WO2024014194A1 - Route setting method, program, and route setting system - Google Patents

Route setting method, program, and route setting system Download PDF

Info

Publication number
WO2024014194A1
WO2024014194A1 PCT/JP2023/021231 JP2023021231W WO2024014194A1 WO 2024014194 A1 WO2024014194 A1 WO 2024014194A1 JP 2023021231 W JP2023021231 W JP 2023021231W WO 2024014194 A1 WO2024014194 A1 WO 2024014194A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
position information
terminal
route
moving
Prior art date
Application number
PCT/JP2023/021231
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 木内
克将 北島
泰義 横小路
勇一 田▲崎▼
光 永野
Original Assignee
三菱重工業株式会社
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立大学法人神戸大学 filed Critical 三菱重工業株式会社
Publication of WO2024014194A1 publication Critical patent/WO2024014194A1/en

Links

Images

Classifications

    • G05D1/43

Definitions

  • the present disclosure relates to a route setting method, program, and route setting system.
  • Patent Document 1 There is a known technology for automatically setting a moving route for a moving object.
  • a user specifies an area to be processed by an unmanned aircraft by marking a point on a map displayed on a terminal, and the unmanned aircraft moves to that area. Are listed. In this way, by the user specifying the destination of the moving object, the moving object can be guided to the destination.
  • Patent Document 1 since points can only be specified on a predetermined map, there is a possibility that the moving object cannot be guided to an appropriate position depending on the situation, for example.
  • the present disclosure solves the above-mentioned problems, and aims to provide a route setting method, program, and route setting system that can guide a moving object to an appropriate position.
  • a route setting method includes the steps of: detecting, by a positionally movable terminal, position information of an object in a terminal coordinate system that serves as a reference for detection by the terminal; First position information indicating the position of the object in the mobile body coordinate system is calculated from the position information of the object in the terminal coordinate system by performing coordinate transformation with a mobile body coordinate system that is a reference. and setting a route toward the target object in the moving body coordinate system based on the first position information.
  • a program includes the steps of: detecting, using a positionally movable terminal, position information of an object in a terminal coordinate system that serves as a reference for detection by the terminal; calculating first position information indicating the position of the object in the moving object coordinate system from the position information of the object in the terminal coordinate system by performing coordinate transformation with a moving object coordinate system, , setting a route toward the object in the moving body coordinate system based on the first position information.
  • a route setting system includes a terminal whose position can be moved and a moving object, wherein the terminal detects position information of an object in a terminal coordinate system that is a reference for detection.
  • the movable body includes a target object detection unit, and the movable body is configured to detect the target object in the movable body coordinate system, which is set based on first position information indicating the position of the target object in the movable body coordinate system that is a reference for movement of the movable body.
  • the first position information includes a route acquisition unit that acquires a route toward the target object, and the first position information is obtained by performing coordinate transformation between the terminal coordinate system and the moving body coordinate system, and thereby determining the position of the target object in the terminal coordinate system. It is calculated from information.
  • a moving object can be guided to an appropriate position.
  • FIG. 1 is a schematic diagram of a route setting system according to this embodiment.
  • FIG. 2 is a schematic diagram of the configuration of the moving body.
  • FIG. 3 is a schematic block diagram of the information processing device.
  • FIG. 4 is a schematic block diagram of a control device for a moving body.
  • FIG. 5 is a schematic block diagram of the terminal.
  • FIG. 6 is a schematic diagram illustrating detection of an object by a terminal.
  • FIG. 7 is a schematic diagram of an image showing the object.
  • FIG. 8 is a schematic diagram illustrating an example of detection using a reference portion as a reference.
  • FIG. 9 is a schematic diagram illustrating route setting.
  • FIG. 10 is a flowchart illustrating the processing flow of the route setting system.
  • FIG. 10 is a flowchart illustrating the processing flow of the route setting system.
  • FIG. 11 is a schematic diagram for explaining an example of coordinate transformation in the second embodiment.
  • FIG. 12 is a schematic diagram illustrating the detection area.
  • FIG. 13 is a schematic diagram illustrating an example of route setting.
  • FIG. 14 is a schematic diagram illustrating an example of route setting.
  • FIG. 1 is a schematic diagram of a route setting system according to this embodiment.
  • the route setting system 1 includes a mobile object 10, a management device 12, an information processing device 14, and a terminal 16.
  • the route setting system 1 is a system that sets a travel route for a mobile body 10 belonging to a facility W and controls the movement of the mobile body 10.
  • the equipment W is equipment that is subject to physical distribution management, such as a warehouse.
  • the moving body 10 picks up a target object P placed within the area AR of the equipment W and transports it.
  • the area AR is, for example, the floor surface of the equipment W, and is an area where the target object Q is installed and the moving body 10 moves.
  • the object P is a conveyance object in which cargo is loaded on a pallet.
  • the object P is not limited to one in which luggage is loaded on a pallet, but may be in any form, for example, it may be only luggage without a pallet.
  • the moving body 10 is moved toward the target object P installed in the installation area AR0, and the target object P is picked up.
  • the installation area AR0 is set in advance as an area where the object P is to be installed.
  • the installation area AR0 is divided, for example, by white lines, and the position (coordinates), shape, and size of the installation area AR0 are set in advance.
  • the installation area AR0 is an area in which a plurality of objects P are allowed to be freely installed, and the position and orientation of the objects P within the installation area AR0 are It is not known in advance by the management device 12 or the information processing device 14.
  • the terminal 16 detects the position and orientation of the target object P within the installation area AR0, and based on the position and orientation of the target object P detected by the terminal 16, movement toward the target object P is performed.
  • the object P to which the moving body 10 moves is not limited to being placed within the predetermined installation area AR0, and may be placed at any position within the equipment W. Even in this case, the position and orientation of the object P need not be known in advance by the moving body 10, the management device 12, or the information processing device 14.
  • the moving body coordinate system C is a coordinate system based on a fixed reference position, and includes, for example, an X direction that is one direction along the area AR and a direction that is along the area AR and intersects with the direction X. It is a two-dimensional coordinate system with the Y direction. Therefore, for example, the position in the moving object coordinate system C refers to the coordinates in the moving object coordinate system C (position in the X direction and the Y direction), and the direction in the moving object coordinate system C refers to the Refers to the yaw angle (rotation angle) when the direction is 0°.
  • the moving body coordinate system C is not limited to a two-dimensional coordinate system in the X direction and the Y direction, but may be a three-dimensional coordinate system in the X direction, Y direction, and Z direction (vertical direction), for example. .
  • FIG. 2 is a schematic diagram of the configuration of the moving body.
  • the moving body 10 is a device that is automatically movable and capable of transporting the object P.
  • the moving body 10 is a forklift, and more specifically, a so-called AGV (Automated Guided Vehicle) or AGF (Automated Guided Forklift).
  • AGV Automated Guided Vehicle
  • AGF Automatic Guided Forklift
  • the moving body 10 is not limited to a forklift that transports the object P, and may be any device that can move automatically.
  • the moving body 10 includes a vehicle body 20, wheels 20A, straddle legs 21, a mast 22, a fork 24, a sensor 26A, and a control device 28.
  • the straddle legs 21 are a pair of shaft-shaped members that are provided at one end of the vehicle body 20 in the longitudinal direction and protrude from the vehicle body 20.
  • the wheels 20A are provided at the tip of each straddle leg 21 and on the vehicle body 20. That is, although a total of three wheels 20A are provided, the position and number of wheels 20A may be arbitrary.
  • the mast 22 is movably attached to the straddle leg 21 and moves in the longitudinal direction of the vehicle body 20.
  • the mast 22 extends along the up-down direction (direction Z here) orthogonal to the front-back direction.
  • the fork 24 is attached to the mast 22 so as to be movable in the Z direction.
  • the fork 24 may also be movable in the lateral direction of the vehicle body 20 (in a direction intersecting the vertical and longitudinal directions) with respect to the mast 22 .
  • the fork 24 has a pair of claws 24A and 24B.
  • the claws 24A and 24B extend from the mast 22 toward the front of the vehicle body 20.
  • the claw 24A and the claw 24B are arranged apart from each other in the lateral direction of the mast 22.
  • the front direction the direction on the side where the fork 24 is provided in the movable body 10
  • the rear direction the direction on the side where the fork 24 is not provided
  • the sensor 26A detects at least one of the position and orientation (posture) of an object existing around the vehicle body 20. It can also be said that the sensor 26A detects at least one of the position of the object with respect to the moving body 10 and the orientation of the object with respect to the moving body 10.
  • the sensor 26A is provided at the front end of each straddle leg 21 and on the rear side of the vehicle body 20.
  • the position where the sensor 26A is provided is not limited to this, and may be provided at any position, and the number of sensors provided may be arbitrary.
  • the sensor 26A is, for example, a sensor that irradiates laser light.
  • the sensor 26A irradiates a laser beam while scanning in one direction (in this case, the lateral direction), and detects the position and orientation of the object from the reflected light of the irradiated laser beam. That is, the sensor 26A can be said to be a so-called two-dimensional (2D)-LiDAR (Light Detection And Ranging).
  • the sensor 26A is not limited to the above, and may be a sensor that detects an object by any method, for example, it may be a so-called three-dimensional (3D)-LiDAR that scans in multiple directions. , a so-called one-dimensional (1D)-LiDAR that is not scanned, or a camera.
  • the control device 28 controls the movement of the mobile body 10.
  • the control device 28 will be described later.
  • the management device 12 is a system that manages logistics at the facility W.
  • the management device 12 sets, for example, the work content of the movable body 10 and the control content of mechanisms other than the movable body 10 (for example, elevators and doors) provided in the equipment W.
  • the management device 12 is a WCS (Warehouse Control System) or a WMS (Warehouse Management System) in this embodiment, it is not limited to the WCS and WMS, but may be any system, for example, other production management systems. Any backend system is fine.
  • the location where the management device 12 is provided is arbitrary, and it may be provided within the equipment W or may be provided at a location away from the equipment W to manage the equipment W from a remote location.
  • FIG. 3 is a schematic block diagram of the information processing device.
  • the information processing device 14 is a device that processes information related to the movement of the mobile object 10 and the like.
  • the information processing device 14 is, for example, an FCS (Fleet Control System), but is not limited thereto, and may be any device that processes information regarding the movement of the mobile body 10.
  • FCS Flexible Control System
  • the information processing device 14 is provided in the equipment W in this embodiment, it may be provided at any location.
  • the information processing device 14 is a computer, and includes a communication section 30, a storage section 32, and a control section 34, as shown in FIG.
  • the communication unit 30 is a module used by the control unit 34 to communicate with external devices such as the management device 12 and the mobile object 10, and may include, for example, an antenna.
  • the storage unit 32 is a memory that stores various information such as calculation contents and programs of the control unit 34, and includes, for example, a main storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an HDD ( At least one external storage device such as a hard disk drive.
  • a main storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory)
  • an HDD At least one external storage device such as a hard disk drive.
  • the control unit 34 is an arithmetic device, and includes, for example, an arithmetic circuit such as a CPU (Central Processing Unit).
  • the control section 34 includes a reference route setting section 36.
  • the control unit 34 reads a program (software) from the storage unit 32 and executes it, thereby realizing the reference route setting unit 36 and executes its processing.
  • the control unit 34 may execute the process using one CPU, or may include a plurality of CPUs and execute the process using the plurality of CPUs.
  • the reference route setting section 36 may be realized by a hardware circuit.
  • the program for the control unit 34 stored in the storage unit 32 may be stored in a recording medium readable by the information processing device 14.
  • the reference route setting unit 36 sets a reference route for the moving object 10.
  • the reference route is a route that connects locations whose positions in the moving object coordinate system C are known. For example, in the area AR, waypoints are set for each position (coordinate), and the reference route is set to connect the waypoints.
  • the waypoint is set according to the layout of the equipment W.
  • the management device 12 and the information processing device 14 are separate devices, but they may be an integrated device. That is, the management device 12 may have at least some of the functions of the information processing device 14, and the information processing device 14 may have at least some of the functions of the management device 12.
  • FIG. 4 is a schematic block diagram of a control device for a moving body.
  • the control device 28 is a device that controls the moving body 10.
  • the control device 28 is a computer, and includes a communication section 40, a storage section 42, and a control section 44, as shown in FIG.
  • the communication unit 40 is a module used by the control unit 44 to communicate with external devices such as the information processing device 14 and the terminal 16, and may include, for example, an antenna.
  • the communication method by the communication unit 40 is wireless communication in this embodiment, but any communication method may be used.
  • the storage unit 42 is a memory that stores various information such as calculation contents and programs of the control unit 44, and includes at least one of a RAM, a main storage device such as a ROM, and an external storage device such as an HDD. Including one.
  • the control unit 44 is a calculation device, and includes a calculation circuit such as a CPU, for example.
  • the control unit 44 includes an object information acquisition unit 50, a self-position acquisition unit 52, a route acquisition unit 54, and a movement control unit 56.
  • the control unit 68 realizes the object information acquisition unit 50, self-position acquisition unit 52, route acquisition unit 54, and movement control unit 56 by reading a program (software) from the storage unit 66 and executing it. Execute the process. Note that the control unit 44 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs.
  • the object information acquisition section 50, self-position acquisition section 52, route acquisition section 54, and movement control section 56 may be realized by a hardware circuit.
  • the program for the control unit 44 stored in the storage unit 42 may be stored in a recording medium readable by the control device 28.
  • the object information acquisition unit 50 acquires position information of the object P to which the moving body 10 moves.
  • the self-position acquisition unit 52 acquires position information of the mobile object 10.
  • the route acquisition unit 54 acquires information on the route along which the mobile object 10 moves.
  • the movement control unit 56 controls movement mechanisms such as a drive unit and steering of the moving body 10 to control movement of the moving body 10. The specific contents of these processes will be described later.
  • the terminal 16 is a device whose position can be moved.
  • the terminal 16 is a terminal carried by the user U, and its position is moved when the user U moves.
  • the terminal 16 is not limited to being a terminal carried by the user U, but may be mounted on a movable device.
  • the terminal 16 may be mounted on a flying object such as a so-called drone, a vehicle moving on the ground, a robot, or the like.
  • the terminal 16 and the device equipped with the terminal 16 may be remotely controlled by the user U.
  • FIG. 5 is a schematic block diagram of the terminal. As shown in FIG. 5, the terminal 16 includes an input section 60, a display section 62, a communication section 64, a storage section 66, a control section 68, and a sensor 69.
  • the sensor 69 detects at least one of the position and orientation of objects existing around the terminal 16. It can also be said that the sensor 69 detects at least one of the position of the object relative to the terminal 16 and the orientation of the object relative to the terminal 16.
  • the sensor 69 is, for example, a sensor that emits laser light.
  • the sensor 69 irradiates a laser beam while scanning in one direction (in this case, the lateral direction), and detects the position and orientation of the object from the reflected light of the irradiated laser beam.
  • the sensor 26A can be said to be a so-called two-dimensional LiDAR.
  • the senor 69 is not limited to the above, and may be a sensor that detects an object by any method, for example, it may be a so-called three-dimensional LiDAR that scans in multiple directions, or may not be scanned. , so-called one-dimensional LiDAR, or a camera.
  • the input unit 60 is a mechanism that receives user input, and may be, for example, a touch panel.
  • the display unit 62 is a display that displays images.
  • the communication unit 64 is a communication module that communicates with external devices such as the mobile object 10 and the information processing device 14, and is, for example, an antenna. Although the terminal 16 communicates with an external device by wireless communication, wired communication may be used, and any communication method may be used.
  • the storage unit 66 is a memory that stores various information such as calculation contents and programs of the control unit 68, and includes, for example, a main storage device such as RAM (Random Access Memory) and ROM (Read Only Memory), and an HDD ( At least one external storage device such as a Hard Disk Drive.
  • the program for the control unit 68 stored in the storage unit 66 may be stored in a recording medium readable by the terminal 16.
  • the control unit 68 is a calculation device, and includes a calculation circuit such as a CPU, for example.
  • the control section 68 includes a target object detection section 70, a display control section 72, a target object setting section 74, and a target object information transmission section 76.
  • the control unit 68 realizes the object detection unit 70, the display control unit 72, the object setting unit 74, and the object information transmission unit 76 by reading the program (software) from the storage unit 66 and executing it. Execute those processes. Note that the control unit 68 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs.
  • the object detection section 70, display control section 72, object setting section 74, and object information transmission section 76 may be realized by a hardware circuit.
  • the program for the control unit 68 stored in the storage unit 66 may be stored in a recording medium that can be read by the terminal 16.
  • the target object detection unit 70 controls the sensor 69 and causes the sensor 69 to detect the position information of the target object P.
  • the display control section 72 controls the display section 62 and causes the display section 62 to display an image.
  • the target object setting section 74 sets a target object P to which the moving body 10 will move from among the objects P detected by the target object detection section 70 .
  • the object information transmitting section 76 transmits, via the communication section 64, the position information of the object P, which is the destination of the moving object 10, to the moving object 10. The specific contents of these processes will be described later.
  • FIG. 6 is a schematic diagram illustrating detection of an object by a terminal.
  • the object detection unit 70 of the terminal 16 detects position information of the object P.
  • the position information of the target object P is information indicating the position and orientation of the target object P.
  • the target object detection unit 70 causes the sensor 69 to detect the target object P, and calculates the position information of the target object P from the detection result by the sensor 69. That is, for example, when the sensor 39 is LiDAR, the object detection unit 70 causes the sensor 39 to irradiate a laser beam toward the object P, and detects the reflected light from the object P received by the sensor 39. Obtain as a group.
  • the target object detection unit 70 calculates position information of the target object P based on a point group of reflected light from the target object P.
  • the user U identifies an object P that is a candidate for work.
  • the user U then moves to the vicinity of the specified object P and operates the terminal 16.
  • the target object detection unit 70 causes the sensor 69 to detect the specified target object P, and acquires the position information of the specified target object P.
  • the user U moves the device close to the object P to detect the position information of the object P by remote control.
  • the user U specifies the object P within the installation area AR0 as the candidate object P. Therefore, as shown in the example of FIG. 6, the user U moves close to the object P in the installation area AR and causes the terminal 16 to detect the position information of the object P in the installation area AR.
  • three objects PA, PB, and PC are specified as candidate objects P (here, objects P in the installation area AR0), and the terminal 16 identifies the objects PA, PB, and PC. , and detect the location information for each of the PCs.
  • the number of candidate objects P is not limited to three and may be arbitrary.
  • the vicinity of the target object P is any position where the terminal 16 can detect the position information of the target object P (for example, any position where the reflected light of the laser beam from the target object P can be received at a predetermined intensity or higher). It may be.
  • the terminal 16 detects the position and orientation of the object P with respect to the terminal 16. That is, the position information of the object P detected by the terminal 16 is not the position and orientation of the object P in the moving body coordinate system C, but the position of the object P in the terminal coordinate system CA with the position of the terminal 16 as a reference. and direction.
  • the terminal coordinate system CA is a two-dimensional coordinate system of the Xa direction, which is a predetermined horizontal direction based on the position of the terminal 16, and the Ya direction, which is a horizontal direction perpendicular to the Xa direction. .
  • the position in the terminal coordinate system CA refers to the coordinates in the terminal coordinate system CA (position in the Xa direction and the Ya direction), and the direction in the terminal coordinate system CA refers to the Za direction (orthogonal to the Xa direction and the Ya direction).
  • the moving body coordinate system C is not limited to being a two-dimensional coordinate system in the Xa direction and the Ya direction, but may be a three-dimensional coordinate system in the Xa direction, Ya direction, and Za direction, for example.
  • FIG. 7 is a schematic diagram of an image showing the object.
  • the display control section 72 of the terminal 16 causes the display section 62 to display an image showing the object P in the terminal coordinate system CA, based on the position information of the object P acquired by the object detection section 70. That is, the display control unit 72 causes the display unit 62 to display an image of the object P at the position and orientation indicated by the position information of the object P. For example, in the example of this embodiment, since the position information of the objects PA, PB, and PC has been acquired, the display control unit 72 controls the position information of the objects PA, PB, and PC in the terminal coordinate system CA, as shown in FIG.
  • the display unit 62 displays an image showing the . It is preferable that the display control unit 72 causes the display unit 62 to display images of the objects PA, PB, and PC viewed from the Za direction.
  • the target object setting unit 74 of the terminal 16 determines the target object P to which the mobile body 10 will move from among the target objects P that are candidates, that is, among the target objects P whose position information has been detected.
  • the target object setting unit 74 determines the target object P specified by the user U among the candidate objects P as the target object P to be the movement destination.
  • the user U specifies a destination object P from among the objects P displayed on the display unit 62. That is, the terminal 16 receives the designation of the target object P by the user U while the image of the target object P is displayed, and determines the target object P designated by the user U as the target object P to be moved.
  • the method for determining the target object P to be moved is not limited to the above.
  • the display control unit 72 of the terminal 16 does not display the image of the target object P on the display unit 62, but displays the detection result of the target object P by the sensor 69 itself (here, a point cloud) on the display unit 62. You can let me.
  • the user U visually recognizes the image of the detection result of the target object P and specifies the coordinates (position in the terminal coordinate system CA) corresponding to the target object P to be moved.
  • the target object setting unit 74 determines the coordinates specified by the user U as the target object P to be moved.
  • the target object P to be moved to is determined from among the plurality of candidate objects P, but this process is not essential.
  • the terminal 16 may detect the position information of one target object P, and that target object P may be set as the target object P to be moved.
  • the object information transmitting unit 76 of the terminal 16 transmits the position information of the object P determined as the movement destination to the moving body 10.
  • the object information transmitting unit 76 transmits position information of the target object P, which is a movement destination, in the terminal coordinate system CA to the moving body 10.
  • the object information acquisition unit 50 of the moving body 10 acquires the position information of the object P, which is the destination of movement, from the terminal 16. In the present embodiment, the object information acquisition unit 50 acquires position information of the object P, which is the movement destination, in the terminal coordinate system CA.
  • the self-location acquisition unit 52 of the mobile body 10 acquires current position information of the mobile body 10 .
  • the position information of the moving body 10 is information indicating the position and orientation of the moving body 10.
  • the self-position acquisition unit 52 acquires position information of the mobile body 10 in the mobile body coordinate system C.
  • the self-position acquisition unit 52 can use any method to acquire the position information of the moving body 10, but for example, in this embodiment, the equipment W is provided with a detection body (not shown), and the self-position acquisition unit 52 acquires the position information of the mobile body 10. Based on the detection, position information of the moving object 10 is acquired.
  • the moving object 10 detects its own position and orientation in the moving object coordinate system C by irradiating a laser beam toward a detection object and receiving the reflected light of the laser beam by the detection object.
  • the method for acquiring the position information of the moving object 10 is not limited to using a detection object, and may also use, for example, SLAM (Simultaneous Localization and Mapping).
  • the first position information is information indicating the position and orientation of the object P in the moving body coordinate system C.
  • the object information acquisition unit 50 may perform coordinate transformation between the moving body coordinate system C and the terminal coordinate system CA using any method, for example, the object information acquisition unit 50 may perform coordinate transformation between the moving body coordinate system C and the terminal coordinate system CA. Coordinate transformation may be performed by acquiring the coordinates. In this case, the object information acquisition unit 50 converts the position and orientation of the object P in the terminal coordinate system CA to the position and orientation of the object P in the moving object coordinate system C using the acquired correspondence. , is the first position information of the object P in the moving body coordinate system C.
  • FIG. 8 is a schematic diagram illustrating an example of detection using a reference part as a reference. Any method may be used to obtain the correspondence between the mobile body coordinate system C and the terminal coordinate system CA.
  • a reference part M whose position and orientation in the moving object coordinate system C are known may be provided in the equipment W in advance.
  • the reference portion M is, for example, a marker provided in the area AR, but may be any marker whose position and orientation in the moving object coordinate system C are known.
  • the user U causes the terminal 16 to detect the object P using this reference portion M as a reference.
  • the terminal coordinate system CA becomes a coordinate system based on the reference part M, so that the terminal 16 can determine the position and orientation of the object P with respect to the reference part M using the position information of the object P in the terminal coordinate system CA.
  • the object information acquisition unit 50 acquires information on the position and orientation of the reference part M in the moving body coordinate system C as a correspondence relationship, and based on this correspondence relationship, determines the position of the target object P in the terminal coordinate system CA.
  • First position information of the object P in the moving object coordinate system C is calculated from the information (position and orientation of the object P with respect to the reference part M).
  • the method for acquiring the correspondence relationship (the position and orientation of the reference part M in the moving body coordinate system C) by the object information acquisition unit 50 may be arbitrary;
  • the information may be read out, or the information may be obtained through communication from other devices such as the terminal 16 or the information processing device 14.
  • the method of detecting the object P using the reference part M as a reference by the terminal 16 may be arbitrary.
