WO2024014186A1 - Scanning probe microscope and control method - Google Patents

Scanning probe microscope and control method Download PDF

Info

Publication number
WO2024014186A1
WO2024014186A1 PCT/JP2023/021095 JP2023021095W WO2024014186A1 WO 2024014186 A1 WO2024014186 A1 WO 2024014186A1 JP 2023021095 W JP2023021095 W JP 2023021095W WO 2024014186 A1 WO2024014186 A1 WO 2024014186A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
information
cantilever
approach
speed
Prior art date
Application number
PCT/JP2023/021095
Other languages
French (fr)
Japanese (ja)
Inventor
敬太 藤野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2024014186A1 publication Critical patent/WO2024014186A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/02Coarse scanning or positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes

Definitions

  • the present disclosure relates to a scanning probe microscope and a control method.
  • a so-called optical lever scanning probe microscope includes a cantilever having a probe, a stage on which a sample is placed, and an optical microscope.
  • the optical microscope can be moved by a user or the like independently of the cantilever and stage. A user can visually observe the position of the sample and probe using an optical microscope.
  • SPM can obtain an uneven image of the surface of a sample by moving the probe of the cantilever along the surface of the sample and detecting the deflection of the cantilever.
  • This type of SPM further includes a light irradiation section that irradiates light toward the cantilever, and a light detection section that receives reflected light from the cantilever.
  • the SPM When starting observation of the sample surface, the SPM first performs an approach operation to bring the cantilever closer to the sample.
  • the approach operation is an operation in which the probe gradually approaches the sample surface by moving the cantilever vertically downward. Further, the SPM moves the cantilever through feedback control based on a signal value indicated by a detection signal from the photodetector. Then, when the signal value reaches a preset target value, the SPM determines that the probe has approached the sample surface and stops the movement of the cantilever. The approach operation of the SPM is thus completed, and the sample surface is then observed by scanning the cantilever in the horizontal direction.
  • Patent Document 1 discloses a scanning tunneling microscope (STM) for measuring a sample.
  • STM does not have a cantilever, but includes a probe, a stage, and an optical microscope. The probe is fixed to the optical microscope. A sample is placed on the stage. Furthermore, the STM moves the stage through feedback control based on tunnel current.
  • the STM executes an approach operation to bring the probe and the sample closer together by moving the stage on which the sample is placed in the thickness direction of the sample. STM starts measuring a sample when the probe and the sample come close to each other.
  • STM increases the moving speed of the stage in order to shorten the time required for this approach operation.
  • the sample and the probe may collide because the above-mentioned feedback control is executed. Therefore, in the STM described in Patent Document 1, the distance between the sample and the probe is calculated, and a speed reduction position where the speed of the stage is reduced is determined based on the distance. The STM then moves the stage at high speed until it reaches the speed reduction position, and when the stage reaches this speed reduction position, moves the stage at low speed.
  • the SPM executes the above-mentioned feedback control in the approach operation. Therefore, strictly speaking, the cantilever will stop later than the command to stop the cantilever from the control device, and there is a risk that the probe of the cantilever will collide with the sample. Therefore, in the approach operation, it is conceivable to reduce the moving speed of the cantilever to prevent collision between the probe and the sample. However, if the cantilever is moved at a low speed, the time required for the approach operation becomes large.
  • This invention was made to solve these problems, and provides a scanning probe microscope and a control method that can perform an approach operation in a short time while reducing the risk of the cantilever coming into contact with the sample surface.
  • the goal is to provide the following.
  • the scanning probe microscope of the present disclosure includes a sample stage, a cantilever, a displacement mechanism, a detection mechanism, and an approach processing section.
  • a sample is placed on the sample stage.
  • the cantilever is scanned along the surface of the sample.
  • the displacement mechanism changes the relative position of the sample stage and the cantilever in the thickness direction of the sample.
  • the detection mechanism acquires first information that is information regarding the position of the cantilever in the thickness direction, and second information that is information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction.
  • the approach processing section controls the displacement mechanism at a predetermined approach speed so that the sample stage and the cantilever are brought close to each other.
  • the approach processing unit determines a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information.
  • the approach processing unit also controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position.
  • the control method of the present disclosure is a control method of a scanning probe microscope.
  • a scanning probe microscope includes a sample stage on which a sample is placed and a cantilever that scans along the surface of the sample. The relative positions of the sample stage and the cantilever in the thickness direction of the sample are changed.
  • the control method includes acquiring first information regarding the position of the cantilever in the thickness direction, and second information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction.
  • the control method includes changing the relative position of the sample stage and the cantilever at a predetermined approach speed so that the sample stage and the cantilever become close to each other.
  • the control method includes determining a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information. Changing the relative position includes changing the relative position such that the approach speed is from high to low at the reduced speed position.
  • the scanning probe microscope and control method of the present disclosure it is possible to perform an approach operation in a short time while reducing the risk of the cantilever coming into contact with the sample surface.
  • FIG. 1 is a diagram schematically showing the configuration of an SPM of the present disclosure.
  • 1 is a diagram illustrating an example of a hardware configuration of an information processing device.
  • FIG. 2 is a functional block diagram showing the main functions of the information processing device.
  • FIG. 3 is a diagram showing a method of determining a speed reduction position according to the first embodiment.
  • FIG. 3 is a diagram showing a method of determining a speed reduction position according to the first embodiment.
  • FIG. 1 is a diagram schematically showing the configuration of a scanning probe microscope (SPM) according to the present disclosure.
  • the scanning probe microscope is also referred to as SPM100.
  • the SPM 100 typically measures the shape of the surface of the sample S using a physical quantity acting between the probe 3 and the surface of the sample S.
  • the SPM 100 may be an atomic force microscope (AFM).
  • the physical quantity is an atomic force (attraction or repulsion).
  • the SPM 100 includes a measuring device 10, an information processing device 20, a display device 30, and an input device 40 as main components.
  • the measuring device 10 includes, as main components, an optical system 1, a cantilever 2, a fine movement mechanism 12 (scanner), a sample stage 14, an XY direction drive section 16, a Z direction drive section 18, and a feedback signal generation section. 22, a first motor 61, a second motor 62, and an optical microscope 50.
  • the first motor 61 and the second motor 62 are typically stepping motors.
  • the surface of the sample stage 14 is a placement surface 14a.
  • the sample S is placed on the placement surface 14a of the sample stage 14.
  • the thickness direction of the sample S will be referred to as the Z-axis direction
  • the directions perpendicular to the Z-axis direction will be referred to as the X-axis direction and the Y-axis direction. It is also the height direction of the SPM 100 in the Z-axis direction.
  • the sample stage 14 is placed on the fine movement mechanism 12.
  • the fine movement mechanism 12 is a moving device for changing the relative positional relationship between the sample S and the probe 3 during analysis of the sample S.
  • the fine movement mechanism 12 includes an XY scanner 12xy and a Z scanner 12z.
  • the XY scanner 12xy moves the sample stage 14 in the X-axis direction and the Y-axis direction.
  • the Z scanner 12z slightly moves the sample stage 14 in the Z-axis direction.
  • the XY scanner 12xy has a piezoelectric element that is deformed by a voltage applied from the XY direction drive unit 16.
  • the Z scanner 12z has a piezoelectric element that expands and contracts in response to a voltage applied from the Z direction drive unit 18. This piezoelectric element allows the Z scanner 12z to expand and contract. Note that the XY scanner 12xy and the Z scanner 12z are not limited to having a piezoelectric element.
  • the cantilever 2 is placed facing the sample stage 14.
  • the cantilever 2 is formed in the shape of a leaf spring, and one end thereof is supported by a holder 4. That is, the one end is a fixed end. Further, the other end of the cantilever 2 is a free end, and is arranged to face the sample S on the sample stage 14. In the example shown in FIG. 1, it is arranged above the Z-axis direction.
  • the tip of the free end of the cantilever 2 has a front surface and a back surface opposite to the front surface. The surface is the surface facing the sample S. Further, a probe 3 is arranged on the surface so as to face the sample S.
  • the cantilever 2 is scanned along the surface of the sample S.
  • a reflective member 2a that reflects light is formed on the back surface of the cantilever 2.
  • the reflective member 2a may be coated with a predetermined material (aluminum, gold, etc.), for example.
  • a physical quantity (for example, atomic force) acting between the probe 3 and the sample S causes the tip of the free end of the cantilever 2 to be displaced in the Z-axis direction.
  • An optical system 1 is provided above the cantilever 2 in the Z-axis direction to detect the amount of deflection of the cantilever 2 (that is, the amount of displacement of the tip).
  • the optical system 1 irradiates the back surface (reflection member 2a) of the cantilever 2 with laser light when measuring the sample S, and detects the laser light reflected by the reflective surface.
  • the optical system 1 includes a laser light source 6, a beam splitter 5, a reflecting mirror 7, and a photodetector 8.
  • the laser light source 6 has a laser oscillator that emits laser light.
  • the photodetector 8 has a photodiode that detects the incident laser light.
  • Laser light LA emitted from laser light source 6 is reflected by beam splitter 5 and irradiated onto reflective member 2a of cantilever 2.
  • the laser beam reflected from the back surface of the cantilever 2 is further reflected by a reflecting mirror 7 and enters a photodetector 8.
  • the photodetector 8 has a light-receiving surface that is divided into a plurality of (for example, two) parts in the Z-axis direction (displacement direction) of the cantilever 2.
  • the photodetector 8 has a light receiving surface divided into four parts in the Z-axis direction and the Y-axis direction.
  • the optical system 1 and the cantilever 2 constitute a "cantilever unit 35".
  • the optical microscope 50 is arranged above the cantilever unit 35 in the Z-axis direction. The user focuses the optical microscope 50 on the sample S to specify the observation range, and adjusts the irradiation position of the laser beam to match the reflection member 2a of the cantilever 2. Image data acquired by the optical microscope 50 is output to the information processing device 20.
  • the feedback signal generator 22 calculates the amount of deflection of the cantilever 2 by processing the detection signal provided from the photodetector 8.
  • the feedback signal generator 22 controls the position of the sample S in the Z direction so that the atomic force between the probe 3 and the sample S is constant. In the following, this control will also be referred to as "feedback control.”
  • the feedback signal generation unit 22 calculates the deviation Sd between the calculated amount of deflection of the cantilever 2 and the target value, and calculates the control amount for driving the Z scanner 12z so that the deviation Sd becomes zero. do.
  • the feedback signal generator 22 calculates a voltage value Vz for displacing the Z scanner 12z in accordance with this control amount.
  • Feedback signal generation section 22 outputs a voltage signal indicating voltage value Vz to Z-direction drive section 18 .
  • the Z-direction drive section 18 applies a voltage value Vz to the Z scanner 12z. In this way, the Z-direction drive section 18 receives the voltage value input from the feedback signal generation section 22, and applies a voltage based on the voltage value to the Z scanner 12z.
  • the information processing device 20 controls the XY direction drive unit 16 to a voltage value Vx in the X axis direction so that the sample stage 14 moves relative to the probe 3 in the X axis and Y axis directions according to preset scanning conditions. Then, a voltage value Vy in the Y-axis direction is calculated and outputted to the XY-direction drive unit 16.
  • the XY direction drive section 16 applies voltage values Vx and Vy to the XY scanner 12xy.
  • the information processing device 20 mainly controls the operation of the measuring device 10. Measurement data indicating the amount of feedback in the Z-axis direction (voltage Vz applied to the Z scanner 12z and deviation Sd) is output from the Z-direction drive unit 18 to the information processing device 20. The measurement data is transmitted at each measurement point determined at a predetermined interval in the Y-axis direction of the sample S. The information processing device 20 stores measurement data. The information processing device 20 calculates the displacement amount of the sample S in the Z-axis direction from the voltage Vz based on correlation information stored in advance. This correlation information is information indicating the relationship between the voltage Vz and the displacement amount of the sample S (sample stage 14) in the Z-axis direction corresponding to the voltage Vz.
  • the calculated displacement amount is a value that reflects a value indicating the position of the sample S in the Z-axis direction (hereinafter also referred to as "Z value").
  • the information processing device 20 performs two-dimensional or three-dimensional measurement representing the shape of the surface of the sample S by calculating the displacement amount of the sample S in the Z-axis direction at each position in the X-axis and Y-axis directions in the scanning range. Create data.
  • the measurement data created by the information processing device 20 includes a value (Z value) indicating the position in the Z-axis direction at each position on the XY plane.
  • Z value is the height of the sample S at each position.
  • the position in the Z-axis direction is represented by a Z coordinate with the origin as a reference.
  • the origin in the Z-axis direction is, for example, the position of the placement surface 14a when the sample stage 14 is at the lowest position.
  • the SPM 100 (information processing device 20) measures the surface state of the sample S based on the light reflected by the reflecting member 2a.
  • the display device 30 and the input device 40 are connected to the information processing device 20.
  • the display device 30 is composed of, for example, a liquid crystal display (LCD) panel.
  • the information processing device 20 causes the display device 30 to display information such as the shape of the surface of the sample S based on the created measurement data. Further, the information processing device 20 causes the display device 30 to display image data acquired by the optical microscope 50, an input screen to be described later, and the like.
  • the input device 40 is, for example, a keyboard or a pointing device such as a mouse, and receives commands from a user. When a touch panel is used as a user interface, input device 40 and display device 30 are integrally formed. Further, the information processing device 20 corresponds to a “control device” of the present disclosure.
  • Image data acquired by imaging with the optical microscope 50 is output to the information processing device 20.
  • the information processing device 20 may display the image data on the display device 30.
  • the user can specify the observation location by focusing the optical microscope 50 on the sample S, and can adjust the laser beam irradiation position to match the cantilever 2.
  • the cantilever 2 is arranged between the optical microscope 50 and the sample stage 14 in the Z-axis direction.
  • the cantilever unit 35 is movable in the X-axis direction, Y-axis direction, and Z-axis direction by the driving force of the first motor 61. Further, the information processing device 20 can control the first motor 61 by outputting a pulse signal to the first motor 61. Further, the information processing device 20 can specify the amount of movement of the cantilever unit 35 based on the number of pulses of the pulse signal. The amount of movement of the cantilever unit 35 is, for example, the amount of movement of the cantilever unit 35 from its initial position. Furthermore, the information processing device 20 can control the moving speed of the cantilever unit 35 (cantilever 2) by, for example, controlling the frequency of the pulse signal applied to the first motor 61. For example, as described later, the information processing device 20 can move the cantilever unit 35 (cantilever 2) at high speed or at low speed.
  • the information processing device 20 may specify a value obtained by multiplying the pitch of the screw by the number of applied pulses as the amount of movement of the cantilever unit 35.
  • the information processing device 20 can move the cantilever unit 35 by controlling the first motor 61 based on a user's command to the input device 40. For example, when placing the sample S on the sample stage 14, the user inputs a command to raise the cantilever unit 35 into the input device 40. As a result, the cantilever unit 35 rises and the space between the sample stage 14 and the cantilever 2 (probe 3) becomes larger, making it easier to place the sample S on the sample stage 14, which is convenient for the user. Improves sex.
  • the optical microscope 50 is movable in the X-axis direction, Y-axis direction, and Z-axis direction by the driving force of the second motor 62. Further, the information processing device 20 can control the second motor 62 by outputting a pulse signal to the second motor 62. Further, the information processing device 20 can specify the amount of movement of the optical microscope 50 and the position of the optical microscope 50 based on the number of pulses of the pulse signal. The amount of movement of the optical microscope 50 is, for example, the amount of movement of the optical microscope 50 from its initial position.
  • the second motor 62 has a screw that transmits power to the optical microscope 50. The information processing device 20 may specify a value obtained by multiplying the pitch of the screw by the number of applied pulses as the amount of movement of the optical microscope 50.
  • the information processing device 20 can move the optical microscope 50 by controlling the second motor 62 based on a user's command to the input device 40.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the information processing device 20.
  • the information processing device 20 includes a CPU (Central Processing Unit) 160, a ROM (Read Only Memory) 162, a RAM (Random Access Memory) 164, and an HDD (Hard Disk Drive) as main components. ) 166, a communication I/F (Interface) 168, a display I/F 170, an input I/F 172, and a motor I/F 174. Each component is interconnected by a data bus. Note that at least a portion of the hardware configuration of the information processing device 20 may be located inside the measurement device 10. Alternatively, the information processing device 20 may be configured separately from the SPM 100 and configured to communicate bidirectionally with the SPM 100.
  • the communication I/F 168 acquires information (voltage value Vz and deviation Sd) from the Z-direction drive unit 18. Further, the communication I/F 168 outputs the voltage value Vx and the voltage value Vy in the Y-axis direction to the XY-direction drive unit 16. Further, the communication I/F 168 acquires image data from the optical microscope 50.
  • Display I/F 170 is an interface for communicating with display device 30.
  • Input I/F 172 is an interface for communicating with input device 40.
  • the motor I/F 174 is an interface for outputting pulse signals to the first motor 61 and the second motor 62.
  • the ROM 162 stores programs executed by the CPU 160.
  • the RAM 164 can temporarily store data generated by executing programs in the CPU 160 and data input via the communication I/F 168. RAM 164 may function as a temporary data memory used as a work area.
  • HDD 166 is a nonvolatile storage device. Instead of the HDD 166, a semiconductor storage device such as a flash memory may be used.
  • the program stored in the ROM 162 may be stored in a non-temporary storage medium and distributed as a program product. Alternatively, the program may be provided by an information provider as a downloadable product program over the so-called Internet.
  • the information processing device 20 reads a program provided from a storage medium or the Internet.
  • the information processing device 20 stores the read program in a predetermined storage area (eg, ROM 162). By executing the program, the CPU 160 can perform image data acquisition processing, which will be described later.
  • the information processing device 20 is also referred to as a "control device” or a "control circuit.”
  • FIG. 3 is a functional block diagram showing the main functions of the information processing device 20.
  • the information processing device 20 includes a detection section 102, an approach processing section 104, and a storage section 108.
  • the first motor 61 corresponds to the "displacement mechanism" of the present disclosure.
  • the displacement mechanism changes the relative position of the sample stage 14 and the cantilever 2 (cantilever unit 35) in the Z-axis direction.
  • the approach processing by the approach processing unit 104 will be described later.
  • a detection mechanism 110 is configured by the optical microscope 50, the detection section 102, and the second motor 62.
  • the number of pulses from the second motor 62 is input to the detection unit 102.
  • the detection unit 102 acquires first information and second information based on the number of pulses of the second motor 62, as described later, and outputs the first information and second information to the approach processing unit 104.
  • the first information is information regarding the position of the cantilever 2 in the Z-axis direction.
  • the second information is information regarding the position of the sample S in the Z-axis direction.
  • the detection unit 102 can detect the amount of movement of the cantilever 2 in the Z-axis direction based on the number of pulses from the first motor 61.
  • the approach processing unit 104 controls the first motor 61 at an approach speed described below. Furthermore, the approach processing unit 104 determines the speed reduction position based on the first information and the second information. The speed reduction position is a position where the approach speed is switched from high speed to low speed. The approach processing unit 104 also controls the first motor 61 so that the approach speed changes from high to low at the speed reduction position.
  • the storage unit 108 stores a previous speed reduction position 108A, which will be described later. Furthermore, the storage unit 108 stores programs such as calculation formulas to be described later.
  • Image data Data of an image captured by the optical microscope 50 (hereinafter also referred to as "image data") is input to the detection unit 102 from the optical microscope 50.
  • the detection unit 102 may detect whether or not the image data is focused on the object, as will be described later.
  • the focal length L3 of the optical microscope 50 is constant at least during the period when the approach process is being executed.
  • the SPM 100 starts measuring the sample S when a predetermined starting condition is met.
  • the start condition includes the following first condition and second condition.
  • the first condition is a condition that is satisfied when the user performs a start operation on the input device 40.
  • the second condition is a condition that is established when the SPM 100 detects completion of placement of the sample S to be measured.
  • the cantilever unit 35 including the cantilever 2 is movable in the Z-axis direction by the user's operation.
  • the cantilever unit 35 since the cantilever unit 35 is moved upward to place the sample S on the sample stage 14, the cantilever 2 (probe 3) and the sample S may be far apart from each other after the sample is placed. Therefore, when the above-mentioned start condition is satisfied, the SPM 100 of this embodiment executes the approach process.
  • the approach process is a process of bringing the cantilever 2 close to the sample S. Approach processing is also referred to as "approach operation.” Further, in the approach process (during the approach period), the speed at which the cantilever 2 (cantilever unit 35) is brought close to the sample S is also referred to as "approach speed.”
  • the approach process is a process in which the cantilever 2 is brought close to the sample S while performing feedback control until the physical quantity (for example, atomic force) that the cantilever 2 receives from the sample S reaches a specified value.
  • the information processing device 20 outputs a stop command to the measuring device 10.
  • the specified value may be set by the user or may be a predetermined value. Note that in the approach process, instead of the physical quantity, a value corresponding to the physical quantity (for example, the amount of deflection of the cantilever 2) may be used.
  • the sample stage 14 is fixed, while the cantilever 2 is lowered. Furthermore, during the analysis of the sample S, the SPM 100 drives the sample stage 14 in the Z-axis direction by the Z-direction drive unit 18, and fixes the cantilever 2. As a modification, during analysis of the sample S, the SPM 100 may drive the cantilever 2 and fix the sample stage 14, or may drive both the cantilever 2 and the sample stage 14.
  • the information processing device 20 may increase the descending speed (approach speed) of the cantilever 2.
  • the descending speed of the cantilever 2 is too fast, even if the above-mentioned physical quantity reaches the specified value and the measurement device 10 receives a stop command from the information processing device 20, the cantilever will move later than the reception of the stop command. 2 will stop. Therefore, there is a risk that the cantilever 2 and the sample S will collide. In this case, at least one of the probe 3 and the sample S may be damaged.
  • the approach speed is slowed down to prevent collision between the cantilever 2 and the sample S, the approach process will take a lot of time.
  • the SPM 100 of this embodiment determines the speed reduction position in order to shorten the approach processing time and reduce collisions between the cantilever 2 and the sample S. Then, the SPM 100 lowers the cantilever unit 35 at a first speed to the speed reduction position, and upon reaching the speed reduction position, lowers the cantilever unit 35 at a second speed.
  • the second speed is slower than the first speed.
  • the first speed corresponds to "high speed” in the present disclosure
  • the second speed corresponds to "low speed” in the present disclosure.
  • the first speed may be the maximum speed of the cantilever 2
  • the second speed may be the minimum speed of the cantilever 2.
  • the SPM 100 lowers the cantilever 2 at high speed to the speed reduction position, the time for approach processing can be shortened. Furthermore, since the cantilever 2 is lowered at a low speed after reaching the speed reduction position, even if the stop of the cantilever 2 is delayed from the stop command of the feedback control, there is a possibility that the cantilever 2 and the sample S will collide. Can be reduced.
  • FIGS. 4 and 5 are diagrams for explaining the method of determining the speed reduction position of this embodiment.
  • FIG. 4(A) is a diagram for explaining a method of acquiring first information
  • FIG. 4(B) is a diagram for explaining a method of acquiring second information
  • FIG. 5 is a diagram for explaining a method of determining the speed reduction position based on the first information and the second information.
  • the information processing device 20 acquires image data from the optical microscope 50 while lowering the optical microscope 50.
  • the detection unit 102 of the information processing device 20 detects whether or not the target object is in focus in the image data. Then, when it is detected that the object is in focus, the detection unit 102 stores the position of the optical microscope 50 (the number of pulses of the second motor 62) at that time.
  • the information processing device 20 repeats this process twice, and recognizes the first focused position after starting the descent as information regarding the position of the cantilever 2 (first information). Then, the information processing device 20 recognizes the second focused position as information regarding the position of the sample S (second information).
  • a method is adopted in which the detection unit 102 processes image data in real time and automatically performs the detection.
  • any conventionally known method can be appropriately employed, such as a contrast method.
  • FIG. 4A is a diagram showing a state in which it is detected by a predetermined method (for example, the above-described contrast method) that the object is in focus for the first time after the optical microscope 50 starts descending.
  • the detection unit 102 acquires the number of pulses of the second motor 62 in this state as first information.
  • This first information is information regarding the position of the cantilever 2 (reflection member 2a) in the Z-axis direction.
  • the information processing device 20 executes a retraction process so that the detection light 50a from the optical microscope 50 does not hit the cantilever 2.
  • This retraction process is, for example, a process of moving the cantilever 2 in at least one of the X-axis direction and the Y-axis direction. Thereafter, the information processing device 20 lowers the optical microscope 50 until it focuses on the object again.
