WO2024014125A1 - Unit - Google Patents

Unit Download PDF

Info

Publication number
WO2024014125A1
WO2024014125A1 PCT/JP2023/018722 JP2023018722W WO2024014125A1 WO 2024014125 A1 WO2024014125 A1 WO 2024014125A1 JP 2023018722 W JP2023018722 W JP 2023018722W WO 2024014125 A1 WO2024014125 A1 WO 2024014125A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
gear mechanism
engagement element
engagement
unit
Prior art date
Application number
PCT/JP2023/018722
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 八木
和年 下薗
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2024014125A1 publication Critical patent/WO2024014125A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another

Definitions

  • the present invention relates to a unit having a power transmission mechanism inside.
  • the present invention has been made in view of such technical problems, and an object of the present invention is to reduce the gear ratio during gear change in a unit having a power transmission mechanism inside.
  • the unit includes: an input element, output element, a first engagement element; a second engagement element; a third engagement element; a first planetary gear mechanism in which a first rotating element, a second rotating element, and a third rotating element are arranged in this order on a collinear diagram; and a second planetary gear mechanism in which a fourth rotational element, a fifth rotational element, and a sixth rotational element are arranged in this order on the collinear diagram.
  • the input element is connected to the first rotation element and the sixth rotation element
  • the output element is connected to the second rotation element and the fifth rotation element
  • One side of the first engagement element is connected to the third rotating element, the other side of the first engagement element is fixed
  • One side of the second engagement element is connected to the fourth rotation element, the other side of the second engagement element is fixed
  • the third engagement element connects two rotating elements selected from the first to sixth rotating elements that are not connected to each other.
  • three or more gear stages can be realized by changing the engagement states of the first to third engagement elements.
  • the interstage ratio is smaller than that of a unit with two forward speeds, and the acceleration/deceleration of output rotation during shifting can be suppressed to be smaller than that of a unit with two forward speeds.
  • a more appropriate gear ratio can be set for each gear.
  • FIG. 1 is a skeleton diagram of a unit according to an embodiment of the present invention.
  • FIG. 2 is an engagement table showing the engagement state of each engagement element at each gear stage.
  • FIG. 3 is a collinear diagram of units.
  • FIG. 4A is a skeleton diagram of a modified example of the unit.
  • FIG. 4B is a skeleton diagram of a modified example of the unit.
  • FIG. 4C is a skeleton diagram of a modified example of the unit.
  • FIG. 4D is a skeleton diagram of a modified example of the unit.
  • Unit means any device that has a power transmission mechanism inside, such as a gear mechanism or a differential gear mechanism, and includes a motor unit that has a motor and a power transmission mechanism, an automatic transmission unit, a reduction gear unit, etc. .
  • Transmission ratio is the value obtained by dividing the input rotational speed of the unit by the output rotational speed.
  • “Input rotation” includes not only rotation input to the unit from a power source outside the unit, but also rotation input to the unit from a power source within the unit.
  • the "interstage ratio” is the value obtained by dividing the larger (low-speed) gear ratio by the smaller (high-speed) gear ratio of the two gear ratios realized by the unit.
  • Axial direction means the axial direction of the rotating shaft of the parts that make up the unit.
  • the parts include motors, gear mechanisms, differential gear mechanisms, etc.
  • Ring direction means the radial direction from the central axis of the rotating shaft.
  • Housing means a container that houses the motor, inverter, and power transmission mechanism, and is composed of one or more cases.
  • a mode in which the case housing the motor, the case housing the inverter, and the case housing the power transmission mechanism are integrally formed is called “3in1.”
  • Motor means a rotating electrical machine that has a motor function, and may have a generator function in addition to the motor function.
  • Element A is connected to element B means that element A is connected to upstream or downstream element B in such a manner that power can be transmitted between element A and element B.
  • the power input side is upstream, and the power output side is downstream.
  • the element A is not limited to being connected to the element B directly or via another member, but may be connected via a clutch or the like.
  • Element A is fixed to element B refers to both the manner in which element A is directly fixed to element B, and the manner in which element A is fixed to element B via element C other than element A and B. included. “Element A is fixed” means that element A is fixed to another element and cannot rotate.
  • Element A and element B overlap when viewed in a predetermined direction means that element A and element B are lined up in a predetermined direction (axial direction, radial direction, gravity direction, etc.), and when observed from the predetermined direction, element A and element B overlap. Refers to a state in which element B at least partially overlaps. This is synonymous with "element A and element B overlap in a predetermined direction”. When element A and element B overlap in the axial direction, element A and element B are coaxial. When element A and element B are drawn side by side in a predetermined direction in the drawing, it means that element A and element B overlap when viewed in the predetermined direction.
  • element A and element B do not overlap when viewed in a predetermined direction means that element A and element B are not lined up in a predetermined direction (axial direction, radial direction, gravity direction, vehicle running direction, etc.). , refers to a state in which element A and element B do not have any overlapping portion when observed from a predetermined direction. This is synonymous with "element A and element B do not overlap in a predetermined direction". In the drawing, when element A and element B are drawn so as not to be lined up in a predetermined direction, it means that element A and element B do not overlap when viewed in the predetermined direction.
  • element A is located between element B and element C when viewed from a predetermined direction
  • element A is located between element B and element C when observed from a predetermined direction (axial direction, radial direction, gravity direction, etc.). means that something is observed.
  • element B, element A, and element C are arranged in this order along the axial direction, element A is observed to be between element B and element C when viewed in the radial direction, so element A can be said to be located between element B and element C.
  • Element A does not need to overlap elements B and C when viewed in the axial direction.
  • element A is drawn between elements B and C in the drawing, it means that element A is located between elements B and C when viewed in a predetermined direction.
  • “Arranged close to each other” means that two elements have a portion that overlaps with each other in an axial or radial view, and no other element is sandwiched between the two elements. .
  • "two engaging elements are arranged close to each other” means that a planetary gear mechanism or the like is not arranged between the two engaging elements. If no other element is drawn between element A and element B in the drawing, it means that element A and element B are arranged close to each other.
  • One side of the engagement element and “the other side of the engagement element” refer to an engagement element that is relatively non-rotatable when the engagement element is in the engaged state and becomes relatively rotatable when the engagement element is in the released state. means two elements contained in.
  • “One side of the engagement element” and “the other side of the engagement element” may be a combination of rotating elements or a combination of a rotating element and a non-rotating element, and generally the former is called a clutch, and the latter is called a brake.
  • one side of the engagement element means either “one side of the engagement element” or “the other side of the engagement element”.
  • FIG. 1 is a skeleton diagram showing the basic structure of a unit 100 according to an embodiment of the present invention.
  • the unit 100 is a forward drive unit for an electric vehicle that changes the rotation input from a motor as a power source (not shown) to an input element IN at a gear ratio corresponding to a gear position, and transmits it from an output element OUT to a drive wheel (not shown). It is a 3-speed automatic transmission unit.
  • both the input element IN and the output element OUT are rotating shafts.
  • the unit 100 accommodates an input element IN, first and second planetary gear mechanisms PG1, PG2, first to third engagement elements B1, B2, CL, an output element OUT, and a motor and inverter (not shown) in a housing 1. It is a so-called 3-in-1 unit.
  • the housing 1 is non-rotatably fixed to the vehicle.
  • the motor is electrically connected to a battery (not shown) outside the unit 100 via an inverter, and receives power from the battery to function as an electric motor.
  • the motor can also function as a generator.
  • the first planetary gear mechanism PG1 includes a first sun gear S1 as a first rotating element, a plurality of first pinion gears (not shown), and a second rotating element that rotatably supports the plurality of first pinion gears.
  • This is a single pinion planetary gear mechanism having a first carrier C1 and a first ring gear R1 as a third rotating element.
  • the first sun gear S1 meshes with a plurality of first pinion gears, and the plurality of first pinion gears mesh with a first ring gear R1.
  • the second planetary gear mechanism PG2 includes a second sun gear S2 as a fourth rotating element, a plurality of second pinion gears (not shown), and a fifth rotating element that rotatably supports the plurality of second pinion gears.
  • This is a single pinion planetary gear mechanism having two carriers C2 and a second ring gear R2 as a sixth rotating element.
  • the second sun gear S2 meshes with a plurality of second pinion gears, and the plurality of second pinion gears mesh with a second ring gear R2.
  • the first sun gear S1 is connected to the input element IN, the first sun gear S1, and the second ring gear R2.
  • the first carrier C1 is connected to the output element OUT and the second carrier C2.
  • the rotation speed of the output element OUT is the output rotation speed of the unit 100.
  • the first engagement element B1 is a brake.
  • the first engagement element B1 is composed of a hydraulic or electric clutch. If the two parts of the first engaging element B1 that are to be engaged when the first engaging element B1 is brought into the engaged state are one side and the other side, the one side is connected to the first ring gear R1. The other side is fixed to the housing 1. Thereby, the first ring gear R1 can be fixed to the housing 1 by engaging the first engagement element B1.
  • the second engagement element B2 is a brake.
  • the second engagement element B2 is constituted by a hydraulic or electric clutch. If the two parts of the second engaging element B2 that are to be engaged when the second engaging element B2 is brought into the engaged state are one side and the other side, the one side is connected to the second sun gear S2. The other side is fixed to the housing 1. Thereby, the second sun gear S2 can be fixed to the housing 1 by engaging the second engagement element B2.
  • the third engagement element CL is a clutch.
  • the third engagement element CL is composed of an electric multi-disc clutch.
  • the third engagement element CL includes a hub 11, inner friction plates 12 and outer friction plates 13 arranged alternately, a drum 14, and an electric actuator 15.
  • An inner friction plate 12 is spline-fitted to the outer periphery of the hub 11, and the inner friction plate 12 can be displaced relative to the hub 11 in the axial direction, but cannot rotate relative to the hub 11. Further, the hub 11 is spline-fitted to the input element IN, and cannot rotate relative to the input element IN.
  • the outer friction plate 13 is spline-fitted to the inner periphery of the drum 14, and the outer friction plate 13 can be displaced relative to the drum 14 but cannot rotate relative to the drum 14. Further, the drum 14 is connected to the first carrier C1 and the output element OUT.
  • the electric actuator 15 is an actuator that drives the third engagement element CL.
  • the piston 15p is moved out in the axial direction, the inner friction plate 12 and the outer friction plate 13 are pressed against each other and become unable to rotate relative to each other, and the third engagement element CL is engaged. state.
  • the electric actuator 15 mechanically applies force to the piston 15p and receives the reaction force from the piston 15p, so the electric actuator 15 is fixed to the housing 1.
  • Oil may be supplied to the hydraulic actuator by a hydraulic supply unit attached to the housing 1 or the like, or by a control valve unit consisting of a spool, a solenoid valve, etc.
  • the two parts of the third engaging element CL that are to be engaged when the third engaging element CL is brought into the engaged state are one side (hub 11) and the other side (drum 14)
  • one side One side is connected to the input element IN, the first sun gear S1 and the second ring gear R2, and the other side is connected to the first carrier C1 and the output element OUT.
  • the input element IN, the first sun gear S1, and the second ring gear R2 are connected to the first carrier C1 and the output element OUT.
  • the third engagement element CL is connected between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. layout design becomes easier.
  • Actuators that can be used for the third engagement element CL include actuators that are subject to layout constraints (electric actuators that need to be fixed to the housing 1 etc. due to reaction force, and actuators that need to be attached to the housing 1 etc.) There are two types of actuators: hydraulic actuators, etc.) and actuators that are less subject to layout constraints (hydraulic actuators, etc. that supply hydraulic pressure from a control valve unit). When using the former actuator, if it is necessary to arrange the third engagement element CL between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the difficulty of layout design increases.
  • the first The planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are arranged close to each other. This increases the degree of freedom in layout of other elements, and also allows the axial dimension of the unit 100 to be reduced.
  • the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
  • FIG. 2 is an engagement table showing the relationship between the engagement states of the first to third engagement elements B1, B2, and CL and the gears realized in the unit 100.
  • black circles indicate engaged states
  • blank circles indicate released states.
  • the first speed is achieved by engaging the first engagement element B1 and releasing the second and third engagement elements B2 and CL.
  • the second speed is achieved by engaging the second engagement element B2 and releasing the first and third engagement elements B1 and CL.
  • the third speed is achieved by engaging the third engagement element CL and releasing the first and second engagement elements B1 and B2.
  • FIG. 3 is a collinear diagram of the unit 100.
  • vertical lines l1 to l4 correspond to each rotating element of the first and second planetary gear mechanisms PG1 and PG2, and regarding the first planetary gear mechanism PG1, from the left side of the figure, the first sun gear S1, the first carrier C1, The first ring gear R1 is lined up in this order, and regarding the second planetary gear mechanism PG2, the second sun gear S2, second carrier C2, and second ring gear R2 are lined up in this order from the right side in the figure.
  • the same vertical line l1 corresponds to them.
  • the first carrier C1 and the second carrier C2 are also connected to each other, the same vertical line l2 corresponds to them.
  • the distance between the vertical lines l1 and l2 is 1, the distance ⁇ 1 between the vertical lines l2 and l3 is a value obtained by dividing the number of teeth of the first sun gear S1 by the number of teeth of the first ring gear R1.
  • the interval ⁇ 2 between vertical line l2 and vertical line l1 is the value obtained by dividing the number of teeth of second sun gear S2 by the number of teeth of second ring gear R2. .
  • the first ring gear R1 In the first speed, the first ring gear R1 is fixed to the housing 1 by engaging the first engagement element B1, and the rotational speed of the first ring gear R1 becomes zero, so the straight line L1 corresponding to the first speed is A straight line passes through point X1.
  • the second sun gear S2 is fixed to the housing 1 by engaging the second engagement element B2, and the rotational speed of the second sun gear S2 becomes zero, so that the straight line corresponding to the second gear is L2 is a straight line passing through point X2.
  • the unit 100 it is possible to realize three gear stages including the third gear with a gear ratio of 1, so the inter-stage ratio is smaller compared to a unit with two forward speeds, and the output rotation at the time of gear shifting is reduced. acceleration/deceleration can be kept smaller than that of a two-speed forward unit. Further, since the first to third speeds can be used for low speed, medium speed, and high speed, respectively, it is possible to set an appropriate gear ratio depending on the speed range.
  • the gear ratio is 1.
  • the gear ratio is 1.
  • 4A to 4D are skeleton diagrams of modified examples of the unit 100.
  • the position of the third engagement element CL is different from the skeleton diagram shown in FIG.
  • the same elements as in the skeleton diagram shown in FIG. 1 are given the same reference numerals.
  • the position of the third engagement element CL may be other than the position shown in FIG. 1.
  • the third engagement element CL is arranged at a position where the input element IN, the first sun gear S1, and the second ring gear R2 can be connected to the second sun gear S2.
  • one side (hub 11) of the third engagement element CL is connected to the input element IN, the first sun gear S1, and the second ring gear R2, and the other side (drum 14) is connected to the second engagement element B2. It is connected to one side and the second sun gear S2.
  • This arrangement is suitable for a layout design in which the third engagement element CL is not arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. If the third engagement element CL is not disposed between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased. can.
  • the actuator for driving the third engagement element CL may be the same electric actuator 15 as the example shown in FIG. Actuators may also be used.
  • first planetary gear mechanism PG1 is arranged on one side of the second planetary gear mechanism PG2 in the axial direction
  • the third engagement element CL is arranged on the other side of the second planetary gear mechanism PG2 in the axial direction.
  • the degree of freedom in layout of other elements is increased, and the axial dimension of the unit 100 can be reduced.
  • the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
  • FIG. 4B is a partial modification of FIG. 4A.
  • the first engaging element B1, the second engaging element B2, and the third engaging element The CLs are arranged in one place.
  • the first engagement element B1, the second engagement element B2, and the third engagement element CL can be arranged close to each other, so the space occupied by these elements is reduced, and the degree of freedom in layout of other elements is increased. can be increased.
  • the third engagement element CL positions the input element IN, the first sun gear S1, and the second ring gear R2 at a position where they can be connected to the first carrier C1, the second carrier C2, and the output element OUT. Placed. Specifically, one side (hub 11) of the third engagement element CL is connected to the input element IN, the first sun gear S1, and the second ring gear R2, and the other side (drum 14) is connected to the first carrier C1, the second ring gear R2. 2 carrier C2 and the output element OUT.
  • the third engagement element CL is arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, so it can be used as an actuator for driving the third engagement element CL with fewer layout restrictions.
  • a hydraulic actuator 16 which supplies hydraulic pressure from a control valve unit.
  • the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
  • the third engagement element CL when the third engagement element CL is engaged, in addition to achieving a gear ratio of 1, the input element IN and output element OUT are connected, so the power transmission path from the input element IN to the output element OUT is minimized. Therefore, power transmission loss can be further reduced.
  • the third engagement element CL positions the input element IN, the first sun gear S1, and the second ring gear R2 at a position where they can be connected to the first carrier C1, the second carrier C2, and the output element OUT. Placed. Specifically, one side (hub 11) of the third engagement element CL is connected to the input element IN, the first sun gear S1 and the second ring gear R2, and the other side (drum 14) is connected to the first carrier C1 and the second ring gear R2. Connected to carrier C2 and output element OUT.
  • the third engagement element CL is arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, so it can be used as an actuator for driving the third engagement element CL with fewer layout restrictions.
  • a hydraulic actuator 16 which supplies hydraulic pressure from a control valve unit.
  • the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
  • the third engagement element CL when the third engagement element CL is engaged, in addition to achieving a gear ratio of 1, the input element IN and output element OUT are connected, so the power transmission path from the input element IN to the output element OUT is minimized. Therefore, power transmission loss can be further reduced.
  • FIGS. 4A to 4D are the same as those of the skeleton diagram of FIG. 1 shown in FIGS. 2 and 3.
  • the unit 100 is input element IN; Output element OUT and A first engagement element B1; a second engagement element B2; a third engagement element CL; A first planetary gear mechanism PG1 in which a first sun gear S1, a first carrier C1, and a first ring gear R1 are arranged in this order on a collinear diagram;
  • the second planetary gear mechanism PG2 includes a second sun gear S2, a second carrier C2, and a second ring gear R2 arranged in this order on the collinear diagram.
  • Input element IN is connected to first sun gear S1 and second ring gear R2,
  • the output element OUT is connected to the first carrier C1 and the second carrier C2,
  • One side of the first engagement element B1 is connected to the first ring gear R1, The other side of the first engagement element B1 is fixed
  • One side of the second engagement element B2 is connected to the second sun gear S2,
  • the other side of the second engagement element B2 is fixed
  • the third engagement element CL includes two rotating elements not connected to each other selected from the first sun gear S1, the first carrier C1, the first ring gear R1, the second sun gear S2, the second carrier C2, and the second ring gear R2. Connect elements.
  • three or more gears can be realized by changing the engagement states of the first to third engagement elements B1, B2, and CL.
  • the interstage ratio is smaller than that of a unit with two forward speeds, and the acceleration/deceleration of output rotation during shifting can be suppressed to be smaller than that of a unit with two forward speeds.
  • a more appropriate gear ratio can be set for each gear stage.
  • the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are single pinion planetary gear mechanisms, and the third engagement element CL is connected to the first sun gear S1 and the first planetary gear mechanism. Connect to carrier C1.
  • This arrangement is suitable for a layout design in which the third engagement element CL is not arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. If the third engagement element CL is not disposed between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased. can.
  • the third engagement element CL when the third engagement element CL is engaged, in addition to achieving a gear ratio of 1, the input element IN and output element OUT are connected, so the power transmission path from the input element IN to the output element OUT is minimized. Therefore, power transmission loss can be further reduced.
  • the second planetary gear mechanism PG2 is disposed on one axial side of the first planetary gear mechanism PG1, and the third planetary gear mechanism PG2 is disposed on the other axial side of the first planetary gear mechanism PG1.
  • a matching element CL is placed.
  • the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are arranged close to each other. This increases the degree of freedom in layout of other elements, and also allows the axial dimension of the unit 100 to be reduced.
  • the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are single pinion planetary gear mechanisms, and the third engagement element CL is the first sun gear S1. and second sun gear S2.
  • This arrangement is suitable for a layout design in which the third engagement element CL is not arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. If the third engagement element CL is not disposed between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased. can.
  • the first planetary gear mechanism PG1 is arranged on one axial side of the second planetary gear mechanism PG2, and the first planetary gear mechanism PG1 is arranged on the other axial side of the second planetary gear mechanism PG2.
  • a third engagement element CL is arranged.
  • the degree of freedom in layout of other elements is increased, and the axial dimension of the unit 100 can be reduced. I can do it.
  • the third engagement element CL has a portion that overlaps with the first planetary gear mechanism PG1 when viewed in the axial direction. Further, when viewed in the axial direction, the third engagement element CL has a portion that overlaps with the second planetary gear mechanism PG2.
  • one side (drum 14) of the third engagement element CL is connected to one side of the second engagement element B2.
  • one side of the third engagement element CL and one side of the second engagement element B2 can be made into a common part (integral part), thereby reducing the number of parts of the unit 100. be able to.
  • the skeleton diagrams shown in FIGS. 1 and 4A to 4D are part of the application examples of the present invention, and the skeleton diagrams of units to which the present invention is applied are not limited to these.
  • first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are each a single pinion planetary gear mechanism, they may be double pinion planetary gear mechanisms.
  • first engagement element B1 and one side of the third engagement element CL.
  • the other side of the third engagement element CL may be connected to any one of the first sun gear S1, the first carrier C1, the first ring gear R1, the second sun gear S2, the second carrier C2, and the second ring gear R2.
  • Housing 100 Unit B1: First engaging element B2: Second engaging element CL: Third engaging element S1: First sun gear (first rotating element) C1: First carrier (second rotating element) R1: First ring gear (third rotating element) S2: 2nd sun gear (4th rotating element) C2: Second carrier (fifth rotating element) R2: 2nd ring gear (6th rotating element) IN: Input element OUT: Output element PG1: First planetary gear mechanism PG2: Second planetary gear mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

[Problem] To reduce the gear ratio during gear shifting in a unit that has an internal power transmission mechanism. [Solution] A unit has an input element, an output element, first to third engaging elements, a first planetary gear mechanism in which first to third rotating elements are arranged in this order on a collinear diagram, and a second planetary gear mechanism in which fourth to sixth rotating elements are arranged in this order on the collinear diagram. The input element is connected to the first rotating element and the sixth rotating element, the output element is connected to the second rotating element and the fifth rotating element, one side of the first engaging element is connected to the third rotating element, the other side of the first engaging element is fixed, one side of the second engaging element is connected to the fourth rotating element, the other side of the second engaging element is fixed, and the third engaging element connects two rotating elements that are selected from the first to sixth rotating elements and are not connected to each other.