  • the object detection unit 70 of the terminal 16 may cause the sensor 69 to detect the reference portion M, and calculate the position and orientation of the reference portion M from the detection result.
  • the target object detection unit 70 causes the sensor 69 to detect the target object P, and from the detection result of the position and orientation of the target object P with respect to the terminal 16 and the position and orientation of the terminal 16 with respect to the reference part M, the reference part The position and orientation of the object P with respect to M are calculated.
  • the user U may place the terminal 16 at a predetermined position and orientation with respect to the reference part M, and the position and orientation of the terminal 16 in that state may be used as the reference point of the terminal coordinate system CA.
  • the target object detection unit 70 calculates the position and orientation of the target object P with respect to the reference part M based on the detection result of the position and orientation of the target object P with respect to the terminal 16 and the reference point.
  • FIG. 9 is a schematic diagram illustrating route setting.
  • the route acquisition unit 54 of the moving object 10 obtains a route R1 toward the object P in the moving object coordinate system C, which is set based on first position information indicating the position and orientation of the object P in the moving object coordinate system C. do.
  • the route acquisition unit 54 sets the route R1 by itself based on the first position information.
  • the route acquisition unit 54 calculates a position B having a predetermined position and orientation with respect to the object P in the moving object coordinate system C based on the first position information, and calculates a position B in the moving object coordinate system C.
  • the route to B is set as route R1.
  • the position B can be said to be the position and orientation at which the moving body 10 can pick up the object P, assuming that the object P is arranged at the position and orientation shown in the first position information.
  • the route acquisition unit 54 acquires the reference route R0 from the current position to the standby position A.
  • the standby position A is, for example, a position set in advance as a waypoint, and the position may be arbitrary.
  • the route acquisition unit 54 may acquire the reference route R0 from the current position to the standby position A from the information processing device 14, or may set the reference route R0 from the current position to the standby position A by itself. Then, the route acquisition unit 54 sets the route from standby position A to position B as route R1.
  • the movement control unit 56 of the moving body 10 moves the moving body 10 to the standby position A according to the reference route R0 acquired by the route acquisition unit 54. Then, the movement control unit 56 moves the moving body 10 from the standby position A to the position B according to the route R1 set by the route acquisition unit 54, and picks up the object P. Note that the mobile body 10 moves along the reference route R0 and the route R1 while sequentially confirming its own position in the mobile body coordinate system C by the self-position acquisition unit 52.
  • the moving body 10 moved to the standby position A according to the reference route R0, and then moved from the standby position A to the position B according to the route R, but the present invention is not limited thereto.
  • the movement to the standby position A is not essential; for example, the route acquisition unit 54 sets a route R from the current position of the moving body 10 to the position B, and the movement control unit 56 sets the route R from the current position to the position B.
  • the moving body 10 may be moved.
  • FIG. 10 is a flowchart explaining the processing flow of the route setting system.
  • the object detection unit 70 of the terminal 16 detects the position information of the candidate object P in the terminal coordinate system CA by the operation of the user U (step S10),
  • the object setting section 74 sets the object P as the movement destination from among the candidate objects P according to the user U's designation (step S12), and the object information transmission section 76 sets the object P as the movement destination.
  • the location information of the target object P in the terminal coordinate system CA is transmitted to the moving body 10 (step S14).
  • the object information acquisition unit 50 of the mobile object 10 calculates first position information of the object P in the mobile object coordinate system C from the position information of the object P in the terminal coordinate system CA acquired from the terminal 16 (step S16 ), the route acquisition unit 54 sets a route R1 toward the object P based on the first position information of the object P in the moving object coordinate system C (step S18).
  • the movement control unit 56 moves the moving body 10 according to the route R1 (step S20).
  • the terminal 16 detects the position information of the target object P, and the route R1 toward the target object P is set based on the detected position information of the target object P. Therefore, since the route can be set based on the actual position information of the object P, the moving body 10 can be guided to an appropriate position according to the situation. Furthermore, since the process of having the moving object 10 detect the object P is no longer essential, it is possible to specify the object P as the movement destination without waiting until the moving object 10 finishes detecting the object P. becomes. Furthermore, by converting the position information of the object P detected by the terminal 16 into the moving object coordinate system C, it is possible to specify the position of the object P in the coordinate system that the moving object 10 can recognize. , the moving body 10 can be appropriately guided.
  • the mobile object 10 calculates the first position information of the object P in the mobile object coordinate system C based on the position information of the object P in the terminal coordinate system CA detected by the terminal 16. was. Similarly, in the above description, the moving body 10 has set the route R1 toward the object P based on the first position information.
  • the entity that calculates the first location information and the entity that sets the route R1 are not limited to the mobile object 10, and at least one of the first location information and the route R1 is transmitted to the terminal 16 or the information processing device 14. It may be calculated by That is, the object information acquisition unit 50 that calculates the first position information and the route acquisition unit 54 that sets the route R1 are not limited to being implemented by the moving object 10, but may be implemented by the information processing device 14 or the terminal 16.
  • the terminal 16 or the information processing device 14 may calculate the first position information, and the mobile object 10 may set the route R1 based on the calculated first position information.
  • the terminal 16 or the information processing device 14 may calculate the first location information and set the route R1 based on the first location information.
  • the mobile object 10 acquires information on the route R1 set by the terminal 16 or the information processing device 14, and moves along the acquired route R1.
  • FIG. 11 is a schematic diagram for explaining an example of coordinate transformation in the second embodiment.
  • the object information acquisition unit 50 of the moving body 10 detects position information of the object P. Specifically, as shown in the upper left diagram of FIG. 11, the object information acquisition unit 50 causes the sensor 26A of the moving body 10 to detect the object P, and from the detection result by the sensor 26A, the moving body coordinate system is determined. The position information of the object P at C is calculated. Further, the object information acquisition unit 50 acquires position information of the object P in the terminal coordinate system CA, which is detected by the terminal 16, as shown in the upper right diagram of FIG.
  • the object information acquisition unit 50 acquires position information of the object P detected by the moving object 10 (position information in the moving object coordinate system C) and position information of the object P detected by the terminal 16 (terminal coordinate system CA). coordinate transformation between the terminal coordinate system CA and the mobile object coordinate system C is performed based on the position information (position information).
  • the method of coordinate transformation based on the position information of the target object P detected by the moving body 10 and the terminal 16 may be arbitrary, but in this embodiment, it is performed by the method shown below.
  • the object information acquisition unit 50 associates the object P detected by the moving object 10 with the object P detected by the terminal 16.
  • the object information acquisition unit 50 associates the detection results of the mobile object 10 and the detection results of the terminal 16 for the same object P.
  • the object information acquisition unit 50 associates the detection result by the mobile object 10 with the detection result by the terminal 16 for each object P.
  • the method of associating the objects P with each other may be arbitrary.
  • the object information acquisition unit 50 uses the position information of the object P in the terminal coordinate system CA detected by the terminal 16 to determine the position of the object P in the moving body coordinate system C. Calculate information. Then, the object information acquisition unit 50 calculates the difference between the calculated position information of the object P in the moving object coordinate system C and the position information of the object P in the moving object coordinate system C detected by the moving object 10.
  • Objects P that are equal to or less than the value may be regarded as the same object P and may be associated with each other. The predetermined value here may be set as appropriate.
  • the object information acquisition unit 50 performs coordinate transformation on the associated object P based on the position information detected by the moving object 10 and the terminal 16.
  • the object information acquisition unit 50 calculates the homogeneous transformation matrix T, which is the correspondence between the terminal coordinate system CA and the moving object coordinate system C, by the optimization calculation shown in the following equation (1). calculate.
  • q i and ⁇ i in equation (1) are the position and orientation of the object P detected by the moving body 10, and p i and ⁇ i are the position of the object P detected by the terminal 16.
  • w is a weight parameter indicating how much importance is given to either positional deviation or angular deviation, and may be set as appropriate.
  • T shown in formula (1) is expressed by the following formula (2), T can be calculated by calculating x, y, and ⁇ that minimize the evaluation function E of formula (1). Note that since the partial differential becomes zero at the point where the evaluation function E is minimized, the simultaneous equations to be satisfied by the solution to be found are as shown in the following equation (3). However, the horizontal line above the symbol represents the average.
  • x and y can be expressed explicitly using ⁇ , so by finding ⁇ , x, y, and ⁇ can be found, and T can be calculated.
  • can be calculated, for example, by the Newton-Raphson method.
  • the object information acquisition unit 50 determines the correspondence between the moving object coordinate system C and the terminal coordinate system CA (T in the above example) from the detection results of the objects PA and PB of the moving object 10 and the terminal 16. Calculate. That is, as long as the terminal 16 and the moving body 10 detect at least one same object P, even if the number of detected objects P is different, the relationship between the moving body coordinate system C and the terminal coordinate system CA is Correspondence can be calculated.
  • the object information acquisition unit 50 causes the moving body 10 to detect the position information of the object P at the standby position A.
  • the object information acquisition unit 50 of the moving object 10 determines the moving object coordinate system C and the terminal coordinates from the position information of the object P detected by the moving object 10 and the position information of the object P detected by the terminal 16.
  • the correspondence relationship (T in the above example) with the system CA is calculated.
  • the object information acquisition unit 50 coordinately transforms the position information of the object P in the terminal coordinate system Ca detected by the terminal 16 using the calculated correspondence relationship.
  • first position information of the object P in the moving object coordinate system C is calculated.
  • the route acquisition unit 54 sets a route R1 to the target object P, that is, a route R1 from the standby position A to the position B here, based on the first position information of the target object P calculated in this way. do.
  • coordinate transformation is performed based on the position information of the target object P detected by the moving object 10 and the terminal 16. Since the detection accuracy of the target object P by the moving body 10 is often higher than the detection accuracy of the target object P by the terminal 16, by performing coordinate transformation using the method of the second embodiment, the detection accuracy of the target object P in the mobile body coordinate system C is The route R1 can be appropriately set by setting the first position information of the object P with high precision. Furthermore, in this embodiment, the moving body 10 and the terminal 16 detect a common object P and perform coordinate transformation.
  • the reference object P is a pallet with a standardized shape (with a known shape) that is transported by the moving body 10 in the example of this embodiment, but any object with a known shape can be used as a reference. It may be used as a target object P.
  • the route R1 is a route toward the target object PA, but according to the method of the second embodiment, a route toward the target object PC that the moving object 10 could not be detected can also be set. That is, in this case, the object information acquisition unit 50 calculates the correspondence relationship (T) using the detection results of the objects PA and PB, and uses this correspondence relationship to calculate the position information of the object PC in the terminal coordinate system CA. By converting, the position information of the target object PC in the moving body coordinate system C can be calculated, and a route to the target object PC can be set.
  • the moving body 10 detects the position information of the target object P, but if the approximate position of the target object P is not known in advance, the search range becomes wider, so the detection load is reduced. There is a risk that the price will increase.
  • a detection region ROI which is a range to be detected by the moving body 10 is set based on the position information of the target object P detected by the terminal 16, and the detection region ROI is set in the moving body 10. It is preferable to detect the position information of the target object P by detecting the . Thereby, the detection load can be suppressed. This will be explained in detail below.
  • FIG. 12 is a schematic diagram illustrating the detection area.
  • the object information acquisition unit 50 of the moving body 10 uses the position information of the object P in the terminal coordinate system CA detected by the terminal 16 to calculate the moving body coordinate system. First position information of the object P at C is calculated.
  • the object information acquisition unit 50 sets a detection region ROI as shown in FIG. 12 based on the first position information of the object P in the moving body coordinate system C. For example, the object information acquisition unit 50 may set an area of a predetermined size including the position indicated by the first position information as the detection area ROI.
  • the object information acquisition unit 50 detects position information of the object P by causing the sensor 26A to detect the detection region ROI.
  • the object information acquisition unit 50 acquires the position information of the object P detected by the moving body 10 and the position information of the object P detected by the terminal 16 in the same manner as in the second embodiment described above. From this, the correspondence relationship (T in the above example) between the moving object coordinate system C and the terminal coordinate system CA is calculated.
  • the object information acquisition unit 50 calculates first position information of the object P in the moving object coordinate system C by performing coordinate transformation on the position information of the object P in the terminal coordinate system CA using the calculated correspondence relationship. fix.
  • the route acquisition unit 54 sets a route R1 toward the object P based on the position information of the object P in the moving body coordinate system C recalculated in this way.
  • the moving object 10 is moved to the object P according to the route R1 set using the position information of the object P detected by the moving object 10 and the terminal 16.
  • the present invention is not limited to this, and the position of the object P detected by the mobile object 10 and the terminal 16 after approaching the object P along the route R1 set using only the position information of the object P detected by the terminal 16.
  • the next route R2 may be set using the information, and the moving object 10 may be made to reach the target object P according to the route R2. This will be explained in detail below.
  • FIG. 13 is a schematic diagram illustrating an example of route setting.
  • a route R1 toward the object P is set using the same method as in the first embodiment, that is, using only the position information of the object P detected by the terminal 16.
  • the movement control unit 56 of the moving body 10 moves the moving body 10 toward the object P according to the route R1.
  • the object information acquisition unit 50 of the moving object 10 causes the sensor 26A to detect the object P in a state where the moving object 10 is located on the route R1, and detects the object P in the moving object coordinate system C. Calculate the location information of.
  • the object information acquisition unit 50 may cause the sensor 26A to detect the object P at any position on the route R1, for example, may cause the sensor 26A to detect the object P sequentially while moving along the route R1, or may cause the sensor 26A to detect the object P at any position on the route R1.
  • the object P may be detected by stopping.
  • the detection region ROI may be set based on the first position information and the sensor 26A may be caused to detect the detection region ROI.
  • the object information acquisition unit 50 uses the same method as in the second embodiment from the position information of the object P detected by the moving object 10 on the route R1 and the position information of the object P detected by the terminal 16. Then, the correspondence between the moving object coordinate system C and the terminal coordinate system CA is calculated. Then, the object information acquisition unit 50 coordinates transforms the position information of the object P in the terminal coordinate system CA detected by the terminal 16 using the calculated correspondence relationship, and positions the object P in the moving object coordinate system C. Information (second position information) is calculated. The route acquisition unit 54 sets a route R2 toward the object P based on the second position information of the object P in the moving body coordinate system C calculated in this way.
  • the route acquisition unit 54 calculates a position D that is a predetermined position and orientation with respect to the target object P based on the second position information of the target object P, and sets the route to the position D as the route R2. .
  • the position D can be said to be the position and orientation at which the moving body 10 can pick up the object P, assuming that the object P is arranged in the position and orientation shown in the second position information.
  • the moving body 10 starts moving without waiting until the object P has been detected, and switches to route R2 as soon as the moving object 10 is detected, so that the object P can be detected with high precision. I can approach you.
  • the process of calculating the correspondence between the moving body coordinate system C and the terminal coordinate system CA the process of calculating the position information of the object P in the moving body coordinate system C, and the process of calculating the correspondence between the moving body coordinate system C and the terminal coordinate system CA,
  • the mobile body 10 performs the processing for setting R1 and R2
  • the present invention is not limited thereto, and the terminal 16 or the information processing device 14 may perform the processing.
  • the third embodiment differs from the first embodiment in that after approaching the object P along the route R1, a route R3 is set to approach the object P using only the detection results of the moving body 10.
  • a route R3 is set to approach the object P using only the detection results of the moving body 10.
  • descriptions of parts that have the same configuration as the first embodiment will be omitted. Note that the third embodiment is also applicable to the second embodiment.
  • FIG. 14 is a schematic diagram illustrating an example of route setting.
  • a route R1 toward the object P is set using the same method as in the first embodiment, that is, using only the position information of the object P detected by the terminal 16.
  • the movement control unit 56 of the moving body 10 moves the moving body 10 toward the object P according to the route R1.
  • the object information acquisition unit 50 of the moving object 10 causes the sensor 26A to detect the object P while the moving object 10 is located on the route R1, and detects the object P in the moving object coordinate system C. Calculate the position information of the target object P at .
  • the object information acquisition unit 50 may cause the sensor 26A to detect the object P at any position on the route R1, for example, may cause the sensor 26A to detect the object P sequentially while moving along the route R1, or may cause the sensor 26A to detect the object P at any position on the route R1.
  • the object P may be detected by stopping.
  • the detection region ROI may be set based on the first position information and the sensor 26A may detect the detection region ROI. .
  • the object information acquisition unit 50 sets a route R3 toward the object P based on the position information of the object P in the moving object coordinate system C detected by the moving object 10. That is, the route acquisition unit 54 calculates a position E that is a predetermined position and orientation with respect to the object P based on the position information of the object P in the moving object coordinate system C detected by the moving object 10, The route to that position E is set as route R3.
  • the position E can be said to be the position and orientation at which the moving body 10 can pick up the object P, assuming that the object P is arranged at the position and orientation shown in the position information detected by the moving body 10.
  • the movement control unit 56 switches from the route R1 to the route R3 and moves toward the target object P along the route R3.
  • the moving body 10 starts moving without waiting until the target object P has been detected, and switches to the route R3 at the moment when the moving body 10 can detect the target object P, thereby detecting the target object P with high precision.
  • the mobile object 10 heads toward the object PC that could not be detected, it will head toward the object PC using only the detection results of the terminal 16, so the accuracy of the route R1 toward the object PC becomes low. It ends up.
  • the moving body 10 when the moving body 10 starts moving on the route R1 and reaches a position where the target object PC can be detected, it switches to the route R3 based on the detection of the moving body 10. You can switch to a highly accurate route to the PC.
  • the third embodiment is also applicable to the second embodiment.
  • the object P detected by the moving object 10 is moved.
  • the route R3 may be set based on the position information of the target object P, and the route may be switched to the route R3.
  • the route R3 after approaching the object P on the route R1 set using only the position information of the object P detected by the terminal 16, the object P detected by the moving object 10 and the terminal 16 A route set using only the position information of the object P detected by the moving body 10 after switching to the route R2 set using the position information of the object P and moving closer to the object P on the route R2. You may switch to R3.
  • the process of setting the route R3 is performed by the mobile body 10, but the process is not limited thereto, and the terminal 16 or the information processing device 14 may perform the process.
  • a route setting method includes the steps of: detecting, by a positionally movable terminal 16, position information of an object P in a terminal coordinate system CA, which is a reference for detection by the terminal 16; By performing coordinate transformation between CA and the moving object coordinate system C, which is the reference for the movement of the moving object 10, the position of the object P in the moving object coordinate system C can be determined from the position information of the object P in the terminal coordinate system CA. and a step of setting a route R1 toward the target object P in the moving body coordinate system C based on the first position information.
  • a route can be set based on the position information of the actual object P detected by the terminal 16, so the moving object 10 can be guided to an appropriate position according to the situation. Furthermore, by converting the position information of the object P detected by the terminal 16 into the moving object coordinate system C, it is possible to specify the position of the object P in the coordinate system that the moving object 10 can recognize. , the moving body 10 can be appropriately guided.
  • the route setting method according to the second aspect of the present disclosure is the route setting method according to the first aspect, in which the step of detecting the position information of the target object P uses a reference whose position in the moving object coordinate system C is known.
  • the terminal coordinate system CA and Coordinate transformation with the moving body coordinate system C is performed.
  • the route setting method according to the third aspect of the present disclosure is the route setting method according to the first aspect or the second aspect, which includes a step of causing the moving object 10 to detect position information of the target object P in the moving object coordinate system C.
  • the step of calculating the first position information the position information of the object P in the terminal coordinate system CA detected by the terminal 16 and the position information of the object P in the mobile object coordinate system C detected by the mobile object 10 are calculated. Based on the position information, coordinate transformation between the terminal coordinate system and the moving body coordinate system is performed.
  • the first position information of the target object P in the mobile body coordinate system C is set with high precision. Thus, route R1 can be appropriately set.
  • a route setting method is the route setting method according to any one of the first to third aspects, and includes a step of setting a detection region ROI based on first position information; The step further includes a step of obtaining position information of the target object P in the mobile body coordinate system C by detecting the detection region ROI, and in the step of calculating the first position information, the target object P in the terminal coordinate system CA is In the step of recalculating the first position information based on the position information of the object P and the position information of the object P in the moving body coordinate system C, and setting the route R1, the recalculated first position information is used. Based on this, a route RI is set. According to the present disclosure, by setting the detection region ROI from the position information of the target object P detected by the terminal 16 and having the moving body 10 detect the detection region ROI, the route R1 can be appropriately determined while suppressing the detection load. Can be set to
  • a route setting method is the route setting method according to any one of the first to fourth aspects, in which the mobile object 1 , based on the step of detecting the position information of the target object P in the mobile body coordinate system C, the position information of the target object P in the terminal coordinate system CA, and the position information of the target object P in the mobile body coordinate system C, a step of calculating second position information indicating the position of the target object P in the mobile body coordinate system C; a step of setting a route R2 toward the target object P in the mobile body coordinate system C based on the second position information; further including.
  • a route setting method is the route setting method according to any one of the first to fifth aspects, in which the mobile object , a step of detecting the position information of the object P in the moving body coordinate system C, and based on the position information of the target object P in the moving body coordinate system C, a route R3 toward the target object P in the moving body coordinate system C is detected. configuring. According to the present disclosure, it is possible to start moving without waiting until the moving object 10 finishes detecting the object P, and switch to the route R3 as soon as the moving object 10 is detected to approach the object P with high precision. .
  • the route setting method according to the seventh aspect of the present disclosure is the route setting method according to any one of the first to sixth aspects, and further includes a step of setting the moving body 10 to move according to the set route. According to the present disclosure, the mobile body 10 can be moved to an appropriate position depending on the situation.
  • the program according to the eighth aspect of the present disclosure includes the steps of: detecting, by a positionally movable terminal 16, position information of an object P in a terminal coordinate system CA, which is a reference for detection by the terminal 16; , by performing coordinate transformation with the moving object coordinate system C, which serves as a reference for the movement of the moving object 10, from the position information of the object P in the terminal coordinate system CA, the position of the object P in the moving object coordinate system C is obtained.
  • the computer is caused to execute the steps of calculating first position information and setting a route R1 toward the object P in the moving body coordinate system C based on the first position information. According to the present disclosure, the moving body 10 can be guided to an appropriate position depending on the situation.
  • the route setting system 1 includes a terminal 16 that is movable in position and a mobile object 10.
  • the terminal 16 includes an object detection unit 70 that detects position information of the object P in the terminal coordinate system CA, which serves as a reference for detection.
  • the moving object 10 follows a route toward the object P in the moving object coordinate system C, which is set based on first position information indicating the position of the object P in the moving object coordinate system C, which serves as a reference for movement of the moving object 10. It includes a route acquisition unit 54 that acquires R1.
  • the first position information is calculated from the position information of the object P in the terminal coordinate system CA by performing coordinate transformation between the terminal coordinate system CA and the moving body coordinate system C. According to the present disclosure, the moving body 10 can be guided to an appropriate position depending on the situation.
  • the embodiment of the present disclosure has been described above, the embodiment is not limited by the content of this embodiment. Further, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equivalent range. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, substitutions, or changes of the constituent elements can be made without departing from the gist of the embodiments described above.