  • FIG. 4(B) is a diagram showing a state in which it is detected by a predetermined method that the object is in focus for the first time after executing the evacuation process.
  • the detection unit 102 acquires the number of pulses of the second motor 62 at this point as second information.
  • This second information is information regarding the position of the sample S (sample surface Sa) in the Z-axis direction.
  • the detection unit 102 (detection mechanism 110) acquires the first information and the second information based on the detection by the optical microscope 50.
  • the distance between the lens of the optical microscope 50 and the reflecting member 2a of the cantilever 2 should be the focal length L3 of the optical microscope 50.
  • the distance between the lens of the optical microscope 50 and the reflecting member 2a on the sample surface Sa should be the focal length L3 of the optical microscope 50. Since the distance L3 is constant, the distance L1 and the distance L2 are the same, as shown in FIG. 4(A).
  • the distance L1 is the distance that the optical microscope 50 has descended (see FIG. 4(B)).
  • the distance L2 is the distance from the reflecting member 2a (more precisely, the location on which the detection light of the reflecting member 2a hits) to the sample surface Sa. In other words, the distance L2 is the distance between the cantilever 2 and the sample S.
  • the approach processing unit 104 generates "first information (the number of pulses of the second motor 62 when the cantilever is in focus)" and "second information (the second information when the sample surface is in focus)".
  • the distance L2 can be calculated based on the difference value between the two motors 62 (the number of pulses of the two motors 62). For example, the approach processing unit 104 can calculate the distance L2 by subtracting the "second information" from the "first information” and converting the number of pulses into a movement amount.
  • the approach processing unit 104 determines the speed reduction position ⁇ based on the calculated distance L2. This will be explained in detail with reference to FIG.
  • the distance L4 from the reflecting member 2a to the tip 3a of the probe 3 is a fixed value determined by the type of cantilever used. Further, a certain distance from the sample surface Sa is defined as a distance L6.
  • the distance L6 is a distance so close to the sample that the physical quantity received by the cantilever 2 from the sample S may reach a specified value, and is a fixed value determined by the user depending on the properties and shape of the sample S. In other words, it is the distance between the sample and the cantilever at which it is desirable to start reducing the approach speed, for example 0.5 mm. Note that the distance L4 and the distance L6 may be changeable by the user.
  • the approach processing unit 104 calculates the distance L5 between the tip 3a of the probe and the sample surface Sa by subtracting the distance L4 from the distance L2. Furthermore, the approach processing unit 104 calculates a distance L7 for moving the cantilever at high speed by subtracting the distance L6 from the distance L5. That is, the approach processing unit 104 calculates the distance L7 using the following equation (1).
  • L7 L2-L4-L6 (1)
  • the distance L2 on the right side of equation (1) is the same as the distance L1, which is the descending distance of the optical microscope 50.
  • distance L4 and distance L6 on the right side of equation (1) are fixed values. Therefore, the total value M of distance L4 and distance L6 is also a fixed value. That is, the distance L7 can also be expressed by the following equation (2).
  • the approach processing unit 104 can calculate the distance L5 between the tip 3a of the probe and the sample surface Sa based on the first information and the second information. Furthermore, a distance L7 for moving the cantilever at high speed can be calculated from the distance L5 and a fixed value stored in advance. In other words, it is possible to determine the speed reduction position ⁇ where the approach speed of the cantilever 2 (cantilever unit 35) is reduced. Then, the approach processing unit 104 controls the first motor 61 so that the cantilever 2 and the sample S approach each other and the approach speed is reduced at the speed reduction position ⁇ .
  • the approach processing unit 104 moves the cantilever 2 located at the current position (the position of the cantilever 2 shown in FIG. 5) by the distance L7 at the first speed (high speed). After moving the distance L7, the cantilever 2 reaches the speed reduction position ⁇ , and the approach speed of the cantilever 2 is changed to the second speed (low speed). Then, the cantilever 2 is further moved until the physical quantity received from the sample S reaches a specified value. With this control, the cantilever 2 can move at high speed from the initial position to the speed reduction position ⁇ , and can move at low speed from the speed reduction position ⁇ . As a result, the SPM 100 can perform the approach operation in a short time while reducing the risk of the cantilever 2 coming into contact with the sample surface Sa.
  • the separation distance L6 between the speed reduction position ⁇ and the sample surface is a fixed value
  • the separation distance L7 from the tip 3a of the probe varies depending on the height of the cantilever 2 at any given time, and cannot be determined using conventional techniques. There wasn't. Even if the absolute value of the height of the cantilever 2 could be recognized, the distance L7 could still not be determined because the height of the surface of the sample on which it was placed was unknown.
  • the distance L7 can be determined based on the first information and second information calculated by the optical microscope 50. It should be noted that since the distance between the sample surface and the cantilever 2 is calculated, there is no need to calculate the absolute value of the height of the sample surface or the cantilever.
  • the second information is information indicating the position of the sample surface Sa in the Z-axis direction. Therefore, when the detection mechanism 110 detects the sample surface Sa, the information processing device 20 can acquire the second information.
  • the focal length L3 of the optical microscope 50 is constant at least during the period in which the approach process is being executed. Therefore, compared to a configuration in which the focal length L3 of the optical microscope 50 is variable, the processing amount of the optical microscope 50 can be reduced.
  • the reflecting member 2a of the cantilever 2 used to measure the sample can be used both as the reflecting member 2a used to obtain the first information. Therefore, compared to an SPM in which the reflective member used to measure the sample and the reflective member used to acquire the first information are separate, the SPM 100 of this embodiment can reduce the number of parts.
  • the optical microscope 50 for displaying image data in a period other than the approach period can be used both as the optical microscope 50 for acquiring the first information and the second information. Therefore, compared to an SPM in which the optical microscope for displaying the detected image and the optical microscope for acquiring the first information and the second information are separate, the scanning probe microscope of the present disclosure reduces the number of parts. can.
  • FIG. 6 is a flowchart showing the processing flow of the SPM 100 of this embodiment.
  • the flowchart of FIG. 6 starts when the above-mentioned start condition is satisfied.
  • step S102 the SPM 100 acquires first information (information regarding the position of the cantilever in the Z-axis direction) (see FIG. 4(A)).
  • step S104 the SPM 100 acquires second information (information regarding the position of the sample surface Sa in the Z-axis direction) (see FIG. 4(B)).
  • step S106 the SPM 100 determines the speed reduction position ⁇ (see FIG. 5).
  • step S108 the SPM 100 executes approach processing based on the speed reduction position ⁇ . Then, when the approach process ends, the SPM 100 starts measuring the sample S in step S110.
  • the thickness of the sample S to be measured this time may be the same or approximately the same as the thickness of the sample S measured last time.
  • the speed reduction position ⁇ is the same between the previous measurement and the current measurement. Therefore, if the user is aware that the thickness of the sample S to be measured this time is the same or approximately the same as the thickness of the sample S measured last time, the previously determined speed reduction position It is preferable that the information processing device 20 uses this as the speed reduction position ⁇ in the measurement.
  • the information processing device 20 determines the speed reduction position ⁇ , it stores it as the previous speed reduction position 108A. Furthermore, the user can select whether or not to use the previous speed reduction position 108A as the current speed reduction position.
  • FIG. 7 is a diagram showing an example of the mode setting screen. This mode setting screen is displayed in the display area 30A of the display device 30 when the above-mentioned start condition is satisfied.
  • the modes of the SPM 100 include a normal mode and a previous same mode.
  • a character image 41 in normal mode, a character image 43 in the same mode as last time, and an OK button 44 are displayed.
  • the user can select (set) a desired mode by inputting a command to the mode setting screen shown in FIG.
  • the mode is set.
  • Setting a mode is realized, for example, by storing a mode flag indicating the mode in a predetermined storage area.
  • the information processing device 20 determines the speed reduction position ⁇ through the process shown in FIG. A case where the same mode was set last time by the user will be explained.
  • the information processing device 20 stores in advance the distance by which the user raised the cantilever 2 after the end of the previous measurement (a value obtained by converting the number of pulses of the first motor into a distance). Since this distance corresponds to L5 (the current distance between the cantilever tip and the sample surface), the distance L7 can be calculated by subtracting the previously used L6 from L5.
  • the cantilever 2 can be moved based on the previously determined speed reduction position, so the process of lowering the optical microscope 50 and the process performed on image data acquired by the optical microscope 50 can be reduced. can do.
  • the sample S may have characteristics that make it impossible to focus the optical microscope 50.
  • This characteristic is a characteristic that the sample surface Sa does not have a certain degree of contrast, such as being black. In such a case, it may not be possible to focus the optical microscope 50 on the sample S, and the speed reduction position ⁇ may not be determined. Therefore, in the second embodiment, a configuration will be described in which the speed reduction position ⁇ can be determined even when the optical microscope 50 cannot be focused on the sample S.
  • the arrangement surface 14a of the second embodiment is a reflective member.
  • This reflective member is, for example, a mirror.
  • the SPM 100 can focus the optical microscope 50 on the arrangement surface 14a. Therefore, the detection mechanism 110 can acquire the position of the placement surface 14a in the Z-axis direction as second information.
  • the information processing device 20 recognizes the position of the object that the optical microscope 50 focuses on the first time after starting the descent as the position of the cantilever 2 (first information), and the second time The position of the object on which the optical microscope 50 is focused is recognized as the position of the arrangement surface 14a (second information).
  • the SPM 100 executes a predetermined process for the detection mechanism 110 to detect the position of the placement surface 14a.
  • the predetermined process of this embodiment is, for example, a process of moving the sample stage 14 a predetermined distance in a predetermined direction on the XY plane. Through this process, the sample S can be evacuated, and as a result, the detection mechanism 110 can detect the placement surface 14a (can acquire the second information). This predetermined process is also referred to as "sample S evacuation process.” Furthermore, when the placement surface 14a is detected, the SPM 100 moves the sample stage 14 so that the sample S returns to its original position.
  • the thickness of the sample S is used to determine the speed reduction position ⁇ .
  • the thickness of the sample S is input by the user, for example.
  • FIG. 8 is an example of an input screen where the thickness of the sample is input.
  • this input screen is displayed on the display area 30A of the display device 30 when the above-mentioned start condition is satisfied.
  • an input area 45 is displayed. The user inputs the thickness of the sample into the input area 45.
  • FIGS. 9 and 10 are diagrams for explaining the method of determining the speed reduction position of this embodiment. Note that FIGS. 9 and 10 show the state after the sample S evacuation process has been executed. Similarly to FIG. 4A, FIG. 9A shows that the information processing device 20 has acquired first information (information regarding the position of the cantilever 2 in the Z-axis direction). Further, FIG. 9B shows that the information processing device 20 has acquired the second information (information regarding the position of the placement surface 14a in the Z-axis direction).
  • the distance L3 (focal length of the optical microscope 50) is constant. Therefore, as shown in FIG. 9(A), the distance L11 and the distance L12 are the same.
  • the distance L11 is the distance that the optical microscope 50 has descended (see FIG. 9(B)).
  • the distance L12 is the distance from the reflecting member 2a (more precisely, the location where the detection light of the reflecting member 2a hits) to the arrangement surface 14a. In other words, the distance L12 is the distance between the cantilever 2 and the arrangement surface 14a.
  • the approach processing unit 104 determines the speed reduction position ⁇ based on the distance L12.
  • the thickness of the sample is a distance L18.
  • the thickness of the sample is an input value that is input in advance by the user on the input screen of FIG.
  • the approach processing unit 104 calculates the distance L15 by subtracting the distance L4 from the distance L12.
  • the distance L15 is the distance between the tip 3a of the probe and the arrangement surface 14a.
  • the approach processing unit 104 calculates the distance L17 by subtracting the distance L6 and the distance L18 from the distance L15. That is, the approach processing unit 104 calculates the distance L17 using the following equation (3).
  • the distance L12 on the right side of equation (3) is the same as the distance L11, which is the descending distance of the optical microscope 50. Further, the distance L4 and the distance L6 on the right side of equation (3) are the above-mentioned total value M. That is, the distance L17 can also be expressed by the following equation (4).
  • FIG. 11 is a flowchart showing the processing flow of the information processing device 20 of this embodiment.
  • steps S120 and S122 are added before step S102 in FIG. 6, and step S104 is replaced by step S124.
  • the information processing device 20 executes the evacuation process of the sample S in step S120.
  • the information processing device 20 acquires the thickness of the sample S input by the user (see FIG. 8).
  • step S102 the information processing device 20 acquires second information (the position of the sample stage 14 in the Z-axis direction) in step S124. After that, the information processing device 20 executes the process of step S106.
  • the information processing apparatus 20 of the present embodiment can process the first information and the second information even if the sample S has a characteristic that the optical microscope 50 cannot focus on the sample S. , and the thickness of the sample (distance L18), the speed reduction position ⁇ can be determined.
  • the information processing device 20 executes a saving process (predetermined process) for the sample S (step S120). Therefore, even if the sample S exists in a position that prevents the information processing device 20 from acquiring the second information, the information processing device 20 can acquire the second information.
  • the evacuation process of the sample S is a process of moving the sample stage 14 in the XY plane. Therefore, the SPM 100 can realize the evacuation process of the sample S through a relatively simple process.
  • the SPM 100 is configured to move (lower) the cantilever 2 without moving the sample stage 14 (the sample stage 14 is fixed) during approach processing.
  • a configuration may be adopted in which the cantilever 2 is not moved (the cantilever 2 is fixed) and the sample stage 14 is moved (raised).
  • the SPM 100 determines the speed reduction position ⁇ based on the distance L2 or the distance L12. Then, the SPM 100 moves (raises) the sample stage 14 at the third speed until the speed reduction position ⁇ , and from when the sample stage 14 reaches the speed reduction position ⁇ , the sample stage 14 moves at a fourth speed (slower than the third speed).
  • the sample stage 14 is moved (raised) at a speed (speed).
  • the SPM 100 may move the cantilever 2 (lower) and the sample stage 14 (raise) during the approach process.
  • the speed reduction position of the cantilever 2 (hereinafter referred to as "first speed reduction position ⁇ 1") and the speed reduction position of the sample stage 14 (hereinafter referred to as “first speed reduction position ⁇ 1") are determined based on the distance L2 or the distance L12, etc. (referred to as “second speed reduction position ⁇ 2").
  • first speed reduction position ⁇ 1 the speed reduction position of the sample stage 14
  • first speed reduction position ⁇ 1 the speed reduction position of the sample stage 14
  • second speed reduction position ⁇ 2 the speed reduction position of the sample stage 14
  • the SPM 100 moves (lowers) the cantilever 2 at the first speed until it reaches the first speed reduction position ⁇ 1, and then moves the cantilever 2 at a second speed from when it reaches the first speed reduction position ⁇ 1. to move (lower) the sample stage 14.
  • the SPM 100 moves (raises) the sample stage 14 at the third speed until the second speed reduction position ⁇ 2, and from when the sample stage 14 reaches the second speed reduction position ⁇ 2, the sample stage 14 moves (raises) at the fourth speed.
  • Move (raise) 14 That is, the first motor 61 is a displacement mechanism that changes the relative position of the sample stage 14 and the cantilever 2 in the Z-axis direction.
  • the approach speed mentioned above is the speed of change of relative position. Even an SPM employing such a configuration provides the same effects as the above-mentioned SPM.
  • the first information is the position of the reflecting member 2a of the cantilever 2 in the Z-axis direction.
  • the first information may be any other part of the cantilever 2.
  • the first information may be, for example, the position of the probe 3 in the Z-axis direction.
  • the optical microscope 50 was exemplified as the detection device that detects the first information and the second information.
  • the detection device may be any other device.
  • Other devices may be, for example, a camera or a microscope (eg, an electron microscope) associated with optical microscope 50.
  • the focal length of the optical microscope 50 is constant during the approach period.
  • the approach processing unit 104 can recognize the focal length of the optical microscope 50, and it may be variable.
  • the first information and the second information may be recognized by changing the focal length, for example. That is, the focal length of the optical microscope 50 is changed stepwise so that it becomes longer, and the focal length when the focus is first achieved is recognized as L3.
  • the focal length when the object is in focus the second time is recognized as L1+L3.
  • the information processing device 20 can acquire the first information and the second information while the optical microscope 50 is fixed. Therefore, the process of moving the optical microscope 50 can be reduced.
  • the focal length for acquiring the second information may be calculated by adding a predetermined value to the focal length when acquiring the first information. good.
  • the information processing device 20 determines whether the second information can be acquired based on the calculated new focal length. If the information processing device 20 is unable to acquire the second information due to lack of focus, the information processing device 20 acquires the second information by driving the optical microscope 50 . In the case of such a configuration, the moving distance of the optical microscope 50 can be reduced.
  • the optical microscope 50 automatically focuses was described.
  • a configuration may also be adopted in which the user manually focuses the optical microscope 50.
  • the information processing device 20 manually focuses at least one of the position of the cantilever 2 in the Z-axis direction, the position of the sample surface Sa in the Z-axis direction, and the position of the placement surface 14a in the Z-axis direction. It may also be detected.
  • the predetermined process for the detection mechanism 110 to acquire the second information is a process to evacuate the sample S by moving the sample stage 14 (FIG. 11 (See step S120, etc.).
  • the predetermined process may be any other process.
  • the predetermined process may be, for example, a process of moving the optical microscope 50 a predetermined distance in a predetermined direction on the XY plane.
  • the optical microscope 50 may be lowered until it focuses on the structure (sample stage) behind it. In this case, the SPM 100 does not need to retract the cantilever 2.
  • the speed reduction position ⁇ may be determined before the sample S having the above-mentioned characteristics is placed.
  • the information processing apparatus 20 lowers the optical microscope 50 before the sample S is placed.
  • the object that is in focus the first time after the optical microscope 50 starts descending is recognized as the position of the cantilever 2 (first information), and the object that is focused the second time is recognized as the position of the sample S (second information). information).
  • the information processing device 20 acquires the thickness of the sample S by displaying the input screen of FIG.
  • the information processing device 20 determines the speed reduction position ⁇ based on the first information, the second information, and the thickness of the sample S.
  • the information processing device 20 executes a promotion notification that promotes placing the sample S on the sample stage 14.
  • the promotion notification is, for example, a process of displaying a character image such as "Please place the sample” on the display device 30.
  • the information processing device 20 executes the approach process. According to such a configuration, the speed reduction position ⁇ can be determined without performing predetermined processing.
  • the optical microscope 50 is shown as a simplified rectangle.
  • the distance between the optical microscope 50 and the object to be detected is the distance between the lower side of the rectangle and the object to be detected.
  • this distance may be the distance between a predetermined member of the optical microscope 50 and the object to be detected.
  • the predetermined member may be, for example, an optical system (lens) included in the optical microscope 50.
  • the scanning probe microscope of the present disclosure includes a sample stage, a cantilever, a displacement mechanism, a detection mechanism, and an approach processing section.
  • a sample is placed on the sample stage.
  • the cantilever is scanned along the surface of the sample.
  • the displacement mechanism changes the relative position of the sample stage and the cantilever in the thickness direction of the sample.
  • the detection mechanism acquires first information that is information regarding the position of the cantilever in the thickness direction, and second information that is information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction.
  • the approach processing section controls the displacement mechanism at a predetermined approach speed so that the sample stage and the cantilever are brought close to each other.
  • the approach processing unit determines a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information.
  • the approach processing unit also controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position.
  • the scanning probe microscope detects not only the second information, which is the position of the sample or the position of the sample stage, but also the first information of the cantilever. Then, the scanning probe microscope can determine a speed reduction position for switching the approach speed from high speed to low speed based on the first information and the second information. Therefore, even if the cantilever is movable in the thickness direction of the sample, the lowering position can be determined appropriately, and the approach operation can be performed in a short time while reducing the risk of the cantilever coming into contact with the sample surface. .
  • the second information is information indicating the position of the surface of the sample in the thickness direction.
  • the detection mechanism can detect the second information by detecting the surface of the sample.
  • the sample stage has a placement surface on which the sample is placed.
  • the second information is information indicating the position of the placement surface in the thickness direction.
  • the approach processing unit receives input of thickness information indicating the thickness of the sample from the user.
  • the approach processing unit determines the speed reduction position based on the first information, the second information, and the thickness information.
  • the second information can be acquired even if the detection mechanism cannot detect the surface of the sample.
  • the second information indicating the position of the placement surface can be acquired by executing the predetermined process.
  • the predetermined process includes a process of moving the sample stage.
  • the second information can be acquired through a relatively simple process of moving the sample stage.
  • the detection mechanism includes an optical microscope having a constant focal length.
  • the cantilever is arranged between the optical microscope and the sample stage in the thickness direction.
  • a scanning probe microscope moves an optical microscope in the thickness direction.
  • the detection mechanism acquires first information based on the position of the optical microscope where the distance between the cantilever and the optical microscope is a focal length.
  • Second information is acquired based on the position of the optical microscope where the focal length is the distance between the sample or sample stage and the optical microscope.
  • the first information and the second information can be acquired using a microscope with a relatively simple configuration.
  • the cantilever has a reflecting member formed on the opposite side of the portion facing the sample. The displacement is made so that the physical quantity acting between the cantilever and the sample remains constant.
  • the scanning probe microscope further includes a light source that irradiates the reflective member with light.
  • a scanning probe microscope measures a sample based on light reflected from a reflecting member. The detection mechanism acquires the first information based on the position of the optical microscope where the distance between the reflecting member and the optical microscope is a focal length.
  • the reflecting member used to measure the sample and the reflecting member used to obtain the first information can be used both. Therefore, compared to a scanning probe microscope in which the reflective member used to measure the sample and the reflective member used to acquire the first information are separate, the scanning probe microscope of the present disclosure has fewer parts. can be reduced.
  • the scanning probe microscope according to any one of Items 1 to 5 further includes a storage device that stores the previously determined speed reduction position.
  • the approach processing unit controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position previously stored in the storage device.
  • the displacement mechanism can be controlled based on the previously determined speed reduction position, so it is possible to reduce the process of determining the speed reduction position.
  • the displacement mechanism can be controlled by relatively simple processing. (Section 10) In the scanning probe microscope according to any one of Items 1 to 5, the cantilever moves in the thickness direction independently of the sample stage.
  • the control method of the present disclosure is a control method of a scanning probe microscope.
  • a scanning probe microscope includes a sample stage on which a sample is placed and a cantilever that scans along the surface of the sample. The relative positions of the sample stage and the cantilever in the thickness direction of the sample are changed.
  • the control method includes acquiring first information regarding the position of the cantilever in the thickness direction, and second information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction.
  • the control method includes changing the relative position of the sample stage and the cantilever at a predetermined approach speed so that the sample stage and the cantilever become close to each other.
  • the control method includes determining a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information. Changing the relative position includes changing the relative position such that the approach speed is from high to low at the reduced speed position.
  • the scanning probe microscope detects not only the second information, which is the position of the sample or the position of the sample stage, but also the first information of the cantilever. Then, the scanning probe microscope can determine a speed reduction position for switching the approach speed from high speed to low speed based on the first information and the second information. Therefore, even if the cantilever is movable in the thickness direction of the sample, the lowering position can be determined appropriately, and the approach operation can be performed in a short time while reducing the risk of the cantilever coming into contact with the sample surface. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A detecting mechanism (110) acquires first information indicating the position of a cantilever in the Z-axis direction and second information indicating the position of a sample S in the Z-axis direction or the position of a sample stand (14) in the Z-axis direction. An approach processing part (104) determines a speed reduction position on the basis of the first information and the second information. The approach processing part (104) controls a displacement mechanism so that an approach speed changes from high speed to low speed at the speed reduction position.

