WO2024014448A1 - Depolymerization method for resin having fluorene skeleton, and product and application thereof - Google Patents

Depolymerization method for resin having fluorene skeleton, and product and application thereof Download PDF

Info

Publication number
WO2024014448A1
WO2024014448A1 PCT/JP2023/025537 JP2023025537W WO2024014448A1 WO 2024014448 A1 WO2024014448 A1 WO 2024014448A1 JP 2023025537 W JP2023025537 W JP 2023025537W WO 2024014448 A1 WO2024014448 A1 WO 2024014448A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorene
diol
independently represent
ester
integer
Prior art date
Application number
PCT/JP2023/025537
Other languages
French (fr)
Japanese (ja)
Inventor
寛 吉村
Original Assignee
大阪ガスケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスケミカル株式会社 filed Critical 大阪ガスケミカル株式会社
Priority to JP2023543378A priority Critical patent/JP7393592B1/en
Publication of WO2024014448A1 publication Critical patent/WO2024014448A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/21Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/616Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure relates to the depolymerization of a resin having a fluorene skeleton and an ester bond and/or a carbonate bond.
  • JP-A No. 2003-128600 Patent Document 1
  • JP-A No. 2003-119316 Patent Document 2
  • PET is decomposed by adding an excessive amount of ethylene glycol, and terephthalic acid is decomposed.
  • a method of manufacturing is disclosed.
  • Patent Document 3 discloses a method of decomposing polyester into monomers or oligomers by hydrolysis using subcritical water or supercritical water.
  • Non-Patent Document 1 involves mixing methanol, dimethyl carbonate (DMT), and lithium methoxide in an appropriate ratio with flaky PET, and reacting at 28°C for 5 hours. It is described that when this is done, dimethyl terephthalate is produced in a yield of 74%, and when the reaction temperature is changed to 50° C., PET is completely decomposed in 5 hours. In this method, dimethyl terephthalate and ethylene carbonate are produced by a decomposition reaction. This document describes that dimethyl carbonate functions as a scavenger for ethylene glycol and that the decomposition reaction proceeds because the ethylene carbonate produced by the reaction has a stable five-membered ring structure.
  • PET can be depolymerized at low temperatures, but polyester resins other than PET are not described.
  • polyester resins with a fluorene skeleton have been used in optical applications, etc.
  • polyester resins with a fluorene skeleton have a structure that is significantly different from general-purpose polyesters such as PET. Coupled with the specificity of the fluorene skeleton, they exhibit different chemical behavior.
  • Non-Patent Document 1 does not describe a polyester resin having a fluorene skeleton.
  • an object of the present disclosure is to provide a method for easily depolymerizing a resin having a fluorene skeleton, an ester bond, and/or a carbonate bond in the molecule, and uses thereof.
  • Another object of the present disclosure is to provide a novel method for producing a carbonate ester compound by depolymerizing a resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond.
  • the present inventors have discovered that by reacting a resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond with a carbonate ester in the presence of a hydrolysis catalyst, the resin
  • the present disclosure was completed based on the discovery that it is possible to depolymerize (depolymerize) by a simple method.
  • one aspect (aspect [1]) of the present disclosure is A fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond (hereinafter, this resin may be simply referred to as a "fluorene-containing resin") is reacted with a carbonate ester in the presence of a hydrolysis catalyst. , a method for depolymerizing fluorene-containing resins to obtain decomposition products.
  • One aspect of the present disclosure is an aspect (aspect [2]) in which the decomposition product includes a diol monocarbonate ester and/or a diol dicarbonate ester in the aspect [1], and the aspect [2].
  • the decomposition product may further include a dicarboxylic acid and/or an ester thereof (aspect [3]).
  • One embodiment of the present disclosure may be an embodiment (aspect [4]) in which the decomposition product and alcohol are reacted to obtain a diol in any of the embodiments [1] to [3].
  • the fluorene-containing resin has the following formula (1).
  • Ring Z 1 and Ring Z 2 independently represent arene rings, R 1 and R 2 independently represent a substituent, m1 and m2 independently represent an integer of 0 or more, n1 and n2 independently represent integers of 0 to 4, A 1 and A 2 independently represent an alkylene group, X 1 and X 2 independently represent a hydroxyl group, an alkoxy group or a halogen atom, R 3 and R 4 independently represent a substituent, k1 and k2 independently represent an integer from 0 to 4)
  • a dicarboxylic acid component represented by and/or the following formula (2)
  • Ring Z 3 and Ring Z 4 independently represent arene rings, A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more, R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more, R 7 represents a substituent, and u represents an integer of 0 to 8) It may be an embodiment (aspect [5]) of a polyester resin containing a diol represented by as a polymerization component.
  • the fluorene-containing resin is a polyester resin containing a dicarboxylic acid component represented by the formula (1) as a polymerization component, and in the formula (1), n1 and n2 are 0. or an embodiment in which n1 and n2 are 1 and ring Z 1 and ring Z 2 are independently fused polycyclic arene rings (aspect [6]), or in the above embodiment [5] or [6] , the fluorene-containing resin may be a polyester resin containing the diol represented by the formula (2) as a polymerization component (aspect [7]).
  • the fluorene-containing resin has the following formula (2):
  • Ring Z 3 and Ring Z 4 independently represent arene rings, A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more, R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more, R 7 represents a substituent, and u represents an integer of 0 to 8) It may be an embodiment (aspect [8]) of a polycarbonate resin containing a diol represented by as a polymerization component.
  • the fluorene-containing resin has the following formula (5).
  • a 5 represents a direct bond (single bond) or an alkylene group
  • a 6 and A 7 independently represent an alkylene group
  • p1 and p2 independently represent an integer of 0 or more
  • R 11 and R 12 independently represent a substituent
  • q1 and q2 independently represent an integer from 0 to 6
  • An embodiment (aspect [9]) including a diol represented by as a polymerization component may also be used.
  • One aspect (aspect [10]) of the present disclosure is to react a polyester resin containing a dicarboxylic acid component having a fluorene skeleton (a fluorene-containing dicarboxylic acid component) as a polymerization component with a carbonate ester in the presence of a hydrolysis catalyst.
  • This is a method for producing a dicarboxylic acid having a fluorene skeleton and/or an ester thereof by decomposing the polyester resin.
  • One aspect (aspect [11]) of the present disclosure is to react a polyester resin containing a diol having a fluorene skeleton (a fluorene-containing diol) as a polymerization component with a carbonate ester in the presence of a hydrolysis catalyst.
  • a first decomposition step to obtain a first decomposition product containing a dicarboxylic acid and/or its ester, and a diol monocarbonate and/or diol dicarbonate;
  • This is a method for producing a diol having a fluorene skeleton through a second decomposition step in which the first decomposition product and alcohol are reacted to obtain a diol.
  • One aspect (aspect [12]) of the present disclosure is that a polyester resin having a fluorene skeleton and an ester bond is reacted with a carbonate ester in the presence of a hydrolysis catalyst to decompose the polyester resin, and a dicarboxylic acid and/or or a first decomposition step to obtain a decomposition product containing the ester thereof and a diol monocarbonate ester and/or a diol dicarbonate ester;
  • a monomer component having a fluorene skeleton is recovered through a second decomposition step in which the decomposition product and alcohol are reacted to obtain a diol.
  • One aspect (aspect [13]) of the present disclosure is to react a polycarbonate resin having a fluorene skeleton and a carbonate bond with a carbonate ester in the presence of a hydrolysis catalyst to decompose the polycarbonate resin.
  • a first decomposition step to obtain a first decomposition product containing a diol monocarbonate ester and/or a diol dicarbonate ester;
  • a monomer component having a fluorene skeleton is recovered through a second decomposition step in which a diol is obtained by reacting the first decomposition product with an alcohol.
  • Ring Z 3 and Ring Z 4 independently represent arene rings, A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more, R 8 represents a hydrocarbon group, R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more, R 7 represents a substituent, and u represents an integer of 0 to 8) It is a monocarbonate ester of diol represented by
  • Ring Z 3 and Ring Z 4 independently represent arene rings, A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more, R 9 and R 10 independently represent a hydrocarbon group, R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more, R 7 represents a substituent, and u represents an integer of 0 to 8) It is a dicarbonate ester of diol represented by
  • One aspect (aspect [16]) of the present disclosure is to react a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond with a carbonate ester in the presence of a hydrolysis catalyst to produce the fluorene-containing resin.
  • Ring Z 3 and Ring Z 4 independently represent arene rings, A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more, R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more, R 7 represents a substituent, and u represents an integer of 0 to 8)
  • This method uses a fluorene-containing resin containing a diol represented by as a polymerization component.
  • One aspect (aspect [17]) of the present disclosure is to react a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond with a carbonate ester in the presence of a hydrolysis catalyst to produce the fluorene-containing resin.
  • Ring Z 3 and Ring Z 4 independently represent arene rings, A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more, R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more, R 7 represents a substituent, and u represents an integer of 0 to 8)
  • This method uses a fluorene-containing resin containing a diol represented by as a polymerization component.
  • One aspect (aspect [18]) of the present disclosure is A method for recycling a fluorene-containing resin having a fluorene skeleton, an ester bond and/or a carbonate bond, the method comprising: a depolymerization step in which the fluorene-containing resin and carbonate ester are reacted in the presence of a hydrolysis catalyst to obtain a decomposition product;
  • This recycling method includes a polymerization step of polymerizing the decomposition product obtained in the depolymerization step to obtain a new fluorene-containing resin.
  • the monomer raw material for the new fluorene-containing resin may be replenished in the polymerization step of the aspect [18].
  • C 1 alkyl group means an alkyl group having 1 carbon number
  • C 6-10 aryl group means an aryl group having 6 to 10 carbon atoms.
  • a resin having a fluorene skeleton and an ester bond and/or a carbonate bond in the molecule such as a polyester resin or a polycarbonate resin, can be used.
  • Resins can be easily depolymerized.
  • FIG. 1 is a chart showing the molecular weight distribution of the polyester obtained in Comparative Example 1 before depolymerization.
  • FIG. 2 is a chart showing the molecular weight distribution of the decomposition product obtained by depolymerizing the polyester obtained in Comparative Example 1.
  • FIG. 3 is a chart showing the molecular weight distribution of the polyester obtained in Comparative Example 2 before depolymerization.
  • FIG. 4 is a chart showing the molecular weight distribution of the decomposition product obtained by depolymerizing the polyester obtained in Comparative Example 2.
  • the resin to be depolymerized is a fluorene-containing resin [or (carbonate) ester bond-containing resin] that has a fluorene skeleton and an ester bond and/or a carbonate bond in the molecule.
  • a (carbonate) ester bond means an ester bond and/or a carbonate ester bond.
  • Examples of the resin having a (carbonate) ester bond in the molecule include polyester, polyester polycarbonate (polyester carbonate), and polycarbonate.
  • the fluorene skeleton may be present in either the main chain or the side chain of the fluorene-containing resin. Further, the fluorene skeleton is connected to the (carbonate) ester bond directly from the fluorene skeleton or via a divalent linking group.
  • the (carbonic acid) ester bond or the divalent linking group may be bonded to any part of the fluorene skeleton, and the bonding position is not particularly limited, but preferably the 9, 9-, 2-, The 7th position is particularly preferred, and the 9th and 9th positions of the fluorene ring are particularly preferred.
  • the divalent linking group may be a linking group containing at least a hydrocarbon group.
  • fluorene-containing resins containing at least an ester bond formed by polymerizing at least a dicarboxylic acid component and a diol component, and fluorene-containing resins containing at least a carbonate ester bond formed by polymerizing at least a diol component are preferable.
  • fluorene-containing resins are preferably fluorene-containing polyester resins such as fluorene-containing polyester resins and fluorene-containing polyester carbonate resins; fluorene-containing polycarbonate resins such as fluorene-containing polycarbonate resins; Fluorene-containing polyester resins and fluorene-containing polycarbonate resins are more preferred, and fluorene-containing polyester resins are particularly preferred.
  • the fluorene-containing polyester resin may contain a dicarboxylic acid component and a diol component as polymerization components, and at least one of the dicarboxylic acid component and the diol component may contain a component having a fluorene skeleton.
  • the dicarboxylic acid component as a polymerization component includes a dicarboxylic acid component having a fluorene skeleton (fluorene-containing dicarboxylic acid component), the fluorene-containing dicarboxylic acid component is, but is not particularly limited to, a dicarboxylic acid represented by the above formula (1). Ingredients are preferred.
  • the arene rings (aromatic hydrocarbon rings) represented by ring Z 1 and ring Z 2 include monocyclic arene rings such as benzene rings, polycyclic arene rings, etc.;
  • Examples of the polycyclic arene ring include a fused polycyclic arene ring (fused polycyclic aromatic hydrocarbon ring), a ring assembled arene ring (ring assembled polycyclic aromatic hydrocarbon ring), and the like.
  • fused polycyclic arene rings include fused bicyclic arene rings, specifically fused bicyclic C 10-16 arene rings such as naphthalene rings and indene rings; or a tetracyclic arene ring.
  • fused tricyclic arene ring examples include fused tricyclic C 14-20 arene rings such as anthracene ring and phenanthrene ring.
  • Preferred fused polycyclic arene rings are fused bicyclic C 10-14 arene rings, such as naphthalene rings.
  • ring assembly arene rings examples include biarene rings such as biphenyl ring, phenylnaphthalene ring, and binaphthyl ring; and terarene rings such as terphenyl ring.
  • a preferred ring assembly arene ring is a C 12-18 biarene ring such as a biphenyl ring.
  • Preferred rings Z 1 and Z 2 are C 6-14 arene rings, preferably C 6-12 arenes such as benzene rings, naphthalene rings, and biphenyl rings, and more preferably C 6-10 arenes such as benzene rings and naphthalene rings. rings, most preferably naphthalene rings.
  • rings Z 1 and Z 2 may be different from each other, but are usually the same.
  • rings Z 1 and Z 2 may be substituted at any of the 1st to 4th positions and the 5th to 8th positions of the fluorene ring, and are usually substituted at the 2nd, 3rd and/or 7th and 8th positions. It is.
  • Preferred substitution positions (or bonding positions) are positions that are symmetrical on the paper in the above formula (1), such as the 1, 8-position, 2, 7-position, 3, 6-position, 4, 5-position of the fluorene ring, especially the 2-position. , 7th place.
  • rings Z 1 and Z 2 are naphthalene rings, they may be at either the 1st or 2nd position of the naphthalene ring, and from the viewpoint of improving heat resistance, it is the 1st position of the naphthalene ring and has a high refractive index. From the viewpoint of preparing a resin that satisfies a well-balanced low Abbe number and low birefringence (or high birefringence on the negative side), the 2-position of the naphthalene ring is particularly preferable.
  • Examples of the substituent represented by R 1 and R 2 include a halogen atom, an alkyl group, an aryl group, an alkoxy group, an acyl group, a nitro group, a cyano group, and a mono- or di-substituted amino group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group includes a straight-chain or branched alkyl group, and is preferably a C 1-10 alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a t-butyl group.
  • Examples include C 1-6 alkyl groups, more preferably C 1-4 alkyl groups.
  • aryl group examples include C 6-12 aryl groups such as phenyl, alkylphenyl, biphenylyl and naphthyl groups; mono- to tri-C 1 such as methylphenyl (or tolyl) and dimethylphenyl (or xylyl) groups; Examples include -4 alkyl-phenyl group.
  • alkoxy group examples include C 1-10 alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, and t-butoxy group.
  • acyl group examples include C 1-6 alkyl-carbonyl groups such as an acetyl group.
  • Examples of the mono- or di-substituted amino group include mono- or di-C 1-4 alkylamino groups such as dimethylamino group; bis(C 1-4 alkyl-carbonyl) amino groups such as diacetylamino group.
  • Representative groups R 1 and R 2 include alkyl groups, aryl groups, alkoxy groups, acyl groups, nitro groups, cyano groups, and the like.
  • Preferred groups R 1 and R 2 are alkyl groups, in particular C 1-6 alkyl groups such as methyl groups; alkoxy groups, in particular C 1-4 alkoxy groups such as methoxy groups; especially Preferably it is a C 1-4 alkyl group such as a methyl group.
  • the groups R 1 and R 2 may form the above ring assembly arene ring together with the ring Z 1 or Z 2 , respectively.
  • the number of substitutions m1 and m2 is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and more preferably 0.
  • m1 and m2 are integers of 2 or more, the types of the two or more groups R 1 and R 2 may be the same or different.
  • substitution numbers n1 and n2 can be selected from the range of integers from 0 to 4, for example, from 0 to 3, preferably from 0 to 2, more preferably from 0 or 1, and more preferably from 1.
  • n1 and n2 are 1 or more is used, the refractive index and glass transition temperature of the fluorene-containing polyester resin can be increased, and the Abbe number and the absolute value of birefringence can be reduced.
  • Examples of the alkylene group represented by groups A 1 and A 2 include C 1- such as methylene group, ethylene group, trimethylene group, propylene group, 1,4-butanediyl group, and 2-methylpropane-1,3-diyl group. 8 alkylene group, etc. Among these, a C 1-6 alkylene group is preferred, a C 2-4 alkylene group is more preferred, a C 2-3 alkylene group such as an ethylene group or a propylene group is more preferred, and an ethylene group is most preferred.
  • Examples of the alkoxy group represented by X 1 and X 2 include C 1-4 alkoxy groups such as methoxy group, ethoxy group, propoxy group, and t-butoxy group, with C 1-2 alkoxy group being preferred.
  • Examples of the halogen atom include a chlorine atom and a bromine atom.
  • Preferred X 1 and X 2 are a hydroxyl group, a methoxy group, and an ethoxy group, and halogen atoms such as a chlorine atom are also preferred in order to cause the reaction to occur at low temperatures.
  • C 1-2 alkoxy groups such as methoxy group and ethoxy group are more preferred, and methoxy group is most preferred.
  • Examples of the substituents represented by R 3 and R 4 include alkyl groups, halogen atoms such as fluorine atoms, chlorine atoms, and bromine atoms, and cyano groups; examples of the alkyl groups include methyl groups, ethyl groups, and t- Examples include C 1-6 alkyl groups such as butyl groups. Preferred R 3 and R 4 are C 1-4 alkyl groups such as methyl group.
  • substitution positions of R 3 and R 4 may be the 1-position, 2-position, 7-position, 3,6-position, 4,5-position or 2,7-position of the fluorene ring.
  • the numbers of substitutions k1 and k2 of R 3 and R 4 can be selected from integers of 0 to 4, for example, integers of 0 to 3, preferably integers of 0 to 2, more preferably 0 or 1, more preferably 0. .
  • k1 and k2 are integers of 2 or more, the types of substituents of two or more R 3 and R 4 may be the same or different.
  • Typical fluorene-containing dicarboxylic acid components represented by the formula (1) include dicarboxylic acid components in which n1 and n2 are 0, that is, 9,9-bis(carboxyalkyl)fluorenes; n1 and n2 are 1; Examples include dicarboxylic acid components, ie, 9,9-bis(carboxyalkyl)-diarylfluorenes.
  • the preferred fluorene-containing dicarboxylic acid component may be a dicarboxylic acid component represented by the following formula (1a), (1b), or (1c).
  • ester-forming derivative is used to include halocarboxylic acids such as acyl chloride, alkyl esters such as methyl ester, and acid anhydrides.
  • Examples of compounds (9,9-bis(carboxyalkyl)-diarylfluorenes) in which n1 and n2 are 1 in formula (1) include 9,9-bis(carboxyalkyl)-diphenyl corresponding to formula (1b) above; Fluorene, specifically 9,9-bis(2-carboxyethyl)-1,8-diphenylfluorene, 9,9-bis(2-carboxyethyl)-2,7-diphenylfluorene, 9,9-bis (2-carboxyethyl)-3,6-diphenylfluorene, 9,9-bis(2-carboxyethyl)-4,5-diphenylfluorene, 9,9-bis(2-carboxypropyl)-2,7-diphenyl 9,9-bis(carboxyC 2-6 alkyl)-diphenylfluorene such as fluorene; 9,9-bis(carboxyalkyl)-dinaphthylflu
  • Examples include C 2-6 alkyl)-dinaphthylfluorene. These compounds may be ester-forming derivatives, with C 1-4 alkyl esters such as methyl ester and ethyl ester being preferred, and C 1-4 alkyl esters such as methyl ester being most preferred.
  • fluorene-containing dicarboxylic acid components may be used alone or in combination of two or more.
  • dicarboxylic acid components represented by the formula (1) 9,9-bis(carboxyC 9,9- such as 9,9-bis(2-carboxyethyl)-2,7-diphenylfluorene and 9,9-bis(2 - carboxypropyl)-2,7-diphenylfluorene; Bis(carboxyC 2-4 alkyl)-2,7-diphenylfluorene; 9,9-bis(2-carboxyethyl)-2,7-dinaphthylfluorene, 9,9-bis(2-carboxypropyl)-2 ,7-dinaphthylfluorene is preferable, and 9,9-bis(carboxy C 2-4 alkyl)-2,7-dinaphthylfluorene such as 9,9-bis(carboxyC 2-4 alkyl)-2,7-dinaphththy
  • the naphthyl group is a 1-naphthyl group (i.e., 9,9-bis(carboxyC 2-4alkyl )-2, 7-di(1-naphthyl)fluorene), but preferably 2-naphthyl group (i.e., 9,9-bis(2-carboxyethyl)-2,7-di(2-naphthyl)fluorene) 9,9-bis(carboxyC 2-4alkyl )-2,7-di(2-naphthyl)fluorene).
  • These compounds may be ester-forming derivatives, with C 1-4 alkyl esters such as methyl esters and ethyl esters being preferred, and C 1-4 alkyl esters such as methyl esters being most preferred.
  • the fluorene-containing dicarboxylic acid component represented by the above formula (1) and its production method are known, and the compound in which n1 and n2 are 0 can be prepared using 9H-fluorenes according to the method described in JP-A No. 2005-89422. and components corresponding to the groups [-A 1 -CO-X 1 ] and [-A 2 -CO-X 2 ], such as (meth)acrylic acid or its ester, and n1 and n2 is 1 or more, a fluorene compound having groups [-A 1 -CO-X 1 ] and -A 2 -CO-X 2 ] at the 9,9-position according to the method described in International Publication No.
  • 2020/213470 A method of coupling a compound having a skeleton with a compound having an arene ring corresponding to rings Z 1 and Z 2 ; a method in which a benzene ring of 9H-fluorenes has an arene ring corresponding to rings Z 1 and Z 2
  • the resulting compound (a compound having a 9H-fluorene skeleton) and the groups [-A 1 -CO-X 1 ] and [ -A 2 -CO-X 2 ] and a component corresponding to it, such as (meth)acrylic acid or its ester.
  • the fluorene-containing diol is not particularly limited, but a diol represented by the above formula (2) is preferable.
  • the arene rings represented by Z 3 and Z 4 include, for example, the same arene rings as the rings Z 1 and Z 2 in the formula (1).
  • the types of rings Z 3 and Z 4 may be the same or different, and are usually the same.
  • C 6-12 arene rings such as benzene ring, naphthalene ring and biphenyl ring are preferred, and C 6-10 arene rings such as benzene ring and naphthalene ring are more preferred.
  • the bonding positions of rings Z 3 and Z 4 to the 9-position of the fluorene ring are not particularly limited.
  • the bonding positions are the 1-position or the 2-position, preferably the 2-position.
  • rings Z 3 and Z 4 are biphenyl rings, it is at any of the 2-, 3-, and 4-positions, preferably the 3-position.
  • the substituent R 7 may be a non-reactive substituent that is inert to the reaction, such as a cyano group; a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom; a hydrocarbon such as an alkyl group or an aryl group. Examples include groups. Examples of the aryl group include C 6-10 aryl groups such as phenyl group. Preferred groups R 7 are cyano groups, halogen atoms, or alkyl groups, especially alkyl groups.
  • alkyl group examples include C 1-12 alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, and t-butyl, preferably C 1-8 alkyl, and Preferably a C 1-6 alkyl group, more preferably a C 1-4 alkyl group such as a methyl group.
  • the bonding position (substitution position) of the group R 7 is not particularly limited as long as it is at the 1st to 8th positions of the fluorene ring, and examples thereof include the 2nd, 7th, 2, and 7th positions of the fluorene ring.
  • the substitution number u may be, for example, an integer of 0 to 6, preferably an integer of 0 to 4, an integer of 0 to 3, an integer of 0 to 2, 0 or 1, most preferably is 0.
  • the number of substitutions of each group R 7 may be different from each other, but is preferably the same.
  • R 5 and R 6 examples include the same groups as the substituents exemplified as R 1 and R 2 in the above formula (1) (halogen atom; alkyl group, aryl group; alkoxy group; acyl nitro group; cyano group; mono- or di-substituted amino group, etc.), cycloalkyl group, aralkyl group, etc.
  • Preferred groups R 5 and R 6 are alkyl groups, aryl groups, and alkoxy groups, more preferably C 1-6 alkyl groups such as methyl groups, C 6-14 aryl groups such as phenyl groups, and C 6-14 aryl groups such as methoxy groups. Examples include 1-4 alkoxy groups. Among these substituents, alkyl groups and aryl groups are preferred, with C 1-4 alkyl groups such as methyl groups and C 6-10 aryl groups such as phenyl groups being particularly preferred.
  • the group R 5 or R 6 is an aryl group, the group R 5 or R 6 may form the above-mentioned ring assembly arene ring together with the ring Z 3 or Z 4 .
  • substitution numbers t1 and t2 are each an integer of 0 or more, and can be selected depending on the type of ring Z 3 or Z 4 , and may be, for example, an integer of 0 to 8, preferably 0 to 8 in stages. An integer of 4, an integer of 0 to 3, an integer of 0 to 2, 0 or 1, most preferably 0. When the numbers of substitutions t1 and t2 are integers of 2 or more, the types of the two or more groups R 5 and R 6 may be the same or different.
  • rings Z 3 and Z 4 may be benzene rings, naphthalene rings or biphenyl rings, groups R 5 and R 6 may be methyl groups, and when t1 and t2 are 2, In some cases, rings Z 3 and Z 4 may be benzene rings and groups R 5 and R 6 may be methyl groups.
  • substitution positions of groups R 5 and R 6 are not particularly limited, and usually, in rings Z 3 and Z 4 , the group [-O-(A 3 O) s1 -H] or [-O-(A 4 O) s2 -H] is often substituted at least at the ortho position to the ether bond-containing group (the carbon atom adjacent to the bonding position of the ether bond-containing group).
  • alkylene groups A 3 and A 4 examples include C 2-6 alkylene groups such as ethylene group, propylene group (1,2-propanediyl group), trimethylene group, 1,2-butanediyl group, and tetramethylene group. , preferably a C 2-4 alkylene group, more preferably a C 2-3 alkylene group such as an ethylene group or a propylene group, and most preferably an ethylene group.
  • the repetition numbers s1 and s2 are each 0 or more, and can be selected from the range of integers from 0 to 15, for example, and in order to promote the esterification reaction, the repetition numbers s1 and s2 are 1 or more, preferably an integer from 1 to 10 in stages. , an integer from 1 to 8, an integer from 1 to 6, an integer from 1 to 4, an integer from 1 to 3, 1 or 2, and most preferably 1. Note that the repeating numbers s1 and s2 may be the same or different from each other; when s1 and s2 are integers of 2 or more, the types of the 2 or more alkylene groups A3 and A4 may be the same or different. .
  • the "number of repeats (number of moles added)" may be an average value (arithmetic mean value, arithmetic mean value) or an average number of moles added, and preferred embodiments include the above-mentioned preferred This is the same as the range (range of integers above).
  • substitution positions of the groups [-O-(A 3 O) s1 -] and [-O-(A 4 O) s2 -] (also referred to as ether-containing groups) on rings Z 3 and Z 4 are not particularly limited, When rings Z 3 and Z 4 are benzene rings, the phenyl group bonded to the 9-position of the fluorene ring is at any of the 2-, 3-, and 4-positions, preferably the 3-position or the 4-position, especially the 4-position.
  • rings Z 3 and Z 4 are naphthalene rings
  • the 1- or 2-position of the naphthalene ring is bonded to the 9-position of the fluorene ring (1-naphthyl or 2-naphthyl relationship).
  • substitution is often made at the 1,5-position, 2,6-position, etc., particularly at the 2,6-position, with respect to this bonding position.
  • rings Z 3 and Z 4 are biphenyl rings (or rings Z 3 and Z 4 are benzene rings, t1 and t2 are 1, and R 5 and R 6 are phenyl groups)
  • the 3-position or 4-position of the biphenyl ring may be bonded, and when the 3-position of the biphenyl ring is bonded to the 9-position of the fluorene ring, the substitution position of the ether-containing group is the 6-position or 4' position of the biphenyl ring. It may be substituted at the 6-position, especially at the 6-position.
  • fluorene-containing diols examples include 9,9-bis(hydroxyaryl)fluorenes in which s1 and s2 are 0 in the formula (2); 9,9-bis(hydroxyaryl)fluorenes in which s1 and s2 are 1 or more, for example 1 to 10 Examples include [hydroxy(poly)alkoxyaryl]fluorenes.
  • the preferred fluorene-containing diol may include a compound represented by the following formula (2a) or (2b).
  • 9,9-bis(hydroxyphenyl)fluorenes corresponding to the formula (2a) include 9,9-bis(hydroxyphenyl)fluorene such as 9,9-bis(4-hydroxyphenyl)fluorene; -Bis(alkyl-hydroxyphenyl)fluorene, specifically 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 9,9-bis(4-hydroxy-3-isopropylphenyl)fluorene, 9 9,9-bis[(mono- or di)C 1-4alkyl -hydroxyphenyl]fluorene such as ,9-bis(4-hydroxy-3,5-dimethylphenyl)fluorene; 9,9-bis(aryl- hydroxyphenyl)fluorene, specifically 9,9-bis(C 6-10 aryl-hydroxyphenyl)fluorene such as 9,9-bis(4-hydroxy-3-phenylphenyl)fluorene.
  • alkylene oxides (or alkylene carbonates, haloalkanols) of the 9,9-bis(hydroxyphenyl)fluorenes adducts such as 9,9-bis[hydroxy(poly)alkoxyphenyl]fluorene, specifically 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, 9,9-bis[4 -9,9-bis[hydroxy(mono- to deca)C 2- such as (2-(2-hydroxyethoxy)ethoxy)phenyl]fluorene, 9,9-bis[4-(2-hydroxypropoxy)phenyl]fluorene 4- alkoxy-phenyl]fluorene, etc.; 9,9-bis[alkyl-hydroxy(poly)alkoxyphenyl]fluorene, specifically 9,9-bis[4-(2-hydroxyethoxy)-3-
  • Examples of the 9,9-bis(hydroxynaphthyl)fluorenes corresponding to the formula (2b) include 9,9-bis(6-hydroxy-2-naphthyl)fluorene, 9,9-bis(5-hydroxy-1-
  • Examples of 9,9-bis[hydroxy(poly)alkoxynaphthyl]fluorene include 9,9-bis[6-(2-hydroxyethoxy)fluorene; )-2-naphthyl]fluorene, 9,9-bis[5-(2-hydroxyethoxy)-1-naphthyl]fluorene, 9,9-bis[6-(2-(2-hydroxyethoxy)ethoxy)-2 -naphthyl]fluorene, 9,9-bis[hydroxy(mono- to deca) C2-4alkoxy -naphthyl]fluorene such as 9,9-bis[6-(2-hydroxypropoxy)-2-naphthyl]flu
  • fluorene-containing diols can be used alone or in combination of two or more.
  • 9,9-bis[hydroxy(poly)alkoxyaryl]fluorenes such as 9,9-bis[hydroxy(mono- to hexa)C 2-4alkoxyC 6-12aryl ]fluorene are preferred; 9-bis[hydroxy(mono- or di)C 2-4 alkoxy-C 6-12 aryl]fluorene is more preferred, and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF), 9, 9-bis[4-(2-hydroxyethoxy)-3-methylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3,5-dimethylphenyl]fluorene, 9,9-bis[ 9,9-bis[ such as 4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene (BOPPEF), 9,9-bis[6-(2-hydroxyethoxy)
  • the dicarboxylic acid component may include other dicarboxylic acid components (dicarboxylic acid components other than the fluorene-containing dicarboxylic acid component).
  • the diol component includes a fluorene-containing diol
  • the dicarboxylic acid component may be another dicarboxylic acid component alone.
  • dicarboxylic acid components include aliphatic dicarboxylic acid components, alicyclic dicarboxylic acid components, aromatic dicarboxylic acid components, and the like.
  • Examples of the aliphatic dicarboxylic acid component include alkanedicarboxylic acids, unsaturated aliphatic dicarboxylic acids, and ester-forming derivatives thereof.
  • Examples of the alkanedicarboxylic acid include C 1-20 alkane-dicarboxylic acids such as malonic acid, succinic acid, and adipic acid.
  • Examples of unsaturated aliphatic dicarboxylic acids include C 2-10 alkene-dicarboxylic acids such as maleic acid and fumaric acid.
  • Examples of the alicyclic dicarboxylic acid component include cycloalkanedicarboxylic acids, bridged cyclic cycloalkanedicarboxylic acids, cycloalkenedicarboxylic acids, bridged cyclic cycloalkenedicarboxylic acids, or ester-forming derivatives thereof.
  • Examples of the cycloalkanedicarboxylic acid include C 4-12 cycloalkanedicarboxylic acids such as cyclohexanedicarboxylic acid.
  • Examples of the bridged cyclic cycloalkanedicarboxylic acid include (bi- or tri)cycloC 7-10 alkane-dicarboxylic acids such as norbornanedicarboxylic acid.
  • Examples of the cycloalkenedicarboxylic acid include C 5-10 cycloalkenedicarboxylic acids such as cyclopentenedicarboxylic acid.
  • Examples of the bridged cyclic cycloalkenedicarboxylic acid include (bi- or tri)cycloC 7-10 alkene-dicarboxylic acids such as norbornenedicarboxylic acid.
  • Examples of the aromatic dicarboxylic acid component include monocyclic aromatic dicarboxylic acids, polycyclic aromatic dicarboxylic acids, and ester-forming derivatives thereof.
  • Examples of the monocyclic aromatic dicarboxylic acid component include benzenedicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid; and C 1-4 alkyl-benzenedicarboxylic acids such as 5-methylisophthalic acid.
  • Examples of the polycyclic arenedicarboxylic acid component include fused polycyclic arenedicarboxylic acids, ring assembled arenedicarboxylic acids, and the like.
  • fused polycyclic arene dicarboxylic acids examples include naphthalene dicarboxylic acids such as 1,2-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, and 2,6-naphthalene dicarboxylic acid; anthracene dicarboxylic acid; ; fused polycyclic C 10-24 arene-dicarboxylic acids such as phenanthenedicarboxylic acid; Examples of ring assembled arene dicarboxylic acids include biC 6-10 arene dicarboxylic acids such as 2,2'-biphenyl dicarboxylic acid, 3,3'-biphenyl dicarboxylic acid, and 4,4'-biphenyl dicarboxylic acid.
  • dicarboxylic acid components can be used alone or in combination of two or more.
  • aromatic dicarboxylic acid components are preferred, and benzene dicarboxylic acids such as terephthalic acid are particularly preferred.
  • the diol component may include other diol components (diol components other than the fluorene-containing diol), and when the dicarboxylic acid component includes a fluorene-containing dicarboxylic acid component, the diol component may contain other diol components.
  • the component may be used alone.
  • diol components include chain aliphatic diols, alicyclic diols, aromatic diols, and the like.
  • chain aliphatic diols examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- C 2-10 alkanediols such as pentanediol, 1,4-pentanediol, 1,5-pentanediol, neopentyl glycol; di- or tri-C 2-4 alkanediols such as diethylene glycol, dipropylene glycol, triethylene glycol, etc. can be mentioned.
  • Examples of the alicyclic diol include C 5-8 cycloalkanediols such as cyclohexanediol; di(hydroxyC 1-4 alkyl)C 5-8 cycloalkanes such as cyclohexanedimethanol; and the like.
  • Aromatic diols include dihydroxyarenes such as hydroquinone and resorcinol; aromatic aliphatic diols such as benzenedimethanol; bisphenols such as bisphenol F, bisphenol AD, bisphenol A, bisphenol C, bisphenol G, and bisphenol S; p, p' - biphenols such as biphenol; binaphthols such as binaphthol; and C 2-4 alkylene oxide (or alkylene carbonate, haloalkanol) adducts of these diol components.
  • Binaphthols may be diols represented by formula (5) described below.
  • diol components can be used alone or in combination of two or more.
  • low molecular weight aliphatic diols chain aliphatic diols
  • alkanediols are preferred
  • C 2-4 alkanediols such as ethylene glycol are more preferred.
  • the fluorene-containing polyester resin is a fluorene-containing polyester carbonate resin, in addition to the dicarboxylic acid component and the diol component, it contains a carbonate bond-forming component as a polymerization component for forming carbonate units.
  • the carbonate bond-forming component may be any compound that can form a carbonate bond by reaction with two diol components, and typical carbonate bond-forming components include phosgene, triphosgene, etc. Examples include phosgenes and carbonic acid diesters such as diphenyl carbonate. Carbonic diesters such as diphenyl carbonate are preferred from the viewpoint of safety.
  • the proportion of the polymer component having a fluorene skeleton may be 10 mol % or more in the total polymer components including the dicarboxylic acid component and the diol component, and preferably 30 mol % or more in steps below. , 30 to 99 mol%, 40 to 98 mol%, 50 to 95 mol%, 70 to 93 mol%, 80 to 90 mol%, and 82 to 88 mol%.
  • fluorene-containing polyester resins with a high proportion of fluorene skeletons especially fluorene-containing polyester resins, can be efficiently depolymerized and useful monomer components (monomers) having fluorene skeletons can be efficiently recovered. can.
  • the ratio (mole ratio) of polymerized components means the ratio (mole ratio) as a structural unit in the fluorene-containing resin.
  • the weight average molecular weight of the fluorene-containing polyester resin can be selected, for example, from a range of about 15,000 to 100,000, for example 20,000 to 80,000, preferably 30,000 to 70,000, more preferably 40, 000 to 65,000, most preferably 45,000 to 60,000.
  • the weight average molecular weight of the fluorene-containing polyester resin can be measured by gel permeation chromatography using polystyrene as a standard substance.
  • the glass transition temperature (Tg) of the fluorene-containing polyester resin can be selected from a range of about 100 to 250°C, for example, 110 to 230°C, preferably 120 to 210°C, more preferably 130 to 200°C, most preferably The temperature is 135-190°C. Note that in this specification and claims, the glass transition temperature can be measured using a differential scanning calorimeter, and more specifically, by the method described in the Examples below.
  • the fluorene-containing polyester resin may be amorphous.
  • the proportion of the fluorene-containing dicarboxylic acid component is not particularly limited, and when the diol component contains a fluorene-containing diol, the dicarboxylic acid component does not contain a fluorene-containing dicarboxylic acid component.
  • the dicarboxylic acid component contains 10 mol% or more, preferably 30 mol% or more, 50 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more in the following steps. , 100 mol% is most preferred.
  • the proportion of the fluorene-containing diol is not particularly limited, and when the dicarboxylic acid component contains a fluorene-containing dicarboxylic acid component, the diol component does not need to contain the fluorene-containing diol, but it is preferably contained at 1 mol% or more in the diol component. , preferably 5 mol % or more, 10 to 99 mol %, 30 to 95 mol %, 40 to 90 mol %, 50 to 85 mol %, and most preferably 60 to 80 mol %.
  • a fluorene-containing polyester resin such as a fluorene-containing polyester resin
  • the dicarboxylic acid component and/or the diol component have a fluorene skeleton, but it is preferable that at least the diol component has a fluorene skeleton.
  • both components have a fluorene backbone.
  • a polyester resin in which both the dicarboxylic acid component and the diol component have a fluorene skeleton has a large density of bulky fluorene skeletons, and is significantly different from general-purpose polyester resins not only in structure but also in behavior. Legally, monomers with useful fluorene skeletons can be efficiently recovered.
  • the diol component not only comprises a fluorene-containing diol, but also is combined with other diol components (particularly aliphatic diols such as C 2-4 alkanediols).
  • the molar ratio of the fluorene-containing diol and other diol components is selected from a range of about 100/0 to 30/70 (former/latter).
  • the preferred ranges are 99/1 to 40/60, 95/5 to 50/50, 90/10 to 55/45, 80/20 to 60/40, most preferably 75 /25 to 65/35.
  • (A) First decomposition step In the method for depolymerizing a fluorene-containing polyester resin of the present disclosure, in the first decomposition step, the fluorene-containing polyester resin and carbonate ester are combined in the presence of a first hydrolysis catalyst. The fluorene-containing polyester resin is reacted and decomposed to produce a decomposition product (first decomposition product) containing a dicarboxylic acid and/or its ester, and a diol monocarbonate and/or diol dicarbonate. ).
  • Carbonate ester acts as a depolymerization agent for the fluorene-containing polyester resin.
  • Carbonic acid esters include carbonic diesters such as dialkyl carbonate (dialkanoyl carbonate) and diaryl carbonate. Examples of dialkanol carbonate include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, di-t-butyl carbonate, and the like. Examples of the diaryl carbonate include diphenyl carbonate and tolylphenyl carbonate.
  • carbonate esters can be used alone or in combination of two or more.
  • di-C 1-4 alkyl carbonate is preferred, di-C 1-3 alkyl carbonate is more preferred, di-C 1-2 alkyl carbonate is more preferred, and dimethyl carbonate is most preferred.
  • the proportion of the carbonate ester may be 1 mole or more per mole of the fluorene-containing polyester resin (the number of moles corresponding to the number average molecular weight), for example, 1 to 50 moles, preferably 2 to 30 moles, and more preferably is 3 to 20 mol, more preferably 5 to 15 mol, most preferably 8 to 12 mol.
  • the proportion of the carbonate ester may be, for example, 50 parts by mass or more, for example, 50 to 1000 parts by mass, preferably 100 to 500 parts by mass, and more preferably 120 to 400 parts by mass, based on 100 parts by mass of the fluorene-containing polyester resin. Parts by weight, more preferably 150 to 380 parts by weight, most preferably 180 to 350 parts by weight. If the proportion of carbonate ester is too small, there is a risk that depolymerization will not proceed quickly.
  • the first hydrolysis catalyst may be any conventional hydrolysis catalyst, and may be an acid catalyst, but is preferably an alkali catalyst.
  • Alkaline catalysts include inorganic bases, organic bases, and the like.
  • Inorganic bases include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, and barium hydroxide; sodium oxide, and potassium oxide.
  • alkali metal oxides such as; alkaline earth metal oxides such as magnesium oxide, calcium oxide, barium oxide; alkali or alkaline earth metal carbonates such as cesium carbonate, sodium carbonate; alkali or alkaline earth metal oxides such as sodium hydrogen carbonate. Examples include metal hydrogen carbonate and ammonia.
  • Organic bases include alkali or alkaline earth metal carboxylates such as sodium acetate and calcium acetate; alkali metals such as lithium methoxide, sodium methoxide, potassium methoxide, sodium ethoxide, sodium propoxide, and sodium t-butoxide. Alkoxides; organometallic compounds such as butyllithium, phenyllithium, isopropylmagnesium chloride, cyclohexylmagnesium bromide, phenylmagnesium bromide, sodium amide, lithium diisopropylamide; and amines.
  • alkali or alkaline earth metal carboxylates such as sodium acetate and calcium acetate
  • alkali metals such as lithium methoxide, sodium methoxide, potassium methoxide, sodium ethoxide, sodium propoxide, and sodium t-butoxide.
  • Alkoxides alkoxides
  • organometallic compounds such as butyllithium
  • alkali catalysts can be used alone or in combination of two or more.
  • alkali metal C 1-6 alkoxides are preferred, alkali metal C 1-4 alkoxides are more preferred, alkali metal C 1-3 alkoxides are more preferred, and alkali metal C 1-2 alkoxides such as lithium C 1-2 alkoxides are more preferred. Alkoxides are most preferred.
  • the proportion of the first hydrolysis catalyst may be, for example, 0.01 mol or more, preferably 0.01 to 0.3 mol, more preferably 0.03 mol, per 1 mol of the fluorene-containing polyester resin. ⁇ 0.2 mole, more preferably 0.05 to 0.15 mole, most preferably 0.08 to 0.12 mole.
  • the proportion of the first hydrolysis catalyst may be, for example, 0.1 parts by mass or more, preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the fluorene-containing polyester resin. 2 to 3 parts by weight, more preferably 0.3 to 2 parts by weight, most preferably 0.5 to 1.5 parts by weight. If the proportion of the first hydrolysis catalyst is too small, there is a risk that depolymerization will not proceed quickly. These proportions of the first hydrolysis catalyst may be proportions of an alkaline catalyst.
  • reaction temperature may be 20°C or higher, for example 20 to 85°C, preferably 25 to 83°C, more preferably 30 to 80°C, more preferably 50 to 75°C, most preferably 60 to 70°C. be.
  • the reaction time may be 10 minutes or more, for example 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 5 hours, and more preferably 2 to 4 hours.
  • reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the standpoint of simplicity.
  • reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
  • the first decomposition product in the first decomposition step includes a dicarboxylic acid and/or its ester, and a diol monocarbonate and/or diol dicarbonate. Therefore, the present disclosure also includes a method for producing a diol monocarbonate ester and/or a diol dicarbonate ester by the first decomposition step.
  • the dicarboxylic acid ester may be an alkyl ester.
  • alkyl ester C 1-3 alkyl esters such as methyl ester and ethyl ester are preferred, and methyl ester is particularly preferred.
  • X 1 and X 2 are C 1-4 alkoxy groups.
  • a dicarboxylic acid component in which X 1 and X 2 are C 1-2 alkoxy groups such as a methoxy group is preferred, and a methoxy group is particularly preferred.
  • the alkyl group contained in the alkoxy group of X 1 and X 2 may be an alkyl group derived from an alkali catalyst.
  • the diol monocarbonate ester and/or diol dicarbonate ester may be reused as a raw material for fluorene-containing polyester resin by subjecting it to the second decomposition step, which is the next step, and converting it into diol. , it may be used as a carbonate ester compound without being subjected to the second decomposition step.
  • diol monocarbonate ester examples include the diol monocarbonate ester represented by the above formula (3).
  • This monocarbonate ester is a new compound and can be used as a raw material for polycarbonate resin, a reaction regulator, a resin additive, and the like.
  • the monocarbonate ester of the diol represented by the formula (3) is a monocarbonate ester in which a carbonate ester is added to only one hydroxyl group of the diol represented by the formula (2).
  • examples of the hydrocarbon group represented by R 8 include an alkyl group and an aryl group.
  • alkyl groups and phenyl groups are preferred, and alkyl groups are particularly preferred.
  • examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, and butyl group. These alkyl groups can be used alone or in combination of two or more. Among these, a C 1-4 alkyl group is preferred, a C 1-3 alkyl group is more preferred, a C 1-2 alkyl group is more preferred, and a methyl group is most preferred.
  • dicarbonate esters of diol examples include dicarbonate esters of diol represented by the above formula (4). This dicarbonate ester is also a new compound and can be used as a raw material for polycarbonate resin, a resin additive, and the like.
  • the dicarbonate ester of the diol represented by formula (4) is a dicarbonate ester in which a carbonate ester is added to both hydroxyl groups of the diol represented by formula (2).
  • examples of the hydrocarbon group represented by R 9 and R 10 include an alkyl group and an aryl group. Among these, alkyl groups and phenyl groups are preferred, and alkyl groups are particularly preferred. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, and butyl group. These alkyl groups can be used alone or in combination of two or more. Among these, a C 1-4 alkyl group is preferred, a C 1-3 alkyl group is more preferred, a C 1-2 alkyl group is more preferred, and a methyl group is most preferred.
  • the total proportion of the monocarbonate ester and the dicarbonate ester is, for example, 0.1 to 5 mol, preferably 0.2 to 3 mol, with respect to 1 mol of the dicarboxylic acid component.
  • the amount is preferably 0.3 to 2 mol, more preferably 0.5 to 1.5 mol.
  • the proportion of the monocarbonate ester is, for example, 0.1 to 1 mol, preferably 0.2 to 0.9 mol, more preferably 0.3 to 0.8 mol, and more, per 1 mol of the dicarbonate ester. Preferably it is 0.4 to 0.6 mol.
  • the first decomposition product may further contain a diol.
  • the diol may be a diol corresponding to the monocarbonate ester and the dicarbonate ester.
  • the proportion of diol is about 0.2 mol or less, for example 0.1 mol or less, preferably 0.05 mol or less, more preferably 0.01 to 0. 03 mole.
  • the first decomposition product may be subjected to a conventional purification treatment.
  • Conventional purification treatments include, for example, neutralizing and washing a mixture containing decomposition products with water as necessary, and then removing impurities from the mixture by filtration or the like. If a monomer component is precipitated in the mixture, it may be completely dissolved using a good solvent for the monomer component, and then neutralized and washed with water.
  • the depolymerization method of the present disclosure requires only the first decomposition step.
  • the depolymerization method may be a depolymerization method that does not include the second decomposition step described below.
  • the method for depolymerizing a fluorene-containing polyester resin of the present disclosure includes, in addition to the first decomposition step, a second decomposition step for obtaining a second decomposition product. You can.
  • the first decomposition product and alcohol are reacted to obtain a diol.
  • the diol is obtained by reacting the monocarbonate ester of the diol and/or the dicarbonate ester of the diol with the alcohol.
  • the diol monocarbonate ester and/or diol dicarbonate ester can be converted into diol, so it is particularly effective when recovering a diol having a fluorene skeleton as a monomer component. be.
  • alcohol examples include C 1-4 alkanols such as methanol, ethanol, isopropanol, propanol, and butanol. These alcohols can be used alone or in combination of two or more. Among these, C 1-3 alkanols are preferred, C 1-2 alkanols are more preferred, and methanol is most preferred. Also in the second decomposition step, since the decomposition reaction proceeds in the presence of the dicarboxylic acid component, it is preferable to use an alcohol corresponding to the alkoxide of the first hydrolysis catalyst used in the first decomposition step.
  • the proportion of alcohol may be 50 parts by mass or more based on 100 parts by mass of the first decomposition product, for example 50 to 1000 parts by mass, preferably 80 to 500 parts by mass, more preferably 100 to 300 parts by mass. , more preferably 120 to 250 parts by weight, most preferably 150 to 200 parts by weight. If the proportion of alcohol is too small, there is a risk that the yield of the diol component will decrease.
  • Examples of the second hydrolysis catalyst include the hydrolysis catalysts exemplified as the first hydrolysis catalyst.
  • the second hydrolysis catalyst can be used alone or in combination of two or more.
  • alkali metal hydroxides and alkaline earth metal hydroxides are preferred, and alkali metal hydroxides such as potassium hydroxide are particularly preferred.
  • the proportion of the second hydrolysis catalyst may be 1 part by mass or more, for example 1 to 30 parts by mass, preferably 5 to 25 parts by mass, more preferably It is 10 to 20 parts by mass. If the proportion of the second hydrolysis catalyst is too small, the yield of the diol component may decrease. These proportions of the second hydrolysis catalyst may be proportions of the alkaline catalyst.
  • reaction temperature may be 20°C or higher, for example 20 to 85°C, preferably 25 to 83°C, more preferably 30 to 80°C, more preferably 50 to 75°C, most preferably 60 to 70°C. be.
  • the reaction time may be 5 minutes or more, for example 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours, and more preferably 40 minutes to 1.5 hours.
  • reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the standpoint of simplicity.
  • reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
  • the second decomposition product in the second decomposition step includes a dicarboxylic acid and/or an ester thereof and a diol. That is, in the depolymerization method of the present disclosure including the second decomposition step, all the raw materials for the fluorene-containing polyester resin can be recovered, so the obtained monomer components can be used as they are to newly synthesize the fluorene-containing polyester resin. The recyclability of fluorene-containing polyester resins can be improved.
  • the dicarboxylic acid and/or its ester is separated from the diol by filtration using a solvent that acts as a good solvent for the diol and as a poor solvent for the dicarboxylic acid and/or its ester.
  • a solvent having such a function a C 1-4 alkanol such as methanol can be used.
  • solvent extraction may be performed using a good solvent for dicarboxylic acids and/or their esters and a good solvent for diols that are incompatible with this good solvent.
  • the solvent extraction method is effective when the dicarboxylic acid and/or its ester is also dissolved in a good solvent for the diol such as the C 1-4 alkanol.
  • Good solvents for dicarboxylic acids and/or esters thereof include aliphatic hydrocarbons such as heptane.
  • the separated monomer component may be purified by a conventional method.
  • a purification method conventional methods such as filtration, concentration, crystallization, and columns can be appropriately combined. Among these, purification methods including crystallization are preferred.
  • the crystallization method it is preferable to crystallize the monomer component using a crystallization solvent containing an aromatic hydrocarbon and/or a polar solvent as a crystallization solvent.
  • aromatic hydrocarbons mono- or di-C 1-2 alkyl-benzenes such as toluene, xylene, and ethylbenzene are preferred, with toluene being particularly preferred.
  • polar solvent water, C 1-4 alkanols such as ethanol and isopropanol; aliphatic ketones having 3 or more carbon atoms such as acetone and methyl isobutyl ketone are preferable; water, C 2-3 alkanols; carbon atoms 4-8 Particularly preferred are aliphatic ketones.
  • examples of good solvents include aromatic hydrocarbons and aliphatic ketones having 4 or more carbon atoms.
  • examples of the poor solvent include water, C 1-4 alkanol, and the like.
  • the proportion of the poor solvent may be, for example, 100 parts by mass or less, for example, 0 to 100 parts by mass, preferably 5 to 80 parts by mass, more preferably 10 to 70 parts by mass, with respect to 100 parts by mass of the good solvent. More preferably, it is 20 to 50 parts by mass.
  • the proportion of the crystallization solvent is, for example, 10 to 3000 parts by weight, preferably 50 to 2000 parts by weight, more preferably 100 to 1000 parts by weight, and most preferably 200 to 500 parts by weight, based on 100 parts by weight of the monomer component. .
  • a monomer component with higher purity can be precipitated or crystallized by dissolving the monomer component in the crystallization solvent and cooling it.
  • the temperature at which the monomer component is dissolved in the crystallization solvent is a temperature below the boiling point of the solvent, for example, 30 to 200°C, preferably 50 to 150°C, more preferably 60 to 100°C.
  • the crystallized monomer component may be washed and then dried by a conventional method.
  • the fluorene-containing polycarbonate resin of the present disclosure includes a diol component as a polymerization component, and the diol component includes a fluorene-containing diol.
  • the fluorene-containing diol is not particularly limited, but a diol component represented by the formula (2) described in the section of the fluorene-containing polyester resin is preferred.
  • Examples of the diol represented by the above formula (2) include the diols represented by the above formula (2) exemplified in the section of the fluorene-containing polyester resin.
  • the diol components can be used alone or in combination of two or more.
  • 9,9-bis(4-hydroxyphenyl)fluorene BPF
  • 9,9-bis[(mono- or di)C 1-4 alkyl-hydroxyphenyl]fluorene 9,9-bis( 9,9-bis(hydroxyphenyl)fluorenes such as C 6-10 aryl-hydroxyphenyl)fluorene
  • 9,9-bis(hydroxyphenyl)fluorenes such as 9,9-bis(6-hydroxy-2-naphthyl)fluorene (BNF)
  • 9,9-bis[hydroxy(poly)alkoxyaryl]fluorenes such as 9,9-bis[hydroxy(mono- to hexa)C 2-4alkoxyC 6-12aryl ]fluorene are preferred
  • 9,9-bis[hydroxy(mono- or di)C 2-4 alkoxy-C 6-12 aryl]fluorene is more preferred
  • the diol component may include a diol represented by the following formula (5) as a diol having a bi(or bis)naphthalene skeleton (binaphthalene-containing diol).
  • a 5 represents a direct bond (single bond) or an alkylene group
  • a 6 and A 7 independently represent an alkylene group
  • p1 and p2 independently represent an integer of 0 or more
  • R 11 and R 12 independently represent a substituent
  • q1 and q2 independently represent an integer from 0 to 6
  • the substituents R 11 and R 12 can be selected from the same substituents R 5 and R 6 exemplified in the formula (2), including preferred embodiments.
  • the numbers of substitutions q1 and q2 of R 11 and R 12 may each be an integer of about 0 to 5, preferably an integer of 0 to 4, an integer of 0 to 3, an integer of 0 to 2, in the following stepwise order. It is an integer, more preferably 0 or 1, especially 0. q1 and q2 may be different from each other, but are preferably the same. Further, when q1 is 2 or more, the types of two or more R 11 may be the same or different from each other, and the same applies to q2 and R 12 . Moreover, the types of R 11 and R 12 may be the same or different from each other.
  • substitution positions of R 11 and R 12 are A 5 and (poly)oxyalkylene groups [-O-(A 6 O) p1 -] and [-O-(A 7 O) p2 -] in the two naphthalene ring skeletons.
  • substitution position is other than the substitution position, and the 3rd to 8th positions relative to the 1st position of the two naphthalene ring skeletons bonded to A 5 are preferable.
  • a 5 is a direct bond (single bond)
  • it is preferably at positions 3 to 8 or 3' to 8' of the 1,1'-binaphthyl skeleton.
  • Examples of the alkylene group represented by A 5 include C 1-4 alkylene groups such as methylene group, ethylene group, propylene group, trimethylene group, 1,2-butanediyl group, and tetramethylene group. From the viewpoint of optical properties such as high refractive index, low Abbe number, and low birefringence, A5 is preferably a direct bond or a C 1-2 alkylene group such as a methylene group, and a direct bond (single bond) is particularly preferable. .
  • Alkylene groups A 6 and A 7 can be selected from the same alkylene groups A 3 and A 4 exemplified in formula (2) above, including preferred embodiments.
  • the repetition numbers p1 and p2 can also be selected from the same numbers of repetitions s1 and s2 in the above formula (2), including preferred embodiments.
  • the bonding positions of the (poly)oxyalkylene groups [-O-(A 6 O) p1 -] and [-O-(A 7 O) p2 -] are not particularly limited, and for example, 1 , 1'-binaphthyl skeleton, 2, 2', 4, 4', etc. positions may be used.
  • the 2,2' position is preferable since it is easy to increase the refractive index. Therefore, the binaphthalene-containing diol represented by the formula (5) above preferably includes a binaphthalene-containing diol represented by the following formula (5a).
  • Typical binaphthalene-containing diols represented by the formula (5a) include dihydroxy-1,1'-binaphthyl such as 2,2'-dihydroxy-1,1'-binaphthyl; bis[hydroxy(poly)alkoxy] Examples include -1,1'-binaphthyl.
  • Bis[hydroxy(poly)alkoxy]-1,1'-binaphthyl includes 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl, 2,2'-bis(2-hydroxypropoxy) 2,2'-bis[hydroxy (mono to deca)C 2- such as -1,1'-binaphthyl, 2,2'-bis[2-(2-hydroxyethoxy)ethoxy]-1,1'-binaphthyl 4alkoxy ]-1,1'-binaphthyl and the like.
  • binaphthalene-containing diols can be used alone or in combination of two or more.
  • diols represented by the above formula (5a) are preferred, such as 2,2'-dihydroxy-1,1'-binaphthyl, 2,2'-bis[hydroxy (mono to tetra) C 2-4 alkoxy] -1,1'-binaphthyl is more preferred, and 2,2'-bis[hydroxy(mono- to tri)C 2-3 alkoxy such as 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl ]-1,1'-binaphthyl is most preferred.
  • the diol component may further contain other diol components.
  • Other diol components including preferred embodiments, are the same as other diol components (excluding binaphthols) of the fluorene-containing polyester resin.
  • the fluorene-containing polycarbonate-based resin of the present disclosure includes a carbonate bond-forming component as a polymerization component for forming carbonate units.
  • Typical carbonate bond-forming components include, for example, phosgenes such as phosgene and triphosgene, and carbonate diesters such as diphenyl carbonate. Carbonic diesters such as diphenyl carbonate are preferred from the viewpoint of safety.
  • the proportion of the fluorene-containing diol may be 10 mol% or more in the diol component, preferably in the following steps: 30 mol% or more, 50 mol% or more, 80 mol% or more. It is mol% or more, 90 mol% or more, 95 mol% or more, and 100 mol%.
  • fluorene-containing polycarbonate resins having a high proportion of fluorene skeletons, especially fluorene-containing polycarbonate resins can be efficiently depolymerized and useful monomer components (monomers) having fluorene skeletons. can be collected efficiently.
  • the molar ratio of the fluorene-containing diol and the binaphthalene-containing diol can be selected from a range of about 99/1 to 10/90, which is preferable.
  • the range is as follows: 97/3 to 20/80, 95/5 to 30/70, 90/10 to 35/65, 80/20 to 40/60, 70/30 to 40/60. , most preferably 60/40 to 40/60.
  • the ratio of the former/latter may be 93/7 to 40/60, preferably 90/10 to 50/50, and more preferably 80/20 to 60/40.
  • the total proportion of the fluorene-containing diol and the binaphthalene-containing diol may be 50 mol% or more in the diol component, preferably 60 mol% or more, 70 mol% or more in the diol component.
  • the content is mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, and 100 mol%.
  • the total proportion of the diol component and the carbonate bond-forming component may be 50 mol% or more in the total polymerization components, preferably 60 mol% or more in the following steps. , 70 mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, and 100 mol%.
  • the weight average molecular weight of the fluorene-containing polycarbonate resin is, for example, 20,000 to 100,000, preferably 25,000 to 80,000, more preferably 30,000 to 70,000, most preferably 35,000 to 60,000.
  • the weight average molecular weight of the fluorene-containing polycarbonate resin can be measured by gel permeation chromatography using polystyrene as a standard substance.
  • the fluorene-containing polycarbonate resin may be amorphous.
  • (A) First decomposition step In the method for depolymerizing a fluorene-containing polycarbonate resin of the present disclosure, in the first decomposition step, the fluorene-containing polycarbonate resin is The fluorene-containing polycarbonate resin is decomposed by reacting with a carbonate ester to obtain a first decomposition product containing a diol monocarbonate ester and/or a diol dicarbonate ester.
  • the carbonate ester acts as a depolymerization agent for the fluorene-containing polycarbonate resin.
  • the carbonate ester is the same as the carbonate ester of the fluorene-containing polyester resin, including preferred embodiments.
  • the ratio of the carbonate ester may be 1 mole or more per mole of the fluorene-containing polycarbonate resin (the number of moles corresponding to the number average molecular weight), for example, 0.1 to 50 moles, preferably 0.5 ⁇ 30 moles, more preferably 1 to 10 moles, more preferably 1.5 to 5 moles, most preferably 2 to 3 moles.
  • the proportion of the carbonate ester may be, for example, 5 parts by mass or more, for example, 5 to 1000 parts by mass, preferably 10 to 100 parts by mass, and more preferably 20 parts by mass, based on 100 parts by mass of the fluorene-containing polycarbonate ester resin. ⁇ 80 parts by weight, more preferably 30-70 parts by weight, most preferably 40-60 parts by weight. If the proportion of carbonate ester is too small, there is a risk that depolymerization will not proceed quickly.
  • the first hydrolysis catalyst can be selected from the same catalysts as the first hydrolysis catalyst for fluorene-containing polyester resins, including preferred embodiments.
  • the first hydrolysis catalyst can be used alone or in combination of two or more.
  • the proportion of the first hydrolysis catalyst may be, for example, 0.01 mol or more, preferably 0.01 to 0.5 mol, more preferably 0.01 to 0.5 mol, per 1 mol of the fluorene-containing polycarbonate resin. 0.03 to 0.3 mole, more preferably 0.05 to 0.25 mole, most preferably 0.1 to 0.2 mole.
  • the proportion of the first hydrolysis catalyst may be, for example, 0.1 parts by mass or more, preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the fluorene-containing polycarbonate resin. 0.3 to 5 parts by weight, more preferably 0.5 to 4 parts by weight, most preferably 1 to 3 parts by weight. If the proportion of the hydrolysis catalyst is too small, there is a risk that depolymerization will not proceed quickly. These proportions of the first hydrolysis catalyst may be proportions of an alkaline catalyst.
  • reaction temperature may be 20°C or higher, for example 20 to 85°C, preferably 25 to 83°C, more preferably 30 to 80°C, more preferably 50 to 75°C, most preferably 60 to 70°C. be.
  • the reaction time may be 10 minutes or more, for example 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 5 hours.
  • reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the viewpoint of simplicity.
  • reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
  • the first decomposition product in the first decomposition step includes a diol monocarbonate ester and/or a diol dicarbonate ester. Therefore, in the same way as in the fluorene-containing polyester resin, the present disclosure also provides for the first decomposition step to produce a diol monocarbonate ester and/or a diol dicarbonate ester in the fluorene-containing polycarbonate resin. Also includes methods of manufacturing.
  • the diol monocarbonate ester and/or diol dicarbonate ester may be reused as a raw material for fluorene-containing polycarbonate resin by subjecting it to the second decomposition step, which is the next step, and converting it into diol. However, it may be used as a carbonate ester compound without being subjected to the second decomposition step.
  • the diol monocarbonate ester and diol dicarbonate ester are the same as the diol monocarbonate ester and diol dicarbonate ester of the fluorene-containing polyester resin, including preferred embodiments.
  • the proportion of the monocarbonate ester is, for example, 0.1 to 30 mol, preferably 0.5 to 10 mol, more preferably 1 to 5 mol, more preferably 2 to 4 mol, per 1 mol of the dicarbonate. be.
  • the first decomposition product may further contain a diol.
  • the diol may be a diol corresponding to the monocarbonate ester and the dicarbonate ester.
  • the total proportion of the monocarbonate ester and the dicarbonate ester is, for example, 0.1 to 5 mol, preferably 0.1 to 5 mol, per 1 mol of diol in the first decomposition product.
  • the amount is 5 to 3 mol, more preferably 1 to 2 mol, and even more preferably 1.2 to 1.7 mol.
  • the total proportion of the monocarbonate ester, the dicarbonate ester, and diol is, for example, 0.1 to 5 mol, preferably 0.2 to 5 mol, per mol of the carbonate bond forming component.
  • the amount is 3 mol, more preferably 0.3 to 2 mol, and even more preferably 0.5 to 1.5 mol.
  • the first decomposition product may be subjected to a conventional purification treatment.
  • Conventional purification treatments include, for example, neutralizing and washing a mixture containing decomposition products with water as necessary, and then removing impurities from the mixture by filtration or the like. If a monomer component is precipitated in the mixture, it may be completely dissolved using a good solvent for the monomer component, and then neutralized and washed with water.
  • the depolymerization method of the present disclosure is a depolymerization method in which the decomposition step is only the first decomposition step and does not include the second decomposition step described below. There may be.
  • the method for depolymerizing a fluorene-containing polycarbonate resin of the present disclosure includes, in addition to the first decomposition step, a second decomposition step for obtaining a second decomposition product. You may do so.
  • the first decomposition product and alcohol are reacted to obtain a diol.
  • the diol component is obtained by reacting the diol monocarbonate ester and/or diol dicarbonate ester with the alcohol.
  • the diol monocarbonate ester and/or diol dicarbonate ester can be converted into diol, which is particularly effective when recovering a diol component having a fluorene skeleton as a monomer component. It is.
  • the alcohol can be selected from the same alcohols as those used in the second decomposition step of the fluorene-containing polyester resin.
  • the alcohols can be used alone or in combination of two or more.
  • the proportion of alcohol may be 50 parts by mass or more based on 100 parts by mass of the first decomposition product, for example 50 to 1000 parts by mass, preferably 80 to 500 parts by mass, more preferably 100 to 300 parts by mass. , more preferably 120 to 200 parts by mass. If the proportion of alcohol is too small, there is a risk that the yield of the diol component will decrease.
  • Examples of the second hydrolysis catalyst include the hydrolysis catalysts exemplified as the first hydrolysis catalyst for fluorene-containing polyester resins.
  • the second hydrolysis catalyst can be used alone or in combination of two or more.
  • alkali metal hydroxides and alkaline earth metal hydroxides are preferred, and alkali metal hydroxides such as potassium hydroxide are particularly preferred.
  • the proportion of the second hydrolysis catalyst may be 1 part by mass or more, for example 1 to 30 parts by mass, preferably 5 to 20 parts by mass, more preferably It is 5 to 10 parts by mass. If the proportion of the alkali catalyst is too small, the yield of the diol component may decrease. These proportions of the second hydrolysis catalyst may be proportions of the alkaline catalyst.
  • reaction temperature may be 0°C or higher, for example 5 to 80°C, preferably 10 to 50°C, more preferably 15 to 40°C, or room temperature.
  • the reaction time may be 5 minutes or more, for example 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours, and more preferably 40 minutes to 1.5 hours.
  • reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the standpoint of simplicity.
  • reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
  • the second decomposition product in the second decomposition step includes a diol. That is, in the depolymerization method of the present disclosure including the second decomposition step, the raw materials for the fluorene-containing resin can be recovered, so the obtained monomer components can be used as they are to newly synthesize the fluorene-containing resin, and the fluorene-containing resin can be recycled. You can improve your sexuality.
  • the fluorene-containing resin may be a fluorene-containing polyester resin or a fluorene-containing polycarbonate resin.
  • the second decomposition product containing the diol obtained in the second decomposition step may be subjected to a conventional purification treatment.
  • a conventional purification treatment for example, the mixture containing the second decomposition product may be neutralized and washed with water as necessary, and then impurities may be removed from the mixture by filtration or the like, followed by crystallization.
  • the crystallization method it is preferable to crystallize the monomer component using a crystallization solvent containing aromatic hydrocarbons as a crystallization solvent.
  • aromatic hydrocarbons mono- or di-C 1-2 alkyl-benzenes such as toluene, xylene, and ethylbenzene are preferred, with toluene being particularly preferred.
  • the proportion of the crystallization solvent is, for example, 10 to 3000 parts by weight, preferably 50 to 2000 parts by weight, more preferably 100 to 1000 parts by weight, and most preferably 200 to 500 parts by weight, based on 100 parts by weight of diol.
  • a diol with higher purity can be precipitated or crystallized by dissolving the diol in the crystallization solvent and cooling it.
  • the temperature at which the diol is dissolved in the crystallization solvent is a temperature below the boiling point of the solvent, for example 30 to 200°C, preferably 50 to 150°C, more preferably 60 to 100°C.
  • the crystallized diol may be washed and then dried by a conventional method.
  • the decomposition product obtained by the depolymerization method of the present disclosure is used as a monomer raw material for a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond to produce a new fluorene-containing resin. It can be recycled. That is, the recycling method of the present disclosure includes a depolymerization step in which the fluorene-containing resin and carbonate ester are reacted to obtain a decomposition product, and a depolymerization step in which the decomposition product obtained in the depolymerization step is polymerized to generate new fluorene. It includes a polymerization step (repolymerization step) to obtain the containing resin.
  • the decomposition product may be a first decomposition product or a second decomposition product, but the second decomposition product is preferred.
  • a purified product of the decomposition product obtained in the depolymerization step may be subjected to the polymerization step, or the decomposition product may be subjected to the polymerization step without being purified.
  • the monomer raw material as a decomposition product may be supplemented with a new monomer raw material.
  • the newly replenished monomer raw material may be the monomer raw material that is in short supply depending on the composition of the decomposition product.
  • a conventional method can be used to polymerize the fluorene-containing resin using the decomposition product, depending on the type of the fluorene-containing resin.
  • methods for polymerizing fluorene-containing polyester resins include JP2013-064117A, JP2013-064118A, JP2014-218645A, JP2016-069643A, and Japanese Patent No. 7016976.
  • Methods described in publications can be used, and examples of methods for polymerizing the fluorene-containing polycarbonate resin include methods described in JP 2018-104691A, JP 2021-134216A, and the like.
  • FDP-m 9,9-bis(2-methoxycarbonylethyl)fluorene represented by the following formula (other than using methyl acrylate [37.9 g (0.44 mol)] in place of t-butyl acrylate) , synthesized in the same manner as Example 1 of JP-A No. 2005-89422)
  • DNFDP-m 9,9-bis(2-methoxycarbonylethyl)-2,7-di(2-naphthyl)fluorene (synthesized according to Example 1A of International Publication No. 2020/213470)
  • DMT Dimethyl terephthalate DMN: Dimethyl 2,6-naphthalene dicarboxylate
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, manufactured by Osaka Gas Chemical Co., Ltd.
  • BNEF 9,9-bis[ 6-(2-hydroxyethoxy)-2-naphthyl]fluorene, Osaka Gas Chemical Co., Ltd.
  • BOPPEF 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene, Osaka Gas Chemical Co., Ltd. Co., Ltd.
  • EG Ethylene glycol BINOL-2EO: 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl (synthesized according to Synthesis Example 2 described in JP-A-2018-59074)
  • Dimethyl carbonate manufactured by Tokyo Chemical Industry Co., Ltd.
  • LiOMe lithium methoxide, manufactured by Tokyo Chemical Industry Co., Ltd.
  • NaOMe sodium methoxide, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Glass transition temperature (Tg) Measurement was performed using a differential scanning calorimeter (DISCOVERY DSC25 manufactured by TA Instruments Co., Ltd.) at a temperature increase rate of 10° C./min in a nitrogen atmosphere.
  • Refractive index A film having a thickness of 200 to 300 ⁇ m was formed by hot pressing the sample at 200 to 240°C. This film was cut into strips measuring 20 to 30 mm in length and 10 mm in width to obtain test pieces. The obtained test piece was measured using a multi-wavelength Abbe refractometer (“DR-M4 (circulating constant temperature water bath 60-C3)” manufactured by Atago Co., Ltd.) at a measurement temperature of 20°C and using diiodomethane as a contact liquid. The refractive index nD at 589 nm (D line) was measured.
  • DR-M4 circulating constant temperature water bath 60-C3
  • the refractive index nF, nC was obtained in the same manner as the refractive index nD except that the measurement wavelength was changed to 486 nm (F line) and 656 nm (C line). were measured respectively.
  • the Abbe number was calculated from the obtained refractive indexes nF, nD, and nC at each wavelength using the following formula.
  • a film having a thickness of 200 to 600 ⁇ m was formed by hot pressing the sample at 200 to 240°C. This film was cut into a strip of 10 mm long x 50 mm wide, and uniaxially stretched at 25 mm/min at a stretching ratio of 3 times at a glass transition temperature Tg + 10° C. to obtain a test piece.
  • the obtained test piece was subjected to parallel Nicol rotation using a retardation film/optical material inspection device (“RETS-100” manufactured by Otsuka Electronics Co., Ltd.) at a measurement temperature of 20°C and a measurement wavelength of 600 nm. Retardation was measured and the value was divided by the thickness of the measurement site to calculate birefringence (or triple birefringence).
  • RTS-100 retardation film/optical material inspection device
  • Example 1 (Preparation of polymer A) According to the conventional method, according to Production Example 2 in the Examples of Patent No. 7016976, the dicarboxylic acid unit accounts for 100 mol % of the structural unit derived from DNFDP-m, and 70 mol % of the structural unit derived from BPEF in the diol unit. %, and 30 mol % of structural units derived from EG. Polymer A was prepared.
  • BPEF 1.880 area% BPEF monocarbonate expressed by the following formula: 11.265 area%
  • Example 2 (Preparation of polymer B) According to the conventional method, according to Production Example 2 in the Examples of Patent No. 7016976, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from DNFDP-m, and the structural unit of the diol unit is 10 mol % of the structural unit derived from BPEF. %, and 90 mol % of structural units derived from EG. Polymer B was prepared.
  • Example 3 (Preparation of Polymer C) According to the conventional method, based on Example 16 of JP-A-2016-069643, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from FDP-m, and 70 mol% of the structural unit derived from BNEF among the diol units. , Polymer C having 30 mol % of structural units derived from EG was prepared.
  • BNEF 4.400 area% BNEF monocarbonate expressed by the following formula: 22.806 area%
  • Example 4 (Preparation of Polymer D) According to the conventional method, based on Reference Example 6 of JP-A-2013-064117, the dicarboxylic acid unit is 100 mol% of the structural unit derived from DMT, and the diol unit is 70 mol% of the structural unit derived from BPEF, EG Polymer D having 30 mol % of structural units derived from the above was prepared.
  • Example 5 (Preparation of Polymer E) According to the conventional method, based on Example 3 of JP-A-2014-218645, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from FDP-m, and 80 mol% of the structural unit derived from BPEF among the diol units. , Polymer E having 20 mol % of structural units derived from EG was prepared.
  • Example 6 (First decomposition step) To 4.582 g of mixer-pulverized polymer A (the total number of monomers incorporated into polymer A corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.916 g of a methanol solution containing NaOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 2 hours. To the obtained reaction mixture, 1.5 g of water and 0.55 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C. for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration.
  • Example 7 (Preparation of polymer F) According to the conventional method, based on Example 7 of JP-A-2013-064118, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from FDP-m, and 70 mol% of the structural unit derived from BOPPEF among the diol units. , Polymer F having 30 mol % of structural units derived from EG was prepared.
  • Example 8 (Preparation of polymer G) According to a conventional method, based on Example 6 of JP-A No. 2013-064118, the dicarboxylic acid unit contains 30 mol% of the structural unit derived from DMN, 70 mol% of the structural unit derived from FDP-m, and diol Polymer G (polymer G having the composition ratio shown in Table 2) was prepared, in which the units contained 85 mol% of the structural units derived from BPEF and 15 mol% of the structural units derived from EG.
  • the organic phase was filtered to remove insoluble matter.
  • Example 9 Using 20.00 g of the depolymerized sample obtained in Example 8, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 10 Using 10.00 g of the depolymerized sample obtained in Example 8, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 11 Using 5.00 g of the depolymerized sample obtained in Example 8, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 12 (Depolymerization of polymer G) 315.28 g of dimethyl carbonate, 3.461 g of NaOMe, and 31.149 g of methanol were added to 173.05 g of the pelleted polymer G obtained in Example 8 (the total number of monomers incorporated into the polymer G corresponds to approximately 0.5 mol). The mixture was added and reacted at 60°C for 2 hours. 125 g of water, 17 g of a 10% by mass HCl aqueous solution, and 300 g of toluene were added, and after stirring at 60° C., the aqueous phase was removed.
  • the organic phase was filtered to remove insoluble matter.
  • the organic phase was concentrated, and 288 g of methanol and 25.2 g of potassium hydroxide were added to the crude product, followed by reaction at room temperature for 2 hours. 50 g of a 10% by mass HCl aqueous solution and 150 g of water were added, and the mixture was stirred at room temperature for 1 hour.
  • Example 13 Using 20.00 g of the depolymerized sample obtained in Example 12, as shown in Table 3, insufficient monomer components (additional portions in Table 3) were newly added to achieve the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 14 Using 10.00 g of the depolymerized sample obtained in Example 12, as shown in Table 3, insufficient monomer components (additional portions in Table 3) were newly added to obtain the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 15 Using 5.00 g of the depolymerized sample obtained in Example 12, as shown in Table 3, insufficient monomer components (additional portions in Table 3) were newly added to obtain the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 16 (Depolymerization of polymer G) 242.27 g of the pelleted polymer G obtained in Example 8 (the total number of monomers incorporated into the polymer G corresponds to approximately 0.7 mol), 441.39 g of dimethyl carbonate, and methanol containing LiOMe at a concentration of 10% by mass. 24.227 g of the solution was added and reacted at 60°C for 2 hours. 63 g of water and 24 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C., the organic phase was filtered to remove insoluble matter.
  • Example 17 Using 10.00 g of the depolymerized sample obtained in Example 16, as shown in Table 4, insufficient monomer components (additional portions in Table 4) were newly added to obtain the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Example 18 Using 5.00 g of the depolymerized sample obtained in Example 16, as shown in Table 4, insufficient monomer components (additional portions in Table 4) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
  • Comparative example 1 (Depolymerization of polymer G) According to the method described in Patent Documents 1 and 2, EG was added to the pellets of Polymer G obtained in Example 8, and polyester F was depolymerized by heating at 200 to 250 ° C. for about 3 hours. .
  • the molecular weight distribution of Polymer G before depolymerization is shown in FIG. 1, and the molecular weight distribution of the decomposition product after depolymerization is shown in FIG.
  • some decomposition products were obtained after depolymerization, but a wide molecular weight distribution was observed and the decomposition products were not decomposed into monomer units.
  • Comparative example 2 (Depolymerization of polymer G) According to the method described in Patent Document 3, 20 g of water was added to 10 g of the pelleted polymer G obtained in Example 8, and the mixture was treated with subcritical water at 300°C and 8 MPa nitrogen atmosphere for 2 hours to obtain polyester G. Depolymerized. The molecular weight distribution of Polymer G before depolymerization is shown in FIG. 3, and the molecular weight distribution of the decomposition product after depolymerization is shown in FIG. As is clear from the comparison between FIG. 3 and FIG. 4, some decomposition products were obtained after depolymerization, but a wide molecular weight distribution was observed and the decomposition products were not decomposed into monomer units.
  • Comparative Examples 1 and 2 From the results of Comparative Examples 1 and 2, it can be understood that unlike general-purpose polyesters such as PET, it is difficult to depolymerize polyester resins having a fluorene skeleton using conventional methods.
  • Example 19 (Preparation of polymer H) Polymer H having a carbonate ester bond in which diol units accounted for 100 mol % of constitutional units derived from BPEF was prepared according to a conventional method.
  • BPEF purification process 165 g of toluene was added to the above-mentioned crude crystals, and after complete dissolution at 75°C, the mixture was allowed to cool slowly to room temperature and stirred at 5 to 10°C for 1 hour. By filtering and drying under reduced pressure at 80° C. for 12 hours, 22.9 g of white solid BPEF (yield 52%, LC purity 98.3%) was obtained.
  • Example 19 the composition of the first decomposition product, the yield and purity of the diol (BPEF) after the BPEF purification step are shown in Table 6.
  • Example 19 As is clear from the results in Table 6, in Example 19 as well, new monocarbonate and dicarbonate were produced in the first decomposition step, and further, through the second decomposition step and purification step, diol was able to be recovered.
  • Example 20 (Preparation of Polymer I) According to a conventional method, Polymer I having a carbonate ester bond in which the diol units were 50 mol % of the constitutional units derived from BPEF and 50 mol % of the constitutional units derived from BINOL-2EO was prepared.
  • Example 21 (Preparation of Polymer J) According to a conventional method, a polymer J having a carbonate ester bond in which the diol units were 50 mol % of constitutional units derived from BOPPEF and 50 mol % of constitutional units derived from BINOL-2EO was prepared.
  • the dicarboxylic acid component and/or diol component obtained by the depolymerization method of the present disclosure has a fluorene skeleton and has excellent heat resistance and optical properties. It can be used as a resin raw material or additive. Furthermore, the novel diol carbonate obtained in the process of the depolymerization method of the present disclosure can be used as a raw material for polycarbonate resin, a reaction regulator, a resin additive, and other additives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

According to the present invention, in the presence of a hydrolysis catalyst, a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonic acid ester bond is reacted with carbonic acid ester to decompose the fluorene-containing resin, and the fluorene-containing resin is depolymerized by a depolymerization method that obtains a decomposition product. According to this depolymerization method, the fluorene-containing resin can be simply depolymerized. The decomposition product may include a mono-carbonate of diol and/or a di-carbonate of diol. In the depolymerization method, alcohol may be reacted with the decomposition product to obtain diol.

