WO2024014117A1 - Cryogenic system and control method for cryogenic system - Google Patents

Cryogenic system and control method for cryogenic system Download PDF

Info

Publication number
WO2024014117A1
WO2024014117A1 PCT/JP2023/018541 JP2023018541W WO2024014117A1 WO 2024014117 A1 WO2024014117 A1 WO 2024014117A1 JP 2023018541 W JP2023018541 W JP 2023018541W WO 2024014117 A1 WO2024014117 A1 WO 2024014117A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cylinder
heat
heat absorption
upper limit
Prior art date
Application number
PCT/JP2023/018541
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 平山
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2024014117A1 publication Critical patent/WO2024014117A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a cryogenic system and a method of controlling a cryogenic system.
  • cryogenic refrigerators typified by Gifford-McMahon (GM) refrigerators have been known.
  • Cryogenic refrigerators are used to cool a variety of cryogenic systems.
  • One exemplary objective of certain embodiments of the present invention is to efficiently cool cryogenic systems.
  • a cryogenic system includes a cryogenic refrigerator and a controller.
  • the cryogenic refrigerator includes a first cylinder and a second cylinder provided axially in series with the first cylinder, the second cylinder having an endothermic part thermally connected to a heat source at an axially intermediate portion thereof. and a first temperature sensor that measures a first measurement temperature at one axial end of the second cylinder that is close to the first cylinder, and a second temperature sensor that measures a second measurement temperature at the other axial end of the second cylinder that is remote from the first cylinder. It includes a second temperature sensor that measures temperature, and a third temperature sensor that measures a third measured temperature at the endothermic part.
  • the controller obtains a first measured temperature from the first temperature sensor, a second measured temperature from the second temperature sensor, and a third measured temperature from the third temperature sensor, and obtains the first measured temperature, the second measured temperature, and
  • the upper limit temperature of the heat absorber is set based on the axial position of the heat absorber, and the heat source is controlled so that the third measured temperature is equal to or lower than the upper limit temperature of the heat absorber.
  • a method of controlling a cryogenic system includes a cryogenic refrigerator including a first cylinder and a second cylinder arranged in series in the axial direction, and the second cylinder has a heat absorption part thermally connected to a heat source at an axially intermediate part thereof. Equipped with The method includes: measuring a first measured temperature at one axial end of a second cylinder near the first cylinder; and measuring a second measured temperature at the other axial end of the second cylinder remote from the first cylinder.
  • a cryogenic system can be efficiently cooled.
  • FIG. 1 is a diagram schematically showing a cryogenic system according to an embodiment.
  • 2 is a diagram schematically showing a cryogenic refrigerator that can be applied to the cryogenic system shown in FIG. 1.
  • FIG. FIGS. 3(a) and 3(b) are graphs showing experimental results by the present inventor regarding the embodiment.
  • FIGS. 4(a) and 4(b) are graphs showing experimental results by the present inventor regarding the embodiment.
  • It is a flow chart showing a control method of a cryogenic system concerning an embodiment.
  • 6 is a flowchart showing an example of a control process (S30) for the refrigerant gas line shown in FIG. 5.
  • FIG. FIG. 7 is a diagram schematically showing a cryogenic system according to another embodiment.
  • FIG. 1 is a diagram schematically showing a cryogenic system 100 according to an embodiment.
  • FIG. 2 is a diagram schematically showing a cryogenic refrigerator 10 that can be applied to the cryogenic system 100 shown in FIG. 1.
  • the external appearance of the cryogenic refrigerator 10 is shown in FIG. 1, and the internal structure of the cryogenic refrigerator 10 is shown in FIG.
  • the cryogenic refrigerator 10 is, for example, a two-stage Gifford-McMahon (GM) refrigerator.
  • GM Gifford-McMahon
  • cryogenic system 100 may be utilized as a cryogenic liquid storage device.
  • the cryogenic system 100 includes a vacuum vessel 110 for storing, for example, liquid helium or other cryogenic liquid 102.
  • the cryogenic refrigerator 10 cools the stored cryogenic liquid 102 to a cryogenic temperature below its liquefaction temperature (approximately 4 K in the case of liquid helium).
  • the vacuum container 110 includes an outer tank 112 and an inner tank 114.
  • a vacuum insulation layer 116 is formed between the outer tank 112 and the inner tank 114, and the outer tank 112 is configured to separate the vacuum insulation layer 116 from the surrounding environment of the cryogenic system 100 (e.g., room temperature, atmospheric pressure environment). be done.
  • the vacuum insulation layer 116 may be provided with an insulation structure such as, for example, multilayer insulation (MLI).
  • MMI multilayer insulation
  • the inner tank 114 is configured to contain the cryogenic liquid 102 therein and to separate the cryogenic liquid 102 from the vacuum insulation layer 116 .
  • the outer tank 112 and the inner tank 114 are formed of a metallic material, such as stainless steel, or other suitable high-strength material to withstand internal and external pressure differences.
  • the cryogenic refrigerator 10 includes a compressor 12 and an expander 14.
  • the compressor 12 is configured to recover the working gas of the cryogenic refrigerator 10 from the expander 14, increase the pressure of the recovered working gas, and supply the working gas to the expander 14 again.
  • the working gas also referred to as refrigerant gas, is typically helium gas, although other suitable gases may be used.
  • the expander 14 includes a refrigerator cylinder 16, a displacer assembly 18, and a refrigerator housing 20.
  • Refrigerator housing 20 is coupled with refrigerator cylinder 16 to thereby define an airtight container housing displacer assembly 18 .
  • Refrigerator cylinder 16 and refrigerator housing 20 are formed of a metallic material, such as stainless steel, or other suitable high strength material.
  • the expander 14 is installed in the vacuum container 110 with the refrigerator cylinder 16 inserted into the inner tank 114 of the vacuum container 110 and the refrigerator housing 20 attached to the outside of the vacuum container 110.
  • the expander 14 is installed at the top of the vacuum container 110 so that its central axis coincides with the vertical direction.
  • the mounting location and mounting posture of the expander 14 are not limited to this.
  • the expander 14 may be installed at the bottom of the vacuum container 110.
  • the expander 14 can be installed in a desired posture, and may be installed in the vacuum container 110 with its central axis aligned diagonally or horizontally.
  • the refrigerator cylinder 16 has a first cylinder 16a and a second cylinder 16b that extend in the axial direction (in the vertical direction in FIGS. 1 and 2).
  • the second cylinder 16b is provided in series with the first cylinder 16a in the axial direction.
  • the first cylinder 16a and the second cylinder 16b are, for example, members having a cylindrical shape, and the second cylinder 16b has a smaller diameter than the first cylinder 16a.
  • the first cylinder 16a and the second cylinder 16b are arranged coaxially, and the lower end of the first cylinder 16a is rigidly connected to the upper end of the second cylinder 16b.
  • the displacer assembly 18 includes a first displacer 18a and a second displacer 18b.
  • the first displacer 18a and the second displacer 18b are, for example, members having a cylindrical shape, and the second displacer 18b has a smaller diameter than the first displacer 18a.
  • the first displacer 18a and the second displacer 18b are coaxially arranged.
  • the first displacer 18a is housed in the first cylinder 16a, and the second displacer 18b is housed in the second cylinder 16b.
  • the first displacer 18a can be reciprocated in the axial direction along the first cylinder 16a, and the second displacer 18b can be reciprocated in the axial direction along the second cylinder 16b.
  • the first displacer 18a and the second displacer 18b are connected to each other and move together.
  • the side near the top dead center of the reciprocating motion of the displacer in the axial direction is referred to as "upper”, and the side closer to the bottom dead center is referred to as “lower”. ”.
  • the top dead center is the position of the displacer where the volume of the expansion space is maximum
  • the bottom dead center is the position of the displacer where the volume of the expansion space is the minimum.
  • a temperature gradient occurs in which the temperature decreases from the upper side to the lower side in the axial direction, so the upper side can also be called the high temperature side and the lower side can also be called the low temperature side.
  • the first displacer 18a accommodates the first regenerator 26.
  • the first regenerator 26 is formed by filling the cylindrical main body of the first displacer 18a with, for example, a wire mesh made of copper or other suitable first regenerator material.
  • the upper lid part and the lower lid part of the first displacer 18a may be provided as separate members from the main body part of the first displacer 18a, and the upper lid part and the lower lid part of the first displacer 18a are fastened, welded, etc. as appropriate.
  • the first regenerator material may be fixed to the main body by means such that the first regenerator material is accommodated in the first displacer 18a.
  • the second displacer 18b accommodates the second regenerator 28.
  • the second regenerator 28 is configured by filling the cylindrical main body of the second displacer 18b with a non-magnetic regenerator material such as bismuth, a magnetic regenerator material such as HoCu 2 , or any other appropriate second regenerator material. is formed by.
  • the second cold storage material may be shaped into particles.
  • the upper lid part and the lower lid part of the second displacer 18b may be provided as separate members from the main body part of the second displacer 18b, and the lower lid part of the upper lid part of the second displacer 18b may be fastened, welded, etc. as appropriate.
  • the second regenerator material may be fixed to the main body by means such that the second regenerator material is accommodated in the second displacer 18b.
  • the displacer assembly 18 forms an upper chamber 30, a first expansion chamber 32, and a second expansion chamber 34 inside the refrigerator cylinder 16.
  • the expander 14 comprises a first cooling stage 33 and a second cooling stage 35.
  • the upper chamber 30 is formed between the upper lid part of the first displacer 18a and the upper part of the first cylinder 16a.
  • the first expansion chamber 32 is formed between the lower lid portion of the first displacer 18a and the first cooling stage 33.
  • the second expansion chamber 34 is formed between the lower lid part of the second displacer 18b and the second cooling stage 35.
  • the first cooling stage 33 is fixed to the lower part of the first cylinder 16a so as to surround the first expansion chamber 32
  • the second cooling stage 35 is fixed to the lower part of the second cylinder 16b so as to surround the second expansion chamber 34. has been done.
  • the first cooling stage 33 and the second cooling stage 35 are formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
  • the first regenerator 26 is connected to the upper chamber 30 through a working gas passage 36a formed in the upper lid of the first displacer 18a, and is connected to the upper chamber 30 through a working gas passage 36b formed in the lower lid of the first displacer 18a. 1 expansion chamber 32.
  • the second regenerator 28 is connected to the first regenerator 26 through a working gas passage 36c formed from the lower lid of the first displacer 18a to the upper lid of the second displacer 18b. Further, the second regenerator 28 is connected to the second expansion chamber 34 through a working gas flow path 36d formed in the lower lid portion of the second displacer 18b.
  • the working gas flow between the first expansion chamber 32, the second expansion chamber 34 and the upper chamber 30 is not limited to the clearance between the refrigerator cylinder 16 and the displacer assembly 18;
  • a first seal 38a and a second seal 38b may be provided to guide the liquid to the vessel 28.
  • the first seal 38a may be attached to the upper lid portion of the first displacer 18a so as to be disposed between the first displacer 18a and the first cylinder 16a.
  • the second seal 38b may be attached to the upper lid portion of the second displacer 18b so as to be disposed between the second displacer 18b and the second cylinder 16b.
  • the expander 14 includes a pressure switching valve 40 and a drive motor 42.
  • the pressure switching valve 40 is housed in the refrigerator housing 20, and the drive motor 42 is attached to the refrigerator housing 20.
  • the pressure switching valve 40 includes a high pressure valve 40a and a low pressure valve 40b, and is configured to generate periodic pressure fluctuations within the refrigerator cylinder 16.
  • a working gas discharge port of the compressor 12 is connected to the upper chamber 30 via a high pressure valve 40a, and a working gas inlet of the compressor 12 is connected to the upper chamber 30 via a low pressure valve 40b.
  • High pressure valve 40a and low pressure valve 40b are configured to open and close selectively and alternately (ie, when one is open, the other is closed).
  • High-pressure (for example, 2 to 3 MPa) working gas is supplied from the compressor 12 to the expander 14 through the high-pressure valve 40a, and low-pressure (for example, 0.5 to 1.5 MPa) working gas is compressed from the expander 14 through the low-pressure valve 40b. It is recovered by machine 12.
  • low-pressure (for example, 0.5 to 1.5 MPa) working gas is compressed from the expander 14 through the low-pressure valve 40b. It is recovered by machine 12.
  • the direction of flow of the working gas is indicated by arrows in FIG.
  • a drive motor 42 is provided to drive the reciprocating motion of the displacer assembly 18.
  • the drive motor 42 is connected to a displacer drive shaft 44 via a motion conversion mechanism 43 such as a Scotch yoke mechanism.
  • the motion conversion mechanism 43 like the pressure switching valve 40, is housed in the refrigerator housing 20.
  • the displacer drive shaft 44 extends from the motion converting mechanism 43 through the refrigerator housing 20 into the upper chamber 30, and is fixed to the upper lid portion of the first displacer 18a.
  • a third seal 38c is provided to prevent leakage of working gas from the upper chamber 30 to the refrigerator housing 20 (which may be maintained at low pressure as described above).
  • the third seal 38c may be attached to the refrigerator housing 20 so as to be disposed between the refrigerator housing 20 and the displacer drive shaft 44.
  • the drive motor 42 When the drive motor 42 is driven, the rotational output of the drive motor 42 is converted into an axial reciprocating motion of the displacer drive shaft 44 by the motion conversion mechanism 43, and the displacer assembly 18 reciprocates in the axial direction within the refrigerator cylinder 16. . Further, the drive motor 42 is connected to the high pressure valve 40a and the low pressure valve 40b so as to selectively and alternately open and close these valves.
  • the cryogenic refrigerator 10 When the compressor 12 and the drive motor 42 are operated, the cryogenic refrigerator 10 generates periodic volume fluctuations and working gas pressure fluctuations in synchronization with this in the first expansion chamber 32 and the second expansion chamber 34. , thereby forming a refrigeration cycle, in which the first cooling stage 33 and the second cooling stage 35 are cooled to a desired cryogenic temperature.
  • the first cooling stage 33 may be cooled to a first cooling temperature ranging from about 20K to about 40K, for example.
  • the second cooling stage 35 may be cooled to a second cooling temperature (eg, about 1K to about 4K) lower than the first cooling temperature.
  • the expander 14 can also absorb heat on the refrigerator cylinder 16, for example, at the axially intermediate portion of the second cylinder 16b.
  • a heat absorber 46 is cooled to a cooling temperature based on the axial temperature distribution on the refrigerator cylinder 16, for example the second cylinder 16b, and the axial position of the heat absorber 46, and provides some refrigeration capacity at this cooling temperature. can do.
  • the cooling temperature of the heat absorption section 46 is between the first cooling temperature of the first cooling stage 33 and the second cooling temperature of the second cooling stage 35.
  • the heat absorbing portion 46 is located at a normalized axial position on the second cylinder 16b (that is, a dimensionless axial position where the positions of the first cooling stage 33 and the second cooling stage 35 are 0 and 1, respectively), for example, 1. It may be in the range of /4 to 3/4.
  • an object to be cooled is thermally connected to either the first cooling stage 33 or the second cooling stage 35 and cooled depending on the desired cooling temperature.
  • Nothing is connected to the heat absorption section 46 on the second cylinder 16b, and the refrigerating capacity of the heat absorption section 46 is not utilized.
  • the refrigeration capacity of the heat sink 46 could also be utilized in addition to the two cooling stages, this could lead to more efficient cooling of the cryogenic system 100.
  • the heat input to the heat absorption part 46 may affect the cooling temperature of the cooling stage, for example, the second cooling stage 35 (the large heat input to the heat absorption part 46 may cause the temperature of the second cooling stage 35 to increase. ).
  • the cryogenic refrigerator 10 in order to maintain the object to be cooled at a desired cooling temperature, the cryogenic refrigerator 10 is required to operate so that the cooling stage temperature does not exceed a predetermined temperature limit. The reason why cooling using the heat absorbing part 46 has not been used so far is because there is a concern about the risk of temperature increase in the cooling stage due to heat input to the heat absorbing part 46.
  • the cryogenic system 100 is configured to control the heat source so as to optimize the heat input from the heat source (that is, the object to be cooled) to the heat absorption section 46. Optimization of heat input is achieved by keeping the temperature of the heat absorbing section 46 below the upper limit temperature.
  • FIGS. 3(a) and 3(b) are graphs showing experimental results by the present inventors in accordance with the embodiment.
  • a heater for simulating heat input to the heat absorption part 46 is installed in the heat absorption part 46.
  • the position of the heater in other words, the position of the heat absorption part 46 is slightly lower temperature side than the center in the axial direction, specifically, the standardized axial position on the second cylinder 16b (as described above, the position of the first cooling stage 33 is 0).
  • the second cooling stage 35 is about 0.54.
  • a heater is also installed on the second cooling stage 35 in order to apply a heat load (for example, a rated heat load of 1.5 W).
  • the cryogenic refrigerator 10 is operated so as to maintain the first cooling stage 33 at a constant temperature (for example, 43 K) while applying a rated heat load to the second cooling stage 35.