Description

走査型プローブ顕微鏡、および制御方法Scanning probe microscope and control method
 本開示は、走査型プローブ顕微鏡、および制御方法に関する。 The present disclosure relates to a scanning probe microscope and a control method.
 いわゆる、光てこ方式の走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)は、探針を有するカンチレバーと、試料が配置されるステージと、光学顕微鏡とを備える。光学顕微鏡は、カンチレバーおよびステージと独立してユーザなどにより移動させることができる。ユーザは、光学顕微鏡を用いて、試料及びプローブの位置を目視できる。 A so-called optical lever scanning probe microscope (SPM) includes a cantilever having a probe, a stage on which a sample is placed, and an optical microscope. The optical microscope can be moved by a user or the like independently of the cantilever and stage. A user can visually observe the position of the sample and probe using an optical microscope.
 SPMは、カンチレバーの探針を試料の表面に沿って移動させ、カンチレバーの撓みを検出することにより、試料の表面の凹凸画像を取得できる。この種のSPMは、カンチレバーに向けて光を照射する光照射部と、カンチレバーからの反射光を受光する光検出部とをさらに備える。 SPM can obtain an uneven image of the surface of a sample by moving the probe of the cantilever along the surface of the sample and detecting the deflection of the cantilever. This type of SPM further includes a light irradiation section that irradiates light toward the cantilever, and a light detection section that receives reflected light from the cantilever.
 SPMは、試料表面の観察を開始する場合には、まず、試料にカンチレバーを近付けるアプローチ動作を実行する。アプローチ動作は、具体的には、カンチレバーを鉛直下方に移動させることにより、試料表面に対して探針を徐々に近付ける動作である。また、SPMは、光検出部からの検出信号により示される信号値に基づいたフィードバック制御により、カンチレバーを移動させる。そして、SPMは、該信号値が予め設定された目標値に到達した場合に、探針が試料表面に近接したと判断し、カンチレバーの移動を停止させる。SPMは、これによりアプローチ動作が終了し、その後、カンチレバーを水平方向に走査させることにより試料表面の観察を行う。 When starting observation of the sample surface, the SPM first performs an approach operation to bring the cantilever closer to the sample. Specifically, the approach operation is an operation in which the probe gradually approaches the sample surface by moving the cantilever vertically downward. Further, the SPM moves the cantilever through feedback control based on a signal value indicated by a detection signal from the photodetector. Then, when the signal value reaches a preset target value, the SPM determines that the probe has approached the sample surface and stops the movement of the cantilever. The approach operation of the SPM is thus completed, and the sample surface is then observed by scanning the cantilever in the horizontal direction.
 また、特許第2909828号公報(特許文献1)には、試料を測定する走査型トンネル顕微鏡(STM:Scanning Tunneling Microscope)が開示されている。STMは、カンチレバーを有さずに、探針と、ステージと、光学顕微鏡とを備える。探針は光学顕微鏡に固定されている。ステージには、試料が配置される。また、STMは、トンネル電流に基づいたフィードバック制御により、ステージを移動する。 Further, Japanese Patent No. 2909828 (Patent Document 1) discloses a scanning tunneling microscope (STM) for measuring a sample. STM does not have a cantilever, but includes a probe, a stage, and an optical microscope. The probe is fixed to the optical microscope. A sample is placed on the stage. Furthermore, the STM moves the stage through feedback control based on tunnel current.
 STMは、試料表面の観察を開始する場合には、試料が配置されたステージを該試料の厚み方向に移動させることにより、探針と該試料とを近接させるアプローチ動作を実行する。STMは、探針と試料とが近接した場合に、該試料の測定を開始する。 When starting observation of the sample surface, the STM executes an approach operation to bring the probe and the sample closer together by moving the stage on which the sample is placed in the thickness direction of the sample. STM starts measuring a sample when the probe and the sample come close to each other.
 STMは、このアプローチ動作に要する時間を短縮するために、ステージの移動速度を高速にする。しかしながら、ステージの移動速度を高速にすると、上述のフィードバック制御を実行していることから試料と探針とが衝突する場合がある。そこで、特許文献1に記載のSTMにおいては、試料と探針との距離を算出し、該距離に基づいて、ステージの速度を低下させる速度低下位置を決定する。そして、STMは、速度低下位置までは、高速でステージを移動させ、ステージがこの速度低下位置に到達すると、低速でステージを移動させる。 STM increases the moving speed of the stage in order to shorten the time required for this approach operation. However, when the moving speed of the stage is increased, the sample and the probe may collide because the above-mentioned feedback control is executed. Therefore, in the STM described in Patent Document 1, the distance between the sample and the probe is calculated, and a speed reduction position where the speed of the stage is reduced is determined based on the distance. The STM then moves the stage at high speed until it reaches the speed reduction position, and when the stage reaches this speed reduction position, moves the stage at low speed.
特許第2909828号公報Patent No. 2909828
 SPMは、アプローチ動作においては、上述のフィードバック制御を実行する。したがって、厳密には制御装置によるカンチレバーの停止の指令よりも遅れて、カンチレバーが停止することになり、カンチレバーの探針が試料と衝突する危険性がある。そこで、アプローチ動作においては、カンチレバーの移動速度を低速度にして、探針と試料との衝突を防止することが考えられる。しかしながら、カンチレバーの移動速度を低速度にすると、アプローチ動作に要する時間が多大になってしまう。 The SPM executes the above-mentioned feedback control in the approach operation. Therefore, strictly speaking, the cantilever will stop later than the command to stop the cantilever from the control device, and there is a risk that the probe of the cantilever will collide with the sample. Therefore, in the approach operation, it is conceivable to reduce the moving speed of the cantilever to prevent collision between the probe and the sample. However, if the cantilever is moved at a low speed, the time required for the approach operation becomes large.
 また、特許文献1に記載の速度低下位置を決定するSTMの技術をSPMに適用することが考えられる。しかしながら、上述のように、該STMにおいては、探針が光学顕微鏡に対して固定されている。一方、SPMは、上述のように、光学顕微鏡は、カンチレバーおよびステージと独立して移動される。よって、探針が光学顕微鏡に対して固定されているSTMの技術をSPMに適用することはできない。 Furthermore, it is conceivable to apply the STM technology for determining the speed reduction position described in Patent Document 1 to SPM. However, as mentioned above, in the STM, the probe is fixed relative to the optical microscope. On the other hand, the SPM optical microscope, as described above, is moved independently of the cantilever and stage. Therefore, the STM technique in which the probe is fixed relative to the optical microscope cannot be applied to SPM.
 この発明はこのような課題を解決するためになされたものであって、カンチレバーが試料表面に接触する危険性を低減しつつ短時間でアプローチ動作を行うことができる走査型プローブ顕微鏡、および制御方法を提供することである。 This invention was made to solve these problems, and provides a scanning probe microscope and a control method that can perform an approach operation in a short time while reducing the risk of the cantilever coming into contact with the sample surface. The goal is to provide the following.
 本開示の走査型プローブ顕微鏡は、試料台と、カンチレバーと、変位機構と、検出機構と、アプローチ処理部とを備える。試料台は、試料が配置される。カンチレバーは、試料の表面に沿って走査される。変位機構は、試料台とカンチレバーとの試料の厚み方向における相対位置を変更する。検出機構は、厚み方向におけるカンチレバーの位置に関する情報である第1情報と、厚み方向における試料の位置または厚み方向における試料台の位置に関する情報である第2情報とを取得する。アプローチ処理部は、試料台とカンチレバーとが近接するように、所定のアプローチ速度で変位機構を制御する。アプローチ処理部は、第1情報と第2情報とに基づいて、アプローチ速度を高速から低速に切り替える速度低下位置を決定する。また、アプローチ処理部は、速度低下位置でアプローチ速度が高速から低速になるように、変位機構を制御する。 The scanning probe microscope of the present disclosure includes a sample stage, a cantilever, a displacement mechanism, a detection mechanism, and an approach processing section. A sample is placed on the sample stage. The cantilever is scanned along the surface of the sample. The displacement mechanism changes the relative position of the sample stage and the cantilever in the thickness direction of the sample. The detection mechanism acquires first information that is information regarding the position of the cantilever in the thickness direction, and second information that is information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction. The approach processing section controls the displacement mechanism at a predetermined approach speed so that the sample stage and the cantilever are brought close to each other. The approach processing unit determines a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information. The approach processing unit also controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position.
 本開示の制御方法は、走査型プローブ顕微鏡の制御方法である。走査型プローブ顕微鏡は、試料が配置される試料台と、試料の表面に沿って走査されるカンチレバーとを備える。試料台とカンチレバーとの試料の厚み方向における相対位置は変更される。制御方法は、厚み方向におけるカンチレバーの位置に関する第1情報と、厚み方向における試料の位置または厚み方向における試料台の位置に関する第2情報とを取得することを備える。制御方法は、試料台とカンチレバーとが近接するように、所定のアプローチ速度で相対位置を変更することを備える。制御方法は、第1情報と第2情報とに基づいて、アプローチ速度を高速から低速に切り替える速度低下位置を決定することを備える。相対位置を変更することは、速度低下位置でアプローチ速度が高速から低速になるように、相対位置を変更することを含む。 The control method of the present disclosure is a control method of a scanning probe microscope. A scanning probe microscope includes a sample stage on which a sample is placed and a cantilever that scans along the surface of the sample. The relative positions of the sample stage and the cantilever in the thickness direction of the sample are changed. The control method includes acquiring first information regarding the position of the cantilever in the thickness direction, and second information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction. The control method includes changing the relative position of the sample stage and the cantilever at a predetermined approach speed so that the sample stage and the cantilever become close to each other. The control method includes determining a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information. Changing the relative position includes changing the relative position such that the approach speed is from high to low at the reduced speed position.
 本開示の走査型プローブ顕微鏡、および制御方法によればカンチレバーが試料表面に接触する危険性を低減しつつ短時間でアプローチ動作を行うことができる。 According to the scanning probe microscope and control method of the present disclosure, it is possible to perform an approach operation in a short time while reducing the risk of the cantilever coming into contact with the sample surface.
本開示のSPMの構成を概略的に示す図である。1 is a diagram schematically showing the configuration of an SPM of the present disclosure. 情報処理装置のハードウェア構成例を示す図である。1 is a diagram illustrating an example of a hardware configuration of an information processing device. 情報処理装置の主な機能を示す機能ブロック図である。FIG. 2 is a functional block diagram showing the main functions of the information processing device. 第1実施形態の速度低下位置の決定の手法を示す図である。FIG. 3 is a diagram showing a method of determining a speed reduction position according to the first embodiment. 第1実施形態の速度低下位置の決定の手法を示す図である。FIG. 3 is a diagram showing a method of determining a speed reduction position according to the first embodiment. 第1実施形態のSPMの処理の流れを示すフローチャートである。2 is a flowchart showing the flow of SPM processing according to the first embodiment. 第1実施形態のモード設定画面の一例示す図である。It is a figure showing an example of a mode setting screen of a 1st embodiment. 入力画面の一例である。This is an example of an input screen. 第2実施形態の速度低下位置の決定の手法を示す図である。It is a figure which shows the method of determining a speed reduction position of 2nd Embodiment. 第2実施形態の速度低下位置の決定の手法を示す図である。It is a figure which shows the method of determining a speed reduction position of 2nd Embodiment. 第2実施形態のSPMの処理の流れを示すフローチャートである。7 is a flowchart showing the flow of SPM processing according to the second embodiment.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the same or corresponding parts in the figures are denoted by the same reference numerals, and the description thereof will not be repeated.
 <第1実施形態>
 [構成例]
 図1は、本開示に係る走査型プローブ顕微鏡(SPM:Scanning Probe Microscope)の構成を概略的に示す図である。該走査型プローブ顕微鏡は、SPM100とも称される。SPM100は、代表的には、探針3と試料Sの表面との間に働く物理量を利用して試料Sの表面の形状を測定する。SPM100は、原子間力顕微鏡(AFM:Atomic Force Microscope)としてもよい。この場合には、物理量は、原子間力(引力または斥力)である。
<First embodiment>
[Configuration example]
FIG. 1 is a diagram schematically showing the configuration of a scanning probe microscope (SPM) according to the present disclosure. The scanning probe microscope is also referred to as SPM100. The SPM 100 typically measures the shape of the surface of the sample S using a physical quantity acting between the probe 3 and the surface of the sample S. The SPM 100 may be an atomic force microscope (AFM). In this case, the physical quantity is an atomic force (attraction or repulsion).
 図1に示すように、SPM100は、主たる構成要素として、測定装置10と、情報処理装置20と、表示装置30と、入力装置40とを備える。測定装置10は、主たる構成要素として、光学系1と、カンチレバー2と、微動機構12(スキャナ)と、試料台14と、XY方向駆動部16と、Z方向駆動部18と、フィードバック信号発生部22と、第1モータ61と、第2モータ62と、光学顕微鏡50とを有する。本実施形態においては、第1モータ61および第2モータ62は、典型的には、ステッピングモータである。 As shown in FIG. 1, the SPM 100 includes a measuring device 10, an information processing device 20, a display device 30, and an input device 40 as main components. The measuring device 10 includes, as main components, an optical system 1, a cantilever 2, a fine movement mechanism 12 (scanner), a sample stage 14, an XY direction drive section 16, a Z direction drive section 18, and a feedback signal generation section. 22, a first motor 61, a second motor 62, and an optical microscope 50. In this embodiment, the first motor 61 and the second motor 62 are typically stepping motors.
 試料台14の表面は、配置面14aとなっている。試料Sは、試料台14の配置面14aに配置される。以下では、試料Sの厚み方向をZ軸方向とし、Z軸方向に直交する方向をX軸方向およびY軸方向とする。また、Z軸方向のSPM100の高さ方向でもある。 The surface of the sample stage 14 is a placement surface 14a. The sample S is placed on the placement surface 14a of the sample stage 14. Hereinafter, the thickness direction of the sample S will be referred to as the Z-axis direction, and the directions perpendicular to the Z-axis direction will be referred to as the X-axis direction and the Y-axis direction. It is also the height direction of the SPM 100 in the Z-axis direction.
 試料台14は、微動機構12上に配置される。微動機構12は、試料Sの分析中において、試料Sと探針3との相対的な位置関係を変化させるための移動装置である。微動機構12は、XYスキャナ12xyと、Zスキャナ12zとを有する。XYスキャナ12xyは、試料台14を、X軸方向およびY軸方向に移動させる。Zスキャナ12zは、試料台14をZ軸方向に微動させる。XYスキャナ12xyは、XY方向駆動部16から印加される電圧によって変形する圧電素子を有する。Zスキャナ12zは、Z方向駆動部18から印加される電圧によって伸縮する圧電素子を有する。この圧電素子により、Zスキャナ12zは伸縮する。なお、XYスキャナ12xyおよびZスキャナ12zは、圧電素子を有する構成に限定されない。 The sample stage 14 is placed on the fine movement mechanism 12. The fine movement mechanism 12 is a moving device for changing the relative positional relationship between the sample S and the probe 3 during analysis of the sample S. The fine movement mechanism 12 includes an XY scanner 12xy and a Z scanner 12z. The XY scanner 12xy moves the sample stage 14 in the X-axis direction and the Y-axis direction. The Z scanner 12z slightly moves the sample stage 14 in the Z-axis direction. The XY scanner 12xy has a piezoelectric element that is deformed by a voltage applied from the XY direction drive unit 16. The Z scanner 12z has a piezoelectric element that expands and contracts in response to a voltage applied from the Z direction drive unit 18. This piezoelectric element allows the Z scanner 12z to expand and contract. Note that the XY scanner 12xy and the Z scanner 12z are not limited to having a piezoelectric element.
 カンチレバー2は、試料台14に対向して配置される。カンチレバー2は、板ばね状に形成されており、その一方端がホルダ4によって支持されている。つまり、該一方端は、固定端となっている。また、カンチレバー2の他方端は自由端であり、試料台14上の試料Sに対向するように配置される。図1に示した例では、Z軸方向の上方に配置されている。カンチレバー2の自由端の先端部は、表面と、該表面と反対側の裏面とを有する。表面は、試料Sと対向する面である。また、表面には、試料Sに対向するように探針3が配置されている。試料Sの分析中において、カンチレバー2は、試料Sの表面に沿って走査される。 The cantilever 2 is placed facing the sample stage 14. The cantilever 2 is formed in the shape of a leaf spring, and one end thereof is supported by a holder 4. That is, the one end is a fixed end. Further, the other end of the cantilever 2 is a free end, and is arranged to face the sample S on the sample stage 14. In the example shown in FIG. 1, it is arranged above the Z-axis direction. The tip of the free end of the cantilever 2 has a front surface and a back surface opposite to the front surface. The surface is the surface facing the sample S. Further, a probe 3 is arranged on the surface so as to face the sample S. During analysis of the sample S, the cantilever 2 is scanned along the surface of the sample S.
 また、カンチレバー2の裏面には、光を反射する反射部材2aが形成されている。反射部材2aは、たとえば、所定の素材(アルミニウムまたは金など)によりコーティングされていてもよい。探針3と試料Sとの間に働く物理量(たとえば、原子間力)によって、カンチレバー2の自由端の先端部がZ軸方向に変位する。 Furthermore, a reflective member 2a that reflects light is formed on the back surface of the cantilever 2. The reflective member 2a may be coated with a predetermined material (aluminum, gold, etc.), for example. A physical quantity (for example, atomic force) acting between the probe 3 and the sample S causes the tip of the free end of the cantilever 2 to be displaced in the Z-axis direction.
 カンチレバー2のZ軸方向の上方には、カンチレバー2の撓み量(すなわち、先端部の変位量)を検出するための光学系1が設けられている。光学系1は、試料Sの測定時にレーザ光をカンチレバー2の裏面(反射部材2a)に照射し、当該反射面で反射されたレーザ光を検出する。具体的には、光学系1は、レーザ光源6と、ビームスプリッタ5と、反射鏡7と、光検出器8とを有する。 An optical system 1 is provided above the cantilever 2 in the Z-axis direction to detect the amount of deflection of the cantilever 2 (that is, the amount of displacement of the tip). The optical system 1 irradiates the back surface (reflection member 2a) of the cantilever 2 with laser light when measuring the sample S, and detects the laser light reflected by the reflective surface. Specifically, the optical system 1 includes a laser light source 6, a beam splitter 5, a reflecting mirror 7, and a photodetector 8.
 レーザ光源6は、レーザ光を発射するレーザ発振器を有する。光検出器8は、入射されたレーザ光を検出するフォトダイオードを有する。レーザ光源6から発射されたレーザ光LAは、ビームスプリッタ5で反射され、カンチレバー2の反射部材2aに照射される。カンチレバー2の裏面で反射されたレーザ光は、さらに反射鏡7によって反射されて光検出器8に入射する。 The laser light source 6 has a laser oscillator that emits laser light. The photodetector 8 has a photodiode that detects the incident laser light. Laser light LA emitted from laser light source 6 is reflected by beam splitter 5 and irradiated onto reflective member 2a of cantilever 2. The laser beam reflected from the back surface of the cantilever 2 is further reflected by a reflecting mirror 7 and enters a photodetector 8.
 光検出器8は、カンチレバー2のZ軸方向(変位方向)に複数(たとえば、2つ)に分割された受光面を有する。あるいは、光検出器8は、Z軸方向およびY軸方向に4分割された受光面を有する。カンチレバー2の先端部がZ軸方向に変位すると、複数の受光面に照射される光量の割合が変化することから、その複数の受光光量に基づいて、カンチレバー2の撓み量(変位量)を検出することができる。 The photodetector 8 has a light-receiving surface that is divided into a plurality of (for example, two) parts in the Z-axis direction (displacement direction) of the cantilever 2. Alternatively, the photodetector 8 has a light receiving surface divided into four parts in the Z-axis direction and the Y-axis direction. When the tip of the cantilever 2 is displaced in the Z-axis direction, the ratio of the amount of light irradiated to the plurality of light receiving surfaces changes, so the amount of deflection (amount of displacement) of the cantilever 2 is detected based on the amount of light received by the plurality of light receiving surfaces. can do.
 また、光学系1と、カンチレバー2とは「カンチレバーユニット35」を構成する。光学顕微鏡50は、Z軸方向においてカンチレバーユニット35の上方に配置される。ユーザは、光学顕微鏡50の焦点を試料Sに合わせて観察範囲の特定を行ったり、カンチレバー2の反射部材2aに合わせてレーザ光の照射位置の調整を行ったりする。光学顕微鏡50によって取得した画像データは、情報処理装置20に出力される。 Further, the optical system 1 and the cantilever 2 constitute a "cantilever unit 35". The optical microscope 50 is arranged above the cantilever unit 35 in the Z-axis direction. The user focuses the optical microscope 50 on the sample S to specify the observation range, and adjusts the irradiation position of the laser beam to match the reflection member 2a of the cantilever 2. Image data acquired by the optical microscope 50 is output to the information processing device 20.
 フィードバック信号発生部22は、光検出器8から与えられる検出信号を演算処理することによって、カンチレバー2の撓み量を算出する。フィードバック信号発生部22は、探針3と試料Sとの間の原子間力が一定になるように試料SのZ方向位置を制御する。以下では、この制御は、「フィードバック制御」とも称される。具体的には、フィードバック信号発生部22は、算出したカンチレバー2の撓み量と目標値との偏差Sdを算出し、偏差SdがゼロになるようにZスキャナ12zを駆動するための制御量を算出する。フィードバック信号発生部22は、この制御量に対応してZスキャナ12zを変位させるための電圧値Vzを算出する。フィードバック信号発生部22は、電圧値Vzを示す電圧信号をZ方向駆動部18に出力する。Z方向駆動部18は、電圧値VzをZスキャナ12zに印加する。このように、Z方向駆動部18は、フィードバック信号発生部22からの電圧値の入力を受付け、該電圧値に基づいた電圧をZスキャナ12zに印加する。 The feedback signal generator 22 calculates the amount of deflection of the cantilever 2 by processing the detection signal provided from the photodetector 8. The feedback signal generator 22 controls the position of the sample S in the Z direction so that the atomic force between the probe 3 and the sample S is constant. In the following, this control will also be referred to as "feedback control." Specifically, the feedback signal generation unit 22 calculates the deviation Sd between the calculated amount of deflection of the cantilever 2 and the target value, and calculates the control amount for driving the Z scanner 12z so that the deviation Sd becomes zero. do. The feedback signal generator 22 calculates a voltage value Vz for displacing the Z scanner 12z in accordance with this control amount. Feedback signal generation section 22 outputs a voltage signal indicating voltage value Vz to Z-direction drive section 18 . The Z-direction drive section 18 applies a voltage value Vz to the Z scanner 12z. In this way, the Z-direction drive section 18 receives the voltage value input from the feedback signal generation section 22, and applies a voltage based on the voltage value to the Z scanner 12z.
 情報処理装置20は、予め設定された走査条件に従って、試料台14が探針3に対してX軸およびY軸方向に相対移動するように、XY方向駆動部16をX軸方向の電圧値VxおよびY軸方向の電圧値Vyを算出し、XY方向駆動部16に出力する。XY方向駆動部16は、電圧値VxおよびVyをXYスキャナ12xyに印加する。 The information processing device 20 controls the XY direction drive unit 16 to a voltage value Vx in the X axis direction so that the sample stage 14 moves relative to the probe 3 in the X axis and Y axis directions according to preset scanning conditions. Then, a voltage value Vy in the Y-axis direction is calculated and outputted to the XY-direction drive unit 16. The XY direction drive section 16 applies voltage values Vx and Vy to the XY scanner 12xy.
 情報処理装置20は、主として測定装置10の動作を制御する。Z軸方向のフィードバック量(Zスキャナ12zへの印加電圧Vzおよび偏差Sd)を示す測定データはZ方向駆動部18から情報処理装置20に出力される。測定データは、試料SのY軸方向において、所定の間隔毎に定められている測定点毎に送信される。情報処理装置20は、測定データを記憶する。情報処理装置20は、予め記憶されている相関情報に基づいて、電圧Vzから試料SのZ軸方向の変位量を算出する。この相関情報は、電圧Vzと該電圧Vzに対応した試料S(試料台14)のZ軸方向の変位量との関係を示す情報である。 The information processing device 20 mainly controls the operation of the measuring device 10. Measurement data indicating the amount of feedback in the Z-axis direction (voltage Vz applied to the Z scanner 12z and deviation Sd) is output from the Z-direction drive unit 18 to the information processing device 20. The measurement data is transmitted at each measurement point determined at a predetermined interval in the Y-axis direction of the sample S. The information processing device 20 stores measurement data. The information processing device 20 calculates the displacement amount of the sample S in the Z-axis direction from the voltage Vz based on correlation information stored in advance. This correlation information is information indicating the relationship between the voltage Vz and the displacement amount of the sample S (sample stage 14) in the Z-axis direction corresponding to the voltage Vz.
 算出された変位量は、試料SのZ軸方向の位置を示す値(以下、「Z値」とも称する)を反映した値である。情報処理装置20は、走査範囲におけるX軸およびY軸方向の各位置において、試料SのZ軸方向の変位量を算出することにより、試料Sの表面の形状を表す2次元または3次元の測定データを作成する。 The calculated displacement amount is a value that reflects a value indicating the position of the sample S in the Z-axis direction (hereinafter also referred to as "Z value"). The information processing device 20 performs two-dimensional or three-dimensional measurement representing the shape of the surface of the sample S by calculating the displacement amount of the sample S in the Z-axis direction at each position in the X-axis and Y-axis directions in the scanning range. Create data.
 情報処理装置20により作成された測定データは、XY平面上の各位置におけるZ軸方向の位置を示す値(Z値)とを含んでいる。なお、Z値は、試料Sの各位置における高さである。また、たとえば、Z軸方向の位置は、原点を基準としたZ座標により表される。該Z軸方向の原点は、たとえば、試料台14が最下位位置に存在する場合の配置面14aの位置とされる。このように、SPM100(情報処理装置20)は、反射部材2aにおける光の反射光に基づいて試料Sの表面状態を測定する。 The measurement data created by the information processing device 20 includes a value (Z value) indicating the position in the Z-axis direction at each position on the XY plane. Note that the Z value is the height of the sample S at each position. Further, for example, the position in the Z-axis direction is represented by a Z coordinate with the origin as a reference. The origin in the Z-axis direction is, for example, the position of the placement surface 14a when the sample stage 14 is at the lowest position. In this way, the SPM 100 (information processing device 20) measures the surface state of the sample S based on the light reflected by the reflecting member 2a.