Abstract

The objective of the present invention is to guide a mobile body to an appropriate position. This route setting method includes: a step for detecting, by means of a terminal having a movable position, position information of an object in a terminal coordinate system serving as a reference for detection performed by the terminal; a step for performing coordinate conversion between the terminal coordinate system and a mobile body coordinate system serving as a reference for movement of the mobile body, to calculate first position information indicating a position of the object in the mobile body coordinate system from the position information of the object in the terminal coordinate system; and a step for setting a route toward the object, in the mobile body coordinate system, on the basis of the first position information.

Description

経路設定方法、プログラム及び経路設定システムRoute setting method, program and route setting system
 本開示は、経路設定方法、プログラム及び経路設定システムに関する。 The present disclosure relates to a route setting method, program, and route setting system.
 自動で移動する移動体の移動経路を設定する技術が知られている。例えば特許文献1には、ユーザが、端末に表示されている地図上でのポイントをマークすることで、無人機により処理されるべき領域を指定して、無人機にその領域まで移動させる旨が記載されている。このように、移動体の移動先をユーザが指定することで、移動体を移動先まで誘導することができる。 There is a known technology for automatically setting a moving route for a moving object. For example, in Patent Document 1, a user specifies an area to be processed by an unmanned aircraft by marking a point on a map displayed on a terminal, and the unmanned aircraft moves to that area. Are listed. In this way, by the user specifying the destination of the moving object, the moving object can be guided to the destination.
特許第6979961号公報Patent No. 6979961
 しかしながら、特許文献1においては、予め決められた地図上でしかポイントを指定できないため、例えば状況に応じた適切な位置に、移動体を誘導することができないおそれがある。 However, in Patent Document 1, since points can only be specified on a predetermined map, there is a possibility that the moving object cannot be guided to an appropriate position depending on the situation, for example.
 本開示は、上述した課題を解決するものであり、移動体を適切な位置に誘導可能な経路設定方法、プログラム及び経路設定システムを提供することを目的とする。 The present disclosure solves the above-mentioned problems, and aims to provide a route setting method, program, and route setting system that can guide a moving object to an appropriate position.
 本開示に係る経路設定方法は、位置を移動可能な端末により、前記端末による検出の基準となる端末座標系における対象物の位置情報を検出するステップと、前記端末座標系と、移動体の移動の基準となる移動体座標系との座標変換を行うことで、前記端末座標系における前記対象物の位置情報から、前記移動体座標系における前記対象物の位置を示す第1位置情報を算出するステップと、前記第1位置情報に基づき、前記移動体座標系において前記対象物に向かう経路を設定するステップと、を含む。 A route setting method according to the present disclosure includes the steps of: detecting, by a positionally movable terminal, position information of an object in a terminal coordinate system that serves as a reference for detection by the terminal; First position information indicating the position of the object in the mobile body coordinate system is calculated from the position information of the object in the terminal coordinate system by performing coordinate transformation with a mobile body coordinate system that is a reference. and setting a route toward the target object in the moving body coordinate system based on the first position information.
 本開示に係るプログラムは、位置を移動可能な端末により、前記端末による検出の基準となる端末座標系における対象物の位置情報を検出するステップと、前記端末座標系と、移動体の移動の基準となる移動体座標系との座標変換を行うことで、前記端末座標系における前記対象物の位置情報から、前記移動体座標系における前記対象物の位置を示す第1位置情報を算出するステップと、前記第1位置情報に基づき、前記移動体座標系において前記対象物に向かう経路を設定するステップと、をコンピュータに実行させる。 A program according to the present disclosure includes the steps of: detecting, using a positionally movable terminal, position information of an object in a terminal coordinate system that serves as a reference for detection by the terminal; calculating first position information indicating the position of the object in the moving object coordinate system from the position information of the object in the terminal coordinate system by performing coordinate transformation with a moving object coordinate system, , setting a route toward the object in the moving body coordinate system based on the first position information.
 本開示に係る経路設定システムは、位置を移動可能な端末と、移動体とを含む経路設定システムであって、前記端末は、検出の基準となる端末座標系における対象物の位置情報を検出する対象物検出部を含み、前記移動体は、移動体の移動の基準となる移動体座標系における前記対象物の位置を示す第1位置情報に基づいて設定された、前記移動体座標系において前記対象物に向かう経路を取得する経路取得部を含み、前記第1位置情報は、前記端末座標系と前記移動体座標系との座標変換を行うことで、前記端末座標系における前記対象物の位置情報から算出されたものである。 A route setting system according to the present disclosure includes a terminal whose position can be moved and a moving object, wherein the terminal detects position information of an object in a terminal coordinate system that is a reference for detection. The movable body includes a target object detection unit, and the movable body is configured to detect the target object in the movable body coordinate system, which is set based on first position information indicating the position of the target object in the movable body coordinate system that is a reference for movement of the movable body. The first position information includes a route acquisition unit that acquires a route toward the target object, and the first position information is obtained by performing coordinate transformation between the terminal coordinate system and the moving body coordinate system, and thereby determining the position of the target object in the terminal coordinate system. It is calculated from information.
 本開示によれば、移動体を適切な位置に誘導することができる。 According to the present disclosure, a moving object can be guided to an appropriate position.
図1は、本実施形態に係る経路設定システムの模式図である。FIG. 1 is a schematic diagram of a route setting system according to this embodiment. 図2は、移動体の構成の模式図である。FIG. 2 is a schematic diagram of the configuration of the moving body. 図3は、情報処理装置の模式的なブロック図である。FIG. 3 is a schematic block diagram of the information processing device. 図4は、移動体の制御装置の模式的なブロック図である。FIG. 4 is a schematic block diagram of a control device for a moving body. 図5は、端末の模式的なブロック図である。FIG. 5 is a schematic block diagram of the terminal. 図6は、端末による対象物の検出を説明する模式図である。FIG. 6 is a schematic diagram illustrating detection of an object by a terminal. 図7は、対象物を示す画像の模式図である。FIG. 7 is a schematic diagram of an image showing the object. 図8は、基準部を基準とした検出の一例を説明する模式図である。FIG. 8 is a schematic diagram illustrating an example of detection using a reference portion as a reference. 図9は、経路の設定を説明する模式図である。FIG. 9 is a schematic diagram illustrating route setting. 図10は、経路設定システムの処理フローを説明するフローチャートである。FIG. 10 is a flowchart illustrating the processing flow of the route setting system. 図11は、第2実施形態における座標変換の一例を説明するための模式図である。FIG. 11 is a schematic diagram for explaining an example of coordinate transformation in the second embodiment. 図12は、検知領域を説明する模式図である。FIG. 12 is a schematic diagram illustrating the detection area. 図13は、経路の設定の例を説明する模式図である。FIG. 13 is a schematic diagram illustrating an example of route setting. 図14は、経路の設定の例を説明する模式図である。FIG. 14 is a schematic diagram illustrating an example of route setting.
 以下に添付図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Note that the present disclosure is not limited to this embodiment, and if there are multiple embodiments, the present disclosure also includes a configuration in which each embodiment is combined.
 (第1実施形態)
 (経路設定システム)
 図1は、本実施形態に係る経路設定システムの模式図である。図1に示すように、本実施形態に係る経路設定システム1は、移動体10と管理装置12と情報処理装置14と端末16とを含む。経路設定システム1は、設備Wに所属する移動体10の移動経路を設定して、移動体10の移動を制御するシステムである。設備Wは、例えば倉庫など、物流管理される設備である。経路設定システム1においては、移動体10は、設備Wの領域AR内に配置された対象物Pをピックアップして搬送する。領域ARは、例えば設備Wの床面であり、目標物Qが設置されたり移動体10が移動したりする領域である。対象物Pは、本実施形態では、パレット上に荷物が積載された搬送対象物である。ただし、対象物Pは、パレット上に荷物が積載されたものに限られず任意の形態であってよく、例えばパレットを有さず荷物のみであってもよい。
(First embodiment)
(route setting system)
FIG. 1 is a schematic diagram of a route setting system according to this embodiment. As shown in FIG. 1, the route setting system 1 according to the present embodiment includes a mobile object 10, a management device 12, an information processing device 14, and a terminal 16. The route setting system 1 is a system that sets a travel route for a mobile body 10 belonging to a facility W and controls the movement of the mobile body 10. The equipment W is equipment that is subject to physical distribution management, such as a warehouse. In the route setting system 1, the moving body 10 picks up a target object P placed within the area AR of the equipment W and transports it. The area AR is, for example, the floor surface of the equipment W, and is an area where the target object Q is installed and the moving body 10 moves. In this embodiment, the object P is a conveyance object in which cargo is loaded on a pallet. However, the object P is not limited to one in which luggage is loaded on a pallet, but may be in any form, for example, it may be only luggage without a pallet.
 本実施形態では、設置領域AR0に設置された対象物Pに向かって移動体10を移動させて、その対象物Pをピックアップさせる。設置領域AR0は、対象物Pを設置すべき領域として、予め設定される。設置領域AR0は、例えば白線などで区分されており、設置領域AR0の位置(座標)、形状、及び大きさは、予め設定されている。本実施形態の例では、設置領域AR0は、複数の対象物Pを自由に設置することが許可されている領域であり、設置領域AR0内での対象物Pの位置及び向きは、移動体10や管理装置12や情報処理装置14によって予め把握されていない。そのため、本実施形態では、端末16により設置領域AR0内の対象物Pの位置及び向きを検出させて、端末16により検出された対象物Pの位置及び向きに基づいて、対象物Pに向かう移動体10用の経路を設定する。ただし、移動体10の移動先となる対象物Pは、予め決められた設置領域AR0内に配置されていることに限られず、設備W内の任意の位置に配置されたものであってよい。この場合であっても、対象物Pの位置及び向きは、移動体10や管理装置12や情報処理装置14によって予め把握されていなくてよい。 In this embodiment, the moving body 10 is moved toward the target object P installed in the installation area AR0, and the target object P is picked up. The installation area AR0 is set in advance as an area where the object P is to be installed. The installation area AR0 is divided, for example, by white lines, and the position (coordinates), shape, and size of the installation area AR0 are set in advance. In the example of this embodiment, the installation area AR0 is an area in which a plurality of objects P are allowed to be freely installed, and the position and orientation of the objects P within the installation area AR0 are It is not known in advance by the management device 12 or the information processing device 14. Therefore, in this embodiment, the terminal 16 detects the position and orientation of the target object P within the installation area AR0, and based on the position and orientation of the target object P detected by the terminal 16, movement toward the target object P is performed. Set a route for the body 10. However, the object P to which the moving body 10 moves is not limited to being placed within the predetermined installation area AR0, and may be placed at any position within the equipment W. Even in this case, the position and orientation of the object P need not be known in advance by the moving body 10, the management device 12, or the information processing device 14.
 ここで、移動体10の移動の際の基準となる座標系を、移動体座標系Cとする。移動体座標系Cは、固定された基準位置を基準とした座標系であり、例えば、領域ARに沿った一方向であるX方向と、領域ARに沿った方向であって方向Xに交差するY方向との、二次元座標系である。従って例えば、移動体座標系Cにおける位置とは、移動体座標系Cにおける座標(X方向及びY方向における位置)を指し、移動体座標系Cにおける向きとは、Z方向から見た場合にX方向を0°とした際のヨー角(回転角度)を指す。ただし、移動体座標系Cは、X方向及びY方向の二次元座標系であることに限られず、例えば、X方向、Y方向及びZ方向(鉛直方向)の三次元座標系であってもよい。 Here, the coordinate system that serves as a reference when moving the moving body 10 is referred to as a moving body coordinate system C. The moving body coordinate system C is a coordinate system based on a fixed reference position, and includes, for example, an X direction that is one direction along the area AR and a direction that is along the area AR and intersects with the direction X. It is a two-dimensional coordinate system with the Y direction. Therefore, for example, the position in the moving object coordinate system C refers to the coordinates in the moving object coordinate system C (position in the X direction and the Y direction), and the direction in the moving object coordinate system C refers to the Refers to the yaw angle (rotation angle) when the direction is 0°. However, the moving body coordinate system C is not limited to a two-dimensional coordinate system in the X direction and the Y direction, but may be a three-dimensional coordinate system in the X direction, Y direction, and Z direction (vertical direction), for example. .
 (移動体)
 図2は、移動体の構成の模式図である。移動体10は、自動で移動可能であり対象物Pを搬送可能な装置である。さらに言えば、本実施形態では、移動体10は、フォークリフトであり、より詳しくはいわゆるAGV(Automated Guided Vehicle)やAGF(Automated Guided Forklift)である。ただし、移動体10は、対象物Pを搬送するフォークリフトであることに限られず、自動で移動可能な任意な装置であってよい。
(mobile object)
FIG. 2 is a schematic diagram of the configuration of the moving body. The moving body 10 is a device that is automatically movable and capable of transporting the object P. Furthermore, in this embodiment, the moving body 10 is a forklift, and more specifically, a so-called AGV (Automated Guided Vehicle) or AGF (Automated Guided Forklift). However, the moving body 10 is not limited to a forklift that transports the object P, and may be any device that can move automatically.
 図2に示すように、移動体10は、車体20と、車輪20Aと、ストラドルレッグ21と、マスト22と、フォーク24と、センサ26Aと、制御装置28とを備えている。ストラドルレッグ21は、車体20の前後方向における一方の端部に設けられて、車体20から突出する一対の軸状の部材である。車輪20Aは、それぞれのストラドルレッグ21の先端と、車体20とに設けられている。すなわち、車輪20Aは、合計3個設けられているが、車輪20Aの設けられる位置や個数は任意であってよい。マスト22は、ストラドルレッグ21に移動可能に取り付けられ、車体20の前後方向に移動する。マスト22は、前後方向に直交する上下方向(ここでは方向Z)に沿って延在する。フォーク24は、マスト22に方向Zに移動可能に取付けられている。フォーク24は、マスト22に対して、車体20の横方向(上下方向及び前後方向に交差する方向)にも移動可能であってよい。フォーク24は、一対のツメ24A、24Bを有している。ツメ24A、24Bは、マスト22から車体20の前方向に向けて延在している。ツメ24Aとツメ24Bとは、マスト22の横方向に、互いに離れて配置されている。以下、前後方向のうち、移動体10においてフォーク24が設けられている側の方向を、前方向とし、フォーク24が設けられていない側の方向を、後方向とする。 As shown in FIG. 2, the moving body 10 includes a vehicle body 20, wheels 20A, straddle legs 21, a mast 22, a fork 24, a sensor 26A, and a control device 28. The straddle legs 21 are a pair of shaft-shaped members that are provided at one end of the vehicle body 20 in the longitudinal direction and protrude from the vehicle body 20. The wheels 20A are provided at the tip of each straddle leg 21 and on the vehicle body 20. That is, although a total of three wheels 20A are provided, the position and number of wheels 20A may be arbitrary. The mast 22 is movably attached to the straddle leg 21 and moves in the longitudinal direction of the vehicle body 20. The mast 22 extends along the up-down direction (direction Z here) orthogonal to the front-back direction. The fork 24 is attached to the mast 22 so as to be movable in the Z direction. The fork 24 may also be movable in the lateral direction of the vehicle body 20 (in a direction intersecting the vertical and longitudinal directions) with respect to the mast 22 . The fork 24 has a pair of claws 24A and 24B. The claws 24A and 24B extend from the mast 22 toward the front of the vehicle body 20. The claw 24A and the claw 24B are arranged apart from each other in the lateral direction of the mast 22. Hereinafter, in the front-rear direction, the direction on the side where the fork 24 is provided in the movable body 10 will be referred to as the front direction, and the direction on the side where the fork 24 is not provided will be referred to as the rear direction.
 センサ26Aは、車体20の周辺に存在する対象物の位置及び向き(姿勢)の少なくとも1つを検出する。センサ26Aは、移動体10に対する対象物の位置と、移動体10に対する対象物の向きとの少なくとも一方を検出するともいえる。本実施形態では、センサ26Aは、それぞれのストラドルレッグ21の前方向における先端と、車体20の後方向側とに設けられている。ただし、センサ26Aの設けられる位置はこれに限られず、任意の位置に設けられてもよいし、設けられる数も任意であってよい。 The sensor 26A detects at least one of the position and orientation (posture) of an object existing around the vehicle body 20. It can also be said that the sensor 26A detects at least one of the position of the object with respect to the moving body 10 and the orientation of the object with respect to the moving body 10. In this embodiment, the sensor 26A is provided at the front end of each straddle leg 21 and on the rear side of the vehicle body 20. However, the position where the sensor 26A is provided is not limited to this, and may be provided at any position, and the number of sensors provided may be arbitrary.
 センサ26Aは、例えばレーザ光を照射するセンサである。センサ26Aは、一方向(ここでは横方向)に走査しつつレーザ光を照射し、照射したレーザ光の反射光から、対象物の位置及び向きを検出する。すなわち、センサ26Aは、いわゆる2次元(2D)-LiDAR(Light Detection And Ranging)であるともいえる。ただし、センサ26Aは、以上のものに限られず任意の方法で対象物を検出するセンサであってよく、例えば、複数の方向に走査されるいわゆる3次元(3D)-LiDARであってもよいし、走査されない、いわゆる1次元(1D)-LiDARであってもよいし、カメラであってもよい。 The sensor 26A is, for example, a sensor that irradiates laser light. The sensor 26A irradiates a laser beam while scanning in one direction (in this case, the lateral direction), and detects the position and orientation of the object from the reflected light of the irradiated laser beam. That is, the sensor 26A can be said to be a so-called two-dimensional (2D)-LiDAR (Light Detection And Ranging). However, the sensor 26A is not limited to the above, and may be a sensor that detects an object by any method, for example, it may be a so-called three-dimensional (3D)-LiDAR that scans in multiple directions. , a so-called one-dimensional (1D)-LiDAR that is not scanned, or a camera.
 制御装置28は、移動体10の移動を制御する。制御装置28については後述する。 The control device 28 controls the movement of the mobile body 10. The control device 28 will be described later.
 (管理装置)
 管理装置12は、設備Wにおける物流を管理するシステムである。管理装置12は、例えば、移動体10の作業内容や、設備Wに設けられる移動体10以外の機構(例えばエレベータや扉など)の制御内容を設定する。管理装置12は、本実施形態ではWCS(Warehouse Control System)やWMS(Warehouse Management System)であるが、WCS及びWMSに限られず任意のシステムであってよく、例えば、その他の生産管理系システムのようなバックエンドシステムでも構わない。管理装置12が設けられる位置は任意であり、設備W内に設けられてもよいし、設備Wから離れた位置に設けられて、離れた位置から設備Wを管理するものであってもよい。
(Management device)
The management device 12 is a system that manages logistics at the facility W. The management device 12 sets, for example, the work content of the movable body 10 and the control content of mechanisms other than the movable body 10 (for example, elevators and doors) provided in the equipment W. Although the management device 12 is a WCS (Warehouse Control System) or a WMS (Warehouse Management System) in this embodiment, it is not limited to the WCS and WMS, but may be any system, for example, other production management systems. Any backend system is fine. The location where the management device 12 is provided is arbitrary, and it may be provided within the equipment W or may be provided at a location away from the equipment W to manage the equipment W from a remote location.
 (情報処理装置)
 図3は、情報処理装置の模式的なブロック図である。情報処理装置14は、移動体10の移動に関する情報などを処理する装置である。情報処理装置14は、例えばFCS(Fleet Control System)であるが、それに限られず、移動体10の移動に関する情報を処理する任意の装置であってよい。情報処理装置14は、本実施形態では設備Wに設けられるが、設けられる位置は任意であってよい。情報処理装置14は、コンピュータであり、図3に示すように、通信部30と記憶部32と制御部34とを含む。通信部30は、制御部34に用いられて、管理装置12や移動体10などの外部の装置と通信するモジュールであり、例えばアンテナなどを含んでよい。通信部30による通信方式は、本実施形態では無線通信であるが、通信方式は任意であってよい。記憶部32は、制御部34の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read Only Memory)のような主記憶装置と、HDD(Hard Disk Drive)などの外部記憶装置とのうち、少なくとも1つ含む。
(Information processing device)
FIG. 3 is a schematic block diagram of the information processing device. The information processing device 14 is a device that processes information related to the movement of the mobile object 10 and the like. The information processing device 14 is, for example, an FCS (Fleet Control System), but is not limited thereto, and may be any device that processes information regarding the movement of the mobile body 10. Although the information processing device 14 is provided in the equipment W in this embodiment, it may be provided at any location. The information processing device 14 is a computer, and includes a communication section 30, a storage section 32, and a control section 34, as shown in FIG. The communication unit 30 is a module used by the control unit 34 to communicate with external devices such as the management device 12 and the mobile object 10, and may include, for example, an antenna. Although the communication method by the communication unit 30 is wireless communication in this embodiment, the communication method may be arbitrary. The storage unit 32 is a memory that stores various information such as calculation contents and programs of the control unit 34, and includes, for example, a main storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an HDD ( At least one external storage device such as a hard disk drive.