  • FIG. 3(a) shows the relationship between the normalized heater output representing the heat input to the heat absorption section 46 and the temperature rise of the second cooling stage 35.
  • the temperature rise of the second cooling stage 35 represents a temperature rise with respect to the target cooling temperature (for example, 4K) of the second cooling stage 35.
  • FIG. 3(b) shows the relationship between the normalized axial position on the second cylinder 16b and the temperature, that is, how the axial temperature distribution on the second cylinder 16b changes depending on the normalized heater output. shown.
  • FIGS. 1 shows the relationship between the normalized heater output representing the heat input to the heat absorption section 46 and the temperature rise of the second cooling stage 35.
  • the temperature rise of the second cooling stage 35 represents a temperature rise with respect to the target cooling temperature (for example, 4K) of the second cooling stage 35.
  • FIG. 3(b) shows the relationship between the normalized axial position on the second cylinder 16b and the temperature, that is, how the axial temperature distribution on the second cylinder 16b changes depending on the normal
  • the normalized heater output when the normalized heater output is zero, the temperature rise of the second cooling stage 35 is 0K (circle symbol), and the normalized heater output is 0.085, 0.31, 0.45. It can be seen that as the temperature increases, the temperature rise of the second cooling stage 35 also increases (square, triangle, and diamond symbols). Specifically, when the standardized heater output is 0.085, the temperature rise is about 0.04 K (square symbol), and when the standardized heater output is 0.31, the temperature rise is about 0.09 K (triangle symbol), and the standardized heater At an output of 0.45, the temperature rise is approximately 0.17K (diamond symbol).
  • the second cooling stage 35 is often The permissible temperature rise of the stage 35 is desirably up to about 0.1K, and is required to be up to about 0.2K at the maximum.
  • the normalized heater output threshold Th1 indicated by the broken line in FIG. 3(a) represents one important boundary. If the heat input to the heat absorption section 46 is below this threshold value Th1, the temperature rise in the second cooling stage 35 is suppressed to a relatively small value within about 0.1K. On the other hand, when the heat input to the heat absorbing section 46 exceeds this threshold value Th1, the temperature rise in the second cooling stage 35 changes its aspect, becomes proportionally larger in conjunction with the increase in the normalized heater output, and is easily exceeds 0.2K.
  • a broken line L1 shown in FIG. 3(b) represents a straight line connecting the measured temperature of the first cooling stage 33 and the measured temperature of the second cooling stage 35. From FIGS. 3(a) and 3(b), it is important to note that the temperature of the heat absorbing section 46 at the normalized heater output threshold Th1 is on or near this straight line L1 (the square in FIG. 3(b) symbol and triangle symbol).
  • the heat absorption part 46 A significant temperature increase may occur in the second cooling stage 35 due to the heat input. Furthermore, if the heat input to the heat absorption part 46 is such that the temperature of the heat absorption part 46 does not exceed this upper limit temperature, the temperature of the second cooling stage 35 due to the heat input to the heat absorption part 46 is The increase may be substantially absent or within an acceptable range (eg, within 0.2K, or preferably within 0.1K).
  • FIGS. 4(a) and 4(b) are graphs showing experimental results by the present inventors in accordance with the embodiment.
  • the experimental results shown in FIGS. 4(a) and 4(b) were obtained by changing the axial position of the heat absorption part 46 from the experimental results shown in FIGS. 3(a) and 3(b), Other experimental conditions were the same.
  • the position of the heat absorption part 46 is on the high temperature side compared to FIGS. 3(a) and 3(b), specifically, on the normalized axis on the second cylinder 16b.
  • the direction position is approximately 0.35.
  • FIG. 4(a) shows the relationship between the normalized heater output representing the heat input to the heat absorption section 46 and the temperature rise of the second cooling stage 35.
  • FIG. 4(b) shows the relationship between the normalized axial position on the second cylinder 16b and the temperature.
  • the temperature measurement results when the normalized heater output is zero are shown with circle symbols, and the normalized heater output
  • the temperature measurement results when is 0.31, 0.55, and 0.72 are shown by square, triangle, and diamond symbols, respectively.
  • the normalized heater output threshold Th2 indicated by the broken line is an important boundary. If the heat input to the heat absorbing section 46 is below this threshold value Th2, the temperature rise in the second cooling stage 35 is suppressed to a very small value within about 0.02K. On the other hand, when the heat input to the heat absorption section 46 exceeds this threshold value Th2, the temperature rise of the second cooling stage 35 changes in aspect and increases proportionally in accordance with the normalized heater output.
  • the normalized heater output is zero, the temperature of the heat absorbing part 46 is approximately 16 K (circle symbol), and as the standardized heater output increases, the temperature of the heat absorbing part 46 also increases. Specifically, when the standardized heater output is 0.31, the temperature of the heat absorbing part 46 is about 27 K (square symbol), and when the normalized heater output is 0.55, the temperature of the heat absorbing part 46 is about 33 K (triangle symbol). The heating output is 0.72, and the temperature of the heat absorbing section 46 is approximately 38K (diamond symbol).
  • a broken line L2 shown in FIG. 4(b) represents a straight line connecting the measured temperature of the first cooling stage 33 and the measured temperature of the second cooling stage 35. From FIG. 4(a) and FIG. 4(b), the temperature of the heat absorbing part 46 at the normalized heater output threshold Th2 is on or near this straight line L2 (in the square symbol and triangular symbol in FIG. 4(b)). It is thought to be located between
  • the heat input to the heat absorption part 46 is large (that is, exceeds the threshold value Th2), and as a result, the temperature of the heat absorption part 46 exceeds the upper limit temperature of this straight line L2 or its vicinity, the heat input to the heat absorption part 46 will decrease. A significant temperature increase may occur in the second cooling stage 35 due to heat. Furthermore, if the heat input to the heat absorption part 46 is such that the temperature of the heat absorption part 46 does not exceed this upper limit temperature, the temperature of the second cooling stage 35 due to the heat input to the heat absorption part 46 is It is believed that the increase may be substantially non-existent or within an acceptable range.
  • the inventor conducted the same experiment by variously changing the axial position of the heat absorption part 46 and the temperature of the first cooling stage 33. Is going. As a result, the inventor has determined the relationship between the heat input to the heat absorption part 46 and the temperature rise of the second cooling stage 35, and the relationship between the normalized axial position on the second cylinder 16b and the temperature as described above. We have confirmed that the same behavior as the results is observed.
  • the upper limit temperature of the heat absorption part 46 for preventing or minimizing the temperature rise of the second cooling stage 35 due to heat input to the heat absorption part 46 is determined by the temperature measured at both ends of the second cylinder 16b, and It can be set based on the axial position of the heat absorbing portion 46.
  • the upper limit temperature of the heat absorption part 46 may be set based on the reference temperature distribution of the second cylinder 16b and the axial position of the heat absorption part 46.
  • the reference temperature distribution of the second cylinder 16b has a first measured temperature at one axial end of the second cylinder 16b (for example, the first cooling stage 33) and a temperature distribution at the other axial end of the second cylinder 16b.
  • the temperature distribution may have a second measured temperature at the end (for example, the second cooling stage 35) and vary linearly depending on the axial position in the second cylinder 16b.
  • the cryogenic refrigerator 10 includes a first temperature sensor 51, a second temperature sensor 52, a third temperature sensor 53, and a controller 60.
  • the first temperature sensor 51 measures a first measurement temperature T1 at one axial end of the second cylinder 16b near the first cylinder 16a.
  • the first temperature sensor 51 may be provided on the first cooling stage 33 and may measure the first measurement temperature T1 on the first cooling stage 33.
  • the second temperature sensor 52 measures a second measured temperature T2 at the other axial end of the second cylinder 16b that is far from the first cylinder 16a.
  • the second temperature sensor 52 may be provided on the second cooling stage 35 and may measure the second measurement temperature T2 on the second cooling stage 35.
  • the third temperature sensor 53 is provided in the heat absorption section 46 and measures the third measurement temperature T3 at the heat absorption section 46.
  • the controller 60 receives the first measured temperature T1, the second measured temperature T2, and the third measured temperature T3 from the first temperature sensor 51, the second temperature sensor 52, and the third temperature sensor 53, respectively. is connected to enable communication.
  • the internal configuration of the controller 60 is realized as a hardware configuration by elements and circuits such as a computer's CPU (Central Processing Unit) and memory, and as a software configuration by a computer program, etc.; It is depicted as a functional block that is realized by their cooperation. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
  • the cryogenic system 100 includes a refrigerant gas line 118 that is cooled by the cryogenic refrigerator 10.
  • the refrigerant gas in refrigerant gas line 118 is condensed by cooling, and cryogenic liquid 102 is produced.
  • the refrigerant gas line 118 includes a supply line 120 that supplies the cryogenic liquid 102 to the inner tank 114 of the vacuum vessel 110, and a return line 122 for the cryogenic liquid 102 (ie, refrigerant gas) vaporized in the inner tank 114.
  • Supply line 120 and return line 122 may each be rigid or flexible piping through which refrigerant gas flows.
  • the supply line 120 includes a first heat exchanger 124, a second heat exchanger 126, and a recondensing section 128. It flows through the recondensing section 128 in the order described.
  • the first heat exchanger 124 is provided outside the first cooling stage 33 within the inner tank 114, and is configured to pre-cool the refrigerant gas to a first cooling temperature through heat exchange between the first cooling stage 33 and the refrigerant gas. be done.
  • the second heat exchanger 126 is provided outside the second cylinder 16b in the inner tank 114, and exchanges heat between the heat absorption part 46 of the second cylinder 16b and the refrigerant gas to bring the refrigerant gas to the cooling temperature of the heat absorption part 46. It is further configured to pre-cool.
  • the recondensing section 128 serves as an outlet for the supply line 120 to the inner tank 114.
  • the recondensing section 128 is provided outside the second cooling stage 35 in the inner tank 114, cools the refrigerant gas to a second cooling temperature through heat exchange between the second cooling stage 35 and the refrigerant gas, and cools the refrigerant gas to an extremely low temperature. It is configured to recondense into a cryogenic liquid 102.
  • the recondensed cryogenic liquid 102 is stored in the inner tank 114 as described above.
  • the recondensing section 128 may be integral with the second cooling stage 35, as shown, and may have fin-like protrusions or asperities to increase the surface area in contact with the refrigerant gas or cryogenic liquid 102. Good too.
  • the recondensing section 128 is formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
  • the refrigerant gas line 118 also includes a flow regulator 130 configured to adjust the refrigerant gas flow rate of the refrigerant gas line 118.
  • a flow regulator 130 is provided on the refrigerant gas line 118 to connect the return line 122 to the supply line 120.
  • Flow regulator 130 receives refrigerant gas from return line 122, regulates the refrigerant gas flow rate, and delivers refrigerant gas to supply line 120 at the regulated flow rate.
  • Flow regulator 130 may be a circulating flow generator, such as a pump, a compressor, or a mechanism for regulating gas flow, such as a flow control valve, variable orifice, or the like.
  • the flow regulator 130 may be placed outside the vacuum vessel 110, as shown, or may be placed within the vacuum vessel 110. Additionally, the flow regulator 130 may be provided anywhere on the refrigerant gas line 118, may be provided on the supply line 120, or may be provided on the return line 122.
  • the flow regulator 130 can adjust the flow rate of the refrigerant gas circulating through the refrigerant gas line 118. By adjusting the flow rate, heat input from the refrigerant gas line 118 to the heat absorption section 46 is controlled.
  • the refrigerant gas line 118 serves as a heat source for the cryogenic refrigerator 10.
  • the heat source includes a first portion (e.g., first heat exchanger 124), a second portion (e.g., recondensing section 128), and a third portion of the heat source (e.g., second heat exchanger 128) connecting the first and second portions. exchanger 126).
  • One axial end of the second cylinder 16b e.g., the first cooling stage 33
  • the other axial end of the second cylinder 16b e.g., the second cooling stage 35
  • the heat absorbing portion 46 is thermally connected to the third portion of the heat source.
  • the refrigerant gas line 118 passes through the first, third, and second portions of the heat source in the order listed.
  • FIG. 5 is a flowchart showing a method of controlling the cryogenic system 100 according to the embodiment.
  • This method includes obtaining a first measured temperature T1 from the first temperature sensor 51, a second measured temperature T2 from the second temperature sensor 52, and a third measured temperature T3 from the third temperature sensor 53 (S10). , setting the upper limit temperature of the heat absorbing part 46 based on the first measured temperature T1, the second measured temperature T2, and the axial position of the heat absorbing part 46 (S20), and setting the third measured temperature T3 of the heat absorbing part 46. Controlling the heat source, that is, the refrigerant gas line 118, so that the temperature is below the upper limit temperature (S30).
  • the first measured temperature T1 is measured by the first temperature sensor 51 at one axial end (for example, the first cooling stage 33) of the second cylinder 16b near the first cylinder 16a.
  • a signal indicating the first measured temperature T1 is input from the first temperature sensor 51 to the controller 60.
  • the second measured temperature T2 is measured by the second temperature sensor 52 at the other axial end of the second cylinder 16b that is far from the first cylinder 16a.
  • a signal indicating the second measured temperature T2 is input from the second temperature sensor 52 to the controller 60.
  • the third measured temperature T3 is measured by the third temperature sensor 53 at the heat absorption section 46.
  • a signal indicating the third measured temperature T3 is input from the third temperature sensor 53 to the controller 60.
  • the controller 60 first determines the reference temperature distribution of the second cylinder 16b based on the first measured temperature T1 and the second measured temperature T2.
  • This reference temperature distribution has a first measured temperature T1 at one axial end of the second cylinder 16b, a second measured temperature T2 at the other axial end of the second cylinder 16b, and a second measured temperature T2 at the other axial end of the second cylinder 16b.
  • This is a temperature distribution that changes linearly depending on the axial position in the cylinder 16b.
  • the controller 60 sets the upper limit temperature of the heat absorption section 46 based on the reference temperature distribution and the axial position of the heat absorption section 46. By substituting the axial normalized position of the heat absorbing portion 46 into the above equation representing the reference temperature distribution, a candidate value for the upper limit temperature of the heat absorbing portion 46 is determined. The controller 60 may employ this candidate value as the upper limit temperature.
  • the controller 60 may set a value somewhat smaller than this candidate value (for example, A value selected from the range of 70% to 100%, 80% to 100%, or 90% to 100%) may be adopted as the upper limit temperature of the heat absorbing portion 46.
  • the controller 60 sets a value somewhat larger than this candidate value (for example, 100 to 100 of the candidate value). 130%, or a value selected from the range of 100 to 120%, or 100 to 110%) may be adopted as the upper limit temperature of the heat absorbing portion 46.
  • the controller 60 controls the refrigerant gas flow rate of the refrigerant gas line 118 so that the third measured temperature T3 is equal to or lower than the upper limit temperature of the heat absorption section 46.
  • This control will be described later with reference to FIG.
  • the controller 60 may update the upper limit temperature of the heat absorption section 46 according to the first measured temperature T1 and the second measured temperature T2 by periodically repeating the process shown in FIG. 5.
  • the cryogenic refrigerator 10 is operated to maintain the cooling temperature of the first cooling stage 33 (and/or the second cooling stage 35) at a certain target temperature, unless the target temperature is changed, The temperature distribution also remains roughly unchanged.
  • the upper limit temperature of the heat absorption section 46 that has been set once may be used continuously thereafter.
  • FIG. 6 is a flowchart showing an example of the control process (S30) for the refrigerant gas line 118 shown in FIG.
  • the controller 60 controls the flow rate regulator 130 of the refrigerant gas line 118 based on the comparison between the third measured temperature T3 and the upper limit temperature of the heat absorption section 46, thereby controlling the refrigerant gas flow rate of the refrigerant gas line 118.
  • Control. This process is repeatedly executed by the controller 60 at predetermined intervals while the cryogenic refrigerator 10 is in operation.
  • the controller 60 first compares the third measured temperature T3 with the upper limit temperature T lim of the heat absorption section 46 (S31).
  • the third measured temperature T3 is measured by the third temperature sensor 53 as described above (S10 in FIG. 5).
  • the upper limit temperature of the heat absorption part 46 is set based on the measured temperature at both ends of the second cylinder 16b and the axial position of the heat absorption part 46 (S20 in FIG. 5).
  • the controller 60 compares the third measured temperature T3 with the upper limit temperature Tlim of the heat absorption section 46, and outputs the magnitude relationship between the two as a comparison result. That is, the comparison result by the controller 60 is in the following three states: (i) the third measured temperature T3 is higher than the upper limit temperature T lim , (ii) the third measured temperature T3 is lower than the upper limit temperature T lim , (iii) The third measured temperature T3 is equal to the upper limit temperature Tlim .