 表示装置30および入力装置40は情報処理装置20に接続されている。表示装置30は、たとえば液晶(LCD:Liquid Crystal Display)パネルで構成される。情報処理装置20は、作成した測定データに基づいて試料Sの表面の形状などの情報を表示装置30に表示させる。また、情報処理装置20は、光学顕微鏡50により取得した画像データ、および後述する入力画面などを表示装置30に表示させる。また、入力装置40は、たとえばキーボードあるいはマウスなどのポインティングデバイスであり、ユーザからの指令を受け付ける。ユーザインターフェースとしてタッチパネルが用いられる場合には、入力装置40と表示装置30とが一体的に形成される。また、情報処理装置20は、本開示の「制御装置」に対応する。 The display device 30 and the input device 40 are connected to the information processing device 20. The display device 30 is composed of, for example, a liquid crystal display (LCD) panel. The information processing device 20 causes the display device 30 to display information such as the shape of the surface of the sample S based on the created measurement data. Further, the information processing device 20 causes the display device 30 to display image data acquired by the optical microscope 50, an input screen to be described later, and the like. Further, the input device 40 is, for example, a keyboard or a pointing device such as a mouse, and receives commands from a user. When a touch panel is used as a user interface, input device 40 and display device 30 are integrally formed. Further, the information processing device 20 corresponds to a “control device” of the present disclosure.
 光学顕微鏡50が撮像することにより取得した画像データは、情報処理装置20に出力される。情報処理装置20は、該画像データを表示装置30に表示させるようにしてもよい。 Image data acquired by imaging with the optical microscope 50 is output to the information processing device 20. The information processing device 20 may display the image data on the display device 30.
 ユーザは、光学顕微鏡50の焦点を試料Sに合わせて観察場所の特定を行ったり、カンチレバー2に合わせて、レーザ光の照射位置を調整することができる。カンチレバー2は、Z軸方向において、光学顕微鏡50と、試料台14との間に配置される。 The user can specify the observation location by focusing the optical microscope 50 on the sample S, and can adjust the laser beam irradiation position to match the cantilever 2. The cantilever 2 is arranged between the optical microscope 50 and the sample stage 14 in the Z-axis direction.
 カンチレバーユニット35は、第1モータ61の駆動力によりX軸方向、Y軸方向、Z軸方向に移動可能である。また、情報処理装置20は、第1モータ61に対してパルス信号を出力することにより第1モータ61を制御可能である。さらに、情報処理装置20は、該パルス信号のパルス数に基づいてカンチレバーユニット35の移動量を特定することができる。カンチレバーユニット35の移動量は、たとえば、カンチレバーユニット35の初期位置からの移動量である。また、情報処理装置20は、第1モータ61に付与するパルス信号の周波数の制御などにより、カンチレバーユニット35(カンチレバー2)の移動速度を制御することができる。たとえば、後述するように、情報処理装置20は、カンチレバーユニット35(カンチレバー2)を高速で移動させたり、低速で移動させたりすることができる。 The cantilever unit 35 is movable in the X-axis direction, Y-axis direction, and Z-axis direction by the driving force of the first motor 61. Further, the information processing device 20 can control the first motor 61 by outputting a pulse signal to the first motor 61. Further, the information processing device 20 can specify the amount of movement of the cantilever unit 35 based on the number of pulses of the pulse signal. The amount of movement of the cantilever unit 35 is, for example, the amount of movement of the cantilever unit 35 from its initial position. Furthermore, the information processing device 20 can control the moving speed of the cantilever unit 35 (cantilever 2) by, for example, controlling the frequency of the pulse signal applied to the first motor 61. For example, as described later, the information processing device 20 can move the cantilever unit 35 (cantilever 2) at high speed or at low speed.
 なお、第1モータ61は、カンチレバーユニット35に対して駆動力を伝達するネジを有する。情報処理装置20は、印可したパルス数を該ネジのピッチに乗算した値を、カンチレバーユニット35の移動量として特定してもよい。 Note that the first motor 61 has a screw that transmits driving force to the cantilever unit 35. The information processing device 20 may specify a value obtained by multiplying the pitch of the screw by the number of applied pulses as the amount of movement of the cantilever unit 35.
 また、情報処理装置20は、ユーザによる入力装置40への指令に基づいて第1モータ61を制御することによりカンチレバーユニット35を移動させることができる。たとえば、ユーザは、試料Sを試料台14に配置させる場合において、カンチレバーユニット35を上昇させるための指令を入力装置40に入力する。これにより、カンチレバーユニット35が上昇して試料台14とカンチレバー2(探針3)との間の空間が大きくなることで、試料Sを試料台14に配置する作業が容易になり、ユーザの利便性が向上する。 Furthermore, the information processing device 20 can move the cantilever unit 35 by controlling the first motor 61 based on a user's command to the input device 40. For example, when placing the sample S on the sample stage 14, the user inputs a command to raise the cantilever unit 35 into the input device 40. As a result, the cantilever unit 35 rises and the space between the sample stage 14 and the cantilever 2 (probe 3) becomes larger, making it easier to place the sample S on the sample stage 14, which is convenient for the user. Improves sex.
 また、光学顕微鏡50は、第2モータ62の駆動力によりX軸方向、Y軸方向、Z軸方向に移動可能である。また、情報処理装置20は、第2モータ62に対してパルス信号を出力することにより第2モータ62を制御可能である。さらに、情報処理装置20は、該パルス信号のパルス数に基づいて光学顕微鏡50の移動量、および光学顕微鏡50の位置を特定することができる。光学顕微鏡50の移動量は、たとえば、光学顕微鏡50の初期位置からの移動量である。なお、第2モータ62は、光学顕微鏡50に対して動力を伝達するネジを有する。情報処理装置20は、該ネジのピッチに印可したパルス数を乗算した値を、光学顕微鏡50の移動量として特定してもよい。 Furthermore, the optical microscope 50 is movable in the X-axis direction, Y-axis direction, and Z-axis direction by the driving force of the second motor 62. Further, the information processing device 20 can control the second motor 62 by outputting a pulse signal to the second motor 62. Further, the information processing device 20 can specify the amount of movement of the optical microscope 50 and the position of the optical microscope 50 based on the number of pulses of the pulse signal. The amount of movement of the optical microscope 50 is, for example, the amount of movement of the optical microscope 50 from its initial position. Note that the second motor 62 has a screw that transmits power to the optical microscope 50. The information processing device 20 may specify a value obtained by multiplying the pitch of the screw by the number of applied pulses as the amount of movement of the optical microscope 50.
 また、情報処理装置20は、ユーザの入力装置40への指令に基づいて、第2モータ62を制御することにより光学顕微鏡50を移動させることができる。 Furthermore, the information processing device 20 can move the optical microscope 50 by controlling the second motor 62 based on a user's command to the input device 40.
 [情報処理装置のハードウェア構成]
 図2は、情報処理装置20のハードウェア構成例を示す図である。図2を参照して、情報処理装置20は、主たる構成要素として、CPU(Central Processing Unit)160と、ROM(Read Only Memory)162と、RAM(Random Access Memory)164と、HDD(Hard Disk Drive)166と、通信I/F(Interface)168と、表示I/F170と、入力I/F172と、モータI/F174とを有する。各構成要素はデータバスによって相互に接続されている。なお、情報処理装置20のハードウェア構成のうち少なくとも一部分は、測定装置10の内部にあってもよい。あるいは、情報処理装置20は、SPM100とは別体として構成し、SPM100との間で双方向に通信を行なうように構成してもよい。
[Hardware configuration of information processing device]
FIG. 2 is a diagram showing an example of the hardware configuration of the information processing device 20. As shown in FIG. Referring to FIG. 2, the information processing device 20 includes a CPU (Central Processing Unit) 160, a ROM (Read Only Memory) 162, a RAM (Random Access Memory) 164, and an HDD (Hard Disk Drive) as main components. ) 166, a communication I/F (Interface) 168, a display I/F 170, an input I/F 172, and a motor I/F 174. Each component is interconnected by a data bus. Note that at least a portion of the hardware configuration of the information processing device 20 may be located inside the measurement device 10. Alternatively, the information processing device 20 may be configured separately from the SPM 100 and configured to communicate bidirectionally with the SPM 100.
 通信I/F168は、Z方向駆動部18からの情報(電圧値Vzおよび偏差Sd)を取得する。また、通信I/F168は、XY方向駆動部16に対して電圧値VxおよびY軸方向の電圧値Vyを出力する。また、通信I/F168は、光学顕微鏡50から画像データを取得する。表示I/F170は、表示装置30と通信するためのインターフェイスである。入力I/F172は、入力装置40と通信するためのインターフェイスである。また、モータI/F174は、第1モータ61および第2モータ62にパルス信号を出力するためのインターフェイスである。 The communication I/F 168 acquires information (voltage value Vz and deviation Sd) from the Z-direction drive unit 18. Further, the communication I/F 168 outputs the voltage value Vx and the voltage value Vy in the Y-axis direction to the XY-direction drive unit 16. Further, the communication I/F 168 acquires image data from the optical microscope 50. Display I/F 170 is an interface for communicating with display device 30. Input I/F 172 is an interface for communicating with input device 40. Further, the motor I/F 174 is an interface for outputting pulse signals to the first motor 61 and the second motor 62.
 ROM162は、CPU160にて実行されるプログラムを格納する。RAM164は、CPU160におけるプログラムの実行により生成されるデータ、および通信I/F168を経由して入力されるデータを一時的に格納することができる。RAM164は、作業領域として利用される一時的なデータメモリとして機能し得る。HDD166は、不揮発性の記憶装置である。HDD166に代えて、フラッシュメモリなどの半導体記憶装置を採用してもよい。 The ROM 162 stores programs executed by the CPU 160. The RAM 164 can temporarily store data generated by executing programs in the CPU 160 and data input via the communication I/F 168. RAM 164 may function as a temporary data memory used as a work area. HDD 166 is a nonvolatile storage device. Instead of the HDD 166, a semiconductor storage device such as a flash memory may be used.
 ROM162に格納されているプログラムは、非一時的な記憶媒体に格納されて、プログラムプロダクトとして流通されてもよい。または、プログラムは、情報提供事業者によって、いわゆるインターネットなどによりダウンロード可能なプロダクトプログラムとして提供されてもよい。情報処理装置20は、記憶媒体またはインターネットなどにより提供されたプログラムを読み取る。情報処理装置20は、読み取ったプログラムを所定の記憶領域(例えばROM162)に記憶する。CPU160は、当該プログラムを実行することにより、後述する画像データの取得処理を実行することができる。また、情報処理装置20は、「制御装置」または「制御回路」とも称される。 The program stored in the ROM 162 may be stored in a non-temporary storage medium and distributed as a program product. Alternatively, the program may be provided by an information provider as a downloadable product program over the so-called Internet. The information processing device 20 reads a program provided from a storage medium or the Internet. The information processing device 20 stores the read program in a predetermined storage area (eg, ROM 162). By executing the program, the CPU 160 can perform image data acquisition processing, which will be described later. The information processing device 20 is also referred to as a "control device" or a "control circuit."
 [情報処理装置の機能構成例]
 図3は、情報処理装置20の主な機能を示す機能ブロック図である。情報処理装置20は、検出部102と、アプローチ処理部104と、記憶部108とを有する。また、第1モータ61が、本開示の「変位機構」に対応する。変位機構は、試料台14とカンチレバー2(カンチレバーユニット35)とのZ軸方向における相対位置を変更する。アプローチ処理部104によるアプローチ処理については後述する。光学顕微鏡50と、検出部102と、第2モータ62とにより検出機構110が構成される。
[Example of functional configuration of information processing device]
FIG. 3 is a functional block diagram showing the main functions of the information processing device 20. As shown in FIG. The information processing device 20 includes a detection section 102, an approach processing section 104, and a storage section 108. Further, the first motor 61 corresponds to the "displacement mechanism" of the present disclosure. The displacement mechanism changes the relative position of the sample stage 14 and the cantilever 2 (cantilever unit 35) in the Z-axis direction. The approach processing by the approach processing unit 104 will be described later. A detection mechanism 110 is configured by the optical microscope 50, the detection section 102, and the second motor 62.
 検出部102には、第2モータ62からのパルス数が入力される。検出部102は、後述するように第2モータ62のパルス数に基づいて第1情報および第2情報を取得し、該第1情報および第2情報をアプローチ処理部104に出力する。本実施形態においては、第1情報は、Z軸方向におけるカンチレバー2の位置に関する情報である。また、第2情報は、Z軸方向における試料Sの位置に関する情報である。 The number of pulses from the second motor 62 is input to the detection unit 102. The detection unit 102 acquires first information and second information based on the number of pulses of the second motor 62, as described later, and outputs the first information and second information to the approach processing unit 104. In this embodiment, the first information is information regarding the position of the cantilever 2 in the Z-axis direction. Further, the second information is information regarding the position of the sample S in the Z-axis direction.
 また、検出部102は、第1モータ61からのパルス数に基づいてカンチレバー2のZ軸方向における移動量を検出できる。 Furthermore, the detection unit 102 can detect the amount of movement of the cantilever 2 in the Z-axis direction based on the number of pulses from the first motor 61.
 アプローチ処理部104は、後述のアプローチ速度で第1モータ61を制御する。さらには、アプローチ処理部104は、第1情報と第2情報とに基づいて、速度低下位置を決定する。速度低下位置は、アプローチ速度を高速から低速に切り替える位置である。また、アプローチ処理部104は、該速度低下位置でアプローチ速度が高速から低速になるように、第1モータ61を制御する。記憶部108には、後述の前回速度低下位置108Aが記憶される。また、記憶部108には、後述の算出式などのプログラムなどが記憶されている。 The approach processing unit 104 controls the first motor 61 at an approach speed described below. Furthermore, the approach processing unit 104 determines the speed reduction position based on the first information and the second information. The speed reduction position is a position where the approach speed is switched from high speed to low speed. The approach processing unit 104 also controls the first motor 61 so that the approach speed changes from high to low at the speed reduction position. The storage unit 108 stores a previous speed reduction position 108A, which will be described later. Furthermore, the storage unit 108 stores programs such as calculation formulas to be described later.
 検出部102には、光学顕微鏡50から、光学顕微鏡50が撮像した画像のデータ(以下、「画像データ」とも称される。)が入力される。検出部102は、後述するように画像データが対象物に焦点が合っているか否かを検出してもよい。 Data of an image captured by the optical microscope 50 (hereinafter also referred to as "image data") is input to the detection unit 102 from the optical microscope 50. The detection unit 102 may detect whether or not the image data is focused on the object, as will be described later.
 [速度低下位置の決定]
 次に、速度低下位置の決定の手法を説明する。本実施形態においては、光学顕微鏡50の焦点距離L3は、少なくともアプローチ処理が実行されている期間中において一定である。
[Determination of speed reduction position]
Next, a method for determining the speed reduction position will be explained. In this embodiment, the focal length L3 of the optical microscope 50 is constant at least during the period when the approach process is being executed.
 SPM100は、所定の開始条件が成立したときに、試料Sの測定を開始する。開始条件は、以下の第1条件および第2条件を含む。第1条件は、ユーザにより入力装置40に対して開始操作が行われることにより成立する条件である。第2条件は、SPM100が、測定対象の試料Sの載置完了を検出することにより成立する条件である。 The SPM 100 starts measuring the sample S when a predetermined starting condition is met. The start condition includes the following first condition and second condition. The first condition is a condition that is satisfied when the user performs a start operation on the input device 40. The second condition is a condition that is established when the SPM 100 detects completion of placement of the sample S to be measured.
 上述のように、ユーザの利便性を向上させるために、カンチレバー2を含むカンチレバーユニット35は、Z軸方向にユーザの操作などにより移動可能である。特に、試料台14に試料Sを載置するためにカンチレバーユニット35を上方に移動させるため、試料載置後は、カンチレバー2(探針3)と試料Sとが大きく離れている場合がある。よって、上述の開始条件が成立した場合には、本実施形態のSPM100は、アプローチ処理を実行する。アプローチ処理は、カンチレバー2を試料Sに近接させる処理である。アプローチ処理は、「アプローチ動作」とも称される。また、アプローチ処理(アプローチ期間中)において、カンチレバー2(カンチレバーユニット35)を試料Sに近接させる速度は、「アプローチ速度」とも称される。 As described above, in order to improve user convenience, the cantilever unit 35 including the cantilever 2 is movable in the Z-axis direction by the user's operation. In particular, since the cantilever unit 35 is moved upward to place the sample S on the sample stage 14, the cantilever 2 (probe 3) and the sample S may be far apart from each other after the sample is placed. Therefore, when the above-mentioned start condition is satisfied, the SPM 100 of this embodiment executes the approach process. The approach process is a process of bringing the cantilever 2 close to the sample S. Approach processing is also referred to as "approach operation." Further, in the approach process (during the approach period), the speed at which the cantilever 2 (cantilever unit 35) is brought close to the sample S is also referred to as "approach speed."
 アプローチ処理は、より具体的には、カンチレバー2が試料Sから受ける物理量(たとえば、原子間力)が規定値に到達するまで、フィードバック制御を行いながらカンチレバー2を試料Sに近接させる処理である。物理量が規定値に到達した場合には、情報処理装置20は、停止指令を測定装置10に出力する。規定値は、ユーザが設定してもよく、予め定められた値としてもよい。なお、アプローチ処理においては、物理量ではなく、物理量に対応する値(たとえば、カンチレバー2の撓み量)が用いられてもよい。 More specifically, the approach process is a process in which the cantilever 2 is brought close to the sample S while performing feedback control until the physical quantity (for example, atomic force) that the cantilever 2 receives from the sample S reaches a specified value. When the physical quantity reaches the specified value, the information processing device 20 outputs a stop command to the measuring device 10. The specified value may be set by the user or may be a predetermined value. Note that in the approach process, instead of the physical quantity, a value corresponding to the physical quantity (for example, the amount of deflection of the cantilever 2) may be used.
 本実施形態におけるアプローチ処理においては、試料台14は固定されている一方、カンチレバー2が下降する。また、試料Sの分析中においては、SPM100は、Z方向駆動部18により試料台14をZ軸方向に駆動し、カンチレバー2を固定とする。なお、変形例として、試料Sの分析中においては、SPM100は、カンチレバー2を駆動し試料台14を固定にしてもよく、カンチレバー2および試料台14の双方を駆動するようにしてもよい。 In the approach process in this embodiment, the sample stage 14 is fixed, while the cantilever 2 is lowered. Furthermore, during the analysis of the sample S, the SPM 100 drives the sample stage 14 in the Z-axis direction by the Z-direction drive unit 18, and fixes the cantilever 2. As a modification, during analysis of the sample S, the SPM 100 may drive the cantilever 2 and fix the sample stage 14, or may drive both the cantilever 2 and the sample stage 14.
 アプローチ処理の時間を短縮するために、情報処理装置20は、カンチレバー2の下降速度(アプローチ速度)を高速にすることが考えられる。しかしながら、カンチレバー2の下降速度が速すぎると、上記の物理量が規定値に到達して情報処理装置20からの停止指令を測定装置10が受信したとしても、該停止指令の受信よりも遅れてカンチレバー2が停止することになる。よって、カンチレバー2と試料Sとが衝突してしまう危険性がある。この場合には、探針3および試料Sの少なくとも一方が破損する恐れがある。逆に、カンチレバー2と試料Sとの衝突を防止するために、アプローチ速度を遅くすると、アプローチ処理に多大な時間を要する。 In order to shorten the time for approach processing, the information processing device 20 may increase the descending speed (approach speed) of the cantilever 2. However, if the descending speed of the cantilever 2 is too fast, even if the above-mentioned physical quantity reaches the specified value and the measurement device 10 receives a stop command from the information processing device 20, the cantilever will move later than the reception of the stop command. 2 will stop. Therefore, there is a risk that the cantilever 2 and the sample S will collide. In this case, at least one of the probe 3 and the sample S may be damaged. Conversely, if the approach speed is slowed down to prevent collision between the cantilever 2 and the sample S, the approach process will take a lot of time.
 そこで、本実施形態のSPM100は、アプローチ処理の時間の短縮、およびカンチレバー2と試料Sとの衝突の低減のために、速度低下位置を決定する。そして、SPM100は、カンチレバーユニット35を速度低下位置まで第1速度で下降させ、速度低下位置に到達すると、第2速度でカンチレバーユニット35を下降させる。ここで、第2速度は、第1速度よりも遅い速度である。第1速度は、本開示の「高速」に対応し、第2速度は、本開示の「低速」に対応する。たとえば、第1速度は、カンチレバー2の最高速度とし、第2速度は、カンチレバー2の最低速度としてもよい。 Therefore, the SPM 100 of this embodiment determines the speed reduction position in order to shorten the approach processing time and reduce collisions between the cantilever 2 and the sample S. Then, the SPM 100 lowers the cantilever unit 35 at a first speed to the speed reduction position, and upon reaching the speed reduction position, lowers the cantilever unit 35 at a second speed. Here, the second speed is slower than the first speed. The first speed corresponds to "high speed" in the present disclosure, and the second speed corresponds to "low speed" in the present disclosure. For example, the first speed may be the maximum speed of the cantilever 2, and the second speed may be the minimum speed of the cantilever 2.
 SPM100は、速度低下位置までカンチレバー2を高速で下降させるため、アプローチ処理の時間を短縮することができる。また、速度低下位置に到達した後はカンチレバー2を低速で下降させるため、カンチレバー2の停止がフィードバック制御の停止指令から遅れた場合であっても、カンチレバー2と試料Sとが衝突する可能性を低減できる。 Since the SPM 100 lowers the cantilever 2 at high speed to the speed reduction position, the time for approach processing can be shortened. Furthermore, since the cantilever 2 is lowered at a low speed after reaching the speed reduction position, even if the stop of the cantilever 2 is delayed from the stop command of the feedback control, there is a possibility that the cantilever 2 and the sample S will collide. Can be reduced.
 図4および図5は、本実施形態の速度低下位置の決定の手法を説明するための図である。図4(A)は、第1情報を取得する手法を説明するための図であり、図4(B)は、第2情報を取得する手法を説明するための図である。図5は、第1情報および第2情報に基づいて速度低下位置を決定する手法を説明するための図である。 FIGS. 4 and 5 are diagrams for explaining the method of determining the speed reduction position of this embodiment. FIG. 4(A) is a diagram for explaining a method of acquiring first information, and FIG. 4(B) is a diagram for explaining a method of acquiring second information. FIG. 5 is a diagram for explaining a method of determining the speed reduction position based on the first information and the second information.
 まず、情報処理装置20は、光学顕微鏡50を下降させつつ、光学顕微鏡50からの画像データを取得する。情報処理装置20の検出部102は、当該画像データにおいて、対象物に焦点が合っているか否かを検出する。そして、検出部102は、対象物に焦点が合ったことが検出されれば、その時点での光学顕微鏡50の位置(第2モータ62のパルス数)を記憶する。 First, the information processing device 20 acquires image data from the optical microscope 50 while lowering the optical microscope 50. The detection unit 102 of the information processing device 20 detects whether or not the target object is in focus in the image data. Then, when it is detected that the object is in focus, the detection unit 102 stores the position of the optical microscope 50 (the number of pulses of the second motor 62) at that time.
 本実施形態においては、情報処理装置20は、この処理を2回繰り返し、下降を開始してから1回目に焦点が合った位置をカンチレバー2の位置に関する情報(第1情報)として認識する。そして、情報処理装置20は、2回目に焦点が合った位置を試料Sの位置に関する情報(第2情報)として認識する。 In the present embodiment, the information processing device 20 repeats this process twice, and recognizes the first focused position after starting the descent as information regarding the position of the cantilever 2 (first information). Then, the information processing device 20 recognizes the second focused position as information regarding the position of the sample S (second information).
 なお、対象物に焦点が合っているか否かを検出する方法について、本実施形態においては、検出部102が画像データをリアルタイムで処理し自動的に該検出を行う方法が採用される。このような方法としては、従来知られているものを適宜採用することができ、例えばコントラスト法などが適用される。 Regarding the method of detecting whether or not the target object is in focus, in this embodiment, a method is adopted in which the detection unit 102 processes image data in real time and automatically performs the detection. As such a method, any conventionally known method can be appropriately employed, such as a contrast method.
 具体的に、図4を用いて説明する。図4(A)は、光学顕微鏡50の下降を開始して初めて対象物に焦点が合ったことが所定の方法(たとえば、上述のコントラスト法)で検出された状態を示す図である。検出部102は、この状態での第2モータ62のパルス数を第1情報として取得する。この第1情報は、カンチレバー2(反射部材2a)のZ軸方向における位置に関する情報である。 This will be explained specifically using FIG. 4. FIG. 4A is a diagram showing a state in which it is detected by a predetermined method (for example, the above-described contrast method) that the object is in focus for the first time after the optical microscope 50 starts descending. The detection unit 102 acquires the number of pulses of the second motor 62 in this state as first information. This first information is information regarding the position of the cantilever 2 (reflection member 2a) in the Z-axis direction.
 検出部102が第1情報を取得すると、情報処理装置20は、光学顕微鏡50からの検出光50aがカンチレバー2に当たらないように、退避処理を実行する。この退避処理は、たとえば、X軸方向およびY軸方向の少なくとも1つの方向にカンチレバー2を移動させる処理である。その後、情報処理装置20は、再び対象物に焦点が合うまで、該光学顕微鏡50を下降させる。 When the detection unit 102 acquires the first information, the information processing device 20 executes a retraction process so that the detection light 50a from the optical microscope 50 does not hit the cantilever 2. This retraction process is, for example, a process of moving the cantilever 2 in at least one of the X-axis direction and the Y-axis direction. Thereafter, the information processing device 20 lowers the optical microscope 50 until it focuses on the object again.
 図4(B)は、退避処理を実行後に初めて対象物に焦点が合ったことが所定の方法で検出された状態を示す図である。検出部102は、この時点での第2モータ62のパルス数を第2情報として取得する。この第2情報は、試料S(試料表面Sa)のZ軸方向における位置に関する情報である。以上のように、検出部102(検出機構110)は、光学顕微鏡50の検出に基づいて、第1情報および第2情報を取得する。 FIG. 4(B) is a diagram showing a state in which it is detected by a predetermined method that the object is in focus for the first time after executing the evacuation process. The detection unit 102 acquires the number of pulses of the second motor 62 at this point as second information. This second information is information regarding the position of the sample S (sample surface Sa) in the Z-axis direction. As described above, the detection unit 102 (detection mechanism 110) acquires the first information and the second information based on the detection by the optical microscope 50.
 ここで、図4(A)の状態では、光学顕微鏡50のレンズと、カンチレバー2の反射部材2aとの距離が光学顕微鏡50の焦点距離L3となっているはずである。また、図4(B)の状態では、光学顕微鏡50のレンズと、試料表面Saの反射部材2aとの距離が光学顕微鏡50の焦点距離L3となっているはずである。距離L3は一定であるから、図4(A)に示すように、距離L1と、距離L2とは同一となる。距離L1は、光学顕微鏡50が下降した距離である(図4(B)参照)。距離L2は、反射部材2a(正確には、反射部材2aの検出光が当たる箇所)から試料表面Saまでの距離である。換言すれば、距離L2は、カンチレバー2と、試料Sとの距離である。 Here, in the state of FIG. 4(A), the distance between the lens of the optical microscope 50 and the reflecting member 2a of the cantilever 2 should be the focal length L3 of the optical microscope 50. Further, in the state shown in FIG. 4(B), the distance between the lens of the optical microscope 50 and the reflecting member 2a on the sample surface Sa should be the focal length L3 of the optical microscope 50. Since the distance L3 is constant, the distance L1 and the distance L2 are the same, as shown in FIG. 4(A). The distance L1 is the distance that the optical microscope 50 has descended (see FIG. 4(B)). The distance L2 is the distance from the reflecting member 2a (more precisely, the location on which the detection light of the reflecting member 2a hits) to the sample surface Sa. In other words, the distance L2 is the distance between the cantilever 2 and the sample S.
