WO2024014483A1 - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
WO2024014483A1
WO2024014483A1 PCT/JP2023/025744 JP2023025744W WO2024014483A1 WO 2024014483 A1 WO2024014483 A1 WO 2024014483A1 JP 2023025744 W JP2023025744 W JP 2023025744W WO 2024014483 A1 WO2024014483 A1 WO 2024014483A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
counter electrode
working electrode
electrochemical cell
active material
Prior art date
Application number
PCT/JP2023/025744
Other languages
French (fr)
Japanese (ja)
Inventor
勝真 石野
淳一 成瀬
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024014483A1 publication Critical patent/WO2024014483A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00

Definitions

  • the present disclosure relates to electrochemical cells.
  • carbon dioxide recovery systems have been developed that separate carbon dioxide (CO 2 ) from a target gas containing carbon dioxide (CO 2 ) through an electrochemical reaction.
  • a carbon dioxide adsorbent capable of adsorbing carbon dioxide is provided at the working electrode of an electrochemical cell.
  • the adsorbent is an electroactive species, and by changing the potential difference between the working electrode and the counter electrode, the adsorption and release of carbon dioxide by the carbon dioxide adsorbent can be switched.
  • the counter electrode of the electrochemical cell is configured to include an active material that is an auxiliary electroactive species that exchanges electrons with the carbon dioxide adsorbent of the working electrode.
  • an active material for example, a metal complex that can transfer electrons by changing the valence of metal ions can be used.
  • ferrocene (Fc) for example, as such a metal complex has been considered.
  • ferrocene is a small molecule, it easily dissolves into the electrolyte provided between the working electrode and the counter electrode. This may reduce electrode performance.
  • Non-Patent Document 1 discloses a technique using polyvinylferrocene (PVFc) as a counter electrode active material.
  • PVFc polyvinylferrocene
  • Non-Patent Document 1 a mixed gas of carbon dioxide and nitrogen (N 2 ) is used as the gas to be treated. That is, in Non-Patent Document 1, an electrochemical cell is operated in a CO 2 /N 2 atmosphere.
  • Non-Patent Document 1 when the electrochemical cell described in Non-Patent Document 1 is used in a carbon dioxide recovery system that separates carbon dioxide from a gas containing oxygen such as the atmosphere, the active material of the electrode deteriorates due to oxygen. There is a risk. This can reduce the durability of the electrochemical cell.
  • the present disclosure aims to provide an electrochemical cell that can improve electrode performance and durability.
  • an electrochemical cell includes a working electrode that adsorbs and desorbs carbon dioxide from a gas to be treated containing carbon dioxide through an electrochemical reaction; a counter electrode that transfers electrons to and from the working electrode;
  • An electrochemical cell comprising: an electrolyte material covering a working electrode and a counter electrode;
  • the electrolyte material is an ionic liquid,
  • At least one of the working electrode and the counter electrode has an active material and carbon nanotubes, The active material is contained inside the carbon nanotube.
  • FIG. 1 is a conceptual diagram showing the overall configuration of a carbon dioxide recovery system in one embodiment. It is an explanatory view showing a carbon dioxide recovery device in one embodiment.
  • FIG. 2 is a cross-sectional view of an electrochemical cell in one embodiment.
  • FIG. 2 is an explanatory diagram for explaining the configuration of a counter electrode in one embodiment. It is a figure showing a TEM image. It is a figure showing a STEM-ADF image. It is a figure showing an EDX analysis result. It is a figure showing a cyclic voltammogram of an example. It is a figure which shows the cyclic voltammogram of a comparative example.
  • the electrochemical cell of the present disclosure is applied to a carbon dioxide recovery system that separates and recovers carbon dioxide from a gas to be treated containing carbon dioxide.
  • the gas to be treated is a carbon dioxide-containing gas containing carbon dioxide.
  • the gas to be treated also contains gases other than carbon dioxide.
  • the carbon dioxide-containing gas contains oxygen (O 2 ) as a gas other than carbon dioxide.
  • the gas to be treated is the atmosphere or a highly concentrated gas containing carbon dioxide at a higher concentration than the atmosphere. Highly concentrated gases are emitted from internal combustion engines and factories, for example.
  • the gas to be processed in this embodiment is the atmosphere.
  • the carbon dioxide recovery system 10 of this embodiment is provided with a compressor 11, a carbon dioxide recovery device 100, a flow path switching valve 12, a carbon dioxide utilization device 13, and a control device 14.
  • the compressor 11 pumps atmospheric air, which is a carbon dioxide-containing gas, to the carbon dioxide recovery device 100.
  • the compressor 11 is provided on the downstream side of the carbon dioxide recovery device 100 in the gas flow direction.
  • the carbon dioxide recovery device 100 is a device that separates and recovers carbon dioxide from a carbon dioxide-containing gas.
  • the carbon dioxide recovery device 100 discharges carbon dioxide removed gas after carbon dioxide has been recovered from the carbon dioxide-containing gas, or carbon dioxide recovered from the carbon dioxide-containing gas.
  • the configuration of carbon dioxide recovery device 100 will be described in detail later.
  • the flow path switching valve 12 is a three-way valve that switches the flow path of the exhaust gas of the carbon dioxide recovery device 100.
  • the flow path switching valve 12 switches the flow path of the exhaust gas to the atmosphere side when carbon dioxide removal gas is discharged from the carbon dioxide recovery device 100, and switches the flow path of the exhaust gas to the atmosphere side when carbon dioxide is discharged from the carbon dioxide recovery device 100.
  • the exhaust gas flow path is switched to the carbon dioxide utilization device 13 side.
  • the carbon dioxide utilization device 13 is a device that utilizes carbon dioxide.
  • a storage tank that stores carbon dioxide or a conversion device that converts carbon dioxide into fuel can be used.
  • a conversion device a device that converts carbon dioxide into hydrocarbon fuel such as methane can be used.
  • the hydrocarbon fuel may be a gaseous fuel at normal temperature and normal pressure, or may be a liquid fuel at normal temperature and normal pressure.
  • the control device 14 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc., and its peripheral circuits.
  • the control device 14 performs various calculations and processes based on a control program stored in the ROM, and controls the operations of various devices to be controlled.
  • the control device 14 of this embodiment performs operation control of the compressor 11, operation control of the carbon dioxide recovery device 100, flow path switching control of the flow path switching valve 12, and the like.
  • Electrochemical cell 101 has a working electrode 130, a counter electrode 140, and a separator 150.
  • the working electrode 130, the counter electrode 140, and the separator 150 are each formed into a plate shape.
  • the working electrode 130, the counter electrode 140, and the separator 150 are shown spaced apart from each other in FIG. 2, these components are actually arranged so as to be in contact with each other.
  • the electrochemical cell 101 may be housed in a container (not shown).
  • the container can be provided with a gas inlet that allows the carbon dioxide-containing gas to flow into the container, and a gas outlet that allows the carbon dioxide removal gas and carbon dioxide to flow out of the container.
  • the carbon dioxide recovery device 100 adsorbs and desorbs carbon dioxide through an electrochemical reaction, and separates and recovers carbon dioxide from a carbon dioxide-containing gas.
  • the carbon dioxide recovery device 100 is provided with a control power source 120 that applies a predetermined voltage to the working electrode 130 and the counter electrode 140, and can change the potential difference between the working electrode 130 and the counter electrode 140.
  • Working electrode 130 is a negative electrode
  • counter electrode 140 is a positive electrode.
  • the electrochemical cell 101 operates by changing the potential difference between the working electrode 130 and the counter electrode 140 to switch between a recovery mode in which carbon dioxide is recovered at the working electrode 130 and a release mode in which carbon dioxide is released from the working electrode 130. I can do it.
  • the recovery mode is a charging mode in which the electrochemical cell 101 is charged
  • the discharge mode is a discharging mode in which the electrochemical cell 101 is discharged.
  • the first voltage V1 is applied between the working electrode 130 and the counter electrode 140, and electrons are supplied from the counter electrode 140 to the working electrode 130.
  • working electrode potential At the first voltage V1, working electrode potential ⁇ counter electrode potential.
  • the first voltage V1 can be within a range of 0.5 to 2.0V, for example.
  • a second voltage V2 lower than the first voltage V1 is applied between the working electrode 130 and the counter electrode 140, and electrons are supplied from the working electrode 130 to the counter electrode 140.
  • the second voltage V2 only needs to be a voltage lower than the first voltage V1, and the magnitude relationship between the working electrode potential and the counter electrode potential is not limited. That is, in the release mode, the working electrode potential may be less than the counter electrode potential, the working electrode potential may be equal to the counter electrode potential, or the working electrode potential may be greater than the counter electrode potential.
  • the working electrode 130 in the electrochemical cell 101 has a working electrode side current collector 131 and a working electrode side electrode film 132.
  • the working electrode side current collector 131 is connected to the control power source 120 and is a porous conductive member through which carbon dioxide-containing gas can pass.
  • the working electrode side current collector 131 for example, a carbonaceous material or a metal material can be used.
  • a carbonaceous material constituting the working electrode side current collector 131 for example, carbon paper, carbon cloth, nonwoven carbon mat, porous gas diffusion layer (GDL), etc. can be used.