  • Controller 60 controls flow regulator 130 based on the comparison result. Specifically, (i) when the third measured temperature T3 is higher than the upper limit temperature Tlim , the controller 60 controls the flow regulator 130 to reduce the refrigerant gas flow rate (S32). Thereby, the heat input from the second heat exchanger 126 to the heat absorption section 46 can be reduced, and the third measured temperature T3 can be lowered. (ii) When the third measured temperature T3 is lower than the upper limit temperature Tlim , the controller 60 controls the flow regulator 130 to increase the refrigerant gas flow rate (S33). Thereby, heat input from the second heat exchanger 126 to the heat absorption section 46 can be increased, and the refrigerant gas line 118 can be cooled more efficiently.
  • the refrigerant gas line 118 is can be cooled.
  • Cryogenic system 100 can be cooled more efficiently than typical cooling configurations that do not utilize heat sink 46.
  • the upper limit temperature T lim of the heat absorbing portion 46 is set based on the first measured temperature T1, the second measured temperature T2, and the axial position of the heat absorbing portion 46, and the third measured temperature T3 is set as the upper limit temperature T lim of the heat absorbing portion 46.
  • a heat source for example, refrigerant gas line 118 for cryogenic refrigerator 10 in cryogenic system 100 is controlled so that the temperature is below T lim . In this way, by keeping the temperature of the heat absorbing section 46 below the upper limit temperature T lim , the temperature rise of the second cooling stage 35 can be prevented or minimized.
  • the upper limit temperature T lim is based on the above-mentioned linear reference temperature distribution and the axial position of the heat absorption section 46 . In this way, even if the temperatures of the first cooling stage 33 and the second cooling stage 35 change depending on various operating conditions of the cryogenic refrigerator 10, the heat absorbing portion 46 can be provided at various axial positions. Even if the upper limit temperature T lim is determined, the upper limit temperature T lim can be clearly and easily determined.
  • FIG. 7 is a diagram schematically showing a cryogenic system 100 according to another embodiment.
  • the cryogenic system 100 shown in FIG. 7 differs from the cryogenic system 100 shown in FIG. 1 with respect to the object to be cooled, and the rest is generally the same.
  • different configurations will be mainly explained, and common configurations will be briefly explained or their explanations will be omitted.
  • cryogenic system 100 is a storage device for the cryogenic liquid 102
  • the cryogenic system 100 may be applied to a superconducting device, and the cryogenic refrigerator 10 is configured to provide a superconducting coil 150 disposed within a vacuum container 110 and a current for supplying power to the superconducting coil 150. It may also be used to cool the leads 152.
  • Superconducting coil 150 is cooled by second cooling stage 35
  • current lead 152 is cooled by first cooling stage 33 , heat absorption section 46 , and second cooling stage 35 .
  • the current lead 152 electrically connects a power source 154 placed outside the vacuum vessel 110 to the superconducting coil 150, and serves as a current path from the power source 154 to the superconducting coil 150. Therefore, since the current lead 152 can generate heat when energized, it functions as a heat source for the cryogenic refrigerator 10.
  • the current lead 152 has a first portion 152a, a second portion 152b, and a third portion 152c connecting the first portion 152a and the second portion 152b.
  • One axial end of the second cylinder 16b (for example, the first cooling stage 33) is thermally connected to the first portion 152a of the current lead 152, and the other axial end of the second cylinder 16b (for example, the first cooling stage 33) is thermally connected to the first portion 152a of the current lead 152.
  • 2 cooling stage 35 is thermally connected to the second portion 152b of the current lead 152.
  • the heat absorbing portion 46 is thermally connected to the third portion 152c of the current lead 152.
  • the first cooling stage 33 is connected to the first portion 152a of the current lead 152 by the first heat transfer member 156
  • the second cooling stage 35 is connected to the first portion 152a of the current lead 152 by the second heat transfer member 158. It may be connected to the second portion 152b. Further, the second cooling stage 35 may be connected to the superconducting coil 150 by a second heat transfer member 158.
  • the heat absorbing portion 46 of the second cylinder 16b may be connected to the third portion 152c of the current lead 152 by a heat bridge 160.
  • the controller 60 is configured to control the current in the current lead 152 so that the third measured temperature T3 is equal to or lower than the upper limit temperature.
  • the controller 60 may control the power supply 154 based on a comparison between the third measured temperature T3 and the upper limit temperature of the heat absorption section 46, thereby controlling the current in the current lead 152.
  • the controller 60 controls the power supply 154 to reduce the current in the current lead 152. Thereby, the heat input from the second heat exchanger 126 to the heat absorption section 46 can be reduced, and the third measured temperature T3 can be lowered.
  • the controller 60 controls the power supply 154 to increase the current in the current lead 152. Thereby, the heat input from the second heat exchanger 126 to the heat absorption section 46 can be increased, and the current lead 152 can be cooled more efficiently.
  • the controller 60 controls the power supply 154 to maintain the current current.
  • the current lead 152 can be cooled using the refrigerating capacity of the heat absorbing section 46 on the second cylinder 16b.
  • Cryogenic system 100 can be cooled more efficiently than typical cooling configurations that do not utilize heat sink 46.
  • T lim the temperature rise of the second cooling stage 35 can be prevented or minimized.
  • one temperature sensor (third temperature sensor 53) is provided to measure the temperature of the heat absorption section 46, but other configurations are also possible.
  • the temperature of the heat absorbing portion 46 may be measured at multiple temperature measurement locations. Therefore, a plurality of temperature sensors (for example, two third temperature sensors 53) may be provided in the heat absorption section 46. These temperature sensors are provided at different positions in the axial direction on the second cylinder 16b. As an example, one third temperature sensor 53 is arranged on the high temperature side with respect to the other third temperature sensor 53.
  • the controller 60 may set the upper limit temperature for each temperature measurement position (temperature sensor) based on the measured temperature at both ends of the second cylinder 16b and the temperature measurement position.
  • the controller 60 may control the heat source so that any measured temperature among the plurality of measured temperatures is equal to or lower than the corresponding upper limit temperature.
  • the cryogenic refrigerator 10 is a two-stage GM refrigerator, but other configurations are also possible.
  • the cryogenic refrigerator 10 may be a single-stage GM refrigerator.
  • the cryogenic refrigerator 10 may be another type of cryogenic refrigerator, such as a Solvay refrigerator, a Stirling refrigerator, a pulse tube refrigerator, etc., for example.
  • the present invention can be used in the fields of cryogenic systems and cryogenic system control methods.
  • cryogenic refrigerator 16a first cylinder, 16b second cylinder, 46 heat absorption section, 51 first temperature sensor, 52 second temperature sensor, 53 third temperature sensor, 60 controller, 100 cryogenic system, 118 refrigerant gas line , 152 Current lead.

Abstract

A cryogenic system (100) comprises: a cryogenic refrigerator (10); and a controller (60). The cryogenic refrigerator (10) is provided with a first cylinder (16a), a second cylinder (16b) that is provided with, at an axially middle portion, a heat absorption part (46) to be thermally connected to a heat source, a first temperature sensor (51) that measures the temperature at one axial end of the second cylinder (16b), a second temperature sensor (52) that measures the temperature at the other axial end of the second cylinder (16b), and a third temperature sensor (53) that measures the temperature at the heat absorption part (46). The controller (60) is configured to: acquire a first measured temperature from the first temperature sensor (51), a second measured temperature from the second temperature sensor (52), and a third measured temperature from the third temperature sensor (53); set the upper limit temperature for the heat absorption part (46) on the basis of the first measured temperature, the second measured temperature, and the axial position of the heat absorption part (46); and control the heat source such that the third measured temperature is equal to or lower than the upper limit temperature of the heat absorption part (46).

Description

極低温システムおよび極低温システムの制御方法Cryogenic systems and how to control them
 本発明は、極低温システムおよび極低温システムの制御方法に関する。 The present invention relates to a cryogenic system and a method of controlling a cryogenic system.
 従来、ギフォード・マクマホン(Gifford-McMahon;GM)冷凍機に代表される極低温冷凍機が知られている。極低温冷凍機は、さまざまな極低温システムの冷却に利用されている。 Conventionally, cryogenic refrigerators typified by Gifford-McMahon (GM) refrigerators have been known. Cryogenic refrigerators are used to cool a variety of cryogenic systems.
特開2001-116379号公報Japanese Patent Application Publication No. 2001-116379
 本発明のある態様の例示的な目的のひとつは、極低温システムを効率的に冷却することにある。 One exemplary objective of certain embodiments of the present invention is to efficiently cool cryogenic systems.
 本発明のある態様によると、極低温システムは、極低温冷凍機およびコントローラを備える。極低温冷凍機は、第1シリンダと、軸方向に第1シリンダと直列に設けられる第2シリンダであって、その軸方向中間部に熱源と熱的に接続される吸熱部を備える第2シリンダと、第1シリンダに近い第2シリンダの一方の軸方向端部で第1測定温度を測定する第1温度センサと、第1シリンダから遠い第2シリンダの他方の軸方向端部で第2測定温度を測定する第2温度センサと、吸熱部で第3測定温度を測定する第3温度センサと、を備える。コントローラは、第1温度センサから第1測定温度を、第2温度センサから第2測定温度を、および第3温度センサから第3測定温度を取得し、第1測定温度、第2測定温度、および吸熱部の軸方向位置に基づいて、吸熱部の上限温度を設定し、第3測定温度が吸熱部の上限温度以下となるように熱源を制御するように構成される。 According to an aspect of the invention, a cryogenic system includes a cryogenic refrigerator and a controller. The cryogenic refrigerator includes a first cylinder and a second cylinder provided axially in series with the first cylinder, the second cylinder having an endothermic part thermally connected to a heat source at an axially intermediate portion thereof. and a first temperature sensor that measures a first measurement temperature at one axial end of the second cylinder that is close to the first cylinder, and a second temperature sensor that measures a second measurement temperature at the other axial end of the second cylinder that is remote from the first cylinder. It includes a second temperature sensor that measures temperature, and a third temperature sensor that measures a third measured temperature at the endothermic part. The controller obtains a first measured temperature from the first temperature sensor, a second measured temperature from the second temperature sensor, and a third measured temperature from the third temperature sensor, and obtains the first measured temperature, the second measured temperature, and The upper limit temperature of the heat absorber is set based on the axial position of the heat absorber, and the heat source is controlled so that the third measured temperature is equal to or lower than the upper limit temperature of the heat absorber.
 本発明のある態様によると、極低温システムの制御方法が提供される。極低温システムは、軸方向に直列に設けられた第1シリンダおよび第2シリンダを備える極低温冷凍機を備え、第2シリンダは、その軸方向中間部に熱源と熱的に接続される吸熱部を備える。方法は、第1シリンダに近い第2シリンダの一方の軸方向端部で第1測定温度を測定することと、第1シリンダから遠い第2シリンダの他方の軸方向端部で第2測定温度を測定することと、吸熱部で第3測定温度を測定することと、第1測定温度、第2測定温度、および吸熱部の軸方向位置に基づいて、吸熱部の上限温度を設定することと、第3測定温度が吸熱部の上限温度以下となるように熱源を制御することと、を備える。 According to one aspect of the present invention, a method of controlling a cryogenic system is provided. The cryogenic system includes a cryogenic refrigerator including a first cylinder and a second cylinder arranged in series in the axial direction, and the second cylinder has a heat absorption part thermally connected to a heat source at an axially intermediate part thereof. Equipped with The method includes: measuring a first measured temperature at one axial end of a second cylinder near the first cylinder; and measuring a second measured temperature at the other axial end of the second cylinder remote from the first cylinder. measuring a third measured temperature at the endothermic part; and setting an upper limit temperature of the endothermic part based on the first measured temperature, the second measured temperature, and the axial position of the endothermic part; controlling the heat source so that the third measured temperature is equal to or lower than the upper limit temperature of the heat absorption section.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 Note that arbitrary combinations of the above constituent elements and mutual substitution of constituent elements and expressions of the present invention among methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、極低温システムを効率的に冷却することができる。 According to the present invention, a cryogenic system can be efficiently cooled.
実施の形態に係る極低温システムを概略的に示す図である。FIG. 1 is a diagram schematically showing a cryogenic system according to an embodiment. 図1に示される極低温システムに適用しうる極低温冷凍機を概略的に示す図である。2 is a diagram schematically showing a cryogenic refrigerator that can be applied to the cryogenic system shown in FIG. 1. FIG. 図3(a)および図3(b)は、実施の形態に係り、本発明者による実験結果を示すグラフである。FIGS. 3(a) and 3(b) are graphs showing experimental results by the present inventor regarding the embodiment. 図4(a)および図4(b)は、実施の形態に係り、本発明者による実験結果を示すグラフである。FIGS. 4(a) and 4(b) are graphs showing experimental results by the present inventor regarding the embodiment. 実施の形態に係る極低温システムの制御方法を示すフローチャートである。It is a flow chart showing a control method of a cryogenic system concerning an embodiment. 図5に示される冷媒ガスラインの制御処理(S30)の一例を示すフローチャートである。6 is a flowchart showing an example of a control process (S30) for the refrigerant gas line shown in FIG. 5. FIG. 他の実施の形態に係る極低温システムを概略的に示す図である。FIG. 7 is a diagram schematically showing a cryogenic system according to another embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping explanations will be omitted as appropriate. The scales and shapes of the parts shown in the figures are set for convenience to facilitate explanation, and should not be interpreted in a limited manner unless otherwise stated. The embodiments are illustrative and do not limit the scope of the present invention. All features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、実施の形態に係る極低温システム100を概略的に示す図である。図2は、図1に示される極低温システム100に適用しうる極低温冷凍機10を概略的に示す図である。極低温冷凍機10の外観が図1に示され、極低温冷凍機10の内部構造が図2に示されている。極低温冷凍機10は、一例として、二段式のギフォード・マクマホン(Gifford-McMahon;GM)冷凍機である。 FIG. 1 is a diagram schematically showing a cryogenic system 100 according to an embodiment. FIG. 2 is a diagram schematically showing a cryogenic refrigerator 10 that can be applied to the cryogenic system 100 shown in FIG. 1. The external appearance of the cryogenic refrigerator 10 is shown in FIG. 1, and the internal structure of the cryogenic refrigerator 10 is shown in FIG. The cryogenic refrigerator 10 is, for example, a two-stage Gifford-McMahon (GM) refrigerator.
 この実施の形態では、極低温システム100は、極低温液体貯蔵装置として利用されうる。そこで、極低温冷凍機10に加えて、極低温システム100は、例えば液体ヘリウムまたはそのほかの極低温液体102を貯蔵するための真空容器110を備える。極低温冷凍機10によって、貯蔵される極低温液体102がその液化温度(液体ヘリウムの場合、約4K)以下の極低温に冷却される。 In this embodiment, cryogenic system 100 may be utilized as a cryogenic liquid storage device. Thus, in addition to the cryogenic refrigerator 10, the cryogenic system 100 includes a vacuum vessel 110 for storing, for example, liquid helium or other cryogenic liquid 102. The cryogenic refrigerator 10 cools the stored cryogenic liquid 102 to a cryogenic temperature below its liquefaction temperature (approximately 4 K in the case of liquid helium).
 真空容器110は、外槽112および内槽114を備える。外槽112と内槽114との間には真空断熱層116が形成され、外槽112は、極低温システム100の周囲環境(例えば、室温大気圧環境)から真空断熱層116を隔てるように構成される。真空断熱層116には、例えば多層断熱材(multilayer insulation(MLI))などの断熱構造が設けられてもよい。また、内槽114は、その内部に極低温液体102を収容するとともに、極低温液体102を真空断熱層116から隔てるように構成される。外槽112および内槽114は、内外の圧力差に耐えるように、例えばステンレス鋼などの金属材料またはその他の適する高強度材料で形成される。 The vacuum container 110 includes an outer tank 112 and an inner tank 114. A vacuum insulation layer 116 is formed between the outer tank 112 and the inner tank 114, and the outer tank 112 is configured to separate the vacuum insulation layer 116 from the surrounding environment of the cryogenic system 100 (e.g., room temperature, atmospheric pressure environment). be done. The vacuum insulation layer 116 may be provided with an insulation structure such as, for example, multilayer insulation (MLI). Moreover, the inner tank 114 is configured to contain the cryogenic liquid 102 therein and to separate the cryogenic liquid 102 from the vacuum insulation layer 116 . The outer tank 112 and the inner tank 114 are formed of a metallic material, such as stainless steel, or other suitable high-strength material to withstand internal and external pressure differences.
 極低温冷凍機10は、圧縮機12と、膨張機14とを備える。圧縮機12は、極低温冷凍機10の作動ガスを膨張機14から回収し、回収した作動ガスを昇圧して、再び作動ガスを膨張機14に供給するよう構成されている。作動ガスは、冷媒ガスとも称され、通例はヘリウムガスであるが、適切な他のガスが用いられてもよい。 The cryogenic refrigerator 10 includes a compressor 12 and an expander 14. The compressor 12 is configured to recover the working gas of the cryogenic refrigerator 10 from the expander 14, increase the pressure of the recovered working gas, and supply the working gas to the expander 14 again. The working gas, also referred to as refrigerant gas, is typically helium gas, although other suitable gases may be used.