Description

フルオレン骨格を有する樹脂の解重合法、その生成物および用途Depolymerization method of resin having fluorene skeleton, its products and uses
 本開示は、フルオレン骨格と、エステル結合および/または炭酸エステル結合とを有する樹脂の解重合に関する。 The present disclosure relates to the depolymerization of a resin having a fluorene skeleton and an ester bond and/or a carbonate bond.
 昨今、脱炭素社会の実現が地球規模で急務となっており、SDGs(Sustainable Development Goals)が具体的な目標として掲げられているが、その一環として、使用済プラスチックの再利用(リサイクル)も推進されている。特に、ポリエチレンテレフタレート(PET)に代表されるポリエステル系樹脂は、飲料のボトルや繊維製品として大量に流通しているため、リサイクルに対する要求が大きい。プラスチックのリサイクルの方法として、プラスチックを低分子化合物へと化学的に分解し、分解した低分子化合物からプラスチックを製造するケミカルリサイクルが知られている。ケミカルリサイクルは、リサイクル品の品質が高く、リサイクル品を繰り返し利用できる点などから注目されている。 In recent years, the realization of a decarbonized society has become an urgent issue on a global scale, and SDGs (Sustainable Development Goals) have been set as specific goals, and as part of this, the reuse (recycling) of used plastics is also being promoted. has been done. In particular, since polyester resins represented by polyethylene terephthalate (PET) are distributed in large quantities as beverage bottles and textile products, there is a strong demand for recycling. As a method for recycling plastics, chemical recycling is known, in which plastics are chemically decomposed into low-molecular compounds and plastics are manufactured from the decomposed low-molecular compounds. Chemical recycling is attracting attention because of the high quality of recycled products and the fact that recycled products can be used repeatedly.
 ケミカルリサイクルの方法として、特開2003-128600号公報(特許文献1)および特開2003-119316号公報(特許文献2)には、過剰量のエチレングリコールを添加してPETを分解し、テレフタル酸を製造する方法が開示されている。 As a chemical recycling method, JP-A No. 2003-128600 (Patent Document 1) and JP-A No. 2003-119316 (Patent Document 2) disclose that PET is decomposed by adding an excessive amount of ethylene glycol, and terephthalic acid is decomposed. A method of manufacturing is disclosed.
 WO2004/041917号(特許文献3)には、亜臨界水または超臨界水を用いる加水分解によってポリエステルをモノマーまたはオリゴマーに分解する方法が開示されている。 WO2004/041917 (Patent Document 3) discloses a method of decomposing polyester into monomers or oligomers by hydrolysis using subcritical water or supercritical water.
 Green Chem, 2021, 23, 9412-9416(非特許文献1)には、フレーク状PETに、メタノール、炭酸ジメチル(DMT)、リチウムメトキシドを適切な比率で混合し、28℃、5時間で反応させると、テレフタル酸ジメチルが収率74%で生成し、反応温度を50℃に変更すると、5時間でPETが完全に分解することが記載されている。この方法では、分解反応によって、テレフタル酸ジメチルおよび炭酸エチレンが生成する。この文献には、炭酸ジメチルがエチレングリコールの捕捉剤として機能し、前記反応によって生成する炭酸エチレンが安定な5員環構造であるため、分解反応が進行することが記載されている。 Green Chem, 2021, 23, 9412-9416 (Non-Patent Document 1), involves mixing methanol, dimethyl carbonate (DMT), and lithium methoxide in an appropriate ratio with flaky PET, and reacting at 28°C for 5 hours. It is described that when this is done, dimethyl terephthalate is produced in a yield of 74%, and when the reaction temperature is changed to 50° C., PET is completely decomposed in 5 hours. In this method, dimethyl terephthalate and ethylene carbonate are produced by a decomposition reaction. This document describes that dimethyl carbonate functions as a scavenger for ethylene glycol and that the decomposition reaction proceeds because the ethylene carbonate produced by the reaction has a stable five-membered ring structure.
特開2003-128600号公報Japanese Patent Application Publication No. 2003-128600 特開2003-119316号公報Japanese Patent Application Publication No. 2003-119316 WO2004/041917号WO2004/041917
 しかし、特許文献1~3における解重合の方法では、高温、高圧条件下で反応させる必要があり、例えば、いずれの方法でも反応温度は200℃以上であり、簡便にモノマーを製造できず、生産性が低い。 However, in the depolymerization methods disclosed in Patent Documents 1 to 3, it is necessary to carry out the reaction under high temperature and high pressure conditions. low gender.
 一方、非特許文献1における解重合の方法では、低温でPETを解重合できるが、PET以外のポリエステル系樹脂について記載されていない。例えば、近年、フルオレン骨格を有するポリエステル系樹脂が光学用途などにおいて利用されているが、フルオレン骨格を有するポリエステル系樹脂は、嵩高いフルオレン骨格により、PETなどの汎用のポリエステルとは構造が大きく異なり、フルオレン骨格の特異性も相まって異なる化学的挙動を示す。しかし、非特許文献1には、フルオレン骨格を有するポリエステル系樹脂について記載されていない。 On the other hand, in the depolymerization method in Non-Patent Document 1, PET can be depolymerized at low temperatures, but polyester resins other than PET are not described. For example, in recent years, polyester resins with a fluorene skeleton have been used in optical applications, etc. However, due to the bulky fluorene skeleton, polyester resins with a fluorene skeleton have a structure that is significantly different from general-purpose polyesters such as PET. Coupled with the specificity of the fluorene skeleton, they exhibit different chemical behavior. However, Non-Patent Document 1 does not describe a polyester resin having a fluorene skeleton.
 従って、本開示の目的は、分子内にフルオレン骨格ならびにエステル結合および/または炭酸エステル結合を有する樹脂を簡便に解重合する方法およびその用途を提供することにある。 Therefore, an object of the present disclosure is to provide a method for easily depolymerizing a resin having a fluorene skeleton, an ester bond, and/or a carbonate bond in the molecule, and uses thereof.
 本開示の他の目的は、フルオレン骨格ならびにエステル結合および/または炭酸エステル結合を有する樹脂の解重合による新規な炭酸エステル化合物の製造方法を提供することにある。 Another object of the present disclosure is to provide a novel method for producing a carbonate ester compound by depolymerizing a resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond.
 本発明者は、前記課題を達成するため鋭意検討した結果、加水分解触媒の存在下、フルオレン骨格とエステル結合および/または炭酸エステル結合とを有する樹脂を、炭酸エステルと反応させることにより、前記樹脂を簡便な方法で分解(解重合)できることを見出し、本開示を完成した。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have discovered that by reacting a resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond with a carbonate ester in the presence of a hydrolysis catalyst, the resin The present disclosure was completed based on the discovery that it is possible to depolymerize (depolymerize) by a simple method.
 すなわち、本開示の一態様(態様[1])は、
 フルオレン骨格と、エステル結合および/または炭酸エステル結合とを有するフルオレン含有樹脂(以下、この樹脂を単に「フルオレン含有樹脂」という場合がある)を、加水分解触媒の存在下、炭酸エステルと反応させて、分解生成物を得る、フルオレン含有樹脂の解重合法である。
That is, one aspect (aspect [1]) of the present disclosure is
A fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond (hereinafter, this resin may be simply referred to as a "fluorene-containing resin") is reacted with a carbonate ester in the presence of a hydrolysis catalyst. , a method for depolymerizing fluorene-containing resins to obtain decomposition products.
 本開示の一態様は、前記態様[1]において、分解生成物が、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を含む態様(態様[2])や、前記態様[2]において、前記分解生成物が、ジカルボン酸および/またはそのエステルをさらに含む態様(態様[3])であってもよい。 One aspect of the present disclosure is an aspect (aspect [2]) in which the decomposition product includes a diol monocarbonate ester and/or a diol dicarbonate ester in the aspect [1], and the aspect [2]. The decomposition product may further include a dicarboxylic acid and/or an ester thereof (aspect [3]).
 本開示の一態様は、前記態様[1]~[3]のいずれかの態様において、前記分解生成物とアルコールとを反応させてジオールを得る態様(態様[4])であってもよい。 One embodiment of the present disclosure may be an embodiment (aspect [4]) in which the decomposition product and alcohol are reacted to obtain a diol in any of the embodiments [1] to [3].
 本開示の一態様は、前記態様[1]~[4]のいずれかの態様において、前記フルオレン含有樹脂が、下記式(1) One aspect of the present disclosure is that in any of the aspects [1] to [4], the fluorene-containing resin has the following formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 RおよびRは独立して置換基を示し、m1およびm2は独立して0以上の整数を示し、
 n1およびn2は独立して0~4の整数を示し、
 AおよびAは独立してアルキレン基を示し、
 XおよびXは独立してヒドロキシル基、アルコキシ基またはハロゲン原子を示し、
 RおよびRは独立して置換基を示し、k1およびk2は独立して0~4の整数を示す)
で表されるジカルボン酸成分および/または下記式(2)
(In the formula,
Ring Z 1 and Ring Z 2 independently represent arene rings,
R 1 and R 2 independently represent a substituent, m1 and m2 independently represent an integer of 0 or more,
n1 and n2 independently represent integers of 0 to 4,
A 1 and A 2 independently represent an alkylene group,
X 1 and X 2 independently represent a hydroxyl group, an alkoxy group or a halogen atom,
R 3 and R 4 independently represent a substituent, k1 and k2 independently represent an integer from 0 to 4)
A dicarboxylic acid component represented by and/or the following formula (2)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
 RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
 Rは置換基を示し、uは0~8の整数を示す)
で表されるジオールを重合成分として含むポリエステル系樹脂である態様(態様[5])であってもよい。
(In the formula,
Ring Z 3 and Ring Z 4 independently represent arene rings,
A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
R 7 represents a substituent, and u represents an integer of 0 to 8)
It may be an embodiment (aspect [5]) of a polyester resin containing a diol represented by as a polymerization component.
 本開示の一態様は、
 前記態様[5]において、前記フルオレン含有樹脂が、前記式(1)で表されるジカルボン酸成分を重合成分として含むポリエステル系樹脂であり、前記式(1)において、n1およびn2が0であるか、またはn1およびn2が1であり、かつ環Zおよび環Zは独立して縮合多環式アレーン環である態様(態様[6])や、前記態様[5]または[6]において、前記フルオレン含有樹脂が、前記式(2)で表されるジオールを重合成分として含むポリエステル系樹脂である態様(態様[7])であってもよい。
One aspect of the present disclosure is
In the aspect [5], the fluorene-containing resin is a polyester resin containing a dicarboxylic acid component represented by the formula (1) as a polymerization component, and in the formula (1), n1 and n2 are 0. or an embodiment in which n1 and n2 are 1 and ring Z 1 and ring Z 2 are independently fused polycyclic arene rings (aspect [6]), or in the above embodiment [5] or [6] , the fluorene-containing resin may be a polyester resin containing the diol represented by the formula (2) as a polymerization component (aspect [7]).
 本開示の一態様は、前記態様[1]~[4]のいずれかの態様において、前記フルオレン含有樹脂が、下記式(2) One aspect of the present disclosure is that in any of the aspects [1] to [4], the fluorene-containing resin has the following formula (2):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
 RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
 Rは置換基を示し、uは0~8の整数を示す)
で表されるジオールを重合成分として含むポリ炭酸エステル系樹脂である態様(態様[8])であってもよい。
(In the formula,
Ring Z 3 and Ring Z 4 independently represent arene rings,
A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
R 7 represents a substituent, and u represents an integer of 0 to 8)
It may be an embodiment (aspect [8]) of a polycarbonate resin containing a diol represented by as a polymerization component.
 本開示の一態様は、前記態様[1]~[8]のいずれかの態様において、前記フルオレン含有樹脂が、下記式(5) One aspect of the present disclosure is that in any of the aspects [1] to [8], the fluorene-containing resin has the following formula (5).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、
 Aは直接結合(単結合)またはアルキレン基を示し、
 AおよびAは独立してアルキレン基を示し、p1およびp2は独立して0以上の整数を示し、
 R11およびR12は独立して置換基を示し、q1およびq2は独立して0~6の整数を示す)
で表されるジオールを重合成分として含む態様(態様[9])であってもよい。
(In the formula,
A 5 represents a direct bond (single bond) or an alkylene group,
A 6 and A 7 independently represent an alkylene group, p1 and p2 independently represent an integer of 0 or more,
R 11 and R 12 independently represent a substituent, and q1 and q2 independently represent an integer from 0 to 6)
An embodiment (aspect [9]) including a diol represented by as a polymerization component may also be used.
 本開示の一態様(態様[10])は、加水分解触媒の存在下、フルオレン骨格を有するジカルボン酸成分(フルオレン含有ジカルボン酸成分)を重合成分として含むポリエステル系樹脂と炭酸エステルとを反応させて前記ポリエステル系樹脂を分解し、フルオレン骨格を有するジカルボン酸および/またはそのエステルを製造する方法である。 One aspect (aspect [10]) of the present disclosure is to react a polyester resin containing a dicarboxylic acid component having a fluorene skeleton (a fluorene-containing dicarboxylic acid component) as a polymerization component with a carbonate ester in the presence of a hydrolysis catalyst. This is a method for producing a dicarboxylic acid having a fluorene skeleton and/or an ester thereof by decomposing the polyester resin.
 本開示の一態様(態様[11])は、加水分解触媒の存在下、フルオレン骨格を有するジオール(フルオレン含有ジオール)を重合成分として含むポリエステル系樹脂と炭酸エステルとを反応させて前記ポリエステル系樹脂を分解し、ジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とを含む第1の分解生成物を得る第1の分解工程、
 前記第1の分解生成物とアルコールとを反応させてジオールを得る第2の分解工程を経て、フルオレン骨格を有するジオールを製造する方法である。
One aspect (aspect [11]) of the present disclosure is to react a polyester resin containing a diol having a fluorene skeleton (a fluorene-containing diol) as a polymerization component with a carbonate ester in the presence of a hydrolysis catalyst. a first decomposition step to obtain a first decomposition product containing a dicarboxylic acid and/or its ester, and a diol monocarbonate and/or diol dicarbonate;
This is a method for producing a diol having a fluorene skeleton through a second decomposition step in which the first decomposition product and alcohol are reacted to obtain a diol.
 本開示の一態様(態様[12])は、加水分解触媒の存在下、フルオレン骨格およびエステル結合を有するポリエステル系樹脂と炭酸エステルとを反応させて前記ポリエステル系樹脂を分解し、ジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とを含む分解生成物を得る第1の分解工程、
 前記分解生成物とアルコールとを反応させてジオールを得る第2の分解工程を経て、フルオレン骨格を有するモノマー成分を回収する方法である。
One aspect (aspect [12]) of the present disclosure is that a polyester resin having a fluorene skeleton and an ester bond is reacted with a carbonate ester in the presence of a hydrolysis catalyst to decompose the polyester resin, and a dicarboxylic acid and/or or a first decomposition step to obtain a decomposition product containing the ester thereof and a diol monocarbonate ester and/or a diol dicarbonate ester;
In this method, a monomer component having a fluorene skeleton is recovered through a second decomposition step in which the decomposition product and alcohol are reacted to obtain a diol.
 本開示の一態様(態様[13])は、加水分解触媒の存在下、フルオレン骨格および炭酸エステル結合を有するポリ炭酸エステル系樹脂と炭酸エステルとを反応させて前記ポリ炭酸エステル系樹脂を分解し、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を含む第1の分解生成物を得る第1の分解工程、
 前記第1の分解生成物とアルコールとを反応させてジオールを得る第2の分解工程を経て、フルオレン骨格を有するモノマー成分を回収する方法である。
One aspect (aspect [13]) of the present disclosure is to react a polycarbonate resin having a fluorene skeleton and a carbonate bond with a carbonate ester in the presence of a hydrolysis catalyst to decompose the polycarbonate resin. , a first decomposition step to obtain a first decomposition product containing a diol monocarbonate ester and/or a diol dicarbonate ester;
In this method, a monomer component having a fluorene skeleton is recovered through a second decomposition step in which a diol is obtained by reacting the first decomposition product with an alcohol.
 本開示の一態様(態様[14])は、
 下記式(3)
One aspect (aspect [14]) of the present disclosure is
The following formula (3)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
 Rは炭化水素基を示し、
 RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
 Rは置換基を示し、uは0~8の整数を示す)
で表されるジオールのモノ炭酸エステル体である。
(In the formula,
Ring Z 3 and Ring Z 4 independently represent arene rings,
A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
R 8 represents a hydrocarbon group,
R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
R 7 represents a substituent, and u represents an integer of 0 to 8)
It is a monocarbonate ester of diol represented by
 本開示の一態様(態様[15])は、
 下記式(4)
One aspect (aspect [15]) of the present disclosure is
The following formula (4)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
 RおよびR10は独立して炭化水素基を示し、
 RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
 Rは置換基を示し、uは0~8の整数を示す)
で表されるジオールのジ炭酸エステル体である。
(In the formula,
Ring Z 3 and Ring Z 4 independently represent arene rings,
A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
R 9 and R 10 independently represent a hydrocarbon group,
R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
R 7 represents a substituent, and u represents an integer of 0 to 8)
It is a dicarbonate ester of diol represented by
 本開示の一態様(態様[16])は、加水分解触媒の存在下、フルオレン骨格ならびにエステル結合および/または炭酸エステル結合を有するフルオレン含有樹脂と、炭酸エステルとを反応させて前記フルオレン含有樹脂を分解し、態様[14]のジオールのモノ炭酸エステル体を製造する方法であって、
 前記フルオレン含有樹脂が、下記式(2)
One aspect (aspect [16]) of the present disclosure is to react a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond with a carbonate ester in the presence of a hydrolysis catalyst to produce the fluorene-containing resin. A method for producing a diol monocarbonate ester according to aspect [14] by decomposition, comprising:
The fluorene-containing resin has the following formula (2)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
 RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
 Rは置換基を示し、uは0~8の整数を示す)
で表されるジオールを重合成分として含むフルオレン含有樹脂である方法である。
(In the formula,
Ring Z 3 and Ring Z 4 independently represent arene rings,
A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
R 7 represents a substituent, and u represents an integer of 0 to 8)
This method uses a fluorene-containing resin containing a diol represented by as a polymerization component.
 本開示の一態様(態様[17])は、加水分解触媒の存在下、フルオレン骨格ならびにエステル結合および/または炭酸エステル結合を有するフルオレン含有樹脂と、炭酸エステルとを反応させて前記フルオレン含有樹脂を分解し、態様[15]のジオールのジ炭酸エステル体を製造する方法であって、
 前記フルオレン含有樹脂が、下記式(2)
One aspect (aspect [17]) of the present disclosure is to react a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond with a carbonate ester in the presence of a hydrolysis catalyst to produce the fluorene-containing resin. A method for producing a dicarbonate ester of a diol according to aspect [15] by decomposition, comprising:
The fluorene-containing resin has the following formula (2)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、
 環Zおよび環Zは独立してアレーン環を示し、
 AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
 RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
 Rは置換基を示し、uは0~8の整数を示す)
で表されるジオールを重合成分として含むフルオレン含有樹脂である方法である。
(In the formula,
Ring Z 3 and Ring Z 4 independently represent arene rings,
A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
R 7 represents a substituent, and u represents an integer of 0 to 8)
This method uses a fluorene-containing resin containing a diol represented by as a polymerization component.
 本開示の一態様(態様[18])は、
 フルオレン骨格と、エステル結合および/または炭酸エステル結合とを有するフルオレン含有樹脂のリサイクル方法であって、
 加水分解触媒の存在下、前記フルオレン含有樹脂と炭酸エステルとを反応させて、分解生成物を得る解重合工程と、
 前記解重合工程で得られた分解生成物を重合し、新たなフルオレン含有樹脂を得る重合工程とを含む、リサイクル方法である。
One aspect (aspect [18]) of the present disclosure is
A method for recycling a fluorene-containing resin having a fluorene skeleton, an ester bond and/or a carbonate bond, the method comprising:
a depolymerization step in which the fluorene-containing resin and carbonate ester are reacted in the presence of a hydrolysis catalyst to obtain a decomposition product;
This recycling method includes a polymerization step of polymerizing the decomposition product obtained in the depolymerization step to obtain a new fluorene-containing resin.
 本開示の一態様(態様[19])は、前記態様[18]の重合工程において、前記新たなフルオレン含有樹脂の単量体原料を補充してもよい。 In one aspect (aspect [19]) of the present disclosure, the monomer raw material for the new fluorene-containing resin may be replenished in the polymerization step of the aspect [18].
 さらに、本明細書および請求の範囲において、置換基などの炭素原子の数をC、C、C10などで示すことがある。例えば「Cアルキル基」は炭素数が1のアルキル基を意味し、「C6-10アリール基」は炭素数が6~10のアリール基を意味する。 Further, in this specification and claims, the number of carbon atoms in substituents, etc. may be indicated as C 1 , C 6 , C 10 , etc. For example, "C 1 alkyl group" means an alkyl group having 1 carbon number, and "C 6-10 aryl group" means an aryl group having 6 to 10 carbon atoms.
 本開示のフルオレン含有樹脂の解重合法によれば、分子内にフルオレン骨格を有し、かつ、分子内にエステル結合および/または炭酸エステル結合を有する樹脂、例えば、ポリエステル系樹脂やポリ炭酸エステル系樹脂などを簡便に解重合することができる。 According to the depolymerization method of a fluorene-containing resin of the present disclosure, a resin having a fluorene skeleton and an ester bond and/or a carbonate bond in the molecule, such as a polyester resin or a polycarbonate resin, can be used. Resins can be easily depolymerized.
図1は、比較例1で得られた解重合前のポリエステルの分子量分布を示すチャートである。FIG. 1 is a chart showing the molecular weight distribution of the polyester obtained in Comparative Example 1 before depolymerization. 図2は、比較例1で得られたポリエステルを解重合した分解生成物の分子量分布を示すチャートである。FIG. 2 is a chart showing the molecular weight distribution of the decomposition product obtained by depolymerizing the polyester obtained in Comparative Example 1. 図3は、比較例2で得られた解重合前のポリエステルの分子量分布を示すチャートである。FIG. 3 is a chart showing the molecular weight distribution of the polyester obtained in Comparative Example 2 before depolymerization. 図4は、比較例2で得られたポリエステルを解重合した分解生成物の分子量分布を示すチャートである。FIG. 4 is a chart showing the molecular weight distribution of the decomposition product obtained by depolymerizing the polyester obtained in Comparative Example 2.
 [フルオレン含有樹脂]
 本開示において、解重合の対象となる樹脂は、分子内にフルオレン骨格と、エステル結合および/または炭酸エステル結合とを有するフルオレン含有樹脂[または(炭酸)エステル結合含有樹脂]である。また、本明細書および請求の範囲において、(炭酸)エステル結合は、エステル結合および/または炭酸エステル結合を意味する。
[Fluorene-containing resin]
In the present disclosure, the resin to be depolymerized is a fluorene-containing resin [or (carbonate) ester bond-containing resin] that has a fluorene skeleton and an ester bond and/or a carbonate bond in the molecule. Furthermore, in this specification and claims, a (carbonate) ester bond means an ester bond and/or a carbonate ester bond.
 分子内に(炭酸)エステル結合を有する樹脂としては、例えば、ポリエステル、ポリエステルポリ炭酸エステル(ポリエステル炭酸エステル)、ポリ炭酸エステルが挙げられる。 Examples of the resin having a (carbonate) ester bond in the molecule include polyester, polyester polycarbonate (polyester carbonate), and polycarbonate.
 フルオレン骨格は、フルオレン含有樹脂の主鎖と側鎖のいずれにあってもよい。また、フルオレン骨格は、フルオレン骨格から直接に、または2価の連結基を介して、(炭酸)エステル結合と繋がる。(炭酸)エステル結合または前記2価の連結基は、フルオレン骨格のいずれの箇所に結合していてもよく、その結合位置は特に限定されないが、好ましくは、フルオレン環の9,9位、2,7位であり、特に好ましくは、フルオレン環の9,9位である。前記2価の連結基は、少なくとも炭化水素基を含む連結基であってもよい。 The fluorene skeleton may be present in either the main chain or the side chain of the fluorene-containing resin. Further, the fluorene skeleton is connected to the (carbonate) ester bond directly from the fluorene skeleton or via a divalent linking group. The (carbonic acid) ester bond or the divalent linking group may be bonded to any part of the fluorene skeleton, and the bonding position is not particularly limited, but preferably the 9, 9-, 2-, The 7th position is particularly preferred, and the 9th and 9th positions of the fluorene ring are particularly preferred. The divalent linking group may be a linking group containing at least a hydrocarbon group.
 フルオレン含有樹脂の中でも、少なくともジカルボン酸成分とジオール成分とが重合したエステル結合を少なくとも含むフルオレン含有樹脂、少なくともジオール成分が重合した炭酸エステル結合を少なくとも含むフルオレン含有樹脂が好ましい。このようなフルオレン含有樹脂としては、フルオレン含有ポリエステル樹脂、フルオレン含有ポリエステル炭酸エステル樹脂に代表されるフルオレン含有ポリエステル系樹脂;フルオレン含有ポリ炭酸エステル樹脂に代表されるフルオレン含有ポリ炭酸エステル系樹脂が好ましく、フルオレン含有ポリエステル系樹脂、フルオレン含有ポリ炭酸エステル樹脂がさらに好ましく、フルオレン含有ポリエステル樹脂が特に好ましい。 Among the fluorene-containing resins, fluorene-containing resins containing at least an ester bond formed by polymerizing at least a dicarboxylic acid component and a diol component, and fluorene-containing resins containing at least a carbonate ester bond formed by polymerizing at least a diol component are preferable. Such fluorene-containing resins are preferably fluorene-containing polyester resins such as fluorene-containing polyester resins and fluorene-containing polyester carbonate resins; fluorene-containing polycarbonate resins such as fluorene-containing polycarbonate resins; Fluorene-containing polyester resins and fluorene-containing polycarbonate resins are more preferred, and fluorene-containing polyester resins are particularly preferred.
 [フルオレン含有ポリエステル系樹脂]
 前記フルオレン含有ポリエステル系樹脂は、ジカルボン酸成分およびジオール成分を重合成分として含み、ジカルボン酸成分およびジオール成分の少なくとも一方がフルオレン骨格を有する成分を含んでいればよい。
[Fluorene-containing polyester resin]
The fluorene-containing polyester resin may contain a dicarboxylic acid component and a diol component as polymerization components, and at least one of the dicarboxylic acid component and the diol component may contain a component having a fluorene skeleton.
 (フルオレン含有ジカルボン酸成分)
 重合成分としてのジカルボン酸成分が、フルオレン骨格を有するジカルボン酸成分(フルオレン含有ジカルボン酸成分)を含む場合、フルオレン含有ジカルボン酸成分は、特に限定されないが、前記式(1)で表されるジカルボン酸成分が好ましい。
(Fluorene-containing dicarboxylic acid component)
When the dicarboxylic acid component as a polymerization component includes a dicarboxylic acid component having a fluorene skeleton (fluorene-containing dicarboxylic acid component), the fluorene-containing dicarboxylic acid component is, but is not particularly limited to, a dicarboxylic acid represented by the above formula (1). Ingredients are preferred.
 前記式(1)において、環Zおよび環Zで表されるアレーン環(芳香族炭化水素環)としては、ベンゼン環などの単環式アレーン環、多環式アレーン環などが挙げられ;多環式アレーン環としては、縮合多環式アレーン環(縮合多環式芳香族炭化水素環)、環集合アレーン環(環集合多環式芳香族炭化水素環)などが挙げられる。 In the formula (1), the arene rings (aromatic hydrocarbon rings) represented by ring Z 1 and ring Z 2 include monocyclic arene rings such as benzene rings, polycyclic arene rings, etc.; Examples of the polycyclic arene ring include a fused polycyclic arene ring (fused polycyclic aromatic hydrocarbon ring), a ring assembled arene ring (ring assembled polycyclic aromatic hydrocarbon ring), and the like.
 縮合多環式アレーン環としては、縮合二環式アレーン環、具体的には、ナフタレン環、インデン環などの縮合二環式C10-16アレーン環など;縮合三環式アレーン環などの縮合二ないし四環式アレーン環などが挙げられる。縮合三環式アレーン環としては、アントラセン環、フェナントレン環などの縮合三環式C14-20アレーン環などが挙げられる。好ましい縮合多環式アレーン環は、ナフタレン環などの縮合二環式C10-14アレーン環である。環集合アレーン環としては、ビフェニル環、フェニルナフタレン環、ビナフチル環などのビアレーン環;テルフェニル環などのテルアレーン環などが挙げられる。好ましい環集合アレーン環は、ビフェニル環などのC12-18ビアレーン環である。 Examples of fused polycyclic arene rings include fused bicyclic arene rings, specifically fused bicyclic C 10-16 arene rings such as naphthalene rings and indene rings; or a tetracyclic arene ring. Examples of the fused tricyclic arene ring include fused tricyclic C 14-20 arene rings such as anthracene ring and phenanthrene ring. Preferred fused polycyclic arene rings are fused bicyclic C 10-14 arene rings, such as naphthalene rings. Examples of the ring assembly arene rings include biarene rings such as biphenyl ring, phenylnaphthalene ring, and binaphthyl ring; and terarene rings such as terphenyl ring. A preferred ring assembly arene ring is a C 12-18 biarene ring such as a biphenyl ring.
 好ましい環ZおよびZは、C6-14アレーン環、好ましくはベンゼン環、ナフタレン環、ビフェニル環などのC6-12アレーン環、さらに好ましくはベンゼン環、ナフタレン環などのC6-10アレーン環、最も好ましくはナフタレン環である。 Preferred rings Z 1 and Z 2 are C 6-14 arene rings, preferably C 6-12 arenes such as benzene rings, naphthalene rings, and biphenyl rings, and more preferably C 6-10 arenes such as benzene rings and naphthalene rings. rings, most preferably naphthalene rings.
 環ZおよびZの種類は、互いに異なっていてもよいが、通常、同一である。 The types of rings Z 1 and Z 2 may be different from each other, but are usually the same.
 また、環ZおよびZは、それぞれフルオレン環の1~4位、5~8位のいずれの位置に置換していてもよく、通常、2位、3位および/または7位、8位である。好ましい置換位置(または結合位置)は、フルオレン環の1,8位、2,7位、3,6位、4,5位などの前記式(1)において紙面上で左右対称な位置、特に2,7位である。なお、環Z、Zがナフタレン環であるとき、ナフタレン環の1位または2位のいずれであってもよく、耐熱性を向上する観点からはナフタレン環の1位であり、高屈折率、低アッベ数および低複屈折(または負側に大きな複屈折)をバランスよく充足する樹脂を調製する観点からはナフタレン環の2位であるのが特に好ましい。 Furthermore, rings Z 1 and Z 2 may be substituted at any of the 1st to 4th positions and the 5th to 8th positions of the fluorene ring, and are usually substituted at the 2nd, 3rd and/or 7th and 8th positions. It is. Preferred substitution positions (or bonding positions) are positions that are symmetrical on the paper in the above formula (1), such as the 1, 8-position, 2, 7-position, 3, 6-position, 4, 5-position of the fluorene ring, especially the 2-position. , 7th place. In addition, when rings Z 1 and Z 2 are naphthalene rings, they may be at either the 1st or 2nd position of the naphthalene ring, and from the viewpoint of improving heat resistance, it is the 1st position of the naphthalene ring and has a high refractive index. From the viewpoint of preparing a resin that satisfies a well-balanced low Abbe number and low birefringence (or high birefringence on the negative side), the 2-position of the naphthalene ring is particularly preferable.
 RおよびRで表される置換基としては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アシル基、ニトロ基、シアノ基、モノまたはジ置換アミノ基などが挙げられる。 Examples of the substituent represented by R 1 and R 2 include a halogen atom, an alkyl group, an aryl group, an alkoxy group, an acyl group, a nitro group, a cyano group, and a mono- or di-substituted amino group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 アルキル基としては、直鎖状または分岐鎖状アルキル基が含まれ、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基などのC1-10アルキル基、好ましくはC1-6アルキル基、さらに好ましくはC1-4アルキル基が挙げられる。アリール基としては、フェニル基、アルキルフェニル基、ビフェニリル基、ナフチル基などのC6-12アリール基;メチルフェニル基(またはトリル基)、ジメチルフェニル基(またはキシリル基)などのモノないしトリC1-4アルキル-フェニル基などが挙げられる。 The alkyl group includes a straight-chain or branched alkyl group, and is preferably a C 1-10 alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a t-butyl group. Examples include C 1-6 alkyl groups, more preferably C 1-4 alkyl groups. Examples of the aryl group include C 6-12 aryl groups such as phenyl, alkylphenyl, biphenylyl and naphthyl groups; mono- to tri-C 1 such as methylphenyl (or tolyl) and dimethylphenyl (or xylyl) groups; Examples include -4 alkyl-phenyl group.
 アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、t-ブトキシ基などのC1-10アルコキシ基が挙げられる。アシル基としては、アセチル基などのC1-6アルキル-カルボニル基などが挙げられる。 Examples of the alkoxy group include C 1-10 alkoxy groups such as methoxy group, ethoxy group, propoxy group, n-butoxy group, and t-butoxy group. Examples of the acyl group include C 1-6 alkyl-carbonyl groups such as an acetyl group.
 モノまたはジ置換アミノ基としては、ジメチルアミノ基などのモノまたはジC1-4アルキルアミノ基;ジアセチルアミノ基などのビス(C1-4アルキル-カルボニル)アミノ基が挙げられる。 Examples of the mono- or di-substituted amino group include mono- or di-C 1-4 alkylamino groups such as dimethylamino group; bis(C 1-4 alkyl-carbonyl) amino groups such as diacetylamino group.
 代表的な基RおよびRとしては、アルキル基、アリール基、アルコキシ基、アシル基、ニトロ基、シアノ基などが挙げられる。好ましい基RおよびRは、アルキル基、具体的には、メチル基などのC1-6アルキル基;アルコキシ基、具体的には、メトキシ基などのC1-4アルコキシ基であり;特に好ましくはメチル基などのC1-4アルキル基である。なお、基RおよびRがアリール基であるとき、基RおよびRは、それぞれ環ZまたはZとともに前記環集合アレーン環を形成してもよい。 Representative groups R 1 and R 2 include alkyl groups, aryl groups, alkoxy groups, acyl groups, nitro groups, cyano groups, and the like. Preferred groups R 1 and R 2 are alkyl groups, in particular C 1-6 alkyl groups such as methyl groups; alkoxy groups, in particular C 1-4 alkoxy groups such as methoxy groups; especially Preferably it is a C 1-4 alkyl group such as a methyl group. In addition, when the groups R 1 and R 2 are aryl groups, the groups R 1 and R 2 may form the above ring assembly arene ring together with the ring Z 1 or Z 2 , respectively.
 置換数m1およびm2は、0~4の整数、好ましくは0~2の整数、さらに好ましくは0または1、より好ましくは0である。m1およびm2が2以上の整数であるとき、2以上の基RおよびRの種類は同一または異なっていてもよい。 The number of substitutions m1 and m2 is an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and more preferably 0. When m1 and m2 are integers of 2 or more, the types of the two or more groups R 1 and R 2 may be the same or different.
 置換数n1およびn2は、0~4の整数の範囲から選択でき、例えば0~3の整数、好ましくは0~2の整数、さらに好ましくは0または1、より好ましくは1である。n1およびn2が1以上である化合物を用いると、フルオレン含有ポリエステル系樹脂の屈折率およびガラス転移温度を高め、アッベ数および複屈折の絶対値を低減できる。 The substitution numbers n1 and n2 can be selected from the range of integers from 0 to 4, for example, from 0 to 3, preferably from 0 to 2, more preferably from 0 or 1, and more preferably from 1. When a compound in which n1 and n2 are 1 or more is used, the refractive index and glass transition temperature of the fluorene-containing polyester resin can be increased, and the Abbe number and the absolute value of birefringence can be reduced.
 基AおよびAで表されるアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、1,4-ブタンジイル基、2-メチルプロパン-1,3-ジイル基などのC1-8アルキレン基などが挙げられる。これらのうち、C1-6アルキレン基が好ましく、C2-4アルキレン基がさらに好ましく、エチレン基、プロピレン基などのC2-3アルキレン基がより好ましく、エチレン基が最も好ましい。 Examples of the alkylene group represented by groups A 1 and A 2 include C 1- such as methylene group, ethylene group, trimethylene group, propylene group, 1,4-butanediyl group, and 2-methylpropane-1,3-diyl group. 8 alkylene group, etc. Among these, a C 1-6 alkylene group is preferred, a C 2-4 alkylene group is more preferred, a C 2-3 alkylene group such as an ethylene group or a propylene group is more preferred, and an ethylene group is most preferred.
 XおよびXで表されるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、t-ブトキシ基などのC1-4アルコキシ基などが例示でき、C1-2アルコキシ基が好ましい。ハロゲン原子としては、塩素原子、臭素原子などが例示できる。好ましいXおよびXは、ヒドロキシル基、メトキシ基、エトキシ基であり、低温で反応させるためには、塩素原子などのハロゲン原子も好ましい。これらのうち、メトキシ基、エトキシ基などのC1-2アルコキシ基がさらに好ましく、メトキシ基が最も好ましい。 Examples of the alkoxy group represented by X 1 and X 2 include C 1-4 alkoxy groups such as methoxy group, ethoxy group, propoxy group, and t-butoxy group, with C 1-2 alkoxy group being preferred. Examples of the halogen atom include a chlorine atom and a bromine atom. Preferred X 1 and X 2 are a hydroxyl group, a methoxy group, and an ethoxy group, and halogen atoms such as a chlorine atom are also preferred in order to cause the reaction to occur at low temperatures. Among these, C 1-2 alkoxy groups such as methoxy group and ethoxy group are more preferred, and methoxy group is most preferred.
 RおよびRで表される置換基としては、アルキル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、シアノ基などが挙げられ;アルキル基としては、メチル基、エチル基、t-ブチル基などのC1-6アルキル基などが挙げられる。好ましいRおよびRは、メチル基などのC1-4アルキル基である。 Examples of the substituents represented by R 3 and R 4 include alkyl groups, halogen atoms such as fluorine atoms, chlorine atoms, and bromine atoms, and cyano groups; examples of the alkyl groups include methyl groups, ethyl groups, and t- Examples include C 1-6 alkyl groups such as butyl groups. Preferred R 3 and R 4 are C 1-4 alkyl groups such as methyl group.
 RおよびRの置換位置は、フルオレン環の1位、2位、7位、3,6位、4,5位または2,7位であってもよい。RおよびRの置換数k1およびk2は、0~4の整数から選択でき、例えば0~3の整数、好ましくは0~2の整数、さらに好ましくは0または1、より好ましくは0である。k1およびk2が2以上の整数であるとき、2以上のRおよびRの置換基の種類は同一または異なっていてもよい。 The substitution positions of R 3 and R 4 may be the 1-position, 2-position, 7-position, 3,6-position, 4,5-position or 2,7-position of the fluorene ring. The numbers of substitutions k1 and k2 of R 3 and R 4 can be selected from integers of 0 to 4, for example, integers of 0 to 3, preferably integers of 0 to 2, more preferably 0 or 1, more preferably 0. . When k1 and k2 are integers of 2 or more, the types of substituents of two or more R 3 and R 4 may be the same or different.
 前記式(1)で表される代表的なフルオレン含有ジカルボン酸成分としては、n1およびn2が0であるジカルボン酸成分、すなわち、9,9-ビス(カルボキシアルキル)フルオレン類;n1およびn2が1であるジカルボン酸成分、すなわち、9,9-ビス(カルボキシアルキル)-ジアリールフルオレン類が挙げられる。 Typical fluorene-containing dicarboxylic acid components represented by the formula (1) include dicarboxylic acid components in which n1 and n2 are 0, that is, 9,9-bis(carboxyalkyl)fluorenes; n1 and n2 are 1; Examples include dicarboxylic acid components, ie, 9,9-bis(carboxyalkyl)-diarylfluorenes.
 すなわち、好ましいフルオレン含有ジカルボン酸成分は、下記式(1a)、(1b)または(1c)で表されるジカルボン酸成分であってもよい。 That is, the preferred fluorene-containing dicarboxylic acid component may be a dicarboxylic acid component represented by the following formula (1a), (1b), or (1c).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、A、A、X、X、R、R、k1およびk2はそれぞれ前記式(1)に同じ)。 (In the formula, A 1 , A 2 , X 1 , X 2 , R 3 , R 4 , k1 and k2 are each the same as in the above formula (1)).
 式(1)においてn1およびn2が0である化合物[前記式(1a)に対応する9,9-ビス(カルボキシアルキル)フルオレン類]としては、9,9-ビス(2-カルボキシエチル)フルオレン、9,9-ビス(2-カルボキシプロピル)フルオレンなどの9,9-ビス(カルボキシC2-6アルキル)フルオレンなどが挙げられ、好ましくは9,9-ビス(カルボキシC2-4アルキル)フルオレン、さらに好ましくは9,9-ビス(カルボキシC2-3アルキル)フルオレン、より好ましくは9,9-ビス(2-カルボキシエチル)フルオレン、9,9-ビス(2-カルボキシプロピル)フルオレン、最も好ましくは9,9-ビス(2-カルボキシエチル)フルオレンである。これらの化合物は、エステル形成性誘導体であってもよく、メチルエステルやエチルエステルなどのC1-4アルキルエステルが好ましく、メチルエステルなどのC1-4アルキルエステルが最も好ましい。 Compounds in which n1 and n2 are 0 in formula (1) [9,9-bis(carboxyalkyl)fluorenes corresponding to formula (1a) above] include 9,9-bis(2-carboxyethyl)fluorene, Examples include 9,9-bis(carboxy C 2-6 alkyl) fluorene such as 9,9-bis(2-carboxypropyl) fluorene, preferably 9,9-bis(carboxy C 2-4 alkyl) fluorene, More preferably 9,9-bis(carboxyC 2-3 alkyl)fluorene, more preferably 9,9-bis(2-carboxyethyl)fluorene, 9,9-bis(2-carboxypropyl)fluorene, most preferably 9,9-bis(2-carboxyethyl)fluorene. These compounds may be ester-forming derivatives, with C 1-4 alkyl esters such as methyl ester and ethyl ester being preferred, and C 1-4 alkyl esters such as methyl ester being most preferred.
 なお、本明細書および請求の範囲において、エステル形成性誘導体は、アシルクロライドなどハロカルボン酸、メチルエステルなどのアルキルエステル、酸無水物も包含する意味に用いる。 In this specification and claims, the term ester-forming derivative is used to include halocarboxylic acids such as acyl chloride, alkyl esters such as methyl ester, and acid anhydrides.