Description

ユニットunit
 本発明は、動力伝達機構を内部に有するユニットに関する。 The present invention relates to a unit having a power transmission mechanism inside.
 特許文献1には、前進2速の電動車両用自動変速機ユニットが開示されている。当該ユニットにおいては、二つの摩擦クラッチの係合状態を切り替えることで、1速と、1速よりも変速比(=入力回転速度/出力回転速度)が小さな2速を実現することができる。 Patent Document 1 discloses an automatic transmission unit for an electric vehicle with two forward speeds. In this unit, by switching the engagement state of the two friction clutches, it is possible to realize the first speed and the second speed, which has a smaller gear ratio (=input rotational speed/output rotational speed) than the first speed.
 同様のユニットは、特許文献2から4にも開示されている。 Similar units are also disclosed in Patent Documents 2 to 4.
ドイツ特許第102019107517号明細書German Patent No. 102019107517 ドイツ特許出願公開第102019119947号明細書German Patent Application No. 102019119947 ドイツ特許出願公開第102019119949号明細書German Patent Application No. 102019119949 中国実用新案第207333597号明細書China Utility Model No. 207333597
 前進2速の電動車両用自動変速機ユニットにおいては、1速の変速比を大きくするほど減速によるトルク増幅効果が高くなるので、1速の変速比を大きくするほどモータの最大トルクを小さくすることができ、体格の小さなモータを選択することができる。これに対し、2速の変速比は、小さくするほどある車速を実現する際のモータの回転速度が低くなり、高速巡行時に有利である。 In an automatic transmission unit for an electric vehicle with two forward speeds, the torque amplification effect due to deceleration increases as the gear ratio of the first gear increases, so the maximum torque of the motor should be reduced as the gear ratio of the first gear increases. This allows you to select a motor with a small physique. On the other hand, as the gear ratio of the second speed is made smaller, the rotational speed of the motor to achieve a certain vehicle speed becomes lower, which is advantageous when cruising at high speed.
 しかしながら、上記設計思想のもと1速及び2速の変速比をそれぞれ設定すると、1速と2速を切り替える際の段間比(=1速の変速比/2速の変速比)が大きくなり、変速時の出力回転の加減速度が大きくなる。 However, if the gear ratios of 1st and 2nd gear are set respectively based on the above design concept, the interstage ratio (=1st gear gear ratio/2nd gear gear ratio) when switching between 1st gear and 2nd gear becomes larger. , the acceleration/deceleration of the output rotation during gear shifting increases.
 本発明は、このような技術的課題に鑑みてなされたもので、動力伝達機構を内部に有するユニットにおいて、変速時の段間比を小さくすることを目的とする。 The present invention has been made in view of such technical problems, and an object of the present invention is to reduce the gear ratio during gear change in a unit having a power transmission mechanism inside.
 本発明のある態様によれば、ユニットは、
 入力要素と、
 出力要素と、
 第1係合要素と、
 第2係合要素と、
 第3係合要素と、
 共線図上において第1回転要素、第2回転要素、第3回転要素がこの順で並ぶ第1遊星歯車機構と、
 前記共線図上において第4回転要素、第5回転要素、第6回転要素がこの順で並ぶ第2遊星歯車機構と、を有する。
 前記入力要素は、前記第1回転要素と前記第6回転要素に接続され、
 前記出力要素は、前記第2回転要素と前記第5回転要素に接続され、
 前記第1係合要素の一方側は、前記第3回転要素に接続され、
 前記第1係合要素の他方側は、固定され、
 前記第2係合要素の一方側は、前記第4回転要素に接続され、
 前記第2係合要素の他方側は、固定され、
 前記第3係合要素は、前記第1乃至第6回転要素から選ばれた、互いに接続されていない二つの回転要素を接続する。
According to an aspect of the invention, the unit includes:
an input element,
output element,
a first engagement element;
a second engagement element;
a third engagement element;
a first planetary gear mechanism in which a first rotating element, a second rotating element, and a third rotating element are arranged in this order on a collinear diagram;
and a second planetary gear mechanism in which a fourth rotational element, a fifth rotational element, and a sixth rotational element are arranged in this order on the collinear diagram.
the input element is connected to the first rotation element and the sixth rotation element,
the output element is connected to the second rotation element and the fifth rotation element,
One side of the first engagement element is connected to the third rotating element,
the other side of the first engagement element is fixed;
One side of the second engagement element is connected to the fourth rotation element,
the other side of the second engagement element is fixed;
The third engagement element connects two rotating elements selected from the first to sixth rotating elements that are not connected to each other.
 上記態様によれば、第1~第3係合要素の係合状態を変更することで、3以上の変速段を実現することができる。これにより、前進2速のユニットと比較して段間比が小さくなり、変速時の出力回転の加減速度を前進2速のユニットよりも小さく抑えることができる。また、より適切な変速比を各変速段に設定することができる。 According to the above aspect, three or more gear stages can be realized by changing the engagement states of the first to third engagement elements. As a result, the interstage ratio is smaller than that of a unit with two forward speeds, and the acceleration/deceleration of output rotation during shifting can be suppressed to be smaller than that of a unit with two forward speeds. Furthermore, a more appropriate gear ratio can be set for each gear.
 また、第1、第2係合要素を解放し、第3係合要素を係合すると変速比が1となり、第1、第2遊星歯車機構を構成する全ての回転要素が同一回転速度で回転するので、回転要素間の差回転に起因する動力伝達損失を低減することができる。 Furthermore, when the first and second engagement elements are released and the third engagement element is engaged, the gear ratio becomes 1, and all the rotating elements that make up the first and second planetary gear mechanisms rotate at the same rotational speed. Therefore, power transmission loss caused by differential rotation between rotating elements can be reduced.
図1は、本発明の実施形態に係るユニットのスケルトン図である。FIG. 1 is a skeleton diagram of a unit according to an embodiment of the present invention. 図2は、各変速段における各係合要素の係合状態を示した係合表である。FIG. 2 is an engagement table showing the engagement state of each engagement element at each gear stage. 図3は、ユニットの共線図である。FIG. 3 is a collinear diagram of units. 図4Aは、ユニットの変形例のスケルトン図である。FIG. 4A is a skeleton diagram of a modified example of the unit. 図4Bは、ユニットの変形例のスケルトン図である。FIG. 4B is a skeleton diagram of a modified example of the unit. 図4Cは、ユニットの変形例のスケルトン図である。FIG. 4C is a skeleton diagram of a modified example of the unit. 図4Dは、ユニットの変形例のスケルトン図である。FIG. 4D is a skeleton diagram of a modified example of the unit.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書で使用する用語の定義は次の通りである。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The definitions of terms used in this specification are as follows.
 「ユニット」とは、歯車機構、差動歯車機構等の動力伝達機構を内部に有する装置全般を意味し、モータ及び動力伝達機構を有するモータユニット、自動変速機ユニット、減速機ユニット等が含まれる。 "Unit" means any device that has a power transmission mechanism inside, such as a gear mechanism or a differential gear mechanism, and includes a motor unit that has a motor and a power transmission mechanism, an automatic transmission unit, a reduction gear unit, etc. .
 「変速比」とは、ユニットの入力回転速度を出力回転速度で割った値である。「入力回転」には、ユニット外の動力源からユニットに入力される回転だけでなく、ユニット内の動力源からユニットに入力される回転も含まれる。 "Transmission ratio" is the value obtained by dividing the input rotational speed of the unit by the output rotational speed. "Input rotation" includes not only rotation input to the unit from a power source outside the unit, but also rotation input to the unit from a power source within the unit.
 「段間比」は、ユニットで実現される二つの変速比について、大きい方(低速用)の変速比を小さい方(高速用)の変速比で割った値である。 The "interstage ratio" is the value obtained by dividing the larger (low-speed) gear ratio by the smaller (high-speed) gear ratio of the two gear ratios realized by the unit.
 「軸方向」とは、ユニットを構成する部品の回転軸の軸方向を意味する。部品は、モータ、歯車機構、差動歯車機構等である。「径方向」とは、回転軸の中心軸からの半径方向を意味する。 "Axial direction" means the axial direction of the rotating shaft of the parts that make up the unit. The parts include motors, gear mechanisms, differential gear mechanisms, etc. "Radial direction" means the radial direction from the central axis of the rotating shaft.
 「ハウジング」とは、モータ、インバータ及び動力伝達機構を収容する収容体を意味し、一つ以上のケースから構成される。モータを収容するケース、インバータを収容するケース及び動力伝達機構を収容するケースが一体形成されている態様は、「3in1」と呼ばれる。 "Housing" means a container that houses the motor, inverter, and power transmission mechanism, and is composed of one or more cases. A mode in which the case housing the motor, the case housing the inverter, and the case housing the power transmission mechanism are integrally formed is called "3in1."
 「モータ」は、電動機機能を有する回転電機を意味し、電動機機能に加え発電機機能を有していてもよい。 "Motor" means a rotating electrical machine that has a motor function, and may have a generator function in addition to the motor function.
 「要素Aが要素Bに接続される」とは、要素Aと要素Bとの間で動力伝達可能な態様で要素Aが上流又は下流の要素Bに接続されていることを意味する。動力の入力側が上流であり、動力の出力側が下流である。要素Aが直接又は他の部材を介して要素Bに連結されている態様に限定されず、クラッチ等を介して接続されていてもよい。 "Element A is connected to element B" means that element A is connected to upstream or downstream element B in such a manner that power can be transmitted between element A and element B. The power input side is upstream, and the power output side is downstream. The element A is not limited to being connected to the element B directly or via another member, but may be connected via a clutch or the like.
 「要素Aが要素Bに固定される」とは、要素Aが要素Bに直接固定される態様、要素Aが要素A、B以外の要素Cを介して要素Bに固定される態様の両方が含まれる。「要素Aが固定される」とは、要素Aが他の要素に固定され、回転不能な状態を意味する。 "Element A is fixed to element B" refers to both the manner in which element A is directly fixed to element B, and the manner in which element A is fixed to element B via element C other than element A and B. included. "Element A is fixed" means that element A is fixed to another element and cannot rotate.
 「所定方向視において要素Aと要素Bがオーバーラップする」とは、所定方向(軸方向、径方向、重力方向等)に要素Aと要素Bが並び、所定方向から観察した場合に要素Aと要素Bが少なくとも部分的に重畳する状態を指す。「所定方向に要素Aと要素Bがオーバーラップする」と同義である。軸方向視において要素Aと要素Bがオーバーラップする場合は、要素Aと要素Bは同軸である。図面において要素Aと要素Bが所定方向に並んで描かれている場合は、所定方向視において要素Aと要素Bがオーバーラップしていることを意味する。 "Element A and element B overlap when viewed in a predetermined direction" means that element A and element B are lined up in a predetermined direction (axial direction, radial direction, gravity direction, etc.), and when observed from the predetermined direction, element A and element B overlap. Refers to a state in which element B at least partially overlaps. This is synonymous with "element A and element B overlap in a predetermined direction". When element A and element B overlap in the axial direction, element A and element B are coaxial. When element A and element B are drawn side by side in a predetermined direction in the drawing, it means that element A and element B overlap when viewed in the predetermined direction.
 これに対し、「所定方向視において要素Aと要素Bがオーバーラップしない」とは、所定方向(軸方向、径方向、重力方向、車両走行方向等)に要素Aと要素Bが並んでおらず、所定方向から観察した場合に要素Aと要素Bが重畳する部分を有さない状態を指す。「所定方向に要素Aと要素Bがオーバーラップしない」と同義である。図面において要素Aと要素Bが所定方向に並ばないように描かれている場合は、所定方向視において要素Aと要素Bがオーバーラップしていないことを意味する。 On the other hand, "element A and element B do not overlap when viewed in a predetermined direction" means that element A and element B are not lined up in a predetermined direction (axial direction, radial direction, gravity direction, vehicle running direction, etc.). , refers to a state in which element A and element B do not have any overlapping portion when observed from a predetermined direction. This is synonymous with "element A and element B do not overlap in a predetermined direction". In the drawing, when element A and element B are drawn so as not to be lined up in a predetermined direction, it means that element A and element B do not overlap when viewed in the predetermined direction.