 膨張機14は、冷凍機シリンダ16と、ディスプレーサ組立体18と、冷凍機ハウジング20とを備える。冷凍機ハウジング20は、冷凍機シリンダ16と結合され、それにより、ディスプレーサ組立体18を収容する気密容器が構成される。冷凍機シリンダ16および冷凍機ハウジング20は、例えばステンレス鋼などの金属材料またはその他の適する高強度材料で形成される。 The expander 14 includes a refrigerator cylinder 16, a displacer assembly 18, and a refrigerator housing 20. Refrigerator housing 20 is coupled with refrigerator cylinder 16 to thereby define an airtight container housing displacer assembly 18 . Refrigerator cylinder 16 and refrigerator housing 20 are formed of a metallic material, such as stainless steel, or other suitable high strength material.
 膨張機14は、冷凍機シリンダ16が真空容器110の内槽114に挿入され冷凍機ハウジング20が真空容器110の外側に取り付けられた状態で真空容器110に設置されている。一例として、膨張機14は、その中心軸を鉛直方向に一致させるようにして真空容器110の上部に設置される。しかし、膨張機14の取付場所および取付姿勢はこれに限られない。例えば、膨張機14は、真空容器110の下部に設置されてもよい。また、膨張機14は、所望される姿勢で設置可能であり、中心軸を斜め方向または水平方向に一致させるようにして真空容器110に設置されてもよい。 The expander 14 is installed in the vacuum container 110 with the refrigerator cylinder 16 inserted into the inner tank 114 of the vacuum container 110 and the refrigerator housing 20 attached to the outside of the vacuum container 110. As an example, the expander 14 is installed at the top of the vacuum container 110 so that its central axis coincides with the vertical direction. However, the mounting location and mounting posture of the expander 14 are not limited to this. For example, the expander 14 may be installed at the bottom of the vacuum container 110. Further, the expander 14 can be installed in a desired posture, and may be installed in the vacuum container 110 with its central axis aligned diagonally or horizontally.
 冷凍機シリンダ16は、軸方向(図1および図2においては上下方向)に延在する第1シリンダ16aおよび第2シリンダ16bを有する。第2シリンダ16bは、軸方向に第1シリンダ16aと直列に設けられている。第1シリンダ16aと第2シリンダ16bは、一例として、円筒形状を有する部材であり、第2シリンダ16bが第1シリンダ16aよりも小径である。第1シリンダ16aと第2シリンダ16bは同軸に配置され、第1シリンダ16aの下端が第2シリンダ16bの上端に剛に連結されている。 The refrigerator cylinder 16 has a first cylinder 16a and a second cylinder 16b that extend in the axial direction (in the vertical direction in FIGS. 1 and 2). The second cylinder 16b is provided in series with the first cylinder 16a in the axial direction. The first cylinder 16a and the second cylinder 16b are, for example, members having a cylindrical shape, and the second cylinder 16b has a smaller diameter than the first cylinder 16a. The first cylinder 16a and the second cylinder 16b are arranged coaxially, and the lower end of the first cylinder 16a is rigidly connected to the upper end of the second cylinder 16b.
 ディスプレーサ組立体18は、第1ディスプレーサ18aと第2ディスプレーサ18bとを有する。第1ディスプレーサ18aと第2ディスプレーサ18bは、一例として、円筒形状を有する部材であり、第2ディスプレーサ18bが第1ディスプレーサ18aよりも小径である。第1ディスプレーサ18aと第2ディスプレーサ18bは同軸に配置されている。 The displacer assembly 18 includes a first displacer 18a and a second displacer 18b. The first displacer 18a and the second displacer 18b are, for example, members having a cylindrical shape, and the second displacer 18b has a smaller diameter than the first displacer 18a. The first displacer 18a and the second displacer 18b are coaxially arranged.
 第1ディスプレーサ18aは、第1シリンダ16aに収容され、第2ディスプレーサ18bは、第2シリンダ16bに収容されている。第1ディスプレーサ18aは、第1シリンダ16aに沿って軸方向に往復移動可能であり、第2ディスプレーサ18bは、第2シリンダ16bに沿って軸方向に往復移動可能である。第1ディスプレーサ18aと第2ディスプレーサ18bは互いに連結され、一体に移動する。 The first displacer 18a is housed in the first cylinder 16a, and the second displacer 18b is housed in the second cylinder 16b. The first displacer 18a can be reciprocated in the axial direction along the first cylinder 16a, and the second displacer 18b can be reciprocated in the axial direction along the second cylinder 16b. The first displacer 18a and the second displacer 18b are connected to each other and move together.
 本書では、極低温冷凍機10の構成要素間の位置関係を説明するために、便宜上、ディスプレーサの軸方向往復動の上死点に近い側を「上」、下死点に近い側を「下」と表記することとする。上死点は膨張空間の容積が最大となるディスプレーサの位置であり、下死点は膨張空間の容積が最小となるディスプレーサの位置である。極低温冷凍機10の運転時には軸方向上方から下方へと温度が下がる温度勾配が生じるので、上側を高温側、下側を低温側と呼ぶこともできる。 In this document, in order to explain the positional relationship between the components of the cryogenic refrigerator 10, for convenience, the side near the top dead center of the reciprocating motion of the displacer in the axial direction is referred to as "upper", and the side closer to the bottom dead center is referred to as "lower". ”. The top dead center is the position of the displacer where the volume of the expansion space is maximum, and the bottom dead center is the position of the displacer where the volume of the expansion space is the minimum. During operation of the cryogenic refrigerator 10, a temperature gradient occurs in which the temperature decreases from the upper side to the lower side in the axial direction, so the upper side can also be called the high temperature side and the lower side can also be called the low temperature side.
 第1ディスプレーサ18aは、第1蓄冷器26を収容する。第1蓄冷器26は、第1ディスプレーサ18aの筒状の本体部の中に、例えば銅などの金網またはその他適宜の第1蓄冷材を充填することによって形成されている。第1ディスプレーサ18aの上蓋部および下蓋部は第1ディスプレーサ18aの本体部とは別の部材として提供されてもよく、第1ディスプレーサ18aの上蓋部および下蓋部は、締結、溶接など適宜の手段で本体に固定され、それにより第1蓄冷材が第1ディスプレーサ18aに収容されてもよい。 The first displacer 18a accommodates the first regenerator 26. The first regenerator 26 is formed by filling the cylindrical main body of the first displacer 18a with, for example, a wire mesh made of copper or other suitable first regenerator material. The upper lid part and the lower lid part of the first displacer 18a may be provided as separate members from the main body part of the first displacer 18a, and the upper lid part and the lower lid part of the first displacer 18a are fastened, welded, etc. as appropriate. The first regenerator material may be fixed to the main body by means such that the first regenerator material is accommodated in the first displacer 18a.
 同様に、第2ディスプレーサ18bは、第2蓄冷器28を収容する。第2蓄冷器28は、第2ディスプレーサ18bの筒状の本体部の中に、例えばビスマスなどの非磁性蓄冷材、HoCuなどの磁性蓄冷材、またはその他適宜の第2蓄冷材を充填することによって形成されている。第2蓄冷材は粒状に成形されていてもよい。第2ディスプレーサ18bの上蓋部および下蓋部は第2ディスプレーサ18bの本体部とは別の部材として提供されてもよく、第2ディスプレーサ18bの上蓋部の下蓋部は、締結、溶接など適宜の手段で本体に固定され、それにより第2蓄冷材が第2ディスプレーサ18bに収容されてもよい。 Similarly, the second displacer 18b accommodates the second regenerator 28. The second regenerator 28 is configured by filling the cylindrical main body of the second displacer 18b with a non-magnetic regenerator material such as bismuth, a magnetic regenerator material such as HoCu 2 , or any other appropriate second regenerator material. is formed by. The second cold storage material may be shaped into particles. The upper lid part and the lower lid part of the second displacer 18b may be provided as separate members from the main body part of the second displacer 18b, and the lower lid part of the upper lid part of the second displacer 18b may be fastened, welded, etc. as appropriate. The second regenerator material may be fixed to the main body by means such that the second regenerator material is accommodated in the second displacer 18b.
 ディスプレーサ組立体18は、上部室30、第1膨張室32、第2膨張室34を冷凍機シリンダ16の内部に形成する。極低温冷凍機10によって冷却すべき所望の物体または媒体との熱交換のために、膨張機14は、第1冷却ステージ33と第2冷却ステージ35を備える。上部室30は、第1ディスプレーサ18aの上蓋部と第1シリンダ16aの上部との間に形成される。第1膨張室32は、第1ディスプレーサ18aの下蓋部と第1冷却ステージ33との間に形成される。第2膨張室34は、第2ディスプレーサ18bの下蓋部と第2冷却ステージ35との間に形成される。第1冷却ステージ33は、第1膨張室32を取り囲むように第1シリンダ16aの下部に固着され、第2冷却ステージ35は、第2膨張室34を取り囲むように第2シリンダ16bの下部に固着されている。第1冷却ステージ33および第2冷却ステージ35は、例えば純銅(例えば、無酸素銅、タフピッチ銅など)、または他の高熱伝導金属で形成される。 The displacer assembly 18 forms an upper chamber 30, a first expansion chamber 32, and a second expansion chamber 34 inside the refrigerator cylinder 16. For heat exchange with the desired object or medium to be cooled by the cryogenic refrigerator 10, the expander 14 comprises a first cooling stage 33 and a second cooling stage 35. The upper chamber 30 is formed between the upper lid part of the first displacer 18a and the upper part of the first cylinder 16a. The first expansion chamber 32 is formed between the lower lid portion of the first displacer 18a and the first cooling stage 33. The second expansion chamber 34 is formed between the lower lid part of the second displacer 18b and the second cooling stage 35. The first cooling stage 33 is fixed to the lower part of the first cylinder 16a so as to surround the first expansion chamber 32, and the second cooling stage 35 is fixed to the lower part of the second cylinder 16b so as to surround the second expansion chamber 34. has been done. The first cooling stage 33 and the second cooling stage 35 are formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
 第1蓄冷器26は、第1ディスプレーサ18aの上蓋部に形成された作動ガス流路36aを通じて上部室30に接続され、第1ディスプレーサ18aの下蓋部に形成された作動ガス流路36bを通じて第1膨張室32に接続されている。第2蓄冷器28は、第1ディスプレーサ18aの下蓋部から第2ディスプレーサ18bの上蓋部へと形成された作動ガス流路36cを通じて第1蓄冷器26に接続されている。また、第2蓄冷器28は、第2ディスプレーサ18bの下蓋部に形成された作動ガス流路36dを通じて第2膨張室34に接続されている。 The first regenerator 26 is connected to the upper chamber 30 through a working gas passage 36a formed in the upper lid of the first displacer 18a, and is connected to the upper chamber 30 through a working gas passage 36b formed in the lower lid of the first displacer 18a. 1 expansion chamber 32. The second regenerator 28 is connected to the first regenerator 26 through a working gas passage 36c formed from the lower lid of the first displacer 18a to the upper lid of the second displacer 18b. Further, the second regenerator 28 is connected to the second expansion chamber 34 through a working gas flow path 36d formed in the lower lid portion of the second displacer 18b.
 第1膨張室32、第2膨張室34と上部室30との間の作動ガス流れが、冷凍機シリンダ16とディスプレーサ組立体18との間のクリアランスではなく、第1蓄冷器26、第2蓄冷器28に導かれるようにするために、第1シール38a、第2シール38bが設けられていてもよい。第1シール38aは、第1ディスプレーサ18aと第1シリンダ16aとの間に配置されるように第1ディスプレーサ18aの上蓋部に装着されてもよい。第2シール38bは、第2ディスプレーサ18bと第2シリンダ16bとの間に配置されるように第2ディスプレーサ18bの上蓋部に装着されてもよい。 The working gas flow between the first expansion chamber 32, the second expansion chamber 34 and the upper chamber 30 is not limited to the clearance between the refrigerator cylinder 16 and the displacer assembly 18; A first seal 38a and a second seal 38b may be provided to guide the liquid to the vessel 28. The first seal 38a may be attached to the upper lid portion of the first displacer 18a so as to be disposed between the first displacer 18a and the first cylinder 16a. The second seal 38b may be attached to the upper lid portion of the second displacer 18b so as to be disposed between the second displacer 18b and the second cylinder 16b.
 また、膨張機14は、圧力切替バルブ40と、駆動モータ42とを備える。圧力切替バルブ40は、冷凍機ハウジング20に収容され、駆動モータ42は、冷凍機ハウジング20に取り付けられている。 Additionally, the expander 14 includes a pressure switching valve 40 and a drive motor 42. The pressure switching valve 40 is housed in the refrigerator housing 20, and the drive motor 42 is attached to the refrigerator housing 20.
 図2に示されるように、圧力切替バルブ40は、高圧バルブ40aと低圧バルブ40bを備え、冷凍機シリンダ16内に周期的圧力変動を発生させるように構成されている。圧縮機12の作動ガス吐出口が高圧バルブ40aを介して上部室30に接続され、圧縮機12の作動ガス吸入口が低圧バルブ40bを介して上部室30に接続されている。高圧バルブ40aと低圧バルブ40bは、選択的かつ交互に開閉するように(すなわち、一方が開いているとき他方が閉じるように)構成されている。高圧(例えば2~3MPa)の作動ガスが圧縮機12から高圧バルブ40aを通じて膨張機14に供給され、低圧(例えば0.5~1.5MPa)の作動ガスが膨張機14から低圧バルブ40bを通じて圧縮機12に回収される。理解のために、作動ガスの流れる方向を図2に矢印で示す。 As shown in FIG. 2, the pressure switching valve 40 includes a high pressure valve 40a and a low pressure valve 40b, and is configured to generate periodic pressure fluctuations within the refrigerator cylinder 16. A working gas discharge port of the compressor 12 is connected to the upper chamber 30 via a high pressure valve 40a, and a working gas inlet of the compressor 12 is connected to the upper chamber 30 via a low pressure valve 40b. High pressure valve 40a and low pressure valve 40b are configured to open and close selectively and alternately (ie, when one is open, the other is closed). High-pressure (for example, 2 to 3 MPa) working gas is supplied from the compressor 12 to the expander 14 through the high-pressure valve 40a, and low-pressure (for example, 0.5 to 1.5 MPa) working gas is compressed from the expander 14 through the low-pressure valve 40b. It is recovered by machine 12. For understanding, the direction of flow of the working gas is indicated by arrows in FIG.
 駆動モータ42は、ディスプレーサ組立体18の往復動を駆動するために設けられている。駆動モータ42は、たとえばスコッチヨーク機構などの運動変換機構43を介してディスプレーサ駆動軸44に連結されている。運動変換機構43は、圧力切替バルブ40と同様に、冷凍機ハウジング20に収容されている。ディスプレーサ駆動軸44は、運動変換機構43から冷凍機ハウジング20を貫通して上部室30の中へと延び、第1ディスプレーサ18aの上蓋部に固定されている。上部室30から冷凍機ハウジング20(上述のように低圧に維持されている場合がある)への作動ガスのリークを防ぐために、第3シール38cが設けられている。第3シール38cは、冷凍機ハウジング20とディスプレーサ駆動軸44との間に配置されるように冷凍機ハウジング20に装着されてもよい。 A drive motor 42 is provided to drive the reciprocating motion of the displacer assembly 18. The drive motor 42 is connected to a displacer drive shaft 44 via a motion conversion mechanism 43 such as a Scotch yoke mechanism. The motion conversion mechanism 43, like the pressure switching valve 40, is housed in the refrigerator housing 20. The displacer drive shaft 44 extends from the motion converting mechanism 43 through the refrigerator housing 20 into the upper chamber 30, and is fixed to the upper lid portion of the first displacer 18a. A third seal 38c is provided to prevent leakage of working gas from the upper chamber 30 to the refrigerator housing 20 (which may be maintained at low pressure as described above). The third seal 38c may be attached to the refrigerator housing 20 so as to be disposed between the refrigerator housing 20 and the displacer drive shaft 44.
 駆動モータ42が駆動されるとき、駆動モータ42の回転出力は運動変換機構43によってディスプレーサ駆動軸44の軸方向往復動に変換され、ディスプレーサ組立体18は冷凍機シリンダ16内を軸方向に往復する。また、駆動モータ42は、高圧バルブ40aと低圧バルブ40bを選択的かつ交互に開閉するようにこれらバルブに連結されている。 When the drive motor 42 is driven, the rotational output of the drive motor 42 is converted into an axial reciprocating motion of the displacer drive shaft 44 by the motion conversion mechanism 43, and the displacer assembly 18 reciprocates in the axial direction within the refrigerator cylinder 16. . Further, the drive motor 42 is connected to the high pressure valve 40a and the low pressure valve 40b so as to selectively and alternately open and close these valves.