 式(1)においてn1およびn2が1である化合物(9,9-ビス(カルボキシアルキル)-ジアリールフルオレン類)としては、前記式(1b)に対応する9,9-ビス(カルボキシアルキル)-ジフェニルフルオレン、具体的には、9,9-ビス(2-カルボキシエチル)-1,8-ジフェニルフルオレン、9,9-ビス(2-カルボキシエチル)-2,7-ジフェニルフルオレン、9,9-ビス(2-カルボキシエチル)-3,6-ジフェニルフルオレン、9,9-ビス(2-カルボキシエチル)-4,5-ジフェニルフルオレン、9,9-ビス(2-カルボキシプロピル)-2,7-ジフェニルフルオレンなどの9,9-ビス(カルボキシC2-6アルキル)-ジフェニルフルオレンなど;前記式(1c)に対応する9,9-ビス(カルボキシアルキル)-ジナフチルフルオレン、具体的には、9,9-ビス(2-カルボキシエチル)-1,8-ジ(2-ナフチル)フルオレン、9,9-ビス(2-カルボキシエチル)-2,7-ジ(2-ナフチル)フルオレン、9,9-ビス(2-カルボキシエチル)-3,6-ジ(2-ナフチル)フルオレン、9,9-ビス(2-カルボキシエチル)-4,5-ジ(2-ナフチル)フルオレン、9,9-ビス(2-カルボキシプロピル)-2,7-ジ(2-ナフチル)フルオレン、9,9-ビス(2-カルボキシエチル)-2,7-ジ(1-ナフチル)フルオレンなどの9,9-ビス(カルボキシC2-6アルキル)-ジナフチルフルオレンなどが挙げられる。これらの化合物は、エステル形成性誘導体であってもよく、メチルエステルやエチルエステルなどのC1-4アルキルエステルが好ましく、メチルエステルなどのC1-4アルキルエステルが最も好ましい。 Examples of compounds (9,9-bis(carboxyalkyl)-diarylfluorenes) in which n1 and n2 are 1 in formula (1) include 9,9-bis(carboxyalkyl)-diphenyl corresponding to formula (1b) above; Fluorene, specifically 9,9-bis(2-carboxyethyl)-1,8-diphenylfluorene, 9,9-bis(2-carboxyethyl)-2,7-diphenylfluorene, 9,9-bis (2-carboxyethyl)-3,6-diphenylfluorene, 9,9-bis(2-carboxyethyl)-4,5-diphenylfluorene, 9,9-bis(2-carboxypropyl)-2,7-diphenyl 9,9-bis(carboxyC 2-6 alkyl)-diphenylfluorene such as fluorene; 9,9-bis(carboxyalkyl)-dinaphthylfluorene corresponding to the formula (1c), specifically, 9, 9-bis(2-carboxyethyl)-1,8-di(2-naphthyl)fluorene, 9,9-bis(2-carboxyethyl)-2,7-di(2-naphthyl)fluorene, 9,9- Bis(2-carboxyethyl)-3,6-di(2-naphthyl)fluorene, 9,9-bis(2-carboxyethyl)-4,5-di(2-naphthyl)fluorene, 9,9-bis( 9,9-bis(carboxypropyl)-2,7-di(2-naphthyl)fluorene, 9,9-bis(2-carboxyethyl)-2,7-di(1-naphthyl)fluorene, etc. Examples include C 2-6 alkyl)-dinaphthylfluorene. These compounds may be ester-forming derivatives, with C 1-4 alkyl esters such as methyl ester and ethyl ester being preferred, and C 1-4 alkyl esters such as methyl ester being most preferred.
 これらのフルオレン含有ジカルボン酸成分は、単独でまたは2種以上組み合わせてもよい。前記式(1)で表されるジカルボン酸成分のうち、9,9-ビス(2-カルボキシエチル)フルオレン、9,9-ビス(2-カルボキシプロピル)フルオレンなどの9,9-ビス(カルボキシC2-4アルキル)フルオレン;9,9-ビス(2-カルボキシエチル)-2,7-ジフェニルフルオレン、9,9-ビス(2-カルボキシプロピル)-2,7-ジフェニルフルオレンなどの9,9-ビス(カルボキシC2-4アルキル)-2,7-ジフェニルフルオレン;9,9-ビス(2-カルボキシエチル)-2,7-ジナフチルフルオレン、9,9-ビス(2-カルボキシプロピル)-2,7-ジナフチルフルオレンなどの9,9-ビス(カルボキシC2-4アルキル)-2,7-ジナフチルフルオレンが好ましく、フルオレン含有樹脂において解重合により回収し易い点から、9,9-ビス(カルボキシC2-4アルキル)-2,7-ジナフチルフルオレンが特に好ましい。9,9-ビス(カルボキシC2-4アルキル)-2,7-ジナフチルフルオレンにおいて、ナフチル基は、1-ナフチル基(すなわち、9,9-ビス(カルボキシC2-4アルキル)-2,7-ジ(1-ナフチル)フルオレン)であってもよいが、好ましくは2-ナフチル基(すなわち、9,9-ビス(2-カルボキシエチル)-2,7-ジ(2-ナフチル)フルオレンなどの9,9-ビス(カルボキシC2-4アルキル)-2,7-ジ(2-ナフチル)フルオレン)である。これらの化合物は、エステル形成誘導体であってもよく、メチルエステルやエチルエステルなどのC1-4アルキルエステルが好ましく、メチルエステルなどのC1-4アルキルエステルが最も好ましい。 These fluorene-containing dicarboxylic acid components may be used alone or in combination of two or more. Among the dicarboxylic acid components represented by the formula (1), 9,9-bis(carboxyC 9,9- such as 9,9-bis(2-carboxyethyl)-2,7-diphenylfluorene and 9,9-bis(2 - carboxypropyl)-2,7-diphenylfluorene; Bis(carboxyC 2-4 alkyl)-2,7-diphenylfluorene; 9,9-bis(2-carboxyethyl)-2,7-dinaphthylfluorene, 9,9-bis(2-carboxypropyl)-2 ,7-dinaphthylfluorene is preferable, and 9,9-bis(carboxy C 2-4 alkyl)-2,7-dinaphthylfluorene such as 9,9-bis(carboxyC 2-4 alkyl)-2,7-dinaphthylfluorene is preferable, and 9,9-bis (Carboxy C 2-4 alkyl)-2,7-dinaphthylfluorene is particularly preferred. In 9,9-bis(carboxyC 2-4alkyl )-2,7-dinaphthylfluorene, the naphthyl group is a 1-naphthyl group (i.e., 9,9-bis(carboxyC 2-4alkyl )-2, 7-di(1-naphthyl)fluorene), but preferably 2-naphthyl group (i.e., 9,9-bis(2-carboxyethyl)-2,7-di(2-naphthyl)fluorene) 9,9-bis(carboxyC 2-4alkyl )-2,7-di(2-naphthyl)fluorene). These compounds may be ester-forming derivatives, with C 1-4 alkyl esters such as methyl esters and ethyl esters being preferred, and C 1-4 alkyl esters such as methyl esters being most preferred.
 前記式(1)で表されるフルオレン含有ジカルボン酸成分とその製造方法は公知であり、n1およびn2が0である化合物は、特開2005-89422号公報に記載の方法に従って、9H-フルオレン類と、基[-A-CO-X]及び[-A-CO-X]に対応する成分、例えば、(メタ)アクリル酸又はそのエステルなどとの反応により調製でき、n1およびn2が1以上である化合物は、国際公開第2020/213470号に記載の方法に従って、9,9位に基[-A-CO-X]及び-A-CO-X]を有するフルオレン骨格を有する化合物と、環ZおよびZに対応するアレーン環を有する化合物とをカップリング反応させる方法;9H-フルオレン類のベンゼン環に、環ZおよびZに対応するアレーン環を有する化合物をカップリングさせ、前記特開2005-89422号公報に記載の方法を利用して、生成した化合物(9H-フルオレン骨格を有する化合物)と、基[-A-CO-X]および[-A-CO-X]に対応する成分、例えば、(メタ)アクリル酸またはそのエステルなどとを反応させる方法により調製できる。 The fluorene-containing dicarboxylic acid component represented by the above formula (1) and its production method are known, and the compound in which n1 and n2 are 0 can be prepared using 9H-fluorenes according to the method described in JP-A No. 2005-89422. and components corresponding to the groups [-A 1 -CO-X 1 ] and [-A 2 -CO-X 2 ], such as (meth)acrylic acid or its ester, and n1 and n2 is 1 or more, a fluorene compound having groups [-A 1 -CO-X 1 ] and -A 2 -CO-X 2 ] at the 9,9-position according to the method described in International Publication No. 2020/213470 A method of coupling a compound having a skeleton with a compound having an arene ring corresponding to rings Z 1 and Z 2 ; a method in which a benzene ring of 9H-fluorenes has an arene ring corresponding to rings Z 1 and Z 2 By coupling the compounds and using the method described in JP-A-2005-89422, the resulting compound (a compound having a 9H-fluorene skeleton) and the groups [-A 1 -CO-X 1 ] and [ -A 2 -CO-X 2 ] and a component corresponding to it, such as (meth)acrylic acid or its ester.
 (フルオレン含有ジオール)
 重合成分としてのジオール成分が、フルオレン骨格を有するジオール(フルオレン含有ジオール)を含む場合、フルオレン含有ジオールは、特に限定されないが、前記式(2)で表されるジオールが好ましい。
(Fluorene-containing diol)
When the diol component as a polymerization component contains a diol having a fluorene skeleton (fluorene-containing diol), the fluorene-containing diol is not particularly limited, but a diol represented by the above formula (2) is preferable.
 前記式(2)において、ZおよびZで表されるアレーン環としては、例えば、前記式(1)の環ZおよびZと同様のアレーン環が挙げられる。環ZおよびZの種類は、互いに同一または異なっていてもよく、通常、同一であることが多い。環ZおよびZのうち、ベンゼン環、ナフタレン環、ビフェニル環などのC6-12アレーン環が好ましく、ベンゼン環、ナフタレン環などのC6-10アレーン環がさらに好ましい。 In the formula (2), the arene rings represented by Z 3 and Z 4 include, for example, the same arene rings as the rings Z 1 and Z 2 in the formula (1). The types of rings Z 3 and Z 4 may be the same or different, and are usually the same. Among rings Z 3 and Z 4 , C 6-12 arene rings such as benzene ring, naphthalene ring and biphenyl ring are preferred, and C 6-10 arene rings such as benzene ring and naphthalene ring are more preferred.
 なお、フルオレン環の9位に対する環ZおよびZの結合位置は、特に限定されず、例えば、環ZおよびZがナフタレン環であるとき、1位または2位、好ましくは2位であり、環ZおよびZがビフェニル環であるとき、2位、3位、4位のいずれかの位置、好ましくは3位である。 Note that the bonding positions of rings Z 3 and Z 4 to the 9-position of the fluorene ring are not particularly limited. For example, when the rings Z 3 and Z 4 are naphthalene rings, the bonding positions are the 1-position or the 2-position, preferably the 2-position. and when rings Z 3 and Z 4 are biphenyl rings, it is at any of the 2-, 3-, and 4-positions, preferably the 3-position.
 置換基Rとしては、反応に不活性な非反応性置換基であってもよく、例えば、シアノ基;フッ素原子、塩素原子、臭素原子などのハロゲン原子;アルキル基、アリール基などの炭化水素基などが挙げられる。前記アリール基としては、フェニル基などのC6-10アリール基などが挙げられる。好ましい基Rとしては、シアノ基、ハロゲン原子、またはアルキル基であり、特にアルキル基である。前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基などのC1-12アルキル基、好ましくはC1-8アルキル基、さらに好ましくはC1-6アルキル基、より好ましくはメチル基などのC1-4アルキル基が挙げられる。 The substituent R 7 may be a non-reactive substituent that is inert to the reaction, such as a cyano group; a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom; a hydrocarbon such as an alkyl group or an aryl group. Examples include groups. Examples of the aryl group include C 6-10 aryl groups such as phenyl group. Preferred groups R 7 are cyano groups, halogen atoms, or alkyl groups, especially alkyl groups. Examples of the alkyl group include C 1-12 alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, and t-butyl, preferably C 1-8 alkyl, and Preferably a C 1-6 alkyl group, more preferably a C 1-4 alkyl group such as a methyl group.
 なお、基Rの置換数uが2以上である場合、フルオレン環を構成する2つのベンゼン環のうち、同一のベンゼン環に置換する2以上の基Rの種類は、同一または異なっていてもよく、異なるベンゼン環に置換する2以上の基Rの種類は、同一または異なっていてもよい。また、基Rの結合位置(置換位置)は、フルオレン環の1~8位である限り特に制限されず、例えば、フルオレン環の2位、7位、2,7位などが挙げられる。 In addition, when the number of substitutions u of the group R7 is 2 or more, the types of the two or more groups R7 substituted on the same benzene ring among the two benzene rings constituting the fluorene ring are the same or different. The types of the two or more groups R 7 substituted on different benzene rings may be the same or different. Further, the bonding position (substitution position) of the group R 7 is not particularly limited as long as it is at the 1st to 8th positions of the fluorene ring, and examples thereof include the 2nd, 7th, 2, and 7th positions of the fluorene ring.
 置換数uは、例えば0~6の整数であってもよく、好ましくは以下段階的に、0~4の整数、0~3の整数、0~2の整数、0または1であり、最も好ましくは0である。なお、フルオレン環を構成する2つのベンゼン環において、基Rのそれぞれの置換数は、互いに異なっていてもよいが、同一であるのが好ましい。 The substitution number u may be, for example, an integer of 0 to 6, preferably an integer of 0 to 4, an integer of 0 to 3, an integer of 0 to 2, 0 or 1, most preferably is 0. In addition, in the two benzene rings constituting the fluorene ring, the number of substitutions of each group R 7 may be different from each other, but is preferably the same.
 RおよびRで表される置換基としては、例えば、前記式(1)においてRおよびRとして例示した置換基と同様の基(ハロゲン原子;アルキル基、アリール基;アルコキシ基;アシル基;ニトロ基;シアノ基;モノまたはジ置換アミノ基など)や、シクロアルキル基、アラルキル基などが挙げられる。 Examples of the substituents represented by R 5 and R 6 include the same groups as the substituents exemplified as R 1 and R 2 in the above formula (1) (halogen atom; alkyl group, aryl group; alkoxy group; acyl nitro group; cyano group; mono- or di-substituted amino group, etc.), cycloalkyl group, aralkyl group, etc.
 好ましい基RおよびRは、アルキル基、アリール基、アルコキシ基であり、さらに好ましくはメチル基などのC1-6アルキル基、フェニル基などのC6-14アリール基、メトキシ基などのC1-4アルコキシ基が挙げられる。これらの置換基のうち、アルキル基、アリール基が好ましく、特に、メチル基などのC1-4アルキル基、フェニル基などのC6-10アリール基が好ましい。なお、基RまたはRがアリール基であるとき、基RまたはRは、環ZまたはZとともに前記環集合アレーン環を形成してもよい。 Preferred groups R 5 and R 6 are alkyl groups, aryl groups, and alkoxy groups, more preferably C 1-6 alkyl groups such as methyl groups, C 6-14 aryl groups such as phenyl groups, and C 6-14 aryl groups such as methoxy groups. Examples include 1-4 alkoxy groups. Among these substituents, alkyl groups and aryl groups are preferred, with C 1-4 alkyl groups such as methyl groups and C 6-10 aryl groups such as phenyl groups being particularly preferred. In addition, when the group R 5 or R 6 is an aryl group, the group R 5 or R 6 may form the above-mentioned ring assembly arene ring together with the ring Z 3 or Z 4 .
 置換数t1およびt2は、それぞれ0以上の整数であり、環ZまたはZの種類に応じて選択でき、例えば0~8の整数であってもよく、好ましくは以下段階的に、0~4の整数、0~3の整数、0~2の整数、0または1、最も好ましくは0である。置換数t1およびt2が2以上の整数であるとき、2以上の基RおよびRの種類は同一または異なっていてもよい。 The substitution numbers t1 and t2 are each an integer of 0 or more, and can be selected depending on the type of ring Z 3 or Z 4 , and may be, for example, an integer of 0 to 8, preferably 0 to 8 in stages. An integer of 4, an integer of 0 to 3, an integer of 0 to 2, 0 or 1, most preferably 0. When the numbers of substitutions t1 and t2 are integers of 2 or more, the types of the two or more groups R 5 and R 6 may be the same or different.
 なお、置換数t1およびt2が1である場合、環ZおよびZはベンゼン環、ナフタレン環またはビフェニル環、基RおよびRはメチル基であってもよく、t1およびt2が2である場合、環ZおよびZはベンゼン環、基RおよびRはメチル基であってもよい。基RおよびRの置換位置は特に制限されず、通常、環ZおよびZにおいて、基[-O-(AO)s1-H]または[-O-(AO)s2-H]であるエーテル結合含有基に対して少なくともオルト位(前記エーテル結合含有基の結合位置に隣接する炭素原子)に置換することが多い。 In addition, when the numbers of substitutions t1 and t2 are 1, rings Z 3 and Z 4 may be benzene rings, naphthalene rings or biphenyl rings, groups R 5 and R 6 may be methyl groups, and when t1 and t2 are 2, In some cases, rings Z 3 and Z 4 may be benzene rings and groups R 5 and R 6 may be methyl groups. The substitution positions of groups R 5 and R 6 are not particularly limited, and usually, in rings Z 3 and Z 4 , the group [-O-(A 3 O) s1 -H] or [-O-(A 4 O) s2 -H] is often substituted at least at the ortho position to the ether bond-containing group (the carbon atom adjacent to the bonding position of the ether bond-containing group).
 アルキレン基AおよびAとしては、エチレン基、プロピレン基(1,2-プロパンジイル基)、トリメチレン基、1,2-ブタンジイル基、テトラメチレン基などのC2-6アルキレン基などが挙げられ、好ましくはC2-4アルキレン基、さらに好ましくはエチレン基、プロピレン基などのC2-3アルキレン基であり、最も好ましくはエチレン基である。 Examples of the alkylene groups A 3 and A 4 include C 2-6 alkylene groups such as ethylene group, propylene group (1,2-propanediyl group), trimethylene group, 1,2-butanediyl group, and tetramethylene group. , preferably a C 2-4 alkylene group, more preferably a C 2-3 alkylene group such as an ethylene group or a propylene group, and most preferably an ethylene group.
 繰り返し数s1およびs2は、それぞれ0以上であり、例えば0~15の整数の範囲から選択でき、エステル化反応を促進させるためには、1以上、好ましくは以下段階的に、1~10の整数、1~8の整数、1~6の整数、1~4の整数、1~3の整数、1または2であり、最も好ましくは1である。なお、繰り返し数s1およびs2は、互いに同一または異なっていてもよく;s1およびs2が2以上の整数であるとき、2以上のアルキレン基AおよびAの種類は同一または異なっていてもよい。本明細書および特許請求の範囲において、「繰り返し数(付加モル数)」は、平均値(算術平均値、相加平均値)または平均付加モル数であってもよく、好ましい態様は、上記好ましい範囲(上記整数の範囲)と同様である。 The repetition numbers s1 and s2 are each 0 or more, and can be selected from the range of integers from 0 to 15, for example, and in order to promote the esterification reaction, the repetition numbers s1 and s2 are 1 or more, preferably an integer from 1 to 10 in stages. , an integer from 1 to 8, an integer from 1 to 6, an integer from 1 to 4, an integer from 1 to 3, 1 or 2, and most preferably 1. Note that the repeating numbers s1 and s2 may be the same or different from each other; when s1 and s2 are integers of 2 or more, the types of the 2 or more alkylene groups A3 and A4 may be the same or different. . In the present specification and claims, the "number of repeats (number of moles added)" may be an average value (arithmetic mean value, arithmetic mean value) or an average number of moles added, and preferred embodiments include the above-mentioned preferred This is the same as the range (range of integers above).
 環ZおよびZに対する基[-O-(AO)s1-]および[-O-(AO)s2-](エーテル含有基ともいう)の置換位置は、特に限定されず、環ZおよびZがベンゼン環であるとき、フルオレン環の9位に結合するフェニル基の2位、3位、4位のいずれかの位置、好ましくは3位または4位、特に4位に置換している場合が多く;環ZおよびZがナフタレン環であるとき、フルオレン環の9位に対してナフタレン環の1位または2位が結合し(1-ナフチルまたは2-ナフチルの関係で結合し)、この結合位置に対して1,5-位、2,6-位などの関係、特に2,6-位の関係で置換している場合が多い。また、環ZおよびZがビフェニル環(または環ZおよびZがベンゼン環、t1およびt2が1、RおよびRがフェニル基)であるとき、フルオレン環の9位に対してビフェニル環の3位または4位が結合してもよく、フルオレン環の9位に対してビフェニル環の3位が結合する場合、前記エーテル含有基の置換位置は、ビフェニル環の6位または4’位、特に6位に置換していてもよい。 The substitution positions of the groups [-O-(A 3 O) s1 -] and [-O-(A 4 O) s2 -] (also referred to as ether-containing groups) on rings Z 3 and Z 4 are not particularly limited, When rings Z 3 and Z 4 are benzene rings, the phenyl group bonded to the 9-position of the fluorene ring is at any of the 2-, 3-, and 4-positions, preferably the 3-position or the 4-position, especially the 4-position. Often substituted; When rings Z 3 and Z 4 are naphthalene rings, the 1- or 2-position of the naphthalene ring is bonded to the 9-position of the fluorene ring (1-naphthyl or 2-naphthyl relationship). ), and substitution is often made at the 1,5-position, 2,6-position, etc., particularly at the 2,6-position, with respect to this bonding position. Furthermore, when rings Z 3 and Z 4 are biphenyl rings (or rings Z 3 and Z 4 are benzene rings, t1 and t2 are 1, and R 5 and R 6 are phenyl groups), The 3-position or 4-position of the biphenyl ring may be bonded, and when the 3-position of the biphenyl ring is bonded to the 9-position of the fluorene ring, the substitution position of the ether-containing group is the 6-position or 4' position of the biphenyl ring. It may be substituted at the 6-position, especially at the 6-position.
 フルオレン含有ジオールとしては、前記式(2)において、s1およびs2が0である9,9-ビス(ヒドロキシアリール)フルオレン類;s1およびs2が1以上、例えば1~10である9,9-ビス[ヒドロキシ(ポリ)アルコキシアリール]フルオレン類などが挙げられる。 Examples of fluorene-containing diols include 9,9-bis(hydroxyaryl)fluorenes in which s1 and s2 are 0 in the formula (2); 9,9-bis(hydroxyaryl)fluorenes in which s1 and s2 are 1 or more, for example 1 to 10 Examples include [hydroxy(poly)alkoxyaryl]fluorenes.
 好ましい前記フルオレン含有ジオールは、下記式(2a)または(2b)で表される化合物を含んでいてもよい。 The preferred fluorene-containing diol may include a compound represented by the following formula (2a) or (2b).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、A、A、s1、s2、R、R、t1、t2、Rおよびuはそれぞれ前記式(2)に同じ)。 (In the formula, A 3 , A 4 , s1, s2, R 5 , R 6 , t1, t2, R 7 and u are each the same as in the above formula (2)).
 前記式(2a)に対応する9,9-ビス(ヒドロキシフェニル)フルオレン類としては、9,9-ビス(4-ヒドロキシフェニル)フルオレンなどの9,9-ビス(ヒドロキシフェニル)フルオレン;9,9-ビス(アルキル-ヒドロキシフェニル)フルオレン、具体的には、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレンなどの9,9-ビス[(モノまたはジ)C1-4アルキル-ヒドロキシフェニル]フルオレンなど;9,9-ビス(アリール-ヒドロキシフェニル)フルオレン、具体的には、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレンなどの9,9-ビス(C6-10アリール-ヒドロキシフェニル)フルオレンなどが挙げられる。 Examples of the 9,9-bis(hydroxyphenyl)fluorenes corresponding to the formula (2a) include 9,9-bis(hydroxyphenyl)fluorene such as 9,9-bis(4-hydroxyphenyl)fluorene; -Bis(alkyl-hydroxyphenyl)fluorene, specifically 9,9-bis(4-hydroxy-3-methylphenyl)fluorene, 9,9-bis(4-hydroxy-3-isopropylphenyl)fluorene, 9 9,9-bis[(mono- or di)C 1-4alkyl -hydroxyphenyl]fluorene such as ,9-bis(4-hydroxy-3,5-dimethylphenyl)fluorene; 9,9-bis(aryl- hydroxyphenyl)fluorene, specifically 9,9-bis(C 6-10 aryl-hydroxyphenyl)fluorene such as 9,9-bis(4-hydroxy-3-phenylphenyl)fluorene.
 また、式(2a)に対応する9,9-ビス[ヒドロキシ(ポリ)アルコキシフェニル]フルオレン類としては、前記9,9-ビス(ヒドロキシフェニル)フルオレン類のアルキレンオキシド(または炭酸アルキレン、ハロアルカノール)付加体、例えば、9,9-ビス[ヒドロキシ(ポリ)アルコキシフェニル]フルオレン、具体的には、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-(2-ヒドロキシエトキシ)エトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)フェニル]フルオレンなどの9,9-ビス[ヒドロキシ(モノないしデカ)C2-4アルコキシ-フェニル]フルオレンなど;9,9-ビス[アルキル-ヒドロキシ(ポリ)アルコキシフェニル]フルオレン、具体的には、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-(2-ヒドロキシエトキシ)エトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシプロポキシ)-3-メチルフェニル]フルオレンなどの9,9-ビス[(モノまたはジ)C1-4アルキル-ヒドロキシ(モノないしデカ)C2-4アルコキシ-フェニル]フルオレンなど;9,9-ビス[アリール-ヒドロキシ(ポリ)アルコキシフェニル]フルオレン、具体的には、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス[4-(2-(2-ヒドロキシエトキシ)エトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)-3-フェニルフェニル)フルオレンなどの9,9-ビス[C6-10アリール-ヒドロキシ(モノないしデカ)C2-4アルコキシ-フェニル]フルオレンなどが挙げられる。 Further, as the 9,9-bis[hydroxy(poly)alkoxyphenyl]fluorenes corresponding to formula (2a), alkylene oxides (or alkylene carbonates, haloalkanols) of the 9,9-bis(hydroxyphenyl)fluorenes adducts, such as 9,9-bis[hydroxy(poly)alkoxyphenyl]fluorene, specifically 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, 9,9-bis[4 -9,9-bis[hydroxy(mono- to deca)C 2- such as (2-(2-hydroxyethoxy)ethoxy)phenyl]fluorene, 9,9-bis[4-(2-hydroxypropoxy)phenyl]fluorene 4- alkoxy-phenyl]fluorene, etc.; 9,9-bis[alkyl-hydroxy(poly)alkoxyphenyl]fluorene, specifically 9,9-bis[4-(2-hydroxyethoxy)-3-methylphenyl] Fluorene, 9,9-bis[4-(2-(2-hydroxyethoxy)ethoxy)-3-methylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3,5-dimethylphenyl ] Fluorene, 9,9-bis[(mono or di)C 1-4 alkyl-hydroxy (mono to deca)C such as 9,9-bis[4-(2-hydroxypropoxy)-3-methylphenyl]fluorene 9,9-bis[aryl-hydroxy(poly)alkoxyphenyl]fluorene, specifically 9,9-bis(4-(2-hydroxyethoxy)-3-phenyl ) phenyl)fluorene, 9,9-bis[4-(2-(2-hydroxyethoxy)ethoxy)-3-phenylphenyl]fluorene, 9,9-bis(4-(2-hydroxypropoxy)-3-phenylphenyl) ) 9,9-bis[C 6-10 aryl-hydroxy (mono to deca) C 2-4 alkoxy-phenyl] fluorene such as fluorene.
 前記式(2b)に対応する9,9-ビス(ヒドロキシナフチル)フルオレン類としては、9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン、9,9-ビス(5-ヒドロキシ-1-ナフチル)フルオレンなどの9,9-ビス(ヒドロキシナフチル)フルオレンなどが挙げられ;9,9-ビス[ヒドロキシ(ポリ)アルコキシナフチル]フルオレンとしては、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン、9,9-ビス[5-(2-ヒドロキシエトキシ)-1-ナフチル]フルオレン、9,9-ビス[6-(2-(2-ヒドロキシエトキシ)エトキシ)-2-ナフチル]フルオレン、9,9-ビス[6-(2-ヒドロキシプロポキシ)-2-ナフチル]フルオレンなどの9,9-ビス[ヒドロキシ(モノないしデカ)C2-4アルコキシ-ナフチル]フルオレンなどが挙げられる。 Examples of the 9,9-bis(hydroxynaphthyl)fluorenes corresponding to the formula (2b) include 9,9-bis(6-hydroxy-2-naphthyl)fluorene, 9,9-bis(5-hydroxy-1- Examples of 9,9-bis[hydroxy(poly)alkoxynaphthyl]fluorene include 9,9-bis[6-(2-hydroxyethoxy)fluorene; )-2-naphthyl]fluorene, 9,9-bis[5-(2-hydroxyethoxy)-1-naphthyl]fluorene, 9,9-bis[6-(2-(2-hydroxyethoxy)ethoxy)-2 -naphthyl]fluorene, 9,9-bis[hydroxy(mono- to deca) C2-4alkoxy -naphthyl]fluorene such as 9,9-bis[6-(2-hydroxypropoxy)-2-naphthyl]fluorene, etc. Can be mentioned.
 これらのフルオレン含有ジオールは、単独でまたは2種種以上組み合わせて使用できる。これらのうち、9,9-ビス[ヒドロキシ(モノないしヘキサ)C2-4アルコキシC6-12アリール]フルオレンなどの9,9-ビス[ヒドロキシ(ポリ)アルコキシアリール]フルオレン類が好ましく、9,9-ビス[ヒドロキシ(モノまたはジ)C2-4アルコキシ-C6-12アリール]フルオレンがさらに好ましく、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(BOPPEF)、9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン(BNEF)などの9,9-ビス[ヒドロキシC2-3アルコキシ-C6-12アリール]フルオレンがより好ましく、なかでもBPEF、BOPPEF、BNEFが特に好ましく、BPEF、BNEFが最も好ましい。 These fluorene-containing diols can be used alone or in combination of two or more. Among these, 9,9-bis[hydroxy(poly)alkoxyaryl]fluorenes such as 9,9-bis[hydroxy(mono- to hexa)C 2-4alkoxyC 6-12aryl ]fluorene are preferred; 9-bis[hydroxy(mono- or di)C 2-4 alkoxy-C 6-12 aryl]fluorene is more preferred, and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF), 9, 9-bis[4-(2-hydroxyethoxy)-3-methylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3,5-dimethylphenyl]fluorene, 9,9-bis[ 9,9-bis[ such as 4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene (BOPPEF), 9,9-bis[6-(2-hydroxyethoxy)-2-naphthyl]fluorene (BNEF) HydroxyC 2-3 alkoxy-C 6-12 aryl]fluorene is more preferred, BPEF, BOPPEF, and BNEF are particularly preferred, and BPEF and BNEF are most preferred.
 (他のジカルボン酸成分)
 ジカルボン酸成分は、フルオレン含有ジカルボン酸成分に加えて、他のジカルボン酸成分(フルオレン含有ジカルボン酸成分以外のジカルボン酸成分)を含んでいてもよい。ジオール成分がフルオレン含有ジオールを含む場合、ジカルボン酸成分は他のジカルボン酸成分単独であってもよい。
(Other dicarboxylic acid components)
In addition to the fluorene-containing dicarboxylic acid component, the dicarboxylic acid component may include other dicarboxylic acid components (dicarboxylic acid components other than the fluorene-containing dicarboxylic acid component). When the diol component includes a fluorene-containing diol, the dicarboxylic acid component may be another dicarboxylic acid component alone.
 他のジカルボン酸成分には、脂肪族ジカルボン酸成分、脂環族ジカルボン酸成分、芳香族ジカルボン酸成分などが含まれる。 Other dicarboxylic acid components include aliphatic dicarboxylic acid components, alicyclic dicarboxylic acid components, aromatic dicarboxylic acid components, and the like.
 脂肪族ジカルボン酸成分としては、アルカンジカルボン酸、不飽和脂肪族ジカルボン酸またはそのエステル形成性誘導体などが挙げられる。アルカンジカルボン酸としては、マロン酸、コハク酸、アジピン酸などのC1-20アルカン-ジカルボン酸などが挙げられる。不飽和脂肪族ジカルボン酸としては、マレイン酸、フマル酸などのC2-10アルケン-ジカルボン酸などが挙げられる。 Examples of the aliphatic dicarboxylic acid component include alkanedicarboxylic acids, unsaturated aliphatic dicarboxylic acids, and ester-forming derivatives thereof. Examples of the alkanedicarboxylic acid include C 1-20 alkane-dicarboxylic acids such as malonic acid, succinic acid, and adipic acid. Examples of unsaturated aliphatic dicarboxylic acids include C 2-10 alkene-dicarboxylic acids such as maleic acid and fumaric acid.
 脂環族ジカルボン酸成分としては、シクロアルカンジカルボン酸、架橋環式シクロアルカンジカルボン酸、シクロアルケンジカルボン酸、架橋環式シクロアルケンジカルボン酸またはそのエステル形成性誘導体などが挙げられる。シクロアルカンジカルボン酸としては、シクロヘキサンジカルボン酸などのC4-12シクロアルカン-ジカルボン酸などが挙げられる。架橋環式シクロアルカンジカルボン酸としては、ノルボルナンジカルボン酸などの(ビまたはトリ)シクロC7-10アルカン-ジカルボン酸などが挙げられる。シクロアルケンジカルボン酸としては、シクロペンテンジカルボン酸などのC5-10シクロアルケン-ジカルボン酸などが挙げられる。架橋環式シクロアルケンジカルボン酸としては、ノルボルネンジカルボン酸などの(ビまたはトリ)シクロC7-10アルケン-ジカルボン酸などが挙げられる。 Examples of the alicyclic dicarboxylic acid component include cycloalkanedicarboxylic acids, bridged cyclic cycloalkanedicarboxylic acids, cycloalkenedicarboxylic acids, bridged cyclic cycloalkenedicarboxylic acids, or ester-forming derivatives thereof. Examples of the cycloalkanedicarboxylic acid include C 4-12 cycloalkanedicarboxylic acids such as cyclohexanedicarboxylic acid. Examples of the bridged cyclic cycloalkanedicarboxylic acid include (bi- or tri)cycloC 7-10 alkane-dicarboxylic acids such as norbornanedicarboxylic acid. Examples of the cycloalkenedicarboxylic acid include C 5-10 cycloalkenedicarboxylic acids such as cyclopentenedicarboxylic acid. Examples of the bridged cyclic cycloalkenedicarboxylic acid include (bi- or tri)cycloC 7-10 alkene-dicarboxylic acids such as norbornenedicarboxylic acid.
 芳香族ジカルボン酸成分としては、単環式芳香族ジカルボン酸、多環式芳香族ジカルボン酸またはそのエステル形成性誘導体などが挙げられる。単環式芳香族ジカルボン酸成分としては、フタル酸、イソフタル酸、テレフタル酸などのベンゼンジカルボン酸;5-メチルイソフタル酸などのC1-4アルキル-ベンゼンジカルボン酸などが挙げられる。多環式アレーンジカルボン酸成分としては、縮合多環式アレーンジカルボン酸、環集合アレーンジカルボン酸などが挙げられる。縮合多環式アレーンジカルボン酸としては、1,2-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸などのナフタレンジカルボン酸;アントラセンジカルボン酸;フェナントレンジカルボン酸などの縮合多環式C10-24アレーン-ジカルボン酸などが挙げられる。環集合アレーンジカルボン酸としては、2,2’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸などのビC6-10アレーン-ジカルボン酸などが挙げられる。 Examples of the aromatic dicarboxylic acid component include monocyclic aromatic dicarboxylic acids, polycyclic aromatic dicarboxylic acids, and ester-forming derivatives thereof. Examples of the monocyclic aromatic dicarboxylic acid component include benzenedicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid; and C 1-4 alkyl-benzenedicarboxylic acids such as 5-methylisophthalic acid. Examples of the polycyclic arenedicarboxylic acid component include fused polycyclic arenedicarboxylic acids, ring assembled arenedicarboxylic acids, and the like. Examples of the fused polycyclic arene dicarboxylic acids include naphthalene dicarboxylic acids such as 1,2-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, and 2,6-naphthalene dicarboxylic acid; anthracene dicarboxylic acid; ; fused polycyclic C 10-24 arene-dicarboxylic acids such as phenanthenedicarboxylic acid; Examples of ring assembled arene dicarboxylic acids include biC 6-10 arene dicarboxylic acids such as 2,2'-biphenyl dicarboxylic acid, 3,3'-biphenyl dicarboxylic acid, and 4,4'-biphenyl dicarboxylic acid.
 これら他のジカルボン酸成分は、単独でまたは2種以上組み合わせて使用できる。これらのうち、芳香族ジカルボン酸成分が好ましく、テレフタル酸などのベンゼンジカルボン酸が特に好ましい。 These other dicarboxylic acid components can be used alone or in combination of two or more. Among these, aromatic dicarboxylic acid components are preferred, and benzene dicarboxylic acids such as terephthalic acid are particularly preferred.
 (他のジオール成分)
 ジオール成分は、フルオレン含有ジオールに加えて、他のジオール成分(フルオレン含有ジオール以外のジオール成分)を含んでいてもよく、ジカルボン酸成分がフルオレン含有ジカルボン酸成分を含む場合、ジオール成分は他のジオール成分単独であってもよい。
(Other diol components)
In addition to the fluorene-containing diol, the diol component may include other diol components (diol components other than the fluorene-containing diol), and when the dicarboxylic acid component includes a fluorene-containing dicarboxylic acid component, the diol component may contain other diol components. The component may be used alone.
 他のジオール成分には、鎖状脂肪族ジオール、脂環族ジオール、芳香族ジオールなどが含まれる。 Other diol components include chain aliphatic diols, alicyclic diols, aromatic diols, and the like.
 鎖状脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、ネオペンチルグリコールなどのC2-10アルカンジオール;ジエチレングリコール、ジプロピレングリコール、トリエチレングリコールなどのジまたはトリC2-4アルカンジオールなどが挙げられる。 Examples of chain aliphatic diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- C 2-10 alkanediols such as pentanediol, 1,4-pentanediol, 1,5-pentanediol, neopentyl glycol; di- or tri-C 2-4 alkanediols such as diethylene glycol, dipropylene glycol, triethylene glycol, etc. can be mentioned.
 脂環族ジオールとしては、シクロヘキサンジオールなどのC5-8シクロアルカンジオール;シクロヘキサンジメタノールなどのジ(ヒドロキシC1-4アルキル)C5-8シクロアルカンなどが挙げられる。 Examples of the alicyclic diol include C 5-8 cycloalkanediols such as cyclohexanediol; di(hydroxyC 1-4 alkyl)C 5-8 cycloalkanes such as cyclohexanedimethanol; and the like.
 芳香族ジオールとしては、ヒドロキノン、レゾルシノールなどのジヒドロキシアレーン;ベンゼンジメタノールなどの芳香脂肪族ジオール;ビスフェノールF、ビスフェノールAD、ビスフェノールA、ビスフェノールC、ビスフェノールG、ビスフェノールSなどのビスフェノール類;p,p’-ビフェノールなどのビフェノール類;ビナフトールなどのビナフトール類;およびこれらのジオール成分のC2-4アルキレンオキシド(または炭酸アルキレン、ハロアルカノール)付加体などが挙げられる。ビナフトール類は、後述する式(5)で表されるジオールであってもよい。 Aromatic diols include dihydroxyarenes such as hydroquinone and resorcinol; aromatic aliphatic diols such as benzenedimethanol; bisphenols such as bisphenol F, bisphenol AD, bisphenol A, bisphenol C, bisphenol G, and bisphenol S; p, p' - biphenols such as biphenol; binaphthols such as binaphthol; and C 2-4 alkylene oxide (or alkylene carbonate, haloalkanol) adducts of these diol components. Binaphthols may be diols represented by formula (5) described below.
 これら他のジオール成分は、単独でまたは2種以上組み合わせて使用できる。これらのうち、アルカンジオールなどの低分子量の脂肪族ジオール(鎖状脂肪族ジオール)が好ましく、エチレングリコールなどのC2-4アルカンジオールがさらに好ましい。 These other diol components can be used alone or in combination of two or more. Among these, low molecular weight aliphatic diols (chain aliphatic diols) such as alkanediols are preferred, and C 2-4 alkanediols such as ethylene glycol are more preferred.
 (炭酸エステル結合形成成分)
 フルオレン含有ポリエステル系樹脂がフルオレン含有ポリエステル炭酸エステル樹脂である場合、ジカルボン酸成分およびジオール成分に加えて、炭酸エステル単位を形成するための重合成分として炭酸エステル結合形成成分を含む。なお、本明細書および請求の範囲において、「炭酸エステル単位」とは、炭酸エステル結合形成成分に由来する構成単位、すなわち、カルボニル基[-C(=O)-]を意味し、このカルボニル基に隣接して結合する2つのジオール成分由来の構成単位の末端酸素原子とともに炭酸エステル結合を形成する。そのため、炭酸エステル結合形成成分としては、2つのジオール成分との反応により、炭酸エステル結合を形成可能な化合物であればよく、代表的な炭酸エステル結合形成成分としては、例えば、ホスゲン、トリホスゲンなどのホスゲン類、ジフェニル炭酸エステルなどの炭酸ジエステル類などが挙げられる。安全性などの観点からはジフェニル炭酸エステルなどの炭酸ジエステル類が好ましい。
(Carbonate bond forming component)
When the fluorene-containing polyester resin is a fluorene-containing polyester carbonate resin, in addition to the dicarboxylic acid component and the diol component, it contains a carbonate bond-forming component as a polymerization component for forming carbonate units. In this specification and claims, the term "carbonate unit" refers to a structural unit derived from a carbonate bond-forming component, that is, a carbonyl group [-C(=O)-], and this carbonyl group forms a carbonate ester bond with the terminal oxygen atoms of the constituent units derived from the two diol components that are bonded adjacent to each other. Therefore, the carbonate bond-forming component may be any compound that can form a carbonate bond by reaction with two diol components, and typical carbonate bond-forming components include phosgene, triphosgene, etc. Examples include phosgenes and carbonic acid diesters such as diphenyl carbonate. Carbonic diesters such as diphenyl carbonate are preferred from the viewpoint of safety.
 フルオレン含有ポリエステル炭酸エステル樹脂において、ジカルボン酸成分および炭酸エステル結合形成成分の総量と、ジオール成分との割合は、前者/後者(モル比)=1/0.8~1/1.2、好ましくは1/0.9~1/1.1であり、好ましくはほぼ等モルである。また、ジカルボン酸成分と炭酸エステル結合形成成分との割合は、前者/後者(モル比)=99/1~1/99の範囲から選択してもよく、好ましくは以下段階的に、95/5~10/90、90/10~20/80、80/20~30/70、70/30~40/60である。炭酸エステル結合形成成分の割合が多すぎると、屈折率や耐熱性が低下する虞がある。 In the fluorene-containing polyester carbonate resin, the ratio of the total amount of the dicarboxylic acid component and carbonate bond forming component to the diol component is the former/latter (molar ratio) = 1/0.8 to 1/1.2, preferably The ratio is 1/0.9 to 1/1.1, preferably approximately equimolar. Further, the ratio of the dicarboxylic acid component and the carbonate bond forming component may be selected from the range of former/latter (molar ratio) = 99/1 to 1/99, preferably 95/5 in the following steps. ~10/90, 90/10~20/80, 80/20~30/70, 70/30~40/60. If the proportion of the carbonate bond-forming component is too high, there is a risk that the refractive index and heat resistance will decrease.
 (フルオレン含有ポリエステル系樹脂の特性)
 フルオレン含有ポリエステル系樹脂において、フルオレン骨格を有する重合成分の割合は、ジカルボン酸成分およびジオール成分を含む全重合成分中10モル%以上であってもよく、好ましくは以下段階的に、30モル%以上、30~99モル%、40~98モル%、50~95モル%、70~93モル%、80~90モル%、82~88モル%である。本開示では、フルオレン骨格の割合が多いフルオレン含有ポリエステル系樹脂、特に、フルオレン含有ポリエステル樹脂であっても、効率良く解重合でき、有用なフルオレン骨格を有するモノマー成分(単量体)を効率良く回収できる。
(Characteristics of fluorene-containing polyester resin)
In the fluorene-containing polyester resin, the proportion of the polymer component having a fluorene skeleton may be 10 mol % or more in the total polymer components including the dicarboxylic acid component and the diol component, and preferably 30 mol % or more in steps below. , 30 to 99 mol%, 40 to 98 mol%, 50 to 95 mol%, 70 to 93 mol%, 80 to 90 mol%, and 82 to 88 mol%. In the present disclosure, even fluorene-containing polyester resins with a high proportion of fluorene skeletons, especially fluorene-containing polyester resins, can be efficiently depolymerized and useful monomer components (monomers) having fluorene skeletons can be efficiently recovered. can.
 なお、本明細書および請求の範囲において、重合成分の割合(モル比)は、フルオレン含有樹脂中における構成単位としての割合(モル比)を意味する。 In this specification and claims, the ratio (mole ratio) of polymerized components means the ratio (mole ratio) as a structural unit in the fluorene-containing resin.
 フルオレン含有ポリエステル系樹脂の重量平均分子量は、例えば15,000~100,000程度の範囲から選択でき、例えば20,000~80,000、好ましくは30,000~70,000、さらに好ましくは40,000~65,000、最も好ましくは45,000~60,000である。 The weight average molecular weight of the fluorene-containing polyester resin can be selected, for example, from a range of about 15,000 to 100,000, for example 20,000 to 80,000, preferably 30,000 to 70,000, more preferably 40, 000 to 65,000, most preferably 45,000 to 60,000.
 なお、本明細書および請求の範囲において、フルオレン含有ポリエステル系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィーによって、標準物質をポリスチレンとして換算することにより測定できる。 Note that in this specification and claims, the weight average molecular weight of the fluorene-containing polyester resin can be measured by gel permeation chromatography using polystyrene as a standard substance.
 フルオレン含有ポリエステル系樹脂のガラス転移温度(Tg)は、例えば100~250℃程度の範囲から選択でき、例えば110~230℃、好ましくは120~210℃、さらに好ましくは130~200℃、最も好ましくは135~190℃である。なお、本明細書および請求の範囲において、ガラス転移温度は、示差走査熱量計を用いて測定でき、詳しくは、後述する実施例に記載の方法で測定できる。 The glass transition temperature (Tg) of the fluorene-containing polyester resin can be selected from a range of about 100 to 250°C, for example, 110 to 230°C, preferably 120 to 210°C, more preferably 130 to 200°C, most preferably The temperature is 135-190°C. Note that in this specification and claims, the glass transition temperature can be measured using a differential scanning calorimeter, and more specifically, by the method described in the Examples below.
 フルオレン含有ポリエステル系樹脂は、非晶質であってもよい。 The fluorene-containing polyester resin may be amorphous.
 フルオレン含有ポリエステル樹脂などのフルオレン含有ポリエステル系樹脂において、フルオレン含有ジカルボン酸成分の割合は、特に限定されず、ジオール成分がフルオレン含有ジオールを含む場合、ジカルボン酸成分はフルオレン含有ジカルボン酸成分を含まなくてもよいが、ジカルボン酸成分中10モル%以上含むのが好ましく、好ましくは以下段階的に、30モル%以上、50モル%以上、70モル%以上、80モル%以上、90モル%以上であり、100モル%が最も好ましい。 In a fluorene-containing polyester resin such as a fluorene-containing polyester resin, the proportion of the fluorene-containing dicarboxylic acid component is not particularly limited, and when the diol component contains a fluorene-containing diol, the dicarboxylic acid component does not contain a fluorene-containing dicarboxylic acid component. However, it is preferable that the dicarboxylic acid component contains 10 mol% or more, preferably 30 mol% or more, 50 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more in the following steps. , 100 mol% is most preferred.
 フルオレン含有ジオールの割合は、特に限定されず、ジカルボン酸成分がフルオレン含有ジカルボン酸成分を含む場合、ジオール成分はフルオレン含有ジオールを含まなくてもよいが、ジオール成分中1モル%以上含むのが好ましく、好ましくは以下段階的に、5モル%以上、10~99モル%、30~95モル%、40~90モル%、50~85モル%であり、60~80モル%が最も好ましい。 The proportion of the fluorene-containing diol is not particularly limited, and when the dicarboxylic acid component contains a fluorene-containing dicarboxylic acid component, the diol component does not need to contain the fluorene-containing diol, but it is preferably contained at 1 mol% or more in the diol component. , preferably 5 mol % or more, 10 to 99 mol %, 30 to 95 mol %, 40 to 90 mol %, 50 to 85 mol %, and most preferably 60 to 80 mol %.
 フルオレン含有ポリエステル樹脂などのフルオレン含有ポリエステル系樹脂は、ジカルボン酸成分および/またはジオール成分がフルオレン骨格を有していればよいが、少なくともジオール成分がフルオレン骨格を有するのが好ましく、ジカルボン酸成分およびジオール成分の双方がフルオレン骨格を有するのが最も好ましい。ジカルボン酸成分およびジオール成分の双方がフルオレン骨格を有するポリエステル系樹脂は、嵩高いフルオレン骨格の密度が大きく、汎用のポリエステル系樹脂とは構造だけでなく、挙動も大きく異なるが、本開示の解重合法では、有用なフルオレン骨格を有する単量体を効率良く回収できる。 In a fluorene-containing polyester resin such as a fluorene-containing polyester resin, it is sufficient that the dicarboxylic acid component and/or the diol component have a fluorene skeleton, but it is preferable that at least the diol component has a fluorene skeleton. Most preferably both components have a fluorene backbone. A polyester resin in which both the dicarboxylic acid component and the diol component have a fluorene skeleton has a large density of bulky fluorene skeletons, and is significantly different from general-purpose polyester resins not only in structure but also in behavior. Legally, monomers with useful fluorene skeletons can be efficiently recovered.
 特に、ジオール成分は、フルオレン含有ジオールを含むだけでなく、他のジオール成分(特に、C2-4アルカンジオールなどの脂肪族ジオール)と組み合わせるのが特に好ましい。 In particular, it is particularly preferred that the diol component not only comprises a fluorene-containing diol, but also is combined with other diol components (particularly aliphatic diols such as C 2-4 alkanediols).