  • GDL porous gas diffusion layer
  • the metal material constituting the working electrode side current collector 131 a structure made of a metal such as Al, Ni, or SUS in a mesh shape can be used, for example.
  • the working electrode side electrode film 132 adsorbs and desorbs carbon dioxide from a carbon dioxide-containing gas through an electrochemical reaction.
  • the working electrode side electrode film 132 includes a carbon dioxide adsorbent, a working electrode side conductive agent, and a working electrode side binder.
  • a carbon dioxide adsorbent is an electroactive species (i.e., an active material) that adsorbs carbon dioxide by receiving electrons and desorbs the adsorbed carbon dioxide by releasing electrons.
  • an electroactive species i.e., an active material
  • carbon dioxide adsorbent for example, carbon materials, metal oxides, polyanthraquinone, etc. can be used.
  • the working electrode side conductive agent is a conductive material that forms a conductive path to the carbon dioxide adsorbent.
  • carbon materials such as carbon nanotubes, carbon black, and graphene can be used, for example.
  • the working electrode side binder holds the carbon dioxide adsorbent and the working electrode side conductive agent on the working electrode side current collector 131. Specifically, a mixture of the carbon dioxide adsorbent, the working electrode side conductive agent, and the working electrode side binder is formed, and the mixture is adhered to the working electrode side current collector 131. The carbon dioxide adsorbent and the working electrode side conductive agent are held inside the working electrode side binder.
  • a conductive resin As the binder on the working electrode side, for example, a conductive resin can be used.
  • a conductive resin an epoxy resin containing Ag or the like as a conductive filler, a fluororesin such as PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), etc. can be used.
  • the counter electrode 140 has a counter electrode current collector 141 and a counter electrode film 142.
  • the configuration of counter electrode 140 will be explained in detail later.
  • the separator 150 is arranged between the working electrode film 132 and the counter electrode film 142.
  • the separator 150 separates the working electrode film 132 and the counter electrode film 142. That is, the separator 150 prevents physical contact between the working electrode film 132 and the counter electrode film 142. Moreover, the separator 150 suppresses electrical short circuit between the working electrode side electrode film 132 and the counter electrode side electrode film 142.
  • separator 150 a separator made of a cellulose membrane, a polymer, a composite material of polymer and ceramic, etc. can be used.
  • separator 150 a porous separator may be used.
  • An electrolyte material 160 (see FIG. 4 described later) is provided between the working electrode film 132 and the separator 150 and between the counter electrode film 142 and the separator 150.
  • Working electrode 130 and counter electrode 140 are covered with electrolyte material 160.
  • the electrolyte material 160 promotes electrical conduction to the carbon dioxide adsorbent.
  • an ionic liquid is used as the electrolyte material 160.
  • Ionic liquids are liquid salts that are nonvolatile at room temperature and pressure.
  • the ionic liquid used as the electrolyte material 160 has a cation containing at least one of imidazole and ammonium, and an anion containing TFSI (trifluoromethanesulfonylimide).
  • the counter electrode side current collector material 141 in the counter electrode 140 is a conductive member connected to the control power source 120.
  • the counter electrode side current collector material 141 may be made of the same material as the working electrode side current collector material 131, or may be made of a different material.
  • the counter electrode film 142 of the counter electrode 140 exchanges electrons with the working electrode film 132.
  • the counter electrode film 142 includes a counter active material 143, a counter conductive agent 144, and a counter binder (not shown).
  • the counter electrode active material 143 is an auxiliary electroactive species that exchanges electrons with the carbon dioxide adsorbent.
  • the counter electrode side active material 143 is a material that can transfer electrons in and out by changing the valence of the metal and transferring charges into and out of the ⁇ electron cloud.
  • a metal complex that enables transfer of electrons by changing the valence of metal ions can be used.
  • metal complexes include cyclopentadienyl metal complexes such as ferrocene, nickelocene, and cobaltocene, and porphyrin metal complexes. These metal complexes may be polymers or monomers.
  • a compound having a ferrocene skeleton may be used.
  • the counter electrode side active material 143 may include a substance that undergoes a redox reaction within a potential range of ⁇ 1.1 V to +0.5 V with respect to the redox potential of ferrocene.
  • the counter electrode active material 143 may contain at least one of ferrocene, ferrocene derivatives, metallocene, and phenothiazine. In this embodiment, ferrocene is used as the counter electrode side active material 143.
  • the counter electrode conductive aid 144 is a conductive material that forms a conductive path to the counter electrode active material 143.
  • the counter electrode side conductive agent 144 is used in combination with the counter electrode side active material 143.
  • carbon nanotubes are used as the counter electrode conductive aid 144.
  • the counter electrode binder is a material that can hold the counter electrode active material 143 and the counter electrode conductive agent 144 on the counter electrode current collector 141 and has electrical conductivity.
  • the binder on the opposite electrode side may be made of the same material as the binder on the working electrode side, or may be made of a different material. In this embodiment, PVDF is used as the opposite binder.
  • the counter electrode side active material 143 is contained inside the carbon nanotube as the counter electrode side conductive agent 144.
  • the present inventors conducted a TEM-EDX analysis to confirm the encapsulation state of ferrocene, which is the counter electrode side active material 143, in the carbon nanotubes.
  • TEM is a transmission electron microscope.
  • EDX is Energy Dispersive X-ray Spectroscope.
  • the following samples were prepared. First, 20 mg of carbon nanotubes were heat-treated at 350° C. in an air atmosphere. Next, 100 mg of ferrocene was encapsulated in the carbon nanotubes under an Ar atmosphere and heated at 270° C. for 48 hours to create a mixture. Thereafter, the mixture was washed with ethanol multiple times and air-dried to obtain a sample.
  • TEM-EDX analysis was performed on the sample.
  • a sample was processed into a thin section using an FIB (Focused Ion Beam System), and then a TEM image was observed. In the TEM image shown in FIG. 5, it was confirmed that some substance was contained inside the carbon nanotube.
  • an ADF (Annular Dark Field) image of the sample was observed using a STEM (Scanning Transmission Electron Microscope). Note that in this specification, an ADF image observed using STEM may be referred to as a STEM-ADF image. In the STEM-ADF image shown in FIG. 6, it was confirmed that the substance present inside the carbon nanotube appeared bright.
  • CV cyclic voltammetry
  • a three-electrode system was used, including an electrode film/glassy carbon substrate containing ferrocene inside carbon nanotubes as a working electrode, an Ag/Ag + electrode as a reference electrode, and Pt as a counter electrode.
  • the peak current value of the ferrocene oxidation wave after 20 cycles is 11% compared to the peak current value of the ferrocene oxidation wave after the first cycle. % increase.
  • the electrode film according to the comparative example was used, the peak current value of the ferrocene oxidation wave after 20 cycles was reduced by 29% compared to the peak current value of the ferrocene oxidation wave after the first cycle.
  • the peak current did not decrease.
  • the electrode film according to the comparative example was used, the peak current decreased.
  • the counter electrode side active material 143 is contained inside the carbon nanotube as the counter electrode side conductive agent 144. According to this, the counter electrode active material 143 can be protected by the carbon nanotubes. Therefore, elution of the counter electrode side active material 143 into the ionic liquid that is the electrolyte material 160 can be suppressed, so that the electrode performance of the counter electrode 140 can be improved. Further, since it is possible to suppress deterioration of the counter electrode side active material 143 due to oxygen contained in the atmosphere, durability can be improved.
  • the counter electrode side active material 143 was contained inside the carbon nanotube as the counter electrode side conductive agent 144, but the present invention is not limited to this embodiment.
  • carbon nanotubes may be used as the conductive agent on the working electrode side, and a carbon dioxide adsorbent, which is the active material of the working electrode 130, may be contained inside the carbon nanotubes.
  • an ionic liquid was used as the electrolyte material 160, but the present invention is not limited to this embodiment.
  • an ionic liquid gel obtained by gelling an ionic liquid may be used as the electrolyte material 160. According to this, it is possible to suppress the electrolyte material 160 from being eluted from the electrochemical cell 101.
  • double-walled carbon nanotubes are shown as carbon nanotubes in the TEM image shown in FIG. 5, but carbon nanotubes are not limited to double-walled carbon nanotubes.
  • the carbon nanotube a single-walled carbon nanotube or a three- or more-walled carbon nanotube may be used.
  • the characteristics of the electrochemical cell disclosed herein are as follows.
  • a working electrode (130) that adsorbs and desorbs carbon dioxide from a gas to be treated containing carbon dioxide through an electrochemical reaction
  • a counter electrode (140) that exchanges electrons with the working electrode
  • An electrochemical cell comprising an electrolyte material (160) covering the working electrode and the counter electrode,
  • the electrolyte material is an ionic liquid
  • At least one of the working electrode and the counter electrode has an active material (143) and carbon nanotubes, An electrochemical cell in which the active material is contained inside the carbon nanotube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