 極低温冷凍機10は、圧縮機12および駆動モータ42が運転されるとき、第1膨張室32および第2膨張室34において周期的な容積変動とこれに同期した作動ガスの圧力変動を発生させ、それにより冷凍サイクルが構成され、第1冷却ステージ33および第2冷却ステージ35が所望の極低温に冷却される。第1冷却ステージ33は、例えば約20K~約40Kの範囲にある第1冷却温度に冷却されることができる。第2冷却ステージ35は、第1冷却温度より低い第2冷却温度(例えば、約1K~約4K)に冷却されることができる。 When the compressor 12 and the drive motor 42 are operated, the cryogenic refrigerator 10 generates periodic volume fluctuations and working gas pressure fluctuations in synchronization with this in the first expansion chamber 32 and the second expansion chamber 34. , thereby forming a refrigeration cycle, in which the first cooling stage 33 and the second cooling stage 35 are cooled to a desired cryogenic temperature. The first cooling stage 33 may be cooled to a first cooling temperature ranging from about 20K to about 40K, for example. The second cooling stage 35 may be cooled to a second cooling temperature (eg, about 1K to about 4K) lower than the first cooling temperature.
 ところで、第1冷却ステージ33および第2冷却ステージ35に加えて、膨張機14は、冷凍機シリンダ16上、例えば第2シリンダ16bの軸方向中間部でも吸熱できることが知られている。このような吸熱部46は、冷凍機シリンダ16、例えば第2シリンダ16b上の軸方向温度分布および吸熱部46の軸方向位置に基づく冷却温度に冷却され、この冷却温度でいくらかの冷凍能力を提供することができる。吸熱部46の冷却温度は、第1冷却ステージ33の第1冷却温度と第2冷却ステージ35の第2冷却温度の間の温度となる。吸熱部46は、第2シリンダ16b上の規格化軸方向位置(つまり、第1冷却ステージ33および第2冷却ステージ35それぞれの位置を0、1とする無次元の軸方向位置)で、例えば1/4から3/4の範囲にあってもよい。 By the way, it is known that in addition to the first cooling stage 33 and the second cooling stage 35, the expander 14 can also absorb heat on the refrigerator cylinder 16, for example, at the axially intermediate portion of the second cylinder 16b. Such a heat absorber 46 is cooled to a cooling temperature based on the axial temperature distribution on the refrigerator cylinder 16, for example the second cylinder 16b, and the axial position of the heat absorber 46, and provides some refrigeration capacity at this cooling temperature. can do. The cooling temperature of the heat absorption section 46 is between the first cooling temperature of the first cooling stage 33 and the second cooling temperature of the second cooling stage 35. The heat absorbing portion 46 is located at a normalized axial position on the second cylinder 16b (that is, a dimensionless axial position where the positions of the first cooling stage 33 and the second cooling stage 35 are 0 and 1, respectively), for example, 1. It may be in the range of /4 to 3/4.
 極低温冷凍機10の一般的な利用シーンでは、被冷却物は望まれる冷却温度に応じて第1冷却ステージ33または第2冷却ステージ35のいずれかに熱的に接続されて冷却される。第2シリンダ16b上の吸熱部46には何も接続されず、吸熱部46の冷凍能力は利用されていない。 In a typical usage scene of the cryogenic refrigerator 10, an object to be cooled is thermally connected to either the first cooling stage 33 or the second cooling stage 35 and cooled depending on the desired cooling temperature. Nothing is connected to the heat absorption section 46 on the second cylinder 16b, and the refrigerating capacity of the heat absorption section 46 is not utilized.
 もし、2つの冷却ステージに加えて吸熱部46の冷凍能力も利用することができれば、これは極低温システム100のより効率的な冷却につながりうる。しかし、吸熱部46への入熱は、冷却ステージ、例えば第2冷却ステージ35の冷却温度に影響を与えうる(吸熱部46への大きな入熱は、第2冷却ステージ35の昇温をもたらしうる。)。通例、極低温システム100では、被冷却物を所望冷却温度に維持するうえで、冷却ステージ温度が予め定めた限界の温度を超えないように極低温冷凍機10を動作させることが要請される。吸熱部46を利用した冷却がこれまで利用されていないのは、吸熱部46への入熱に伴う冷却ステージの昇温のリスクが懸念されるためである。 If the refrigeration capacity of the heat sink 46 could also be utilized in addition to the two cooling stages, this could lead to more efficient cooling of the cryogenic system 100. However, the heat input to the heat absorption part 46 may affect the cooling temperature of the cooling stage, for example, the second cooling stage 35 (the large heat input to the heat absorption part 46 may cause the temperature of the second cooling stage 35 to increase. ). Typically, in the cryogenic system 100, in order to maintain the object to be cooled at a desired cooling temperature, the cryogenic refrigerator 10 is required to operate so that the cooling stage temperature does not exceed a predetermined temperature limit. The reason why cooling using the heat absorbing part 46 has not been used so far is because there is a concern about the risk of temperature increase in the cooling stage due to heat input to the heat absorbing part 46.
 本発明者は、詳しくは以下に述べるように、吸熱部46の温度をある上限温度以下に保つことによって、第2冷却ステージ35の昇温を防止し又は最小限にとどめることができることを見出した。このような観点から、この実施の形態では、極低温システム100は、熱源(つまり被冷却物)から吸熱部46への入熱を最適化するように熱源を制御するように構成される。入熱の最適化は、吸熱部46の温度を上限温度以下に保つことによって実現される。 As will be described in detail below, the present inventor has discovered that by keeping the temperature of the heat absorbing section 46 below a certain upper limit temperature, the temperature increase in the second cooling stage 35 can be prevented or minimized. . From this point of view, in this embodiment, the cryogenic system 100 is configured to control the heat source so as to optimize the heat input from the heat source (that is, the object to be cooled) to the heat absorption section 46. Optimization of heat input is achieved by keeping the temperature of the heat absorbing section 46 below the upper limit temperature.
 図3(a)および図3(b)は、実施の形態に係り、本発明者による実験結果を示すグラフである。この実験では、吸熱部46への入熱を模擬するためのヒーターが吸熱部46に設置される。ヒーターの位置、言い換えれば吸熱部46の位置は、軸方向中央よりもわずかに低温側、具体的には第2シリンダ16b上の規格化軸方向位置(上述のように第1冷却ステージ33を0、第2冷却ステージ35を1とする)で約0.54にある。また、第2冷却ステージ35にも熱負荷(例えば1.5Wの定格熱負荷)を与えるためにヒーターが設置される。極低温冷凍機10は、第2冷却ステージ35に定格熱負荷を与えながら第1冷却ステージ33を一定の温度(例えば43K)に維持するように運転される。 FIGS. 3(a) and 3(b) are graphs showing experimental results by the present inventors in accordance with the embodiment. In this experiment, a heater for simulating heat input to the heat absorption part 46 is installed in the heat absorption part 46. The position of the heater, in other words, the position of the heat absorption part 46 is slightly lower temperature side than the center in the axial direction, specifically, the standardized axial position on the second cylinder 16b (as described above, the position of the first cooling stage 33 is 0). , the second cooling stage 35 is about 0.54. Further, a heater is also installed on the second cooling stage 35 in order to apply a heat load (for example, a rated heat load of 1.5 W). The cryogenic refrigerator 10 is operated so as to maintain the first cooling stage 33 at a constant temperature (for example, 43 K) while applying a rated heat load to the second cooling stage 35.
 図3(a)には、吸熱部46への入熱を表す規格化ヒーター出力と第2冷却ステージ35の温度上昇との関係が示される。第2冷却ステージ35の温度上昇は、第2冷却ステージ35の目標冷却温度(例えば4K)に対する温度上昇を表す。図3(b)には、第2シリンダ16b上の規格化軸方向位置と温度の関係、すなわち第2シリンダ16b上の軸方向温度分布が規格化ヒーター出力に応じてどのように変化するかが示される。図3(a)および図3(b)では、規格化ヒーター出力がゼロ(つまり、吸熱部46への入熱が無い)場合の温度測定結果が丸記号で示され、さらに、規格化ヒーター出力が0.085、0.31、0.45の場合の温度測定結果がそれぞれ、四角、三角、菱形の記号で示されている。 FIG. 3(a) shows the relationship between the normalized heater output representing the heat input to the heat absorption section 46 and the temperature rise of the second cooling stage 35. The temperature rise of the second cooling stage 35 represents a temperature rise with respect to the target cooling temperature (for example, 4K) of the second cooling stage 35. FIG. 3(b) shows the relationship between the normalized axial position on the second cylinder 16b and the temperature, that is, how the axial temperature distribution on the second cylinder 16b changes depending on the normalized heater output. shown. In FIGS. 3(a) and 3(b), the temperature measurement results when the normalized heater output is zero (that is, there is no heat input to the heat absorption part 46) are shown with circle symbols, and the normalized heater output The temperature measurement results when is 0.085, 0.31, and 0.45 are shown by square, triangle, and diamond symbols, respectively.
 図3(a)を参照すると、規格化ヒーター出力がゼロのとき第2冷却ステージ35の温度上昇は0Kであり(丸記号)、規格化ヒーター出力が0.085、0.31、0.45と増えるにつれて第2冷却ステージ35の温度上昇も大きくなることがわかる(四角、三角、菱形の記号)。具体的には、規格化ヒーター出力が0.085で温度上昇は約0.04K(四角記号)、規格化ヒーター出力が0.31で温度上昇は約0.09K(三角記号)、規格化ヒーター出力が0.45で温度上昇は約0.17K(菱形記号)である。 Referring to FIG. 3(a), when the normalized heater output is zero, the temperature rise of the second cooling stage 35 is 0K (circle symbol), and the normalized heater output is 0.085, 0.31, 0.45. It can be seen that as the temperature increases, the temperature rise of the second cooling stage 35 also increases (square, triangle, and diamond symbols). Specifically, when the standardized heater output is 0.085, the temperature rise is about 0.04 K (square symbol), and when the standardized heater output is 0.31, the temperature rise is about 0.09 K (triangle symbol), and the standardized heater At an output of 0.45, the temperature rise is approximately 0.17K (diamond symbol).
 本発明者の知識および経験に基づけば、第2冷却ステージ35の目標冷却温度が約4Kとされる例えば液体ヘリウム冷却など極低温冷凍機10のいくつかの用途では、多くの場合、第2冷却ステージ35の温度上昇の許容値は、約0.1Kまでとすることが望ましく、最大でも約0.2Kまでとすることが求められる。 Based on the inventor's knowledge and experience, in some applications of the cryogenic refrigerator 10, such as liquid helium cooling, where the target cooling temperature of the second cooling stage 35 is approximately 4K, the second cooling stage 35 is often The permissible temperature rise of the stage 35 is desirably up to about 0.1K, and is required to be up to about 0.2K at the maximum.
 図3(a)において破線で示される規格化ヒーター出力しきい値Th1がひとつの重要な境界を表していることが、図3(a)から理解される。吸熱部46への入熱がこのしきい値Th1を下回れば、第2冷却ステージ35の温度上昇は、約0.1K以内の比較的小さな値に抑えられる。一方、吸熱部46への入熱がこのしきい値Th1を超えると、第2冷却ステージ35の温度上昇は、様相が変わり、規格化ヒーター出力の増加に連動して比例的に大きくなり、容易に0.2Kを超えてしまう。 It is understood from FIG. 3(a) that the normalized heater output threshold Th1 indicated by the broken line in FIG. 3(a) represents one important boundary. If the heat input to the heat absorption section 46 is below this threshold value Th1, the temperature rise in the second cooling stage 35 is suppressed to a relatively small value within about 0.1K. On the other hand, when the heat input to the heat absorbing section 46 exceeds this threshold value Th1, the temperature rise in the second cooling stage 35 changes its aspect, becomes proportionally larger in conjunction with the increase in the normalized heater output, and is easily exceeds 0.2K.
 図3(b)を参照すると、規格化ヒーター出力と吸熱部46の温度(約0.54の規格化軸方向位置での温度)との関係を把握することができる。規格化ヒーター出力がゼロのとき吸熱部46の温度は約8Kであり(丸記号)、規格化ヒーター出力が0.085、0.31、0.45と増えるにつれて吸熱部46の温度も高まることがわかる(四角、三角、菱形の記号)。より具体的には、規格化ヒーター出力が0.085で吸熱部46の温度は約13K(四角記号)、規格化ヒーター出力が0.31で吸熱部46の温度は約20K(三角記号)、規格化ヒーター出力が0.45で吸熱部46の温度は約24K(菱形記号)である。 Referring to FIG. 3(b), it is possible to understand the relationship between the normalized heater output and the temperature of the heat absorption section 46 (temperature at the normalized axial position of about 0.54). When the standardized heater output is zero, the temperature of the heat absorbing part 46 is approximately 8 K (circle symbol), and as the standardized heater output increases to 0.085, 0.31, and 0.45, the temperature of the heat absorbing part 46 also increases. (square, triangle, diamond symbols). More specifically, when the normalized heater output is 0.085, the temperature of the heat absorption part 46 is about 13K (square symbol), and when the normalized heater output is 0.31, the temperature of the heat absorption part 46 is about 20K (triangle symbol). The normalized heater output is 0.45, and the temperature of the heat absorbing portion 46 is approximately 24K (diamond symbol).
 図3(b)に示される破線L1は、第1冷却ステージ33の測定温度と第2冷却ステージ35の測定温度を結ぶ直線を表す。図3(a)および図3(b)から、重要なことに、規格化ヒーター出力しきい値Th1での吸熱部46の温度は、この直線L1上またはその近傍(図3(b)で四角記号と三角記号の間)に位置することがわかる。 A broken line L1 shown in FIG. 3(b) represents a straight line connecting the measured temperature of the first cooling stage 33 and the measured temperature of the second cooling stage 35. From FIGS. 3(a) and 3(b), it is important to note that the temperature of the heat absorbing section 46 at the normalized heater output threshold Th1 is on or near this straight line L1 (the square in FIG. 3(b) symbol and triangle symbol).
 このことから、吸熱部46への入熱が大きく(つまりしきい値Th1を超え)、その結果吸熱部46の温度がこの直線L1またはその近傍の上限温度を超える場合には、吸熱部46への入熱に起因して第2冷却ステージ35に顕著な温度上昇が起こりうることになる。また、吸熱部46への入熱が、吸熱部46の温度がこの上限温度を超えないような大きさである場合には、吸熱部46への入熱に起因する第2冷却ステージ35の温度上昇は、実質的に起こらないか、許容範囲内(例えば、0.2K以内、または好ましくは0.1K以内)に収まりうる。 From this, if the heat input to the heat absorption part 46 is large (that is, exceeds the threshold value Th1), and as a result, the temperature of the heat absorption part 46 exceeds the upper limit temperature of this straight line L1 or its vicinity, the heat absorption part 46 A significant temperature increase may occur in the second cooling stage 35 due to the heat input. Furthermore, if the heat input to the heat absorption part 46 is such that the temperature of the heat absorption part 46 does not exceed this upper limit temperature, the temperature of the second cooling stage 35 due to the heat input to the heat absorption part 46 is The increase may be substantially absent or within an acceptable range (eg, within 0.2K, or preferably within 0.1K).
 図4(a)および図4(b)は、実施の形態に係り、本発明者による実験結果を示すグラフである。図4(a)および図4(b)に示される実験結果は、図3(a)および図3(b)の実験結果とは吸熱部46の軸方向位置を変えて取得したものであり、そのほかの実験条件は共通である。図4(a)および図4(b)では、吸熱部46の位置は、図3(a)および図3(b)に比べて高温側、具体的には第2シリンダ16b上の規格化軸方向位置で約0.35にある。 FIGS. 4(a) and 4(b) are graphs showing experimental results by the present inventors in accordance with the embodiment. The experimental results shown in FIGS. 4(a) and 4(b) were obtained by changing the axial position of the heat absorption part 46 from the experimental results shown in FIGS. 3(a) and 3(b), Other experimental conditions were the same. In FIGS. 4(a) and 4(b), the position of the heat absorption part 46 is on the high temperature side compared to FIGS. 3(a) and 3(b), specifically, on the normalized axis on the second cylinder 16b. The direction position is approximately 0.35.
 図4(a)には、図3(a)と同様に、吸熱部46への入熱を表す規格化ヒーター出力と第2冷却ステージ35の温度上昇との関係が示される。図4(b)には、図3(b)と同様に、第2シリンダ16b上の規格化軸方向位置と温度の関係が示される。図4(a)および図4(b)では、規格化ヒーター出力がゼロ(つまり、吸熱部46への入熱が無い)場合の温度測定結果が丸記号で示され、さらに、規格化ヒーター出力が0.31、0.55、0.72の場合の温度測定結果がそれぞれ、四角、三角、菱形の記号で示されている。 Similarly to FIG. 3(a), FIG. 4(a) shows the relationship between the normalized heater output representing the heat input to the heat absorption section 46 and the temperature rise of the second cooling stage 35. Similar to FIG. 3(b), FIG. 4(b) shows the relationship between the normalized axial position on the second cylinder 16b and the temperature. In FIGS. 4(a) and 4(b), the temperature measurement results when the normalized heater output is zero (that is, there is no heat input to the heat absorption part 46) are shown with circle symbols, and the normalized heater output The temperature measurement results when is 0.31, 0.55, and 0.72 are shown by square, triangle, and diamond symbols, respectively.