 「所定方向視において要素Aは要素Bと要素Cの間に位置する」とは、所定方向(軸方向、径方向、重力方向等)から観察した場合に要素Aが要素Bと要素Cの間にあることが観察されることを意味する。例えば、要素B、要素A、要素Cがこの順で軸方向に沿って並んでいる場合は、径方向視において要素Aが要素Bと要素Cの間にあることが観察されるので、要素Aは要素Bと要素Cの間に位置しているといえる。軸方向視において要素Aが要素B、Cとオーバーラップしている必要はない。図面において要素Aが要素Bと要素Cの間に描かれている場合は、所定方向視において要素Aが要素Bと要素Cの間に位置することを意味する。 "Element A is located between element B and element C when viewed from a predetermined direction" means that element A is located between element B and element C when observed from a predetermined direction (axial direction, radial direction, gravity direction, etc.). means that something is observed. For example, when element B, element A, and element C are arranged in this order along the axial direction, element A is observed to be between element B and element C when viewed in the radial direction, so element A can be said to be located between element B and element C. Element A does not need to overlap elements B and C when viewed in the axial direction. When element A is drawn between elements B and C in the drawing, it means that element A is located between elements B and C when viewed in a predetermined direction.
 「近接配置される」とは、二つの要素同士が軸方向視又は径方向視でオーバーラップする部分を有し、かつ、二つの要素の間に他の要素が挟まれていない状態を意味する。例えば、「二つの係合要素が近接配置される」とは、二つの係合要素の間に遊星歯車機構等が配置されないことを意味する。図面において要素Aと要素Bの間に他の要素が描かれていない場合は、要素Aと要素Bは近接配置されることを意味する。 "Arranged close to each other" means that two elements have a portion that overlaps with each other in an axial or radial view, and no other element is sandwiched between the two elements. . For example, "two engaging elements are arranged close to each other" means that a planetary gear mechanism or the like is not arranged between the two engaging elements. If no other element is drawn between element A and element B in the drawing, it means that element A and element B are arranged close to each other.
 「係合要素の一方側」及び「係合要素の他方側」とは、係合要素が係合状態のときに相対回転不能になり、解放状態のときに相対回転可能になる、係合要素に含まれる2つの要素を意味する。「係合要素の一方側」及び「係合要素の他方側」は、回転要素同士の組み合わせであってもよいし、回転要素と非回転要素の組み合わせであってもよく、一般的に、前者はクラッチ、後者はブレーキと呼ばれる。また、「係合要素の片側」とは、「係合要素の一方側」及び「係合要素の他方側」のいずれか一方を意味する。 "One side of the engagement element" and "the other side of the engagement element" refer to an engagement element that is relatively non-rotatable when the engagement element is in the engaged state and becomes relatively rotatable when the engagement element is in the released state. means two elements contained in. "One side of the engagement element" and "the other side of the engagement element" may be a combination of rotating elements or a combination of a rotating element and a non-rotating element, and generally the former is called a clutch, and the latter is called a brake. Moreover, "one side of the engagement element" means either "one side of the engagement element" or "the other side of the engagement element".
 その他の用語については明細書本文中で適宜定義する。 Other terms will be defined as appropriate in the main text of the specification.
 図1は、本発明の実施形態に係るユニット100の基本構造を示すスケルトン図である。ユニット100は、図示しない動力源としてのモータから入力要素INに入力される回転を、変速段に応じた変速比で変速し、出力要素OUTから図示しない駆動輪へと伝達する電動車両用の前進3速の自動変速機ユニットである。この例では、入力要素IN、出力要素OUTともに回転軸である。 FIG. 1 is a skeleton diagram showing the basic structure of a unit 100 according to an embodiment of the present invention. The unit 100 is a forward drive unit for an electric vehicle that changes the rotation input from a motor as a power source (not shown) to an input element IN at a gear ratio corresponding to a gear position, and transmits it from an output element OUT to a drive wheel (not shown). It is a 3-speed automatic transmission unit. In this example, both the input element IN and the output element OUT are rotating shafts.
 ユニット100は、ハウジング1内に、入力要素IN、第1、第2遊星歯車機構PG1、PG2、第1~第3係合要素B1、B2、CL、出力要素OUT、図示しないモータ及びインバータを収容した、いわゆる3in1のユニットである。ハウジング1は、車両に対して回転不能に固定される。 The unit 100 accommodates an input element IN, first and second planetary gear mechanisms PG1, PG2, first to third engagement elements B1, B2, CL, an output element OUT, and a motor and inverter (not shown) in a housing 1. It is a so-called 3-in-1 unit. The housing 1 is non-rotatably fixed to the vehicle.
 入力要素INの一端はモータの出力軸に接続され、入力要素INはモータから入力される動力によって回転する。入力要素INの回転速度がユニット100の入力回転速度である。モータはインバータを介してユニット100外のバッテリ(図示せず)と電気的に接続されており、バッテリから電力供給を受けて電動機として機能する。また、モータは発電機として機能することもできる。 One end of the input element IN is connected to the output shaft of the motor, and the input element IN is rotated by the power input from the motor. The rotational speed of the input element IN is the input rotational speed of the unit 100. The motor is electrically connected to a battery (not shown) outside the unit 100 via an inverter, and receives power from the battery to function as an electric motor. The motor can also function as a generator.
 第1遊星歯車機構PG1は、第1回転要素としての第1サンギヤS1と、複数の第1ピニオンギヤ(図示せず)と、複数の第1ピニオンギヤを回転自在に支持する第2回転要素としての第1キャリヤC1と、第3回転要素としての第1リングギヤR1とを有するシングルピニオン遊星歯車機構である。第1サンギヤS1は複数の第1ピニオンギヤと噛合っており、複数の第1ピニオンギヤは第1リングギヤR1と噛合っている。 The first planetary gear mechanism PG1 includes a first sun gear S1 as a first rotating element, a plurality of first pinion gears (not shown), and a second rotating element that rotatably supports the plurality of first pinion gears. This is a single pinion planetary gear mechanism having a first carrier C1 and a first ring gear R1 as a third rotating element. The first sun gear S1 meshes with a plurality of first pinion gears, and the plurality of first pinion gears mesh with a first ring gear R1.
 第2遊星歯車機構PG2は、第4回転要素としての第2サンギヤS2と、複数の第2ピニオンギヤ(図示せず)と、複数の第2ピニオンギヤを回転自在に支持する第5回転要素としての第2キャリヤC2と、第6回転要素としての第2リングギヤR2とを有するシングルピニオン遊星歯車機構である。第2サンギヤS2は複数の第2ピニオンギヤと噛合っており、複数の第2ピニオンギヤは第2リングギヤR2と噛合っている。 The second planetary gear mechanism PG2 includes a second sun gear S2 as a fourth rotating element, a plurality of second pinion gears (not shown), and a fifth rotating element that rotatably supports the plurality of second pinion gears. This is a single pinion planetary gear mechanism having two carriers C2 and a second ring gear R2 as a sixth rotating element. The second sun gear S2 meshes with a plurality of second pinion gears, and the plurality of second pinion gears mesh with a second ring gear R2.
 第1サンギヤS1は入力要素IN、第1サンギヤS1及び第2リングギヤR2と接続されている。第1キャリヤC1は出力要素OUT及び第2キャリヤC2と接続されている。 The first sun gear S1 is connected to the input element IN, the first sun gear S1, and the second ring gear R2. The first carrier C1 is connected to the output element OUT and the second carrier C2.
 出力要素OUTの回転速度がユニット100の出力回転速度である。 The rotation speed of the output element OUT is the output rotation speed of the unit 100.
 第1係合要素B1はブレーキである。第1係合要素B1は油圧式又は電動式のクラッチで構成される。第1係合要素B1を係合状態としたときに係合されることになる第1係合要素B1の二つの部位を一方側、他方側とすると、一方側は第1リングギヤR1に接続されており、他方側はハウジング1に固定されている。これにより、第1係合要素B1を係合すれば、第1リングギヤR1をハウジング1に固定することができる。 The first engagement element B1 is a brake. The first engagement element B1 is composed of a hydraulic or electric clutch. If the two parts of the first engaging element B1 that are to be engaged when the first engaging element B1 is brought into the engaged state are one side and the other side, the one side is connected to the first ring gear R1. The other side is fixed to the housing 1. Thereby, the first ring gear R1 can be fixed to the housing 1 by engaging the first engagement element B1.
 第2係合要素B2はブレーキである。第2係合要素B2は油圧式又は電動式のクラッチで構成される。第2係合要素B2を係合状態としたときに係合されることになる第2係合要素B2の二つの部位を一方側、他方側とすると、一方側は第2サンギヤS2に接続されており、他方側はハウジング1に固定されている。これにより、第2係合要素B2を係合すれば、第2サンギヤS2をハウジング1に固定することができる。 The second engagement element B2 is a brake. The second engagement element B2 is constituted by a hydraulic or electric clutch. If the two parts of the second engaging element B2 that are to be engaged when the second engaging element B2 is brought into the engaged state are one side and the other side, the one side is connected to the second sun gear S2. The other side is fixed to the housing 1. Thereby, the second sun gear S2 can be fixed to the housing 1 by engaging the second engagement element B2.
 第3係合要素CLはクラッチである。第3係合要素CLは電動式の多板クラッチで構成される。 The third engagement element CL is a clutch. The third engagement element CL is composed of an electric multi-disc clutch.
 第3係合要素CLは、ハブ11と、互い違いに配置された内側摩擦板12及び外側摩擦板13と、ドラム14と、電動アクチュエータ15とを備える。 The third engagement element CL includes a hub 11, inner friction plates 12 and outer friction plates 13 arranged alternately, a drum 14, and an electric actuator 15.
 ハブ11の外周には、内側摩擦板12がスプライン嵌合し、内側摩擦板12はハブ11に対して軸方向に相対変位可能かつ相対回転不能になっている。また、ハブ11は、入力要素INにスプライン嵌合しており、入力要素INに対して相対回転不能になっている。 An inner friction plate 12 is spline-fitted to the outer periphery of the hub 11, and the inner friction plate 12 can be displaced relative to the hub 11 in the axial direction, but cannot rotate relative to the hub 11. Further, the hub 11 is spline-fitted to the input element IN, and cannot rotate relative to the input element IN.
 ドラム14の内周には、外側摩擦板13がスプライン嵌合しており、外側摩擦板13はドラム14に対して相対変位可能かつ相対回転不能になっている。また、ドラム14は、第1キャリヤC1及び出力要素OUTと接続されている。 The outer friction plate 13 is spline-fitted to the inner periphery of the drum 14, and the outer friction plate 13 can be displaced relative to the drum 14 but cannot rotate relative to the drum 14. Further, the drum 14 is connected to the first carrier C1 and the output element OUT.
 電動アクチュエータ15は第3係合要素CLを駆動するアクチュエータである。電動アクチュエータ15に内蔵されるモータを駆動すると、ピストン15pが軸方向に繰り出され、内側摩擦板12と外側摩擦板13とが押し付けられて相対回転不能になり、第3係合要素CLが係合状態となる。電動アクチュエータ15は、ピストン15pに機械的に力を加え、ピストン15pからその反力を受けるので、電動アクチュエータ15はハウジング1に固定される。 The electric actuator 15 is an actuator that drives the third engagement element CL. When the motor built in the electric actuator 15 is driven, the piston 15p is moved out in the axial direction, the inner friction plate 12 and the outer friction plate 13 are pressed against each other and become unable to rotate relative to each other, and the third engagement element CL is engaged. state. The electric actuator 15 mechanically applies force to the piston 15p and receives the reaction force from the piston 15p, so the electric actuator 15 is fixed to the housing 1.
 また、電動アクチュエータ15に内蔵されるモータを逆方向に駆動するとピストン15pが後退し、内側摩擦板12と外側摩擦板13とが離間し、第3係合要素CLが解放状態となる。 Furthermore, when the motor built in the electric actuator 15 is driven in the opposite direction, the piston 15p retreats, the inner friction plate 12 and the outer friction plate 13 are separated, and the third engagement element CL is placed in a released state.