An electrochemical cell comprising a working electrode (130), a counter electrode (140), and an electrolyte material (160). The working electrode (130), by electrochemical reactions, adsorbs carbon dioxide from a carbon-dioxide-containing gas to be treated and desorbs the carbon dioxide. The counter electrode (140) performs electron transfers between itself and the working electrode. The electrolyte material (160) covers the working electrode (130) and the counter electrode (140). The electrolyte material (160) is an ionic liquid. The working electrode (130) and/or the counter electrode (140) includes an active material (143) and carbon nanotubes. The active material (143) is contained inside the carbon nanotubes.

Description

電気化学セルelectrochemical cell 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年7月15日に出願された日本特許出願2022-114039号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2022-114039 filed on July 15, 2022, and the contents thereof are incorporated herein.
 本開示は、電気化学セルに関する。 The present disclosure relates to electrochemical cells.
 従来、電気化学反応によって二酸化炭素(CO)を含有する被処理ガスから二酸化炭素を分離する二酸化炭素回収システムが開発されている。二酸化炭素回収システムでは、電気化学セルの作用極に二酸化炭素を吸着可能な二酸化炭素吸着材が設けられている。吸着材は電気活性種であり、作用極と対極の間の電位差を変化させることで、二酸化炭素吸着材による二酸化炭素の吸着と放出を切り替えることができる。 Conventionally, carbon dioxide recovery systems have been developed that separate carbon dioxide (CO 2 ) from a target gas containing carbon dioxide (CO 2 ) through an electrochemical reaction. In a carbon dioxide recovery system, a carbon dioxide adsorbent capable of adsorbing carbon dioxide is provided at the working electrode of an electrochemical cell. The adsorbent is an electroactive species, and by changing the potential difference between the working electrode and the counter electrode, the adsorption and release of carbon dioxide by the carbon dioxide adsorbent can be switched.
 電気化学セルの対極は、作用極の二酸化炭素吸着材との間で電子の授受を行う補助的な電気活性種である活物質を含んで構成されている。活物質としては、例えば金属イオンの価数が変化することで、電子の授受を可能とする金属錯体を用いることができる。このような金属錯体として、例えばフェロセン(Fc)を用いることが検討されてきた。 The counter electrode of the electrochemical cell is configured to include an active material that is an auxiliary electroactive species that exchanges electrons with the carbon dioxide adsorbent of the working electrode. As the active material, for example, a metal complex that can transfer electrons by changing the valence of metal ions can be used. The use of ferrocene (Fc), for example, as such a metal complex has been considered.
 しかしながら、フェロセンは小分子のため、作用極と対極との間に設けられる電解液に容易に溶出してしまう。これにより、電極性能が低下する可能性がある。 However, since ferrocene is a small molecule, it easily dissolves into the electrolyte provided between the working electrode and the counter electrode. This may reduce electrode performance.
 これに対し、非特許文献1には、対極の活物質としてポリビニルフェロセン(PVFc)を用いる技術が開示されている。非特許文献1では、フェロセンをポリマー化することにより、活物質の電解液へ溶出抑制を図っている。 On the other hand, Non-Patent Document 1 discloses a technique using polyvinylferrocene (PVFc) as a counter electrode active material. In Non-Patent Document 1, elution of an active material into an electrolytic solution is suppressed by polymerizing ferrocene.
 ここで、非特許文献1では、被処理ガスとして、二酸化炭素および窒素(N)の混合ガスを用いている。すなわち、非特許文献1では、CO/N雰囲気において電気化学セルを作動させている。 Here, in Non-Patent Document 1, a mixed gas of carbon dioxide and nitrogen (N 2 ) is used as the gas to be treated. That is, in Non-Patent Document 1, an electrochemical cell is operated in a CO 2 /N 2 atmosphere.
 これに対し、上記非特許文献1に記載の電気化学セルを、例えば大気等の酸素が含まれるガスから二酸化炭素を分離する二酸化炭素回収システムに用いた場合、酸素により電極の活物質が劣化するおそれがある。これにより、電気化学セルの耐久性が低下する可能性がある。 On the other hand, when the electrochemical cell described in Non-Patent Document 1 is used in a carbon dioxide recovery system that separates carbon dioxide from a gas containing oxygen such as the atmosphere, the active material of the electrode deteriorates due to oxygen. There is a risk. This can reduce the durability of the electrochemical cell.
 本開示は、上記点に鑑みて、電極性能および耐久性を向上させることができる電気化学セルを提供することを目的とする。 In view of the above points, the present disclosure aims to provide an electrochemical cell that can improve electrode performance and durability.
 上記目的を達成するため、本開示の一態様に係る電気化学セルは、二酸化炭素を含有する被処理ガスから電気化学反応によって二酸化炭素の吸着と脱離を行う作用極と、
 作用極との間で電子の授受を行う対極と、
 作用極および対極を覆う電解質材料と、を備える電気化学セルにおいて、
 電解質材料は、イオン液体であり、
 作用極および対極の少なくとも一方は、活物質およびカーボンナノチューブを有しており、
 活物質は、カーボンナノチューブの内部に含有されている。
In order to achieve the above object, an electrochemical cell according to an embodiment of the present disclosure includes a working electrode that adsorbs and desorbs carbon dioxide from a gas to be treated containing carbon dioxide through an electrochemical reaction;
a counter electrode that transfers electrons to and from the working electrode;
An electrochemical cell comprising: an electrolyte material covering a working electrode and a counter electrode;
The electrolyte material is an ionic liquid,
At least one of the working electrode and the counter electrode has an active material and carbon nanotubes,
The active material is contained inside the carbon nanotube.
 これによれば、活物質が電解質材料へ溶出することを抑制できるので、電極性能を向上させることができる。また、被処理ガスに含まれる成分により活物質が劣化することを抑制できるので、耐久性を向上させることができる。 According to this, it is possible to suppress the active material from being eluted into the electrolyte material, so that the electrode performance can be improved. Furthermore, since deterioration of the active material due to components contained in the gas to be treated can be suppressed, durability can be improved.
一実施形態における二酸化炭素回収システムの全体構成を示す概念図である。1 is a conceptual diagram showing the overall configuration of a carbon dioxide recovery system in one embodiment. 一実施形態における二酸化炭素回収装置を示す説明図である。It is an explanatory view showing a carbon dioxide recovery device in one embodiment. 一実施形態における電気化学セルを示す断面図である。FIG. 2 is a cross-sectional view of an electrochemical cell in one embodiment. 一実施形態における対極の構成を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the configuration of a counter electrode in one embodiment. TEM像を示す図である。It is a figure showing a TEM image. STEM-ADF像を示す図である。It is a figure showing a STEM-ADF image. EDX分析結果を示す図である。It is a figure showing an EDX analysis result. 実施例のサイクリックボルタモグラムを示す図である。It is a figure showing a cyclic voltammogram of an example. 比較例のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of a comparative example.
 以下、本開示における一実施形態について、図面を参照して説明する。本実施形態は、本開示における電気化学セルを、二酸化炭素を含有する被処理ガスから二酸化炭素を分離して回収する二酸化炭素回収システムに適用している。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings. In this embodiment, the electrochemical cell of the present disclosure is applied to a carbon dioxide recovery system that separates and recovers carbon dioxide from a gas to be treated containing carbon dioxide.
 被処理ガスは、二酸化炭素を含有する二酸化炭素含有ガスである。被処理ガスは、二酸化炭素以外のガスも含有している。二酸化炭素含有ガスには、二酸化炭素以外のガスとして酸素(O)が含まれている。被処理ガスは、大気、若しくは、大気よりも二酸化炭素含有濃度の高い高濃度ガスである。高濃度ガスは、例えば、内燃機関や工場から排出される。本実施形態の被処理ガスは、大気である。 The gas to be treated is a carbon dioxide-containing gas containing carbon dioxide. The gas to be treated also contains gases other than carbon dioxide. The carbon dioxide-containing gas contains oxygen (O 2 ) as a gas other than carbon dioxide. The gas to be treated is the atmosphere or a highly concentrated gas containing carbon dioxide at a higher concentration than the atmosphere. Highly concentrated gases are emitted from internal combustion engines and factories, for example. The gas to be processed in this embodiment is the atmosphere.
 図1に示すように、本実施形態の二酸化炭素回収システム10は、圧縮機11、二酸化炭素回収装置100、流路切替弁12、二酸化炭素利用装置13、制御装置14が設けられている。 As shown in FIG. 1, the carbon dioxide recovery system 10 of this embodiment is provided with a compressor 11, a carbon dioxide recovery device 100, a flow path switching valve 12, a carbon dioxide utilization device 13, and a control device 14.
 圧縮機11は、二酸化炭素含有ガスである大気を二酸化炭素回収装置100に圧送する。本実施形態では、二酸化炭素回収装置100のガス流れ方向の下流側に圧縮機11が設けられている。 The compressor 11 pumps atmospheric air, which is a carbon dioxide-containing gas, to the carbon dioxide recovery device 100. In this embodiment, the compressor 11 is provided on the downstream side of the carbon dioxide recovery device 100 in the gas flow direction.
 二酸化炭素回収装置100は、二酸化炭素含有ガスから二酸化炭素を分離して回収する装置である。二酸化炭素回収装置100は、二酸化炭素含有ガスから二酸化炭素が回収された後の二酸化炭素除去ガス、あるいは二酸化炭素含有ガスから回収した二酸化炭素を排出する。二酸化炭素回収装置100の構成については、後で詳細に説明する。 The carbon dioxide recovery device 100 is a device that separates and recovers carbon dioxide from a carbon dioxide-containing gas. The carbon dioxide recovery device 100 discharges carbon dioxide removed gas after carbon dioxide has been recovered from the carbon dioxide-containing gas, or carbon dioxide recovered from the carbon dioxide-containing gas. The configuration of carbon dioxide recovery device 100 will be described in detail later.