 図4(a)を参照すると、規格化ヒーター出力がゼロのとき第2冷却ステージ35の温度上昇は無く(丸記号)、規格化ヒーター出力が増えるにつれて第2冷却ステージ35の温度上昇も大きくなることがわかる。具体的には、規格化ヒーター出力が0.31で温度上昇は約0.02K(四角記号)、規格化ヒーター出力が0.55で温度上昇は約0.07K(三角記号)、規格化ヒーター出力が0.72で温度上昇は約0.09K(菱形記号)である。図4(a)では、図3(a)に比べて吸熱部46が高温側にあるため、吸熱部46への入熱増加による第2冷却ステージ35の温度上昇は弱まる。 Referring to FIG. 4(a), when the normalized heater output is zero, there is no temperature rise in the second cooling stage 35 (circle symbol), and as the normalized heater output increases, the temperature rise in the second cooling stage 35 also increases. I understand that. Specifically, when the normalized heater output is 0.31, the temperature rise is about 0.02K (square symbol), and when the normalized heater output is 0.55, the temperature rise is about 0.07K (triangle symbol). At an output of 0.72, the temperature rise is approximately 0.09K (diamond symbol). In FIG. 4A, the heat absorption part 46 is on the high temperature side compared to FIG.
 図4(a)においても、破線で示される規格化ヒーター出力しきい値Th2が重要な境界となっている。吸熱部46への入熱がこのしきい値Th2を下回れば、第2冷却ステージ35の温度上昇は、約0.02K以内のごく小さな値に抑えられる。一方、吸熱部46への入熱がこのしきい値Th2を超えると、第2冷却ステージ35の温度上昇は、様相が変わり、規格化ヒーター出力に応じて比例的に大きくなる。 Also in FIG. 4(a), the normalized heater output threshold Th2 indicated by the broken line is an important boundary. If the heat input to the heat absorbing section 46 is below this threshold value Th2, the temperature rise in the second cooling stage 35 is suppressed to a very small value within about 0.02K. On the other hand, when the heat input to the heat absorption section 46 exceeds this threshold value Th2, the temperature rise of the second cooling stage 35 changes in aspect and increases proportionally in accordance with the normalized heater output.
 図4(b)を参照すると、規格化ヒーター出力と吸熱部46の温度(約0.35の規格化軸方向位置での温度)との関係を把握できる。規格化ヒーター出力がゼロのとき吸熱部46の温度は約16Kであり(丸記号)、規格化ヒーター出力が増えるにつれて吸熱部46の温度も高まる。具体的には、規格化ヒーター出力が0.31で吸熱部46の温度は約27K(四角記号)、規格化ヒーター出力が0.55で吸熱部46の温度は約33K(三角記号)、規格化ヒーター出力が0.72で吸熱部46の温度は約38K(菱形記号)である。 Referring to FIG. 4(b), it is possible to understand the relationship between the normalized heater output and the temperature of the heat absorption section 46 (temperature at a normalized axial position of about 0.35). When the standardized heater output is zero, the temperature of the heat absorbing part 46 is approximately 16 K (circle symbol), and as the standardized heater output increases, the temperature of the heat absorbing part 46 also increases. Specifically, when the standardized heater output is 0.31, the temperature of the heat absorbing part 46 is about 27 K (square symbol), and when the normalized heater output is 0.55, the temperature of the heat absorbing part 46 is about 33 K (triangle symbol). The heating output is 0.72, and the temperature of the heat absorbing section 46 is approximately 38K (diamond symbol).
 図4(b)に示される破線L2は、第1冷却ステージ33の測定温度と第2冷却ステージ35の測定温度を結ぶ直線を表す。図4(a)および図4(b)から、規格化ヒーター出力しきい値Th2での吸熱部46の温度は、この直線L2上またはその近傍(図4(b)で四角記号と三角記号の間)に位置すると考えられる。 A broken line L2 shown in FIG. 4(b) represents a straight line connecting the measured temperature of the first cooling stage 33 and the measured temperature of the second cooling stage 35. From FIG. 4(a) and FIG. 4(b), the temperature of the heat absorbing part 46 at the normalized heater output threshold Th2 is on or near this straight line L2 (in the square symbol and triangular symbol in FIG. 4(b)). It is thought to be located between
 よって、吸熱部46への入熱が大きく(つまりしきい値Th2を超え)、その結果吸熱部46の温度がこの直線L2またはその近傍の上限温度を超える場合には、吸熱部46への入熱に起因して第2冷却ステージ35に顕著な温度上昇が起こりうる。また、吸熱部46への入熱が、吸熱部46の温度がこの上限温度を超えないような大きさである場合には、吸熱部46への入熱に起因する第2冷却ステージ35の温度上昇は、実質的に起こらないか、許容範囲内に収まりうると考えられる。 Therefore, if the heat input to the heat absorption part 46 is large (that is, exceeds the threshold value Th2), and as a result, the temperature of the heat absorption part 46 exceeds the upper limit temperature of this straight line L2 or its vicinity, the heat input to the heat absorption part 46 will decrease. A significant temperature increase may occur in the second cooling stage 35 due to heat. Furthermore, if the heat input to the heat absorption part 46 is such that the temperature of the heat absorption part 46 does not exceed this upper limit temperature, the temperature of the second cooling stage 35 due to the heat input to the heat absorption part 46 is It is believed that the increase may be substantially non-existent or within an acceptable range.
 図3(a)から図4(b)に示される実験結果に加えて、本発明者は、同じ実験を、吸熱部46の軸方向位置および第1冷却ステージ33の温度をさまざまに変更して行っている。その結果、本発明者は、吸熱部46への入熱と第2冷却ステージ35の温度上昇との関係、および第2シリンダ16b上の規格化軸方向位置と温度の関係の両方について、上述の結果と同様の振る舞いが観察されることを確認している。 In addition to the experimental results shown in FIGS. 3(a) to 4(b), the inventor conducted the same experiment by variously changing the axial position of the heat absorption part 46 and the temperature of the first cooling stage 33. Is going. As a result, the inventor has determined the relationship between the heat input to the heat absorption part 46 and the temperature rise of the second cooling stage 35, and the relationship between the normalized axial position on the second cylinder 16b and the temperature as described above. We have confirmed that the same behavior as the results is observed.
 したがって、吸熱部46への入熱に起因する第2冷却ステージ35の昇温を防止し又は最小限にとどめるための吸熱部46の上限温度は、第2シリンダ16bの両端での測定温度、および吸熱部46の軸方向位置に基づいて設定することができる。 Therefore, the upper limit temperature of the heat absorption part 46 for preventing or minimizing the temperature rise of the second cooling stage 35 due to heat input to the heat absorption part 46 is determined by the temperature measured at both ends of the second cylinder 16b, and It can be set based on the axial position of the heat absorbing portion 46.
 ひとつの例示的な方法では、吸熱部46の上限温度は、第2シリンダ16bの基準温度分布および吸熱部46の軸方向位置に基づいて設定されてもよい。ここで、第2シリンダ16bの基準温度分布は、第2シリンダ16bの一方の軸方向端部(例えば第1冷却ステージ33)で第1測定温度を有しかつ第2シリンダ16bの他方の軸方向端部(例えば第2冷却ステージ35)で第2測定温度を有するとともに、第2シリンダ16bにおける軸方向位置に依存して直線的に変化する温度分布であってもよい。 In one exemplary method, the upper limit temperature of the heat absorption part 46 may be set based on the reference temperature distribution of the second cylinder 16b and the axial position of the heat absorption part 46. Here, the reference temperature distribution of the second cylinder 16b has a first measured temperature at one axial end of the second cylinder 16b (for example, the first cooling stage 33) and a temperature distribution at the other axial end of the second cylinder 16b. The temperature distribution may have a second measured temperature at the end (for example, the second cooling stage 35) and vary linearly depending on the axial position in the second cylinder 16b.
 このような吸熱部46への入熱の最適化のための例示的な構成を以下に説明する。図1を再び参照すると、極低温冷凍機10は、第1温度センサ51、第2温度センサ52、第3温度センサ53、およびコントローラ60を備える。 An exemplary configuration for optimizing heat input to the heat absorption section 46 will be described below. Referring to FIG. 1 again, the cryogenic refrigerator 10 includes a first temperature sensor 51, a second temperature sensor 52, a third temperature sensor 53, and a controller 60.
 第1温度センサ51は、第1シリンダ16aに近い第2シリンダ16bの一方の軸方向端部で第1測定温度T1を測定する。第1温度センサ51は、第1冷却ステージ33に設けられてもよく、第1冷却ステージ33で第1測定温度T1を測定してもよい。第2温度センサ52は、第1シリンダ16aから遠い第2シリンダ16bの他方の軸方向端部で第2測定温度T2を測定する。第2温度センサ52は、第2冷却ステージ35に設けられてもよく、第2冷却ステージ35で第2測定温度T2を測定してもよい。第3温度センサ53は、吸熱部46に設けられ、吸熱部46で第3測定温度T3を測定する。 The first temperature sensor 51 measures a first measurement temperature T1 at one axial end of the second cylinder 16b near the first cylinder 16a. The first temperature sensor 51 may be provided on the first cooling stage 33 and may measure the first measurement temperature T1 on the first cooling stage 33. The second temperature sensor 52 measures a second measured temperature T2 at the other axial end of the second cylinder 16b that is far from the first cylinder 16a. The second temperature sensor 52 may be provided on the second cooling stage 35 and may measure the second measurement temperature T2 on the second cooling stage 35. The third temperature sensor 53 is provided in the heat absorption section 46 and measures the third measurement temperature T3 at the heat absorption section 46.
 コントローラ60は、第1温度センサ51、第2温度センサ52、第3温度センサ53からそれぞれ、第1測定温度T1、第2測定温度T2、第3測定温度T3を受信するように、これら温度センサと通信可能に接続される。 The controller 60 receives the first measured temperature T1, the second measured temperature T2, and the third measured temperature T3 from the first temperature sensor 51, the second temperature sensor 52, and the third temperature sensor 53, respectively. is connected to enable communication.
 コントローラ60の内部構成は、ハードウェア構成としてはコンピュータのCPU(Central Processing Unit)やメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図では適宜、それらの連携によって実現される機能ブロックとして描いている。これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 The internal configuration of the controller 60 is realized as a hardware configuration by elements and circuits such as a computer's CPU (Central Processing Unit) and memory, and as a software configuration by a computer program, etc.; It is depicted as a functional block that is realized by their cooperation. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
 極低温システム100は、極低温冷凍機10によって冷却される冷媒ガスライン118を備える。冷媒ガスライン118の冷媒ガスが冷却により凝縮され、極低温液体102が生成される。冷媒ガスライン118は、真空容器110の内槽114に極低温液体102を供給する供給ライン120と、内槽114において気化した極低温液体102(つまり冷媒ガス)の戻りライン122とを備える。供給ライン120および戻りライン122はそれぞれ、冷媒ガスが流れるリジッドまたはフレキシブルな配管であってもよい。 The cryogenic system 100 includes a refrigerant gas line 118 that is cooled by the cryogenic refrigerator 10. The refrigerant gas in refrigerant gas line 118 is condensed by cooling, and cryogenic liquid 102 is produced. The refrigerant gas line 118 includes a supply line 120 that supplies the cryogenic liquid 102 to the inner tank 114 of the vacuum vessel 110, and a return line 122 for the cryogenic liquid 102 (ie, refrigerant gas) vaporized in the inner tank 114. Supply line 120 and return line 122 may each be rigid or flexible piping through which refrigerant gas flows.
 供給ライン120は、第1熱交換器124、第2熱交換器126、および再凝縮部128を備え、供給ライン120において冷媒ガスは、第1熱交換器124、第2熱交換器126、および再凝縮部128をこの記載の順に流れる。 The supply line 120 includes a first heat exchanger 124, a second heat exchanger 126, and a recondensing section 128. It flows through the recondensing section 128 in the order described.
 第1熱交換器124は、内槽114内で第1冷却ステージ33の外側に設けられ、第1冷却ステージ33と冷媒ガスとの熱交換により冷媒ガスを第1冷却温度に予冷するように構成される。第2熱交換器126は、内槽114内で第2シリンダ16bの外側に設けられ、第2シリンダ16bの吸熱部46と冷媒ガスとの熱交換により冷媒ガスを吸熱部46の冷却温度へとさらに予冷するように構成される。 The first heat exchanger 124 is provided outside the first cooling stage 33 within the inner tank 114, and is configured to pre-cool the refrigerant gas to a first cooling temperature through heat exchange between the first cooling stage 33 and the refrigerant gas. be done. The second heat exchanger 126 is provided outside the second cylinder 16b in the inner tank 114, and exchanges heat between the heat absorption part 46 of the second cylinder 16b and the refrigerant gas to bring the refrigerant gas to the cooling temperature of the heat absorption part 46. It is further configured to pre-cool.
 再凝縮部128は、内槽114への供給ライン120の出口となる。再凝縮部128は、内槽114内で第2冷却ステージ35の外側に設けられ、第2冷却ステージ35と冷媒ガスとの熱交換により冷媒ガスを第2冷却温度に冷却し、冷媒ガスを極低温液体102へと再凝縮するように構成される。再凝縮された極低温液体102は、上述のように内槽114に貯蔵される。再凝縮部128は、図示されるように、第2冷却ステージ35と一体であってもよく、冷媒ガス又は極低温液体102と接触する表面積を増やすためにフィン状の突起または凹凸を有してもよい。再凝縮部128は、第2冷却ステージ35と同様に、例えば純銅(例えば、無酸素銅、タフピッチ銅など)、または他の高熱伝導金属で形成される。 The recondensing section 128 serves as an outlet for the supply line 120 to the inner tank 114. The recondensing section 128 is provided outside the second cooling stage 35 in the inner tank 114, cools the refrigerant gas to a second cooling temperature through heat exchange between the second cooling stage 35 and the refrigerant gas, and cools the refrigerant gas to an extremely low temperature. It is configured to recondense into a cryogenic liquid 102. The recondensed cryogenic liquid 102 is stored in the inner tank 114 as described above. The recondensing section 128 may be integral with the second cooling stage 35, as shown, and may have fin-like protrusions or asperities to increase the surface area in contact with the refrigerant gas or cryogenic liquid 102. Good too. Like the second cooling stage 35, the recondensing section 128 is formed of, for example, pure copper (eg, oxygen-free copper, tough pitch copper, etc.) or other high heat conductive metal.
 また、冷媒ガスライン118は、冷媒ガスライン118の冷媒ガス流量を調節するように構成される流量レギュレータ130を備える。図示される例では、流量レギュレータ130は、戻りライン122を供給ライン120に接続するように冷媒ガスライン118上に設けられる。流量レギュレータ130は、戻りライン122から冷媒ガスを受け、冷媒ガス流量を調整し、調整された流量で供給ライン120に冷媒ガスを送出する。流量レギュレータ130は、例えばポンプ、圧縮機などの循環流れ生成器、または例えば流量調整バルブ、可変オリフィスなどガス流量を調節する機構であってもよい。 The refrigerant gas line 118 also includes a flow regulator 130 configured to adjust the refrigerant gas flow rate of the refrigerant gas line 118. In the illustrated example, a flow regulator 130 is provided on the refrigerant gas line 118 to connect the return line 122 to the supply line 120. Flow regulator 130 receives refrigerant gas from return line 122, regulates the refrigerant gas flow rate, and delivers refrigerant gas to supply line 120 at the regulated flow rate. Flow regulator 130 may be a circulating flow generator, such as a pump, a compressor, or a mechanism for regulating gas flow, such as a flow control valve, variable orifice, or the like.
 流量レギュレータ130は、図示されるように、真空容器110の外に配置されてもよいし、あるいは、真空容器110内に配置されてもよい。また、流量レギュレータ130は、冷媒ガスライン118上の任意の場所に設けられてもよく、供給ライン120上に設けられてもよく、または、戻りライン122上に設けられてもよい。 The flow regulator 130 may be placed outside the vacuum vessel 110, as shown, or may be placed within the vacuum vessel 110. Additionally, the flow regulator 130 may be provided anywhere on the refrigerant gas line 118, may be provided on the supply line 120, or may be provided on the return line 122.
 後述のように、コントローラ60による制御のもとで、流量レギュレータ130は、冷媒ガスライン118を循環する冷媒ガスの流量を調節することができる。この流量調節によって、冷媒ガスライン118から吸熱部46への入熱が制御される。 As described below, under the control of the controller 60, the flow regulator 130 can adjust the flow rate of the refrigerant gas circulating through the refrigerant gas line 118. By adjusting the flow rate, heat input from the refrigerant gas line 118 to the heat absorption section 46 is controlled.