 フルオレン含有ポリエステル樹脂などのフルオレン含有ポリエステル系樹脂において、フルオレン含有ジオールと他のジオール成分(特に、脂肪族ジオール)とのモル比は、前者/後者=100/0~30/70程度の範囲から選択でき、好ましい範囲としては、以下段階的に、99/1~40/60、95/5~50/50、90/10~55/45、80/20~60/40であり、最も好ましくは75/25~65/35である。 In a fluorene-containing polyester resin such as a fluorene-containing polyester resin, the molar ratio of the fluorene-containing diol and other diol components (especially aliphatic diol) is selected from a range of about 100/0 to 30/70 (former/latter). The preferred ranges are 99/1 to 40/60, 95/5 to 50/50, 90/10 to 55/45, 80/20 to 60/40, most preferably 75 /25 to 65/35.
 (A)第1の分解工程
 本開示のフルオレン含有ポリエステル系樹脂の解重合法では、第1の分解工程において、第1の加水分解触媒の存在下、前記フルオレン含有ポリエステル系樹脂と炭酸エステルとを反応させて前記フルオレン含有ポリエステル系樹脂を分解し、ジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とを含む分解生成物(第1の分解生成物)を得る。
(A) First decomposition step In the method for depolymerizing a fluorene-containing polyester resin of the present disclosure, in the first decomposition step, the fluorene-containing polyester resin and carbonate ester are combined in the presence of a first hydrolysis catalyst. The fluorene-containing polyester resin is reacted and decomposed to produce a decomposition product (first decomposition product) containing a dicarboxylic acid and/or its ester, and a diol monocarbonate and/or diol dicarbonate. ).
 (炭酸エステル)
 炭酸エステルは、フルオレン含有ポリエステル系樹脂の解重合剤として作用する。炭酸エステルには、炭酸ジアルキル(炭酸ジアルカノールエステル)、炭酸ジアリールなどの炭酸ジエステルなどが含まれる。炭酸ジアルカノールエステルとしては、炭酸ジメチル、炭酸ジエチル、炭酸ジプロピル、炭酸ジイソプロピル、炭酸ジt-ブチルなどが挙げられる。炭酸ジアリールとしては、炭酸ジフェニル、炭酸トルイルフェニルなどが挙げられる。
(carbonate ester)
The carbonate ester acts as a depolymerization agent for the fluorene-containing polyester resin. Carbonic acid esters include carbonic diesters such as dialkyl carbonate (dialkanoyl carbonate) and diaryl carbonate. Examples of dialkanol carbonate include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, di-t-butyl carbonate, and the like. Examples of the diaryl carbonate include diphenyl carbonate and tolylphenyl carbonate.
 これらの炭酸エステルは、単独でまたは2種以上組み合わせて使用できる。これらのうち、炭酸ジC1-4アルキルが好ましく、炭酸ジC1-3アルキルがさらに好ましく、炭酸ジC1-2アルキルがより好ましく、炭酸ジメチルが最も好ましい。 These carbonate esters can be used alone or in combination of two or more. Among these, di-C 1-4 alkyl carbonate is preferred, di-C 1-3 alkyl carbonate is more preferred, di-C 1-2 alkyl carbonate is more preferred, and dimethyl carbonate is most preferred.
 炭酸エステルの割合は、フルオレン含有ポリエステル系樹脂1モル(数平均分子量に対応するモル数)に対して1モル以上であってもよく、例えば1~50モル、好ましくは2~30モル、さらに好ましくは3~20モル、より好ましくは5~15モル、最も好ましくは8~12モルである。炭酸エステルの割合は、フルオレン含有ポリエステル系樹脂100質量部に対して、例えば50質量部以上であってもよく、例えば50~1000質量部、好ましくは100~500質量部、さらに好ましくは120~400質量部、より好ましくは150~380質量部、最も好ましくは180~350質量部である。炭酸エステルの割合が少なすぎると、解重合が速やかに進行しない虞がある。 The proportion of the carbonate ester may be 1 mole or more per mole of the fluorene-containing polyester resin (the number of moles corresponding to the number average molecular weight), for example, 1 to 50 moles, preferably 2 to 30 moles, and more preferably is 3 to 20 mol, more preferably 5 to 15 mol, most preferably 8 to 12 mol. The proportion of the carbonate ester may be, for example, 50 parts by mass or more, for example, 50 to 1000 parts by mass, preferably 100 to 500 parts by mass, and more preferably 120 to 400 parts by mass, based on 100 parts by mass of the fluorene-containing polyester resin. Parts by weight, more preferably 150 to 380 parts by weight, most preferably 180 to 350 parts by weight. If the proportion of carbonate ester is too small, there is a risk that depolymerization will not proceed quickly.
 (第1の加水分解触媒)
 第1の加水分解触媒は、慣用の加水分解触媒であればよく、酸触媒であってもよいがアルカリ触媒が好ましい。アルカリ触媒には、無機塩基、有機塩基などが含まれる。
(First hydrolysis catalyst)
The first hydrolysis catalyst may be any conventional hydrolysis catalyst, and may be an acid catalyst, but is preferably an alkali catalyst. Alkaline catalysts include inorganic bases, organic bases, and the like.
 無機塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属水酸化物;酸化ナトリウム、酸化カリウムなどのアルカリ金属酸化物;酸化マグネシウム、酸化カルシウム、酸化バリウムなどのアルカリ土類金属酸化物;炭酸セシウム、炭酸ナトリウムなどのアルカリまたはアルカリ土類金属炭酸塩;炭酸水素ナトリウムなどのアルカリまたはアルカリ土類金属炭酸水素塩、アンモニアなどが挙げられる。 Inorganic bases include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, and barium hydroxide; sodium oxide, and potassium oxide. alkali metal oxides such as; alkaline earth metal oxides such as magnesium oxide, calcium oxide, barium oxide; alkali or alkaline earth metal carbonates such as cesium carbonate, sodium carbonate; alkali or alkaline earth metal oxides such as sodium hydrogen carbonate. Examples include metal hydrogen carbonate and ammonia.
 有機塩基としては、酢酸ナトリウム、酢酸カルシウムなどのカルボン酸アルカリまたはアルカリ土類金属塩;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムt-ブトキシドなどのアルカリ金属アルコキシド;ブチルリチウム、フェニルリチウム、イソプロピルマグネシウムクロリド、シクロヘキシルマグネシウムブロミド、フェニルマグネシウムブロミド、ナトリウムアミド、リチウムジイソプロピルアミドなどの有機金属化合物;アミン類などが挙げられる。 Organic bases include alkali or alkaline earth metal carboxylates such as sodium acetate and calcium acetate; alkali metals such as lithium methoxide, sodium methoxide, potassium methoxide, sodium ethoxide, sodium propoxide, and sodium t-butoxide. Alkoxides; organometallic compounds such as butyllithium, phenyllithium, isopropylmagnesium chloride, cyclohexylmagnesium bromide, phenylmagnesium bromide, sodium amide, lithium diisopropylamide; and amines.
 これらのアルカリ触媒は、単独でまたは2種以上組み合わせて使用できる。これらのうち、アルカリ金属C1-6アルコキシドが好ましく、アルカリ金属C1-4アルコキシドがさらに好ましく、アルカリ金属C1-3アルコキシドがより好ましく、リチウムC1-2アルコキシドなどのアルカリ金属C1-2アルコキシドが最も好ましい。 These alkali catalysts can be used alone or in combination of two or more. Among these, alkali metal C 1-6 alkoxides are preferred, alkali metal C 1-4 alkoxides are more preferred, alkali metal C 1-3 alkoxides are more preferred, and alkali metal C 1-2 alkoxides such as lithium C 1-2 alkoxides are more preferred. Alkoxides are most preferred.
 第1の加水分解触媒の割合は、フルオレン含有ポリエステル系樹脂1モルに対して、例えば0.01モル以上であってもよく、好ましくは0.01~0.3モル、さらに好ましくは0.03~0.2モル、より好ましくは0.05~0.15モル、最も好ましくは0.08~0.12モルである。第1の加水分解触媒の割合は、フルオレン含有ポリエステル系樹脂100質量部に対して、例えば0.1質量部以上であってもよく、好ましくは0.1~5質量部、さらに好ましくは0.2~3質量部、より好ましくは0.3~2質量部、最も好ましくは0.5~1.5質量部である。第1の加水分解触媒の割合が少なすぎると、解重合が速やかに進行しない虞がある。第1の加水分解触媒のこれらの割合は、アルカリ触媒の割合であってもよい。 The proportion of the first hydrolysis catalyst may be, for example, 0.01 mol or more, preferably 0.01 to 0.3 mol, more preferably 0.03 mol, per 1 mol of the fluorene-containing polyester resin. ~0.2 mole, more preferably 0.05 to 0.15 mole, most preferably 0.08 to 0.12 mole. The proportion of the first hydrolysis catalyst may be, for example, 0.1 parts by mass or more, preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the fluorene-containing polyester resin. 2 to 3 parts by weight, more preferably 0.3 to 2 parts by weight, most preferably 0.5 to 1.5 parts by weight. If the proportion of the first hydrolysis catalyst is too small, there is a risk that depolymerization will not proceed quickly. These proportions of the first hydrolysis catalyst may be proportions of an alkaline catalyst.
 (反応条件)
 反応温度は、20℃以上であってもよく、例えば20~85℃、好ましくは25~83℃、さらに好ましくは30~80℃、より好ましくは50~75℃、最も好ましくは60~70℃である。
(Reaction conditions)
The reaction temperature may be 20°C or higher, for example 20 to 85°C, preferably 25 to 83°C, more preferably 30 to 80°C, more preferably 50 to 75°C, most preferably 60 to 70°C. be.
 反応時間は、10分以上であってもよく、例えば10分~10時間、好ましくは30分~8時間、さらに好ましくは1~5時間、より好ましくは2~4時間である。 The reaction time may be 10 minutes or more, for example 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 5 hours, and more preferably 2 to 4 hours.
 反応は、不活性ガスの存在下で行ってもよいが、簡便性などの点から、大気中で行うのが好ましい。また、反応は、減圧下で行ってもよいが、簡便性などの点から、大気圧下で行うのが好ましい。 Although the reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the standpoint of simplicity. Although the reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
 (第1の分解生成物)
 第1の分解工程における第1の分解生成物は、ジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とを含む。そのため、本開示は、前記第1の分解工程により、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を製造する方法も包含する。
(First decomposition product)
The first decomposition product in the first decomposition step includes a dicarboxylic acid and/or its ester, and a diol monocarbonate and/or diol dicarbonate. Therefore, the present disclosure also includes a method for producing a diol monocarbonate ester and/or a diol dicarbonate ester by the first decomposition step.
 ジカルボン酸のエステルは、アルキルエステル体であってもよい。アルキルエステル体としては、メチルエステル体、エチルエステル体などのC1-3アルキルエステル体が好ましく、メチルエステル体が特に好ましい。ジカルボン酸および/またはそのエステルが、前記式(1)で表されるジカルボン酸成分である場合、前記式(1)において、XおよびXがC1-4アルコキシ基であるジカルボン酸成分であってもよく、XおよびXが、メトキシ基などのC1-2アルコキシ基であるジカルボン酸成分が好ましく、メトキシ基が特に好ましい。XおよびXがC1-2アルコキシ基であると、ケミカルリサイクルにおいて高い生産性で新たなフルオレン含有樹脂を製造できる。XおよびXのアルコキシ基に含まれるアルキル基は、アルカリ触媒由来のアルキル基であってもよい。 The dicarboxylic acid ester may be an alkyl ester. As the alkyl ester, C 1-3 alkyl esters such as methyl ester and ethyl ester are preferred, and methyl ester is particularly preferred. When the dicarboxylic acid and/or its ester is a dicarboxylic acid component represented by the above formula (1), in the above formula (1), X 1 and X 2 are C 1-4 alkoxy groups. A dicarboxylic acid component in which X 1 and X 2 are C 1-2 alkoxy groups such as a methoxy group is preferred, and a methoxy group is particularly preferred. When X 1 and X 2 are C 1-2 alkoxy groups, a new fluorene-containing resin can be produced with high productivity in chemical recycling. The alkyl group contained in the alkoxy group of X 1 and X 2 may be an alkyl group derived from an alkali catalyst.
 ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体は、次工程である第2の分解工程に供してジオールに変換することによりフルオレン含有ポリエステル系樹脂の原料として再利用してもよいが、第2の分解工程に供することなく、炭酸エステル化合物として利用してもよい。 The diol monocarbonate ester and/or diol dicarbonate ester may be reused as a raw material for fluorene-containing polyester resin by subjecting it to the second decomposition step, which is the next step, and converting it into diol. , it may be used as a carbonate ester compound without being subjected to the second decomposition step.
 ジオールのモノ炭酸エステル体としては、前記式(3)で表されるジオールのモノ炭酸エステル体などが挙げられる。このモノ炭酸エステル体は、新規化合物であり、ポリ炭酸エステル系樹脂の原料や、反応調整剤、樹脂添加剤などとして利用できる。 Examples of the diol monocarbonate ester include the diol monocarbonate ester represented by the above formula (3). This monocarbonate ester is a new compound and can be used as a raw material for polycarbonate resin, a reaction regulator, a resin additive, and the like.
 前記式(3)で表されるジオールのモノ炭酸エステル体は、前記式(2)で表されるジオールの一方のヒドロキシル基のみに炭酸エステルが付加したモノ炭酸エステル体である。 The monocarbonate ester of the diol represented by the formula (3) is a monocarbonate ester in which a carbonate ester is added to only one hydroxyl group of the diol represented by the formula (2).
 前記式(3)において、Rで表される炭化水素基としては、アルキル基、アリール基などが挙げられる。これらのうち、アルキル基、フェニル基が好ましく、アルキル基が特に好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などが挙げられる。これらのアルキル基は、単独でまたは2種以上組み合わせて使用できる。これらのうち、C1-4アルキル基が好ましく、C1-3アルキル基がさらに好ましく、C1-2アルキル基がより好ましく、メチル基が最も好ましい。 In the formula (3), examples of the hydrocarbon group represented by R 8 include an alkyl group and an aryl group. Among these, alkyl groups and phenyl groups are preferred, and alkyl groups are particularly preferred. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, and butyl group. These alkyl groups can be used alone or in combination of two or more. Among these, a C 1-4 alkyl group is preferred, a C 1-3 alkyl group is more preferred, a C 1-2 alkyl group is more preferred, and a methyl group is most preferred.
 ジオールのジ炭酸エステル体としては、前記式(4)で表されるジオールのジ炭酸エステル体などが挙げられる。このジ炭酸エステル体も、新規化合物であり、ポリ炭酸エステル系樹脂の原料、樹脂添加剤などとして利用できる。 Examples of dicarbonate esters of diol include dicarbonate esters of diol represented by the above formula (4). This dicarbonate ester is also a new compound and can be used as a raw material for polycarbonate resin, a resin additive, and the like.
 式(4)で表されるジオールのジ炭酸エステル体は、前記式(2)で表されるジオールの両方のヒドロキシル基に炭酸エステルが付加したジ炭酸エステル体である。 The dicarbonate ester of the diol represented by formula (4) is a dicarbonate ester in which a carbonate ester is added to both hydroxyl groups of the diol represented by formula (2).
 前記式(4)において、RおよびR10で表される炭化水素基としては、アルキル基、アリール基などが挙げられる。これらのうち、アルキル基、フェニル基が好ましく、アルキル基が特に好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などが挙げられる。これらのアルキル基は、単独でまたは2種以上組み合わせて使用できる。これらのうち、C1-4アルキル基が好ましく、C1-3アルキル基がさらに好ましく、C1-2アルキル基がより好ましく、メチル基が最も好ましい。 In the formula (4), examples of the hydrocarbon group represented by R 9 and R 10 include an alkyl group and an aryl group. Among these, alkyl groups and phenyl groups are preferred, and alkyl groups are particularly preferred. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, and butyl group. These alkyl groups can be used alone or in combination of two or more. Among these, a C 1-4 alkyl group is preferred, a C 1-3 alkyl group is more preferred, a C 1-2 alkyl group is more preferred, and a methyl group is most preferred.
 第1の分解工程において、前記モノ炭酸エステル体および前記ジ炭酸エステル体の合計割合は、ジカルボン酸成分1モルに対して、例えば0.1~5モル、好ましくは0.2~3モル、さらに好ましくは0.3~2モル、より好ましくは0.5~1.5モルである。 In the first decomposition step, the total proportion of the monocarbonate ester and the dicarbonate ester is, for example, 0.1 to 5 mol, preferably 0.2 to 3 mol, with respect to 1 mol of the dicarboxylic acid component. The amount is preferably 0.3 to 2 mol, more preferably 0.5 to 1.5 mol.
 モノ炭酸エステル体の割合は、ジ炭酸エステル体1モルに対して、例えば0.1~1モル、好ましくは0.2~0.9モル、さらに好ましくは0.3~0.8モル、より好ましくは0.4~0.6モルである。 The proportion of the monocarbonate ester is, for example, 0.1 to 1 mol, preferably 0.2 to 0.9 mol, more preferably 0.3 to 0.8 mol, and more, per 1 mol of the dicarbonate ester. Preferably it is 0.4 to 0.6 mol.
 第1の分解生成物は、ジオールをさらに含んでいてもよい。ジオールは、前記モノ炭酸エステル体および前記ジ炭酸エステル体に対応するジオールであってもよい。ジオールの割合は、ジカルボン酸およびそのエステルの合計1モルに対して0.2モル以下程度であり、例えば0.1モル以下、好ましくは0.05モル以下、さらに好ましくは0.01~0.03モルである。 The first decomposition product may further contain a diol. The diol may be a diol corresponding to the monocarbonate ester and the dicarbonate ester. The proportion of diol is about 0.2 mol or less, for example 0.1 mol or less, preferably 0.05 mol or less, more preferably 0.01 to 0. 03 mole.
 第1の分解生成物は、慣用の精製処理を施してもよい。慣用の精製処理としては、例えば、分解生成物を含む混合物を必要に応じて中和および水洗した後、ろ過などによって混合物から不純物を除去する処理などが挙げられる。前記混合物中にモノマー成分が析出している場合は、モノマー成分の良溶媒を用いて完全に溶解させた後、中和および水洗してもよい。 The first decomposition product may be subjected to a conventional purification treatment. Conventional purification treatments include, for example, neutralizing and washing a mixture containing decomposition products with water as necessary, and then removing impurities from the mixture by filtration or the like. If a monomer component is precipitated in the mixture, it may be completely dissolved using a good solvent for the monomer component, and then neutralized and washed with water.
 第1の分解工程では、主としてジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とが得られる。そのため、フルオレン骨格を有する目的のモノマー成分がジカルボン酸成分である場合や、新規な炭酸エステル化合物が目的の化合物である場合は、本開示の解重合法は、分解工程が第1の分解工程のみであり、後述する第2の分解工程を含まない解重合法であってもよい。 In the first decomposition step, dicarboxylic acids and/or their esters, and diol monocarbonate esters and/or diol dicarbonate esters are mainly obtained. Therefore, when the target monomer component having a fluorene skeleton is a dicarboxylic acid component or when the target compound is a new carbonate ester compound, the depolymerization method of the present disclosure requires only the first decomposition step. The depolymerization method may be a depolymerization method that does not include the second decomposition step described below.
 (B)第2の分解工程
 本開示のフルオレン含有ポリエステル系樹脂の解重合法は、第1の分解工程に加えて、第2の分解生成物を得るための第2の分解工程を有していてもよい。第2の分解工程では、第1の分解生成物とアルコールとを反応させてジオールを得る。詳しくは、第2の分解工程では、前記ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体と、前記アルコールとを反応させてジオールが得られる。このように、第2の分解工程では、前記ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体をジオールに変換できるため、フルオレン骨格を有するジオールをモノマー成分として回収する場合に特に有効である。
(B) Second decomposition step The method for depolymerizing a fluorene-containing polyester resin of the present disclosure includes, in addition to the first decomposition step, a second decomposition step for obtaining a second decomposition product. You can. In the second decomposition step, the first decomposition product and alcohol are reacted to obtain a diol. Specifically, in the second decomposition step, the diol is obtained by reacting the monocarbonate ester of the diol and/or the dicarbonate ester of the diol with the alcohol. In this way, in the second decomposition step, the diol monocarbonate ester and/or diol dicarbonate ester can be converted into diol, so it is particularly effective when recovering a diol having a fluorene skeleton as a monomer component. be.
 (アルコール)
 アルコールとしては、例えば、メタノール、エタノール、イソプロパノール、プロパノール、ブタノールなどのC1-4アルカノールなどが挙げられる。これらのアルコールは、単独でまたは2種以上組み合わせて使用できる。これらのうち、C1-3アルカノールが好ましく、C1-2アルカノールがより好ましく、メタノールが最も好ましい。第2の分解工程においても、ジカルボン酸成分の共存下で分解反応が進行するため、第1の分解工程で使用する第1の加水分解触媒のアルコキシドに対応するアルコールを使用するのが好ましい。
(alcohol)
Examples of the alcohol include C 1-4 alkanols such as methanol, ethanol, isopropanol, propanol, and butanol. These alcohols can be used alone or in combination of two or more. Among these, C 1-3 alkanols are preferred, C 1-2 alkanols are more preferred, and methanol is most preferred. Also in the second decomposition step, since the decomposition reaction proceeds in the presence of the dicarboxylic acid component, it is preferable to use an alcohol corresponding to the alkoxide of the first hydrolysis catalyst used in the first decomposition step.
 アルコールの割合は、第1の分解生成物100質量部に対して50質量部以上であってもよく、例えば50~1000質量部、好ましくは80~500質量部、さらに好ましくは100~300質量部、より好ましくは120~250質量部、最も好ましくは150~200質量部である。アルコールの割合が少なすぎると、ジオール成分の収率が低下する虞がある。 The proportion of alcohol may be 50 parts by mass or more based on 100 parts by mass of the first decomposition product, for example 50 to 1000 parts by mass, preferably 80 to 500 parts by mass, more preferably 100 to 300 parts by mass. , more preferably 120 to 250 parts by weight, most preferably 150 to 200 parts by weight. If the proportion of alcohol is too small, there is a risk that the yield of the diol component will decrease.
 (第2の加水分解触媒)
 第2の加水分解触媒としては、前記第1の加水分解触媒として例示された加水分解触媒などが挙げられる。前記第2の加水分解触媒は、単独でまたは2種以上組み合わせて使用できる。前記第2の加水分解触媒のうち、アルカリ金属水酸化物、アルカリ土類金属水酸化物が好ましく、水酸化カリウムなどのアルカリ金属水酸化物が特に好ましい。
(Second hydrolysis catalyst)
Examples of the second hydrolysis catalyst include the hydrolysis catalysts exemplified as the first hydrolysis catalyst. The second hydrolysis catalyst can be used alone or in combination of two or more. Among the second hydrolysis catalysts, alkali metal hydroxides and alkaline earth metal hydroxides are preferred, and alkali metal hydroxides such as potassium hydroxide are particularly preferred.
 第2の加水分解触媒の割合は、第1の分解生成物100質量部に対して1質量部以上であってもよく、例えば1~30質量部、好ましくは5~25質量部、さらに好ましくは10~20質量部である。第2の加水分解触媒の割合が少なすぎると、ジオール成分の収率が低下する虞がある。第2の加水分解触媒のこれらの割合は、アルカリ触媒の割合であってもよい。 The proportion of the second hydrolysis catalyst may be 1 part by mass or more, for example 1 to 30 parts by mass, preferably 5 to 25 parts by mass, more preferably It is 10 to 20 parts by mass. If the proportion of the second hydrolysis catalyst is too small, the yield of the diol component may decrease. These proportions of the second hydrolysis catalyst may be proportions of the alkaline catalyst.
 (反応条件)
 反応温度は、20℃以上であってもよく、例えば20~85℃、好ましくは25~83℃、さらに好ましくは30~80℃、より好ましくは50~75℃、最も好ましくは60~70℃である。
(Reaction conditions)
The reaction temperature may be 20°C or higher, for example 20 to 85°C, preferably 25 to 83°C, more preferably 30 to 80°C, more preferably 50 to 75°C, most preferably 60 to 70°C. be.
 反応時間は、5分以上であってもよく、例えば5分~5時間、好ましくは10分~3時間、さらに好ましくは30分~2時間、より好ましくは40分~1.5時間である。 The reaction time may be 5 minutes or more, for example 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours, and more preferably 40 minutes to 1.5 hours.
 反応は、不活性ガスの存在下で行ってもよいが、簡便性などの点から、大気中で行うのが好ましい。また、反応は、減圧下で行ってもよいが、簡便性などの点から、大気圧下で行うのが好ましい。 Although the reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the standpoint of simplicity. Although the reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
 (第2の分解生成物)
 第2の分解工程における第2の分解生成物は、ジカルボン酸および/またはそのエステルと、ジオールとを含む。すなわち、第2の分解工程を含む本開示の解重合法では、フルオレン含有ポリエステル系樹脂の原料を全て回収できるため、得られたモノマー成分をそのまま用いてフルオレン含有ポリエステル系樹脂を新たに合成でき、フルオレン含有ポリエステル系樹脂のリサイクル性を向上できる。
(Second decomposition product)
The second decomposition product in the second decomposition step includes a dicarboxylic acid and/or an ester thereof and a diol. That is, in the depolymerization method of the present disclosure including the second decomposition step, all the raw materials for the fluorene-containing polyester resin can be recovered, so the obtained monomer components can be used as they are to newly synthesize the fluorene-containing polyester resin. The recyclability of fluorene-containing polyester resins can be improved.
 (C)精製工程
 第2の分解工程で得られたジカルボン酸および/またはそのエステルと、ジオールとを含む混合物は、慣用の方法によって、ジカルボン酸および/またはそのエステルと、ジオールとに分離し、それぞれの成分を精製工程に供してもよい。
(C) Purification step The mixture containing the dicarboxylic acid and/or its ester and the diol obtained in the second decomposition step is separated into the dicarboxylic acid and/or its ester and the diol by a conventional method, Each component may be subjected to a purification step.
 例えば、ジオールに対して良溶媒として作用し、かつジカルボン酸および/またはそのエステルに対して貧溶媒として作用する溶媒を用いて、ろ過などにより、ジカルボン酸および/またはそのエステルと、ジオールとを分離してもよい。このような機能を有する溶媒としては、メタノールなどのC1-4アルカノールを利用できる。 For example, the dicarboxylic acid and/or its ester is separated from the diol by filtration using a solvent that acts as a good solvent for the diol and as a poor solvent for the dicarboxylic acid and/or its ester. You may. As a solvent having such a function, a C 1-4 alkanol such as methanol can be used.
 また、ジカルボン酸および/またはそのエステルに対する良溶媒と、この良溶媒と非相溶なジオールに対する良溶媒とを用いて、溶媒抽出してもよい。溶媒抽出する方法は、前記C1-4アルカノールなどのジオールに対する良溶媒にジカルボン酸および/またはそのエステルも溶解する場合に有効である。ジカルボン酸および/またはそのエステルに対する良溶媒としては、ヘプタンなどの脂肪族炭化水素などが挙げられる。 Alternatively, solvent extraction may be performed using a good solvent for dicarboxylic acids and/or their esters and a good solvent for diols that are incompatible with this good solvent. The solvent extraction method is effective when the dicarboxylic acid and/or its ester is also dissolved in a good solvent for the diol such as the C 1-4 alkanol. Good solvents for dicarboxylic acids and/or esters thereof include aliphatic hydrocarbons such as heptane.
 分離されたモノマー成分(ジカルボン酸および/またはそのエステル、ジオール)は、慣用の方法で精製してもよい。精製方法としては、ろ過、濃縮、晶析、カラムなどの慣用の方法を適宜組み合わせることができる。これらのうち、晶析を含む精製方法が好ましい。 The separated monomer component (dicarboxylic acid and/or its ester, diol) may be purified by a conventional method. As a purification method, conventional methods such as filtration, concentration, crystallization, and columns can be appropriately combined. Among these, purification methods including crystallization are preferred.
 晶析の方法としては、モノマー成分に、晶析溶媒として、芳香族炭化水素類および/または極性溶媒を含む晶析溶媒を用いて晶析するのが好ましい。 As for the crystallization method, it is preferable to crystallize the monomer component using a crystallization solvent containing an aromatic hydrocarbon and/or a polar solvent as a crystallization solvent.
 芳香族炭化水素類としては、トルエン、キシレン、エチルベンゼンなどのモノまたはジC1-2アルキル-ベンゼンが好ましく、トルエンが特に好ましい。 As the aromatic hydrocarbons, mono- or di-C 1-2 alkyl-benzenes such as toluene, xylene, and ethylbenzene are preferred, with toluene being particularly preferred.
 極性溶媒としては、水、エタノール、イソプロパノールなどのC1-4アルカノール;アセトン、メチルイソブチルケトンなどの炭素数3以上の脂肪族ケトン類が好ましく、水、C2-3アルカノール;炭素数4~8の脂肪族ケトン類が特に好ましい。 As the polar solvent, water, C 1-4 alkanols such as ethanol and isopropanol; aliphatic ketones having 3 or more carbon atoms such as acetone and methyl isobutyl ketone are preferable; water, C 2-3 alkanols; carbon atoms 4-8 Particularly preferred are aliphatic ketones.
 晶析溶媒のうち、良溶媒としては、芳香族炭化水素類、炭素数4以上の脂肪族ケトン類などが挙げられる。貧溶媒としては、水、C1-4アルカノールなどが挙げられる。 Among the crystallization solvents, examples of good solvents include aromatic hydrocarbons and aliphatic ketones having 4 or more carbon atoms. Examples of the poor solvent include water, C 1-4 alkanol, and the like.
 貧溶媒の割合は、良溶媒100質量部に対して、例えば100質量部以下であってもよく、例えば0~100質量部、好ましくは5~80質量部、さらに好ましくは10~70質量部、より好ましくは20~50質量部である。 The proportion of the poor solvent may be, for example, 100 parts by mass or less, for example, 0 to 100 parts by mass, preferably 5 to 80 parts by mass, more preferably 10 to 70 parts by mass, with respect to 100 parts by mass of the good solvent. More preferably, it is 20 to 50 parts by mass.
 晶析溶媒の割合は、モノマー成分100質量部に対して、例えば10~3000質量部、好ましくは50~2000質量部、さらに好ましくは100~1000質量部、最も好ましくは200~500質量部である。 The proportion of the crystallization solvent is, for example, 10 to 3000 parts by weight, preferably 50 to 2000 parts by weight, more preferably 100 to 1000 parts by weight, and most preferably 200 to 500 parts by weight, based on 100 parts by weight of the monomer component. .
 晶析処理においては、モノマー成分を前記晶析溶媒に溶解し、冷却することによって、より純度の高いモノマー成分を析出または晶析させることができる。モノマー成分を前記晶析溶媒に溶解する温度は、溶媒の沸点未満の温度、例えば30~200℃、好ましくは50~150℃、さらに好ましくは60~100℃である。晶析処理されたモノマー成分は、慣用の方法によって洗浄後に乾燥してもよい。 In the crystallization treatment, a monomer component with higher purity can be precipitated or crystallized by dissolving the monomer component in the crystallization solvent and cooling it. The temperature at which the monomer component is dissolved in the crystallization solvent is a temperature below the boiling point of the solvent, for example, 30 to 200°C, preferably 50 to 150°C, more preferably 60 to 100°C. The crystallized monomer component may be washed and then dried by a conventional method.
 [フルオレン含有ポリ炭酸エステル系樹脂]
 本開示のフルオレン含有ポリ炭酸エステル系樹脂は、ジオール成分を重合成分として含み、ジオール成分がフルオレン含有ジオールを含む。
[Fluorene-containing polycarbonate resin]
The fluorene-containing polycarbonate resin of the present disclosure includes a diol component as a polymerization component, and the diol component includes a fluorene-containing diol.
 (フルオレン含有ジオール)
 フルオレン含有ジオールは、特に限定されないが、フルオレン含有ポリエステル系樹脂の項に記載された前記式(2)で表されるジオール成分が好ましい。前記式(2)で表されるジオールとしては、フルオレン含有ポリエステル系樹脂の項で例示された前記式(2)で表されるジオールなどが挙げられる。前記ジオール成分は、単独でまたは2種以上組み合わせて使用できる。
(Fluorene-containing diol)
The fluorene-containing diol is not particularly limited, but a diol component represented by the formula (2) described in the section of the fluorene-containing polyester resin is preferred. Examples of the diol represented by the above formula (2) include the diols represented by the above formula (2) exemplified in the section of the fluorene-containing polyester resin. The diol components can be used alone or in combination of two or more.
 前記ジオール成分のうち、9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPF)、9,9-ビス[(モノまたはジ)C1-4アルキル-ヒドロキシフェニル]フルオレン、9,9-ビス(C6-10アリール-ヒドロキシフェニル)フルオレンなどの9,9-ビス(ヒドロキシフェニル)フルオレン類;9,9-ビス(6-ヒドロキシ-2-ナフチル)フルオレン(BNF)などの9,9-ビス(ヒドロキシナフチル)フルオレン類;9,9-ビス[ヒドロキシ(モノないしヘキサ)C2-4アルコキシC6-12アリール]フルオレンなどの9,9-ビス[ヒドロキシ(ポリ)アルコキシアリール]フルオレン類が好ましく、9,9-ビス[ヒドロキシ(モノまたはジ)C2-4アルコキシ-C6-12アリール]フルオレンがさらに好ましく、BPF、BNF、BPEF、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル]フルオレン、BOPPEF、BNEFなどの9,9-ビス[ヒドロキシC2-3アルコキシ-C6-12アリール]フルオレンがより好ましく、なかでもBPF、BNF、BPEF、BOPPEF、BNEFが特に好ましく、BPEFが最も好ましい。 Among the diol components, 9,9-bis(4-hydroxyphenyl)fluorene (BPF), 9,9-bis[(mono- or di)C 1-4 alkyl-hydroxyphenyl]fluorene, 9,9-bis( 9,9-bis(hydroxyphenyl)fluorenes such as C 6-10 aryl-hydroxyphenyl)fluorene; 9,9-bis(hydroxyphenyl)fluorenes such as 9,9-bis(6-hydroxy-2-naphthyl)fluorene (BNF); 9,9-bis[hydroxy(poly)alkoxyaryl]fluorenes such as 9,9-bis[hydroxy(mono- to hexa)C 2-4alkoxyC 6-12aryl ]fluorene are preferred; 9,9-bis[hydroxy(mono- or di)C 2-4 alkoxy-C 6-12 aryl]fluorene is more preferred, and BPF, BNF, BPEF, 9,9-bis[4-(2-hydroxyethoxy)- 9,9-bis[hydroxyC 2-3 alkoxy-C such as 3-methylphenyl]fluorene, 9,9-bis[4-(2-hydroxyethoxy)-3,5-dimethylphenyl]fluorene, BOPPEF, BNEF, etc. 6-12 aryl]fluorene is more preferred, BPF, BNF, BPEF, BOPPEF, and BNEF are particularly preferred, and BPEF is most preferred.
 (ビナフタレン含有ジオール)
 ジオール成分は、フルオレン含有ジオールに加えて、ビ(またはビス)ナフタレン骨格を有するジオール(ビナフタレン含有ジオール)として、下記式(5)で表されるジオールを含んでいてもよい。
(Binaphthalene-containing diol)
In addition to the fluorene-containing diol, the diol component may include a diol represented by the following formula (5) as a diol having a bi(or bis)naphthalene skeleton (binaphthalene-containing diol).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、
 Aは直接結合(単結合)またはアルキレン基を示し、
 AおよびAは独立してアルキレン基を示し、p1およびp2は独立して0以上の整数を示し、
 R11およびR12は独立して置換基を示し、q1およびq2は独立して0~6の整数を示す)。
(In the formula,
A 5 represents a direct bond (single bond) or an alkylene group,
A 6 and A 7 independently represent an alkylene group, p1 and p2 independently represent an integer of 0 or more,
R 11 and R 12 independently represent a substituent, and q1 and q2 independently represent an integer from 0 to 6).
 前記式(5)において、置換基R11およびR12は、前記式(2)で例示された置換基RおよびRと好ましい態様も含めて同様のものから選択できる。 In the formula (5), the substituents R 11 and R 12 can be selected from the same substituents R 5 and R 6 exemplified in the formula (2), including preferred embodiments.
 R11およびR12の置換数q1およびq2は、それぞれ、0~5程度の整数であってもよく、好ましくは以下段階的に、0~4の整数、0~3の整数、0~2の整数であり、さらに好ましくは0または1、特に0である。q1およびq2は互いに異なっていてもよいが、同一であるのが好ましい。また、q1が2以上である場合、2以上のR11の種類は互いに同一または異なっていてもよく、q2およびR12についても同様である。また、R11およびR12の種類は、互いに同一または異なっていてもよい。 The numbers of substitutions q1 and q2 of R 11 and R 12 may each be an integer of about 0 to 5, preferably an integer of 0 to 4, an integer of 0 to 3, an integer of 0 to 2, in the following stepwise order. It is an integer, more preferably 0 or 1, especially 0. q1 and q2 may be different from each other, but are preferably the same. Further, when q1 is 2 or more, the types of two or more R 11 may be the same or different from each other, and the same applies to q2 and R 12 . Moreover, the types of R 11 and R 12 may be the same or different from each other.
 R11およびR12の置換位置は、2つのナフタレン環骨格におけるAならびに(ポリ)オキシアルキレン基[-O-(AO)p1-]および[-O-(AO)p2-]の置換位置以外の位置である限り特に制限されず、Aに結合する2つのナフタレン環骨格の1位に対して、3~8位が好ましい。例えば、Aが直接結合(単結合)である場合、1,1’-ビナフチル骨格の3~8位、3’~8’位であるのが好ましい。 The substitution positions of R 11 and R 12 are A 5 and (poly)oxyalkylene groups [-O-(A 6 O) p1 -] and [-O-(A 7 O) p2 -] in the two naphthalene ring skeletons. There is no particular restriction as long as the substitution position is other than the substitution position, and the 3rd to 8th positions relative to the 1st position of the two naphthalene ring skeletons bonded to A 5 are preferable. For example, when A 5 is a direct bond (single bond), it is preferably at positions 3 to 8 or 3' to 8' of the 1,1'-binaphthyl skeleton.
 Aで表されるアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、1,2-ブタンジイル基、テトラメチレン基などのC1-4アルキレン基などが挙げられる。好ましいAとしては、高屈折率、低アッベ数、低複屈折などの光学特性の観点から、直接結合またはメチレン基などのC1-2アルキレン基であり、特に直接結合(単結合)が好ましい。 Examples of the alkylene group represented by A 5 include C 1-4 alkylene groups such as methylene group, ethylene group, propylene group, trimethylene group, 1,2-butanediyl group, and tetramethylene group. From the viewpoint of optical properties such as high refractive index, low Abbe number, and low birefringence, A5 is preferably a direct bond or a C 1-2 alkylene group such as a methylene group, and a direct bond (single bond) is particularly preferable. .
 アルキレン基AおよびAは、前記式(2)で例示されたアルキレン基AおよびAと好ましい態様も含めて同様のものから選択できる。繰り返し数p1およびp2も、前記式(2)における繰り返し数s1およびs2と好ましい態様も含めて同様のものから選択できる。 Alkylene groups A 6 and A 7 can be selected from the same alkylene groups A 3 and A 4 exemplified in formula (2) above, including preferred embodiments. The repetition numbers p1 and p2 can also be selected from the same numbers of repetitions s1 and s2 in the above formula (2), including preferred embodiments.
 前記式(5)において、(ポリ)オキシアルキレン基[-O-(AO)p1-]および[-O-(AO)p2-]の結合位置は特に制限されず、例えば、1,1’-ビナフチル骨格に対して、2,2’位、4,4’位などであってもよいが、調製(合成)または調達が容易で生産性を向上できるとともに、コンフォメーションの関係から高屈折率化し易い点で、2,2’位であるのが好ましい。そのため、前記式(5)で表されるビナフタレン含有ジオールは、下記式(5a)で表されるビナフタレン含有ジオールを含むのが好ましい。 In the formula (5), the bonding positions of the (poly)oxyalkylene groups [-O-(A 6 O) p1 -] and [-O-(A 7 O) p2 -] are not particularly limited, and for example, 1 , 1'-binaphthyl skeleton, 2, 2', 4, 4', etc. positions may be used. The 2,2' position is preferable since it is easy to increase the refractive index. Therefore, the binaphthalene-containing diol represented by the formula (5) above preferably includes a binaphthalene-containing diol represented by the following formula (5a).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、A、A、p1、p2、R11、R12、q1およびq2はそれぞれ前記式(5)に同じ)。 (In the formula, A 6 , A 7 , p1, p2, R 11 , R 12 , q1 and q2 are each the same as in the above formula (5)).
 前記式(5a)で表される代表的なビナフタレン含有ジオールとしては、2,2’-ジヒドロキシ-1,1’-ビナフチルなどのジヒドロキシ-1,1’-ビナフチル;ビス[ヒドロキシ(ポリ)アルコキシ]-1,1’-ビナフチルなどが挙げられる。ビス[ヒドロキシ(ポリ)アルコキシ]-1,1’-ビナフチルとしては、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチル、2,2’-ビス(2-ヒドロキシプロポキシ)-1,1’-ビナフチル、2,2’-ビス[2-(2-ヒドロキシエトキシ)エトキシ]-1,1’-ビナフチルなどの2,2’-ビス[ヒドロキシ(モノないしデカ)C2-4アルコキシ]-1,1’-ビナフチルなどが挙げられる。 Typical binaphthalene-containing diols represented by the formula (5a) include dihydroxy-1,1'-binaphthyl such as 2,2'-dihydroxy-1,1'-binaphthyl; bis[hydroxy(poly)alkoxy] Examples include -1,1'-binaphthyl. Bis[hydroxy(poly)alkoxy]-1,1'-binaphthyl includes 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl, 2,2'-bis(2-hydroxypropoxy) 2,2'-bis[hydroxy (mono to deca)C 2- such as -1,1'-binaphthyl, 2,2'-bis[2-(2-hydroxyethoxy)ethoxy]-1,1'-binaphthyl 4alkoxy ]-1,1'-binaphthyl and the like.
 これらのビナフタレン含有ジオールは、単独でまたは2種以上組み合わせて使用できる。これらのうち、前記式(5a)で表されるジオールが好ましく、2,2’-ジヒドロキシ-1,1’-ビナフチル、2,2’-ビス[ヒドロキシ(モノないしテトラ)C2-4アルコキシ]-1,1’-ビナフチルがさらに好ましく、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチルなどの2,2’-ビス[ヒドロキシ(モノないしトリ)C2-3アルコキシ]-1,1’-ビナフチルが最も好ましい。 These binaphthalene-containing diols can be used alone or in combination of two or more. Among these, diols represented by the above formula (5a) are preferred, such as 2,2'-dihydroxy-1,1'-binaphthyl, 2,2'-bis[hydroxy (mono to tetra) C 2-4 alkoxy] -1,1'-binaphthyl is more preferred, and 2,2'-bis[hydroxy(mono- to tri)C 2-3 alkoxy such as 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl ]-1,1'-binaphthyl is most preferred.
 (他のジオール成分)
 ジオール成分は、他のジオール成分をさらに含んでいてもよい。他のジオール成分としては、好ましい態様も含めて、フルオレン含有ポリエステル系樹脂の他のジオール成分(ビナフトール類を除く)と同様である。
(Other diol components)
The diol component may further contain other diol components. Other diol components, including preferred embodiments, are the same as other diol components (excluding binaphthols) of the fluorene-containing polyester resin.
 (炭酸エステル結合形成成分)
 本開示のフルオレン含有ポリ炭酸エステル系樹脂は、ジオール成分に加えて、炭酸エステル単位を形成するための重合成分として炭酸エステル結合形成成分を含む。代表的な炭酸エステル結合形成成分としては、例えば、ホスゲン、トリホスゲンなどのホスゲン類、ジフェニル炭酸エステルなどの炭酸ジエステル類などが挙げられる。安全性などの観点からはジフェニル炭酸エステルなどの炭酸ジエステル類が好ましい。
(Carbonate bond forming component)
In addition to the diol component, the fluorene-containing polycarbonate-based resin of the present disclosure includes a carbonate bond-forming component as a polymerization component for forming carbonate units. Typical carbonate bond-forming components include, for example, phosgenes such as phosgene and triphosgene, and carbonate diesters such as diphenyl carbonate. Carbonic diesters such as diphenyl carbonate are preferred from the viewpoint of safety.
 (フルオレン含有ポリ炭酸エステル系樹脂の特性)
 本開示のフルオレン含有ポリ炭酸エステル系樹脂において、フルオレン含有ジオールの割合は、ジオール成分中10モル%以上であってもよく、好ましくは以下段階的に、30モル%以上、50モル%以上、80モル%以上、90モル%以上、95モル%以上、100モル%である。本開示では、フルオレン骨格の割合が多いフルオレン含有ポリ炭酸エステル系樹脂、特に、フルオレン含有ポリ炭酸エステル樹脂であっても、効率良く解重合でき、有用なフルオレン骨格を有するモノマー成分(単量体)を効率良く回収できる。
(Characteristics of fluorene-containing polycarbonate resin)
In the fluorene-containing polycarbonate resin of the present disclosure, the proportion of the fluorene-containing diol may be 10 mol% or more in the diol component, preferably in the following steps: 30 mol% or more, 50 mol% or more, 80 mol% or more. It is mol% or more, 90 mol% or more, 95 mol% or more, and 100 mol%. In the present disclosure, even fluorene-containing polycarbonate resins having a high proportion of fluorene skeletons, especially fluorene-containing polycarbonate resins, can be efficiently depolymerized and useful monomer components (monomers) having fluorene skeletons. can be collected efficiently.
 ジオール成分がフルオレン含有ジオールに加えて、ビナフタレン含有ジオールをさらに含む場合、フルオレン含有ジオールとビナフタレン含有ジオールとのモル比は、前者/後者=99/1~10/90程度の範囲から選択でき、好ましい範囲としては、以下段階的に、97/3~20/80、95/5~30/70、90/10~35/65、80/20~40/60、70/30~40/60であり、最も好ましくは60/40~40/60である。両者の割合は、前者/後者=93/7~40/60、好ましくは90/10~50/50、さらに好ましくは80/20~60/40であってもよい。 When the diol component further contains a binaphthalene-containing diol in addition to the fluorene-containing diol, the molar ratio of the fluorene-containing diol and the binaphthalene-containing diol can be selected from a range of about 99/1 to 10/90, which is preferable. The range is as follows: 97/3 to 20/80, 95/5 to 30/70, 90/10 to 35/65, 80/20 to 40/60, 70/30 to 40/60. , most preferably 60/40 to 40/60. The ratio of the former/latter may be 93/7 to 40/60, preferably 90/10 to 50/50, and more preferably 80/20 to 60/40.