 制御部34は、演算装置であり、例えばCPU(Central Processing Unit)などの演算回路を含む。制御部34は、基準経路設定部36を含む。制御部34は、記憶部32からプログラム(ソフトウェア)を読み出して実行することで、基準経路設定部36を実現して、その処理を実行する。なお、制御部34は、1つのCPUによって処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、基準経路設定部36を、ハードウェア回路で実現してもよい。また、記憶部32が保存する制御部34用のプログラムは、情報処理装置14が読み取り可能な記録媒体に記憶されていてもよい。 The control unit 34 is an arithmetic device, and includes, for example, an arithmetic circuit such as a CPU (Central Processing Unit). The control section 34 includes a reference route setting section 36. The control unit 34 reads a program (software) from the storage unit 32 and executes it, thereby realizing the reference route setting unit 36 and executes its processing. Note that the control unit 34 may execute the process using one CPU, or may include a plurality of CPUs and execute the process using the plurality of CPUs. Further, the reference route setting section 36 may be realized by a hardware circuit. Further, the program for the control unit 34 stored in the storage unit 32 may be stored in a recording medium readable by the information processing device 14.
 基準経路設定部36は、移動体10の基準経路を設定する。基準経路とは、移動体座標系Cでの位置が既知の箇所同士を繋ぐ経路である。例えば、領域ARには、位置(座標)毎にウェイポイントが設定されており、基準経路は、ウェイポイントを繋ぐように設定される。ウェイポイントは、設備Wのレイアウトに応じて設定される。 The reference route setting unit 36 sets a reference route for the moving object 10. The reference route is a route that connects locations whose positions in the moving object coordinate system C are known. For example, in the area AR, waypoints are set for each position (coordinate), and the reference route is set to connect the waypoints. The waypoint is set according to the layout of the equipment W.
 なお、本実施形態では、管理装置12と情報処理装置14とが別の装置であったが、一体の装置であってもよい。すなわち、管理装置12が情報処理装置14の少なくとも一部の機能を兼ね備えてよいし、情報処理装置14が管理装置12の少なくとも一部の機能を兼ね備えてよい。 Note that in this embodiment, the management device 12 and the information processing device 14 are separate devices, but they may be an integrated device. That is, the management device 12 may have at least some of the functions of the information processing device 14, and the information processing device 14 may have at least some of the functions of the management device 12.
 (移動体の制御装置)
 次に、移動体10の制御装置28について説明する。図4は、移動体の制御装置の模式的なブロック図である。制御装置28は、移動体10を制御する装置である。制御装置28は、コンピュータであり、図4に示すように、通信部40と記憶部42と制御部44とを含む。通信部40は、制御部44に用いられて、情報処理装置14や端末16などの外部の装置と通信するモジュールであり、例えばアンテナなどを含んでよい。通信部40による通信方式は、本実施形態では無線通信であるが、通信方式は任意であってよい。記憶部42は、制御部44の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAMと、ROMのような主記憶装置と、HDDなどの外部記憶装置とのうち、少なくとも1つ含む。
(Moving body control device)
Next, the control device 28 of the moving body 10 will be explained. FIG. 4 is a schematic block diagram of a control device for a moving body. The control device 28 is a device that controls the moving body 10. The control device 28 is a computer, and includes a communication section 40, a storage section 42, and a control section 44, as shown in FIG. The communication unit 40 is a module used by the control unit 44 to communicate with external devices such as the information processing device 14 and the terminal 16, and may include, for example, an antenna. The communication method by the communication unit 40 is wireless communication in this embodiment, but any communication method may be used. The storage unit 42 is a memory that stores various information such as calculation contents and programs of the control unit 44, and includes at least one of a RAM, a main storage device such as a ROM, and an external storage device such as an HDD. Including one.
 制御部44は、演算装置であり、例えばCPUなどの演算回路を含む。制御部44は、対象物情報取得部50と、自己位置取得部52と、経路取得部54と、移動制御部56とを含む。制御部68は、記憶部66からプログラム(ソフトウェア)を読み出して実行することで、対象物情報取得部50と自己位置取得部52と経路取得部54と移動制御部56とを実現して、それらの処理を実行する。なお、制御部44は、1つのCPUによってこれらの処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、対象物情報取得部50と自己位置取得部52と経路取得部54と移動制御部56との少なくとも一部を、ハードウェア回路で実現してもよい。また、記憶部42が保存する制御部44用のプログラムは、制御装置28が読み取り可能な記録媒体に記憶されていてもよい。 The control unit 44 is a calculation device, and includes a calculation circuit such as a CPU, for example. The control unit 44 includes an object information acquisition unit 50, a self-position acquisition unit 52, a route acquisition unit 54, and a movement control unit 56. The control unit 68 realizes the object information acquisition unit 50, self-position acquisition unit 52, route acquisition unit 54, and movement control unit 56 by reading a program (software) from the storage unit 66 and executing it. Execute the process. Note that the control unit 44 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs. Further, at least a portion of the object information acquisition section 50, self-position acquisition section 52, route acquisition section 54, and movement control section 56 may be realized by a hardware circuit. Further, the program for the control unit 44 stored in the storage unit 42 may be stored in a recording medium readable by the control device 28.
 対象物情報取得部50は、移動体10の移動先となる対象物Pの位置情報を取得する。自己位置取得部52は、移動体10の位置情報を取得する。経路取得部54は、移動体10が移動する経路の情報を取得する。移動制御部56は、移動体10の駆動部やステアリングなどの移動機構を制御して、移動体10の移動を制御する。これらの具体的な処理内容については後述する。 The object information acquisition unit 50 acquires position information of the object P to which the moving body 10 moves. The self-position acquisition unit 52 acquires position information of the mobile object 10. The route acquisition unit 54 acquires information on the route along which the mobile object 10 moves. The movement control unit 56 controls movement mechanisms such as a drive unit and steering of the moving body 10 to control movement of the moving body 10. The specific contents of these processes will be described later.
 (端末)
 端末16は、位置を移動可能な装置である。本実施形態の例では、端末16は、ユーザUに携帯される端末であり、ユーザUが移動することにより、位置が移動される。ただし、端末16は、ユーザUに携帯される端末であることに限られず、移動可能な装置に搭載されるものであってよい。例えば、端末16は、いわゆるドローンなどの飛行体や、地上を移動する車両やロボットなどに搭載されてもよい。この場合、端末16や端末16を搭載する装置は、ユーザUによって遠隔操作されてよい。
(terminal)
The terminal 16 is a device whose position can be moved. In the example of this embodiment, the terminal 16 is a terminal carried by the user U, and its position is moved when the user U moves. However, the terminal 16 is not limited to being a terminal carried by the user U, but may be mounted on a movable device. For example, the terminal 16 may be mounted on a flying object such as a so-called drone, a vehicle moving on the ground, a robot, or the like. In this case, the terminal 16 and the device equipped with the terminal 16 may be remotely controlled by the user U.
 図5は、端末の模式的なブロック図である。図5に示すように、端末16は、入力部60と表示部62と通信部64と記憶部66と制御部68とセンサ69とを有する。 FIG. 5 is a schematic block diagram of the terminal. As shown in FIG. 5, the terminal 16 includes an input section 60, a display section 62, a communication section 64, a storage section 66, a control section 68, and a sensor 69.
 センサ69は、端末16の周辺に存在する対象物の位置及び向きの少なくとも1つを検出する。センサ69は、端末16に対する対象物の位置と、端末16に対する対象物の向きとの少なくとも一方を検出するともいえる。センサ69は、例えばレーザ光を照射するセンサである。センサ69は、一方向(ここでは横方向)に走査しつつレーザ光を照射し、照射したレーザ光の反射光から、対象物の位置及び向きを検出する。すなわち、センサ26Aは、いわゆる2次元-LiDARであるともいえる。ただし、センサ69は、以上のものに限られず任意の方法で対象物を検出するセンサであってよく、例えば、複数の方向に走査されるいわゆる3次元-LiDARであってもよいし、走査されない、いわゆる1次元-LiDARであってもよいし、カメラであってもよい。 The sensor 69 detects at least one of the position and orientation of objects existing around the terminal 16. It can also be said that the sensor 69 detects at least one of the position of the object relative to the terminal 16 and the orientation of the object relative to the terminal 16. The sensor 69 is, for example, a sensor that emits laser light. The sensor 69 irradiates a laser beam while scanning in one direction (in this case, the lateral direction), and detects the position and orientation of the object from the reflected light of the irradiated laser beam. In other words, the sensor 26A can be said to be a so-called two-dimensional LiDAR. However, the sensor 69 is not limited to the above, and may be a sensor that detects an object by any method, for example, it may be a so-called three-dimensional LiDAR that scans in multiple directions, or may not be scanned. , so-called one-dimensional LiDAR, or a camera.
 入力部60は、ユーザの入力を受け付ける機構であり、例えばタッチパネルなどであってよい。表示部62は、画像を表示するするディスプレイである。通信部64は、移動体10や情報処理装置14などの外部の装置と通信を行う通信モジュールであり、例えばアンテナなどである。端末16は、無線通信で外部の装置と通信を行うが、有線通信でもよく、通信方式は任意であってよい。記憶部66は、制御部68の演算内容やプログラムなどの各種情報を記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read Only Memory)のような主記憶装置と、HDD(Hard Disk Drive)などの外部記憶装置とのうち、少なくとも1つ含む。記憶部66が記憶する制御部68用のプログラムは、端末16が読み取り可能な記録媒体に記憶されていてもよい。 The input unit 60 is a mechanism that receives user input, and may be, for example, a touch panel. The display unit 62 is a display that displays images. The communication unit 64 is a communication module that communicates with external devices such as the mobile object 10 and the information processing device 14, and is, for example, an antenna. Although the terminal 16 communicates with an external device by wireless communication, wired communication may be used, and any communication method may be used. The storage unit 66 is a memory that stores various information such as calculation contents and programs of the control unit 68, and includes, for example, a main storage device such as RAM (Random Access Memory) and ROM (Read Only Memory), and an HDD ( At least one external storage device such as a Hard Disk Drive. The program for the control unit 68 stored in the storage unit 66 may be stored in a recording medium readable by the terminal 16.
 制御部68は、演算装置であり、例えばCPUなどの演算回路を含む。制御部68は、対象物検出部70と、表示制御部72と、対象物設定部74と、対象物情報送信部76とを含む。制御部68は、記憶部66からプログラム(ソフトウェア)を読み出して実行することで、対象物検出部70と表示制御部72と対象物設定部74と対象物情報送信部76とを実現して、それらの処理を実行する。なお、制御部68は、1つのCPUによってこれらの処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、対象物検出部70と表示制御部72と対象物設定部74と対象物情報送信部76との少なくとも一部を、ハードウェア回路で実現してもよい。また、記憶部66が保存する制御部68用のプログラムは、端末16が読み取り可能な記録媒体に記憶されていてもよい。 The control unit 68 is a calculation device, and includes a calculation circuit such as a CPU, for example. The control section 68 includes a target object detection section 70, a display control section 72, a target object setting section 74, and a target object information transmission section 76. The control unit 68 realizes the object detection unit 70, the display control unit 72, the object setting unit 74, and the object information transmission unit 76 by reading the program (software) from the storage unit 66 and executing it. Execute those processes. Note that the control unit 68 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs. Furthermore, at least a portion of the object detection section 70, display control section 72, object setting section 74, and object information transmission section 76 may be realized by a hardware circuit. Further, the program for the control unit 68 stored in the storage unit 66 may be stored in a recording medium that can be read by the terminal 16.
 対象物検出部70は、センサ69を制御して、センサ69に対象物Pの位置情報を検出させる。表示制御部72は、表示部62を制御して、表示部62に画像を表示させる。対象物設定部74は、対象物検出部70が検出した対象物Pのうちから、移動体10の移動先となる対象物Pを設定する。対象物情報送信部76は、通信部64を介して、移動体10の移動先となる対象物Pの位置情報を移動体10に送信する。これらの具体的な処理内容については後述する。 The target object detection unit 70 controls the sensor 69 and causes the sensor 69 to detect the position information of the target object P. The display control section 72 controls the display section 62 and causes the display section 62 to display an image. The target object setting section 74 sets a target object P to which the moving body 10 will move from among the objects P detected by the target object detection section 70 . The object information transmitting section 76 transmits, via the communication section 64, the position information of the object P, which is the destination of the moving object 10, to the moving object 10. The specific contents of these processes will be described later.
 (経路設定システムの処理)
 経路設定システム1による、移動体10を対象物Pに移動させる処理内容を、以下で説明する。
(Route setting system processing)
The process of moving the moving object 10 to the target object P by the route setting system 1 will be described below.
 (対象物の検出)
 図6は、端末による対象物の検出を説明する模式図である。端末16の対象物検出部70は、対象物Pの位置情報を検出する。対象物Pの位置情報とは、対象物Pの位置及び向きを示す情報である。具体的には、対象物検出部70は、センサ69により対象物Pを検出させて、センサ69による検出結果から、対象物Pの位置情報を算出する。すなわち例えば、センサ39がLiDARである場合には、対象物検出部70は、センサ39から対象物Pに向けてレーザ光を照射させて、センサ39が受光した対象物Pからの反射光を点群として取得する。対象物検出部70は、対象物Pからの反射光の点群に基づいて、対象物Pの位置情報を算出する。
(Object detection)
FIG. 6 is a schematic diagram illustrating detection of an object by a terminal. The object detection unit 70 of the terminal 16 detects position information of the object P. The position information of the target object P is information indicating the position and orientation of the target object P. Specifically, the target object detection unit 70 causes the sensor 69 to detect the target object P, and calculates the position information of the target object P from the detection result by the sensor 69. That is, for example, when the sensor 39 is LiDAR, the object detection unit 70 causes the sensor 39 to irradiate a laser beam toward the object P, and detects the reflected light from the object P received by the sensor 39. Obtain as a group. The target object detection unit 70 calculates position information of the target object P based on a point group of reflected light from the target object P.
 本実施形態では、ユーザUが、作業対象の候補となる対象物Pを特定する。そして、ユーザUは、特定した対象物Pの近傍まで移動して、端末16を操作する。これにより、対象物検出部70は、センサ69により特定した対象物Pを検出させて、特定した対象物Pの位置情報を取得する。なお、端末16が装置に搭載されている場合には、例えば、ユーザUは、遠隔操作により、装置を対象物Pの近傍まで移動させて、対象物Pの位置情報を検出させる。 In this embodiment, the user U identifies an object P that is a candidate for work. The user U then moves to the vicinity of the specified object P and operates the terminal 16. Thereby, the target object detection unit 70 causes the sensor 69 to detect the specified target object P, and acquires the position information of the specified target object P. Note that when the terminal 16 is installed in the device, the user U, for example, moves the device close to the object P to detect the position information of the object P by remote control.
 候補となる対象物Pの特定方法は任意であってよいが、本実施形態においては、ユーザUは、設置領域AR0内にある対象物Pを、候補となる対象物Pとして特定する。従って、ユーザUは、図6の例に示すように、設置領域AR内の対象物Pの近傍まで移動して、端末16に、設置領域AR内の対象物Pの位置情報を検出させる。図6の例では、候補となる対象物P(ここでは設置領域AR0内の対象物P)として、対象物PA、PB、PCの3つが特定されており、端末16は、対象物PA、PB、PCのそれぞれについての位置情報を検出する。ただし、候補となる対象物Pの数は3つに限られず任意であってよい。また、対象物Pの近傍とは、端末16により対象物Pの位置情報を検出可能な任意の位置(例えば対象物Pからのレーザ光の反射光を所定強度以上で受光可能な任意の位置)であってよい。 Although the method for specifying the candidate object P may be arbitrary, in this embodiment, the user U specifies the object P within the installation area AR0 as the candidate object P. Therefore, as shown in the example of FIG. 6, the user U moves close to the object P in the installation area AR and causes the terminal 16 to detect the position information of the object P in the installation area AR. In the example of FIG. 6, three objects PA, PB, and PC are specified as candidate objects P (here, objects P in the installation area AR0), and the terminal 16 identifies the objects PA, PB, and PC. , and detect the location information for each of the PCs. However, the number of candidate objects P is not limited to three and may be arbitrary. Further, the vicinity of the target object P is any position where the terminal 16 can detect the position information of the target object P (for example, any position where the reflected light of the laser beam from the target object P can be received at a predetermined intensity or higher). It may be.
 ここで、端末16は、端末16に対する対象物Pの位置及び向きを検出する。すなわち、端末16によって検出された対象物Pの位置情報は、移動体座標系Cにおける対象物Pの位置及び向きではなく、端末16の位置を基準とした端末座標系CAにおける対象物Pの位置及び向きということができる。図6の例では、端末座標系CAは、端末16の位置を基準とした所定の水平方向であるXa方向と、Xa方向に直交する水平方向であるYa方向との、二次元座標系である。従って例えば、端末座標系CAにおける位置とは、端末座標系CAにおける座標(Xa方向及びYa方向における位置)を指し、端末座標系CAにおける向きとは、Za方向(Xa方向及びYa方向に直交する鉛直方向)から見た場合にXa方向を0°とした際のヨー角(回転角度)を指す。ただし、移動体座標系Cは、Xa方向及びYa方向の二次元座標系であることに限られず、例えば、Xa方向、Ya方向及びZa方向の三次元座標系であってもよい。 Here, the terminal 16 detects the position and orientation of the object P with respect to the terminal 16. That is, the position information of the object P detected by the terminal 16 is not the position and orientation of the object P in the moving body coordinate system C, but the position of the object P in the terminal coordinate system CA with the position of the terminal 16 as a reference. and direction. In the example of FIG. 6, the terminal coordinate system CA is a two-dimensional coordinate system of the Xa direction, which is a predetermined horizontal direction based on the position of the terminal 16, and the Ya direction, which is a horizontal direction perpendicular to the Xa direction. . Therefore, for example, the position in the terminal coordinate system CA refers to the coordinates in the terminal coordinate system CA (position in the Xa direction and the Ya direction), and the direction in the terminal coordinate system CA refers to the Za direction (orthogonal to the Xa direction and the Ya direction). Refers to the yaw angle (rotation angle) when the Xa direction is 0° when viewed from the vertical direction. However, the moving body coordinate system C is not limited to being a two-dimensional coordinate system in the Xa direction and the Ya direction, but may be a three-dimensional coordinate system in the Xa direction, Ya direction, and Za direction, for example.
 (対象物の表示)
 図7は、対象物を示す画像の模式図である。端末16の表示制御部72は、対象物検出部70によって取得された対象物Pの位置情報に基づいて、端末座標系CAにおける対象物Pを示す画像を、表示部62に表示させる。すなわち、表示制御部72は、対象物Pの位置情報が示す位置及び向きとなる対象物Pの画像を、表示部62に表示させる。例えば本実施形態の例では、対象物PA、PB、PCの位置情報が取得されているため、表示制御部72は、図7に示すように、端末座標系CAにおける対象物PA、PB、PCを示す画像を、表示部62に表示させる。表示制御部72は、Za方向から見た対象物PA、PB、PCの画像を、表示部62に表示させることが好ましい。
(Display of object)
FIG. 7 is a schematic diagram of an image showing the object. The display control section 72 of the terminal 16 causes the display section 62 to display an image showing the object P in the terminal coordinate system CA, based on the position information of the object P acquired by the object detection section 70. That is, the display control unit 72 causes the display unit 62 to display an image of the object P at the position and orientation indicated by the position information of the object P. For example, in the example of this embodiment, since the position information of the objects PA, PB, and PC has been acquired, the display control unit 72 controls the position information of the objects PA, PB, and PC in the terminal coordinate system CA, as shown in FIG. The display unit 62 displays an image showing the . It is preferable that the display control unit 72 causes the display unit 62 to display images of the objects PA, PB, and PC viewed from the Za direction.
 (移動先となる対象物の決定)
 端末16の対象物設定部74は、候補となる対象物Pのうちから、すなわち位置情報が検出された対象物Pのうちから、移動体10の移動先となる対象物Pを決定する。対象物設定部74は、候補となる対象物PのうちでユーザUによって指定された対象物Pを、移動先となる対象物Pとして決定する。この場合例えば、ユーザUは、表示部62に表示された対象物Pのうちから、移動先となる対象物Pを指定する。すなわち端末16は、対象物Pの画像が表示された状態で、ユーザUによる対象物Pの指定を受け付け、ユーザUに指定された対象物Pを、移動先となる対象物Pとして決定する。
(Determining the object to be moved)
The target object setting unit 74 of the terminal 16 determines the target object P to which the mobile body 10 will move from among the target objects P that are candidates, that is, among the target objects P whose position information has been detected. The target object setting unit 74 determines the target object P specified by the user U among the candidate objects P as the target object P to be the movement destination. In this case, for example, the user U specifies a destination object P from among the objects P displayed on the display unit 62. That is, the terminal 16 receives the designation of the target object P by the user U while the image of the target object P is displayed, and determines the target object P designated by the user U as the target object P to be moved.
 ただし、移動先となる対象物Pの決定方法は、上述に限られない。例えば、端末16の表示制御部72は、対象物Pの画像を表示部62に表示させずに、センサ69による対象物Pの検出結果そのものを(ここでは点群を)、表示部62に表示させてよい。この場合、ユーザUは、対象物Pの検出結果の画像を視認して、移動先となる対象物Pに対応する座標(端末座標系CAにおける位置)を指定する。そして、対象物設定部74は、ユーザUに指定された座標を、移動先となる対象物Pとして決定する。 However, the method for determining the target object P to be moved is not limited to the above. For example, the display control unit 72 of the terminal 16 does not display the image of the target object P on the display unit 62, but displays the detection result of the target object P by the sensor 69 itself (here, a point cloud) on the display unit 62. You can let me. In this case, the user U visually recognizes the image of the detection result of the target object P and specifies the coordinates (position in the terminal coordinate system CA) corresponding to the target object P to be moved. Then, the target object setting unit 74 determines the coordinates specified by the user U as the target object P to be moved.