 なお、電動アクチュエータ15に代えて、ピストン15pを油圧で押し出す油圧アクチュエータを用いることも可能である。油圧アクチュエータへの油の供給は、ハウジング1等に取り付けた油圧供給ユニットによって行ってもよいし、スプール、ソレノイドバルブ等からなるコントロールバルブユニットによって行ってもよい。 Note that instead of the electric actuator 15, it is also possible to use a hydraulic actuator that pushes out the piston 15p with hydraulic pressure. Oil may be supplied to the hydraulic actuator by a hydraulic supply unit attached to the housing 1 or the like, or by a control valve unit consisting of a spool, a solenoid valve, etc.
 第3係合要素CLを係合状態としたときに係合されることになる第3係合要素CLの二つの部位をそれぞれ一方側(ハブ11)と他方側(ドラム14)とすると、一方側は入力要素IN、第1サンギヤS1及び第2リングギヤR2に接続されており、他方側は第1キャリヤC1及び出力要素OUTに接続されている。これにより、第3係合要素CLを係合すれば、入力要素IN、第1サンギヤS1及び第2リングギヤR2が第1キャリヤC1及び出力要素OUTと接続される。 If the two parts of the third engaging element CL that are to be engaged when the third engaging element CL is brought into the engaged state are one side (hub 11) and the other side (drum 14), one side One side is connected to the input element IN, the first sun gear S1 and the second ring gear R2, and the other side is connected to the first carrier C1 and the output element OUT. Thereby, when the third engagement element CL is engaged, the input element IN, the first sun gear S1, and the second ring gear R2 are connected to the first carrier C1 and the output element OUT.
 また、第3係合要素CLで第1サンギヤS1と第1キャリヤC1とを接続するようにしたことで、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しなくてよく、レイアウト設計が容易になる。 Moreover, by connecting the first sun gear S1 and the first carrier C1 with the third engagement element CL, the third engagement element CL is connected between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. layout design becomes easier.
 第3係合要素CLに利用可能なアクチュエータとしては、レイアウト制約を受けやすいアクチュエータ(反力の関係でハウジング1等に固定する必要のある電動アクチュエータ、ハウジング1等に油圧供給ユニットを取り付ける必要のある油圧アクチュエータ等)とレイアウト制約を受けにくいアクチュエータ(コントロールバルブユニットから油圧を供給する油圧アクチュエータ等)がある。前者のアクチュエータを用いる場合に第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置する必要があると、レイアウト設計の困難性が増す。 Actuators that can be used for the third engagement element CL include actuators that are subject to layout constraints (electric actuators that need to be fixed to the housing 1 etc. due to reaction force, and actuators that need to be attached to the housing 1 etc.) There are two types of actuators: hydraulic actuators, etc.) and actuators that are less subject to layout constraints (hydraulic actuators, etc. that supply hydraulic pressure from a control valve unit). When using the former actuator, if it is necessary to arrange the third engagement element CL between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the difficulty of layout design increases.
 この点に関し、図1に示す配置であれば、アクチュエータの種類によらずレイアウト設計が容易であり、第3係合要素CLを駆動するアクチュエータの選択自由度を高めることができる。 Regarding this point, with the arrangement shown in FIG. 1, layout design is easy regardless of the type of actuator, and the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased.
 また、第1遊星歯車機構PG1の軸方向一方側に第2遊星歯車機構PG2を配置し、第1遊星歯車機構PG1の軸方向他方側に第3係合要素CLを配置したことで、第1遊星歯車機構PG1と第2遊星歯車機構PG2とが近接配置される。これにより、その他の要素のレイアウト自由度が増し、また、ユニット100の軸方向の寸法を小さくすることができる。 Furthermore, by arranging the second planetary gear mechanism PG2 on one side of the first planetary gear mechanism PG1 in the axial direction, and arranging the third engagement element CL on the other side of the first planetary gear mechanism PG1 in the axial direction, the first The planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are arranged close to each other. This increases the degree of freedom in layout of other elements, and also allows the axial dimension of the unit 100 to be reduced.
 また、第3係合要素CLは、第1、第2遊星歯車機構PG1、PG2と同軸上に配置され、軸方向視において、第1遊星歯車機構PG1とオーバーラップする部分、及び、第2遊星歯車機構PG2とオーバーラップする部分を有する。これによりユニット100の径方向の寸法を小さくすることができる。 Further, the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
 図2は、第1~第3係合要素B1、B2、CLの係合状態とユニット100において実現される変速段との関係を示した係合表である。表中、黒丸は係合状態、無印は解放状態を示している。 FIG. 2 is an engagement table showing the relationship between the engagement states of the first to third engagement elements B1, B2, and CL and the gears realized in the unit 100. In the table, black circles indicate engaged states, and blank circles indicate released states.
 係合表に示されるように、1速は、第1係合要素B1を係合し、第2、第3係合要素B2、CLを解放することで実現される。2速は、第2係合要素B2を係合し、第1、第3係合要素B1、CLを解放することで実現される。3速は、第3係合要素CLを係合し、第1、第2係合要素B1、B2を解放することで実現される。 As shown in the engagement table, the first speed is achieved by engaging the first engagement element B1 and releasing the second and third engagement elements B2 and CL. The second speed is achieved by engaging the second engagement element B2 and releasing the first and third engagement elements B1 and CL. The third speed is achieved by engaging the third engagement element CL and releasing the first and second engagement elements B1 and B2.
 また、図3は、ユニット100の共線図である。図中、縦線l1~l4は第1、第2遊星歯車機構PG1、PG2の各回転要素に対応し、第1遊星歯車機構PG1に関しては図中左側から第1サンギヤS1、第1キャリヤC1、第1リングギヤR1がこの順で並び、第2遊星歯車機構PG2に関しては図中右側から第2サンギヤS2、第2キャリヤC2、第2リングギヤR2がこの順で並ぶ。 Further, FIG. 3 is a collinear diagram of the unit 100. In the figure, vertical lines l1 to l4 correspond to each rotating element of the first and second planetary gear mechanisms PG1 and PG2, and regarding the first planetary gear mechanism PG1, from the left side of the figure, the first sun gear S1, the first carrier C1, The first ring gear R1 is lined up in this order, and regarding the second planetary gear mechanism PG2, the second sun gear S2, second carrier C2, and second ring gear R2 are lined up in this order from the right side in the figure.
 第1サンギヤS1と第2リングギヤR2は互いに接続されているので同じ縦線l1が対応する。同様に、第1キャリヤC1と第2キャリヤC2も互いに接続されているので同じ縦線l2が対応する。縦線l1と縦線l2の間隔を1としたときの縦線l2と縦線l3の間隔α1は第1サンギヤS1の歯数を第1リングギヤR1の歯数で割った値である。また、縦線l4と縦線l2の間隔を1としたときの縦線l2と縦線l1の間隔α2は、第2サンギヤS2の歯数を第2リングギヤR2の歯数で割った値である。 Since the first sun gear S1 and the second ring gear R2 are connected to each other, the same vertical line l1 corresponds to them. Similarly, since the first carrier C1 and the second carrier C2 are also connected to each other, the same vertical line l2 corresponds to them. When the distance between the vertical lines l1 and l2 is 1, the distance α1 between the vertical lines l2 and l3 is a value obtained by dividing the number of teeth of the first sun gear S1 by the number of teeth of the first ring gear R1. Further, when the interval between vertical line l4 and vertical line l2 is 1, the interval α2 between vertical line l2 and vertical line l1 is the value obtained by dividing the number of teeth of second sun gear S2 by the number of teeth of second ring gear R2. .
 共線図には各変速段に対応する直線L1~L3が描かれている。各回転要素の回転速度は、各変速段に対応する直線L1~L3と縦線l1~l4との交点の縦座標で表される。 In the collinear diagram, straight lines L1 to L3 corresponding to each gear stage are drawn. The rotational speed of each rotating element is represented by the ordinate of the intersection of the straight lines L1 to L3 and the vertical lines l1 to l4 corresponding to each gear stage.
 1速においては、第1係合要素B1を係合することで、第1リングギヤR1がハウジング1に固定され、第1リングギヤR1の回転速度がゼロになるので、1速に対応する直線L1は点X1を通る直線となる。 In the first speed, the first ring gear R1 is fixed to the housing 1 by engaging the first engagement element B1, and the rotational speed of the first ring gear R1 becomes zero, so the straight line L1 corresponding to the first speed is A straight line passes through point X1.
 第1サンギヤS1及び第2リングギヤR2の回転速度をr4、第1キャリヤC1及び第2キャリヤC2の回転速度をr1とすると、ユニット100の入力回転速度rinは第1サンギヤS1及び第2リングギヤR2の回転速度r4に等しく、出力回転速度routは第1キャリヤC1及び第2キャリヤC2の回転速度r1に等しいので、1速における変速比はrin/rout=r4/r1となる。 If the rotational speed of the first sun gear S1 and the second ring gear R2 is r4, and the rotational speed of the first carrier C1 and the second carrier C2 is r1, then the input rotational speed rin of the unit 100 is the rotational speed of the first sun gear S1 and the second ring gear R2. Since the output rotation speed rout is equal to the rotation speed r1 of the first carrier C1 and the second carrier C2, the gear ratio in the first speed is rin/rout=r4/r1.
 また、2速においては、第2係合要素B2を係合することで、第2サンギヤS2がハウジング1に固定され、第2サンギヤS2の回転速度がゼロになるので、2速に対応する直線L2は点X2を通る直線となる。 In addition, in the second gear, the second sun gear S2 is fixed to the housing 1 by engaging the second engagement element B2, and the rotational speed of the second sun gear S2 becomes zero, so that the straight line corresponding to the second gear is L2 is a straight line passing through point X2.
 第1サンギヤS1及び第2リングギヤR2の回転速度をr4、第1キャリヤC1及び第2キャリヤC2の回転速度をr2とすると、ユニット100の入力回転速度rinは第1サンギヤS1及び第2リングギヤR2の回転速度r4に等しく、出力回転速度routは第1キャリヤC1及び第2キャリヤC2の回転速度r2に等しいので、2速における変速比はrin/rout=r4/r2となる。r2はr1よりも大きいので、2速の変速比は1速の変速比よりも小さくなる。 If the rotational speed of the first sun gear S1 and the second ring gear R2 is r4, and the rotational speed of the first carrier C1 and the second carrier C2 is r2, the input rotational speed rin of the unit 100 is the rotational speed of the first sun gear S1 and the second ring gear R2. Since the output rotation speed rout is equal to the rotation speed r2 of the first carrier C1 and the second carrier C2, the gear ratio in the second speed is rin/rout=r4/r2. Since r2 is larger than r1, the gear ratio of the second gear is smaller than the gear ratio of the first gear.
 また、3速においては、第3係合要素CLを係合することで、入力要素IN、第1サンギヤS1及び第2リングギヤR2が、第1キャリヤC1、第2キャリヤC2及び出力要素OUTと接続されるので、各回転要素の回転速度は全て等しくr3となる。この結果、入力回転速度rinと出力回転速度routも等しくなり、3速における変速比は2速よりも小さい1となる。 In addition, in the third speed, by engaging the third engagement element CL, the input element IN, the first sun gear S1, and the second ring gear R2 are connected to the first carrier C1, the second carrier C2, and the output element OUT. Therefore, the rotational speeds of each rotational element are all equally r3. As a result, the input rotational speed rin and the output rotational speed rout also become equal, and the gear ratio in the third gear becomes 1, which is smaller than that in the second gear.
 したがって、ユニット100においては、変速比が1となる3速を含む三つの変速段を実現することができるので、前進2速のユニットと比較して段間比が小さくなり、変速時の出力回転の加減速度を前進2速のユニットよりも小さく抑えることができる。また、1速~3速を、それぞれ低速用、中速用、高速用として用いることができるので、速度域に応じて適切な変速比を設定することができる。 Therefore, in the unit 100, it is possible to realize three gear stages including the third gear with a gear ratio of 1, so the inter-stage ratio is smaller compared to a unit with two forward speeds, and the output rotation at the time of gear shifting is reduced. acceleration/deceleration can be kept smaller than that of a two-speed forward unit. Further, since the first to third speeds can be used for low speed, medium speed, and high speed, respectively, it is possible to set an appropriate gear ratio depending on the speed range.