 本開示のフルオレン含有ポリ炭酸エステル系樹脂において、フルオレン含有ジオールおよびビナフタレン含有ジオールの合計割合は、ジオール成分中50モル%以上であってもよく、好ましくは以下段階的に、60モル%以上、70モル%以上、80モル%以上、90モル%以上、95モル%以上、100モル%である。 In the fluorene-containing polycarbonate resin of the present disclosure, the total proportion of the fluorene-containing diol and the binaphthalene-containing diol may be 50 mol% or more in the diol component, preferably 60 mol% or more, 70 mol% or more in the diol component. The content is mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, and 100 mol%.
 本開示のフルオレン含有ポリ炭酸エステル系樹脂において、ジオール成分および炭酸エステル結合形成成分の合計割合は、全重合成分中50モル%以上であってもよく、好ましくは以下段階的に、60モル%以上、70モル%以上、80モル%以上、90モル%以上、95モル%以上、100モル%である。 In the fluorene-containing polycarbonate-based resin of the present disclosure, the total proportion of the diol component and the carbonate bond-forming component may be 50 mol% or more in the total polymerization components, preferably 60 mol% or more in the following steps. , 70 mol% or more, 80 mol% or more, 90 mol% or more, 95 mol% or more, and 100 mol%.
 フルオレン含有ポリ炭酸エステル系樹脂の重量平均分子量は、例えば20,000~100,000、好ましくは25,000~80,000、さらに好ましくは30,000~70,000、最も好ましくは35,000~60,000である。 The weight average molecular weight of the fluorene-containing polycarbonate resin is, for example, 20,000 to 100,000, preferably 25,000 to 80,000, more preferably 30,000 to 70,000, most preferably 35,000 to 60,000.
 なお、本明細書および請求の範囲において、フルオレン含有ポリ炭酸エステル系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィーによって、標準物質をポリスチレンとして換算することにより測定できる。 In the present specification and claims, the weight average molecular weight of the fluorene-containing polycarbonate resin can be measured by gel permeation chromatography using polystyrene as a standard substance.
 フルオレン含有ポリ炭酸エステル系樹脂は、非晶性であってもよい。 The fluorene-containing polycarbonate resin may be amorphous.
 (A)第1の分解工程
 本開示のフルオレン含有ポリ炭酸エステル系樹脂の解重合法では、第1の分解工程において、第1の加水分解触媒の存在下、前記フルオレン含有ポリ炭酸エステル系樹脂と炭酸エステルとを反応させて前記フルオレン含有ポリ炭酸エステル系樹脂を分解し、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を含む第1の分解生成物を得る。
(A) First decomposition step In the method for depolymerizing a fluorene-containing polycarbonate resin of the present disclosure, in the first decomposition step, the fluorene-containing polycarbonate resin is The fluorene-containing polycarbonate resin is decomposed by reacting with a carbonate ester to obtain a first decomposition product containing a diol monocarbonate ester and/or a diol dicarbonate ester.
 (炭酸エステル)
 炭酸エステルは、フルオレン含有ポリ炭酸エステル系樹脂の解重合剤として作用する。炭酸エステルは、好ましい態様も含めて、フルオレン含有ポリエステル系樹脂の炭酸エステルと同様である。
(carbonate ester)
The carbonate ester acts as a depolymerization agent for the fluorene-containing polycarbonate resin. The carbonate ester is the same as the carbonate ester of the fluorene-containing polyester resin, including preferred embodiments.
 炭酸エステルの割合は、フルオレン含有ポリ炭酸エステル系樹脂1モル(数平均分子量に対応するモル数)に対して1モル以上であってもよく、例えば0.1~50モル、好ましくは0.5~30モル、さらに好ましくは1~10モル、より好ましくは1.5~5モル、最も好ましくは2~3モルである。炭酸エステルの割合は、フルオレン含有ポリ炭酸エステル系樹脂100質量部に対して、例えば5質量部以上であってもよく、例えば5~1000質量部、好ましくは10~100質量部、さらに好ましくは20~80質量部、より好ましくは30~70質量部、最も好ましくは40~60質量部である。炭酸エステルの割合が少なすぎると、解重合が速やかに進行しない虞がある。 The ratio of the carbonate ester may be 1 mole or more per mole of the fluorene-containing polycarbonate resin (the number of moles corresponding to the number average molecular weight), for example, 0.1 to 50 moles, preferably 0.5 ~30 moles, more preferably 1 to 10 moles, more preferably 1.5 to 5 moles, most preferably 2 to 3 moles. The proportion of the carbonate ester may be, for example, 5 parts by mass or more, for example, 5 to 1000 parts by mass, preferably 10 to 100 parts by mass, and more preferably 20 parts by mass, based on 100 parts by mass of the fluorene-containing polycarbonate ester resin. ~80 parts by weight, more preferably 30-70 parts by weight, most preferably 40-60 parts by weight. If the proportion of carbonate ester is too small, there is a risk that depolymerization will not proceed quickly.
 (第1の加水分解触媒)
 第1の加水分解触媒は、好ましい態様も含めて、フルオレン含有ポリエステル系樹脂の第1の加水分解触媒と同様のものから選択できる。前記第1の加水分解触媒は、単独でまたは2種以上組み合わせて使用できる。
(First hydrolysis catalyst)
The first hydrolysis catalyst can be selected from the same catalysts as the first hydrolysis catalyst for fluorene-containing polyester resins, including preferred embodiments. The first hydrolysis catalyst can be used alone or in combination of two or more.
 第1の加水分解触媒の割合は、フルオレン含有ポリ炭酸エステル系樹脂1モルに対して、例えば0.01モル以上であってもよく、好ましくは0.01~0.5モル、さらに好ましくは0.03~0.3モル、より好ましくは0.05~0.25モル、最も好ましくは0.1~0.2モルである。第1の加水分解触媒の割合は、フルオレン含有ポリ炭酸エステル系樹脂100質量部に対して、例えば0.1質量部以上であってもよく、好ましくは0.1~10質量部、さらに好ましくは0.3~5質量部、より好ましくは0.5~4質量部、最も好ましくは1~3質量部である。加水分解触媒の割合が少なすぎると、解重合が速やかに進行しない虞がある。第1の加水分解触媒のこれらの割合は、アルカリ触媒の割合であってもよい。 The proportion of the first hydrolysis catalyst may be, for example, 0.01 mol or more, preferably 0.01 to 0.5 mol, more preferably 0.01 to 0.5 mol, per 1 mol of the fluorene-containing polycarbonate resin. 0.03 to 0.3 mole, more preferably 0.05 to 0.25 mole, most preferably 0.1 to 0.2 mole. The proportion of the first hydrolysis catalyst may be, for example, 0.1 parts by mass or more, preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the fluorene-containing polycarbonate resin. 0.3 to 5 parts by weight, more preferably 0.5 to 4 parts by weight, most preferably 1 to 3 parts by weight. If the proportion of the hydrolysis catalyst is too small, there is a risk that depolymerization will not proceed quickly. These proportions of the first hydrolysis catalyst may be proportions of an alkaline catalyst.
 (反応条件)
 反応温度は、20℃以上であってもよく、例えば20~85℃、好ましくは25~83℃、さらに好ましくは30~80℃、より好ましくは50~75℃、最も好ましくは60~70℃である。
(Reaction conditions)
The reaction temperature may be 20°C or higher, for example 20 to 85°C, preferably 25 to 83°C, more preferably 30 to 80°C, more preferably 50 to 75°C, most preferably 60 to 70°C. be.
 反応時間は、10分以上であってもよく、例えば10分~10時間、好ましくは30分~8時間、さらに好ましくは1~5時間である。 The reaction time may be 10 minutes or more, for example 10 minutes to 10 hours, preferably 30 minutes to 8 hours, more preferably 1 to 5 hours.
 反応は、不活性ガスの存在下で行ってもよいが、簡便性などの点から、大気中で行うのが好ましい。また、反応は、減圧下で行ってもよいが、簡便性などの点から、大気圧下で行うのが好ましい。 Although the reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the viewpoint of simplicity. Although the reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
 (第1の分解生成物)
 第1の分解工程における第1の分解生成物は、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を含む。そのため、本開示は、前記フルオレン含有ポリエステル系樹脂と同様に、フルオレン含有ポリ炭酸エステル系樹脂においても、前記第1の分解工程により、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を製造する方法も包含する。
(First decomposition product)
The first decomposition product in the first decomposition step includes a diol monocarbonate ester and/or a diol dicarbonate ester. Therefore, in the same way as in the fluorene-containing polyester resin, the present disclosure also provides for the first decomposition step to produce a diol monocarbonate ester and/or a diol dicarbonate ester in the fluorene-containing polycarbonate resin. Also includes methods of manufacturing.
 ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体は、次工程である第2の分解工程に供してジオールに変換することによりフルオレン含有ポリ炭酸エステル系樹脂の原料として再利用してもよいが、第2の分解工程に供することなく、炭酸エステル化合物として利用してもよい。 The diol monocarbonate ester and/or diol dicarbonate ester may be reused as a raw material for fluorene-containing polycarbonate resin by subjecting it to the second decomposition step, which is the next step, and converting it into diol. However, it may be used as a carbonate ester compound without being subjected to the second decomposition step.
 ジオールのモノ炭酸エステル体およびジオールのジ炭酸エステル体は、好ましい態様も含めて、フルオレン含有ポリエステル系樹脂のジオールのモノ炭酸エステル体およびジオールのジ炭酸エステル体と同様である。 The diol monocarbonate ester and diol dicarbonate ester are the same as the diol monocarbonate ester and diol dicarbonate ester of the fluorene-containing polyester resin, including preferred embodiments.
 モノ炭酸エステル体の割合は、ジ炭酸エステル体1モルに対して、例えば0.1~30モル、好ましくは0.5~10モル、さらに好ましくは1~5モル、より好ましくは2~4である。 The proportion of the monocarbonate ester is, for example, 0.1 to 30 mol, preferably 0.5 to 10 mol, more preferably 1 to 5 mol, more preferably 2 to 4 mol, per 1 mol of the dicarbonate. be.
 第1の分解生成物は、ジオールをさらに含んでいてもよい。ジオールは、前記モノ炭酸エステル体および前記ジ炭酸エステル体に対応するジオールであってもよい。 The first decomposition product may further contain a diol. The diol may be a diol corresponding to the monocarbonate ester and the dicarbonate ester.
 第1の分解工程において、前記モノ炭酸エステル体および前記ジ炭酸エステル体の合計割合は、第1の分解生成物中のジオール1モルに対して、例えば0.1~5モル、好ましくは0.5~3モル、さらに好ましくは1~2モル、より好ましくは1.2~1.7モルである。 In the first decomposition step, the total proportion of the monocarbonate ester and the dicarbonate ester is, for example, 0.1 to 5 mol, preferably 0.1 to 5 mol, per 1 mol of diol in the first decomposition product. The amount is 5 to 3 mol, more preferably 1 to 2 mol, and even more preferably 1.2 to 1.7 mol.
 第1の分解工程において、前記モノ炭酸エステル体、前記ジ炭酸エステル体およびジオールの合計割合は、炭酸エステル結合形成成分1モルに対して、例えば0.1~5モル、好ましくは0.2~3モル、さらに好ましくは0.3~2モル、より好ましくは0.5~1.5モルである。 In the first decomposition step, the total proportion of the monocarbonate ester, the dicarbonate ester, and diol is, for example, 0.1 to 5 mol, preferably 0.2 to 5 mol, per mol of the carbonate bond forming component. The amount is 3 mol, more preferably 0.3 to 2 mol, and even more preferably 0.5 to 1.5 mol.
 第1の分解生成物は、慣用の精製処理を施してもよい。慣用の精製処理としては、例えば、分解生成物を含む混合物を必要に応じて中和および水洗した後、ろ過などによって混合物から不純物を除去する処理などが挙げられる。前記混合物中にモノマー成分が析出している場合は、モノマー成分の良溶媒を用いて完全に溶解させた後、中和および水洗してもよい。 The first decomposition product may be subjected to a conventional purification treatment. Conventional purification treatments include, for example, neutralizing and washing a mixture containing decomposition products with water as necessary, and then removing impurities from the mixture by filtration or the like. If a monomer component is precipitated in the mixture, it may be completely dissolved using a good solvent for the monomer component, and then neutralized and washed with water.
 第1の分解工程では、主としてジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体が得られる。そのため、新規な炭酸エステル化合物が目的の化合物である場合は、本開示の解重合法は、分解工程が第1の分解工程のみであり、後述する第2の分解工程を含まない解重合法であってもよい。 In the first decomposition step, a monocarbonate of diol and/or a dicarbonate of diol are mainly obtained. Therefore, when a novel carbonate ester compound is the target compound, the depolymerization method of the present disclosure is a depolymerization method in which the decomposition step is only the first decomposition step and does not include the second decomposition step described below. There may be.
 (B)第2の分解工程
 本開示のフルオレン含有ポリ炭酸エステル系樹脂の解重合法は、第1の分解工程に加えて、第2の分解生成物を得るための第2の分解工程を有していてもよい。第2の分解工程では、第1の分解生成物とアルコールとを反応させてジオールを得る。詳しくは、第2の分解工程では、前記ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体と、前記アルコールとを反応させてジオール成分が得られる。このように、第2の分解工程では、前記ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体をジオールに変換できるため、フルオレン骨格を有するジオール成分をモノマー成分として回収する場合に特に有効である。
(B) Second decomposition step The method for depolymerizing a fluorene-containing polycarbonate resin of the present disclosure includes, in addition to the first decomposition step, a second decomposition step for obtaining a second decomposition product. You may do so. In the second decomposition step, the first decomposition product and alcohol are reacted to obtain a diol. Specifically, in the second decomposition step, the diol component is obtained by reacting the diol monocarbonate ester and/or diol dicarbonate ester with the alcohol. In this way, in the second decomposition step, the diol monocarbonate ester and/or diol dicarbonate ester can be converted into diol, which is particularly effective when recovering a diol component having a fluorene skeleton as a monomer component. It is.
 (アルコール)
 アルコールは、好ましい態様も含めて、フルオレン含有ポリエステル系樹脂の第2の分解工程におけるアルコールと同様のものから選択できる。前記アルコールは、単独でまたは2種以上組み合わせて使用できる。
(alcohol)
The alcohol, including preferred embodiments, can be selected from the same alcohols as those used in the second decomposition step of the fluorene-containing polyester resin. The alcohols can be used alone or in combination of two or more.
 アルコールの割合は、第1の分解生成物100質量部に対して50質量部以上であってもよく、例えば50~1000質量部、好ましくは80~500質量部、さらに好ましくは100~300質量部、より好ましくは120~200質量部である。アルコールの割合が少なすぎると、ジオール成分の収率が低下する虞がある。 The proportion of alcohol may be 50 parts by mass or more based on 100 parts by mass of the first decomposition product, for example 50 to 1000 parts by mass, preferably 80 to 500 parts by mass, more preferably 100 to 300 parts by mass. , more preferably 120 to 200 parts by mass. If the proportion of alcohol is too small, there is a risk that the yield of the diol component will decrease.
 (第2の加水分解触媒)
 第2の加水分解触媒としては、フルオレン含有ポリエステル系樹脂の第1の加水分解触媒として例示された加水分解触媒などが挙げられる。前記第2の加水分解触媒は、単独でまたは2種以上組み合わせて使用できる。前記第2の加水分解触媒のうち、アルカリ金属水酸化物、アルカリ土類金属水酸化物が好ましく、水酸化カリウムなどのアルカリ金属水酸化物が特に好ましい。
(Second hydrolysis catalyst)
Examples of the second hydrolysis catalyst include the hydrolysis catalysts exemplified as the first hydrolysis catalyst for fluorene-containing polyester resins. The second hydrolysis catalyst can be used alone or in combination of two or more. Among the second hydrolysis catalysts, alkali metal hydroxides and alkaline earth metal hydroxides are preferred, and alkali metal hydroxides such as potassium hydroxide are particularly preferred.
 第2の加水分解触媒の割合は、第1の分解生成物100質量部に対して1質量部以上であってもよく、例えば1~30質量部、好ましくは5~20質量部、さらに好ましくは5~10質量部である。アルカリ触媒の割合が少なすぎると、ジオール成分の収率が低下する虞がある。第2の加水分解触媒のこれらの割合は、アルカリ触媒の割合であってもよい。 The proportion of the second hydrolysis catalyst may be 1 part by mass or more, for example 1 to 30 parts by mass, preferably 5 to 20 parts by mass, more preferably It is 5 to 10 parts by mass. If the proportion of the alkali catalyst is too small, the yield of the diol component may decrease. These proportions of the second hydrolysis catalyst may be proportions of the alkaline catalyst.
 (反応条件)
 反応温度は、0℃以上であってもよく、例えば5~80℃、好ましくは10~50℃、さらに好ましくは15~40℃であり、室温であってもよい。
(Reaction conditions)
The reaction temperature may be 0°C or higher, for example 5 to 80°C, preferably 10 to 50°C, more preferably 15 to 40°C, or room temperature.
 反応時間は、5分以上であってもよく、例えば5分~5時間、好ましくは10分~3時間、さらに好ましくは30分~2時間、より好ましくは40分~1.5時間である。 The reaction time may be 5 minutes or more, for example 5 minutes to 5 hours, preferably 10 minutes to 3 hours, more preferably 30 minutes to 2 hours, and more preferably 40 minutes to 1.5 hours.
 反応は、不活性ガスの存在下で行ってもよいが、簡便性などの点から、大気中で行うのが好ましい。また、反応は、減圧下で行ってもよいが、簡便性などの点から、大気圧下で行うのが好ましい。 Although the reaction may be carried out in the presence of an inert gas, it is preferably carried out in the atmosphere from the standpoint of simplicity. Although the reaction may be carried out under reduced pressure, it is preferably carried out under atmospheric pressure from the viewpoint of simplicity.
 (第2の分解生成物)
 第2の分解工程における第2の分解生成物はジオールを含む。すなわち、第2の分解工程を含む本開示の解重合法では、フルオレン含有樹脂の原料を回収できるため、得られたモノマー成分をそのまま用いてフルオレン含有樹脂を新たに合成でき、フルオレン含有樹脂のリサイクル性を向上できる。フルオレン含有樹脂は、フルオレン含有ポリエステル系樹脂であってもよく、フルオレン含有ポリ炭酸エステル系樹脂であってもよい。
(Second decomposition product)
The second decomposition product in the second decomposition step includes a diol. That is, in the depolymerization method of the present disclosure including the second decomposition step, the raw materials for the fluorene-containing resin can be recovered, so the obtained monomer components can be used as they are to newly synthesize the fluorene-containing resin, and the fluorene-containing resin can be recycled. You can improve your sexuality. The fluorene-containing resin may be a fluorene-containing polyester resin or a fluorene-containing polycarbonate resin.
 (C)精製工程
 第2の分解工程で得られたジオールを含む第2の分解生成物は、慣用の精製処理を施してもよい。慣用の精製処理としては、例えば、第2の分解生成物を含む混合物を必要に応じて中和および水洗した後、ろ過などによって混合物から不純物を除去した後、晶析してもよい。
(C) Purification Step The second decomposition product containing the diol obtained in the second decomposition step may be subjected to a conventional purification treatment. As a conventional purification treatment, for example, the mixture containing the second decomposition product may be neutralized and washed with water as necessary, and then impurities may be removed from the mixture by filtration or the like, followed by crystallization.
 晶析の方法としては、モノマー成分に、晶析溶媒として、芳香族炭化水素類を含む晶析溶媒を用いて晶析するのが好ましい。 As for the crystallization method, it is preferable to crystallize the monomer component using a crystallization solvent containing aromatic hydrocarbons as a crystallization solvent.
 芳香族炭化水素類としては、トルエン、キシレン、エチルベンゼンなどのモノまたはジC1-2アルキル-ベンゼンが好ましく、トルエンが特に好ましい。 As the aromatic hydrocarbons, mono- or di-C 1-2 alkyl-benzenes such as toluene, xylene, and ethylbenzene are preferred, with toluene being particularly preferred.
 晶析溶媒の割合は、ジオール100質量部に対して、例えば10~3000質量部、好ましくは50~2000質量部、さらに好ましくは100~1000質量部、最も好ましくは200~500質量部である。 The proportion of the crystallization solvent is, for example, 10 to 3000 parts by weight, preferably 50 to 2000 parts by weight, more preferably 100 to 1000 parts by weight, and most preferably 200 to 500 parts by weight, based on 100 parts by weight of diol.
 晶析処理においては、ジオールを前記晶析溶媒に溶解し、冷却することによって、より純度の高いジオールを析出または晶析させることができる。ジオールを前記晶析溶媒に溶解する温度は、溶媒の沸点未満の温度、例えば30~200℃、好ましくは50~150℃、さらに好ましくは60~100℃である。晶析処理されたジオールは、慣用の方法によって洗浄後に乾燥してもよい。 In the crystallization treatment, a diol with higher purity can be precipitated or crystallized by dissolving the diol in the crystallization solvent and cooling it. The temperature at which the diol is dissolved in the crystallization solvent is a temperature below the boiling point of the solvent, for example 30 to 200°C, preferably 50 to 150°C, more preferably 60 to 100°C. The crystallized diol may be washed and then dried by a conventional method.
 [フルオレン含有樹脂のリサイクル方法]
 本開示の解重合法で得られた分解生成物は、フルオレン骨格とエステル結合および/または炭酸エステル結合とを有するフルオレン含有樹脂の単量体原料として用い、新たなフルオレン含有樹脂を製造することによりリサイクルできる。すなわち、本開示のリサイクル方法は、前記フルオレン含有樹脂と炭酸エステルとを反応させて、分解生成物を得る解重合工程と、前記解重合工程で得られた分解生成物を重合し、新たなフルオレン含有樹脂を得る重合工程(再重合工程)とを含む。前記分解生成物は、第1の分解生成物であってもよく、第2の分解生成物であってもよいが、第2の分解生成物が好ましい。
[How to recycle fluorene-containing resin]
The decomposition product obtained by the depolymerization method of the present disclosure is used as a monomer raw material for a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond to produce a new fluorene-containing resin. It can be recycled. That is, the recycling method of the present disclosure includes a depolymerization step in which the fluorene-containing resin and carbonate ester are reacted to obtain a decomposition product, and a depolymerization step in which the decomposition product obtained in the depolymerization step is polymerized to generate new fluorene. It includes a polymerization step (repolymerization step) to obtain the containing resin. The decomposition product may be a first decomposition product or a second decomposition product, but the second decomposition product is preferred.
 本開示のリサイクル方法では、解重合工程で得られた分解生成物の精製物を重合工程に供してもよく、分解生成物を精製することなく重合工程に供してもよい。また、重合工程では、分解生成物としての単量体原料に、新たな単量体原料を補充してもよい。新たに補充する単量体原料は、分解生成物の組成に応じて、不足している単量体原料であってもよい。 In the recycling method of the present disclosure, a purified product of the decomposition product obtained in the depolymerization step may be subjected to the polymerization step, or the decomposition product may be subjected to the polymerization step without being purified. Further, in the polymerization step, the monomer raw material as a decomposition product may be supplemented with a new monomer raw material. The newly replenished monomer raw material may be the monomer raw material that is in short supply depending on the composition of the decomposition product.
 重合工程において、分解生成物を用いてフルオレン含有樹脂を重合する方法としては、フルオレン含有樹脂の種類に応じて、慣用の方法を利用できる。フルオレン含有ポリエステル系樹脂を重合する方法としては、例えば、特開2013-064117号公報、特開2013-064118号公報、特開2014-218645号公報、特開2016-069643号公報、特許第7016976号公報などに記載の方法を利用でき、フルオレン含有ポリ炭酸エステル系樹脂を重合する方法としては、例えば、特開2018-104691号公報、特開2021-134216号公報などに記載の方法が挙げられる。 In the polymerization step, a conventional method can be used to polymerize the fluorene-containing resin using the decomposition product, depending on the type of the fluorene-containing resin. Examples of methods for polymerizing fluorene-containing polyester resins include JP2013-064117A, JP2013-064118A, JP2014-218645A, JP2016-069643A, and Japanese Patent No. 7016976. Methods described in publications can be used, and examples of methods for polymerizing the fluorene-containing polycarbonate resin include methods described in JP 2018-104691A, JP 2021-134216A, and the like.
 以下に、実施例に基づいて本開示をより詳細に説明するが、本開示はこれらの実施例によって限定されるものではない。なお、実施例で使用した材料の詳細、実施例での各評価方法は、以下の通りである。 Hereinafter, the present disclosure will be described in more detail based on Examples, but the present disclosure is not limited to these Examples. The details of the materials used in the examples and the evaluation methods used in the examples are as follows.
 [材料]
 FDP-m:下記式で表される9,9-ビス(2-メトキシカルボニルエチル)フルオレン(アクリル酸t-ブチルに代えて、アクリル酸メチル[37.9g(0.44モル)]を用いる以外、特開2005-89422号公報の実施例1と同様にして合成した)
[material]
FDP-m: 9,9-bis(2-methoxycarbonylethyl)fluorene represented by the following formula (other than using methyl acrylate [37.9 g (0.44 mol)] in place of t-butyl acrylate) , synthesized in the same manner as Example 1 of JP-A No. 2005-89422)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 DNFDP-m:下記式で表される9,9-ビス(2-メトキシカルボニルエチル)-2,7-ジ(2-ナフチル)フルオレン(国際公開第2020/213470号の実施例1Aに従って合成した) DNFDP-m: 9,9-bis(2-methoxycarbonylethyl)-2,7-di(2-naphthyl)fluorene (synthesized according to Example 1A of International Publication No. 2020/213470)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 DMT:テレフタル酸ジメチル
 DMN:2,6-ナフタレンジカルボン酸ジメチル
 BPEF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、大阪ガスケミカル(株)製
 BNEF:9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレン、大阪ガスケミカル(株)製
 BOPPEF:9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、大阪ガスケミカル(株)製
 EG:エチレングリコール
 BINOL―2EO:2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチル(特開2018-59074号公報記載の合成例2に準じて合成した)
 炭酸ジメチル:東京化成工業(株)製
 LiOMe:リチウムメトキシド、東京化成工業(株)製
 NaOMe:ナトリウムメトキシド、富士フイルム和光純薬(株)製。
DMT: Dimethyl terephthalate DMN: Dimethyl 2,6-naphthalene dicarboxylate BPEF: 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene, manufactured by Osaka Gas Chemical Co., Ltd. BNEF: 9,9-bis[ 6-(2-hydroxyethoxy)-2-naphthyl]fluorene, Osaka Gas Chemical Co., Ltd. BOPPEF: 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene, Osaka Gas Chemical Co., Ltd. Co., Ltd. EG: Ethylene glycol BINOL-2EO: 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthyl (synthesized according to Synthesis Example 2 described in JP-A-2018-59074)
Dimethyl carbonate: manufactured by Tokyo Chemical Industry Co., Ltd. LiOMe: lithium methoxide, manufactured by Tokyo Chemical Industry Co., Ltd. NaOMe: sodium methoxide, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
 [LC-MS生成比]
 HPLC(高性能または高速液体クロマトグラフ)装置として(株)島津製作所製「Nexera XR」、MSユニットとして「LCMS-2020」、カラムとしてPhenomenex製「Kinetex C-18」を用いて、試料をアセトニトリルに溶解して測定し、HPLCの面積%比から算出した。
[LC-MS generation ratio]
Using "Nexera XR" manufactured by Shimadzu Corporation as the HPLC (high performance or high performance liquid chromatography) device, "LCMS-2020" as the MS unit, and "Kinetex C-18" manufactured by Phenomenex as the column, the sample was converted to acetonitrile. It was measured after dissolving and calculated from the area % ratio of HPLC.
 [収率]
 ポリエステル樹脂のジオール成分とジカルボン酸成分は、前者:後者=50:50(モル比)とし、各モノマー成分の配合比とそのモノマーの分子量から算出した。また、ポリ炭酸エステル系樹脂のジオール成分と炭酸エステル結合形成成分は、前者:後者=50:50(モル比)とし、各モノマー成分の配合比とそのモノマーの分子量から算出した。
[yield]
The diol component and dicarboxylic acid component of the polyester resin were the former: the latter = 50:50 (mole ratio), and were calculated from the blending ratio of each monomer component and the molecular weight of the monomer. Further, the diol component and the carbonate bond-forming component of the polycarbonate ester resin were set at a molar ratio of 50:50 (mole ratio) of the former and calculated from the blending ratio of each monomer component and the molecular weight of the monomer.
 [LC純度]
 前述のHPLC装置を用いて、純度[面積%]を算出した。
[LC purity]
Purity [area %] was calculated using the HPLC device described above.
 [ガラス転移温度(Tg)]
 示差走査熱量計(TAインスツルメント(株)製「DISCOVERY DSC25」)を用いて、窒素雰囲気下、10℃/分の昇温速度で測定した。
[Glass transition temperature (Tg)]
Measurement was performed using a differential scanning calorimeter (DISCOVERY DSC25 manufactured by TA Instruments Co., Ltd.) at a temperature increase rate of 10° C./min in a nitrogen atmosphere.
 [分子量分布]
 GPC(ゲル浸透クロマトグラフィー)装置として、東ソー(株)製「HLC―8320GPC」、カラムとして「東ソー(株)製TSKgel」を用いて、試料をTHFに溶解して測定し、ポリスチレン換算で分子量を算出した。
[Molecular weight distribution]
Using "HLC-8320GPC" manufactured by Tosoh Corporation as a GPC (gel permeation chromatography) device and "TSKgel" manufactured by Tosoh Corporation as a column, the sample was dissolved in THF and measured, and the molecular weight was determined in terms of polystyrene. Calculated.
 [屈折率]
 試料を200~240℃で熱プレスすることによって、厚みが200~300μmのフィルムを成形した。このフィルムを縦20~30mm×横10mmの短冊状に切り出し、試験片を得た。得られた試験片について、多波長アッベ屈折計((株)アタゴ製「DR-M4(循環式恒温水槽60-C3)」)を用いて、測定温度20℃で、接触液にジヨードメタンを使用して、589nm(D線)の屈折率nDを測定した。
[Refractive index]
A film having a thickness of 200 to 300 μm was formed by hot pressing the sample at 200 to 240°C. This film was cut into strips measuring 20 to 30 mm in length and 10 mm in width to obtain test pieces. The obtained test piece was measured using a multi-wavelength Abbe refractometer (“DR-M4 (circulating constant temperature water bath 60-C3)” manufactured by Atago Co., Ltd.) at a measurement temperature of 20°C and using diiodomethane as a contact liquid. The refractive index nD at 589 nm (D line) was measured.
 [アッベ数]
 589nm(D線)の屈折率nDを測定した試験片を用いて、測定波長を486nm(F線)、656nm(C線)に変更する以外は屈折率nDと同様にして、屈折率nF、nCをそれぞれ測定した。得られた各波長における屈折率nF、nDおよびnCから、アッベ数を以下の式によって算出した。
[Abbe number]
Using the test piece whose refractive index nD was measured at 589 nm (D line), the refractive index nF, nC was obtained in the same manner as the refractive index nD except that the measurement wavelength was changed to 486 nm (F line) and 656 nm (C line). were measured respectively. The Abbe number was calculated from the obtained refractive indexes nF, nD, and nC at each wavelength using the following formula.
 (アッベ数)=(nD-1)/(nF-nC)。 (Abbe number) = (nD-1)/(nF-nC).
 [複屈折(3倍延伸)]
 試料を200~240℃で熱プレスすることによって、厚みが200~600μmのフィルムを成形した。このフィルムを縦10mm×横50mmの短冊状に切り出し、ガラス転移温度Tg+10℃の温度条件下、25mm/分で延伸倍率が3倍となるように一軸延伸して試験片を得た。得られた試験片を、位相差フィルム・光学材料検査装置(大塚電子(株)製「RETS-100」)を用いて、測定温度20℃、測定波長600nmの条件下、平行ニコル回転法にてリタデーションを測定し、その値を測定部位の厚みで除して複屈折(または3倍複屈折)を算出した。
[Birefringence (3x stretching)]
A film having a thickness of 200 to 600 μm was formed by hot pressing the sample at 200 to 240°C. This film was cut into a strip of 10 mm long x 50 mm wide, and uniaxially stretched at 25 mm/min at a stretching ratio of 3 times at a glass transition temperature Tg + 10° C. to obtain a test piece. The obtained test piece was subjected to parallel Nicol rotation using a retardation film/optical material inspection device (“RETS-100” manufactured by Otsuka Electronics Co., Ltd.) at a measurement temperature of 20°C and a measurement wavelength of 600 nm. Retardation was measured and the value was divided by the thickness of the measurement site to calculate birefringence (or triple birefringence).
 実施例1
 (ポリマーAの調製)
 慣用の方法に従って、特許第7016976号公報の実施例における製造例2に準拠し、ジカルボン酸単位がDNFDP-m由来の構成単位100モル%であり、かつジオール単位中、BPEF由来の構成単位70モル%、EG由来の構成単位30モル%であるポリマーAを調製した。
Example 1
(Preparation of polymer A)
According to the conventional method, according to Production Example 2 in the Examples of Patent No. 7016976, the dicarboxylic acid unit accounts for 100 mol % of the structural unit derived from DNFDP-m, and 70 mol % of the structural unit derived from BPEF in the diol unit. %, and 30 mol % of structural units derived from EG. Polymer A was prepared.
 (第1の分解工程)
 ミキサー粉砕した前記ポリマーA 45.82g(ポリマーAに組み込まれたモノマーの総数が略0.1モル分に相当)に、炭酸ジメチル90.1g、LiOMeを10質量%濃度で含むメタノール溶液4.58gを加え、65℃で3時間反応した。得られた反応混合物に、水18g、10質量%HCl水溶液3.5gを加え、65℃で15分攪拌後、分液した有機相を回収し、ろ過により不溶分を除去した。有機相をLC-MSで分析した結果、以下の通りであった。
(First decomposition step)
45.82 g of the mixer-pulverized polymer A (the total number of monomers incorporated into polymer A corresponds to approximately 0.1 mole), 90.1 g of dimethyl carbonate, and 4.58 g of a methanol solution containing LiOMe at a concentration of 10% by mass. was added and reacted at 65°C for 3 hours. To the resulting reaction mixture were added 18 g of water and 3.5 g of a 10% by mass HCl aqueous solution, and after stirring at 65° C. for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration. The results of LC-MS analysis of the organic phase were as follows.
 BPEF:1.880面積%
 下記式で表されるBPEFモノ炭酸エステル体:11.265面積%
BPEF: 1.880 area%
BPEF monocarbonate expressed by the following formula: 11.265 area%
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 下記式で表されるBPEFジ炭酸エステル体:18.499面積% BPEF dicarbonate expressed by the following formula: 18.499 area%
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 DNFDP-m:51.131面積%。 DNFDP-m: 51.131 area%.
 (第2の分解工程)
 有機相を濃縮し、粗生成物に対して、メタノール80.1g、水酸化カリウム7.0g加え、65℃で還流条件にて1時間反応した。60℃以上の温度でろ過し、40℃のメタノール150gで洗浄することで、ろ過残渣としてDNFDP-mの粗結晶30.1gを得た。また、本ろ過のろ液には、BPEFが主成分として含まれる。
(Second decomposition step)
The organic phase was concentrated, and 80.1 g of methanol and 7.0 g of potassium hydroxide were added to the crude product, followed by reaction at 65° C. for 1 hour under reflux conditions. By filtering at a temperature of 60° C. or higher and washing with 150 g of methanol at 40° C., 30.1 g of crude crystals of DNFDP-m were obtained as a filtration residue. Moreover, the filtrate of the main filtration contains BPEF as a main component.
 (DNFDP-mの精製)
 粗結晶30.1gにトルエン75.1gを加え、80℃で完全に溶解させた後、水20g、10質量%HCl水溶液5g加え、再度80℃で15分攪拌した。静置し、分液した水相を除去後、有機相に水20gを加えて水洗する操作を3回実施した。80℃の有機相を室温まで放冷し、室温で1時間攪拌した後、ろ過し、残渣をトルエンおよびメタノールで順次洗浄した。洗浄したろ過残渣を80℃で12時間減圧乾燥することにより、白色固体のDNFDP-mを14.7g(収率50%、LC純度97.4%)得た。
(Purification of DNFDP-m)
75.1 g of toluene was added to 30.1 g of crude crystals and completely dissolved at 80° C., then 20 g of water and 5 g of a 10% by mass HCl aqueous solution were added, and the mixture was stirred again at 80° C. for 15 minutes. After leaving to stand still and removing the separated aqueous phase, 20 g of water was added to the organic phase and washing was performed three times. The organic phase at 80°C was allowed to cool to room temperature, stirred at room temperature for 1 hour, and then filtered, and the residue was washed successively with toluene and methanol. The washed filtration residue was dried under reduced pressure at 80° C. for 12 hours to obtain 14.7 g of white solid DNFDP-m (yield 50%, LC purity 97.4%).
 (BPEFの精製)
 BPEFが主成分として含むろ液を5~10℃で1h攪拌した後、ろ過し、10℃のメタノールで洗浄することにより、粗結晶15.1gを得た。得られた粗結晶にトルエン52.8gを加え、80℃で完全に溶解させた後、水20g、10質量%HCl水溶液5gを加え、再度80℃で15分攪拌した。静置し、分液した水相を除去後、有機相に水20gを加えて洗浄する水洗操作を3回実施した。80℃の有機相を室温まで放冷し、さらに5~10℃で1時間攪拌した後、ろ過し、残渣を10℃のトルエンで洗浄した。洗浄したろ過残渣を80℃で12時間減圧乾燥することにより、白色固体のBPEFを10.7g(収率70%、LC純度98.9%)得た。
(Purification of BPEF)
The filtrate containing BPEF as a main component was stirred at 5 to 10°C for 1 hour, filtered, and washed with methanol at 10°C to obtain 15.1 g of crude crystals. After adding 52.8 g of toluene to the obtained crude crystals and completely dissolving them at 80°C, 20 g of water and 5 g of a 10% by mass HCl aqueous solution were added, and the mixture was stirred again at 80°C for 15 minutes. After leaving to stand and removing the separated aqueous phase, a water washing operation of adding 20 g of water to the organic phase and washing was carried out three times. The organic phase at 80°C was allowed to cool to room temperature, further stirred at 5 to 10°C for 1 hour, filtered, and the residue was washed with toluene at 10°C. The washed filtration residue was dried under reduced pressure at 80° C. for 12 hours to obtain 10.7 g of white solid BPEF (yield 70%, LC purity 98.9%).
 実施例2
 (ポリマーBの調製)
 慣用の方法に従って、特許第7016976号公報の実施例における製造例2に準拠し、ジカルボン酸単位がDNFDP-m由来の構成単位100モル%であり、かつジオール単位中、BPEF由来の構成単位10モル%、EG由来の構成単位90モル%であるポリマーBを調製した。
Example 2
(Preparation of polymer B)
According to the conventional method, according to Production Example 2 in the Examples of Patent No. 7016976, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from DNFDP-m, and the structural unit of the diol unit is 10 mol % of the structural unit derived from BPEF. %, and 90 mol % of structural units derived from EG. Polymer B was prepared.
 (第1の分解工程)
 ミキサー粉砕したポリマーB 3.45g(ポリマーBに組み込まれたモノマーの総数が略0.01モル分に相当)に、炭酸ジメチル9.01g、LiOMeを10質量%濃度で含むメタノール溶液0.35gを加え、65℃で3時間反応した。得られた反応混合物に、トルエン10gを加え65℃で完溶後、水3.0g、10質量%HCl水溶液0.34gを加え、65℃で15分攪拌した。分液した水相を除去し、有機相に対して水洗する操作を3回実施後、ろ過により不溶分を除去して濃縮し、粗生成物を得た。
(First decomposition step)
To 3.45 g of mixer-pulverized polymer B (the total number of monomers incorporated in polymer B corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.35 g of a methanol solution containing LiOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 3 hours. To the obtained reaction mixture, 10 g of toluene was added and dissolved completely at 65°C, then 3.0 g of water and 0.34 g of a 10% by mass HCl aqueous solution were added, and the mixture was stirred at 65°C for 15 minutes. After removing the separated aqueous phase and washing the organic phase with water three times, insoluble matter was removed by filtration and concentrated to obtain a crude product.
 (第2の分解工程)
 粗生成物に対して、メタノール6.4g、水酸化カリウム0.56g加え、65℃の還流条件で1時間反応した。50℃でろ過し、40℃のメタノール15gで洗浄することで、ろ過残渣としてのDNFDP-mの粗結晶3.35gを得た。また、本ろ過のろ液には、BPEFが主成分として含まれる。
(Second decomposition step)
6.4 g of methanol and 0.56 g of potassium hydroxide were added to the crude product, and the mixture was reacted under reflux conditions at 65° C. for 1 hour. By filtering at 50°C and washing with 15g of methanol at 40°C, 3.35g of crude crystals of DNFDP-m were obtained as a filtration residue. Moreover, the filtrate of the main filtration contains BPEF as a main component.
 (DNFDP-mの精製)
 粗結晶3.35gにトルエン8.13gを加え、80℃で完全に溶解させた後、水3.0g、10質量%HCl水溶液0.6gを加え、80℃で15分攪拌した。静置し、分液した水相を除去後、有機相に水3.0gを加えて水洗する操作を3回繰り返した。80℃の有機相を室温まで放冷し、5~10℃で1時間攪拌した。ろ過し、残渣をメタノールで洗浄後、洗浄したろ過残渣を50℃で12時間減圧乾燥することにより、白色固体のDNFDP-mを2.48g(収率84%、LC純度93.7%)得た。
(Purification of DNFDP-m)
8.13 g of toluene was added to 3.35 g of crude crystals and completely dissolved at 80°C, then 3.0 g of water and 0.6 g of a 10% by mass HCl aqueous solution were added, and the mixture was stirred at 80°C for 15 minutes. After allowing the mixture to stand and removing the separated aqueous phase, 3.0 g of water was added to the organic phase and the operation of washing with water was repeated three times. The organic phase at 80°C was allowed to cool to room temperature and stirred at 5-10°C for 1 hour. After filtration and washing the residue with methanol, the washed filtration residue was dried under reduced pressure at 50°C for 12 hours to obtain 2.48 g of white solid DNFDP-m (yield 84%, LC purity 93.7%). Ta.
 (BPEFの精製)
 ろ液Bに10質量%HCl水溶液0.6g、水5gを加え、5~10℃で1時間攪拌した後、ろ過し、残渣を10℃のメタノールで洗浄することにより、粗結晶0.09g得た。得られた粗結晶にトルエン2.25gを加え、80℃で完全に溶解させた後、放冷し、5~10℃で1時間攪拌した。ろ過し、ろ過残渣を10℃のトルエンで洗浄した後、洗浄したろ過残渣を50℃で12時間減圧乾燥することにより、白色固体のBPEFを0.04g(収率18%、LC純度94.2%)得た。
(Purification of BPEF)
Add 0.6 g of a 10% by mass HCl aqueous solution and 5 g of water to filtrate B, stir at 5 to 10°C for 1 hour, filter, and wash the residue with methanol at 10°C to obtain 0.09 g of crude crystals. Ta. 2.25 g of toluene was added to the obtained crude crystals and completely dissolved at 80°C, then allowed to cool and stirred at 5 to 10°C for 1 hour. After filtering and washing the filtration residue with toluene at 10°C, the washed filtration residue was dried under reduced pressure at 50°C for 12 hours to obtain 0.04g of white solid BPEF (yield 18%, LC purity 94.2). %)Obtained.
 実施例3
 (ポリマーCの調製)
 慣用の方法に従って、特開2016-069643号公報の実施例16に準拠し、ジカルボン酸単位がFDP-m由来の構成単位100モル%であり、かつジオール単位中、BNEF由来の構成単位70モル%、EG由来の構成単位30モル%であるポリマーCを調製した。
Example 3
(Preparation of Polymer C)