 流路切替弁12は、二酸化炭素回収装置100の排出ガスの流路を切り替える三方弁である。流路切替弁12は、二酸化炭素回収装置100から二酸化炭素除去ガスが排出される場合は、排出ガスの流路を大気側に切り替え、二酸化炭素回収装置100から二酸化炭素が排出される場合は、排出ガスの流路を二酸化炭素利用装置13側に切り替える。 The flow path switching valve 12 is a three-way valve that switches the flow path of the exhaust gas of the carbon dioxide recovery device 100. The flow path switching valve 12 switches the flow path of the exhaust gas to the atmosphere side when carbon dioxide removal gas is discharged from the carbon dioxide recovery device 100, and switches the flow path of the exhaust gas to the atmosphere side when carbon dioxide is discharged from the carbon dioxide recovery device 100. The exhaust gas flow path is switched to the carbon dioxide utilization device 13 side.
 二酸化炭素利用装置13は、二酸化炭素を利用する装置である。二酸化炭素利用装置13としては、例えば二酸化炭素を貯蔵する貯蔵タンクや二酸化炭素を燃料に変換する変換装置を用いることができる。変換装置は、二酸化炭素をメタン等の炭化水素燃料に変換する装置を用いることができる。炭化水素燃料は、常温常圧で気体の燃料であってもよく、常温常圧で液体の燃料であってもよい。 The carbon dioxide utilization device 13 is a device that utilizes carbon dioxide. As the carbon dioxide utilization device 13, for example, a storage tank that stores carbon dioxide or a conversion device that converts carbon dioxide into fuel can be used. As the conversion device, a device that converts carbon dioxide into hydrocarbon fuel such as methane can be used. The hydrocarbon fuel may be a gaseous fuel at normal temperature and normal pressure, or may be a liquid fuel at normal temperature and normal pressure.
 制御装置14は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置14は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、各種制御対象機器の作動を制御する。本実施形態の制御装置14は、圧縮機11の作動制御、二酸化炭素回収装置100の作動制御、流路切替弁12の流路切替制御等を行う。 The control device 14 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc., and its peripheral circuits. The control device 14 performs various calculations and processes based on a control program stored in the ROM, and controls the operations of various devices to be controlled. The control device 14 of this embodiment performs operation control of the compressor 11, operation control of the carbon dioxide recovery device 100, flow path switching control of the flow path switching valve 12, and the like.
 図2に示すように、二酸化炭素回収装置100は、電気化学セル101が設けられている。電気化学セル101は、作用極130、対極140およびセパレータ150を有している。図2に示す例では、作用極130、対極140およびセパレータ150をそれぞれ板状に構成している。なお、図2では、作用極130、対極140およびセパレータ150を、それぞれ間隔を設けて図示しているが、実際はこれらの構成要素は接するように配置されている。 As shown in FIG. 2, the carbon dioxide recovery device 100 is provided with an electrochemical cell 101. Electrochemical cell 101 has a working electrode 130, a counter electrode 140, and a separator 150. In the example shown in FIG. 2, the working electrode 130, the counter electrode 140, and the separator 150 are each formed into a plate shape. Although the working electrode 130, the counter electrode 140, and the separator 150 are shown spaced apart from each other in FIG. 2, these components are actually arranged so as to be in contact with each other.
 電気化学セル101は、図示しない容器内に収容されるようにしてもよい。容器には、二酸化炭素含有ガスを容器内に流入させるガス流入口と、二酸化炭素除去ガスや二酸化炭素を容器内から流出させるガス流出口を設けることができる。 The electrochemical cell 101 may be housed in a container (not shown). The container can be provided with a gas inlet that allows the carbon dioxide-containing gas to flow into the container, and a gas outlet that allows the carbon dioxide removal gas and carbon dioxide to flow out of the container.
 二酸化炭素回収装置100は、電気化学反応によって二酸化炭素の吸着および脱離を行い、二酸化炭素含有ガスから二酸化炭素を分離して回収する。二酸化炭素回収装置100は、作用極130と対極140に所定の電圧を印加する制御電源120が設けられており、作用極130と対極140の電位差を変化させることができる。作用極130は負極であり、対極140は正極である。 The carbon dioxide recovery device 100 adsorbs and desorbs carbon dioxide through an electrochemical reaction, and separates and recovers carbon dioxide from a carbon dioxide-containing gas. The carbon dioxide recovery device 100 is provided with a control power source 120 that applies a predetermined voltage to the working electrode 130 and the counter electrode 140, and can change the potential difference between the working electrode 130 and the counter electrode 140. Working electrode 130 is a negative electrode, and counter electrode 140 is a positive electrode.
 電気化学セル101は、作用極130と対極140の電位差を変化させることで、作用極130で二酸化炭素を回収する回収モードと、作用極130から二酸化炭素を放出する放出モードを切り替えて作動することができる。回収モードは電気化学セル101を充電する充電モードであり、放出モードは電気化学セル101を放電する放電モードである。 The electrochemical cell 101 operates by changing the potential difference between the working electrode 130 and the counter electrode 140 to switch between a recovery mode in which carbon dioxide is recovered at the working electrode 130 and a release mode in which carbon dioxide is released from the working electrode 130. I can do it. The recovery mode is a charging mode in which the electrochemical cell 101 is charged, and the discharge mode is a discharging mode in which the electrochemical cell 101 is discharged.
 回収モードでは、作用極130と対極140の間に第1電圧V1が印加され、対極140から作用極130に電子が供給される。第1電圧V1では、作用極電位<対極電位となっている。第1電圧V1は、例えば0.5~2.0Vの範囲内とすることができる。 In the recovery mode, the first voltage V1 is applied between the working electrode 130 and the counter electrode 140, and electrons are supplied from the counter electrode 140 to the working electrode 130. At the first voltage V1, working electrode potential<counter electrode potential. The first voltage V1 can be within a range of 0.5 to 2.0V, for example.
 放出モードでは、作用極130と対極140の間に第1電圧V1より低い第2電圧V2が印加され、作用極130から対極140に電子が供給される。第2電圧V2は、第1電圧V1より低い電圧であればよく、作用極電位と対極電位の大小関係は限定されない。つまり、放出モードでは、作用極電位<対極電位でもよく、作用極電位=対極電位でもよく、作用極電位>対極電位でもよい。 In the emission mode, a second voltage V2 lower than the first voltage V1 is applied between the working electrode 130 and the counter electrode 140, and electrons are supplied from the working electrode 130 to the counter electrode 140. The second voltage V2 only needs to be a voltage lower than the first voltage V1, and the magnitude relationship between the working electrode potential and the counter electrode potential is not limited. That is, in the release mode, the working electrode potential may be less than the counter electrode potential, the working electrode potential may be equal to the counter electrode potential, or the working electrode potential may be greater than the counter electrode potential.
 図3に示すように、電気化学セル101における作用極130は、作用極側集電材131及び作用極側電極膜132を有する。作用極側集電材131は、制御電源120に接続されるとともに、二酸化炭素含有ガスを通過させることができる多孔質状の導電性部材である。 As shown in FIG. 3, the working electrode 130 in the electrochemical cell 101 has a working electrode side current collector 131 and a working electrode side electrode film 132. The working electrode side current collector 131 is connected to the control power source 120 and is a porous conductive member through which carbon dioxide-containing gas can pass.
 作用極側集電材131として、例えば炭素質材料や金属材料を用いることができる。作用極側集電材131を構成する炭素質材料として、例えばカーボン紙、炭素布、不織炭素マット、多孔質ガス拡散層(GDL)等を用いることができる。作用極側集電材131を構成する金属材料として、例えばAl、Ni、SUS等の金属をメッシュ状にした構造体を用いることができる。 As the working electrode side current collector 131, for example, a carbonaceous material or a metal material can be used. As the carbonaceous material constituting the working electrode side current collector 131, for example, carbon paper, carbon cloth, nonwoven carbon mat, porous gas diffusion layer (GDL), etc. can be used. As the metal material constituting the working electrode side current collector 131, a structure made of a metal such as Al, Ni, or SUS in a mesh shape can be used, for example.
 作用極側電極膜132は、二酸化炭素含有ガスから電気化学反応によって二酸化炭素の吸着と脱離を行う。作用極側電極膜132は、二酸化炭素吸着材、作用極側導電助剤および作用極側バインダを有する。 The working electrode side electrode film 132 adsorbs and desorbs carbon dioxide from a carbon dioxide-containing gas through an electrochemical reaction. The working electrode side electrode film 132 includes a carbon dioxide adsorbent, a working electrode side conductive agent, and a working electrode side binder.
 二酸化炭素吸着材は、電子を受け取ることで二酸化炭素を吸着し、電子を放出することで吸着していた二酸化炭素を脱離する電気活性種(すなわち、活物質)である。二酸化炭素吸着材としては、例えば、カーボン材、金属酸化物、ポリアントラキノン等を用いることができる。 A carbon dioxide adsorbent is an electroactive species (i.e., an active material) that adsorbs carbon dioxide by receiving electrons and desorbs the adsorbed carbon dioxide by releasing electrons. As the carbon dioxide adsorbent, for example, carbon materials, metal oxides, polyanthraquinone, etc. can be used.
 作用極側導電助剤は、二酸化炭素吸着材への導電路を形成する導電物質である。作用極側導電助剤として、例えばカーボンナノチューブ、カーボンブラック、グラフェン等の炭素材料を用いることができる。 The working electrode side conductive agent is a conductive material that forms a conductive path to the carbon dioxide adsorbent. As the conductive agent on the working electrode side, carbon materials such as carbon nanotubes, carbon black, and graphene can be used, for example.