 また、3速では変速比が1となる。つまり、第1、第2遊星歯車機構PG1、PG2を構成する全ての回転要素が同一回転速度で回転するので、回転要素間の差回転に起因する動力伝達損失を低減することができる。加えて、入力要素INと出力要素OUTが接続されて、入力要素INから出力要素OUTに至る動力伝達経路が最短になり、動力伝達損失をさらに低減できる。 Also, in 3rd speed, the gear ratio is 1. In other words, since all the rotating elements constituting the first and second planetary gear mechanisms PG1 and PG2 rotate at the same rotational speed, it is possible to reduce power transmission loss due to differential rotation between the rotating elements. In addition, since the input element IN and the output element OUT are connected, the power transmission path from the input element IN to the output element OUT becomes the shortest, and power transmission loss can be further reduced.
 続いてユニット100の変形例について説明する。 Next, a modification of the unit 100 will be described.
 図4A~図4Dはユニット100の変形例のスケルトン図である。図1に示したスケルトン図とは第3係合要素CLの位置が相違する。図1に示したスケルトン図と同一の要素には同一の符号を付してある。 4A to 4D are skeleton diagrams of modified examples of the unit 100. The position of the third engagement element CL is different from the skeleton diagram shown in FIG. The same elements as in the skeleton diagram shown in FIG. 1 are given the same reference numerals.
 第3係合要素CLは係合することで変速比1を実現できればよいので、第3係合要素CLの位置は、図1に示した位置以外であってもよい。 Since the third engagement element CL only needs to be able to achieve a gear ratio of 1 by engaging, the position of the third engagement element CL may be other than the position shown in FIG. 1.
 具体的には、図3に示す共線図において変速比1を実現するには、3速に対応する直線L3が水平になればよいので、4本の縦線から任意の2本を選び、選んだ2本に対応する回転要素同士を接続すればよい。 Specifically, in order to achieve a gear ratio of 1 in the collinear diagram shown in FIG. All you have to do is connect the rotating elements corresponding to the two selected ones.
 言い換えれば、第1、第2遊星歯車機構PG1、PG2の六つの回転要素S1、C1、R1、S2、C2、R2から二つの回転要素を選ぶ場合の全組み合わせから、既に接続されている組み合わせ(第1サンギヤS1と第2リングギヤR2、第1キャリヤC1と第2キャリヤC2)を除いた、互いに接続されていない二つの回転要素の組み合わせを選択し、それら二つの回転要素を接続すればよい。 In other words, from all combinations when selecting two rotating elements from the six rotating elements S1, C1, R1, S2, C2, and R2 of the first and second planetary gear mechanisms PG1 and PG2, the combinations that are already connected ( It is sufficient to select a combination of two rotating elements that are not connected to each other, excluding the first sun gear S1 and second ring gear R2, and the first carrier C1 and second carrier C2, and to connect these two rotating elements.
 図4Aに示す変形例では、第3係合要素CLは、入力要素IN、第1サンギヤS1及び第2リングギヤR2を、第2サンギヤS2と接続可能な位置に配置される。具体的には、第3係合要素CLの一方側(ハブ11)が入力要素IN、第1サンギヤS1及び第2リングギヤR2に接続され、他方側(ドラム14)が第2係合要素B2の一方側及び第2サンギヤS2に接続される。 In the modification shown in FIG. 4A, the third engagement element CL is arranged at a position where the input element IN, the first sun gear S1, and the second ring gear R2 can be connected to the second sun gear S2. Specifically, one side (hub 11) of the third engagement element CL is connected to the input element IN, the first sun gear S1, and the second ring gear R2, and the other side (drum 14) is connected to the second engagement element B2. It is connected to one side and the second sun gear S2.
 この配置は、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しないレイアウト設計に適している。そして、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しないようにすれば、第3係合要素CLを駆動するアクチュエータの選択自由度を高めることができる。 This arrangement is suitable for a layout design in which the third engagement element CL is not arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. If the third engagement element CL is not disposed between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased. can.
 第3係合要素CLを駆動するアクチュエータとしては、図1に示した例と同じ電動アクチュエータ15を用いてもよいし、ハウジング1等に取り付けた油圧供給ユニットまたはコントロールバルブユニットから油圧を供給する油圧アクチュエータを用いてもよい。 The actuator for driving the third engagement element CL may be the same electric actuator 15 as the example shown in FIG. Actuators may also be used.
 また、第2遊星歯車機構PG2の軸方向一方側に第1遊星歯車機構PG1が配置され、第2遊星歯車機構PG2の軸方向他方側に第3係合要素CLが配置される。 In addition, the first planetary gear mechanism PG1 is arranged on one side of the second planetary gear mechanism PG2 in the axial direction, and the third engagement element CL is arranged on the other side of the second planetary gear mechanism PG2 in the axial direction.
 第1遊星歯車機構PG1と第2遊星歯車機構PG2とが近接配置されるので、その他の要素のレイアウト自由度が増し、また、ユニット100の軸方向の寸法を小さくすることができる。 Since the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are arranged close to each other, the degree of freedom in layout of other elements is increased, and the axial dimension of the unit 100 can be reduced.
 また、第3係合要素CLの片側(ドラム14)と第2係合要素B2の一方側が接続されるので、これらを共通の部品(一体部品)とすることができる。これにより、ユニット100の部品点数を低減することができる。 Moreover, since one side (drum 14) of the third engagement element CL and one side of the second engagement element B2 are connected, these can be made into a common part (integral part). Thereby, the number of parts of the unit 100 can be reduced.
 また、第3係合要素CLは、第1、第2遊星歯車機構PG1、PG2と同軸上に配置され、軸方向視において、第1遊星歯車機構PG1とオーバーラップする部分、及び、第2遊星歯車機構PG2とオーバーラップする部分を有する。これによりユニット100の径方向の寸法を小さくすることができる。 Further, the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
 図4Bは、図4Aの一部変形例である。この例では、第1リングギヤR1と第1係合要素B1の一方側を接続する部材を軸方向に延長することで、第1係合要素B1、第2係合要素B2及び第3係合要素CLを1か所にまとめて配置するようにしている。 FIG. 4B is a partial modification of FIG. 4A. In this example, by extending the member connecting one side of the first ring gear R1 and the first engaging element B1 in the axial direction, the first engaging element B1, the second engaging element B2, and the third engaging element The CLs are arranged in one place.
 この配置では、第1係合要素B1、第2係合要素B2及び第3係合要素CLを近接配置することができるので、これらの専有する空間が小さくなり、その他の要素のレイアウト自由度を高めることができる。 In this arrangement, the first engagement element B1, the second engagement element B2, and the third engagement element CL can be arranged close to each other, so the space occupied by these elements is reduced, and the degree of freedom in layout of other elements is increased. can be increased.
 図4Cに示す変形例では、第3係合要素CLは、入力要素IN、第1サンギヤS1及び第2リングギヤR2を、第1キャリヤC1、第2キャリヤC2及び出力要素OUTと接続可能な位置に配置される。具体的には、第3係合要素CLの一方側(ハブ11)が入力要素IN、第1サンギヤS1及び第2リングギヤR2に接続され、他方側(ドラム14)が、第1キャリヤC1、第2キャリヤC2及び出力要素OUTに接続される。 In the modification shown in FIG. 4C, the third engagement element CL positions the input element IN, the first sun gear S1, and the second ring gear R2 at a position where they can be connected to the first carrier C1, the second carrier C2, and the output element OUT. Placed. Specifically, one side (hub 11) of the third engagement element CL is connected to the input element IN, the first sun gear S1, and the second ring gear R2, and the other side (drum 14) is connected to the first carrier C1, the second ring gear R2. 2 carrier C2 and the output element OUT.
 この配置では、第3係合要素CLが、第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置されるので、第3係合要素CLを駆動するアクチュエータとしては、レイアウト制約の少ない、コントロールバルブユニットから油圧を供給する油圧アクチュエータ16を用いるのが好適である。 In this arrangement, the third engagement element CL is arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, so it can be used as an actuator for driving the third engagement element CL with fewer layout restrictions. , it is preferable to use a hydraulic actuator 16 which supplies hydraulic pressure from a control valve unit.
 また、第3係合要素CLは、第1、第2遊星歯車機構PG1、PG2と同軸上に配置され、軸方向視において、第1遊星歯車機構PG1とオーバーラップする部分、及び、第2遊星歯車機構PG2とオーバーラップする部分を有する。これによりユニット100の径方向の寸法を小さくすることができる。 Further, the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
 また、第3係合要素CLを係合すると、変速比1を実現できることに加え、入力要素INと出力要素OUTが接続されるので、入力要素INから出力要素OUTに至る動力伝達経路が最短になり、動力伝達損失をさらに低減できる。 Furthermore, when the third engagement element CL is engaged, in addition to achieving a gear ratio of 1, the input element IN and output element OUT are connected, so the power transmission path from the input element IN to the output element OUT is minimized. Therefore, power transmission loss can be further reduced.
 図4Dに示す変形例では、第3係合要素CLは、入力要素IN、第1サンギヤS1及び第2リングギヤR2を、第1キャリヤC1、第2キャリヤC2及び出力要素OUTと接続可能な位置に配置される。具体的には、第3係合要素CLの一方側(ハブ11)が入力要素IN、第1サンギヤS1及び第2リングギヤR2に接続され、他方側(ドラム14)が第1キャリヤC1、第2キャリヤC2及び出力要素OUTに接続される。 In the modification shown in FIG. 4D, the third engagement element CL positions the input element IN, the first sun gear S1, and the second ring gear R2 at a position where they can be connected to the first carrier C1, the second carrier C2, and the output element OUT. Placed. Specifically, one side (hub 11) of the third engagement element CL is connected to the input element IN, the first sun gear S1 and the second ring gear R2, and the other side (drum 14) is connected to the first carrier C1 and the second ring gear R2. Connected to carrier C2 and output element OUT.
 この配置では、第3係合要素CLが、第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置されるので、第3係合要素CLを駆動するアクチュエータとしては、レイアウト制約の少ない、コントロールバルブユニットから油圧を供給する油圧アクチュエータ16を用いるのが好適である。 In this arrangement, the third engagement element CL is arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, so it can be used as an actuator for driving the third engagement element CL with fewer layout restrictions. , it is preferable to use a hydraulic actuator 16 which supplies hydraulic pressure from a control valve unit.
 また、第3係合要素CLは、第1、第2遊星歯車機構PG1、PG2と同軸上に配置され、軸方向視において、第1遊星歯車機構PG1とオーバーラップする部分、及び、第2遊星歯車機構PG2とオーバーラップする部分を有する。これによりユニット100の径方向の寸法を小さくすることができる。 Further, the third engagement element CL is arranged coaxially with the first and second planetary gear mechanisms PG1 and PG2, and includes a portion that overlaps with the first planetary gear mechanism PG1 and a second planetary gear mechanism when viewed in the axial direction. It has a portion that overlaps with gear mechanism PG2. This allows the radial dimension of the unit 100 to be reduced.
 また、第3係合要素CLを係合すると、変速比1を実現できることに加え、入力要素INと出力要素OUTが接続されるので、入力要素INから出力要素OUTに至る動力伝達経路が最短になり、動力伝達損失をさらに低減できる。 Furthermore, when the third engagement element CL is engaged, in addition to achieving a gear ratio of 1, the input element IN and output element OUT are connected, so the power transmission path from the input element IN to the output element OUT is minimized. Therefore, power transmission loss can be further reduced.
 図4A~図4Dに示す変形例の係合表及び共線図は、図2、3に示した図1のスケルトン図のものと同一である。 The engagement table and collinear diagram of the modified examples shown in FIGS. 4A to 4D are the same as those of the skeleton diagram of FIG. 1 shown in FIGS. 2 and 3.
 続いて本発明の実施形態の作用効果について説明する。 Next, the effects of the embodiments of the present invention will be explained.
(1)本発明の実施形態に係るユニット100は、
 入力要素INと、
 出力要素OUTと、