According to the conventional method, based on Example 16 of JP-A-2016-069643, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from FDP-m, and 70 mol% of the structural unit derived from BNEF among the diol units. , Polymer C having 30 mol % of structural units derived from EG was prepared.
 (第1の分解工程)
 ミキサー粉砕したポリマーC 3.67g(ポリマーCに組み込まれたモノマーの総数が略0.01モル分に相当)に、炭酸ジメチル9.01g、LiOMeを10質量%濃度で含むメタノール溶液0.37gを加え、65℃で2時間反応した。得られた反応混合物に、水0.9g、10質量%HCl水溶液0.37gを加え、65℃で15分攪拌後、分液した有機相を回収し、ろ過により不溶分を除去した。有機相をLC-MSで分析した結果、以下の通りであった。
(First decomposition step)
To 3.67 g of mixer-pulverized polymer C (the total number of monomers incorporated into polymer C corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.37 g of a methanol solution containing LiOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 2 hours. To the resulting reaction mixture, 0.9 g of water and 0.37 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C. for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration. The results of LC-MS analysis of the organic phase were as follows.
 BNEF:4.400面積%
 下記式で表されるBNEFモノ炭酸エステル体:22.806面積%
BNEF: 4.400 area%
BNEF monocarbonate expressed by the following formula: 22.806 area%
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 下記式で表されるBNEFジ炭酸エステル体:37.648面積% BNEF dicarbonate expressed by the following formula: 37.648 area%
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 FDP-m:18.616面積%。 FDP-m: 18.616 area%.
 (第2の分解工程)
 有機相を濃縮し、粗生成物に対して、メタノール3.2g、水酸化カリウム0.56gを加え、65℃で還流条件にて1時間反応した。反応終了後、ヘプタン9.6gを加え、65℃で10分攪拌した後、下相(メタノール、BNEF含有)と上相(ヘプタン、FDP-m含有)をそれぞれ回収した。
(Second decomposition step)
The organic phase was concentrated, and 3.2 g of methanol and 0.56 g of potassium hydroxide were added to the crude product, and the mixture was reacted at 65° C. under reflux conditions for 1 hour. After the reaction was completed, 9.6 g of heptane was added and stirred at 65° C. for 10 minutes, and then the lower phase (containing methanol and BNEF) and the upper phase (containing heptane and FDP-m) were collected.
 (FDP-mの精製)
 前述の上相を濃縮し、50℃で12時間減圧乾燥することにより、白色固体のFDP-mを0.13g(収率8%、LC純度92.2%)得た。
(Purification of FDP-m)
The above-mentioned upper phase was concentrated and dried under reduced pressure at 50° C. for 12 hours to obtain 0.13 g of white solid FDP-m (yield 8%, LC purity 92.2%).
 (BNEFの精製)
 前述の下相にトルエン10g、10質量%HCl水溶液4g、水3gを加え、80℃で攪拌後、室温まで放冷し、室温で1時間攪拌後、ろ過し、残渣を2-プロパノールで洗浄した。洗浄したろ過残渣を50℃で12時間減圧乾燥することにより、白色固体のBNEFを0.85g(収率45%、LC純度96.0%)得た。
(Purification of BNEF)
10 g of toluene, 4 g of 10% by mass HCl aqueous solution, and 3 g of water were added to the lower phase, stirred at 80°C, allowed to cool to room temperature, stirred at room temperature for 1 hour, filtered, and the residue was washed with 2-propanol. . The washed filtration residue was dried under reduced pressure at 50° C. for 12 hours to obtain 0.85 g of white solid BNEF (yield 45%, LC purity 96.0%).
 実施例4
 (ポリマーDの調製)
 慣用の方法に従って、特開2013-064117号公報の参考例6に準拠し、ジカルボン酸単位がDMT由来の構成単位100モル%であり、かつジオール単位中、BPEF由来の構成単位70モル%、EG由来の構成単位30モル%であるポリマーDを調製した。
Example 4
(Preparation of Polymer D)
According to the conventional method, based on Reference Example 6 of JP-A-2013-064117, the dicarboxylic acid unit is 100 mol% of the structural unit derived from DMT, and the diol unit is 70 mol% of the structural unit derived from BPEF, EG Polymer D having 30 mol % of structural units derived from the above was prepared.
 (第1の分解工程)
 ミキサー粉砕したポリマーD 2.60g(ポリマーDに組み込まれたモノマーの総数が略0.01モル分に相当)に、炭酸ジメチル9.01g、LiOMeを10質量%濃度で含むメタノール溶液0.26gを加え、65℃で3時間反応した。得られた反応混合物に、水0.9g、10質量%HCl水溶液0.26g、酢酸エチル5gを加え、65℃で15分攪拌後、分液した有機相を回収し、ろ過により不溶分を除去した。
(First decomposition step)
To 2.60 g of mixer-pulverized polymer D (the total number of monomers incorporated in polymer D corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.26 g of a methanol solution containing LiOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 3 hours. To the obtained reaction mixture, 0.9 g of water, 0.26 g of 10% by mass HCl aqueous solution, and 5 g of ethyl acetate were added, and after stirring at 65°C for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration. did.
 (第2の分解工程)
 有機相を濃縮し、粗生成物に対して、メタノール9.6g、水酸化カリウム0.56gを加え、65℃で還流条件にて1時間反応した。反応終了後、10質量%HCl水溶液を3g加え、5~10℃で30分攪拌した。
(Second decomposition step)
The organic phase was concentrated, and 9.6 g of methanol and 0.56 g of potassium hydroxide were added to the crude product, and the mixture was reacted at 65° C. under reflux conditions for 1 hour. After the reaction was completed, 3 g of 10% by mass HCl aqueous solution was added, and the mixture was stirred at 5 to 10°C for 30 minutes.
 (BPEFの精製)
 ろ過を実施し、残渣をメタノールで洗浄した。洗浄したろ過残渣を80℃で12時間減圧乾燥することにより、白色固体のBPEFを1.5g(収率98%、LC純度93.6%)得た。
(Purification of BPEF)
Filtration was performed and the residue was washed with methanol. The washed filtration residue was dried under reduced pressure at 80° C. for 12 hours to obtain 1.5 g of white solid BPEF (yield 98%, LC purity 93.6%).
 実施例5
 (ポリマーEの調製)
 慣用の方法に従って、特開2014-218645号公報の実施例3に準拠し、ジカルボン酸単位がFDP-m由来の構成単位100モル%であり、かつジオール単位中、BPEF由来の構成単位80モル%、EG由来の構成単位20モル%であるポリマーEを調製した。
Example 5
(Preparation of Polymer E)
According to the conventional method, based on Example 3 of JP-A-2014-218645, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from FDP-m, and 80 mol% of the structural unit derived from BPEF among the diol units. , Polymer E having 20 mol % of structural units derived from EG was prepared.
 (第1の分解工程)
 ミキサー粉砕したポリマーE 3.50g(ポリマーEに組み込まれたモノマーの総数が略0.01モル分に相当)に、炭酸ジメチル9.01g、LiOMeを10質量%濃度で含むメタノール溶液0.35gを加え、65℃で3時間反応した。得られた反応混合物に、水0.9g、10質量%HCl水溶液0.37gを加え、65℃で15分攪拌後、分液した有機相を回収し、ろ過により不溶分を除去した。
(First decomposition step)
To 3.50 g of mixer-pulverized polymer E (the total number of monomers incorporated in polymer E corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.35 g of a methanol solution containing LiOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 3 hours. To the resulting reaction mixture, 0.9 g of water and 0.37 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C. for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration.
 (第2の分解工程)
 有機相を濃縮し、粗生成物に対して、メタノール3.2g、水酸化カリウム0.56g加え、65℃で還流条件にて1時間反応した。反応終了後、ヘプタン9.6gを加え、65℃で10分攪拌した後、下相(メタノール、BPEF含有)と上相(ヘプタン、FDP-m含有)をそれぞれ回収した。
(Second decomposition step)
The organic phase was concentrated, and 3.2 g of methanol and 0.56 g of potassium hydroxide were added to the crude product, followed by reaction at 65° C. for 1 hour under reflux conditions. After the reaction was completed, 9.6 g of heptane was added and stirred at 65° C. for 10 minutes, and then the lower phase (containing methanol and BPEF) and the upper phase (containing heptane and FDP-m) were collected.
 (FDP-mの精製)
 前述の上相を濃縮し、50℃で12時間減圧乾燥することにより、白色固体のFDP-mを0.10g(収率6%、LC純度94.9%)得た。
(Purification of FDP-m)
The above-mentioned upper phase was concentrated and dried under reduced pressure at 50° C. for 12 hours to obtain 0.10 g of white solid FDP-m (yield 6%, LC purity 94.9%).
 (BPEFの精製)
 前述の下相にトルエン8g、10質量%HCl水溶液を3g加え、60℃で攪拌後、室温までゆっくり放冷し、室温で1時間攪拌後、ろ過し、残渣をメタノールで洗浄して粗結晶を1.63g得た。粗結晶にトルエン6.52gを加え、85℃で溶解後、室温まで放冷し、晶析した。ろ過し、残渣をメタノールで洗浄し、洗浄した残渣を50℃で12時間減圧乾燥することにより、白色固体のBPEFを0.31g(収率18%、LC純度94.4%)得た。
(Purification of BPEF)
8 g of toluene and 3 g of 10% by mass HCl aqueous solution were added to the lower phase, stirred at 60°C, slowly cooled to room temperature, stirred at room temperature for 1 hour, filtered, and the residue was washed with methanol to obtain crude crystals. 1.63g was obtained. 6.52 g of toluene was added to the crude crystals, and after dissolving at 85° C., the mixture was allowed to cool to room temperature and crystallized. It was filtered, the residue was washed with methanol, and the washed residue was dried under reduced pressure at 50° C. for 12 hours to obtain 0.31 g of white solid BPEF (yield 18%, LC purity 94.4%).
 実施例6
 (第1の分解工程)
 ミキサー粉砕したポリマーA 4.582g(ポリマーAに組み込まれたモノマーの総数が略0.01モル分に相当)に、炭酸ジメチル9.01g、NaOMeを10質量%濃度で含むメタノール溶液0.916gを加え、65℃で2時間反応した。得られた反応混合物に、水1.5g、10質量%HCl水溶液0.55gを加え、65℃で15分攪拌後、分液した有機相を回収し、ろ過により不溶分を除去した。
Example 6
(First decomposition step)
To 4.582 g of mixer-pulverized polymer A (the total number of monomers incorporated into polymer A corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.916 g of a methanol solution containing NaOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 2 hours. To the obtained reaction mixture, 1.5 g of water and 0.55 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C. for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration.
 (第2の分解工程)
 有機相を濃縮し、粗生成物に対して、メタノール8.01g、水酸化カリウム0.56gを加え、65℃で還流条件にて1時間反応した。60℃以上のまま、ろ過し、残渣を40℃のメタノール15.0gで洗浄することで、DNFDP-mの粗結晶4.4gを得た。また、本ろ過のろ液には、BPEFが主成分として含まれる。
(Second decomposition step)
The organic phase was concentrated, and 8.01 g of methanol and 0.56 g of potassium hydroxide were added to the crude product, and the mixture was reacted at 65° C. under reflux conditions for 1 hour. The mixture was filtered at 60°C or above, and the residue was washed with 15.0g of methanol at 40°C to obtain 4.4g of DNFDP-m crude crystals. Moreover, the filtrate of the main filtration contains BPEF as a main component.
 (DNFDP-mの精製)
 粗結晶4.4gにトルエン10.9gを加え、80℃で完全に溶解させた後、水5g、10質量%HCl水溶液0.5gを加え、再度80℃で15分攪拌した。静置し、分液した水相を除去後、有機相に水5gを加え水洗する操作を3回実施した。80℃の有機相を室温まで放冷し、さらに5~10℃で1時間攪拌した後、ろ過し、残渣をトルエンおよびメタノールで順次洗浄した。洗浄した残渣を50℃で12時間減圧乾燥することにより、白色固体のDNFDP-mを1.56g(収率53%、LC純度96.4%)得た。
(Purification of DNFDP-m)
10.9 g of toluene was added to 4.4 g of crude crystals and completely dissolved at 80° C., then 5 g of water and 0.5 g of a 10% by mass HCl aqueous solution were added, and the mixture was stirred again at 80° C. for 15 minutes. After leaving to stand still and removing the separated aqueous phase, 5 g of water was added to the organic phase and washing with water was performed three times. The organic phase at 80°C was allowed to cool to room temperature, further stirred at 5 to 10°C for 1 hour, filtered, and the residue was washed successively with toluene and methanol. The washed residue was dried under reduced pressure at 50° C. for 12 hours to obtain 1.56 g of white solid DNFDP-m (yield 53%, LC purity 96.4%).
 (BPEFの精製)
 ろ液Fを5~10℃で1時間攪拌した後、ろ過し、残渣を10℃のメタノールで洗浄することにより、粗結晶1.03g得た。得られた粗結晶にトルエン3.08gを加え、80℃で完全に溶解させた後、水1g、10質量%HCl水溶液0.5gを加え、再度80℃で15分攪拌した。静置し、分液した水相を除去後、有機相に水1gを加え水洗する操作を3回実施した。80℃の有機相を室温まで放冷し、さらに5~10℃で1時間攪拌した後、ろ過し、残渣を10℃のメタノールで洗浄した。洗浄した残渣を50℃で12時間減圧乾燥することにより、白色固体のBPEFを0.45g(収率29%、LC純度98.1%)得た。
(Purification of BPEF)
Filtrate F was stirred at 5 to 10° C. for 1 hour, filtered, and the residue was washed with methanol at 10° C. to obtain 1.03 g of crude crystals. After adding 3.08 g of toluene to the obtained crude crystals and completely dissolving them at 80°C, 1 g of water and 0.5 g of a 10% by mass HCl aqueous solution were added, and the mixture was stirred again at 80°C for 15 minutes. After leaving to stand and removing the separated aqueous phase, 1 g of water was added to the organic phase and washing with water was performed three times. The organic phase at 80°C was allowed to cool to room temperature, further stirred at 5 to 10°C for 1 hour, filtered, and the residue was washed with methanol at 10°C. The washed residue was dried under reduced pressure at 50° C. for 12 hours to obtain 0.45 g of white solid BPEF (yield 29%, LC purity 98.1%).
 実施例7
 (ポリマーFの調製)
 慣用の方法に従って、特開2013-064118号公報の実施例7に準拠し、ジカルボン酸単位がFDP-m由来の構成単位100モル%であり、かつジオール単位中、BOPPEF由来の構成単位70モル%、EG由来の構成単位30モル%であるポリマーFを調製した。
Example 7
(Preparation of polymer F)
According to the conventional method, based on Example 7 of JP-A-2013-064118, the dicarboxylic acid unit accounts for 100 mol% of the structural unit derived from FDP-m, and 70 mol% of the structural unit derived from BOPPEF among the diol units. , Polymer F having 30 mol % of structural units derived from EG was prepared.
 (第1の分解工程)
 ミキサー粉砕したポリマーF 4.12g(ポリマーFに組み込まれたモノマーの総数が略0.01モル分に相当)に、炭酸ジメチル9.01g、LiOMeを10質量%濃度で含むメタノール溶液0.41gを加え、65℃で4時間反応した。得られた反応混合物に、水0.9g、10質量%HCl水溶液0.41gを加え、65℃で15分攪拌後、分液した有機相を回収し、ろ過により不溶分を除去した。
(First decomposition step)
To 4.12 g of mixer-pulverized polymer F (the total number of monomers incorporated in polymer F corresponds to approximately 0.01 mole), 9.01 g of dimethyl carbonate and 0.41 g of a methanol solution containing LiOMe at a concentration of 10% by mass were added. The mixture was added and reacted at 65°C for 4 hours. To the resulting reaction mixture, 0.9 g of water and 0.41 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C. for 15 minutes, the separated organic phase was collected, and insoluble matter was removed by filtration.
 (第2の分解工程)
 有機相を濃縮し、粗生成物に対して、メタノール11.2g、水酸化カリウム0.56g加え、65℃で還流条件にて1時間反応した。反応終了後、室温までゆっくり放冷し、ろ過、メタノール15.0gで洗浄することで、BOPPEFの粗結晶3.3gを得た。また、本ろ過のろ液には、FDP-mが主成分として含まれる。
(Second decomposition step)
The organic phase was concentrated, and 11.2 g of methanol and 0.56 g of potassium hydroxide were added to the crude product, followed by reaction at 65° C. for 1 hour under reflux conditions. After the reaction was completed, the mixture was slowly cooled to room temperature, filtered, and washed with 15.0 g of methanol to obtain 3.3 g of crude crystals of BOPPEF. Furthermore, the filtrate of the main filtration contains FDP-m as a main component.
 (FDP-mの精製)
 前述のFDP-mを主成分として含むろ液に、ヘプタン25gを加えて40℃で1時間攪拌後、上相を濃縮し、50℃で12時間減圧乾燥することにより、白色固体のFDP-mを0.21g(収率12%、LC純度96.3%)得た。
(Purification of FDP-m)
25 g of heptane was added to the above-mentioned filtrate containing FDP-m as a main component, and after stirring at 40°C for 1 hour, the upper phase was concentrated and dried under reduced pressure at 50°C for 12 hours to obtain white solid FDP-m. 0.21 g (yield 12%, LC purity 96.3%) was obtained.
 (BOPPEFの精製)
 前述の粗結晶にトルエン11.4g、水5g、10質量%HCl水溶液を0.2g加え、60℃で攪拌後、水5gで水洗操作を実施し、室温までゆっくり放冷し、晶析した。ろ過し、残渣をメタノールで洗浄した後、80℃で12時間減圧乾燥することにより、白色固体のBOPPEFを1.99g(収率84%、LC純度97.2%)得た。
(Purification of BOPPEF)
To the above-mentioned crude crystals, 11.4 g of toluene, 5 g of water, and 0.2 g of a 10% by mass HCl aqueous solution were added, and after stirring at 60° C., a washing operation was carried out with 5 g of water, and the mixture was allowed to cool slowly to room temperature to crystallize. After filtering and washing the residue with methanol, it was dried under reduced pressure at 80° C. for 12 hours to obtain 1.99 g of white solid BOPPEF (yield: 84%, LC purity: 97.2%).
 実施例1~7について、原料ポリマー組成、第1の分解工程後の生成物の組成、第2の分解工程後における精製工程後のジカルボン酸エステルおよびジオールの収率および純度を表1に示す。 For Examples 1 to 7, the raw material polymer composition, the composition of the product after the first decomposition step, and the yield and purity of the dicarboxylic acid ester and diol after the purification step after the second decomposition step are shown in Table 1.
Figure JPOXMLDOC01-appb-T000027
 表1の結果から明らかなように、実施例1~7のいずれにおいても、第1の分解工程において、新規なモノ炭酸エステル体およびジ炭酸エステルが生成し、さらに第2の分解工程および精製工程を経て、ジカルボン酸エステルおよびジオールを回収することができた。
Figure JPOXMLDOC01-appb-T000027
As is clear from the results in Table 1, in any of Examples 1 to 7, novel monocarbonic esters and dicarbonate esters were produced in the first decomposition step, and further in the second decomposition step and purification step. Through this process, dicarboxylic acid ester and diol could be recovered.
 実施例8
 (ポリマーGの調製)
 慣用の方法に従って、特開2013―064118号公報の実施例6に準拠して、ジカルボン酸単位中、DMN由来の構成単位30モル%、FDP-m由来の構成単位70モル%であり、かつジオール単位中、BPEF由来の構成単位85モル%、EG由来の構成単位15モル%であるポリマーG(表2中の組成比を有するポリマーG)を調製した。
Example 8
(Preparation of polymer G)
According to a conventional method, based on Example 6 of JP-A No. 2013-064118, the dicarboxylic acid unit contains 30 mol% of the structural unit derived from DMN, 70 mol% of the structural unit derived from FDP-m, and diol Polymer G (polymer G having the composition ratio shown in Table 2) was prepared, in which the units contained 85 mol% of the structural units derived from BPEF and 15 mol% of the structural units derived from EG.
 (ポリエステルGの解重合)
 ペレットのポリマーG 346.10g(ポリマーGに組み込まれたモノマーの総数が略1.0モルに相当)に、炭酸ジメチル630.56g、LiOMeを10質量%濃度で含むメタノール溶液34.610gを加え、65℃で3時間反応した。水250g、10質量%HCl水溶液34g、トルエン600gを加え、65℃で攪拌後、水相を除去した。水相の導電率が10μS/cm以下になるまで水洗操作を実施後、有機相をろ過して不溶分を除去した。有機相を濃縮し、粗生成物に対して、メタノール480g、水酸化カリウム50.5g加え、室温で2時間反応した。10質量%HCl水溶液100g、水300g加え、室温で1時間攪拌した。吸引ろ過し、ろ液の導電率が10μS/cm以下になるまで60℃の温水で洗浄した後、50℃で減圧乾燥することにより、白色固体(HPLC測定からモル比算出:BPEF/DMN/FDP-m=0.850/0.280/0.316)を291g得た。
(Depolymerization of polyester G)
630.56 g of dimethyl carbonate and 34.610 g of a methanol solution containing LiOMe at a concentration of 10% by mass were added to 346.10 g of pelleted polymer G (the total number of monomers incorporated in polymer G corresponds to approximately 1.0 mol), The reaction was carried out at 65°C for 3 hours. 250 g of water, 34 g of a 10% by mass HCl aqueous solution, and 600 g of toluene were added, and after stirring at 65° C., the aqueous phase was removed. After performing a water washing operation until the conductivity of the aqueous phase became 10 μS/cm or less, the organic phase was filtered to remove insoluble matter. The organic phase was concentrated, and 480 g of methanol and 50.5 g of potassium hydroxide were added to the crude product, followed by reaction at room temperature for 2 hours. 100 g of a 10% by mass HCl aqueous solution and 300 g of water were added, and the mixture was stirred at room temperature for 1 hour. After suction filtration and washing with warm water at 60°C until the conductivity of the filtrate becomes 10 μS/cm or less, drying under reduced pressure at 50°C produces a white solid (molar ratio calculated from HPLC measurement: BPEF/DMN/FDP). -m=0.850/0.280/0.316) was obtained.
 (再重合)
 得られた解重合試料68.70gを用いて、表2に示すように、ポリマーGの組成比とするために足りないモノマー成分(表2中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
(repolymerization)
Using 68.70 g of the obtained depolymerized sample, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G, and JP-A-2013 A repolymerized product was produced in accordance with Example 6 of JP-A-064118.
 実施例9
 実施例8で得られた解重合試料20.00gを用いて、表2に示すように、ポリマーGの組成比とするために足りないモノマー成分(表2中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 9
Using 20.00 g of the depolymerized sample obtained in Example 8, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例10
 実施例8で得られた解重合試料10.00gを用いて、表2に示すように、ポリマーGの組成比とするために足りないモノマー成分(表2中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 10
Using 10.00 g of the depolymerized sample obtained in Example 8, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例11
 実施例8で得られた解重合試料5.00gを用いて、表2に示すように、ポリマーGの組成比とするために足りないモノマー成分(表2中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 11
Using 5.00 g of the depolymerized sample obtained in Example 8, as shown in Table 2, insufficient monomer components (additional portions in Table 2) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例12
 (ポリマーGの解重合)
 実施例8で得られたペレットのポリマーG 173.05g(ポリマーGに組み込まれたモノマーの総数が略0.5モルに相当)に、炭酸ジメチル315.28g、NaOMe3.461g、メタノール31.149gを加え、60℃で2時間反応した。水125g、10質量%HCl水溶液17g、トルエン300gを加え、60℃で攪拌後、水相を除去した。水相の導電率が10μs/cm以下になるまで水洗操作を実施後、有機相をろ過して不溶分を除去した。有機相を濃縮し、粗生成物に対して、メタノール288g、水酸化カリウム25.2gを加え、室温で2時間反応した。10質量%HCl水溶液50g、水150g加え、室温で1時間攪拌した。吸引ろ過し、ろ液の導電率が10μs/cm以下になるまで温水で洗浄した後、50℃で減圧乾燥することにより、白色固体(HPLC測定からモル比算出:BPEF/DMN/FDP-m=0.850/0.248/0.306)を140g得た。
Example 12
(Depolymerization of polymer G)
315.28 g of dimethyl carbonate, 3.461 g of NaOMe, and 31.149 g of methanol were added to 173.05 g of the pelleted polymer G obtained in Example 8 (the total number of monomers incorporated into the polymer G corresponds to approximately 0.5 mol). The mixture was added and reacted at 60°C for 2 hours. 125 g of water, 17 g of a 10% by mass HCl aqueous solution, and 300 g of toluene were added, and after stirring at 60° C., the aqueous phase was removed. After performing a water washing operation until the conductivity of the aqueous phase became 10 μs/cm or less, the organic phase was filtered to remove insoluble matter. The organic phase was concentrated, and 288 g of methanol and 25.2 g of potassium hydroxide were added to the crude product, followed by reaction at room temperature for 2 hours. 50 g of a 10% by mass HCl aqueous solution and 150 g of water were added, and the mixture was stirred at room temperature for 1 hour. After suction filtration and washing with warm water until the conductivity of the filtrate becomes 10 μs/cm or less, drying under reduced pressure at 50°C produces a white solid (mole ratio calculation from HPLC measurement: BPEF/DMN/FDP-m= 0.850/0.248/0.306) was obtained.
 (再重合)
 得られた解重合試料69.81gを用いて、表3に示すように、ポリマーGの組成比とするために足りないモノマー成分(表3中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
(repolymerization)
Using 69.81 g of the obtained depolymerized sample, as shown in Table 3, the monomer components that were insufficient to achieve the composition ratio of Polymer G (additional amount in Table 3) were newly added, and JP-A-2013 A repolymerized product was produced in accordance with Example 6 of JP-A-064118.
 実施例13
 実施例12で得られた解重合試料20.00gを用いて、表3に示すように、ポリマーGの組成比とするために足りないモノマー成分(表3中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 13
Using 20.00 g of the depolymerized sample obtained in Example 12, as shown in Table 3, insufficient monomer components (additional portions in Table 3) were newly added to achieve the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例14
 実施例12で得られた解重合試料10.00gを用いて、表3に示すように、ポリマーGの組成比とするために足りないモノマー成分(表3中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 14
Using 10.00 g of the depolymerized sample obtained in Example 12, as shown in Table 3, insufficient monomer components (additional portions in Table 3) were newly added to obtain the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例15
 実施例12で得られた解重合試料5.00gを用いて、表3に示すように、ポリマーGの組成比とするために足りないモノマー成分(表3中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 15
Using 5.00 g of the depolymerized sample obtained in Example 12, as shown in Table 3, insufficient monomer components (additional portions in Table 3) were newly added to obtain the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例16
 (ポリマーGの解重合)
 実施例8で得られたペレットのポリマーG 242.27g(ポリマーGに組み込まれたモノマーの総数が略0.7モルに相当)に、炭酸ジメチル441.39g、LiOMeを10質量%濃度で含むメタノール溶液24.227gを加え、60℃で2時間反応した。水63g、10質量%HCl水溶液24g加え、65℃で攪拌後、有機相をろ過により不溶分を除去した。有機相を濃縮し、粗生成物に対して、メタノール359g、水酸化カリウム39.3g加え、室温で2時間反応した。10質量%HCl水溶液105g、水280g加え、室温で1時間攪拌した。吸引ろ過し、水で洗浄した後、50℃で減圧乾燥することにより、白色固体(HPLC測定からモル比算出:BPEF/DMN/FDP-m=0.850/0.382/0.486)を238g得た。
Example 16
(Depolymerization of polymer G)
242.27 g of the pelleted polymer G obtained in Example 8 (the total number of monomers incorporated into the polymer G corresponds to approximately 0.7 mol), 441.39 g of dimethyl carbonate, and methanol containing LiOMe at a concentration of 10% by mass. 24.227 g of the solution was added and reacted at 60°C for 2 hours. 63 g of water and 24 g of a 10% by mass HCl aqueous solution were added, and after stirring at 65° C., the organic phase was filtered to remove insoluble matter. The organic phase was concentrated, and 359 g of methanol and 39.3 g of potassium hydroxide were added to the crude product, followed by reaction at room temperature for 2 hours. 105 g of a 10% by mass aqueous HCl solution and 280 g of water were added, and the mixture was stirred at room temperature for 1 hour. After suction filtration, washing with water, and drying under reduced pressure at 50°C, a white solid (molar ratio calculated from HPLC measurement: BPEF/DMN/FDP-m = 0.850/0.382/0.486) was obtained. 238g was obtained.
 (再重合)
 得られた解重合試料20.00gを用いて、表4に示すように、ポリマーGの組成比とするために足りないモノマー成分(表4中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
(repolymerization)
Using 20.00 g of the obtained depolymerized sample, as shown in Table 4, insufficient monomer components (additional portions in Table 4) were newly added to make the composition ratio of Polymer G, and JP-A-2013 A repolymerized product was produced in accordance with Example 6 of JP-A-064118.
 実施例17
 実施例16で得られた解重合試料10.00gを用いて、表4に示すように、ポリマーGの組成比とするために足りないモノマー成分(表4中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 17
Using 10.00 g of the depolymerized sample obtained in Example 16, as shown in Table 4, insufficient monomer components (additional portions in Table 4) were newly added to obtain the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例18
 実施例16で得られた解重合試料5.00gを用いて、表4に示すように、ポリマーGの組成比とするために足りないモノマー成分(表4中の追加分)を新たに加えて、特開2013―064118号公報の実施例6に準拠して、ポリマーの再重合品を製造した。
Example 18
Using 5.00 g of the depolymerized sample obtained in Example 16, as shown in Table 4, insufficient monomer components (additional portions in Table 4) were newly added to make the composition ratio of Polymer G. A repolymerized product was produced according to Example 6 of JP-A No. 2013-064118.
 実施例8~18の評価結果を表2~4に示す。また、ポリマーGの評価結果をブランクとして表5に示す。 The evaluation results of Examples 8 to 18 are shown in Tables 2 to 4. Furthermore, the evaluation results for Polymer G are shown in Table 5 as a blank.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表2~5の結果から明らかなように、解重合工程で得られた分解生成物に対して、不足している単量体原料を適切に補充することにより、再重合におけるポリマーの分子量が向上し、光学特性に優れたポリマーが得られた。 As is clear from the results in Tables 2 to 5, by appropriately replenishing the decomposition products obtained in the depolymerization process with insufficient monomer raw materials, the molecular weight of the polymer during repolymerization can be improved. A polymer with excellent optical properties was obtained.
 比較例1
 (ポリマーGの解重合)
 特許文献1および2に記載の方法に準拠して、実施例8で得られたペレットのポリマーGにEGを添加し、200~250℃で約3時間加熱することにより、ポリエステルFを解重合した。ポリマーGの解重合前の分子量分布を図1に示し、解重合後の分解生成物の分子量分布を図2に示す。図1と図2との比較から明らかなように、解重合後には、何らかの分解物が得られたが、幅広い分子量分布が見られ、モノマー単位に分解されていなかった。
Comparative example 1
(Depolymerization of polymer G)
According to the method described in Patent Documents 1 and 2, EG was added to the pellets of Polymer G obtained in Example 8, and polyester F was depolymerized by heating at 200 to 250 ° C. for about 3 hours. . The molecular weight distribution of Polymer G before depolymerization is shown in FIG. 1, and the molecular weight distribution of the decomposition product after depolymerization is shown in FIG. As is clear from the comparison between FIG. 1 and FIG. 2, some decomposition products were obtained after depolymerization, but a wide molecular weight distribution was observed and the decomposition products were not decomposed into monomer units.
 すなわち、溶剤(エチレングリコール)を過剰に添加して高温で加熱する従来の方法では、PETなどの汎用のポリエステルで解重合が進行したのに対して、フルオレン骨格を有するポリマーの解重合が十分に進行しないことが判明した。 In other words, in the conventional method of adding an excessive amount of solvent (ethylene glycol) and heating at high temperature, depolymerization progressed with general-purpose polyesters such as PET, but depolymerization of polymers with a fluorene skeleton did not proceed sufficiently. It turned out that it wasn't progressing.
 比較例2
 (ポリマーGの解重合)
 特許文献3に記載の方法に準拠し、実施例8で得られたペレットのポリマーG10gに、水20gを添加し、300℃、8MPa窒素雰囲気の亜臨界水にて2時間処理し、ポリエステルGを解重合した。ポリマーGの解重合前の分子量分布を図3に示し、解重合後の分解生成物の分子量分布を図4に示す。図3と図4との比較から明らかなように、解重合後には、何らかの分解物が得られたが、幅広い分子量分布が見られ、モノマー単位に分解されていなかった。
Comparative example 2
(Depolymerization of polymer G)
According to the method described in Patent Document 3, 20 g of water was added to 10 g of the pelleted polymer G obtained in Example 8, and the mixture was treated with subcritical water at 300°C and 8 MPa nitrogen atmosphere for 2 hours to obtain polyester G. Depolymerized. The molecular weight distribution of Polymer G before depolymerization is shown in FIG. 3, and the molecular weight distribution of the decomposition product after depolymerization is shown in FIG. As is clear from the comparison between FIG. 3 and FIG. 4, some decomposition products were obtained after depolymerization, but a wide molecular weight distribution was observed and the decomposition products were not decomposed into monomer units.
 すなわち、亜臨界水で加水分解する従来の方法(加水分解法)では、PETなどの汎用のポリエステルで解重合が進行したのに対して、フルオレン骨格を有するポリエステルの解重合が十分に進行しないことが判明した。 In other words, in the conventional method of hydrolysis using subcritical water (hydrolysis method), while depolymerization progressed with general-purpose polyesters such as PET, depolymerization of polyesters with a fluorene skeleton did not progress sufficiently. There was found.
 比較例1および2の結果からも、PETなどの汎用のポリエステルとは異なり、フルオレン骨格を有するポリエステル系樹脂の場合、従来の方法では解重合が困難であることが理解できる。 From the results of Comparative Examples 1 and 2, it can be understood that unlike general-purpose polyesters such as PET, it is difficult to depolymerize polyester resins having a fluorene skeleton using conventional methods.
 実施例19
 (ポリマーHの調製)
 慣用の方法に従って、ジオール単位がBPEF由来の構成単位100モル%である炭酸エステル結合を有するポリマーHを調製した。
Example 19
(Preparation of polymer H)
Polymer H having a carbonate ester bond in which diol units accounted for 100 mol % of constitutional units derived from BPEF was prepared according to a conventional method.
 (第1の分解工程)
 ポリマーH 46.618g(ポリマーに組み込まれたモノマーの総数が略0.1モル分に相当)に、炭酸ジメチル22.52g、NaOMe0.9324g、メタノール8.3912gを加え、65℃で1時間反応した。得られた反応混合物に、トルエン60g、水40g、10質量%HCl水溶液4.6gを加え、75℃で15分攪拌後、分液した有機相を水40gで水洗する水洗工程を3回繰り返した後、ろ過により不溶分を除去した。
(First decomposition step)
22.52 g of dimethyl carbonate, 0.9324 g of NaOMe, and 8.3912 g of methanol were added to 46.618 g of Polymer H (the total number of monomers incorporated into the polymer corresponds to approximately 0.1 mole), and the mixture was reacted at 65° C. for 1 hour. . To the resulting reaction mixture, 60 g of toluene, 40 g of water, and 4.6 g of a 10% by mass HCl aqueous solution were added, and after stirring at 75° C. for 15 minutes, the washing step of washing the separated organic phase with 40 g of water was repeated three times. Thereafter, insoluble matter was removed by filtration.
 (第2の分解工程)
 有機相を濃縮し、得られた粗生成物(第1の分解生成物)に対して、メタノール96g、水酸化カリウム4.49gを加え、室温にて1時間反応した。得られた反応混合物に、10質量%HCl水溶液8g、水30gを加え、5~10℃で1時間攪拌後、ろ過により、BPEFの粗結晶55gを得た。
(Second decomposition step)
The organic phase was concentrated, and 96 g of methanol and 4.49 g of potassium hydroxide were added to the obtained crude product (first decomposition product), and the mixture was reacted at room temperature for 1 hour. To the resulting reaction mixture, 8 g of a 10% by mass HCl aqueous solution and 30 g of water were added, and after stirring at 5 to 10° C. for 1 hour, 55 g of crude crystals of BPEF were obtained by filtration.
 (BPEFの精製工程)
 前述の粗結晶にトルエン165gを加え、75℃で完溶後、室温までゆっくり放冷し、5~10℃で1時間攪拌した。ろ過し、80℃で12時間減圧乾燥することにより、白色固体のBPEFを22.9g(収率52%、LC純度98.3%)得た。
(BPEF purification process)
165 g of toluene was added to the above-mentioned crude crystals, and after complete dissolution at 75°C, the mixture was allowed to cool slowly to room temperature and stirred at 5 to 10°C for 1 hour. By filtering and drying under reduced pressure at 80° C. for 12 hours, 22.9 g of white solid BPEF (yield 52%, LC purity 98.3%) was obtained.
 実施例19について、第1の分解生成物の組成、BPEFの精製工程後のジオール(BPEF)の収率および純度を表6に示す。 Regarding Example 19, the composition of the first decomposition product, the yield and purity of the diol (BPEF) after the BPEF purification step are shown in Table 6.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表6の結果から明らかなように、実施例19においても、第1の分解工程において、新規なモノ炭酸エステル体およびジ炭酸エステルが生成し、さらに第2の分解工程および精製工程を経て、ジオールを回収することができた。 As is clear from the results in Table 6, in Example 19 as well, new monocarbonate and dicarbonate were produced in the first decomposition step, and further, through the second decomposition step and purification step, diol was able to be recovered.
 実施例20
 (ポリマーIの調製)
 慣用の方法に従って、ジオール単位がBPEF由来の構成単位50モル%、BINOL―2EO由来の構成単位50モル%である炭酸エステル結合を有するポリマーIを調製した。
Example 20
(Preparation of Polymer I)
According to a conventional method, Polymer I having a carbonate ester bond in which the diol units were 50 mol % of the constitutional units derived from BPEF and 50 mol % of the constitutional units derived from BINOL-2EO was prepared.
 (第1の分解工程)
 ポリマーI 20.324g(ポリマーに組み込まれたモノマーの総数が略0.05モルに相当)に、炭酸ジメチル11.26g、NaOMe0.4065g、メタノール3.6583gを加え、65℃で2時間反応した。得られた反応混合物に、トルエン35g、水20g、10質量%HCl水溶液2.3gを加え、75℃で15分攪拌後、分液した有機相を水20gで水洗する水洗工程を3回繰り返した後、ろ過により不溶分を除去した。
(First decomposition step)
11.26 g of dimethyl carbonate, 0.4065 g of NaOMe, and 3.6583 g of methanol were added to 20.324 g of Polymer I (the total number of monomers incorporated into the polymer corresponded to approximately 0.05 mol), and the mixture was reacted at 65° C. for 2 hours. To the resulting reaction mixture, 35 g of toluene, 20 g of water, and 2.3 g of a 10% by mass HCl aqueous solution were added, and after stirring at 75° C. for 15 minutes, the washing step of washing the separated organic phase with 20 g of water was repeated three times. Thereafter, insoluble matter was removed by filtration.
 (第2の分解工程)
 有機相を濃縮し、得られた粗生成物(第1の分解生成物)に対して、メタノール48g、水酸化カリウム2.24gを加え、室温にて1時間反応した。得られた反応混合物に、10質量%HCl水溶液4g、水15gを加え、5~10℃で1時間攪拌後、ろ過し、ろ過残渣を50℃で減圧乾燥することにより、白色固体(BPEF、BINOL―2EOの混合物)を17.4g(LC純度94.7%、収率85%(前記混合物としての純度及び収率))得た。
(Second decomposition step)
The organic phase was concentrated, and 48 g of methanol and 2.24 g of potassium hydroxide were added to the obtained crude product (first decomposition product), and the mixture was reacted at room temperature for 1 hour. To the resulting reaction mixture, 4 g of a 10% by mass HCl aqueous solution and 15 g of water were added, stirred at 5 to 10°C for 1 hour, filtered, and the filtration residue was dried under reduced pressure at 50°C to obtain a white solid (BPEF, BINOL). -2EO mixture) was obtained (LC purity 94.7%, yield 85% (purity and yield as the mixture)).
 実施例21
 (ポリマーJの調製)
 慣用の方法に従って、ジオール単位がBOPPEF由来の構成単位50モル%、BINOL―2EO由来の構成単位50モル%である炭酸エステル結合を有するポリマーJを調製した。
Example 21
(Preparation of Polymer J)
According to a conventional method, a polymer J having a carbonate ester bond in which the diol units were 50 mol % of constitutional units derived from BOPPEF and 50 mol % of constitutional units derived from BINOL-2EO was prepared.
 (第1の分解工程)
 ポリマーJ 24.129g(ポリマーに組み込まれたモノマーの総数が略0.05モルに相当)に、炭酸ジメチル11.26g、NaOMe0.4826g、メタノール4.324gを加え、65℃で2時間反応した。得られた反応混合物に、トルエン35g、水20g、10質量%HCl水溶液2.3gを加え、75℃で15分攪拌後、分液した有機相を水20gで水洗する水洗工程を3回繰り返した後、ろ過により不溶分を除去した。
(First decomposition step)
11.26 g of dimethyl carbonate, 0.4826 g of NaOMe, and 4.324 g of methanol were added to 24.129 g of Polymer J (the total number of monomers incorporated into the polymer corresponded to approximately 0.05 mol), and the mixture was reacted at 65° C. for 2 hours. To the resulting reaction mixture, 35 g of toluene, 20 g of water, and 2.3 g of a 10% by mass HCl aqueous solution were added, and after stirring at 75° C. for 15 minutes, the washing step of washing the separated organic phase with 20 g of water was repeated three times. Thereafter, insoluble matter was removed by filtration.
 (第2の分解工程)
 有機相を濃縮し、得られた粗生成物に対して、メタノール48g、水酸化カリウム2.24gを加え、室温にて1時間反応した。得られた反応混合物に、10質量%HCl水溶液4g、水15gを加え、5~10℃で1時間攪拌後、ろ過し、ろ過残渣を50℃で減圧乾燥することにより、白色固体(BOPPEF、BINOL―2EOの混合物)を21.7g(LC純度98.2%、収率90%(前記混合物としての純度))得た。
(Second decomposition step)
The organic phase was concentrated, and 48 g of methanol and 2.24 g of potassium hydroxide were added to the obtained crude product, and the mixture was reacted at room temperature for 1 hour. To the obtained reaction mixture, 4 g of a 10% by mass HCl aqueous solution and 15 g of water were added, stirred at 5 to 10°C for 1 hour, filtered, and the filtration residue was dried under reduced pressure at 50°C to obtain a white solid (BOPPEF, BINOL). -2EO mixture) was obtained (LC purity 98.2%, yield 90% (purity as the mixture)).
 本開示の解重合法で得られたジカルボン酸成分および/またはジオール成分は、フルオレン骨格を有し、耐熱性や光学特性に優れるため、光学分野などの各種分野でポリエステル系樹脂やポリ炭酸エステル系樹脂の原料や添加剤として利用できる。さらに、本開示の解重合法の過程で得られる新規なジオールの炭酸エステル体は、ポリ炭酸エステル系樹脂の原料や、反応調整剤、樹脂添加剤などの添加剤として利用できる。 The dicarboxylic acid component and/or diol component obtained by the depolymerization method of the present disclosure has a fluorene skeleton and has excellent heat resistance and optical properties. It can be used as a resin raw material or additive. Furthermore, the novel diol carbonate obtained in the process of the depolymerization method of the present disclosure can be used as a raw material for polycarbonate resin, a reaction regulator, a resin additive, and other additives.