 作用極側バインダは、二酸化炭素吸着材および作用極側導電助剤を作用極側集電材131に保持する。具体的には、二酸化炭素吸着材、作用極側導電助剤、および作用極側バインダの混合物が形成され、混合物が作用極側集電材131に接着される。二酸化炭素吸着材および作用極側導電助剤は、作用極側バインダの内部に保持された状態となっている。 The working electrode side binder holds the carbon dioxide adsorbent and the working electrode side conductive agent on the working electrode side current collector 131. Specifically, a mixture of the carbon dioxide adsorbent, the working electrode side conductive agent, and the working electrode side binder is formed, and the mixture is adhered to the working electrode side current collector 131. The carbon dioxide adsorbent and the working electrode side conductive agent are held inside the working electrode side binder.
 作用極側バインダとしては、例えば導電性樹脂を用いることができる。導電性樹脂としては、導電性フィラーとしてAg等を含有するエポキシ樹脂やPTFE(ポリテトラフルオロエチレン)、PVDF(ポリフッ化ビニリデン)等のフッ素樹脂等を用いることができる。 As the binder on the working electrode side, for example, a conductive resin can be used. As the conductive resin, an epoxy resin containing Ag or the like as a conductive filler, a fluororesin such as PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), etc. can be used.
 対極140は、対極側集電材141及び対極側電極膜142を有する。対極140の構成については、後で詳細に説明する。 The counter electrode 140 has a counter electrode current collector 141 and a counter electrode film 142. The configuration of counter electrode 140 will be explained in detail later.
 セパレータ150は、作用極側電極膜132と対極側電極膜142との間に配置される。セパレータ150は、作用極側電極膜132と対極側電極膜142とを分離する。すなわち、セパレータ150は、作用極側電極膜132と対極側電極膜142との物理的な接触を防ぐ。また、セパレータ150は、作用極側電極膜132と対極側電極膜142との電気的短絡を抑制する。 The separator 150 is arranged between the working electrode film 132 and the counter electrode film 142. The separator 150 separates the working electrode film 132 and the counter electrode film 142. That is, the separator 150 prevents physical contact between the working electrode film 132 and the counter electrode film 142. Moreover, the separator 150 suppresses electrical short circuit between the working electrode side electrode film 132 and the counter electrode side electrode film 142.
 セパレータ150として、セルロース膜やポリマー、ポリマーとセラミックの複合材料等からなるセパレータを用いることができる。セパレータ150として、多孔質体のセパレータを用いても良い。 As the separator 150, a separator made of a cellulose membrane, a polymer, a composite material of polymer and ceramic, etc. can be used. As the separator 150, a porous separator may be used.
 作用極側電極膜132とセパレータ150との間、および対極側電極膜142とセパレータ150との間には、電解質材料160(後述する図4参照)が設けられている。作用極130および対極140は、電解質材料160により覆われている。 An electrolyte material 160 (see FIG. 4 described later) is provided between the working electrode film 132 and the separator 150 and between the counter electrode film 142 and the separator 150. Working electrode 130 and counter electrode 140 are covered with electrolyte material 160.
 電解質材料160は、二酸化炭素吸着材への導電を促進する。電解質材料160としては、イオン液体が用いられている。イオン液体は、常温常圧下で不揮発性を有する液体の塩である。電解質材料160として用いられるイオン液体は、イミダゾール、アンモニウムの少なくともいずれかを含むカチオンと、TFSI(トリフルオロメタンスルホニルイミド)を含むアニオンを有している。 The electrolyte material 160 promotes electrical conduction to the carbon dioxide adsorbent. As the electrolyte material 160, an ionic liquid is used. Ionic liquids are liquid salts that are nonvolatile at room temperature and pressure. The ionic liquid used as the electrolyte material 160 has a cation containing at least one of imidazole and ammonium, and an anion containing TFSI (trifluoromethanesulfonylimide).
 ここで、本実施形態における対極140について、図4を参照して説明する。 Here, the counter electrode 140 in this embodiment will be explained with reference to FIG. 4.
 対極140における対極側集電材141は、制御電源120に接続される導電性部材である。対極側集電材141は、作用極側集電材131と同じ材料を用いても良く、異なる材料を用いても良い。 The counter electrode side current collector material 141 in the counter electrode 140 is a conductive member connected to the control power source 120. The counter electrode side current collector material 141 may be made of the same material as the working electrode side current collector material 131, or may be made of a different material.
 対極140における対極側電極膜142は、作用極側電極膜132との間で電子の授受を行う。対極側電極膜142は、対極側活物質143、対極側導電助剤144および対極側バインダ(図示せず)を有する。 The counter electrode film 142 of the counter electrode 140 exchanges electrons with the working electrode film 132. The counter electrode film 142 includes a counter active material 143, a counter conductive agent 144, and a counter binder (not shown).
 対極側活物質143は、二酸化炭素吸着材との間で電子の授受を行う補助的な電気活性種である。対極側活物質143は、金属の価数変化やπ電子雲への電荷出入によって電子を出し入れすることができる物質である。 The counter electrode active material 143 is an auxiliary electroactive species that exchanges electrons with the carbon dioxide adsorbent. The counter electrode side active material 143 is a material that can transfer electrons in and out by changing the valence of the metal and transferring charges into and out of the π electron cloud.
 対極側活物質143として、例えば金属イオンの価数が変化することで、電子の授受を可能とする金属錯体を用いることができる。このような金属錯体として、フェロセン、ニッケロセン、コバルトセン等のシクロペンタジエニル金属錯体、あるいはポルフィリン金属錯体等を挙げることができる。これらの金属錯体は、ポリマーでもモノマーでもよい。対極側活物質143としては、フェロセン骨格を持った化合物を用いてもよい。 As the counter electrode side active material 143, for example, a metal complex that enables transfer of electrons by changing the valence of metal ions can be used. Examples of such metal complexes include cyclopentadienyl metal complexes such as ferrocene, nickelocene, and cobaltocene, and porphyrin metal complexes. These metal complexes may be polymers or monomers. As the counter electrode side active material 143, a compound having a ferrocene skeleton may be used.
 対極側活物質143は、フェロセンの酸化還元電位に対して-1.1V~+0.5Vの電位範囲内で酸化還元反応する物質を含んでいてもよい。対極側活物質143は、フェロセン、フェロセン誘導体、メタロセン、フェノチアジンの少なくともいずれかを含んでいてもよい。本実施形態では、対極側活物質143としてフェロセンを用いている。 The counter electrode side active material 143 may include a substance that undergoes a redox reaction within a potential range of −1.1 V to +0.5 V with respect to the redox potential of ferrocene. The counter electrode active material 143 may contain at least one of ferrocene, ferrocene derivatives, metallocene, and phenothiazine. In this embodiment, ferrocene is used as the counter electrode side active material 143.
 対極側導電助剤144は、対極側活物質143への導電路を形成する導電物質である。対極側導電助剤144は、対極側活物質143と混合して用いられる。本実施形態では、対極側導電助剤144として、カーボンナノチューブを用いている。 The counter electrode conductive aid 144 is a conductive material that forms a conductive path to the counter electrode active material 143. The counter electrode side conductive agent 144 is used in combination with the counter electrode side active material 143. In this embodiment, carbon nanotubes are used as the counter electrode conductive aid 144.
 対極側バインダは、対極側活物質143及び対極側導電助剤144を対極側集電材141に保持させることができ、かつ、導電性を有する材料である。対極側バインダは、作用極側バインダと同じ材料を用いても良く、異なる材料を用いても良い。本実施形態では、対極側バインダとしてPVDFを用いている。 The counter electrode binder is a material that can hold the counter electrode active material 143 and the counter electrode conductive agent 144 on the counter electrode current collector 141 and has electrical conductivity. The binder on the opposite electrode side may be made of the same material as the binder on the working electrode side, or may be made of a different material. In this embodiment, PVDF is used as the opposite binder.
 対極側活物質143は、対極側導電助剤144としてのカーボンナノチューブの内部に含有されている。 The counter electrode side active material 143 is contained inside the carbon nanotube as the counter electrode side conductive agent 144.
 ここで、本発明者らは、対極側活物質143であるフェロセンのカーボンナノチューブへの内包状態を確認するためにTEM-EDX分析を行った。なお、TEMとは、透過電子顕微鏡(Transmission Electron Microscope)である。EDXとは、エネルギ分散型X線分光法(Energy Dispersive X-ray Spectroscope)である。 Here, the present inventors conducted a TEM-EDX analysis to confirm the encapsulation state of ferrocene, which is the counter electrode side active material 143, in the carbon nanotubes. Note that TEM is a transmission electron microscope. EDX is Energy Dispersive X-ray Spectroscope.
 試料は、次のものを用意した。まず、カーボンナノチューブ20mgを、大気雰囲気下、350℃で加熱処理を行った。次に、カーボンナノチューブに、Ar雰囲気下でフェロセン100mgを封入し、270℃で48時間加熱し、混合物を作成した。その後、混合物をエタノールで複数回洗浄し、自然乾燥させて試料を得た。 The following samples were prepared. First, 20 mg of carbon nanotubes were heat-treated at 350° C. in an air atmosphere. Next, 100 mg of ferrocene was encapsulated in the carbon nanotubes under an Ar atmosphere and heated at 270° C. for 48 hours to create a mixture. Thereafter, the mixture was washed with ethanol multiple times and air-dried to obtain a sample.
 そして、試料について、TEM-EDX分析を行った。まず、FIB(Focused Ion Beam System:集束イオンビーム加工観察装置)により試料を薄片化加工した後、TEM像を観察した。図5に示すTEM像では、カーボンナノチューブの内側に何かの物質が含まれていることが確認できた。 Then, TEM-EDX analysis was performed on the sample. First, a sample was processed into a thin section using an FIB (Focused Ion Beam System), and then a TEM image was observed. In the TEM image shown in FIG. 5, it was confirmed that some substance was contained inside the carbon nanotube.
 続いて、試料について、STEM(Scanning Transmission Electron Microscope:走査透過型電子顕微鏡)を使ってADF(Annular Dark Field:環状暗視野)像を観察した。なお、本明細書ではSTEMを使って観察されるADF像をSTEM-ADF像と呼ぶことがある。図6に示すSTEM-ADF像では、カーボンナノチューブの内側に存在する物質が明るく見えていることが確認できた。 Subsequently, an ADF (Annular Dark Field) image of the sample was observed using a STEM (Scanning Transmission Electron Microscope). Note that in this specification, an ADF image observed using STEM may be referred to as a STEM-ADF image. In the STEM-ADF image shown in FIG. 6, it was confirmed that the substance present inside the carbon nanotube appeared bright.