 このように、アプローチ処理部104は、「第1情報(カンチレバーに焦点が合った状態での第2モータ62のパルス数)」と「第2情報(試料表面に焦点が合った状態での第2モータ62のパルス数)」との差分値に基づいて、距離L2を算出できる。たとえば、アプローチ処理部104は、「第1情報」から「第2情報」を差し引いて、パルス数を移動量に変換することにより、距離L2を算出できる。 In this way, the approach processing unit 104 generates "first information (the number of pulses of the second motor 62 when the cantilever is in focus)" and "second information (the second information when the sample surface is in focus)". The distance L2 can be calculated based on the difference value between the two motors 62 (the number of pulses of the two motors 62). For example, the approach processing unit 104 can calculate the distance L2 by subtracting the "second information" from the "first information" and converting the number of pulses into a movement amount.
 アプローチ処理部104は、算出した距離L2に基づいて、速度低下位置αを決定する。図5を参照して、詳細に説明する。 The approach processing unit 104 determines the speed reduction position α based on the calculated distance L2. This will be explained in detail with reference to FIG.
 反射部材2aから探針3の先端3aまでの距離L4は、使用するカンチレバーの種類によって定まる固定値である。また、試料表面Saからの一定距離を距離L6とする。距離L6は、カンチレバー2が試料Sから受ける物理量が規定値に到達する可能性があるほど試料に近接する距離であり、試料Sの性質や形状によってユーザが決定する固定値である。換言すれば、アプローチ速度の低下を開始することが望ましい試料とカンチレバーの距離であり、たとえば、0.5mmである。なお、距離L4および距離L6は、ユーザにより変更可能としてもよい。 The distance L4 from the reflecting member 2a to the tip 3a of the probe 3 is a fixed value determined by the type of cantilever used. Further, a certain distance from the sample surface Sa is defined as a distance L6. The distance L6 is a distance so close to the sample that the physical quantity received by the cantilever 2 from the sample S may reach a specified value, and is a fixed value determined by the user depending on the properties and shape of the sample S. In other words, it is the distance between the sample and the cantilever at which it is desirable to start reducing the approach speed, for example 0.5 mm. Note that the distance L4 and the distance L6 may be changeable by the user.
 アプローチ処理部104は、距離L2から距離L4を差し引くことにより、探針の先端3aと試料表面Saとの距離L5を算出する。さらに、アプローチ処理部104は、距離L5から距離L6を差し引くことにより、カンチレバーを高速で移動させる距離L7を算出する。つまり、アプローチ処理部104は、距離L7を以下の式(1)により算出する。 The approach processing unit 104 calculates the distance L5 between the tip 3a of the probe and the sample surface Sa by subtracting the distance L4 from the distance L2. Furthermore, the approach processing unit 104 calculates a distance L7 for moving the cantilever at high speed by subtracting the distance L6 from the distance L5. That is, the approach processing unit 104 calculates the distance L7 using the following equation (1).
 L7=L2-L4-L6  (1)
 ここで、式(1)の右辺の距離L2は、光学顕微鏡50の下降距離である距離L1と同一である。また、式(1)の右辺の距離L4および距離L6は固定値である。よって、距離L4と距離L6との合算値Mも固定値である。つまり、距離L7は、以下の式(2)でも表すことができる。
L7=L2-L4-L6 (1)
Here, the distance L2 on the right side of equation (1) is the same as the distance L1, which is the descending distance of the optical microscope 50. Further, distance L4 and distance L6 on the right side of equation (1) are fixed values. Therefore, the total value M of distance L4 and distance L6 is also a fixed value. That is, the distance L7 can also be expressed by the following equation (2).
 L7=L1-M1  (2)
 このように、アプローチ処理部104は、第1情報と第2情報とに基づいて、探針の先端3aと試料表面Saとの距離L5を算出することができる。さらに距離L5と予め記憶した固定値から、カンチレバーを高速で移動させる距離L7を算出することができる。つまり、カンチレバー2(カンチレバーユニット35)のアプローチ速度を低下させる速度低下位置αを決定することができる。そして、アプローチ処理部104は、カンチレバー2と試料Sとが近づきかつ速度低下位置αでアプローチ速度が低下するように、第1モータ61を制御する。
L7=L1-M1 (2)
In this way, the approach processing unit 104 can calculate the distance L5 between the tip 3a of the probe and the sample surface Sa based on the first information and the second information. Furthermore, a distance L7 for moving the cantilever at high speed can be calculated from the distance L5 and a fixed value stored in advance. In other words, it is possible to determine the speed reduction position α where the approach speed of the cantilever 2 (cantilever unit 35) is reduced. Then, the approach processing unit 104 controls the first motor 61 so that the cantilever 2 and the sample S approach each other and the approach speed is reduced at the speed reduction position α.
 つまり、アプローチ処理部104は、現在位置(図5に示されているカンチレバー2の位置)に位置するカンチレバー2を第1速度(高速)で距離L7を移動させる。距離L7分を移動させたら、カンチレバー2が速度低下位置αに到達したとして、カンチレバー2のアプローチ速度を第2速度(低速)に変更する。そして、試料Sから受ける物理量が規定値に到達するまでさらにカンチレバー2を移動させる。この制御により、カンチレバー2は、初期位置から速度低下位置αまでは高速で移動し、速度低下位置αからは低速で移動できる。その結果、SPM100は、カンチレバー2が試料表面Saに接触する危険性を低減しつつ短時間でアプローチ動作を行うことができる。 In other words, the approach processing unit 104 moves the cantilever 2 located at the current position (the position of the cantilever 2 shown in FIG. 5) by the distance L7 at the first speed (high speed). After moving the distance L7, the cantilever 2 reaches the speed reduction position α, and the approach speed of the cantilever 2 is changed to the second speed (low speed). Then, the cantilever 2 is further moved until the physical quantity received from the sample S reaches a specified value. With this control, the cantilever 2 can move at high speed from the initial position to the speed reduction position α, and can move at low speed from the speed reduction position α. As a result, the SPM 100 can perform the approach operation in a short time while reducing the risk of the cantilever 2 coming into contact with the sample surface Sa.
 速度低下位置αと試料表面との離間距離L6は固定値である一方、探針の先端3aとの離間距離L7は、その時々のカンチレバー2の高さによって異なるため従来技術では把握することができなかった。もしカンチレバー2の高さの絶対値を認識できたとしても、配置された試料表面の高さが不明であるため、やはり距離L7を把握することができなかった。 While the separation distance L6 between the speed reduction position α and the sample surface is a fixed value, the separation distance L7 from the tip 3a of the probe varies depending on the height of the cantilever 2 at any given time, and cannot be determined using conventional techniques. There wasn't. Even if the absolute value of the height of the cantilever 2 could be recognized, the distance L7 could still not be determined because the height of the surface of the sample on which it was placed was unknown.
 本実施の形態では、光学顕微鏡50によって算出した第1情報と第2情報とに基づいて、距離L7を把握することができる。試料表面とカンチレバー2の離間距離を算出しているのであって、試料表面やカンチレバーの高さの絶対値を算出する必要が無いことに注目されたい。 In the present embodiment, the distance L7 can be determined based on the first information and second information calculated by the optical microscope 50. It should be noted that since the distance between the sample surface and the cantilever 2 is calculated, there is no need to calculate the absolute value of the height of the sample surface or the cantilever.
 また、本実施形態においては、第2情報は、Z軸方向における試料表面SaのZ軸方向の位置を示す情報である。したがって、検出機構110が試料表面Saを検出することにより、情報処理装置20は第2情報を取得できる。 Furthermore, in the present embodiment, the second information is information indicating the position of the sample surface Sa in the Z-axis direction. Therefore, when the detection mechanism 110 detects the sample surface Sa, the information processing device 20 can acquire the second information.
 また、光学顕微鏡50の焦点距離L3は、少なくともアプローチ処理が実行されている期間中において一定である。したがって、光学顕微鏡50の焦点距離L3が可変である構成と比較して、光学顕微鏡50の処理量を軽減できる。 Furthermore, the focal length L3 of the optical microscope 50 is constant at least during the period in which the approach process is being executed. Therefore, compared to a configuration in which the focal length L3 of the optical microscope 50 is variable, the processing amount of the optical microscope 50 can be reduced.
 また、本実施形態においては、試料を測定するために用いられるカンチレバー2の反射部材2aと、第1情報を取得するために用いられる反射部材2aとを兼用できる。よって、試料を測定するために用いられる反射部材と、第1情報を取得するために用いられる反射部材とが別であるSPMと比較して、本実施形態のSPM100は、部品点数を削減できる。 Furthermore, in this embodiment, the reflecting member 2a of the cantilever 2 used to measure the sample can be used both as the reflecting member 2a used to obtain the first information. Therefore, compared to an SPM in which the reflective member used to measure the sample and the reflective member used to acquire the first information are separate, the SPM 100 of this embodiment can reduce the number of parts.
 また、本実施形態においては、アプローチ期間以外の期間における画像データを表示する光学顕微鏡50と、第1情報および第2情報を取得するための光学顕微鏡50とを兼用できる。したがって、該検出画像を表示する光学顕微鏡と、第1情報および第2情報を取得するための光学顕微鏡とが別であるSPMと比較して、本開示の走査型プローブ顕微鏡は、部品点数を削減できる。 Furthermore, in the present embodiment, the optical microscope 50 for displaying image data in a period other than the approach period can be used both as the optical microscope 50 for acquiring the first information and the second information. Therefore, compared to an SPM in which the optical microscope for displaying the detected image and the optical microscope for acquiring the first information and the second information are separate, the scanning probe microscope of the present disclosure reduces the number of parts. can.
 [フローチャート]
 図6は、本実施形態のSPM100の処理の流れを示すフローチャートである。図6のフローチャートは、上述の開始条件が成立したときに開始する。まず、ステップS102において、SPM100は、第1情報(Z軸方向におけるカンチレバーの位置に関する情報)を取得する(図4(A)参照)。
[flowchart]
FIG. 6 is a flowchart showing the processing flow of the SPM 100 of this embodiment. The flowchart of FIG. 6 starts when the above-mentioned start condition is satisfied. First, in step S102, the SPM 100 acquires first information (information regarding the position of the cantilever in the Z-axis direction) (see FIG. 4(A)).
 次に、ステップS104において、SPM100は、第2情報(Z軸方向における試料表面Saの位置に関する情報)を取得する(図4(B)参照)。次に、ステップS106において、SPM100は、速度低下位置αを決定する(図5参照)。次に、ステップS108において、SPM100は、速度低下位置αに基づいてアプローチ処理を実行する。そして、アプローチ処理が終了すると、ステップS110においてSPM100は、試料Sの測定を開始する。 Next, in step S104, the SPM 100 acquires second information (information regarding the position of the sample surface Sa in the Z-axis direction) (see FIG. 4(B)). Next, in step S106, the SPM 100 determines the speed reduction position α (see FIG. 5). Next, in step S108, the SPM 100 executes approach processing based on the speed reduction position α. Then, when the approach process ends, the SPM 100 starts measuring the sample S in step S110.
 [前回速度低下位置]
 次に、図3の前回速度低下位置108Aを説明する。今回測定する試料Sの厚みが、前回測定した試料Sの厚みと同一または略同一である場合がある。この場合には、前回の測定と今回の測定とで速度低下位置αは同一となる。そこで、今回測定する試料Sの厚みが、前回測定した試料Sの厚みと同一または略同一であることをユーザが認識している場合などには、前回決定された速度低下位置αを、今回の測定における速度低下位置αとして情報処理装置20が用いることが好ましい。
[Previous speed reduction position]
Next, the previous speed reduction position 108A in FIG. 3 will be explained. The thickness of the sample S to be measured this time may be the same or approximately the same as the thickness of the sample S measured last time. In this case, the speed reduction position α is the same between the previous measurement and the current measurement. Therefore, if the user is aware that the thickness of the sample S to be measured this time is the same or approximately the same as the thickness of the sample S measured last time, the previously determined speed reduction position It is preferable that the information processing device 20 uses this as the speed reduction position α in the measurement.
 情報処理装置20は、速度低下位置αを決定した場合には、前回速度低下位置108Aとして記憶する。さらに、今回の速度低下位置として前回速度低下位置108Aを用いるか否かをユーザが選択できる。 When the information processing device 20 determines the speed reduction position α, it stores it as the previous speed reduction position 108A. Furthermore, the user can select whether or not to use the previous speed reduction position 108A as the current speed reduction position.
 図7は、モード設定画面の一例を示す図である。このモード設定画面は、上述の開始条件が成立したきに、表示装置30の表示領域30Aに表示される。図7の例では、SPM100のモードは、通常モードと、前回同一モードとを含む。図7の例では、通常モードの文字画像41と、前回同一モードの文字画像43と、OKボタン44とが表示される。 FIG. 7 is a diagram showing an example of the mode setting screen. This mode setting screen is displayed in the display area 30A of the display device 30 when the above-mentioned start condition is satisfied. In the example of FIG. 7, the modes of the SPM 100 include a normal mode and a previous same mode. In the example of FIG. 7, a character image 41 in normal mode, a character image 43 in the same mode as last time, and an OK button 44 are displayed.
 ユーザは、図7のモード設定画面に指令を入力することにより、所望のモードを選択(設定)できる。図7の例では、所望のモードに対応するラジオボタンを選択し、OKボタン44を操作すると、該モードに設定される。モードの設定は、たとえば、該モードを示すモードフラグが所定の記憶領域に記憶されることにより実現される。 The user can select (set) a desired mode by inputting a command to the mode setting screen shown in FIG. In the example of FIG. 7, when a radio button corresponding to a desired mode is selected and the OK button 44 is operated, the mode is set. Setting a mode is realized, for example, by storing a mode flag indicating the mode in a predetermined storage area.
 ユーザにより通常モードが設定された場合には、情報処理装置20は、図6の処理により速度低下位置αを決定する。ユーザにより前回同一モードが設定された場合について説明する。 When the normal mode is set by the user, the information processing device 20 determines the speed reduction position α through the process shown in FIG. A case where the same mode was set last time by the user will be explained.
 情報処理装置20は、予め、前回の測定終了後にユーザがカンチレバー2を上昇させた距離(第1モータのパルス数を距離に変換した値)を記憶しておく。当該距離がL5(カンチレバー先端と試料表面の現在の離間距離)に対応するため、L5から前回使用したL6を差し引くことで距離L7を算出することができる。 The information processing device 20 stores in advance the distance by which the user raised the cantilever 2 after the end of the previous measurement (a value obtained by converting the number of pulses of the first motor into a distance). Since this distance corresponds to L5 (the current distance between the cantilever tip and the sample surface), the distance L7 can be calculated by subtracting the previously used L6 from L5.
 このような構成によれば、前回決定された速度低下位置に基づいて、カンチレバー2を移動できることから、光学顕微鏡50を下降させる処理、および光学顕微鏡50により取得した画像データに対して行う処理を削減することができる。 According to such a configuration, the cantilever 2 can be moved based on the previously determined speed reduction position, so the process of lowering the optical microscope 50 and the process performed on image data acquired by the optical microscope 50 can be reduced. can do.
 <第2実施形態>
 次に、第2実施形態を説明する。たとえば、試料Sが、光学顕微鏡50の焦点を合わせることができない特性を有している場合がある。該特性とは、試料表面Saが黒色であるなど、ある程度のコントラストを有していないという特性である。このような場合、光学顕微鏡50の焦点を試料Sに合わせることができず、速度低下位置αを決定できない場合がある。そこで、第2実施形態においては、試料Sに光学顕微鏡50の焦点を合わせることができない場合であっても、速度低下位置αを決定できる構成を説明する。
<Second embodiment>
Next, a second embodiment will be described. For example, the sample S may have characteristics that make it impossible to focus the optical microscope 50. This characteristic is a characteristic that the sample surface Sa does not have a certain degree of contrast, such as being black. In such a case, it may not be possible to focus the optical microscope 50 on the sample S, and the speed reduction position α may not be determined. Therefore, in the second embodiment, a configuration will be described in which the speed reduction position α can be determined even when the optical microscope 50 cannot be focused on the sample S.
 第2実施形態の配置面14aは、反射部材となっている。この反射部材は、たとえば、ミラーである。このように、配置面14aが反射部材であることにより、SPM100は、光学顕微鏡50の焦点を配置面14aに合わせることができる。したがって、検出機構110は、Z軸方向における配置面14aの位置を第2情報として取得できる。 The arrangement surface 14a of the second embodiment is a reflective member. This reflective member is, for example, a mirror. In this way, since the arrangement surface 14a is a reflective member, the SPM 100 can focus the optical microscope 50 on the arrangement surface 14a. Therefore, the detection mechanism 110 can acquire the position of the placement surface 14a in the Z-axis direction as second information.
 つまり、第2実施形態では、情報処理装置20は、下降を開始してから1回目に光学顕微鏡50の焦点が合う対象物の位置をカンチレバー2の位置(第1情報)として認識し、2回目に光学顕微鏡50の焦点が合う対象物の位置を配置面14aの位置(第2情報)として認識する。 That is, in the second embodiment, the information processing device 20 recognizes the position of the object that the optical microscope 50 focuses on the first time after starting the descent as the position of the cantilever 2 (first information), and the second time The position of the object on which the optical microscope 50 is focused is recognized as the position of the arrangement surface 14a (second information).
 また、光学顕微鏡50の焦点が合う位置に試料Sが存在すると、検出機構110は、該試料Sに阻害されることにより配置面14aを検出できない。そこで、第2実施形態においては、SPM100は、検出機構110が配置面14aの位置を検出するための所定処理を実行する。本実施形態の所定処理は、たとえば、試料台14をXY平面において所定方向に所定距離、移動させる処理である。この処理により、試料Sを退避させることができ、結果として、検出機構110は、配置面14aを検出できる(第2情報を取得できる)。この所定処理は、「試料Sの退避処理」とも称される。また、配置面14aが検出された場合には、SPM100は、試料Sが元の位置となるように、試料台14を移動させる。 Further, if the sample S exists at a position where the optical microscope 50 is in focus, the detection mechanism 110 is obstructed by the sample S and cannot detect the placement surface 14a. Therefore, in the second embodiment, the SPM 100 executes a predetermined process for the detection mechanism 110 to detect the position of the placement surface 14a. The predetermined process of this embodiment is, for example, a process of moving the sample stage 14 a predetermined distance in a predetermined direction on the XY plane. Through this process, the sample S can be evacuated, and as a result, the detection mechanism 110 can detect the placement surface 14a (can acquire the second information). This predetermined process is also referred to as "sample S evacuation process." Furthermore, when the placement surface 14a is detected, the SPM 100 moves the sample stage 14 so that the sample S returns to its original position.
 さらに、本実施形態においては、速度低下位置αの決定のために、試料Sの厚みが用いられる。試料Sの厚みは、たとえば、ユーザにより入力される。図8は、試料の厚みが入力される入力画面の一例である。たとえば、この入力画面は、上述の開始条件が成立したときに、表示装置30の表示領域30Aに表示される。図8の例では、入力領域45が表示されている。ユーザは、入力領域45に試料の厚みを入力する。 Furthermore, in this embodiment, the thickness of the sample S is used to determine the speed reduction position α. The thickness of the sample S is input by the user, for example. FIG. 8 is an example of an input screen where the thickness of the sample is input. For example, this input screen is displayed on the display area 30A of the display device 30 when the above-mentioned start condition is satisfied. In the example of FIG. 8, an input area 45 is displayed. The user inputs the thickness of the sample into the input area 45.
 図9および図10は、本実施形態の速度低下位置の決定の手法を説明するための図である。なお、図9および図10では、試料Sの退避処理が実行された後の状態が示されている。図9(A)では、図4(A)と同様に、情報処理装置20が、第1情報(Z軸方向におけるカンチレバー2の位置に関する情報)を取得したことが示されている。また、図9(B)では、情報処理装置20が、第2情報(Z軸方向における配置面14aの位置に関する情報)を取得したことが示されている。 FIGS. 9 and 10 are diagrams for explaining the method of determining the speed reduction position of this embodiment. Note that FIGS. 9 and 10 show the state after the sample S evacuation process has been executed. Similarly to FIG. 4A, FIG. 9A shows that the information processing device 20 has acquired first information (information regarding the position of the cantilever 2 in the Z-axis direction). Further, FIG. 9B shows that the information processing device 20 has acquired the second information (information regarding the position of the placement surface 14a in the Z-axis direction).
 また、図9(A)および図9(B)において、距離L3(光学顕微鏡50の焦点距離)は一定である。したがって、図9(A)に示すように、距離L11と、距離L12とは同一となる。距離L11は、光学顕微鏡50が下降した距離である(図9(B)参照)。距離L12は、反射部材2a(正確には、反射部材2aの検出光が当たる箇所)から配置面14aまでの距離である。換言すれば、距離L12は、カンチレバー2と、配置面14aとの距離である。 Furthermore, in FIGS. 9(A) and 9(B), the distance L3 (focal length of the optical microscope 50) is constant. Therefore, as shown in FIG. 9(A), the distance L11 and the distance L12 are the same. The distance L11 is the distance that the optical microscope 50 has descended (see FIG. 9(B)). The distance L12 is the distance from the reflecting member 2a (more precisely, the location where the detection light of the reflecting member 2a hits) to the arrangement surface 14a. In other words, the distance L12 is the distance between the cantilever 2 and the arrangement surface 14a.
 また、図10に示すように、アプローチ処理部104は、距離L12に基づいて、速度低下位置αを決定する。図10に示すように、試料の厚みは、距離L18とされる。ここで、試料の厚み(距離L18)は、図8の入力画面に対してユーザに事前に入力される入力値である。 Furthermore, as shown in FIG. 10, the approach processing unit 104 determines the speed reduction position α based on the distance L12. As shown in FIG. 10, the thickness of the sample is a distance L18. Here, the thickness of the sample (distance L18) is an input value that is input in advance by the user on the input screen of FIG.
 アプローチ処理部104は、距離L12から、距離L4を差し引くことにより、距離L15を算出する。距離L15は、探針の先端3aと、配置面14aとの距離である。さらに、アプローチ処理部104は、距離L15から、距離L6および距離L18を差し引くことにより、距離L17を算出する。つまり、アプローチ処理部104は、距離L17を以下の式(3)により算出する。 The approach processing unit 104 calculates the distance L15 by subtracting the distance L4 from the distance L12. The distance L15 is the distance between the tip 3a of the probe and the arrangement surface 14a. Further, the approach processing unit 104 calculates the distance L17 by subtracting the distance L6 and the distance L18 from the distance L15. That is, the approach processing unit 104 calculates the distance L17 using the following equation (3).
 L17=L12-L4-L6-L18  (3)
 ここで、式(3)の右辺の距離L12は、光学顕微鏡50の下降距離である距離L11と同一である。また、式(3)の右辺の距離L4および距離L6は上述の合算値Mである。つまり、距離L17は、以下の式(4)でも表すことができる。
L17=L12-L4-L6-L18 (3)
Here, the distance L12 on the right side of equation (3) is the same as the distance L11, which is the descending distance of the optical microscope 50. Further, the distance L4 and the distance L6 on the right side of equation (3) are the above-mentioned total value M. That is, the distance L17 can also be expressed by the following equation (4).
 L17=L11-L18-M1  (4)
 図11は、本実施形態の情報処理装置20の処理の流れを示すフローチャートである。図11は、図6のステップS102の前に、ステップS120およびステップS122の処理が追加され、かつ、ステップS104がステップS124に代替される。
L17=L11-L18-M1 (4)
FIG. 11 is a flowchart showing the processing flow of the information processing device 20 of this embodiment. In FIG. 11, steps S120 and S122 are added before step S102 in FIG. 6, and step S104 is replaced by step S124.
 上述の開始条件が成立すると、ステップS120において、情報処理装置20は、試料Sの退避処理を実行する。次に、ステップS122において、情報処理装置20は、ユーザにより入力された試料Sの厚みを取得する(図8参照)。 When the above-mentioned start condition is satisfied, the information processing device 20 executes the evacuation process of the sample S in step S120. Next, in step S122, the information processing device 20 acquires the thickness of the sample S input by the user (see FIG. 8).
 そして、ステップS102の処理が終了した後、ステップS124において、情報処理装置20は、第2情報(Z軸方向における試料台14の位置)を取得する。その後、情報処理装置20は、ステップS106の処理を実行する。 After the process of step S102 is completed, the information processing device 20 acquires second information (the position of the sample stage 14 in the Z-axis direction) in step S124. After that, the information processing device 20 executes the process of step S106.
 このように、本実施形態の情報処理装置20は、試料Sが、該試料Sに対する光学顕微鏡50の焦点を合わせることができない特性を有しているであっても、第1情報、第2情報、および試料の厚み(距離L18)に基づいて、速度低下位置αを決定できる。 In this way, the information processing apparatus 20 of the present embodiment can process the first information and the second information even if the sample S has a characteristic that the optical microscope 50 cannot focus on the sample S. , and the thickness of the sample (distance L18), the speed reduction position α can be determined.
 また、情報処理装置20は、試料Sの退避処理(所定処理)を実行する(ステップS120)。したがって、情報処理装置20が第2情報を取得することを阻害する位置に試料Sが存在したとしても、情報処理装置20は、第2情報を取得できる。 Furthermore, the information processing device 20 executes a saving process (predetermined process) for the sample S (step S120). Therefore, even if the sample S exists in a position that prevents the information processing device 20 from acquiring the second information, the information processing device 20 can acquire the second information.
 また、試料Sの退避処理は、試料台14をXY平面において移動させる処理である。したがって、SPM100は、比較的簡易な処理により、試料Sの退避処理を実現できる。 Furthermore, the evacuation process of the sample S is a process of moving the sample stage 14 in the XY plane. Therefore, the SPM 100 can realize the evacuation process of the sample S through a relatively simple process.
 <変形例>
 (1) 上述の実施形態においては、SPM100は、アプローチ処理においては、試料台14は移動させず(試料台14は固定されており)、カンチレバー2を移動(下降)させる構成を説明した。しかしながら、アプローチ処理においては、カンチレバー2は移動させず(カンチレバー2は固定されており)、試料台14を移動(上昇)させる構成が採用されてもよい。この構成の場合には、SPM100は、距離L2または距離L12などに基づいて、速度低下位置αを決定する。そして、SPM100は、速度低下位置αまでは、第3速度で試料台14を移動(上昇)させ、試料台14が、速度低下位置αに到達したときから第4速度(第3速度よりも遅い速度)で試料台14を移動(上昇)させる。