Claims (19)

  1.  フルオレン骨格と、エステル結合および/または炭酸エステル結合とを有するフルオレン含有樹脂を、加水分解触媒の存在下、炭酸エステルと反応させて、分解生成物を得る、フルオレン含有樹脂の解重合法。 A method for depolymerizing a fluorene-containing resin, in which a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond is reacted with a carbonate ester in the presence of a hydrolysis catalyst to obtain a decomposition product.
  2.  前記分解生成物が、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を含む請求項1記載の解重合法。 The depolymerization method according to claim 1, wherein the decomposition product includes a diol monocarbonate ester and/or a diol dicarbonate ester.
  3.  前記分解生成物が、ジカルボン酸および/またはそのエステルをさらに含む請求項2記載の解重合法。 The depolymerization method according to claim 2, wherein the decomposition product further contains a dicarboxylic acid and/or an ester thereof.
  4.  前記分解生成物とアルコールとを反応させてジオールを得る請求項1または2記載の解重合法。 The depolymerization method according to claim 1 or 2, wherein the decomposition product and alcohol are reacted to obtain a diol.
  5.  前記フルオレン含有樹脂が、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     RおよびRは独立して置換基を示し、m1およびm2は独立して0以上の整数を示し、
     n1およびn2は独立して0~4の整数を示し、
     AおよびAは独立してアルキレン基を示し、
     XおよびXは独立してヒドロキシル基、アルコキシ基またはハロゲン原子を示し、
     RおよびRは独立して置換基を示し、k1およびk2は独立して0~4の整数を示す)
    で表されるジカルボン酸成分および/または下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
     RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
     Rは置換基を示し、uは0~8の整数を示す)
    で表されるジオールを重合成分として含むポリエステル系樹脂である請求項1または2記載の解重合法。
    The fluorene-containing resin has the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula,
    Ring Z 1 and Ring Z 2 independently represent arene rings,
    R 1 and R 2 independently represent a substituent, m1 and m2 independently represent an integer of 0 or more,
    n1 and n2 independently represent integers of 0 to 4,
    A 1 and A 2 independently represent an alkylene group,
    X 1 and X 2 independently represent a hydroxyl group, an alkoxy group or a halogen atom,
    R 3 and R 4 independently represent a substituent, k1 and k2 independently represent an integer from 0 to 4)
    A dicarboxylic acid component represented by and/or the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula,
    Ring Z 3 and Ring Z 4 independently represent arene rings,
    A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
    R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
    R 7 represents a substituent, and u represents an integer of 0 to 8)
    The depolymerization method according to claim 1 or 2, which is a polyester resin containing a diol represented by as a polymerization component.
  6.  前記フルオレン含有樹脂が、前記式(1)で表されるジカルボン酸成分を重合成分として含むポリエステル系樹脂であり、前記式(1)において、n1およびn2が0であるか、またはn1およびn2が1であり、かつ環Zおよび環Zは独立して縮合多環式アレーン環である請求項5記載の解重合法。 The fluorene-containing resin is a polyester resin containing a dicarboxylic acid component represented by the formula (1) as a polymerization component, and in the formula (1), n1 and n2 are 0, or n1 and n2 are 1, and ring Z 1 and ring Z 2 are independently fused polycyclic arene rings.
  7.  前記フルオレン含有樹脂が、前記式(2)で表されるジオールを重合成分として含むポリエステル系樹脂である請求項5記載の解重合法。 The depolymerization method according to claim 5, wherein the fluorene-containing resin is a polyester resin containing a diol represented by the formula (2) as a polymerization component.
  8.  前記フルオレン含有樹脂が、下記式(2)
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
     RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
     Rは置換基を示し、uは0~8の整数を示す)
    で表されるジオールを重合成分として含むポリ炭酸エステル系樹脂である請求項1または2記載の解重合法。
    The fluorene-containing resin has the following formula (2)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula,
    Ring Z 3 and Ring Z 4 independently represent arene rings,
    A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
    R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
    R 7 represents a substituent, and u represents an integer of 0 to 8)
    The depolymerization method according to claim 1 or 2, which is a polycarbonate resin containing a diol represented by as a polymerization component.
  9.  前記フルオレン含有樹脂が、下記式(5)
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     Aは直接結合(単結合)またはアルキレン基を示し、
     AおよびAは独立してアルキレン基を示し、p1およびp2は独立して0以上の整数を示し、
     R11およびR12は独立して置換基を示し、q1およびq2は独立して0~6の整数を示す)
    で表されるジオールを重合成分として含む請求項1または2記載の解重合法。
    The fluorene-containing resin has the following formula (5)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula,
    A 5 represents a direct bond (single bond) or an alkylene group,
    A 6 and A 7 independently represent an alkylene group, p1 and p2 independently represent an integer of 0 or more,
    R 11 and R 12 independently represent a substituent, and q1 and q2 independently represent an integer from 0 to 6)
    The depolymerization method according to claim 1 or 2, which contains a diol represented by as a polymerization component.
  10.  加水分解触媒の存在下、フルオレン骨格を有するジカルボン酸成分を重合成分として含むポリエステル系樹脂と炭酸エステルとを反応させて前記ポリエステル系樹脂を分解し、フルオレン骨格を有するジカルボン酸および/またはそのエステルを製造する方法。 In the presence of a hydrolysis catalyst, a polyester resin containing a dicarboxylic acid component having a fluorene skeleton as a polymerization component is reacted with a carbonate ester to decompose the polyester resin, thereby producing a dicarboxylic acid having a fluorene skeleton and/or its ester. How to manufacture.
  11.  加水分解触媒の存在下、フルオレン骨格を有するジオールを重合成分として含むポリエステル系樹脂と炭酸エステルとを反応させて前記ポリエステル系樹脂を分解し、ジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とを含む第1の分解生成物を得る第1の分解工程、
     前記第1の分解生成物とアルコールとを反応させてジオールを得る第2の分解工程を経て、フルオレン骨格を有するジオールを製造する方法。
    In the presence of a hydrolysis catalyst, a polyester resin containing a diol having a fluorene skeleton as a polymerization component is reacted with a carbonate ester, and the polyester resin is decomposed to form a dicarboxylic acid and/or its ester and a monocarbonate ester of the diol. a first decomposition step to obtain a first decomposition product containing a dicarbonate and/or a dicarbonate of a diol;
    A method for producing a diol having a fluorene skeleton through a second decomposition step of reacting the first decomposition product with an alcohol to obtain a diol.
  12.  加水分解触媒の存在下、フルオレン骨格およびエステル結合を有するポリエステル系樹脂と炭酸エステルとを反応させて前記ポリエステル系樹脂を分解し、ジカルボン酸および/またはそのエステルと、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体とを含む分解生成物を得る第1の分解工程、
     前記分解生成物とアルコールとを反応させてジオールを得る第2の分解工程を経て、フルオレン骨格を有するモノマー成分を回収する方法。
    In the presence of a hydrolysis catalyst, a polyester resin having a fluorene skeleton and an ester bond is reacted with a carbonate ester to decompose the polyester resin, and a dicarboxylic acid and/or its ester and a diol monocarbonate and/or or a first decomposition step to obtain a decomposition product containing a dicarbonate ester of diol;
    A method of recovering a monomer component having a fluorene skeleton through a second decomposition step of reacting the decomposition product with an alcohol to obtain a diol.
  13.  加水分解触媒の存在下、フルオレン骨格および炭酸エステル結合を有するポリ炭酸エステル系樹脂と炭酸エステルとを反応させて前記ポリ炭酸エステル系樹脂を分解し、ジオールのモノ炭酸エステル体および/またはジオールのジ炭酸エステル体を含む第1の分解生成物を得る第1の分解工程、
     前記第1の分解生成物とアルコールとを反応させてジオールを得る第2の分解工程を経て、フルオレン骨格を有するモノマー成分を回収する方法。
    In the presence of a hydrolysis catalyst, a polycarbonate resin having a fluorene skeleton and a carbonate bond is reacted with a carbonate ester to decompose the polycarbonate resin, resulting in a monocarbonate of diol and/or a diol diol. a first decomposition step to obtain a first decomposition product containing a carbonate ester;
    A method of recovering a monomer component having a fluorene skeleton through a second decomposition step of reacting the first decomposition product with an alcohol to obtain a diol.
  14.  下記式(3)
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
     Rは炭化水素基を示し、
     RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
     Rは置換基を示し、uは0~8の整数を示す)
    で表されるジオールのモノ炭酸エステル体。
    The following formula (3)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula,
    Ring Z 3 and Ring Z 4 independently represent arene rings,
    A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
    R 8 represents a hydrocarbon group,
    R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
    R 7 represents a substituent, and u represents an integer of 0 to 8)
    A monocarbonate ester of diol represented by
  15.  下記式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
     RおよびR10は独立して炭化水素基を示し、
     RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
     Rは置換基を示し、uは0~8の整数を示す)
    で表されるジオールのジ炭酸エステル体。
    The following formula (4)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula,
    Ring Z 3 and Ring Z 4 independently represent arene rings,
    A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
    R 9 and R 10 independently represent a hydrocarbon group,
    R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
    R 7 represents a substituent, and u represents an integer of 0 to 8)
    A dicarbonate ester of diol represented by
  16.  加水分解触媒の存在下、フルオレン骨格ならびにエステル結合および/または炭酸エステル結合を有するフルオレン含有樹脂と、炭酸エステルとを反応させて前記フルオレン含有樹脂を分解し、請求項14記載のジオールのモノ炭酸エステル体を製造する方法であって、
     前記フルオレン含有樹脂が、下記式(2)
    Figure JPOXMLDOC01-appb-C000007
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
     RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
     Rは置換基を示し、uは0~8の整数を示す)
    で表されるジオールを重合成分として含むフルオレン含有樹脂である方法。
    In the presence of a hydrolysis catalyst, a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond is reacted with a carbonate ester to decompose the fluorene-containing resin, thereby producing the diol monocarbonate ester according to claim 14. A method of manufacturing a body, the method comprising:
    The fluorene-containing resin has the following formula (2)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula,
    Ring Z 3 and Ring Z 4 independently represent arene rings,
    A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
    R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
    R 7 represents a substituent, and u represents an integer of 0 to 8)
    A method in which the fluorene-containing resin contains a diol represented by as a polymerization component.
  17.  加水分解触媒の存在下、フルオレン骨格ならびにエステル結合および/または炭酸エステル結合を有するフルオレン含有樹脂と、炭酸エステルと反応させて前記フルオレン含有樹脂を分解し、請求項15記載のジオールのジ炭酸エステル体を製造する方法であって、
     前記フルオレン含有樹脂が、下記式(2)
    Figure JPOXMLDOC01-appb-C000008
    (式中、
     環Zおよび環Zは独立してアレーン環を示し、
     AおよびAは独立してアルキレン基を示し、s1およびs2は独立して0以上の整数を示し、
     RおよびRは独立して置換基を示し、t1およびt2は独立して0以上の整数を示し、
     Rは置換基を示し、uは0~8の整数を示す)
    で表されるジオールを重合成分として含むフルオレン含有樹脂である方法。
    In the presence of a hydrolysis catalyst, a fluorene-containing resin having a fluorene skeleton and an ester bond and/or a carbonate ester bond is reacted with a carbonate ester to decompose the fluorene-containing resin, thereby producing a dicarbonate ester form of a diol according to claim 15. A method of manufacturing,
    The fluorene-containing resin has the following formula (2)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula,
    Ring Z 3 and Ring Z 4 independently represent arene rings,
    A3 and A4 independently represent an alkylene group, s1 and s2 independently represent an integer of 0 or more,
    R5 and R6 independently represent a substituent, t1 and t2 independently represent an integer of 0 or more,
    R 7 represents a substituent, and u represents an integer of 0 to 8)
    A method in which the fluorene-containing resin contains a diol represented by as a polymerization component.
  18.  フルオレン骨格と、エステル結合および/または炭酸エステル結合とを有するフルオレン含有樹脂のリサイクル方法であって、
     加水分解触媒の存在下、前記フルオレン含有樹脂と炭酸エステルとを反応させて、分解生成物を得る解重合工程と、
     前記解重合工程で得られた分解生成物を重合し、新たなフルオレン含有樹脂を得る重合工程とを含む、リサイクル方法。
    A method for recycling a fluorene-containing resin having a fluorene skeleton, an ester bond and/or a carbonate bond, the method comprising:
    a depolymerization step in which the fluorene-containing resin and carbonate ester are reacted in the presence of a hydrolysis catalyst to obtain a decomposition product;
    A recycling method comprising a polymerization step of polymerizing the decomposition product obtained in the depolymerization step to obtain a new fluorene-containing resin.
  19.  前記重合工程において、前記新たなフルオレン含有樹脂の単量体原料を補充する請求項18記載のリサイクル方法。 The recycling method according to claim 18, wherein in the polymerization step, monomer raw materials for the new fluorene-containing resin are replenished.
PCT/JP2023/025537 2022-07-15 2023-07-11 Depolymerization method for resin having fluorene skeleton, and product and application thereof WO2024014448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543378A JP7393592B1 (en) 2022-07-15 2023-07-11 Depolymerization method of resin having fluorene skeleton, its products and uses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-113772 2022-07-15
JP2022113772 2022-07-15
JP2023057824 2023-03-31
JP2023-057824 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024014448A1 true WO2024014448A1 (en) 2024-01-18