 冷媒ガスライン118は、極低温冷凍機10に対する熱源として働く。この熱源は、第1部分(例えば第1熱交換器124)、第2部分(例えば再凝縮部128)、および、第1部分と第2部分を接続する熱源の第3部分(例えば第2熱交換器126)を備える。第2シリンダ16bの一方の軸方向端部(例えば第1冷却ステージ33)は、熱源の第1部分と熱的に接続され、第2シリンダ16bの他方の軸方向端部(例えば第2冷却ステージ35)は、熱源の第2部分と熱的に接続される。吸熱部46は、熱源の第3部分と熱的に接続される。冷媒ガスライン118は、熱源の第1部分、第3部分、および第2部分をこの記載の順に経由する。 The refrigerant gas line 118 serves as a heat source for the cryogenic refrigerator 10. The heat source includes a first portion (e.g., first heat exchanger 124), a second portion (e.g., recondensing section 128), and a third portion of the heat source (e.g., second heat exchanger 128) connecting the first and second portions. exchanger 126). One axial end of the second cylinder 16b (e.g., the first cooling stage 33) is thermally connected to the first portion of the heat source, and the other axial end of the second cylinder 16b (e.g., the second cooling stage 35) is thermally connected to the second part of the heat source. The heat absorbing portion 46 is thermally connected to the third portion of the heat source. The refrigerant gas line 118 passes through the first, third, and second portions of the heat source in the order listed.
 図5は、実施の形態に係る極低温システム100の制御方法を示すフローチャートである。本方法は、第1温度センサ51から第1測定温度T1を、第2温度センサ52から第2測定温度T2を、および第3温度センサ53から第3測定温度T3を取得することと(S10)、第1測定温度T1、第2測定温度T2、および吸熱部46の軸方向位置に基づいて、吸熱部46の上限温度を設定することと(S20)、第3測定温度T3が吸熱部46の上限温度以下となるように熱源すなわち冷媒ガスライン118を制御することと(S30)、を備える。 FIG. 5 is a flowchart showing a method of controlling the cryogenic system 100 according to the embodiment. This method includes obtaining a first measured temperature T1 from the first temperature sensor 51, a second measured temperature T2 from the second temperature sensor 52, and a third measured temperature T3 from the third temperature sensor 53 (S10). , setting the upper limit temperature of the heat absorbing part 46 based on the first measured temperature T1, the second measured temperature T2, and the axial position of the heat absorbing part 46 (S20), and setting the third measured temperature T3 of the heat absorbing part 46. Controlling the heat source, that is, the refrigerant gas line 118, so that the temperature is below the upper limit temperature (S30).
 S10では、第1測定温度T1が第1シリンダ16aに近い第2シリンダ16bの一方の軸方向端部(例えば第1冷却ステージ33)で第1温度センサ51によって測定される。第1測定温度T1を示す信号が第1温度センサ51からコントローラ60に入力される。また、第2測定温度T2が第1シリンダ16aから遠い第2シリンダ16bの他方の軸方向端部で第2温度センサ52によって測定される。第2測定温度T2を示す信号が第2温度センサ52からコントローラ60に入力される。第3測定温度T3が吸熱部46で第3温度センサ53によって測定される。第3測定温度T3を示す信号が第3温度センサ53からコントローラ60に入力される。 In S10, the first measured temperature T1 is measured by the first temperature sensor 51 at one axial end (for example, the first cooling stage 33) of the second cylinder 16b near the first cylinder 16a. A signal indicating the first measured temperature T1 is input from the first temperature sensor 51 to the controller 60. Further, the second measured temperature T2 is measured by the second temperature sensor 52 at the other axial end of the second cylinder 16b that is far from the first cylinder 16a. A signal indicating the second measured temperature T2 is input from the second temperature sensor 52 to the controller 60. The third measured temperature T3 is measured by the third temperature sensor 53 at the heat absorption section 46. A signal indicating the third measured temperature T3 is input from the third temperature sensor 53 to the controller 60.
 S20では、コントローラ60は、まず、第1測定温度T1および第2測定温度T2に基づいて、第2シリンダ16bの基準温度分布を決定する。この基準温度分布は、第2シリンダ16bの一方の軸方向端部で第1測定温度T1を有しかつ第2シリンダ16bの他方の軸方向端部で第2測定温度T2を有するとともに、第2シリンダ16bにおける軸方向位置に依存して直線的に変化する温度分布である。基準温度分布は、第2シリンダ16b上の規格化軸方向位置をX軸、温度をY軸とするXY平面上で、点(0,T1)と点(1,T2)の二点を通る直線(Y=(T2-T1)X+T1)となる。 In S20, the controller 60 first determines the reference temperature distribution of the second cylinder 16b based on the first measured temperature T1 and the second measured temperature T2. This reference temperature distribution has a first measured temperature T1 at one axial end of the second cylinder 16b, a second measured temperature T2 at the other axial end of the second cylinder 16b, and a second measured temperature T2 at the other axial end of the second cylinder 16b. This is a temperature distribution that changes linearly depending on the axial position in the cylinder 16b. The reference temperature distribution is a straight line passing through the points (0, T1) and (1, T2) on the XY plane with the normalized axial position on the second cylinder 16b as the X axis and the temperature as the Y axis. (Y=(T2-T1)X+T1).
 コントローラ60は、基準温度分布および吸熱部46の軸方向位置に基づいて、吸熱部46の上限温度を設定する。基準温度分布を表す上式に吸熱部46の軸方向規格化位置を代入することによって、吸熱部46の上限温度の候補値が求まる。コントローラ60は、この候補値を上限温度として採用してもよい。 The controller 60 sets the upper limit temperature of the heat absorption section 46 based on the reference temperature distribution and the axial position of the heat absorption section 46. By substituting the axial normalized position of the heat absorbing portion 46 into the above equation representing the reference temperature distribution, a candidate value for the upper limit temperature of the heat absorbing portion 46 is determined. The controller 60 may employ this candidate value as the upper limit temperature.
 あるいは、吸熱部46への入熱に起因する第2冷却ステージ35の昇温を確実に防ぐことを重視する場合には、コントローラ60は、この候補値よりもいくらか小さい値(例えば、候補値の70~100%、または80~100%、または90~100%の範囲から選択される値)を吸熱部46の上限温度として採用してもよい。 Alternatively, if it is important to reliably prevent the temperature of the second cooling stage 35 from rising due to heat input to the heat absorption section 46, the controller 60 may set a value somewhat smaller than this candidate value (for example, A value selected from the range of 70% to 100%, 80% to 100%, or 90% to 100%) may be adopted as the upper limit temperature of the heat absorbing portion 46.
 あるいは、吸熱部46への入熱に起因する第2冷却ステージ35の昇温が多少は許される場合であれば、コントローラ60は、この候補値よりもいくらか大きい値(例えば、候補値の100~130%、または100~120%、または100~110%の範囲から選択される値)を吸熱部46の上限温度として採用してもよい。 Alternatively, if the temperature increase of the second cooling stage 35 due to heat input to the heat absorption part 46 is allowed to some extent, the controller 60 sets a value somewhat larger than this candidate value (for example, 100 to 100 of the candidate value). 130%, or a value selected from the range of 100 to 120%, or 100 to 110%) may be adopted as the upper limit temperature of the heat absorbing portion 46.
 S30では、コントローラ60は、第3測定温度T3が吸熱部46の上限温度以下となるように冷媒ガスライン118の冷媒ガス流量を制御する。この制御の一例は、図6を参照して後述する。 In S30, the controller 60 controls the refrigerant gas flow rate of the refrigerant gas line 118 so that the third measured temperature T3 is equal to or lower than the upper limit temperature of the heat absorption section 46. An example of this control will be described later with reference to FIG.
 コントローラ60は、図5に示される処理を定期的に繰り返すことによって、第1測定温度T1および第2測定温度T2に応じて吸熱部46の上限温度を更新してもよい。また、第1冷却ステージ33(及び/または第2冷却ステージ35)の冷却温度をある目標温度に維持するように極低温冷凍機10が運転される場合には、目標温度が変更されない限り、基準温度分布も概ね不変となる。この場合、一度設定された吸熱部46の上限温度は、その後継続して使用されてもよい。 The controller 60 may update the upper limit temperature of the heat absorption section 46 according to the first measured temperature T1 and the second measured temperature T2 by periodically repeating the process shown in FIG. 5. In addition, when the cryogenic refrigerator 10 is operated to maintain the cooling temperature of the first cooling stage 33 (and/or the second cooling stage 35) at a certain target temperature, unless the target temperature is changed, The temperature distribution also remains roughly unchanged. In this case, the upper limit temperature of the heat absorption section 46 that has been set once may be used continuously thereafter.
 図6は、図5に示される冷媒ガスライン118の制御処理(S30)の一例を示すフローチャートである。本処理においては、コントローラ60は、第3測定温度T3と吸熱部46の上限温度との比較に基づいて冷媒ガスライン118の流量レギュレータ130を制御し、それにより冷媒ガスライン118の冷媒ガス流量を制御する。本処理は、極低温冷凍機10の運転中にコントローラ60によって所定の周期で繰り返し実行される。 FIG. 6 is a flowchart showing an example of the control process (S30) for the refrigerant gas line 118 shown in FIG. In this process, the controller 60 controls the flow rate regulator 130 of the refrigerant gas line 118 based on the comparison between the third measured temperature T3 and the upper limit temperature of the heat absorption section 46, thereby controlling the refrigerant gas flow rate of the refrigerant gas line 118. Control. This process is repeatedly executed by the controller 60 at predetermined intervals while the cryogenic refrigerator 10 is in operation.
 そこで、図6に示されるように、コントローラ60はまず、第3測定温度T3を吸熱部46の上限温度Tlimと比較する(S31)。第3測定温度T3は、上述のように第3温度センサ53によって測定される(図5のS10)。吸熱部46の上限温度は、第2シリンダ16bの両端での測定温度および吸熱部46の軸方向位置に基づいて設定される(図5のS20)。 Therefore, as shown in FIG. 6, the controller 60 first compares the third measured temperature T3 with the upper limit temperature T lim of the heat absorption section 46 (S31). The third measured temperature T3 is measured by the third temperature sensor 53 as described above (S10 in FIG. 5). The upper limit temperature of the heat absorption part 46 is set based on the measured temperature at both ends of the second cylinder 16b and the axial position of the heat absorption part 46 (S20 in FIG. 5).
 コントローラ60は、第3測定温度T3を吸熱部46の上限温度Tlimと比較し、比較結果として両者の大小関係を出力する。すなわち、コントローラ60による比較結果は、次の3つの状態、(i)第3測定温度T3が上限温度Tlimより高い、(ii)第3測定温度T3が上限温度Tlimより低い、(iii)第3測定温度T3が上限温度Tlimと等しい、のうちいずれかを表す。 The controller 60 compares the third measured temperature T3 with the upper limit temperature Tlim of the heat absorption section 46, and outputs the magnitude relationship between the two as a comparison result. That is, the comparison result by the controller 60 is in the following three states: (i) the third measured temperature T3 is higher than the upper limit temperature T lim , (ii) the third measured temperature T3 is lower than the upper limit temperature T lim , (iii) The third measured temperature T3 is equal to the upper limit temperature Tlim .
 コントローラ60は、比較結果に基づいて流量レギュレータ130を制御する。具体的には、(i)第3測定温度T3が上限温度Tlimより高い場合には、コントローラ60は、冷媒ガス流量を低下させるように流量レギュレータ130を制御する(S32)。これにより、第2熱交換器126から吸熱部46への入熱を少なくすることができ、第3測定温度T3を下げることができる。(ii)第3測定温度T3が上限温度Tlimより低い場合には、コントローラ60は、冷媒ガス流量を増加させるように流量レギュレータ130を制御する(S33)。これにより、第2熱交換器126から吸熱部46への入熱を増加させ、冷媒ガスライン118をより効率的に冷却することができる。(iii)第3測定温度T3が上限温度Tlimと等しい場合には、冷媒ガス流量を増減させる必要が無いので、コントローラ60は、現在の冷媒ガス流量を維持するように流量レギュレータ130を制御する。なお、(iii)の場合を(i)または(ii)のいずれかに含めてもよい。 Controller 60 controls flow regulator 130 based on the comparison result. Specifically, (i) when the third measured temperature T3 is higher than the upper limit temperature Tlim , the controller 60 controls the flow regulator 130 to reduce the refrigerant gas flow rate (S32). Thereby, the heat input from the second heat exchanger 126 to the heat absorption section 46 can be reduced, and the third measured temperature T3 can be lowered. (ii) When the third measured temperature T3 is lower than the upper limit temperature Tlim , the controller 60 controls the flow regulator 130 to increase the refrigerant gas flow rate (S33). Thereby, heat input from the second heat exchanger 126 to the heat absorption section 46 can be increased, and the refrigerant gas line 118 can be cooled more efficiently. (iii) If the third measured temperature T3 is equal to the upper limit temperature Tlim , there is no need to increase or decrease the refrigerant gas flow rate, so the controller 60 controls the flow regulator 130 to maintain the current refrigerant gas flow rate. . Note that the case (iii) may be included in either (i) or (ii).
 以上説明したように、実施の形態によれば、第1冷却ステージ33および第2冷却ステージ35に加えて、第2シリンダ16b上の吸熱部46が持つ冷凍能力も利用して、冷媒ガスライン118を冷却することができる。吸熱部46を利用しない典型的な冷却構成に比べて、極低温システム100をより効率的に冷却することができる。 As described above, according to the embodiment, in addition to the first cooling stage 33 and the second cooling stage 35, the refrigerant gas line 118 is can be cooled. Cryogenic system 100 can be cooled more efficiently than typical cooling configurations that do not utilize heat sink 46.
 また、実施の形態では、第1測定温度T1、第2測定温度T2、および吸熱部46の軸方向位置に基づいて吸熱部46の上限温度Tlimが設定され、第3測定温度T3がこの上限温度Tlim以下となるように極低温システム100における極低温冷凍機10に対する熱源(例えば冷媒ガスライン118)が制御される。このように、吸熱部46の温度を上限温度Tlim以下に保つことによって、第2冷却ステージ35の昇温を防止し又は最小限にとどめることができる。 Further, in the embodiment, the upper limit temperature T lim of the heat absorbing portion 46 is set based on the first measured temperature T1, the second measured temperature T2, and the axial position of the heat absorbing portion 46, and the third measured temperature T3 is set as the upper limit temperature T lim of the heat absorbing portion 46. A heat source (for example, refrigerant gas line 118) for cryogenic refrigerator 10 in cryogenic system 100 is controlled so that the temperature is below T lim . In this way, by keeping the temperature of the heat absorbing section 46 below the upper limit temperature T lim , the temperature rise of the second cooling stage 35 can be prevented or minimized.
 さらに、実施の形態では、上限温度Tlimは、上述の直線的な基準温度分布および吸熱部46の軸方向位置に基づく。このようにすれば、極低温冷凍機10のさまざまな運転状態に応じて第1冷却ステージ33および第2冷却ステージ35の温度が変化したとしても、また吸熱部46がさまざまな軸方向位置に設けられたとしても、上限温度Tlimを明確かつ容易に定めることができる。 Furthermore, in the embodiment, the upper limit temperature T lim is based on the above-mentioned linear reference temperature distribution and the axial position of the heat absorption section 46 . In this way, even if the temperatures of the first cooling stage 33 and the second cooling stage 35 change depending on various operating conditions of the cryogenic refrigerator 10, the heat absorbing portion 46 can be provided at various axial positions. Even if the upper limit temperature T lim is determined, the upper limit temperature T lim can be clearly and easily determined.
 図7は、他の実施の形態に係る極低温システム100を概略的に示す図である。図7に示される極低温システム100は、被冷却物に関して図1に示される極低温システム100と相違し、その余については概ね共通する。以下では、相違する構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。 FIG. 7 is a diagram schematically showing a cryogenic system 100 according to another embodiment. The cryogenic system 100 shown in FIG. 7 differs from the cryogenic system 100 shown in FIG. 1 with respect to the object to be cooled, and the rest is generally the same. Below, different configurations will be mainly explained, and common configurations will be briefly explained or their explanations will be omitted.
 上述の実施の形態は、極低温システム100が極低温液体102の貯蔵装置である場合を例として説明しているが、他の構成も可能である。例えば、極低温システム100は、超伝導機器に適用されてもよく、極低温冷凍機10は、真空容器110内に配置された超伝導コイル150および超伝導コイル150への電源供給のための電流リード152を冷却するために用いられてもよい。超伝導コイル150は第2冷却ステージ35により冷却され、電流リード152は、第1冷却ステージ33、吸熱部46、および第2冷却ステージ35により冷却される。 Although the above-described embodiments are described with reference to the case where the cryogenic system 100 is a storage device for the cryogenic liquid 102, other configurations are also possible. For example, the cryogenic system 100 may be applied to a superconducting device, and the cryogenic refrigerator 10 is configured to provide a superconducting coil 150 disposed within a vacuum container 110 and a current for supplying power to the superconducting coil 150. It may also be used to cool the leads 152. Superconducting coil 150 is cooled by second cooling stage 35 , and current lead 152 is cooled by first cooling stage 33 , heat absorption section 46 , and second cooling stage 35 .