 また、以上の説明では、候補となる複数の対象物Pのうちから、移動先となる対象物Pを決定していたが、この処理は必須ではない。例えば、端末16により、1つの対象物Pの位置情報を検出させて、その対象物Pを移動先となる対象物Pとしてもよい。 Furthermore, in the above description, the target object P to be moved to is determined from among the plurality of candidate objects P, but this process is not essential. For example, the terminal 16 may detect the position information of one target object P, and that target object P may be set as the target object P to be moved.
 (対象物の位置情報の送信)
 端末16の対象物情報送信部76は、移動先として決定された対象物Pの位置情報を、移動体10に送信する。本実施形態では、対象物情報送信部76は、移動先となる対象物Pの、端末座標系CAにおける位置情報を、移動体10に送信する。
(Transmission of object position information)
The object information transmitting unit 76 of the terminal 16 transmits the position information of the object P determined as the movement destination to the moving body 10. In the present embodiment, the object information transmitting unit 76 transmits position information of the target object P, which is a movement destination, in the terminal coordinate system CA to the moving body 10.
 (対象物の位置情報の取得)
 移動体10の対象物情報取得部50は、端末16から、移動先となる対象物Pの位置情報を取得する。本実施形態では、対象物情報取得部50は、移動先となる対象物Pの、端末座標系CAにおける位置情報を取得する。
(Obtaining object position information)
The object information acquisition unit 50 of the moving body 10 acquires the position information of the object P, which is the destination of movement, from the terminal 16. In the present embodiment, the object information acquisition unit 50 acquires position information of the object P, which is the movement destination, in the terminal coordinate system CA.
 (移動体の位置情報の取得)
 移動体10の自己位置取得部52は、移動体10の現在の位置情報を取得する。移動体10の位置情報とは、移動体10の位置及び向きを示す情報である。自己位置取得部52は、移動体座標系Cにおける移動体10の位置情報を取得する。自己位置取得部52による移動体10の位置情報の取得方法は任意であるが、例えば本実施形態では、設備Wに図示しない検出体が設けられており、自己位置取得部52は、検出体の検出に基づき移動体10の位置情報を取得する。具体的には、移動体10は、検出体に向けてレーザ光を照射し、検出体によるレーザ光の反射光を受光して、移動体座標系Cにおける自身の位置及び向きを検出する。ただし、移動体10の位置情報の取得方法は、検出体を用いることに限られず、例えば、SLAM(Simultaneous Localization And Mapping)を用いてもよい。
(Obtaining location information of a moving object)
The self-location acquisition unit 52 of the mobile body 10 acquires current position information of the mobile body 10 . The position information of the moving body 10 is information indicating the position and orientation of the moving body 10. The self-position acquisition unit 52 acquires position information of the mobile body 10 in the mobile body coordinate system C. The self-position acquisition unit 52 can use any method to acquire the position information of the moving body 10, but for example, in this embodiment, the equipment W is provided with a detection body (not shown), and the self-position acquisition unit 52 acquires the position information of the mobile body 10. Based on the detection, position information of the moving object 10 is acquired. Specifically, the moving object 10 detects its own position and orientation in the moving object coordinate system C by irradiating a laser beam toward a detection object and receiving the reflected light of the laser beam by the detection object. However, the method for acquiring the position information of the moving object 10 is not limited to using a detection object, and may also use, for example, SLAM (Simultaneous Localization and Mapping).
 (移動体座標系における対象物の位置情報の取得)
 上述のように、対象物Pの位置情報が、端末座標系CAにおける対象物Pの位置及び向きを示すのに対し、移動体10は、移動体座標系Cにおける自己位置を検出しながら移動する。そのため、本実施形態においては、移動体座標系Cと端末座標系CAとの座標変換を行うことで、端末座標系CAにおける対象物Pの位置情報から、移動体座標系Cにおける対象物Pの位置情報である第1位置情報を算出する。第1位置情報とは、移動体座標系Cにおける対象物Pの位置及び向きを示す情報である。
(Acquisition of position information of object in moving body coordinate system)
As described above, while the position information of the object P indicates the position and orientation of the object P in the terminal coordinate system CA, the mobile object 10 moves while detecting its own position in the mobile object coordinate system C. . Therefore, in this embodiment, by performing coordinate transformation between the moving object coordinate system C and the terminal coordinate system CA, the position information of the object P in the moving object coordinate system C can be obtained from the position information of the object P in the terminal coordinate system CA. First position information, which is position information, is calculated. The first position information is information indicating the position and orientation of the object P in the moving body coordinate system C.
 対象物情報取得部50は、任意の方法で移動体座標系Cと端末座標系CAとの座標変換を行ってもよいが、例えば、移動体座標系Cと端末座標系CAとの対応関係を取得することで座標変換を行ってもよい。この場合、対象物情報取得部50は、取得した対応関係を用いて、端末座標系CAにおける対象物Pの位置及び向きを、移動体座標系Cにおける対象物Pの位置及び向きに変換して、移動体座標系Cにおける対象物Pの第1位置情報とする。 Although the object information acquisition unit 50 may perform coordinate transformation between the moving body coordinate system C and the terminal coordinate system CA using any method, for example, the object information acquisition unit 50 may perform coordinate transformation between the moving body coordinate system C and the terminal coordinate system CA. Coordinate transformation may be performed by acquiring the coordinates. In this case, the object information acquisition unit 50 converts the position and orientation of the object P in the terminal coordinate system CA to the position and orientation of the object P in the moving object coordinate system C using the acquired correspondence. , is the first position information of the object P in the moving body coordinate system C.
 図8は、基準部を基準とした検出の一例を説明する模式図である。移動体座標系Cと端末座標系CAとの対応関係の取得方法は任意であってよい。例えば、図8に示すように、設備Wに、移動体座標系Cでの位置及び向きが既知の基準部Mを予め設けてよい。基準部Mは、例えば領域ARに設けられたマーカであるが、移動体座標系Cでの位置及び向きが既知である任意のものであってよい。この場合、ユーザUは、端末16に、この基準部Mを基準として対象物Pを検出させる。これにより、端末座標系CAが基準部Mを基準とした座標系となるため、端末16は、基準部Mに対する対象物Pの位置及び向きを、端末座標系CAでの対象物Pの位置情報として検出できる。対象物情報取得部50は、移動体座標系Cでの基準部Mの位置及び向きの情報を、対応関係として取得して、この対応関係に基づき、端末座標系CAでの対象物Pの位置情報(基準部Mに対する対象物Pの位置及び向き)から、移動体座標系Cにおける対象物Pの第1位置情報を算出する。なお、対象物情報取得部50による、対応関係(移動体座標系Cでの基準部Mの位置及び向き)の取得方法は任意であってよいが、例えば移動体10の記憶部42に予め記憶されていた情報を読み出してもよいし、端末16や情報処理装置14などの他の装置から、通信により情報を取得してもよい。 FIG. 8 is a schematic diagram illustrating an example of detection using a reference part as a reference. Any method may be used to obtain the correspondence between the mobile body coordinate system C and the terminal coordinate system CA. For example, as shown in FIG. 8, a reference part M whose position and orientation in the moving object coordinate system C are known may be provided in the equipment W in advance. The reference portion M is, for example, a marker provided in the area AR, but may be any marker whose position and orientation in the moving object coordinate system C are known. In this case, the user U causes the terminal 16 to detect the object P using this reference portion M as a reference. As a result, the terminal coordinate system CA becomes a coordinate system based on the reference part M, so that the terminal 16 can determine the position and orientation of the object P with respect to the reference part M using the position information of the object P in the terminal coordinate system CA. can be detected as The object information acquisition unit 50 acquires information on the position and orientation of the reference part M in the moving body coordinate system C as a correspondence relationship, and based on this correspondence relationship, determines the position of the target object P in the terminal coordinate system CA. First position information of the object P in the moving object coordinate system C is calculated from the information (position and orientation of the object P with respect to the reference part M). Note that the method for acquiring the correspondence relationship (the position and orientation of the reference part M in the moving body coordinate system C) by the object information acquisition unit 50 may be arbitrary; The information may be read out, or the information may be obtained through communication from other devices such as the terminal 16 or the information processing device 14.
 端末16による、基準部Mを基準とした対象物Pの検出方法は任意であってよい。例えば、図8に示すように、端末16の対象物検出部70が、センサ69に基準部Mを検出させて、その検出結果から基準部Mの位置及び向きを算出してよい。そして、対象物検出部70は、センサ69に対象物Pを検出させて、端末16に対する対象物Pの位置及び向きの検出結果と、基準部Mに対する端末16の位置及び向きとから、基準部Mに対する対象物Pの位置及び向きを算出する。また例えば、ユーザUが、基準部Mに対して所定の位置及び向きに端末16を配置して、その状態における端末16の位置及び姿勢を、端末座標系CAの基準点としてよい。この場合例えば、対象物検出部70は、端末16に対する対象物Pの位置及び向きの検出結果と、基準点とから、基準部Mに対する対象物Pの位置及び向きを算出する。 The method of detecting the object P using the reference part M as a reference by the terminal 16 may be arbitrary. For example, as shown in FIG. 8, the object detection unit 70 of the terminal 16 may cause the sensor 69 to detect the reference portion M, and calculate the position and orientation of the reference portion M from the detection result. Then, the target object detection unit 70 causes the sensor 69 to detect the target object P, and from the detection result of the position and orientation of the target object P with respect to the terminal 16 and the position and orientation of the terminal 16 with respect to the reference part M, the reference part The position and orientation of the object P with respect to M are calculated. For example, the user U may place the terminal 16 at a predetermined position and orientation with respect to the reference part M, and the position and orientation of the terminal 16 in that state may be used as the reference point of the terminal coordinate system CA. In this case, for example, the target object detection unit 70 calculates the position and orientation of the target object P with respect to the reference part M based on the detection result of the position and orientation of the target object P with respect to the terminal 16 and the reference point.
 (経路の設定)
 図9は、経路の設定を説明する模式図である。移動体10の経路取得部54は、移動体座標系Cにおける対象物Pの位置及び向きを示す第1位置情報に基づき設定された、移動体座標系Cにおいて対象物Pに向かう経路R1を取得する。本実施形態では、経路取得部54が、自身で、第1位置情報に基づいて経路R1を設定する。例えば、経路取得部54は、第1位置情報に基づいて、移動体座標系Cにおいて、対象物Pに対して所定の位置及び向きとなる位置Bを算出して、移動体座標系Cにおいて位置Bまでの経路を、経路R1として設定する。位置Bは、対象物Pが第1位置情報に示す位置及び向きで配置されていると仮定した場合に、移動体10が対象物Pをピックアップ可能な位置及び向きといえる。図9の例では、経路取得部54は、現在位置から待機位置Aまでの基準経路R0を取得する。待機位置Aは、例えばウェイポイントとして予め設定された位置であり、その位置は任意であってよい。経路取得部54は、現在位置から待機位置Aまでの基準経路R0を情報処理装置14から取得してもよいし、現在位置から待機位置Aまでの基準経路R0を自身で設定してもよい。そして、経路取得部54は、待機位置Aから位置Bまでの経路を、経路R1として設定する。
(route setting)
FIG. 9 is a schematic diagram illustrating route setting. The route acquisition unit 54 of the moving object 10 obtains a route R1 toward the object P in the moving object coordinate system C, which is set based on first position information indicating the position and orientation of the object P in the moving object coordinate system C. do. In this embodiment, the route acquisition unit 54 sets the route R1 by itself based on the first position information. For example, the route acquisition unit 54 calculates a position B having a predetermined position and orientation with respect to the object P in the moving object coordinate system C based on the first position information, and calculates a position B in the moving object coordinate system C. The route to B is set as route R1. The position B can be said to be the position and orientation at which the moving body 10 can pick up the object P, assuming that the object P is arranged at the position and orientation shown in the first position information. In the example of FIG. 9, the route acquisition unit 54 acquires the reference route R0 from the current position to the standby position A. The standby position A is, for example, a position set in advance as a waypoint, and the position may be arbitrary. The route acquisition unit 54 may acquire the reference route R0 from the current position to the standby position A from the information processing device 14, or may set the reference route R0 from the current position to the standby position A by itself. Then, the route acquisition unit 54 sets the route from standby position A to position B as route R1.
 図9に示すように、移動体10の移動制御部56は、経路取得部54が取得した基準経路R0に従って、待機位置Aまで移動体10を移動させる。そして、移動制御部56は、経路取得部54が設定した経路R1に従って、待機位置Aから位置Bまで移動体10を移動させて、対象物Pをピックアップさせる。なお、移動体10は、自己位置取得部52により、移動体座標系Cにおける自己位置を逐次確認しつつ、基準経路R0や経路R1に従って移動する。 As shown in FIG. 9, the movement control unit 56 of the moving body 10 moves the moving body 10 to the standby position A according to the reference route R0 acquired by the route acquisition unit 54. Then, the movement control unit 56 moves the moving body 10 from the standby position A to the position B according to the route R1 set by the route acquisition unit 54, and picks up the object P. Note that the mobile body 10 moves along the reference route R0 and the route R1 while sequentially confirming its own position in the mobile body coordinate system C by the self-position acquisition unit 52.
 以上の例では、移動体10は、基準経路R0に従って待機位置Aまで移動して、経路Rに従って待機位置Aから位置Bまで移動したが、それに限られない。例えば、待機位置Aまでの移動は必須ではなく、例えば、経路取得部54は、移動体10の現在位置から位置Bまでの経路Rを設定し、移動制御部56は、現在位置から位置Bまで移動体10を移動させてよい。 In the above example, the moving body 10 moved to the standby position A according to the reference route R0, and then moved from the standby position A to the position B according to the route R, but the present invention is not limited thereto. For example, the movement to the standby position A is not essential; for example, the route acquisition unit 54 sets a route R from the current position of the moving body 10 to the position B, and the movement control unit 56 sets the route R from the current position to the position B. The moving body 10 may be moved.
 図10は、経路設定システムの処理フローを説明するフローチャートである。図10に示すように、本処理においては、端末16の対象物検出部70は、ユーザUの操作により、候補となる対象物Pの端末座標系CAにおける位置情報を検出し(ステップS10)、対象物設定部74は、ユーザUの指定により、候補となる対象物Pのうちから移動先となる対象物Pを設定し(ステップS12)、対象物情報送信部76により、移動先として設定された対象物Pの端末座標系CAにおける位置情報を、移動体10に送信する(ステップS14)。 FIG. 10 is a flowchart explaining the processing flow of the route setting system. As shown in FIG. 10, in this process, the object detection unit 70 of the terminal 16 detects the position information of the candidate object P in the terminal coordinate system CA by the operation of the user U (step S10), The object setting section 74 sets the object P as the movement destination from among the candidate objects P according to the user U's designation (step S12), and the object information transmission section 76 sets the object P as the movement destination. The location information of the target object P in the terminal coordinate system CA is transmitted to the moving body 10 (step S14).
 移動体10の対象物情報取得部50は、端末16から取得した端末座標系CAにおける対象物Pの位置情報から、移動体座標系Cにおける対象物Pの第1位置情報を算出し(ステップS16)、経路取得部54は、移動体座標系Cにおける対象物Pの第1位置情報に基づき、対象物Pに向かう経路R1を設定する(ステップS18)。移動制御部56は、経路R1に従って移動体10を移動させる(ステップS20)。 The object information acquisition unit 50 of the mobile object 10 calculates first position information of the object P in the mobile object coordinate system C from the position information of the object P in the terminal coordinate system CA acquired from the terminal 16 (step S16 ), the route acquisition unit 54 sets a route R1 toward the object P based on the first position information of the object P in the moving object coordinate system C (step S18). The movement control unit 56 moves the moving body 10 according to the route R1 (step S20).
 以上説明したように、本実施形態においては、端末16によって対象物Pの位置情報を検出して、検出した対象物Pの位置情報に基づいて、対象物Pに向かう経路R1を設定する。従って、実際の対象物Pの位置情報に基づいて経路を設定できるため、状況に応じた適切な位置に移動体10を誘導できる。さらに言えば、移動体10によって対象物Pを検出させる処理が必須ではなくなるので、移動体10が対象物Pを検出し終わるまで待たずに、移動先となる対象物Pを指定することが可能となる。また、端末16に検出された対象物Pの位置情報を、移動体座標系Cに座標変換することで、移動体10が認識可能な座標系での対象物Pの位置を特定することができ、移動体10を適切に誘導できる。 As explained above, in this embodiment, the terminal 16 detects the position information of the target object P, and the route R1 toward the target object P is set based on the detected position information of the target object P. Therefore, since the route can be set based on the actual position information of the object P, the moving body 10 can be guided to an appropriate position according to the situation. Furthermore, since the process of having the moving object 10 detect the object P is no longer essential, it is possible to specify the object P as the movement destination without waiting until the moving object 10 finishes detecting the object P. becomes. Furthermore, by converting the position information of the object P detected by the terminal 16 into the moving object coordinate system C, it is possible to specify the position of the object P in the coordinate system that the moving object 10 can recognize. , the moving body 10 can be appropriately guided.
 なお、以上の説明では、移動体10が、端末16により検出された、端末座標系CAにおける対象物Pの位置情報に基づき、移動体座標系Cにおける対象物Pの第1位置情報を算出していた。同様に、以上の説明では、移動体10が、第1位置情報に基づき、対象物Pに向かう経路R1を設定していた。ただし、第1位置情報を算出する主体や、経路R1を設定する主体は、移動体10であることに限られず、第1位置情報と経路R1との少なくとも一方を、端末16や情報処理装置14により算出させてもよい。すなわち、第1位置情報を算出する対象物情報取得部50と、経路R1を設定する経路取得部54とは、移動体10により実現されることに限られず、情報処理装置14又は端末16により実現されてもよい。この場合例えば、端末16又は情報処理装置14が第1位置情報を算出し、移動体10が、算出された第1位置情報に基づいて経路R1を設定してよい。また例えば、端末16又は情報処理装置14が、第1位置情報を算出して、第1位置情報に基づいて経路R1を設定してよい。この場合、移動体10は、端末16又は情報処理装置14によって設定された経路R1の情報を取得して、取得した経路R1に従って移動することになる。 In the above description, the mobile object 10 calculates the first position information of the object P in the mobile object coordinate system C based on the position information of the object P in the terminal coordinate system CA detected by the terminal 16. was. Similarly, in the above description, the moving body 10 has set the route R1 toward the object P based on the first position information. However, the entity that calculates the first location information and the entity that sets the route R1 are not limited to the mobile object 10, and at least one of the first location information and the route R1 is transmitted to the terminal 16 or the information processing device 14. It may be calculated by That is, the object information acquisition unit 50 that calculates the first position information and the route acquisition unit 54 that sets the route R1 are not limited to being implemented by the moving object 10, but may be implemented by the information processing device 14 or the terminal 16. may be done. In this case, for example, the terminal 16 or the information processing device 14 may calculate the first position information, and the mobile object 10 may set the route R1 based on the calculated first position information. For example, the terminal 16 or the information processing device 14 may calculate the first location information and set the route R1 based on the first location information. In this case, the mobile object 10 acquires information on the route R1 set by the terminal 16 or the information processing device 14, and moves along the acquired route R1.
 (第2実施形態)
 次に、第2実施形態について説明する。第2実施形態においては、端末16により検出された端末座標系CAにおける対象物Pの位置情報と、移動体10により検出された移動体座標系Cにおける対象物Pの位置情報とを用いて座標変換を行う点で、第1実施形態とは異なる。第2実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。
(Second embodiment)
Next, a second embodiment will be described. In the second embodiment, the position information of the object P in the terminal coordinate system CA detected by the terminal 16 and the position information of the object P in the moving object coordinate system C detected by the moving object 10 are used to coordinate the This embodiment differs from the first embodiment in that conversion is performed. Descriptions of parts in the second embodiment that have the same configuration as those in the first embodiment will be omitted.
 (座標変換)
 図11は、第2実施形態における座標変換の一例を説明するための模式図である。第2実施形態においては、移動体10の対象物情報取得部50は、対象物Pの位置情報を検出する。具体的には、図11の左上の図に示すように、対象物情報取得部50は、移動体10のセンサ26Aにより対象物Pを検出させて、センサ26Aによる検出結果から、移動体座標系Cにおける対象物Pの位置情報を算出する。また、対象物情報取得部50は、図11の右上の図に示すように、端末16によって検出された、端末座標系CAにおける対象物Pの位置情報を取得する。対象物情報取得部50は、移動体10によって検出された対象物Pの位置情報(移動体座標系Cにおける位置情報)と、端末16によって検出された対象物Pの位置情報(端末座標系CAにおける位置情報)とに基づいて、端末座標系CAと移動体座標系Cとの座標変換を行う。
(Coordinate transformation)