<Modified example>
(1) In the above embodiment, the SPM 100 is configured to move (lower) the cantilever 2 without moving the sample stage 14 (the sample stage 14 is fixed) during approach processing. However, in the approach process, a configuration may be adopted in which the cantilever 2 is not moved (the cantilever 2 is fixed) and the sample stage 14 is moved (raised). In this configuration, the SPM 100 determines the speed reduction position α based on the distance L2 or the distance L12. Then, the SPM 100 moves (raises) the sample stage 14 at the third speed until the speed reduction position α, and from when the sample stage 14 reaches the speed reduction position α, the sample stage 14 moves at a fourth speed (slower than the third speed). The sample stage 14 is moved (raised) at a speed (speed).
 また、SPM100は、アプローチ処理においては、カンチレバー2の移動(下降)および試料台14の移動(上昇)を実行するようにしてもよい。この場合には、距離L2または距離L12などに基づいて、カンチレバー2の速度低下位置(以下、「第1速度低下位置α1」と称される。)と、試料台14の速度低下位置(以下、「第2速度低下位置α2」と称される。)を決定する。そして、SPM100は、アプローチ処理においては、第1速度低下位置α1までは、第1速度でカンチレバー2を移動(下降)させ、カンチレバー2が、第1速度低下位置α1に到達したときから第2速度で試料台14を移動(下降)させる。また、SPM100は、第2速度低下位置α2までは、第3速度で試料台14を移動(上昇)させ、試料台14が、第2速度低下位置α2に到達したときから第4速度で試料台14を移動(上昇)させる。つまり、第1モータ61は、試料台14とカンチレバー2とのZ軸方向における相対位置を変更する変位機構である。上述のアプローチ速度は、相対位置の変更速度である。このような構成が採用されたSPMであっても上述のSPMと同様の効果を奏する。 Additionally, the SPM 100 may move the cantilever 2 (lower) and the sample stage 14 (raise) during the approach process. In this case, the speed reduction position of the cantilever 2 (hereinafter referred to as "first speed reduction position α1") and the speed reduction position of the sample stage 14 (hereinafter referred to as "first speed reduction position α1") are determined based on the distance L2 or the distance L12, etc. (referred to as "second speed reduction position α2"). In the approach process, the SPM 100 moves (lowers) the cantilever 2 at the first speed until it reaches the first speed reduction position α1, and then moves the cantilever 2 at a second speed from when it reaches the first speed reduction position α1. to move (lower) the sample stage 14. Further, the SPM 100 moves (raises) the sample stage 14 at the third speed until the second speed reduction position α2, and from when the sample stage 14 reaches the second speed reduction position α2, the sample stage 14 moves (raises) at the fourth speed. Move (raise) 14. That is, the first motor 61 is a displacement mechanism that changes the relative position of the sample stage 14 and the cantilever 2 in the Z-axis direction. The approach speed mentioned above is the speed of change of relative position. Even an SPM employing such a configuration provides the same effects as the above-mentioned SPM.
 (2) 上述の実施形態においては、第1情報は、Z軸方向におけるカンチレバー2の反射部材2aの位置である構成を説明した。しかしながら、第1情報は、カンチレバー2の部分であれば、他の部分であってもよい。第1情報は、たとえば、Z軸方向における探針3の位置である構成が採用されてもよい。 (2) In the above embodiment, the first information is the position of the reflecting member 2a of the cantilever 2 in the Z-axis direction. However, the first information may be any other part of the cantilever 2. The first information may be, for example, the position of the probe 3 in the Z-axis direction.
 (3) 上述の実施形態では、第1情報および第2情報を検出する検出装置として、光学顕微鏡50が例示された。しかしながら、検出装置は、他の装置としてもよい。他の装置は、たとえば、カメラとしてもよく、また、光学顕微鏡50に関連する顕微鏡(たとえば、電子顕微鏡)としてもよい。 (3) In the embodiment described above, the optical microscope 50 was exemplified as the detection device that detects the first information and the second information. However, the detection device may be any other device. Other devices may be, for example, a camera or a microscope (eg, an electron microscope) associated with optical microscope 50.
 (4) また、上述の実施形態においては、アプローチ期間において光学顕微鏡50の焦点距離は一定である構成が説明された。しかしながら、アプローチ処理部104が光学顕微鏡50の焦点距離を認識できていればよく、可変であるとしてもよい。このような構成が採用された場合には、たとえば、焦点距離が変更されることにより、第1情報および第2情報が認識されてもよい。つまり、光学顕微鏡50の焦点距離が長くなるように段階的に変更していき、初めに焦点が合ったときの焦点距離をL3として認識する。2回目に焦点があったときの焦点距離をL1+L3として認識する。これらを減算することで、カンチレバー2と試料表面の距離L2(=L1)が認識できる。 (4) Furthermore, in the above-described embodiment, a configuration was described in which the focal length of the optical microscope 50 is constant during the approach period. However, it is sufficient that the approach processing unit 104 can recognize the focal length of the optical microscope 50, and it may be variable. When such a configuration is adopted, the first information and the second information may be recognized by changing the focal length, for example. That is, the focal length of the optical microscope 50 is changed stepwise so that it becomes longer, and the focal length when the focus is first achieved is recognized as L3. The focal length when the object is in focus the second time is recognized as L1+L3. By subtracting these, the distance L2 (=L1) between the cantilever 2 and the sample surface can be recognized.
 このような構成が採用された場合には、たとえば、光学顕微鏡50を固定させたまま、情報処理装置20は、第1情報および第2情報を取得できる。したがって、光学顕微鏡50の移動処理を削減できる。 If such a configuration is adopted, for example, the information processing device 20 can acquire the first information and the second information while the optical microscope 50 is fixed. Therefore, the process of moving the optical microscope 50 can be reduced.
 また、光学顕微鏡50が第1情報を取得した後、第2情報を取得するための焦点距離を、第1情報を取得したときの焦点距離に対して所定値を加算することにより算出してもよい。情報処理装置20が、該算出された新たな焦点距離により、第2情報を取得できるか否かを判断する。そして、情報処理装置20は、焦点が合わずに第2情報を取得できなかった場合には、光学顕微鏡50を駆動することにより第2情報を取得する。このような構成の場合には、光学顕微鏡50の移動距離を低減できる。 Alternatively, after the optical microscope 50 acquires the first information, the focal length for acquiring the second information may be calculated by adding a predetermined value to the focal length when acquiring the first information. good. The information processing device 20 determines whether the second information can be acquired based on the calculated new focal length. If the information processing device 20 is unable to acquire the second information due to lack of focus, the information processing device 20 acquires the second information by driving the optical microscope 50 . In the case of such a configuration, the moving distance of the optical microscope 50 can be reduced.
 (5) 上述の実施形態においては、光学顕微鏡50が自動的に焦点を合わせる構成が説明された。しかしながら、ユーザが手動で光学顕微鏡50の焦点を合わせる構成が採用されてもよい。たとえば、Z軸方向におけるカンチレバー2の位置、およびZ軸方向における試料表面Saの位置、およびZ軸方向における配置面14aの位置の少なくとも1つをユーザの手動による焦点合わせにより情報処理装置20が、検出するようにしてもよい。 (5) In the above-described embodiment, a configuration in which the optical microscope 50 automatically focuses was described. However, a configuration may also be adopted in which the user manually focuses the optical microscope 50. For example, the information processing device 20 manually focuses at least one of the position of the cantilever 2 in the Z-axis direction, the position of the sample surface Sa in the Z-axis direction, and the position of the placement surface 14a in the Z-axis direction. It may also be detected.
 (6) 上述の実施形態においては、検出機構110が第2情報を取得するための所定処理は、試料台14を移動させることにより試料Sを退避させる処理である構成が説明された(図11のステップS120など参照)。しかしながら、所定処理は、他の処理としてもよい。所定処理は、たとえば、光学顕微鏡50をXY平面において所定方向に所定距離、移動させる処理としてもよい。 (6) In the above-described embodiment, a configuration was explained in which the predetermined process for the detection mechanism 110 to acquire the second information is a process to evacuate the sample S by moving the sample stage 14 (FIG. 11 (See step S120, etc.). However, the predetermined process may be any other process. The predetermined process may be, for example, a process of moving the optical microscope 50 a predetermined distance in a predetermined direction on the XY plane.
 あるいは、カンチレバー2が視野内にある状態で、その奥の構造(試料台)に焦点が合うまで光学顕微鏡50を下降させる処理としてもよい。この場合、SPM100は、カンチレバー2を退避させる必要が無い。 Alternatively, with the cantilever 2 within the field of view, the optical microscope 50 may be lowered until it focuses on the structure (sample stage) behind it. In this case, the SPM 100 does not need to retract the cantilever 2.
 また、上述の特性を有する試料Sが配置される前に、速度低下位置αを決定するようにしてもよい。たとえば、情報処理装置20は、該試料Sが配置される前に情報処理装置20が光学顕微鏡50を下降させる。そして、光学顕微鏡50の下降が開始してから1回目に焦点が合う対象物をカンチレバー2の位置(第1情報)として認識し、2回目に焦点が合う対象物を試料Sの位置(第2情報)として認識する。そして、情報処理装置20は、図8の入力画面を表示することにより、試料Sの厚さを取得する。情報処理装置20は、第1情報、第2情報、および試料Sの厚さに基づいて、速度低下位置αを決定する。速度低下位置αが決定された後、情報処理装置20は、試料Sを試料台14に配置させることを促進する促進通知を実行する。促進通知は、たとえば、「試料を配置させてください」といった文字画像を表示装置30に表示させる処理である。試料Sが配置され、ユーザにより開始操作が行われると、情報処理装置20は、アプローチ処理を実行する。このような構成によれば、所定処理を行わずに、速度低下位置αを決定できる。 Furthermore, the speed reduction position α may be determined before the sample S having the above-mentioned characteristics is placed. For example, the information processing apparatus 20 lowers the optical microscope 50 before the sample S is placed. The object that is in focus the first time after the optical microscope 50 starts descending is recognized as the position of the cantilever 2 (first information), and the object that is focused the second time is recognized as the position of the sample S (second information). information). Then, the information processing device 20 acquires the thickness of the sample S by displaying the input screen of FIG. The information processing device 20 determines the speed reduction position α based on the first information, the second information, and the thickness of the sample S. After the speed reduction position α is determined, the information processing device 20 executes a promotion notification that promotes placing the sample S on the sample stage 14. The promotion notification is, for example, a process of displaying a character image such as "Please place the sample" on the display device 30. When the sample S is placed and the user performs a start operation, the information processing device 20 executes the approach process. According to such a configuration, the speed reduction position α can be determined without performing predetermined processing.
 (7) 図4および図9の例では、光学顕微鏡50は、簡略化されて矩形で示されている。図4および図9の例では、光学顕微鏡50と検出対象物(カンチレバー2の反射部材2a、試料表面Sa)との距離は、該矩形の下辺と、該検出対象物との距離とされている。しかしながら、この距離は、光学顕微鏡50の所定部材と、該検出対象物との距離としてもよい。所定部材は、たとえば、光学顕微鏡50が有する光学系(レンズ)などとしてもよい。 (7) In the examples of FIGS. 4 and 9, the optical microscope 50 is shown as a simplified rectangle. In the examples of FIGS. 4 and 9, the distance between the optical microscope 50 and the object to be detected (the reflective member 2a of the cantilever 2, the sample surface Sa) is the distance between the lower side of the rectangle and the object to be detected. . However, this distance may be the distance between a predetermined member of the optical microscope 50 and the object to be detected. The predetermined member may be, for example, an optical system (lens) included in the optical microscope 50.
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Mode]
It will be appreciated by those skilled in the art that the exemplary embodiments described above are specific examples of the following aspects.
 (第1項) 本開示の走査型プローブ顕微鏡は、試料台と、カンチレバーと、変位機構と、検出機構と、アプローチ処理部とを備える。試料台は、試料が配置される。カンチレバーは、試料の表面に沿って走査される。変位機構は、試料台とカンチレバーとの試料の厚み方向における相対位置を変更する。検出機構は、厚み方向におけるカンチレバーの位置に関する情報である第1情報と、厚み方向における試料の位置または厚み方向における試料台の位置に関する情報である第2情報とを取得する。アプローチ処理部は、試料台とカンチレバーとが近接するように、所定のアプローチ速度で変位機構を制御する。アプローチ処理部は、第1情報と第2情報とに基づいて、アプローチ速度を高速から低速に切り替える速度低下位置を決定する。また、アプローチ処理部は、速度低下位置でアプローチ速度が高速から低速になるように、変位機構を制御する。 (Section 1) The scanning probe microscope of the present disclosure includes a sample stage, a cantilever, a displacement mechanism, a detection mechanism, and an approach processing section. A sample is placed on the sample stage. The cantilever is scanned along the surface of the sample. The displacement mechanism changes the relative position of the sample stage and the cantilever in the thickness direction of the sample. The detection mechanism acquires first information that is information regarding the position of the cantilever in the thickness direction, and second information that is information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction. The approach processing section controls the displacement mechanism at a predetermined approach speed so that the sample stage and the cantilever are brought close to each other. The approach processing unit determines a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information. The approach processing unit also controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position.
 このような構成によれば、走査型プローブ顕微鏡は、試料の位置または試料台の位置である第2情報のみならず、カンチレバーの第1情報も検出する。そして、走査型プローブ顕微鏡は、第1情報と第2情報とに基づいて、アプローチ速度を高速から低速に切り替える速度低下位置を決定できる。よって、カンチレバーが、試料の厚み方向において移動可能であっても、適切に、低下位置を決定できることから、カンチレバーが試料表面に接触する危険性を低減しつつ短時間でアプローチ動作を行うことができる。 According to such a configuration, the scanning probe microscope detects not only the second information, which is the position of the sample or the position of the sample stage, but also the first information of the cantilever. Then, the scanning probe microscope can determine a speed reduction position for switching the approach speed from high speed to low speed based on the first information and the second information. Therefore, even if the cantilever is movable in the thickness direction of the sample, the lowering position can be determined appropriately, and the approach operation can be performed in a short time while reducing the risk of the cantilever coming into contact with the sample surface. .
 (第2項) 第1項に記載の走査型プローブ顕微鏡であって、第2情報は、厚み方向における試料の表面の位置を示す情報である。 (Section 2) In the scanning probe microscope according to Item 1, the second information is information indicating the position of the surface of the sample in the thickness direction.
 このような構成によれば、検出機構が、試料の表面を検出することにより第2情報を検出することができる。 According to such a configuration, the detection mechanism can detect the second information by detecting the surface of the sample.
 (第3項) 第1項に記載の走査型プローブ顕微鏡であって、試料台は、試料が配置される配置面を有する。第2情報は、厚み方向における配置面の位置を示す情報である。アプローチ処理部は、ユーザから試料の厚みを示す厚み情報の入力を受付ける。アプローチ処理部は、第1情報と、第2情報と、厚み情報とに基づいて、速度低下位置を決定する。 (Section 3) In the scanning probe microscope according to Item 1, the sample stage has a placement surface on which the sample is placed. The second information is information indicating the position of the placement surface in the thickness direction. The approach processing unit receives input of thickness information indicating the thickness of the sample from the user. The approach processing unit determines the speed reduction position based on the first information, the second information, and the thickness information.
 このような構成によれば、検出機構が、試料の表面を検出できない場合であっても、第2情報を取得できる。 According to such a configuration, the second information can be acquired even if the detection mechanism cannot detect the surface of the sample.
 (第4項) 第3項に記載の走査型プローブ顕微鏡であって、走査型プローブ顕微鏡は、検出機構が第2情報を取得するための所定処理を実行する。検出機構は、所定処理が実行された後に、第2情報を取得する。 (Section 4) In the scanning probe microscope described in Section 3, the scanning probe microscope executes a predetermined process for the detection mechanism to acquire the second information. The detection mechanism acquires the second information after the predetermined process is executed.
 このような構成によれば、たとえば、試料の阻害により検出機構が取得できない場合であっても、所定処理を実行することにより、配置面の位置を示す第2情報を取得できる。 According to such a configuration, even if the detection mechanism cannot be acquired due to obstruction of the sample, for example, the second information indicating the position of the placement surface can be acquired by executing the predetermined process.
 (第5項) 第4項に記載の走査型プローブ顕微鏡であって、所定処理は、試料台を移動させる処理を含む。 (Section 5) In the scanning probe microscope according to Item 4, the predetermined process includes a process of moving the sample stage.
 このような構成によれば、試料台を移動させるという比較的簡易な処理により、第2情報を取得できる。 According to such a configuration, the second information can be acquired through a relatively simple process of moving the sample stage.
 (第6項) 第1項~第5項のいずれか1項に記載の走査型プローブ顕微鏡であって、検出機構は、焦点距離が一定である光学顕微鏡を含む。カンチレバーは、厚み方向において、光学顕微鏡と、試料台との間に配置される。走査型プローブ顕微鏡は、厚み方向において、光学顕微鏡を移動させる。検出機構は、カンチレバーと、光学顕微鏡との距離が焦点距離となる該光学顕微鏡の位置に基づいて第1情報を取得する。試料または試料台と、光学顕微鏡との距離が焦点距離となる該光学顕微鏡の位置に基づいて第2情報を取得する。 (Section 6) In the scanning probe microscope according to any one of Items 1 to 5, the detection mechanism includes an optical microscope having a constant focal length. The cantilever is arranged between the optical microscope and the sample stage in the thickness direction. A scanning probe microscope moves an optical microscope in the thickness direction. The detection mechanism acquires first information based on the position of the optical microscope where the distance between the cantilever and the optical microscope is a focal length. Second information is acquired based on the position of the optical microscope where the focal length is the distance between the sample or sample stage and the optical microscope.
 このような構成によれば、比較的簡易な構成である顕微鏡により、第1情報および第2情報を取得できる。 According to such a configuration, the first information and the second information can be acquired using a microscope with a relatively simple configuration.
 (第7項) 第6項に記載の走査型プローブ顕微鏡であって、カンチレバーは、試料と対向する部分の反対側に反射部材が形成されている。カンチレバーと試料との間に作用する物理量が一定となるように変位する。走査型プローブ顕微鏡は、反射部材に光を照射する光源をさらに備える。走査型プローブ顕微鏡は、反射部材における光の反射光に基づいて試料を測定する。検出機構は、反射部材と、光学顕微鏡との距離が焦点距離となる該光学顕微鏡の位置に基づいて第1情報を取得する。 (Section 7) In the scanning probe microscope described in Item 6, the cantilever has a reflecting member formed on the opposite side of the portion facing the sample. The displacement is made so that the physical quantity acting between the cantilever and the sample remains constant. The scanning probe microscope further includes a light source that irradiates the reflective member with light. A scanning probe microscope measures a sample based on light reflected from a reflecting member. The detection mechanism acquires the first information based on the position of the optical microscope where the distance between the reflecting member and the optical microscope is a focal length.
 このような構成によれば、試料を測定するために用いられる反射部材と、第1情報を取得するために用いられる反射部材とを兼用できる。よって、試料を測定するために用いられる反射部材と、第1情報を取得するために用いられる反射部材とが別の走査型プローブ顕微鏡と比較して、本開示の走査型プローブ顕微鏡は、部品点数を削減できる。 According to such a configuration, the reflecting member used to measure the sample and the reflecting member used to obtain the first information can be used both. Therefore, compared to a scanning probe microscope in which the reflective member used to measure the sample and the reflective member used to acquire the first information are separate, the scanning probe microscope of the present disclosure has fewer parts. can be reduced.
 (第8項) 第1項~第5項のいずれか1項に記載の走査型プローブ顕微鏡であって、走査型プローブ顕微鏡は、前回決定された速度低下位置を記憶する記憶装置をさらに備える。アプローチ処理部は、前回記憶装置に記憶された速度低下位置でアプローチ速度が高速から低速になるように、変位機構を制御する。 (Section 8) The scanning probe microscope according to any one of Items 1 to 5 further includes a storage device that stores the previously determined speed reduction position. The approach processing unit controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position previously stored in the storage device.
 このような構成によれば、以前に決定された速度低下位置に基づいて、変位機構を制御できることから、速度低下位置を決定する処理を削減することができる。 According to such a configuration, the displacement mechanism can be controlled based on the previously determined speed reduction position, so it is possible to reduce the process of determining the speed reduction position.
 (第9項) 第1項~第5項のいずれか1項に記載の走査型プローブ顕微鏡であって、アプローチ処理部は、カンチレバーと試料との間に作用する物理量が規定量となるまでフィードバック制御を実行することにより、変位機構を制御する。 (Section 9) In the scanning probe microscope according to any one of Items 1 to 5, the approach processing section provides feedback until the physical quantity acting between the cantilever and the sample reaches a specified value. The displacement mechanism is controlled by executing the control.
 このような構成によれば、比較的簡易な処理により変位機構を制御することができる。
 (第10項) 第1項~第5項のいずれか1項に記載の走査型プローブ顕微鏡であって、カンチレバーは、試料台とは独立して厚み方向において移動する。
According to such a configuration, the displacement mechanism can be controlled by relatively simple processing.
(Section 10) In the scanning probe microscope according to any one of Items 1 to 5, the cantilever moves in the thickness direction independently of the sample stage.
 このような構成によれば、試料を試料台に配置させる場合などのユーザの利便性を向上させることができる。 According to such a configuration, it is possible to improve convenience for the user when placing the sample on the sample stage.
 (第11項) 本開示の制御方法は、走査型プローブ顕微鏡の制御方法である。走査型プローブ顕微鏡は、試料が配置される試料台と、試料の表面に沿って走査されるカンチレバーとを備える。試料台とカンチレバーとの試料の厚み方向における相対位置は変更される。制御方法は、厚み方向におけるカンチレバーの位置に関する第1情報と、厚み方向における試料の位置または厚み方向における試料台の位置に関する第2情報とを取得することを備える。制御方法は、試料台とカンチレバーとが近接するように、所定のアプローチ速度で相対位置を変更することを備える。制御方法は、第1情報と第2情報とに基づいて、アプローチ速度を高速から低速に切り替える速度低下位置を決定することを備える。相対位置を変更することは、速度低下位置でアプローチ速度が高速から低速になるように、相対位置を変更することを含む。 (Section 11) The control method of the present disclosure is a control method of a scanning probe microscope. A scanning probe microscope includes a sample stage on which a sample is placed and a cantilever that scans along the surface of the sample. The relative positions of the sample stage and the cantilever in the thickness direction of the sample are changed. The control method includes acquiring first information regarding the position of the cantilever in the thickness direction, and second information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction. The control method includes changing the relative position of the sample stage and the cantilever at a predetermined approach speed so that the sample stage and the cantilever become close to each other. The control method includes determining a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information. Changing the relative position includes changing the relative position such that the approach speed is from high to low at the reduced speed position.
 このような構成によれば、走査型プローブ顕微鏡は、試料の位置または試料台の位置である第2情報のみならず、カンチレバーの第1情報も検出する。そして、走査型プローブ顕微鏡は、第1情報と第2情報とに基づいて、アプローチ速度を高速から低速に切り替える速度低下位置を決定できる。よって、カンチレバーが、試料の厚み方向において移動可能であっても、適切に、低下位置を決定できることから、カンチレバーが試料表面に接触する危険性を低減しつつ短時間でアプローチ動作を行うことができる。 According to such a configuration, the scanning probe microscope detects not only the second information, which is the position of the sample or the position of the sample stage, but also the first information of the cantilever. Then, the scanning probe microscope can determine a speed reduction position for switching the approach speed from high speed to low speed based on the first information and the second information. Therefore, even if the cantilever is movable in the thickness direction of the sample, the lowering position can be determined appropriately, and the approach operation can be performed in a short time while reducing the risk of the cantilever coming into contact with the sample surface. .
 なお、上述した実施形態および変更例について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施形態で説明された構成を適宜組み合わせることは出願当初から予定されている。 Regarding the above-mentioned embodiments and modifications, it is planned from the beginning of the application that the configurations described in the embodiments, including combinations not mentioned in the specification, may be combined as appropriate within the scope of not causing any inconvenience or contradiction. has been done.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that equivalent meanings to the claims and all changes within the range be included.
 1 光学系、2 カンチレバー、2a 反射部材、3 針、3a 先端、4 ホルダ、5 ビームスプリッタ、6 レーザ光源、7 反射鏡、8 光検出器、10 測定装置、12 微動機構、14 試料台、14a 配置面、20 情報処理装置、22 フィードバック信号発生部、30 表示装置、30A 表示領域、35 カンチレバーユニット、40 入力装置、45 入力領域、50 光学顕微鏡、50a 検出光、61 第1モータ、62 第2モータ、102 検出部、104 アプローチ処理部、108 記憶部、108A 前回速度低下位置、110 検出機構、162 ROM、164 RAM。 1 Optical system, 2 Cantilever, 2a Reflecting member, 3 Needle, 3a tip, 4 Holder, 5 Beam splitter, 6 Laser light source, 7 Reflector, 8 Photodetector, 10 Measuring device, 12 Fine movement mechanism, 14 Sample stage, 14a Arrangement surface, 20 Information processing device, 22 Feedback signal generation unit, 30 Display device, 30A Display area, 35 Cantilever unit, 40 Input device, 45 Input area, 50 Optical microscope, 50a Detection light, 61 First motor, 62 Second Motor, 102 detection unit, 104 approach processing unit, 108 storage unit, 108A previous speed reduction position, 110 detection mechanism, 162 ROM, 164 RAM.