Family

ID=89536759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025537 WO2024014448A1 (en) 2022-07-15 2023-07-11 Depolymerization method for resin having fluorene skeleton, and product and application thereof

Country Status (1)

Country Link
WO (1) WO2024014448A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287230A (en) * 1993-04-01 1994-10-11 Teijin Ltd Diallyl compound and production of crosslinked polymer using said compound
JP2002309015A (en) * 2001-04-18 2002-10-23 Teijin Chem Ltd Optical film
JP2009057483A (en) * 2007-08-31 2009-03-19 Osaka Gas Co Ltd Fluorene skeleton-containing polyester-based block copolymer and method for producing the same
JP2011215283A (en) * 2010-03-31 2011-10-27 Tokyo Institute Of Technology Method of forming cured relief pattern
JP2015096596A (en) * 2013-10-07 2015-05-21 田岡化学工業株式会社 Depolymerization method for polycarbonate resin with fluorene structure
JP2015110555A (en) * 2013-11-11 2015-06-18 田岡化学工業株式会社 Method for collecting bisphenol fluorene from resin containing fluorene structure
JP2015196676A (en) * 2014-04-03 2015-11-09 田岡化学工業株式会社 Method for recovering bisphenol fluorenes from polyester resin having fluorene structure
JP2016204271A (en) * 2015-04-16 2016-12-08 田岡化学工業株式会社 Method for recovering bisphenol fluorenes from resin including fluorene structure
JP2017201002A (en) * 2016-04-28 2017-11-09 三井化学株式会社 Polycarbonate resin, method for producing the same and optical molding
JP2019131824A (en) * 2015-11-04 2019-08-08 三菱瓦斯化学株式会社 Method for producing thermoplastic resin
JP2021001346A (en) * 2015-11-04 2021-01-07 三菱瓦斯化学株式会社 Polycarbonate resin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287230A (en) * 1993-04-01 1994-10-11 Teijin Ltd Diallyl compound and production of crosslinked polymer using said compound
JP2002309015A (en) * 2001-04-18 2002-10-23 Teijin Chem Ltd Optical film
JP2009057483A (en) * 2007-08-31 2009-03-19 Osaka Gas Co Ltd Fluorene skeleton-containing polyester-based block copolymer and method for producing the same
JP2011215283A (en) * 2010-03-31 2011-10-27 Tokyo Institute Of Technology Method of forming cured relief pattern
JP2015096596A (en) * 2013-10-07 2015-05-21 田岡化学工業株式会社 Depolymerization method for polycarbonate resin with fluorene structure
JP2015110555A (en) * 2013-11-11 2015-06-18 田岡化学工業株式会社 Method for collecting bisphenol fluorene from resin containing fluorene structure
JP2015196676A (en) * 2014-04-03 2015-11-09 田岡化学工業株式会社 Method for recovering bisphenol fluorenes from polyester resin having fluorene structure
JP2016204271A (en) * 2015-04-16 2016-12-08 田岡化学工業株式会社 Method for recovering bisphenol fluorenes from resin including fluorene structure
JP2019131824A (en) * 2015-11-04 2019-08-08 三菱瓦斯化学株式会社 Method for producing thermoplastic resin
JP2021001346A (en) * 2015-11-04 2021-01-07 三菱瓦斯化学株式会社 Polycarbonate resin
JP2017201002A (en) * 2016-04-28 2017-11-09 三井化学株式会社 Polycarbonate resin, method for producing the same and optical molding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA SHINJI, SATO JUNICHI, NAKAJIMA YUMIKO: "Capturing ethylene glycol with dimethyl carbonate towards depolymerisation of polyethylene terephthalate at ambient temperature", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 23, no. 23, 29 November 2021 (2021-11-29), GB , pages 9412 - 9416, XP093129076, ISSN: 1463-9262, DOI: 10.1039/D1GC02298A *

Similar Documents

Publication Publication Date Title
TWI806899B (en) Terephthalic acid esters formation
JP5466927B2 (en) Fluorene polyester oligomer and method for producing the same
JP6210555B2 (en) Method for recovering bisphenolfluorenes from a polyester resin having a fluorene structure
CN105764878B (en) From the method that bisphenol fluorene class is reclaimed comprising fluorene structured resin
JP5704736B1 (en) Method for depolymerizing polycarbonate resin having fluorene structure
JP5437106B2 (en) Polyester resin having a fluorene skeleton
JP6230597B2 (en) Method for producing glycolide
JP5501790B2 (en) Polyester resin having a fluorene skeleton
JP2008069224A (en) Fluorene skeleton-having polyester resin and method for producing the same
JP2016069643A (en) Polyester resin having fluorene skeleton and molded body thereof
TW200831558A (en) Polycarbonate having plant-derived component and method for producing the same
JP2012144746A (en) Polyester resin having fluorene skeleton and method for producing the same
JP5437105B2 (en) Polyester resin having a fluorene skeleton
JP2010285505A (en) Polyester resin having fluorene skeleton
JP7393592B1 (en) Depolymerization method of resin having fluorene skeleton, its products and uses
WO2024014448A1 (en) Depolymerization method for resin having fluorene skeleton, and product and application thereof
JP5879456B1 (en) Monomer production method
TW201237060A (en) Method for producing polyester, and fluorine-containing dicarboxylic acid ester compound
KR20220005447A (en) Dicarboxylic acids and their manufacturing method and use
JP7210148B2 (en) Polyester resin having fluorene skeleton, method for producing the same, and molded article
TW202413512A (en) Depolymerization method of resin having fluorene skeleton, product thereof and use thereof
JP6442352B2 (en) Monomer production method
JP7118681B2 (en) Highly heat-resistant polyester resin and molding
JP6940314B2 (en) A novel compound having a triptycene skeleton and a method for producing the same
JP2022040080A (en) Fluorene derivative and resin, and production method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839620

Country of ref document: EP

Kind code of ref document: A1