FIG. 11 is a schematic diagram for explaining an example of coordinate transformation in the second embodiment. In the second embodiment, the object information acquisition unit 50 of the moving body 10 detects position information of the object P. Specifically, as shown in the upper left diagram of FIG. 11, the object information acquisition unit 50 causes the sensor 26A of the moving body 10 to detect the object P, and from the detection result by the sensor 26A, the moving body coordinate system is determined. The position information of the object P at C is calculated. Further, the object information acquisition unit 50 acquires position information of the object P in the terminal coordinate system CA, which is detected by the terminal 16, as shown in the upper right diagram of FIG. The object information acquisition unit 50 acquires position information of the object P detected by the moving object 10 (position information in the moving object coordinate system C) and position information of the object P detected by the terminal 16 (terminal coordinate system CA). coordinate transformation between the terminal coordinate system CA and the mobile object coordinate system C is performed based on the position information (position information).
 移動体10及び端末16によって検出された対象物Pの位置情報に基づいた座標変換の方法は任意であってよいが、本実施形態では以下に示す方法で行われる。まずは、対象物情報取得部50は、移動体10によって検出された対象物Pと、端末16によって検出された対象物Pとを対応付ける。言い換えれば、対象物情報取得部50は、同じ対象物Pについての、移動体10による検出結果と端末16による検出結果とを対応付ける。対象物情報取得部50は、対象物P毎に、移動体10による検出結果と端末16による検出結果とを対応付ける。なお、対象物P同士を対応付ける方法は任意であってよい。例えば、対象物情報取得部50は、第1実施形態と同様の方法で、端末16に検出された端末座標系CAにおける対象物Pの位置情報から、移動体座標系Cにおける対象物Pの位置情報を算出する。そして、対象物情報取得部50は、算出した移動体座標系Cにおける対象物Pの位置情報と、移動体10に検出された移動体座標系Cにおける対象物Pの位置情報との差分が所定値以下となる対象物Pを、同じ対象物Pであるとして、対応付けてよい。ここでの所定値は適宜設定されてよい。 The method of coordinate transformation based on the position information of the target object P detected by the moving body 10 and the terminal 16 may be arbitrary, but in this embodiment, it is performed by the method shown below. First, the object information acquisition unit 50 associates the object P detected by the moving object 10 with the object P detected by the terminal 16. In other words, the object information acquisition unit 50 associates the detection results of the mobile object 10 and the detection results of the terminal 16 for the same object P. The object information acquisition unit 50 associates the detection result by the mobile object 10 with the detection result by the terminal 16 for each object P. Note that the method of associating the objects P with each other may be arbitrary. For example, the object information acquisition unit 50 uses the position information of the object P in the terminal coordinate system CA detected by the terminal 16 to determine the position of the object P in the moving body coordinate system C. Calculate information. Then, the object information acquisition unit 50 calculates the difference between the calculated position information of the object P in the moving object coordinate system C and the position information of the object P in the moving object coordinate system C detected by the moving object 10. Objects P that are equal to or less than the value may be regarded as the same object P and may be associated with each other. The predetermined value here may be set as appropriate.
 対象物情報取得部50は、対応付けた対象物Pについての、移動体10及び端末16によって検出された位置情報に基づいて、座標変換を行う。本実施形態の例では、対象物情報取得部50は、端末座標系CAと移動体座標系Cとの対応関係である同次変換行列Tを、次の式(1)に示す最適化計算によって算出する。 The object information acquisition unit 50 performs coordinate transformation on the associated object P based on the position information detected by the moving object 10 and the terminal 16. In the example of the present embodiment, the object information acquisition unit 50 calculates the homogeneous transformation matrix T, which is the correspondence between the terminal coordinate system CA and the moving object coordinate system C, by the optimization calculation shown in the following equation (1). calculate.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、式(1)におけるq、Ψは、移動体10によって検出された対象物Pの位置、向きであり、p、φは、端末16によって検出された対象物Pの位置、向きである。iは、対応付けられた対象物Pの識別子である。すなわち、「i=1,...N」であり、Nは、対応付けられた対象物Pの総数を指す。また、wは、位置ずれと角度ずれのどちらをどれだけ重視するかを示す重みパラメータであり、適宜設定されてよい。 Here, q i and Ψ i in equation (1) are the position and orientation of the object P detected by the moving body 10, and p i and φ i are the position of the object P detected by the terminal 16. , is the direction. i is the identifier of the associated object P. That is, "i=1,...N", where N indicates the total number of associated objects P. Further, w is a weight parameter indicating how much importance is given to either positional deviation or angular deviation, and may be set as appropriate.
 式(1)に示すTを、次の式(2)で表すことにすると、式(1)の評価関数Eを最小化するx、y、θを算出することで、Tが算出できる。なお、評価関数Eを最小にする点では偏微分がゼロとなるため、求める解が満たすべき連立方程式は、次の式(3)に示すものとなる。ただし、記号の上の横線は、平均を表している。 If T shown in formula (1) is expressed by the following formula (2), T can be calculated by calculating x, y, and θ that minimize the evaluation function E of formula (1). Note that since the partial differential becomes zero at the point where the evaluation function E is minimized, the simultaneous equations to be satisfied by the solution to be found are as shown in the following equation (3). However, the horizontal line above the symbol represents the average.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、式(1)に示すように、x、yは、θを用いて陽に表すことができるため、θを求めることで、x、y、θを求めて、Tを算出できる。θは、例えばNewton-Raphson法により算出できる。 Here, as shown in equation (1), x and y can be expressed explicitly using θ, so by finding θ, x, y, and θ can be found, and T can be calculated. θ can be calculated, for example, by the Newton-Raphson method.
 なお、図11の例では、端末16が対象物PA、PB、PCを検出できたのに対して、待機位置Aにいる移動体10は、対象物PCを検出できず、対象物PA、PBのみを検出している。この場合、対象物情報取得部50は、移動体10と端末16との対象物PA、PBの検出結果から、移動体座標系Cと端末座標系CAとの対応関係(上記の例ではT)を算出する。すなわち、端末16と移動体10とで、少なくとも1つの同じ対象物Pを検出していれば、検出した対象物Pの数が異なっていても、移動体座標系Cと端末座標系CAとの対応関係を算出可能である。 In the example of FIG. 11, while the terminal 16 was able to detect the objects PA, PB, and PC, the mobile body 10 at the standby position A was unable to detect the objects PC, and detected the objects PA, PB. Detected only. In this case, the object information acquisition unit 50 determines the correspondence between the moving object coordinate system C and the terminal coordinate system CA (T in the above example) from the detection results of the objects PA and PB of the moving object 10 and the terminal 16. Calculate. That is, as long as the terminal 16 and the moving body 10 detect at least one same object P, even if the number of detected objects P is different, the relationship between the moving body coordinate system C and the terminal coordinate system CA is Correspondence can be calculated.
 (経路の設定)
 図11の例では、対象物情報取得部50は、待機位置Aにおいて、移動体10に対象物Pの位置情報を検出させる。移動体10の対象物情報取得部50は、移動体10によって検出された対象物Pの位置情報と、端末16によって検出された対象物Pの位置情報とから、移動体座標系Cと端末座標系CAとの対応関係(上記の例ではT)を算出する。そして、対象物情報取得部50は、図11の下の図に示すように、端末16によって検出された端末座標系Caにおける対象物Pの位置情報を、算出した対応関係を用いて座標変換して、移動体座標系Cにおける対象物Pの第1位置情報を算出する。経路取得部54は、このようにして算出された対象物Pの第1位置情報に基づいて、対象物Pまでの経路R1を、すなわちここでは待機位置Aから位置Bまでの経路R1を、設定する。
(route setting)
In the example of FIG. 11, the object information acquisition unit 50 causes the moving body 10 to detect the position information of the object P at the standby position A. The object information acquisition unit 50 of the moving object 10 determines the moving object coordinate system C and the terminal coordinates from the position information of the object P detected by the moving object 10 and the position information of the object P detected by the terminal 16. The correspondence relationship (T in the above example) with the system CA is calculated. Then, as shown in the lower diagram of FIG. 11, the object information acquisition unit 50 coordinately transforms the position information of the object P in the terminal coordinate system Ca detected by the terminal 16 using the calculated correspondence relationship. Then, first position information of the object P in the moving object coordinate system C is calculated. The route acquisition unit 54 sets a route R1 to the target object P, that is, a route R1 from the standby position A to the position B here, based on the first position information of the target object P calculated in this way. do.
 このように、第2実施形態においては、移動体10及び端末16によって検出された対象物Pの位置情報に基づいて座標変換を行う。移動体10による対象物Pの検出精度は、端末16による対象物Pの検出精度より高くなる場合が多いため、第2実施形態の方法で座標変換を行うことで、移動体座標系Cにおける対象物Pの第1位置情報を高精度に設定して、経路R1を適切に設定できる。さらに言えば、本実施形態においては、移動体10及び端末16に共通する対象物Pを検出させて座標変換を行う。すなわち、対象物Pという同じリファレンスを介することで、移動体10のセンサと端末16のセンサとで測距特性が異なる場合でも、移動体10のセンサと端末16のセンサとの検出結果を正確に照合できる。なお、リファレンスとする対象物Pは、本実施形態の例では移動体10が搬送する、形状が規格化された(形状が既知の)パレットであるが、形状が既知の任意の物体を、リファレンスとする対象物Pとして用いてもよい。 As described above, in the second embodiment, coordinate transformation is performed based on the position information of the target object P detected by the moving object 10 and the terminal 16. Since the detection accuracy of the target object P by the moving body 10 is often higher than the detection accuracy of the target object P by the terminal 16, by performing coordinate transformation using the method of the second embodiment, the detection accuracy of the target object P in the mobile body coordinate system C is The route R1 can be appropriately set by setting the first position information of the object P with high precision. Furthermore, in this embodiment, the moving body 10 and the terminal 16 detect a common object P and perform coordinate transformation. In other words, by using the same reference as the object P, even if the distance measurement characteristics of the sensor of the moving object 10 and the sensor of the terminal 16 are different, the detection results of the sensor of the moving object 10 and the sensor of the terminal 16 can be accurately determined. Can be compared. Note that the reference object P is a pallet with a standardized shape (with a known shape) that is transported by the moving body 10 in the example of this embodiment, but any object with a known shape can be used as a reference. It may be used as a target object P.
 また、図11の例では、経路R1は、対象物PAに向かう経路であるが、第2実施形態の方法によると、移動体10が検出できなかった対象物PCに向かう経路も設定できる。すなわちこの場合、対象物情報取得部50は、対象物PA、PBの検出結果を用いて対応関係(T)を算出し、端末座標系CAにおける対象物PCの位置情報を、この対応関係により座標変換することで、移動体座標系Cにおける対象物PCの位置情報を算出して、対象物PCへの経路を設定できる。 Further, in the example of FIG. 11, the route R1 is a route toward the target object PA, but according to the method of the second embodiment, a route toward the target object PC that the moving object 10 could not be detected can also be set. That is, in this case, the object information acquisition unit 50 calculates the correspondence relationship (T) using the detection results of the objects PA and PB, and uses this correspondence relationship to calculate the position information of the object PC in the terminal coordinate system CA. By converting, the position information of the target object PC in the moving body coordinate system C can be calculated, and a route to the target object PC can be set.
 (他の例1)
 第2実施形態においては、移動体10は、対象物Pの位置情報を検出するが、対象物Pのおおよその位置を予め把握していない場合には、探索範囲が広くなるため、検出負荷が高くなるおそれがある。それに対して、本例に示すように、端末16によって検出された対象物Pの位置情報から、移動体10によって検出を行う範囲である検知領域ROIを設定して、移動体10に検知領域ROIを検出させることで、対象物Pの位置情報を検出させることが好ましい。これにより、検出負荷を抑制できる。以下、具体的に説明する。
(Other example 1)
In the second embodiment, the moving body 10 detects the position information of the target object P, but if the approximate position of the target object P is not known in advance, the search range becomes wider, so the detection load is reduced. There is a risk that the price will increase. On the other hand, as shown in this example, a detection region ROI, which is a range to be detected by the moving body 10, is set based on the position information of the target object P detected by the terminal 16, and the detection region ROI is set in the moving body 10. It is preferable to detect the position information of the target object P by detecting the . Thereby, the detection load can be suppressed. This will be explained in detail below.
 図12は、検知領域を説明する模式図である。本例においては、移動体10の対象物情報取得部50は、第1実施形態と同様の方法で、端末16によって検出された端末座標系CAにおける対象物Pの位置情報から、移動体座標系Cにおける対象物Pの第1位置情報を算出する。対象物情報取得部50は、移動体座標系Cにおける対象物Pの第1位置情報に基づいて、図12に示すような検知領域ROIを設定する。例えば、対象物情報取得部50は、第1位置情報が示す位置を含む所定の広さの領域を、検知領域ROIとして設定してよい。対象物情報取得部50は、センサ26Aに検知領域ROIを検出させることで、対象物Pの位置情報を検出する。そして、対象物情報取得部50は、上述の第2実施形態と同様の方法で、移動体10によって検出された対象物Pの位置情報と、端末16によって検出された対象物Pの位置情報とから、移動体座標系Cと端末座標系CAとの対応関係(上記の例ではT)を算出する。対象物情報取得部50は、端末座標系CAにおける対象物Pの位置情報を、算出した対応関係を用いて座標変換して、移動体座標系Cにおける対象物Pの第1位置情報を算出し直す。経路取得部54は、このように算出し直された移動体座標系Cにおける対象物Pの位置情報に基づいて、対象物Pに向かう経路R1を設定する。 FIG. 12 is a schematic diagram illustrating the detection area. In this example, the object information acquisition unit 50 of the moving body 10 uses the position information of the object P in the terminal coordinate system CA detected by the terminal 16 to calculate the moving body coordinate system. First position information of the object P at C is calculated. The object information acquisition unit 50 sets a detection region ROI as shown in FIG. 12 based on the first position information of the object P in the moving body coordinate system C. For example, the object information acquisition unit 50 may set an area of a predetermined size including the position indicated by the first position information as the detection area ROI. The object information acquisition unit 50 detects position information of the object P by causing the sensor 26A to detect the detection region ROI. Then, the object information acquisition unit 50 acquires the position information of the object P detected by the moving body 10 and the position information of the object P detected by the terminal 16 in the same manner as in the second embodiment described above. From this, the correspondence relationship (T in the above example) between the moving object coordinate system C and the terminal coordinate system CA is calculated. The object information acquisition unit 50 calculates first position information of the object P in the moving object coordinate system C by performing coordinate transformation on the position information of the object P in the terminal coordinate system CA using the calculated correspondence relationship. fix. The route acquisition unit 54 sets a route R1 toward the object P based on the position information of the object P in the moving body coordinate system C recalculated in this way.
 (他の例2)
 以上の説明では、移動体10及び端末16に検出された対象物Pの位置情報を用いて設定された経路R1に従って、移動体10を対象物Pまで移動させる。ただしそれに限られず、端末16に検出された対象物Pの位置情報のみを用いて設定された経路R1で対象物Pに近づけた後に、移動体10及び端末16に検出された対象物Pの位置情報を用いて次の経路R2を設定し、経路R2に従って移動体10を対象物Pに到達させてもよい。以下、具体的に説明する。
(Other example 2)
In the above description, the moving object 10 is moved to the object P according to the route R1 set using the position information of the object P detected by the moving object 10 and the terminal 16. However, the present invention is not limited to this, and the position of the object P detected by the mobile object 10 and the terminal 16 after approaching the object P along the route R1 set using only the position information of the object P detected by the terminal 16. The next route R2 may be set using the information, and the moving object 10 may be made to reach the target object P according to the route R2. This will be explained in detail below.
 図13は、経路の設定の例を説明する模式図である。本例においては、第1実施形態と同様の方法で、すなわち端末16によって検出された対象物Pの位置情報のみを用いて、対象物Pに向かう経路R1を設定する。移動体10の移動制御部56は、経路R1に従って、対象物Pに向けて移動体10を移動させる。ここで、移動体10の対象物情報取得部50は、移動体10が経路R1上に位置している状態で、センサ26Aに対象物Pを検出させて、移動体座標系Cにおける対象物Pの位置情報を算出する。なお、対象物情報取得部50は、経路R1上の任意の位置でセンサ26Aに対象物Pを検出させてもよく、例えば経路R1に沿った移動中に逐次検出させてもよいし、例えば経路R1の終点(位置B)に対して所定距離に到達した際に、停止して対象物Pを検出させてもよい。なお、本例においても、第1位置情報に基づいて検知領域ROIを設定して、センサ26Aに検知領域ROIを検出させてもよい。 FIG. 13 is a schematic diagram illustrating an example of route setting. In this example, a route R1 toward the object P is set using the same method as in the first embodiment, that is, using only the position information of the object P detected by the terminal 16. The movement control unit 56 of the moving body 10 moves the moving body 10 toward the object P according to the route R1. Here, the object information acquisition unit 50 of the moving object 10 causes the sensor 26A to detect the object P in a state where the moving object 10 is located on the route R1, and detects the object P in the moving object coordinate system C. Calculate the location information of. Note that the object information acquisition unit 50 may cause the sensor 26A to detect the object P at any position on the route R1, for example, may cause the sensor 26A to detect the object P sequentially while moving along the route R1, or may cause the sensor 26A to detect the object P at any position on the route R1. When reaching a predetermined distance from the end point (position B) of R1, the object P may be detected by stopping. Note that also in this example, the detection region ROI may be set based on the first position information and the sensor 26A may be caused to detect the detection region ROI.
 対象物情報取得部50は、移動体10によって経路R1上で検出された対象物Pの位置情報と、端末16に検出された対象物Pの位置情報とから、第2実施形態と同様の方法で、移動体座標系Cと端末座標系CAとの対応関係を算出する。そして、対象物情報取得部50は、端末16に検出された端末座標系CAにおける対象物Pの位置情報を、算出した対応関係で座標変換して、移動体座標系Cにおける対象物Pの位置情報(第2位置情報)を算出する。経路取得部54は、このように算出された移動体座標系Cにおける対象物Pの第2位置情報に基づいて、対象物Pに向かう経路R2を設定する。すなわち、経路取得部54は、対象物Pの第2位置情報に基づいて、対象物Pに対して所定の位置及び向きとなる位置Dを算出し、位置Dまでの経路を経路R2として設定する。位置Dは、対象物Pが第2位置情報に示す位置及び向きで配置されていると仮定した場合に、移動体10が対象物Pをピックアップ可能な位置及び向きといえる。移動制御部56は、経路R2が設定されたら、経路R1から経路R2に切り替えて、経路R2に従って対象物Pに向けて移動する。 The object information acquisition unit 50 uses the same method as in the second embodiment from the position information of the object P detected by the moving object 10 on the route R1 and the position information of the object P detected by the terminal 16. Then, the correspondence between the moving object coordinate system C and the terminal coordinate system CA is calculated. Then, the object information acquisition unit 50 coordinates transforms the position information of the object P in the terminal coordinate system CA detected by the terminal 16 using the calculated correspondence relationship, and positions the object P in the moving object coordinate system C. Information (second position information) is calculated. The route acquisition unit 54 sets a route R2 toward the object P based on the second position information of the object P in the moving body coordinate system C calculated in this way. That is, the route acquisition unit 54 calculates a position D that is a predetermined position and orientation with respect to the target object P based on the second position information of the target object P, and sets the route to the position D as the route R2. . The position D can be said to be the position and orientation at which the moving body 10 can pick up the object P, assuming that the object P is arranged in the position and orientation shown in the second position information. Once the route R2 is set, the movement control unit 56 switches from the route R1 to the route R2 and moves toward the object P along the route R2.
 このように、本例においては、端末16の検出結果のみを用いて対象物Pに近づいた後、移動体10と端末16の検出結果を用いてさらに対象物Pにアプローチする。従って、本例によると、移動体10が対象物Pを検出し終わるまで待たずに移動を開始させつつ、移動体10が検出できた時点で経路R2に切り替えて、高精度に対象物Pにアプローチできる。 In this way, in this example, after approaching the object P using only the detection results of the terminal 16, the object P is further approached using the detection results of the mobile body 10 and the terminal 16. Therefore, according to this example, the moving body 10 starts moving without waiting until the object P has been detected, and switches to route R2 as soon as the moving object 10 is detected, so that the object P can be detected with high precision. I can approach you.
 なお、第2実施形態の説明においても、移動体座標系Cと端末座標系CAとの対応関係を算出する処理や、移動体座標系Cにおける対象物Pの位置情報を算出する処理や、経路R1、R2を設定する処理を、移動体10が行っていたが、それに限られず、端末16や情報処理装置14がそれらの処理を行ってもよい。 In addition, in the description of the second embodiment, the process of calculating the correspondence between the moving body coordinate system C and the terminal coordinate system CA, the process of calculating the position information of the object P in the moving body coordinate system C, and the process of calculating the correspondence between the moving body coordinate system C and the terminal coordinate system CA, Although the mobile body 10 performs the processing for setting R1 and R2, the present invention is not limited thereto, and the terminal 16 or the information processing device 14 may perform the processing.