 また、試料についてEDX分析を行った。その分析結果を図7に示す。図5に示すTEM像や図6に示すSTEM-ADF像で見られたカーボンナノチューブの内側に含まれる物質が、EDX分析結果によるフェロセン分布と一致することが確認できた。以上により、カーボンナノチューブの内部にフェロセンが含有されていることがわかった。 Additionally, EDX analysis was performed on the sample. The analysis results are shown in FIG. It was confirmed that the substances contained inside the carbon nanotubes seen in the TEM image shown in FIG. 5 and the STEM-ADF image shown in FIG. 6 matched the ferrocene distribution according to the EDX analysis results. From the above, it was found that ferrocene was contained inside the carbon nanotubes.
 ここで、本発明者らは、実施例としてカーボンナノチューブの内部にフェロセンが含有された電極膜についてCV(サイクリックボルタンメトリ)測定を行い、フェロセン酸化還元波のピーク電流値の変化を調べた。具体的には、乾燥空気(N/O)雰囲気下にて、下記の条件でCV測定を20サイクル行った。その結果を図8に示す。 Here, as an example, the present inventors performed CV (cyclic voltammetry) measurements on an electrode film containing ferrocene inside carbon nanotubes, and investigated changes in the peak current value of ferrocene redox waves. . Specifically, CV measurement was performed for 20 cycles under the following conditions in a dry air (N 2 /O 2 ) atmosphere. The results are shown in FIG.
 ・作用電極として、カーボンナノチューブの内部にフェロセンが含有された電極膜/グラッシーカーボン基板を、参照電極としてAg/Ag電極を、カウンター電極としてPtを備える、三電極系で行った。 - A three-electrode system was used, including an electrode film/glassy carbon substrate containing ferrocene inside carbon nanotubes as a working electrode, an Ag/Ag + electrode as a reference electrode, and Pt as a counter electrode.
 ・測定は、イオン液体であるBMImTFSI(1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド)溶液中で行った。 ・Measurements were performed in an ionic liquid BMImTFSI (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide) solution.
 ・スキャンレートは0.01V/sとした。 ・The scan rate was 0.01V/s.
 また、比較例として、上記CV測定の作用電極を、PVFcをMWNT(多層カーボンナノチューブ)に担持させた電極膜/グラッシーカーボン基板に置き換えた以外は同様にして、CV測定を行った。その結果を図9に示す。 Further, as a comparative example, CV measurement was performed in the same manner except that the working electrode for the above CV measurement was replaced with an electrode film/glassy carbon substrate in which PVFc was supported on MWNT (multi-walled carbon nanotubes). The results are shown in FIG.
 図8および図9から明らかなように、実施例に係る電極膜を用いた場合、20サイクル後のフェロセン酸化波ピーク電流値は、1サイクル目のフェロセン酸化波ピーク電流値と比較して、11%増加していた。一方、比較例に係る電極膜を用いた場合、20サイクル後のフェロセン酸化波ピーク電流値は、1サイクル目のフェロセン酸化波ピーク電流値と比較して、29%減少していた。 As is clear from FIGS. 8 and 9, when the electrode film according to the example is used, the peak current value of the ferrocene oxidation wave after 20 cycles is 11% compared to the peak current value of the ferrocene oxidation wave after the first cycle. % increase. On the other hand, when the electrode film according to the comparative example was used, the peak current value of the ferrocene oxidation wave after 20 cycles was reduced by 29% compared to the peak current value of the ferrocene oxidation wave after the first cycle.
 また、実施例に係る電極膜を用いた場合、ピーク電流は減少しなかった。一方、比較例に係る電極膜を用いた場合、ピーク電流は減少した。 Furthermore, when the electrode film according to the example was used, the peak current did not decrease. On the other hand, when the electrode film according to the comparative example was used, the peak current decreased.
 以上の結果より、実施例に係る電極膜を用いた場合、乾燥空気雰囲気下で劣化すること無くレドックス反応を示すことがわかった。一方、比較例に係る電極膜を用いた場合、乾燥空気雰囲気下では、レドックスピーク電流が減少し、酸化による劣化が生じることがわかった。 From the above results, it was found that when the electrode film according to the example was used, a redox reaction was exhibited without deterioration in a dry air atmosphere. On the other hand, when the electrode film according to the comparative example was used, it was found that in a dry air atmosphere, the redox peak current decreased and deterioration due to oxidation occurred.
 以上説明したように、本実施形態の電気化学セル101では、対極側活物質143が、対極側導電助剤144としてのカーボンナノチューブの内部に含有されている。これによれば、カーボンナノチューブにより対極側活物質143を保護することができる。このため、対極側活物質143が電解質材料160であるイオン液体へ溶出することを抑制できるので、対極140の電極性能を向上させることができる。また、大気に含まれる酸素により対極側活物質143が劣化することを抑制できるので、耐久性を向上させることができる。 As explained above, in the electrochemical cell 101 of this embodiment, the counter electrode side active material 143 is contained inside the carbon nanotube as the counter electrode side conductive agent 144. According to this, the counter electrode active material 143 can be protected by the carbon nanotubes. Therefore, elution of the counter electrode side active material 143 into the ionic liquid that is the electrolyte material 160 can be suppressed, so that the electrode performance of the counter electrode 140 can be improved. Further, since it is possible to suppress deterioration of the counter electrode side active material 143 due to oxygen contained in the atmosphere, durability can be improved.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the embodiments described above, and can be modified in various ways as described below without departing from the spirit of the present disclosure.
 例えば、上述した実施形態では、対極側活物質143を対極側導電助剤144としてのカーボンナノチューブの内部に含有させた例について説明したが、この態様に限定されない。例えば、作用極側導電助剤としてカーボンナノチューブを用いるとともに、作用極130の活物質である二酸化炭素吸着材をカーボンナノチューブの内側に含有させてもよい。 For example, in the embodiment described above, an example was described in which the counter electrode side active material 143 was contained inside the carbon nanotube as the counter electrode side conductive agent 144, but the present invention is not limited to this embodiment. For example, carbon nanotubes may be used as the conductive agent on the working electrode side, and a carbon dioxide adsorbent, which is the active material of the working electrode 130, may be contained inside the carbon nanotubes.
 また、上述した実施形態では、電解質材料160として、イオン液体を用いた例について説明したが、この態様に限定されない。例えば、電解質材料160として、イオン液体をゲル化したイオン液体ゲルを用いてもよい。これによれば、電解質材料160が電気化学セル101から溶出することを抑制できる。 Furthermore, in the embodiment described above, an example was described in which an ionic liquid was used as the electrolyte material 160, but the present invention is not limited to this embodiment. For example, as the electrolyte material 160, an ionic liquid gel obtained by gelling an ionic liquid may be used. According to this, it is possible to suppress the electrolyte material 160 from being eluted from the electrochemical cell 101.
 また、上述した実施形態では、図5に示すTEM像に、カーボンナノチューブとして二層カーボンナノチューブが示されているが、カーボンナノチューブは二層カーボンナノチューブに限定されない。カーボンナノチューブとして、単層カーボンナノチューブを用いてもよいし、三層以上のカーボンナノチューブを用いてもよい。 Furthermore, in the embodiment described above, double-walled carbon nanotubes are shown as carbon nanotubes in the TEM image shown in FIG. 5, but carbon nanotubes are not limited to double-walled carbon nanotubes. As the carbon nanotube, a single-walled carbon nanotube or a three- or more-walled carbon nanotube may be used.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.
 本明細書に開示された電気化学セルの特徴を以下の通り示す。
(項目1)
 二酸化炭素を含有する被処理ガスから電気化学反応によって二酸化炭素の吸着と脱離を行う作用極(130)と、
 前記作用極との間で電子の授受を行う対極(140)と、
 前記作用極および前記対極を覆う電解質材料(160)と、を備える電気化学セルであって、
 前記電解質材料は、イオン液体であり、
 前記作用極および前記対極の少なくとも一方は、活物質(143)およびカーボンナノチューブを有しており、
 前記活物質は、前記カーボンナノチューブの内部に含有されている電気化学セル。
(項目2)
 前記活物質は、フェロセンの酸化還元電位に対して-1.1V~+0.5Vの電位範囲内で酸化還元反応する物質を含んでいる項目1に記載の電気化学セル。
(項目3)
 前記活物質は、フェロセン、フェロセン誘導体、メタロセン、フェノチアジンの少なくともいずれかを含んでいる項目1または2に記載の電気化学セル。
(項目4)
 前記イオン液体のカチオンが、イミダゾール、アンモニウムの少なくともいずれかを含んでいる項目1ないし3のいずれか1つに記載の電気化学セル。
(項目5)
 前記イオン液体のアニオンが、トリフルオロメタンスルホニルイミドを含んでいる項目1ないし4のいずれか1つに記載の電気化学セル。
The characteristics of the electrochemical cell disclosed herein are as follows.
(Item 1)
a working electrode (130) that adsorbs and desorbs carbon dioxide from a gas to be treated containing carbon dioxide through an electrochemical reaction;
a counter electrode (140) that exchanges electrons with the working electrode;
An electrochemical cell comprising an electrolyte material (160) covering the working electrode and the counter electrode,
The electrolyte material is an ionic liquid,
At least one of the working electrode and the counter electrode has an active material (143) and carbon nanotubes,
An electrochemical cell in which the active material is contained inside the carbon nanotube.
(Item 2)
The electrochemical cell according to item 1, wherein the active material contains a substance that undergoes a redox reaction within a potential range of -1.1 V to +0.5 V with respect to the redox potential of ferrocene.
(Item 3)
3. The electrochemical cell according to item 1 or 2, wherein the active material contains at least one of ferrocene, ferrocene derivatives, metallocene, and phenothiazine.
(Item 4)
4. The electrochemical cell according to any one of items 1 to 3, wherein the cation of the ionic liquid contains at least one of imidazole and ammonium.
(Item 5)
5. The electrochemical cell according to any one of items 1 to 4, wherein the anion of the ionic liquid contains trifluoromethanesulfonylimide.