 第1係合要素B1と、
 第2係合要素B2と、
 第3係合要素CLと、
 共線図上において第1サンギヤS1、第1キャリヤC1、第1リングギヤR1がこの順で並ぶ第1遊星歯車機構PG1と、
 共線図上において第2サンギヤS2、第2キャリヤC2、第2リングギヤR2がこの順で並ぶ第2遊星歯車機構PG2と、を有する。
 入力要素INは、第1サンギヤS1と第2リングギヤR2に接続され、
 出力要素OUTは、第1キャリヤC1と第2キャリヤC2に接続され、
 第1係合要素B1の一方側は、第1リングギヤR1に接続され、
 第1係合要素B1の他方側は、固定され、
 第2係合要素B2の一方側は、第2サンギヤS2に接続され、
 第2係合要素B2の他方側は、固定され、
 第3係合要素CLは、第1サンギヤS1、第1キャリヤC1、第1リングギヤR1、第2サンギヤS2、第2キャリヤC2及び第2リングギヤR2から選ばれた、互いに接続されていない二つの回転要素を接続する。
(1) The unit 100 according to the embodiment of the present invention is
input element IN;
Output element OUT and
A first engagement element B1;
a second engagement element B2;
a third engagement element CL;
A first planetary gear mechanism PG1 in which a first sun gear S1, a first carrier C1, and a first ring gear R1 are arranged in this order on a collinear diagram;
The second planetary gear mechanism PG2 includes a second sun gear S2, a second carrier C2, and a second ring gear R2 arranged in this order on the collinear diagram.
Input element IN is connected to first sun gear S1 and second ring gear R2,
The output element OUT is connected to the first carrier C1 and the second carrier C2,
One side of the first engagement element B1 is connected to the first ring gear R1,
The other side of the first engagement element B1 is fixed,
One side of the second engagement element B2 is connected to the second sun gear S2,
The other side of the second engagement element B2 is fixed,
The third engagement element CL includes two rotating elements not connected to each other selected from the first sun gear S1, the first carrier C1, the first ring gear R1, the second sun gear S2, the second carrier C2, and the second ring gear R2. Connect elements.
 この構成によれば、第1~第3係合要素B1、B2、CLの係合状態を変更することで、3以上の変速段を実現することができる。これにより、前進2速のユニットと比較して段間比が小さくなり、変速時の出力回転の加減速度を前進2速のユニットよりも小さく抑えることができる。また、より適切な変速比を各変速段に設定することができる。 According to this configuration, three or more gears can be realized by changing the engagement states of the first to third engagement elements B1, B2, and CL. As a result, the interstage ratio is smaller than that of a unit with two forward speeds, and the acceleration/deceleration of output rotation during shifting can be suppressed to be smaller than that of a unit with two forward speeds. Further, a more appropriate gear ratio can be set for each gear stage.
 また、第1、第2係合要素B1、B2を解放し、第3係合要素CLを係合すると変速比が1となり、第1、第2遊星歯車機構PG1、PG2を構成する全ての回転要素が同一回転速度で回転するので、回転要素間の差回転に起因する動力伝達損失を低減することができる。 Furthermore, when the first and second engagement elements B1 and B2 are released and the third engagement element CL is engaged, the gear ratio becomes 1, and all the rotations constituting the first and second planetary gear mechanisms PG1 and PG2 are Since the elements rotate at the same rotational speed, power transmission loss due to differential rotation between the rotating elements can be reduced.
(2)また、図1に示した例では、第1遊星歯車機構PG1及び第2遊星歯車機構PG2はシングルピニオン遊星歯車機構であり、第3係合要素CLは、第1サンギヤS1と第1キャリヤC1とを接続する。 (2) In the example shown in FIG. 1, the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are single pinion planetary gear mechanisms, and the third engagement element CL is connected to the first sun gear S1 and the first planetary gear mechanism. Connect to carrier C1.
 この配置は、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しないレイアウト設計に適している。そして、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しないようにすれば、第3係合要素CLを駆動するアクチュエータの選択自由度を高めることができる。 This arrangement is suitable for a layout design in which the third engagement element CL is not arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. If the third engagement element CL is not disposed between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased. can.
 また、第3係合要素CLを係合すると、変速比1を実現できることに加え、入力要素INと出力要素OUTが接続されるので、入力要素INから出力要素OUTに至る動力伝達経路が最短になり、動力伝達損失をさらに低減できる。 Furthermore, when the third engagement element CL is engaged, in addition to achieving a gear ratio of 1, the input element IN and output element OUT are connected, so the power transmission path from the input element IN to the output element OUT is minimized. Therefore, power transmission loss can be further reduced.
(3)また、図1に示した例では、第1遊星歯車機構PG1の軸方向一方側に第2遊星歯車機構PG2が配置され、第1遊星歯車機構PG1の軸方向他方側に第3係合要素CLが配置される。 (3) In the example shown in FIG. 1, the second planetary gear mechanism PG2 is disposed on one axial side of the first planetary gear mechanism PG1, and the third planetary gear mechanism PG2 is disposed on the other axial side of the first planetary gear mechanism PG1. A matching element CL is placed.
 この構成によれば、第1遊星歯車機構PG1と第2遊星歯車機構PG2とが近接配置される。これにより、その他の要素のレイアウト自由度が増し、また、ユニット100の軸方向の寸法を小さくすることができる。 According to this configuration, the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are arranged close to each other. This increases the degree of freedom in layout of other elements, and also allows the axial dimension of the unit 100 to be reduced.
(4)また、図4A、図4Bに示した例では、第1遊星歯車機構PG1及び第2遊星歯車機構PG2はシングルピニオン遊星歯車機構であり、第3係合要素CLは、第1サンギヤS1と第2サンギヤS2とを接続する。 (4) In the example shown in FIGS. 4A and 4B, the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are single pinion planetary gear mechanisms, and the third engagement element CL is the first sun gear S1. and second sun gear S2.
 この配置は、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しないレイアウト設計に適している。そして、第3係合要素CLを第1遊星歯車機構PG1と第2遊星歯車機構PG2の間に配置しないようにすれば、第3係合要素CLを駆動するアクチュエータの選択自由度を高めることができる。 This arrangement is suitable for a layout design in which the third engagement element CL is not arranged between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2. If the third engagement element CL is not disposed between the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2, the degree of freedom in selecting the actuator that drives the third engagement element CL can be increased. can.
 さらに、この接続関係では、図4Bに示すように、第1係合要素B1、第2係合要素B2及び第3係合要素CLを1か所にまとめて配置することも可能である。第1係合要素B1、第2係合要素B2及び第3係合要素CLを近接配置すれば、これらの専有する空間が小さくなり、その他の要素のレイアウト自由度を高めることができる。 Furthermore, in this connection relationship, as shown in FIG. 4B, it is also possible to arrange the first engagement element B1, the second engagement element B2, and the third engagement element CL in one place. By arranging the first engagement element B1, the second engagement element B2, and the third engagement element CL close to each other, the space occupied by these elements becomes smaller, and the degree of freedom in layout of other elements can be increased.
(5)また、図4A、図4Bに示した例では、第2遊星歯車機構PG2の軸方向一方側に第1遊星歯車機構PG1が配置され、第2遊星歯車機構PG2の軸方向他方側に第3係合要素CLが配置される。 (5) In the example shown in FIGS. 4A and 4B, the first planetary gear mechanism PG1 is arranged on one axial side of the second planetary gear mechanism PG2, and the first planetary gear mechanism PG1 is arranged on the other axial side of the second planetary gear mechanism PG2. A third engagement element CL is arranged.
 この構成によれば、第1遊星歯車機構PG1と第2遊星歯車機構PG2とが近接配置されるので、その他の要素のレイアウト自由度が増し、また、ユニット100の軸方向の寸法を小さくすることができる。 According to this configuration, since the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are arranged close to each other, the degree of freedom in layout of other elements is increased, and the axial dimension of the unit 100 can be reduced. I can do it.
(6)また、図1、図4A~図4Dに示した例では、軸方向視において、第3係合要素CLは第1遊星歯車機構PG1とオーバーラップする部分を有する。また、軸方向視において、第3係合要素CLは第2遊星歯車機構PG2とオーバーラップする部分を有する。 (6) Furthermore, in the example shown in FIGS. 1 and 4A to 4D, the third engagement element CL has a portion that overlaps with the first planetary gear mechanism PG1 when viewed in the axial direction. Further, when viewed in the axial direction, the third engagement element CL has a portion that overlaps with the second planetary gear mechanism PG2.
 これによりユニット100の径方向の寸法を小さくすることができる。 This allows the radial dimension of the unit 100 to be reduced.
(7)また、図4A、図4Bに示した例では、第3係合要素CLの片側(ドラム14)は、第2係合要素B2の一方側と接続される。 (7) Furthermore, in the example shown in FIGS. 4A and 4B, one side (drum 14) of the third engagement element CL is connected to one side of the second engagement element B2.
 この構成によれば、第3係合要素CLの片側と第2係合要素B2の一方側とを共通の部品(一体部品)とすることができ、これにより、ユニット100の部品点数を低減することができる。 According to this configuration, one side of the third engagement element CL and one side of the second engagement element B2 can be made into a common part (integral part), thereby reducing the number of parts of the unit 100. be able to.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例に過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments are merely application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments.
 例えば、図1、図4A~図4Dに示したスケルトン図は本発明の適用例の一部であり、本発明を適用したユニットのスケルトン図はこれらに限定されない。 For example, the skeleton diagrams shown in FIGS. 1 and 4A to 4D are part of the application examples of the present invention, and the skeleton diagrams of units to which the present invention is applied are not limited to these.
 また、第1遊星歯車機構PG1、第2遊星歯車機構PG2をそれぞれシングルピニオン遊星歯車機構としたが、ダブルピニオン遊星歯車機構としてもよい。 Furthermore, although the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 are each a single pinion planetary gear mechanism, they may be double pinion planetary gear mechanisms.
 また、第1係合要素B1の一方側と第3係合要素CLの一方側とを接続することも可能である。この場合、第3係合要素CLの他方側は第1サンギヤS1、第1キャリヤC1、第1リングギヤR1、第2サンギヤS2、第2キャリヤC2及び第2リングギヤR2のいずれかに接続すれば良い。この場合、第1係合要素B1の一方側と第3係合要素CLの一方側とを共通の部品(一体部品)とすることも可能である。 It is also possible to connect one side of the first engagement element B1 and one side of the third engagement element CL. In this case, the other side of the third engagement element CL may be connected to any one of the first sun gear S1, the first carrier C1, the first ring gear R1, the second sun gear S2, the second carrier C2, and the second ring gear R2. . In this case, it is also possible to make one side of the first engagement element B1 and one side of the third engagement element CL a common part (integral part).
1    :ハウジング
100  :ユニット
B1   :第1係合要素
B2   :第2係合要素
CL   :第3係合要素
S1   :第1サンギヤ(第1回転要素)
C1   :第1キャリヤ(第2回転要素)
R1   :第1リングギヤ(第3回転要素)
S2   :第2サンギヤ(第4回転要素)
C2   :第2キャリヤ(第5回転要素)
R2   :第2リングギヤ(第6回転要素)
IN   :入力要素
OUT  :出力要素
PG1  :第1遊星歯車機構
PG2  :第2遊星歯車機構
1: Housing 100: Unit B1: First engaging element B2: Second engaging element CL: Third engaging element S1: First sun gear (first rotating element)
C1: First carrier (second rotating element)
R1: First ring gear (third rotating element)
S2: 2nd sun gear (4th rotating element)
C2: Second carrier (fifth rotating element)
R2: 2nd ring gear (6th rotating element)
IN: Input element OUT: Output element PG1: First planetary gear mechanism PG2: Second planetary gear mechanism