Claims (11)

  1.  試料が配置される試料台と、
     前記試料の表面に沿って走査されるカンチレバーと、
     前記試料台と前記カンチレバーとの前記試料の厚み方向における相対位置を変更する変位機構と、
     前記厚み方向における前記カンチレバーの位置に関する情報である第1情報と、前記厚み方向における前記試料の位置または前記厚み方向における前記試料台の位置に関する情報である第2情報とを取得する検出機構と、
     前記試料台と前記カンチレバーとが近接するように、所定のアプローチ速度で前記変位機構を制御するアプローチ処理部とを備え、
     前記アプローチ処理部は、
      前記第1情報と前記第2情報とに基づいて、前記アプローチ速度を高速から低速に切り替える速度低下位置を決定し、
      前記速度低下位置で前記アプローチ速度が高速から低速になるように、前記変位機構を制御する、走査型プローブ顕微鏡。
    a sample stage on which the sample is placed;
    a cantilever scanned along the surface of the sample;
    a displacement mechanism that changes the relative position of the sample stage and the cantilever in the thickness direction of the sample;
    a detection mechanism that acquires first information that is information regarding the position of the cantilever in the thickness direction, and second information that is information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction;
    an approach processing unit that controls the displacement mechanism at a predetermined approach speed so that the sample stage and the cantilever are brought close to each other;
    The approach processing unit is
    determining a speed reduction position at which the approach speed is switched from high speed to low speed based on the first information and the second information;
    A scanning probe microscope, wherein the displacement mechanism is controlled so that the approach speed changes from high to low at the speed reduction position.
  2.  前記第2情報は、前記厚み方向における前記試料の表面の位置を示す情報である、請求項1に記載の走査型プローブ顕微鏡。 The scanning probe microscope according to claim 1, wherein the second information is information indicating a position of the surface of the sample in the thickness direction.
  3.  前記試料台は、前記試料が配置される配置面を有し、
     前記第2情報は、前記厚み方向における前記配置面の位置を示す情報であり、
     前記アプローチ処理部は、
      ユーザから前記試料の厚みを示す厚み情報の入力を受付け、
      前記第1情報と、前記第2情報と、前記厚み情報とに基づいて、前記速度低下位置を決定する、請求項1に記載の走査型プローブ顕微鏡。
    The sample stage has a placement surface on which the sample is placed,
    The second information is information indicating the position of the placement surface in the thickness direction,
    The approach processing unit is
    Accepting input of thickness information indicating the thickness of the sample from the user,
    The scanning probe microscope according to claim 1, wherein the speed reduction position is determined based on the first information, the second information, and the thickness information.
  4.  前記走査型プローブ顕微鏡は、前記検出機構が前記第2情報を取得するための所定処理を実行し、
     前記検出機構は、前記所定処理が実行された後に、前記第2情報を取得する、請求項3に記載の走査型プローブ顕微鏡。
    The scanning probe microscope executes a predetermined process for the detection mechanism to acquire the second information,
    The scanning probe microscope according to claim 3, wherein the detection mechanism acquires the second information after the predetermined process is executed.
  5.  前記所定処理は、前記試料台を移動させる処理を含む、請求項4に記載の走査型プローブ顕微鏡。 The scanning probe microscope according to claim 4, wherein the predetermined process includes a process of moving the sample stage.
  6.  前記検出機構は、焦点距離が一定である光学顕微鏡を含み、
     前記カンチレバーは、前記厚み方向において、前記光学顕微鏡と、前記試料台との間に配置され、
     前記走査型プローブ顕微鏡は、前記厚み方向において、前記光学顕微鏡を移動させ、
     前記検出機構は、
      前記カンチレバーと、前記光学顕微鏡との距離が前記焦点距離となる該光学顕微鏡の位置に基づいて前記第1情報を取得し、
      前記試料または前記試料台と、前記光学顕微鏡との距離が前記焦点距離となる該光学顕微鏡の位置に基づいて前記第2情報を取得する、請求項1~請求項5のいずれか1項に記載の走査型プローブ顕微鏡。
    The detection mechanism includes an optical microscope with a constant focal length,
    The cantilever is arranged between the optical microscope and the sample stage in the thickness direction,
    The scanning probe microscope moves the optical microscope in the thickness direction,
    The detection mechanism is
    acquiring the first information based on the position of the optical microscope where the distance between the cantilever and the optical microscope is the focal length;
    According to any one of claims 1 to 5, the second information is acquired based on the position of the optical microscope where the distance between the sample or the sample stage and the optical microscope is the focal length. scanning probe microscope.
  7.  前記カンチレバーは、
      前記試料と対向する部分の反対側に反射部材が形成されており、
      前記カンチレバーと前記試料との間に作用する物理量が一定となるように変位し、
     前記走査型プローブ顕微鏡は、前記反射部材に光を照射する光源をさらに備え、
     前記走査型プローブ顕微鏡は、前記反射部材における前記光の反射光に基づいて前記試料を測定し、
     前記検出機構は、前記反射部材と、前記光学顕微鏡との距離が前記焦点距離となる該光学顕微鏡の位置に基づいて前記第1情報を取得する、請求項6に記載の走査型プローブ顕微鏡。
    The cantilever is
    A reflective member is formed on the opposite side of the portion facing the sample,
    Displaced so that the physical quantity acting between the cantilever and the sample is constant,
    The scanning probe microscope further includes a light source that irradiates the reflective member with light,
    The scanning probe microscope measures the sample based on the reflected light of the light on the reflective member,
    The scanning probe microscope according to claim 6, wherein the detection mechanism acquires the first information based on a position of the optical microscope where the distance between the reflecting member and the optical microscope is the focal length.
  8.  前記走査型プローブ顕微鏡は、前回決定された前記速度低下位置を記憶する記憶装置をさらに備え、
     前記アプローチ処理部は、前回記憶装置に記憶された前記速度低下位置で前記アプローチ速度が高速から低速になるように、前記変位機構を制御する、請求項1~請求項5のいずれか1項に記載の走査型プローブ顕微鏡。
    The scanning probe microscope further includes a storage device that stores the previously determined speed reduction position,
    According to any one of claims 1 to 5, the approach processing unit controls the displacement mechanism so that the approach speed changes from high to low at the speed reduction position previously stored in the storage device. The scanning probe microscope described.
  9.  前記アプローチ処理部は、前記カンチレバーと前記試料との間に作用する物理量が規定量となるまでフィードバック制御を実行することにより、前記変位機構を制御する、請求項1~請求項5のいずれか1項に記載の走査型プローブ顕微鏡。 Any one of claims 1 to 5, wherein the approach processing unit controls the displacement mechanism by executing feedback control until a physical quantity acting between the cantilever and the sample reaches a specified value. The scanning probe microscope described in Section 1.
  10.  前記カンチレバーは、前記試料台とは独立して前記厚み方向において移動する、請求項1~請求項5のいずれか1項に記載の走査型プローブ顕微鏡。 The scanning probe microscope according to any one of claims 1 to 5, wherein the cantilever moves in the thickness direction independently of the sample stage.
  11.  走査型プローブ顕微鏡の制御方法であって、
     前記走査型プローブ顕微鏡は、
     試料が配置される試料台と、
     前記試料の表面に沿って走査されるカンチレバーとを備え、
     前記試料台と前記カンチレバーとの前記試料の厚み方向における相対位置は変更され、
     前記制御方法は、
      前記厚み方向における前記カンチレバーの位置に関する第1情報と、前記厚み方向における前記試料の位置または前記厚み方向における前記試料台の位置に関する第2情報とを取得することと、
      前記試料台と前記カンチレバーとが近接するように、所定のアプローチ速度で前記相対位置を変更することと、
      前記第1情報と前記第2情報とに基づいて、前記アプローチ速度を高速から低速に切り替える速度低下位置を決定することとを備え、
     前記相対位置を変更することは、前記速度低下位置で前記アプローチ速度が高速から低速になるように、前記相対位置を変更することを含む、制御方法。
    A method for controlling a scanning probe microscope, the method comprising:
    The scanning probe microscope includes:
    a sample stage on which the sample is placed;
    a cantilever that is scanned along the surface of the sample;
    The relative position of the sample stage and the cantilever in the thickness direction of the sample is changed,
    The control method includes:
    acquiring first information regarding the position of the cantilever in the thickness direction, and second information regarding the position of the sample in the thickness direction or the position of the sample stage in the thickness direction;
    changing the relative position at a predetermined approach speed so that the sample stage and the cantilever approach each other;
    determining a speed reduction position for switching the approach speed from high speed to low speed based on the first information and the second information,
    Changing the relative position includes changing the relative position such that the approach speed changes from high to low at the speed reduction position.
PCT/JP2023/021095 2022-07-14 2023-06-07 Scanning probe microscope and control method WO2024014186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-113125 2022-07-14
JP2022113125 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014186A1 true WO2024014186A1 (en) 2024-01-18