Claims (5)

  1.  二酸化炭素を含有する被処理ガスから電気化学反応によって二酸化炭素の吸着と脱離を行う作用極(130)と、
     前記作用極との間で電子の授受を行う対極(140)と、
     前記作用極および前記対極を覆う電解質材料(160)と、を備える電気化学セルであって、
     前記電解質材料は、イオン液体であり、
     前記作用極および前記対極の少なくとも一方は、活物質(143)およびカーボンナノチューブを有しており、
     前記活物質は、前記カーボンナノチューブの内部に含有されている電気化学セル。
    a working electrode (130) that adsorbs and desorbs carbon dioxide from a gas to be treated containing carbon dioxide through an electrochemical reaction;
    a counter electrode (140) that exchanges electrons with the working electrode;
    An electrochemical cell comprising an electrolyte material (160) covering the working electrode and the counter electrode,
    The electrolyte material is an ionic liquid,
    At least one of the working electrode and the counter electrode has an active material (143) and carbon nanotubes,
    An electrochemical cell in which the active material is contained inside the carbon nanotube.
  2.  前記活物質は、フェロセンの酸化還元電位に対して-1.1V~+0.5Vの電位範囲内で酸化還元反応する物質を含んでいる請求項1に記載の電気化学セル。 The electrochemical cell according to claim 1, wherein the active material contains a substance that undergoes a redox reaction within a potential range of -1.1 V to +0.5 V with respect to the redox potential of ferrocene.
  3.  前記活物質は、フェロセン、フェロセン誘導体、メタロセン、フェノチアジンの少なくともいずれかを含んでいる請求項1または2に記載の電気化学セル。 The electrochemical cell according to claim 1 or 2, wherein the active material contains at least one of ferrocene, ferrocene derivatives, metallocene, and phenothiazine.
  4.  前記イオン液体のカチオンが、イミダゾール、アンモニウムの少なくともいずれかを含んでいる請求項1または2に記載の電気化学セル。 The electrochemical cell according to claim 1 or 2, wherein the cation of the ionic liquid contains at least one of imidazole and ammonium.
  5.  前記イオン液体のアニオンが、トリフルオロメタンスルホニルイミドを含んでいる請求項1または2に記載の電気化学セル。 The electrochemical cell according to claim 1 or 2, wherein the anion of the ionic liquid contains trifluoromethanesulfonylimide.
PCT/JP2023/025744 2022-07-15 2023-07-12 Electrochemical cell WO2024014483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-114039 2022-07-15
JP2022114039A JP2024011776A (en) 2022-07-15 2022-07-15 electrochemical cell

