴 하스피탈 코포레이션 Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions
WO2019118389A1 (en) * 2017-12-12 2019-06-20 Trizell Limited Cdkn2a companion diagnostic for bladder cancer interferon therapy
KR20200136977A (en) * 2018-03-28 2020-12-08 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 Identification of epigenetic changes in DNA isolated from exosomes
KR101968046B1 (en) * 2018-07-19 2019-04-11 (주) 바이오인프라생명과학 Complex biomarkers for early diagnosis of cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU CHUNCHEN; LI BO; LIN HUIXIAN; YANG CHAO; GUO JINGYUN; CUI BINBIN; PAN WEILUN; FENG JUNJIE; LUO TINGTING; CHU FUXIN; XU XIAONAN: "Multiplexed analysis of small extracellular vesicle-derived mRNAs by droplet digital PCR and machine learning improves breast cancer diagnosis", BIOSENSORS AND BIOELECTRONICS, ELSEVIER SCIENCE LTD, UK, AMSTERDAM , NL, vol. 194, 4 September 2021 (2021-09-04), Amsterdam , NL , XP086829025, ISSN: 0956-5663, DOI: 10.1016/j.bios.2021.113615 *
ZHU WAN, XIE LONGXIANG, HAN JIANYE, GUO XIANGQIAN: "The Application of Deep Learning in Cancer Prognosis Prediction", CANCERS, CH, vol. 12, no. 3, CH , pages 603, XP093129072, ISSN: 2072-6694, DOI: 10.3390/cancers12030603 *

Similar Documents

Publication Publication Date Title
CN106198980B (en) Cancer of pancreas biomarker and application thereof
WO2012050365A2 (en) Biomarker for diagnosing glioblastoma or predicting prognosis of glioblastoma patients, and use thereof
WO2016050110A1 (en) Biomarkers for rheumatoid arthritis and usage thereof
US20220298574A1 (en) Blood biomarkers for appendicitis and diagnostics methods using biomarkers
Marey et al. Clinical impact of post-mortem genetic testing in cardiac death and cardiomyopathy
WO2013062261A2 (en) Newly identified colon cancer marker and diagnostic kit using the same
WO2017156739A1 (en) Isolated nucleic acid application thereof
WO2021210905A1 (en) Composition for prediction of prognosis for cancer
WO2024014580A1 (en) Method for providing information for artificial intelligence-based cancer diagnosis using biomarker expressed in exosome
Schieffer et al. A differential host response to viral infection defines a subset of earlier-onset diverticulitis patients
US20210293814A1 (en) Systems and methods for spectral imaging characterization of macrophages for use in personalization of targeted therapies to prevent fibrosis development in patients with chronic liver disease
WO2010085124A2 (en) Marker for liver-cancer diagnosis and recurrence and survival prediction, a kit comprising the same, and prognosis prediction in liver-cancer patients using the marker
KR102499664B1 (en) A Composition for Diagnosing Cancer
WO2021101146A1 (en) Biomarker composition for predicting prognosis or determining progression stage of chronic liver disease
WO2017156764A1 (en) Isolated nucleic acid application thereof
CN107164535A (en) A kind of noninvasive high flux methylates diagnosis of colon cancer, research and treatment method
CN106636351B (en) One kind SNP marker relevant to breast cancer and its application
KR20220039065A (en) Novel biomarker for predicting drug-responsibility to colon cancer
CN111471764B (en) Biomarker combination for screening or auxiliary diagnosis of gastric cancer, kit and application thereof
WO2023243749A1 (en) Marker for prognosis of diffuse type gastric cancer and treatment target
WO2024117714A1 (en) Biomarker for diagnosing sarcopenia and sarcopenia diagnosis method using same
CN117385066B (en) Hypertension diagnosis marker and application thereof
WO2024177256A1 (en) Companion diagnostic biomarker composition for predicting anti-tnf treatment responsiveness to crohn's disease
KR102499678B1 (en) A Composition for Diagnosing Cancer
CN106811528B (en) A kind of breast cancer is cured the disease gene new mutation and its application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951235

Country of ref document: EP

Kind code of ref document: A1