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態においては、経路R1に従って対象物Pに近づいた後に、移動体10の検出結果のみを用いて対象物Pにアプローチする経路R3を設定する点で、第1実施形態とは異なる。第3実施形態において、第1実施形態と構成が共通する箇所は、説明を省略する。なお、第3実施形態は、第2実施形態にも適用可能である。
(Third embodiment)
Next, a third embodiment will be described. The third embodiment differs from the first embodiment in that after approaching the object P along the route R1, a route R3 is set to approach the object P using only the detection results of the moving body 10. In the third embodiment, descriptions of parts that have the same configuration as the first embodiment will be omitted. Note that the third embodiment is also applicable to the second embodiment.
 図14は、経路の設定の例を説明する模式図である。第3実施形態においては、第1実施形態と同様の方法で、すなわち端末16によって検出された対象物Pの位置情報のみを用いて、対象物Pに向かう経路R1を設定する。移動体10の移動制御部56は、経路R1に従って、対象物Pに向けて移動体10を移動させる。第3実施形態においては、移動体10の対象物情報取得部50は、移動体10が経路R1上に位置している状態で、センサ26Aに対象物Pを検出させて、移動体座標系Cにおける対象物Pの位置情報を算出する。なお、対象物情報取得部50は、経路R1上の任意の位置でセンサ26Aに対象物Pを検出させてもよく、例えば経路R1に沿った移動中に逐次検出させてもよいし、例えば経路R1の終点(位置B)に対して所定距離に到達した際に、停止して対象物Pを検出させてもよい。なお、第3実施形態においても、第2実施形態の他の例1に示すように、第1位置情報に基づいて検知領域ROIを設定して、センサ26Aに検知領域ROIを検出させてもよい。 FIG. 14 is a schematic diagram illustrating an example of route setting. In the third embodiment, a route R1 toward the object P is set using the same method as in the first embodiment, that is, using only the position information of the object P detected by the terminal 16. The movement control unit 56 of the moving body 10 moves the moving body 10 toward the object P according to the route R1. In the third embodiment, the object information acquisition unit 50 of the moving object 10 causes the sensor 26A to detect the object P while the moving object 10 is located on the route R1, and detects the object P in the moving object coordinate system C. Calculate the position information of the target object P at . Note that the object information acquisition unit 50 may cause the sensor 26A to detect the object P at any position on the route R1, for example, may cause the sensor 26A to detect the object P sequentially while moving along the route R1, or may cause the sensor 26A to detect the object P at any position on the route R1. When reaching a predetermined distance from the end point (position B) of R1, the object P may be detected by stopping. In addition, also in the third embodiment, as shown in other example 1 of the second embodiment, the detection region ROI may be set based on the first position information and the sensor 26A may detect the detection region ROI. .
 対象物情報取得部50は、移動体10に検出された移動体座標系Cにおける対象物Pの位置情報に基づいて、対象物Pに向かう経路R3を設定する。すなわち、経路取得部54は、移動体10に検出された移動体座標系Cにおける対象物Pの位置情報に基づいて、対象物Pに対して所定の位置及び向きとなる位置Eを算出し、その位置Eまでの経路を経路R3として設定する。位置Eは、移動体10に検出された位置情報に示す位置及び向きで対象物Pが配置されていると仮定した場合に、移動体10が対象物Pをピックアップ可能な位置及び向きといえる。移動制御部56は、経路R3が設定されたら、経路R1から経路R3に切り替えて、経路R3に従って対象物Pに向けて移動する。 The object information acquisition unit 50 sets a route R3 toward the object P based on the position information of the object P in the moving object coordinate system C detected by the moving object 10. That is, the route acquisition unit 54 calculates a position E that is a predetermined position and orientation with respect to the object P based on the position information of the object P in the moving object coordinate system C detected by the moving object 10, The route to that position E is set as route R3. The position E can be said to be the position and orientation at which the moving body 10 can pick up the object P, assuming that the object P is arranged at the position and orientation shown in the position information detected by the moving body 10. Once the route R3 is set, the movement control unit 56 switches from the route R1 to the route R3 and moves toward the target object P along the route R3.
 このように、第3実施形態においては、端末16の検出結果のみを用いて対象物Pに近づいた後、移動体10と端末16の検出結果を用いてさらに対象物Pにアプローチする。従って、第3実施形態によると、移動体10が対象物Pを検出し終わるまで待たずに移動を開始させつつ、移動体10が検出できた時点で経路R3に切り替えて、高精度に対象物Pにアプローチできる。特に、移動体10が検出できなかった対象物PCに向かう場合には、端末16の検出結果のみを用いて対象物PCに向かうことになるため、対象物PCに向かう経路R1の精度が低くなってしまう。それに対して、第3実施形態においては、経路R1で移動を開始して、移動体10が対象物PCを検出できる位置に到達したら、移動体10の検出に基づく経路R3に切り替えるため、対象物PCに向かう高精度な経路に切り替えることができる。 In this manner, in the third embodiment, after approaching the object P using only the detection results of the terminal 16, the object P is further approached using the detection results of the mobile object 10 and the terminal 16. Therefore, according to the third embodiment, the moving body 10 starts moving without waiting until the target object P has been detected, and switches to the route R3 at the moment when the moving body 10 can detect the target object P, thereby detecting the target object P with high precision. You can approach P. In particular, when the mobile object 10 heads toward the object PC that could not be detected, it will head toward the object PC using only the detection results of the terminal 16, so the accuracy of the route R1 toward the object PC becomes low. It ends up. On the other hand, in the third embodiment, when the moving body 10 starts moving on the route R1 and reaches a position where the target object PC can be detected, it switches to the route R3 based on the detection of the moving body 10. You can switch to a highly accurate route to the PC.
 また、第3実施形態は、第2実施形態にも適用可能である。すなわち例えば、第3実施形態においては、移動体10及び端末16に検出された対象物Pの位置情報を用いて設定された経路R1に従って、移動体10を移動させた後、移動体10に検出された対象物Pの位置情報に基づいて経路R3を設定して、経路R3に切り替えてもよい。また例えば、第3実施形態においては、端末16に検出された対象物Pの位置情報のみを用いて設定された経路R1で対象物Pに近づけた後に、移動体10及び端末16に検出された対象物Pの位置情報を用いて設定した経路R2に切り替えて、経路R2で対象物Pに更に近づけた後に、移動体10に検出された対象物Pの位置情報のみを用いて設定された経路R3に切り替えてもよい。このように第2実施形態と組み合わせることで、端末16と移動体10の検出を組み合わせた経路で高精度にアプローチしつつ、移動体10単体の検出による経路R3で更に高精度にアプローチできる。 Furthermore, the third embodiment is also applicable to the second embodiment. For example, in the third embodiment, after the moving object 10 is moved along the route R1 set using the position information of the object P detected by the moving object 10 and the terminal 16, the object P detected by the moving object 10 is moved. The route R3 may be set based on the position information of the target object P, and the route may be switched to the route R3. For example, in the third embodiment, after approaching the object P on the route R1 set using only the position information of the object P detected by the terminal 16, the object P detected by the moving object 10 and the terminal 16 A route set using only the position information of the object P detected by the moving body 10 after switching to the route R2 set using the position information of the object P and moving closer to the object P on the route R2. You may switch to R3. In this way, by combining the second embodiment, it is possible to approach with high precision using a route that combines the detection of the terminal 16 and the moving object 10, and to approach with even higher precision using the route R3 based on the detection of the moving object 10 alone.
 なお、第3実施形態の説明においても、経路R3を設定する処理を、移動体10が行っていたが、それに限られず、端末16や情報処理装置14がそれらの処理を行ってもよい。 Note that in the description of the third embodiment, the process of setting the route R3 is performed by the mobile body 10, but the process is not limited thereto, and the terminal 16 or the information processing device 14 may perform the process.
 (効果)
 本開示の第1態様に係る経路設定方法は、位置を移動可能な端末16により、端末16による検出の基準となる端末座標系CAにおける対象物Pの位置情報を検出するステップと、端末座標系CAと、移動体10の移動の基準となる移動体座標系Cとの座標変換を行うことで、端末座標系CAにおける対象物Pの位置情報から、移動体座標系Cにおける対象物の位置を示す第1位置情報を算出するステップと、第1位置情報に基づき、移動体座標系Cにおいて対象物Pに向かう経路R1を設定するステップと、を含む。
(effect)
A route setting method according to a first aspect of the present disclosure includes the steps of: detecting, by a positionally movable terminal 16, position information of an object P in a terminal coordinate system CA, which is a reference for detection by the terminal 16; By performing coordinate transformation between CA and the moving object coordinate system C, which is the reference for the movement of the moving object 10, the position of the object P in the moving object coordinate system C can be determined from the position information of the object P in the terminal coordinate system CA. and a step of setting a route R1 toward the target object P in the moving body coordinate system C based on the first position information.
 本開示によると、端末16によって検出された実際の対象物Pの位置情報に基づいて経路を設定できるため、状況に応じた適切な位置に移動体10を誘導できる。また、端末16に検出された対象物Pの位置情報を、移動体座標系Cに座標変換することで、移動体10が認識可能な座標系での対象物Pの位置を特定することができ、移動体10を適切に誘導できる。 According to the present disclosure, a route can be set based on the position information of the actual object P detected by the terminal 16, so the moving object 10 can be guided to an appropriate position according to the situation. Furthermore, by converting the position information of the object P detected by the terminal 16 into the moving object coordinate system C, it is possible to specify the position of the object P in the coordinate system that the moving object 10 can recognize. , the moving body 10 can be appropriately guided.
 本開示の第2態様に係る経路設定方法は、第1態様に係る経路設定方法であって、対象物Pの位置情報を検出するステップでは、移動体座標系Cでの位置が既知である基準部Mを基準として、端末16に対象物Pの位置情報を検出させ、第1位置情報を算出するステップでは、移動体座標系Cでの基準部Mの位置に基づいて、端末座標系CAと移動体座標系Cとの座標変換を行う。基準部Mを用いて座標変換することで、移動体座標系Cでの対象物Pのおおよその位置を推定可能となる。これにより、端末座標系CAで表された対象物Pの位置と移動体座標系Cで表された対象物Pとの対応付けを容易に行うことが可能となり、移動体10を適切に誘導できる。すなわち、端末16による基準部Mの位置検出については、高い精度は不要であり、基準部Mにより座標系同士のおおよその位置関係を把握できれば、その後の座標系同士の高精度の対応付けを補助できるため、好ましいといえる。 The route setting method according to the second aspect of the present disclosure is the route setting method according to the first aspect, in which the step of detecting the position information of the target object P uses a reference whose position in the moving object coordinate system C is known. In the step of causing the terminal 16 to detect the position information of the object P using the part M as a reference and calculating the first position information, based on the position of the reference part M in the moving object coordinate system C, the terminal coordinate system CA and Coordinate transformation with the moving body coordinate system C is performed. By performing coordinate transformation using the reference part M, the approximate position of the object P in the moving body coordinate system C can be estimated. This makes it possible to easily associate the position of the object P expressed in the terminal coordinate system CA with the object P expressed in the moving object coordinate system C, and it is possible to appropriately guide the moving object 10. . In other words, high accuracy is not required for detecting the position of the reference part M by the terminal 16, and if the approximate positional relationship between the coordinate systems can be grasped by the reference part M, it will assist in the subsequent high-precision correspondence between the coordinate systems. This is preferable because it can be done.
 本開示の第3態様に係る経路設定方法は、第1態様又は第2態様に係る経路設定方法であって、移動体10により、移動体座標系Cにおける対象物Pの位置情報を検出させるステップをさらに含み、第1位置情報を算出するステップでは、端末16により検出された端末座標系CAにおける対象物Pの位置情報と、移動体10により検出された移動体座標系Cにおける対象物Pの位置情報とに基づいて、端末座標系と移動体座標系との座標変換を行う。本開示によると、移動体10及び端末16によって検出された対象物Pの位置情報に基づいて座標変換を行うため、移動体座標系Cにおける対象物Pの第1位置情報を高精度に設定して、経路R1を適切に設定できる。 The route setting method according to the third aspect of the present disclosure is the route setting method according to the first aspect or the second aspect, which includes a step of causing the moving object 10 to detect position information of the target object P in the moving object coordinate system C. In the step of calculating the first position information, the position information of the object P in the terminal coordinate system CA detected by the terminal 16 and the position information of the object P in the mobile object coordinate system C detected by the mobile object 10 are calculated. Based on the position information, coordinate transformation between the terminal coordinate system and the moving body coordinate system is performed. According to the present disclosure, in order to perform coordinate transformation based on the position information of the target object P detected by the mobile body 10 and the terminal 16, the first position information of the target object P in the mobile body coordinate system C is set with high precision. Thus, route R1 can be appropriately set.
 本開示の第4態様に係る経路設定方法は、第1態様から第3態様のいずれかの経路設定方法であって、第1位置情報に基づいて検知領域ROIを設定するステップと、移動体10に検知領域ROIを検出させることで、移動体座標系Cにおける対象物Pの位置情報を取得するステップと、を更に含み、第1位置情報を算出するステップでは、端末座標系CAにおける対象物Pの位置情報と、移動体座標系Cにおける対象物Pの位置情報とに基づいて、第1位置情報を算出し直し、経路R1を設定するステップにおいては、算出し直された第1位置情報に基づき、経路RIを設定する。本開示によると、端末16によって検出された対象物Pの位置情報から検知領域ROIを設定して、移動体10に検知領域ROIを検出させることで、検出負荷を抑制しつつ、経路R1を適切に設定できる。 A route setting method according to a fourth aspect of the present disclosure is the route setting method according to any one of the first to third aspects, and includes a step of setting a detection region ROI based on first position information; The step further includes a step of obtaining position information of the target object P in the mobile body coordinate system C by detecting the detection region ROI, and in the step of calculating the first position information, the target object P in the terminal coordinate system CA is In the step of recalculating the first position information based on the position information of the object P and the position information of the object P in the moving body coordinate system C, and setting the route R1, the recalculated first position information is used. Based on this, a route RI is set. According to the present disclosure, by setting the detection region ROI from the position information of the target object P detected by the terminal 16 and having the moving body 10 detect the detection region ROI, the route R1 can be appropriately determined while suppressing the detection load. Can be set to
 本開示の第5態様に係る経路設定方法は、第1態様から第4態様のいずれかの経路設定方法であって、第1位置情報に基づき設定された経路R1に従って移動した後に、移動体10に、移動体座標系Cにおける対象物Pの位置情報を検出させるステップと、端末座標系CAにおける対象物Pの位置情報と、移動体座標系Cにおける対象物Pの位置情報とに基づいて、移動体座標系Cにおける対象物Pの位置を示す第2位置情報を算出するステップと、第2位置情報に基づいて、移動体座標系Cにおいて対象物Pに向かう経路R2を設定するステップと、を更に含む。本開示によると、移動体10が対象物Pを検出し終わるまで待たずに移動を開始させつつ、移動体10が検出できた時点で経路R2に切り替えて、高精度に対象物Pにアプローチできる。 A route setting method according to a fifth aspect of the present disclosure is the route setting method according to any one of the first to fourth aspects, in which the mobile object 1 , based on the step of detecting the position information of the target object P in the mobile body coordinate system C, the position information of the target object P in the terminal coordinate system CA, and the position information of the target object P in the mobile body coordinate system C, a step of calculating second position information indicating the position of the target object P in the mobile body coordinate system C; a step of setting a route R2 toward the target object P in the mobile body coordinate system C based on the second position information; further including. According to the present disclosure, it is possible to start moving without waiting until the moving object 10 finishes detecting the object P, and switch to route R2 as soon as the moving object 10 is detected to approach the object P with high precision. .
 本開示の第6態様に係る経路設定方法は、第1態様から第5態様のいずれかの経路設定方法であって、第1位置情報に基づき設定された経路R1に従って移動した後に、移動体10に、移動体座標系Cにおける対象物Pの位置情報を検出させるステップと、移動体座標系Cにおける対象物Pの位置情報に基づいて、移動体座標系Cにおいて対象物Pに向かう経路R3を設定するステップと、を更に含む。本開示によると、移動体10が対象物Pを検出し終わるまで待たずに移動を開始させつつ、移動体10が検出できた時点で経路R3に切り替えて、高精度に対象物Pにアプローチできる。 A route setting method according to a sixth aspect of the present disclosure is the route setting method according to any one of the first to fifth aspects, in which the mobile object , a step of detecting the position information of the object P in the moving body coordinate system C, and based on the position information of the target object P in the moving body coordinate system C, a route R3 toward the target object P in the moving body coordinate system C is detected. configuring. According to the present disclosure, it is possible to start moving without waiting until the moving object 10 finishes detecting the object P, and switch to the route R3 as soon as the moving object 10 is detected to approach the object P with high precision. .
 本開示の第7態様に係る経路設定方法は、第1態様から第6態様のいずれかの経路設定方法であって、設定された経路に従って移動体10を移動させる設定するステップを更に含む。本開示によると、状況に応じた適切な位置に移動体10を移動させることができる。 The route setting method according to the seventh aspect of the present disclosure is the route setting method according to any one of the first to sixth aspects, and further includes a step of setting the moving body 10 to move according to the set route. According to the present disclosure, the mobile body 10 can be moved to an appropriate position depending on the situation.
 本開示の第8態様に係るプログラムは、位置を移動可能な端末16により、端末16による検出の基準となる端末座標系CAにおける対象物Pの位置情報を検出するステップと、端末座標系CAと、移動体10の移動の基準となる移動体座標系Cとの座標変換を行うことで、端末座標系CAにおける対象物Pの位置情報から、移動体座標系Cにおける対象物の位置を示す第1位置情報を算出するステップと、第1位置情報に基づき、移動体座標系Cにおいて対象物Pに向かう経路R1を設定するステップと、をコンピュータに実行させる。本開示によると、状況に応じた適切な位置に移動体10を誘導できる。 The program according to the eighth aspect of the present disclosure includes the steps of: detecting, by a positionally movable terminal 16, position information of an object P in a terminal coordinate system CA, which is a reference for detection by the terminal 16; , by performing coordinate transformation with the moving object coordinate system C, which serves as a reference for the movement of the moving object 10, from the position information of the object P in the terminal coordinate system CA, the position of the object P in the moving object coordinate system C is obtained. The computer is caused to execute the steps of calculating first position information and setting a route R1 toward the object P in the moving body coordinate system C based on the first position information. According to the present disclosure, the moving body 10 can be guided to an appropriate position depending on the situation.
 本開示の第9態様に係る経路設定システム1は、位置を移動可能な端末16と、移動体10とを含む。端末16は、検出の基準となる端末座標系CAにおける対象物Pの位置情報を検出する対象物検出部70を含む。移動体10は、移動体10の移動の基準となる移動体座標系Cにおける対象物Pの位置を示す第1位置情報に基づいて設定された、移動体座標系Cにおいて対象物Pに向かう経路R1を取得する経路取得部54を含む。第1位置情報は、端末座標系CAと移動体座標系Cとの座標変換を行うことで、端末座標系CAにおける対象物Pの位置情報から算出されたものである。本開示によると、状況に応じた適切な位置に移動体10を誘導できる。 The route setting system 1 according to the ninth aspect of the present disclosure includes a terminal 16 that is movable in position and a mobile object 10. The terminal 16 includes an object detection unit 70 that detects position information of the object P in the terminal coordinate system CA, which serves as a reference for detection. The moving object 10 follows a route toward the object P in the moving object coordinate system C, which is set based on first position information indicating the position of the object P in the moving object coordinate system C, which serves as a reference for movement of the moving object 10. It includes a route acquisition unit 54 that acquires R1. The first position information is calculated from the position information of the object P in the terminal coordinate system CA by performing coordinate transformation between the terminal coordinate system CA and the moving body coordinate system C. According to the present disclosure, the moving body 10 can be guided to an appropriate position depending on the situation.
 以上、本開示の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiment of the present disclosure has been described above, the embodiment is not limited by the content of this embodiment. Further, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equivalent range. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, substitutions, or changes of the constituent elements can be made without departing from the gist of the embodiments described above.
 10 移動体
 12 管理装置
 14 情報処理装置
 16 端末
 50 対象物情報取得部
 52 自己位置取得部
 54 経路取得部
 56 移動制御部
 70 対象物検出部
 72 表示制御部
 74 対象物設定部
 76 対象物情報送信部
 C 移動体座標系
 Ca 端末座標系
 P 対象物
 R1 経路
 