Publications (1)

Publication Number Publication Date
WO2024014483A1 true WO2024014483A1 (en) 2024-01-18

Family

ID=89536762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025744 WO2024014483A1 (en) 2022-07-15 2023-07-12 Electrochemical cell

Country Status (2)

Country Link
JP (1) JP2024011776A (en)
WO (1) WO2024014483A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022025699A (en) * 2020-07-29 2022-02-10 株式会社日立製作所 Gas separator and gas system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022025699A (en) * 2020-07-29 2022-02-10 株式会社日立製作所 Gas separator and gas system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUAN, L. SHI, Z. LI, M. GU, Z.: "Ferrocene-filled single-walled carbon nanotubes", CARBON, ELSEVIER OXFORD, GB, vol. 43, no. 13, 1 November 2005 (2005-11-01), GB , pages 2780 - 2785, XP005004228, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2005.05.025 *
VOSKIAN SAHAG, HATTON T. ALAN: "Faradaic electro-swing reactive adsorption for CO 2 capture", ENERGY & ENVIRONMENTAL SCIENCE, RSC PUBL., CAMBRIDGE, vol. 12, no. 12, 4 December 2019 (2019-12-04), Cambridge , pages 3530 - 3547, XP055941462, ISSN: 1754-5692, DOI: 10.1039/C9EE02412C *

Also Published As

Publication number Publication date
JP2024011776A (en) 2024-01-25

Similar Documents

Publication Publication Date Title
Wang et al. Synergistic Fe− Se atom pairs as bifunctional oxygen electrocatalysts boost low‐temperature rechargeable Zn‐air battery
Bi et al. From sodium–oxygen to sodium–air battery: Enabled by sodium peroxide dihydrate
Shi et al. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells
JP2007287415A (en) Fuel cell
JP5792567B2 (en) Electrocatalyst with oxygen reduction ability
CN114432849A (en) Carbon dioxide recovery system and working electrode
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP3850721B2 (en) Control method of polymer electrolyte fuel cell
US20240149215A1 (en) Carbon dioxide recovery system
AU2003253438A1 (en) Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
WO2024014483A1 (en) Electrochemical cell
US20140178794A1 (en) Fuel electrode catalyst for fuel cell, electrode/membrane assembly, and fuel cell and fuel cell system provided with the electrode/membrane assembly
Jindal et al. Excellent oxygen reduction reaction performance in self-assembled amyloid-β/platinum nanoparticle hybrids with effective platinum–nitrogen bond formation
JP2006209999A (en) Electrode for polymer electrolyte fuel cell and its manufacturing method
Chaparro Oxygen reduction limited by surface diffusion at a rotating ring-disk electrode
US20170149079A1 (en) Nanocomposite electrode material for proton conducting electrochemical devices
WO2024009857A1 (en) Electrochemical cell and method for producing same
Yang et al. Carbon black and multi-walled carbon nanotube supported cobalt for anion exchange membrane fuel cell
CN114342129A (en) Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly comprising the same
US10381656B2 (en) Nanocomposite electrode material for proton conducting fuel cell
WO2024009858A1 (en) Electrochemical cell
US20230383429A1 (en) Carbon dioxide recovery system
US20230381715A1 (en) Carbon dioxide recovery system
JP2007250214A (en) Electrode catalyst and its manufacturing method
CN104716341B (en) One kind improves the anti-SO of fuel-cell catalyst2The auxiliary agent and adding method of poisoning performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839655

Country of ref document: EP

Kind code of ref document: A1