Family

ID=89536649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021095 WO2024014186A1 (en) 2022-07-14 2023-06-07 Scanning probe microscope and control method

Country Status (1)

Country Link
WO (1) WO2024014186A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101317A (en) * 1995-10-05 1997-04-15 Olympus Optical Co Ltd Approach apparatus for scan type probe microscope
JPH10282127A (en) * 1997-04-04 1998-10-23 Hitachi Constr Mach Co Ltd Scanning probe microscope
JP2001228071A (en) * 2000-02-14 2001-08-24 Olympus Optical Co Ltd Scanning type probe microscope combined with surface measuring instrument
JP2005338002A (en) * 2004-05-28 2005-12-08 Ricoh Co Ltd Near-field optical probe unit, its producing system and method, near-field optical microscope and method for measuring sample using near-field light
JP2007163333A (en) * 2005-12-15 2007-06-28 Hitachi Kenki Fine Tech Co Ltd Scanning probe microscope
JP2021189061A (en) * 2020-06-01 2021-12-13 株式会社日立ハイテクサイエンス Microscope system and method for observing sample using microscope system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101317A (en) * 1995-10-05 1997-04-15 Olympus Optical Co Ltd Approach apparatus for scan type probe microscope
JPH10282127A (en) * 1997-04-04 1998-10-23 Hitachi Constr Mach Co Ltd Scanning probe microscope
JP2001228071A (en) * 2000-02-14 2001-08-24 Olympus Optical Co Ltd Scanning type probe microscope combined with surface measuring instrument
JP2005338002A (en) * 2004-05-28 2005-12-08 Ricoh Co Ltd Near-field optical probe unit, its producing system and method, near-field optical microscope and method for measuring sample using near-field light
JP2007163333A (en) * 2005-12-15 2007-06-28 Hitachi Kenki Fine Tech Co Ltd Scanning probe microscope
JP2021189061A (en) * 2020-06-01 2021-12-13 株式会社日立ハイテクサイエンス Microscope system and method for observing sample using microscope system

Similar Documents

Publication Publication Date Title
US20110138506A1 (en) Method of probe alignment
US5196713A (en) Optical position sensor with corner-cube and servo-feedback for scanning microscopes
CN101625303B (en) Vacuum atomic force microscope and using method thereof
JP2005506519A (en) Apparatus and method for decoupling and measuring movement in a measuring device
JPH09101317A (en) Approach apparatus for scan type probe microscope
JP6135820B2 (en) Scanning probe microscope
US20080087820A1 (en) Probe control method for scanning probe microscope
WO2024014186A1 (en) Scanning probe microscope and control method
CN110869772B (en) Scanning probe system for controlling inclination angle of probe tip
WO2018155563A1 (en) Scanning probe microscope
US6745617B2 (en) Scanning probe microscope
JP2003014605A (en) Scanning type probe microscope
JP2005147979A (en) Scanning probe microscope
JP2021060310A (en) Scanning probe microscope and method for adjusting position of scanning probe microscope
US11391755B2 (en) Scanning probe microscope and setting method thereof
JP2002372488A (en) Method for bringing closer probe of scanning-type probe microscope
JP4128256B2 (en) Scanning laser microscope
JPH0835974A (en) Probe approaching method for scanning probe microscope
JPH06137846A (en) Interatomic force microscope device
JP2000121534A (en) Scanning probe microscope
JP2002323425A (en) Scanning probe microscope and method of positioning probe
JP2002107284A (en) Force measuring method and scanning force microscope
JP2003215017A (en) Scanning probe microscope
US20190293680A1 (en) Scanning probe microscope
JP4433837B2 (en) Scanning probe microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839362

Country of ref document: EP

Kind code of ref document: A1