10 Mobile object 12 Management device 14 Information processing device 16 Terminal 50 Object information acquisition section 52 Self-position acquisition section 54 Route acquisition section 56 Movement control section 70 Object detection section 72 Display control section 74 Object setting section 76 Object information transmission Part C Mobile body coordinate system Ca Terminal coordinate system P Target object R1 Route

Claims (9)

  1.  位置を移動可能な端末により、前記端末による検出の基準となる端末座標系における対象物の位置情報を検出するステップと、
     前記端末座標系と、移動体の移動の基準となる移動体座標系との座標変換を行うことで、前記端末座標系における前記対象物の位置情報から、前記移動体座標系における前記対象物の位置を示す第1位置情報を算出するステップと、
     前記第1位置情報に基づき、前記移動体座標系において前記対象物に向かう経路を設定するステップと、
     を含む、
     経路設定方法。
    Detecting, by a positionally movable terminal, position information of an object in a terminal coordinate system that serves as a reference for detection by the terminal;
    By performing coordinate transformation between the terminal coordinate system and the moving object coordinate system that serves as a reference for movement of the moving object, the position information of the object in the terminal coordinate system can be used to calculate the position information of the object in the moving object coordinate system. calculating first position information indicating the position;
    setting a route toward the object in the moving object coordinate system based on the first position information;
    including,
    How to set the route.
  2.  前記対象物の位置情報を検出するステップでは、前記移動体座標系での位置が既知である基準部を基準として、前記端末に前記対象物の位置情報を検出させ、
     前記第1位置情報を算出するステップでは、前記移動体座標系での前記基準部の位置に基づいて、前記端末座標系と前記移動体座標系との座標変換を行う、請求項1に記載の経路設定方法。
    In the step of detecting the position information of the object, the terminal detects the position information of the object with reference to a reference part whose position in the moving body coordinate system is known;
    2. The step of calculating the first position information performs coordinate transformation between the terminal coordinate system and the moving object coordinate system based on the position of the reference part in the moving object coordinate system. How to set the route.
  3.  前記移動体により、前記移動体座標系における前記対象物の位置情報を検出させるステップをさらに含み、
     前記第1位置情報を算出するステップでは、前記端末により検出された前記端末座標系における対象物の位置情報と、前記移動体により検出された前記移動体座標系における対象物の位置情報とに基づいて、前記端末座標系と前記移動体座標系との座標変換を行う、請求項1又は請求項2に記載の経路設定方法。
    further comprising the step of causing the moving body to detect position information of the object in the moving body coordinate system,
    The step of calculating the first position information is based on the position information of the object in the terminal coordinate system detected by the terminal and the position information of the object in the mobile object coordinate system detected by the mobile object. 3. The route setting method according to claim 1, further comprising performing coordinate transformation between the terminal coordinate system and the moving body coordinate system.
  4.  前記第1位置情報に基づいて検知領域を設定するステップと、
     前記移動体に前記検知領域を検出させることで、前記移動体座標系における前記対象物の位置情報を取得するステップと、をさらに含み、
     前記第1位置情報を算出するステップでは、前記端末座標系における前記対象物の位置情報と、前記移動体座標系における前記対象物の位置情報とに基づいて、前記第1位置情報を算出し直し、
     前記経路を設定するステップにおいては、算出し直された前記第1位置情報に基づき、前記経路を設定する、請求項1又は請求項2に記載の経路設定方法。
    setting a detection area based on the first location information;
    further comprising the step of obtaining position information of the object in the moving body coordinate system by causing the moving body to detect the detection area,
    In the step of calculating the first position information, the first position information is recalculated based on the position information of the object in the terminal coordinate system and the position information of the object in the mobile body coordinate system. ,
    3. The route setting method according to claim 1, wherein in the step of setting the route, the route is set based on the recalculated first position information.
  5.  前記第1位置情報に基づき設定された前記経路に従って移動した後に、前記移動体に、前記移動体座標系における前記対象物の位置情報を検出させるステップと、
     前記端末座標系における前記対象物の位置情報と、前記移動体座標系における前記対象物の位置情報とに基づいて、前記移動体座標系における前記対象物の位置を示す第2位置情報を算出するステップと、
     前記第2位置情報に基づいて、前記移動体座標系において前記対象物に向かう経路を設定するステップと、を更に含む、請求項1又は請求項2に記載の経路設定方法。
    After moving along the route set based on the first position information, causing the moving body to detect position information of the object in the moving body coordinate system;
    Calculate second position information indicating the position of the object in the mobile body coordinate system based on the position information of the target object in the terminal coordinate system and the position information of the target object in the mobile body coordinate system. step and
    3. The route setting method according to claim 1, further comprising the step of setting a route toward the object in the moving body coordinate system based on the second position information.
  6.  前記第1位置情報に基づき設定された前記経路に従って移動した後に、前記移動体に、前記移動体座標系における前記対象物の位置情報を検出させるステップと、
     前記移動体座標系における前記対象物の位置情報に基づいて、前記移動体座標系において前記対象物に向かう経路を設定するステップと、を更に含む、
     請求項1又は請求項2に記載の経路設定方法。
    After moving along the route set based on the first position information, causing the moving body to detect position information of the object in the moving body coordinate system;
    further comprising the step of setting a route toward the target object in the mobile body coordinate system based on position information of the target object in the mobile body coordinate system.
    The route setting method according to claim 1 or claim 2.
  7.  設定された前記経路に従って前記移動体を移動させる設定するステップを更に含む、請求項1又は請求項2に記載の経路設定方法。 The route setting method according to claim 1 or 2, further comprising the step of setting the mobile object to move according to the set route.
  8.  位置を移動可能な端末により、前記端末による検出の基準となる端末座標系における対象物の位置情報を検出するステップと、
     前記端末座標系と、移動体の移動の基準となる移動体座標系との座標変換を行うことで、前記端末座標系における前記対象物の位置情報から、前記移動体座標系における前記対象物の位置を示す第1位置情報を算出するステップと、
     前記第1位置情報に基づき、前記移動体座標系において前記対象物に向かう経路を設定するステップと、
     をコンピュータに実行させる、
     プログラム。
    Detecting, by a positionally movable terminal, position information of an object in a terminal coordinate system that serves as a reference for detection by the terminal;
    By performing coordinate transformation between the terminal coordinate system and the moving object coordinate system that serves as a reference for movement of the moving object, the position information of the object in the terminal coordinate system can be used to calculate the position information of the object in the moving object coordinate system. calculating first position information indicating the position;
    setting a route toward the object in the moving object coordinate system based on the first position information;
    make the computer execute
    program.
  9.  位置を移動可能な端末と、移動体とを含む経路設定システムであって、
     前記端末は、検出の基準となる端末座標系における対象物の位置情報を検出する対象物検出部を含み、
     前記移動体は、移動体の移動の基準となる移動体座標系における前記対象物の位置を示す第1位置情報に基づいて設定された、前記移動体座標系において前記対象物に向かう経路を取得する経路取得部を含み、
     前記第1位置情報は、前記端末座標系と前記移動体座標系との座標変換を行うことで、前記端末座標系における前記対象物の位置情報から算出されたものである、
     経路設定システム。
     
    A route setting system including a terminal whose position can be moved and a mobile object,
    The terminal includes an object detection unit that detects position information of the object in a terminal coordinate system that is a reference for detection,
    The moving object obtains a route toward the object in the moving object coordinate system that is set based on first position information indicating the position of the object in the moving object coordinate system that is a reference for movement of the moving object. includes a route acquisition unit to
    The first position information is calculated from the position information of the object in the terminal coordinate system by performing coordinate transformation between the terminal coordinate system and the moving object coordinate system,
    Routing system.
PCT/JP2023/021231 2022-07-12 2023-06-07 Route setting method, program, and route setting system WO2024014194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-111966 2022-07-12
JP2022111966A JP2024010564A (en) 2022-07-12 2022-07-12 Route designation method, program, and route designation system

Publications (1)

Publication Number Publication Date
WO2024014194A1 true WO2024014194A1 (en) 2024-01-18

Family

ID=89536616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021231 WO2024014194A1 (en) 2022-07-12 2023-06-07 Route setting method, program, and route setting system

Country Status (2)

Country Link
JP (1) JP2024010564A (en)
WO (1) WO2024014194A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252707A (en) * 1990-03-02 1991-11-12 Toyota Motor Corp Unmanned forklift with vision
WO2016203550A1 (en) * 2015-06-16 2016-12-22 富士機械製造株式会社 Path data creation device and path data creation method
JP2020042516A (en) * 2018-09-10 2020-03-19 日本電気株式会社 Movement path generation device, mobile device, movement path generation method, and program
JP2020042366A (en) * 2018-09-06 2020-03-19 Tis株式会社 Autonomous mobile device, server device, program, and information processing method
US20210114220A1 (en) * 2018-06-27 2021-04-22 Lg Electronics Inc. A plurality of autonomous cleaners and a controlling method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252707A (en) * 1990-03-02 1991-11-12 Toyota Motor Corp Unmanned forklift with vision
WO2016203550A1 (en) * 2015-06-16 2016-12-22 富士機械製造株式会社 Path data creation device and path data creation method
US20210114220A1 (en) * 2018-06-27 2021-04-22 Lg Electronics Inc. A plurality of autonomous cleaners and a controlling method for the same
JP2020042366A (en) * 2018-09-06 2020-03-19 Tis株式会社 Autonomous mobile device, server device, program, and information processing method
JP2020042516A (en) * 2018-09-10 2020-03-19 日本電気株式会社 Movement path generation device, mobile device, movement path generation method, and program

Also Published As

Publication number Publication date
JP2024010564A (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US10222808B2 (en) Inspection system and method for performing inspections in a storage facility
JP6816830B2 (en) A position estimation system and a mobile body equipped with the position estimation system.
JP6825712B2 (en) Mobiles, position estimators, and computer programs
US20200110410A1 (en) Device and method for processing map data used for self-position estimation, mobile body, and control system for mobile body
JPWO2019054209A1 (en) Map making system and map making device
JP7111424B2 (en) Mobile object, position estimation device, and computer program
CN111971633B (en) Position estimation system, mobile body having the position estimation system, and recording medium
US20220221304A1 (en) Method for creating a surroundings map for use in the autonomous navigation of a mobile robot
WO2024014194A1 (en) Route setting method, program, and route setting system
JP7300413B2 (en) Control device, moving body, movement control system, control method and program
JP2019179497A (en) Moving body and moving body system
JP2021160931A (en) Cargo handling system
CN112578789A (en) Moving body
JP7257431B2 (en) Mobile object control method, mobile object and program
WO2024024146A1 (en) Movement control method, program, and movement control system
US20230202817A1 (en) Control method for mobile object, mobile object, and computer-readable storage medium
US20220262132A1 (en) Control method for mobile object, mobile object, and computer-readable storage medium
WO2024004272A1 (en) Route setting method, program, and moving body
JP7415830B2 (en) unmanned vehicle
WO2024058156A1 (en) Route-setting method, program, and moving body
JP7424241B2 (en) edge detection device
US20230202815A1 (en) Control method for mobile object, mobile object, movement control system, and computer-readable storage medium
JP7179102B2 (en) Mobile object control method, mobile object and program
JP2023136224A (en) Information processing method, information processing device, and program
JP2023136221A (en) Information processing method, information processing device, and program