Claims (7)

  1.  入力要素と、
     出力要素と、
     第1係合要素と、
     第2係合要素と、
     第3係合要素と、
     共線図上において第1回転要素、第2回転要素、第3回転要素がこの順で並ぶ第1遊星歯車機構と、
     前記共線図上において第4回転要素、第5回転要素、第6回転要素がこの順で並ぶ第2遊星歯車機構と、を有し、
     前記入力要素は、前記第1回転要素と前記第6回転要素に接続され、
     前記出力要素は、前記第2回転要素と前記第5回転要素に接続され、
     前記第1係合要素の一方側は、前記第3回転要素に接続され、
     前記第1係合要素の他方側は、固定され、
     前記第2係合要素の一方側は、前記第4回転要素に接続され、
     前記第2係合要素の他方側は、固定され、
     前記第3係合要素は、前記第1乃至第6回転要素から選ばれた、互いに接続されていない二つの回転要素を接続する、ユニット。
    an input element,
    output element,
    a first engagement element;
    a second engagement element;
    a third engagement element;
    a first planetary gear mechanism in which a first rotating element, a second rotating element, and a third rotating element are arranged in this order on a collinear diagram;
    a second planetary gear mechanism in which a fourth rotating element, a fifth rotating element, and a sixth rotating element are arranged in this order on the collinear diagram,
    the input element is connected to the first rotation element and the sixth rotation element,
    the output element is connected to the second rotation element and the fifth rotation element,
    One side of the first engagement element is connected to the third rotating element,
    the other side of the first engagement element is fixed;
    One side of the second engagement element is connected to the fourth rotation element,
    the other side of the second engagement element is fixed;
    The third engaging element is a unit that connects two rotating elements selected from the first to sixth rotating elements that are not connected to each other.
  2.  請求項1に記載のユニットにおいて、
     前記第1遊星歯車機構及び前記第2遊星歯車機構はシングルピニオン遊星歯車機構であり、
     前記第3係合要素は、前記第1回転要素と前記第2回転要素とを接続する、ユニット。
    The unit according to claim 1,
    The first planetary gear mechanism and the second planetary gear mechanism are single pinion planetary gear mechanisms,
    The third engagement element is a unit that connects the first rotation element and the second rotation element.
  3.  請求項2に記載のユニットにおいて、
     前記第1遊星歯車機構の軸方向一方側に前記第2遊星歯車機構が配置され、
     前記第1遊星歯車機構の軸方向他方側に前記第3係合要素が配置される、ユニット。
    The unit according to claim 2,
    The second planetary gear mechanism is disposed on one side in the axial direction of the first planetary gear mechanism,
    A unit in which the third engagement element is disposed on the other axial side of the first planetary gear mechanism.
  4.  請求項1に記載のユニットにおいて、
     前記第1遊星歯車機構及び前記第2遊星歯車機構はシングルピニオン遊星歯車機構であり、
     前記第3係合要素は、前記第1回転要素と前記第4回転要素とを接続する、ユニット。
    The unit according to claim 1,
    The first planetary gear mechanism and the second planetary gear mechanism are single pinion planetary gear mechanisms,
    The third engagement element is a unit that connects the first rotation element and the fourth rotation element.
  5.  請求項4に記載のユニットにおいて、
     前記第2遊星歯車機構の軸方向一方側に前記第1遊星歯車機構が配置され、
     前記第2遊星歯車機構の軸方向他方側に前記第3係合要素が配置される、ユニット。
    The unit according to claim 4,
    The first planetary gear mechanism is arranged on one side of the second planetary gear mechanism in the axial direction,
    A unit in which the third engagement element is disposed on the other axial side of the second planetary gear mechanism.
  6.  請求項3又は請求項5に記載のユニットにおいて、
     軸方向視において、前記第3係合要素は前記第1遊星歯車機構とオーバーラップする部分を有し、
     軸方向視において、前記第3係合要素は前記第2遊星歯車機構とオーバーラップする部分を有する、ユニット。
    The unit according to claim 3 or claim 5,
    When viewed in the axial direction, the third engagement element has a portion that overlaps with the first planetary gear mechanism,
    A unit in which the third engagement element has a portion that overlaps with the second planetary gear mechanism when viewed in the axial direction.
  7.  請求項1に記載のユニットにおいて、
     前記第3係合要素の片側は、前記第1係合要素の一方側又は前記第2係合要素の一方側と接続される、ユニット。
    The unit according to claim 1,
    One side of the third engagement element is connected to one side of the first engagement element or one side of the second engagement element.
PCT/JP2023/018722 2022-07-13 2023-05-19 Unit WO2024014125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112097 2022-07-13
JP2022112097 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014125A1 true WO2024014125A1 (en) 2024-01-18

Family

ID=89536502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018722 WO2024014125A1 (en) 2022-07-13 2023-05-19 Unit

Country Status (1)

Country Link
WO (1) WO2024014125A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699099A (en) * 2018-02-26 2020-09-22 戴姆勒股份公司 Electric drive for a motor vehicle, in particular a motor vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699099A (en) * 2018-02-26 2020-09-22 戴姆勒股份公司 Electric drive for a motor vehicle, in particular a motor vehicle

Similar Documents

Publication Publication Date Title
EP1944526B1 (en) Hybrid drive device
JP5811267B2 (en) Vehicle drive device
WO2013146247A1 (en) Automatic transmission
JP2009067212A (en) Hybrid drive device
CN112721619A (en) Two-gear speed change bridge driving system without power interruption
JP2007285527A (en) Automatic transmission
WO2016175287A1 (en) Transmission device
KR100741202B1 (en) Automatic speed changer
WO2024014125A1 (en) Unit
WO2024014124A1 (en) Unit
WO2024014128A1 (en) Unit
WO2024014127A1 (en) Unit
WO2024014121A1 (en) Unit
WO2024014122A1 (en) Unit
WO2024014120A1 (en) Unit
WO2024014119A1 (en) Unit
WO2024014129A1 (en) Unit
JP4297447B2 (en) Hybrid drive device
WO2018079844A1 (en) Drive transmission device for vehicle
WO2024062709A1 (en) Unit
WO2024062707A1 (en) Unit
WO2024062708A1 (en) Unit
WO2024014130A1 (en) Unit
WO2024062729A1 (en) Unit
WO2024062732A1 (en) Unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839302

Country of ref document: EP

Kind code of ref document: A1