 電流リード152は、真空容器110の外に配置される電源154を超伝導コイル150に電気的に接続し、電源154から超伝導コイル150への電流経路となる。したがって、電流リード152は、通電時に発熱しうるから、極低温冷凍機10に対する熱源として働く。電流リード152は、第1部分152a、第2部分152b、第1部分152aと第2部分152bを接続する第3部分152cを有する。 The current lead 152 electrically connects a power source 154 placed outside the vacuum vessel 110 to the superconducting coil 150, and serves as a current path from the power source 154 to the superconducting coil 150. Therefore, since the current lead 152 can generate heat when energized, it functions as a heat source for the cryogenic refrigerator 10. The current lead 152 has a first portion 152a, a second portion 152b, and a third portion 152c connecting the first portion 152a and the second portion 152b.
 第2シリンダ16bの一方の軸方向端部(例えば第1冷却ステージ33)は、電流リード152の第1部分152aと熱的に接続され、第2シリンダ16bの他方の軸方向端部(例えば第2冷却ステージ35)は、電流リード152の第2部分152bと熱的に接続される。吸熱部46は、電流リード152の第3部分152cと熱的に接続される。 One axial end of the second cylinder 16b (for example, the first cooling stage 33) is thermally connected to the first portion 152a of the current lead 152, and the other axial end of the second cylinder 16b (for example, the first cooling stage 33) is thermally connected to the first portion 152a of the current lead 152. 2 cooling stage 35) is thermally connected to the second portion 152b of the current lead 152. The heat absorbing portion 46 is thermally connected to the third portion 152c of the current lead 152.
 熱接続の一例として、第1冷却ステージ33は、第1伝熱部材156により電流リード152の第1部分152aと接続され、第2冷却ステージ35は、第2伝熱部材158により電流リード152の第2部分152bと接続されてもよい。また、第2冷却ステージ35は、第2伝熱部材158により超伝導コイル150と接続されてもよい。第2シリンダ16bの吸熱部46は、ヒートブリッジ160により電流リード152の第3部分152cと接続されてもよい。 As an example of thermal connection, the first cooling stage 33 is connected to the first portion 152a of the current lead 152 by the first heat transfer member 156, and the second cooling stage 35 is connected to the first portion 152a of the current lead 152 by the second heat transfer member 158. It may be connected to the second portion 152b. Further, the second cooling stage 35 may be connected to the superconducting coil 150 by a second heat transfer member 158. The heat absorbing portion 46 of the second cylinder 16b may be connected to the third portion 152c of the current lead 152 by a heat bridge 160.
 コントローラ60は、第3測定温度T3が上限温度以下となるように電流リード152の電流を制御するように構成される。コントローラ60は、第3測定温度T3と吸熱部46の上限温度との比較に基づいて電源154を制御し、それにより電流リード152の電流を制御してもよい。 The controller 60 is configured to control the current in the current lead 152 so that the third measured temperature T3 is equal to or lower than the upper limit temperature. The controller 60 may control the power supply 154 based on a comparison between the third measured temperature T3 and the upper limit temperature of the heat absorption section 46, thereby controlling the current in the current lead 152.
 一例として、(i)第3測定温度T3が上限温度Tlimより高い場合には、コントローラ60は、電流リード152の電流を低下させるように電源154を制御する。これにより、第2熱交換器126から吸熱部46への入熱を少なくすることができ、第3測定温度T3を下げることができる。(ii)第3測定温度T3が上限温度Tlimより低い場合には、コントローラ60は、電流リード152の電流を増加させるように電源154を制御する。これにより、第2熱交換器126から吸熱部46への入熱を増加させ、電流リード152をより効率的に冷却することができる。(iii)第3測定温度T3が上限温度Tlimと等しい場合には、電流リード152の電流を増減させる必要が無いので、コントローラ60は、現在の電流を維持するように電源154を制御する。 As an example, (i) if the third measured temperature T3 is higher than the upper limit temperature Tlim , the controller 60 controls the power supply 154 to reduce the current in the current lead 152. Thereby, the heat input from the second heat exchanger 126 to the heat absorption section 46 can be reduced, and the third measured temperature T3 can be lowered. (ii) If the third measured temperature T3 is lower than the upper limit temperature Tlim , the controller 60 controls the power supply 154 to increase the current in the current lead 152. Thereby, the heat input from the second heat exchanger 126 to the heat absorption section 46 can be increased, and the current lead 152 can be cooled more efficiently. (iii) If the third measured temperature T3 is equal to the upper limit temperature Tlim , there is no need to increase or decrease the current in the current lead 152, so the controller 60 controls the power supply 154 to maintain the current current.
 このようにすれば、第1冷却ステージ33および第2冷却ステージ35に加えて、第2シリンダ16b上の吸熱部46が持つ冷凍能力も利用して、電流リード152を冷却することができる。吸熱部46を利用しない典型的な冷却構成に比べて、極低温システム100をより効率的に冷却することができる。吸熱部46の温度を上限温度Tlim以下に保つことによって、第2冷却ステージ35の昇温を防止し又は最小限にとどめることができる。 In this way, in addition to the first cooling stage 33 and the second cooling stage 35, the current lead 152 can be cooled using the refrigerating capacity of the heat absorbing section 46 on the second cylinder 16b. Cryogenic system 100 can be cooled more efficiently than typical cooling configurations that do not utilize heat sink 46. By keeping the temperature of the heat absorption section 46 below the upper limit temperature T lim , the temperature rise of the second cooling stage 35 can be prevented or minimized.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。 The present invention has been described above based on examples. It will be understood by those skilled in the art that the present invention is not limited to the above embodiments, and that various design changes and modifications are possible, and that such modifications also fall within the scope of the present invention. By the way. Various features described in connection with one embodiment are also applicable to other embodiments. A new embodiment resulting from a combination has the effects of each of the combined embodiments.
 上述の実施の形態では、吸熱部46の温度を測定するために、一つの温度センサ(第3温度センサ53)が設けられているが、他の構成も可能である。ある実施の形態では、吸熱部46の温度は、複数の温度測定位置で測定されてもよい。そこで、複数の温度センサ(例えば、2つの第3温度センサ53)が吸熱部46に設けられてもよい。これら温度センサは、第2シリンダ16b上で軸方向に異なる位置に設けられる。例として、一方の第3温度センサ53が他方の第3温度センサ53に対して高温側に配置される。 In the embodiment described above, one temperature sensor (third temperature sensor 53) is provided to measure the temperature of the heat absorption section 46, but other configurations are also possible. In some embodiments, the temperature of the heat absorbing portion 46 may be measured at multiple temperature measurement locations. Therefore, a plurality of temperature sensors (for example, two third temperature sensors 53) may be provided in the heat absorption section 46. These temperature sensors are provided at different positions in the axial direction on the second cylinder 16b. As an example, one third temperature sensor 53 is arranged on the high temperature side with respect to the other third temperature sensor 53.
 この場合、コントローラ60は、温度測定位置(温度センサ)ごとに、第2シリンダ16bの両端での測定温度、および当該温度測定位置に基づいて、上限温度を設定してもよい。コントローラ60は、複数の測定温度のうちどの測定温度も対応する上限温度以下となるように、熱源を制御してもよい。 In this case, the controller 60 may set the upper limit temperature for each temperature measurement position (temperature sensor) based on the measured temperature at both ends of the second cylinder 16b and the temperature measurement position. The controller 60 may control the heat source so that any measured temperature among the plurality of measured temperatures is equal to or lower than the corresponding upper limit temperature.
 上述の実施の形態では、極低温冷凍機10が二段式のGM冷凍機を例として説明しているが、他の構成も可能である。例えば、極低温冷凍機10は、単段式のGM冷凍機であってもよい。あるいは、極低温冷凍機10は、例えば、ソルベイ冷凍機、スターリング冷凍機、パルス管冷凍機など、他の形式の極低温冷凍機であってもよい。 In the above embodiment, the cryogenic refrigerator 10 is a two-stage GM refrigerator, but other configurations are also possible. For example, the cryogenic refrigerator 10 may be a single-stage GM refrigerator. Alternatively, the cryogenic refrigerator 10 may be another type of cryogenic refrigerator, such as a Solvay refrigerator, a Stirling refrigerator, a pulse tube refrigerator, etc., for example.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific words based on the embodiments, the embodiments merely illustrate one aspect of the principles and applications of the present invention, and the embodiments do not include the claims. Many modifications and changes in arrangement are possible without departing from the spirit of the invention as defined in scope.
 本発明は、極低温システムおよび極低温システムの制御方法の分野における利用が可能である。 The present invention can be used in the fields of cryogenic systems and cryogenic system control methods.
 10 極低温冷凍機、 16a 第1シリンダ、 16b 第2シリンダ、 46 吸熱部、 51 第1温度センサ、 52 第2温度センサ、 53 第3温度センサ、 60 コントローラ、 100 極低温システム、 118 冷媒ガスライン、 152 電流リード。 10 cryogenic refrigerator, 16a first cylinder, 16b second cylinder, 46 heat absorption section, 51 first temperature sensor, 52 second temperature sensor, 53 third temperature sensor, 60 controller, 100 cryogenic system, 118 refrigerant gas line , 152 Current lead.

Claims (6)

  1.  第1シリンダと、
     軸方向に前記第1シリンダと直列に設けられる第2シリンダであって、その軸方向中間部に熱源と熱的に接続される吸熱部を備える第2シリンダと、
     前記第1シリンダに近い前記第2シリンダの一方の軸方向端部で第1測定温度を測定する第1温度センサと、
     前記第1シリンダから遠い前記第2シリンダの他方の軸方向端部で第2測定温度を測定する第2温度センサと、
     前記吸熱部で第3測定温度を測定する第3温度センサと、を備える極低温冷凍機と、
      前記第1温度センサから前記第1測定温度を、前記第2温度センサから前記第2測定温度を、および前記第3温度センサから前記第3測定温度を取得し、
      前記第1測定温度、前記第2測定温度、および前記吸熱部の軸方向位置に基づいて、前記吸熱部の上限温度を設定し、
      前記第3測定温度が前記吸熱部の上限温度以下となるように前記熱源を制御するように構成されるコントローラと、を備えることを特徴とする極低温システム。
    a first cylinder;
    a second cylinder provided in series with the first cylinder in the axial direction, the second cylinder having a heat absorption part thermally connected to a heat source at an axially intermediate portion thereof;
    a first temperature sensor that measures a first measurement temperature at one axial end of the second cylinder near the first cylinder;
    a second temperature sensor that measures a second measurement temperature at the other axial end of the second cylinder that is far from the first cylinder;
    a cryogenic refrigerator comprising: a third temperature sensor that measures a third measurement temperature in the heat absorption part;
    obtaining the first measured temperature from the first temperature sensor, the second measured temperature from the second temperature sensor, and the third measured temperature from the third temperature sensor;
    setting an upper limit temperature of the heat absorption part based on the first measured temperature, the second measurement temperature, and the axial position of the heat absorption part;
    A cryogenic system comprising: a controller configured to control the heat source so that the third measured temperature is equal to or lower than the upper limit temperature of the heat absorption section.
  2.  前記コントローラは、
      前記第2シリンダの前記一方の軸方向端部で前記第1測定温度を有しかつ前記第2シリンダの前記他方の軸方向端部で前記第2測定温度を有するとともに、前記第2シリンダにおける軸方向位置に依存して直線的に変化する前記第2シリンダの基準温度分布を決定し、
      前記基準温度分布および前記吸熱部の軸方向位置に基づいて、前記吸熱部の上限温度を設定するように構成されることを特徴とする請求項1に記載の極低温システム。
    The controller includes:
    the first measured temperature at the one axial end of the second cylinder and the second measured temperature at the other axial end of the second cylinder; determining a reference temperature distribution of the second cylinder that changes linearly depending on the directional position;
    The cryogenic system according to claim 1, wherein the cryogenic system is configured to set an upper limit temperature of the heat absorption part based on the reference temperature distribution and the axial position of the heat absorption part.
  3.  前記第2シリンダの前記一方の軸方向端部は、前記熱源の第1部分と熱的に接続され、
     前記第2シリンダの前記他方の軸方向端部は、前記熱源の第2部分と熱的に接続され、
     前記吸熱部は、前記第1部分と前記第2部分を接続する前記熱源の第3部分と熱的に接続されることを特徴とする請求項1または2に記載の極低温システム。
    the one axial end of the second cylinder is thermally connected to the first portion of the heat source;
    the other axial end of the second cylinder is thermally connected to a second portion of the heat source;
    The cryogenic system according to claim 1 or 2, wherein the heat absorption part is thermally connected to a third part of the heat source that connects the first part and the second part.
  4.  前記熱源は、前記第1部分、前記第3部分、および前記第2部分をこの記載の順に経由する冷媒ガスラインを備え、
     前記コントローラは、前記第3測定温度が前記上限温度以下となるように前記冷媒ガスラインの冷媒ガス流量を制御するように構成されることを特徴とする請求項3に記載の極低温システム。
    The heat source includes a refrigerant gas line passing through the first part, the third part, and the second part in the order described,
    The cryogenic system according to claim 3, wherein the controller is configured to control the refrigerant gas flow rate of the refrigerant gas line so that the third measured temperature is equal to or lower than the upper limit temperature.
  5.  前記熱源は、前記第1部分、前記第3部分、および前記第2部分をこの記載の順に経由する電流リードを備え、
     前記コントローラは、前記第3測定温度が前記上限温度以下となるように前記電流リードの電流を制御するように構成されることを特徴とする請求項3に記載の極低温システム。
    The heat source includes a current lead passing through the first part, the third part, and the second part in the order described,
    4. The cryogenic system according to claim 3, wherein the controller is configured to control the current in the current lead so that the third measured temperature is equal to or lower than the upper limit temperature.
  6.  極低温システムの制御方法であって、前記極低温システムは、軸方向に直列に設けられた第1シリンダおよび第2シリンダを備える極低温冷凍機を備え、前記第2シリンダは、その軸方向中間部に熱源と熱的に接続される吸熱部を備えており、前記方法は、
     前記第1シリンダに近い前記第2シリンダの一方の軸方向端部で第1測定温度を測定することと、
     前記第1シリンダから遠い前記第2シリンダの他方の軸方向端部で第2測定温度を測定することと、
     前記吸熱部で第3測定温度を測定することと、
     前記第1測定温度、前記第2測定温度、および前記吸熱部の軸方向位置に基づいて、前記吸熱部の上限温度を設定することと、
     前記第3測定温度が前記吸熱部の上限温度以下となるように前記熱源を制御することと、を備えることを特徴とする方法。
    A method for controlling a cryogenic system, wherein the cryogenic system includes a cryogenic refrigerator including a first cylinder and a second cylinder arranged in series in the axial direction, and the second cylinder is axially intermediate. a heat absorbing part thermally connected to a heat source;
    Measuring a first measurement temperature at one axial end of the second cylinder close to the first cylinder;
    measuring a second measured temperature at the other axial end of the second cylinder that is far from the first cylinder;
    Measuring a third measurement temperature at the endothermic part;
    setting an upper limit temperature of the heat absorption part based on the first measurement temperature, the second measurement temperature, and the axial position of the heat absorption part;
    A method comprising: controlling the heat source so that the third measured temperature is equal to or lower than an upper limit temperature of the heat absorption section.
PCT/JP2023/018541 2022-07-13 2023-05-18 Cryogenic system and control method for cryogenic system WO2024014117A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112546A JP2024010936A (en) 2022-07-13 2022-07-13 Cryogenic system and control method for cryogenic system
JP2022-112546 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014117A1 true WO2024014117A1 (en) 2024-01-18

Family

ID=89536478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018541 WO2024014117A1 (en) 2022-07-13 2023-05-18 Cryogenic system and control method for cryogenic system

Country Status (2)

Country Link
JP (1) JP2024010936A (en)
WO (1) WO2024014117A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340622A (en) * 1992-06-09 1993-12-21 Sumitomo Heavy Ind Ltd Cold heat accumulative type freezer
JPH0674584A (en) * 1992-08-28 1994-03-15 Toshiba Corp Cryogenic refrigerator and operating method thereof
JP2014527610A (en) * 2011-07-14 2014-10-16 カンタム デザイン, インコーポレイテッドQuantum Design, Inc. Liquefaction apparatus with pressure controlled liquefaction chamber
JP2016058625A (en) * 2014-09-11 2016-04-21 住友重機械工業株式会社 Superconductive system and current lead

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340622A (en) * 1992-06-09 1993-12-21 Sumitomo Heavy Ind Ltd Cold heat accumulative type freezer
JPH0674584A (en) * 1992-08-28 1994-03-15 Toshiba Corp Cryogenic refrigerator and operating method thereof
JP2014527610A (en) * 2011-07-14 2014-10-16 カンタム デザイン, インコーポレイテッドQuantum Design, Inc. Liquefaction apparatus with pressure controlled liquefaction chamber
JP2016058625A (en) * 2014-09-11 2016-04-21 住友重機械工業株式会社 Superconductive system and current lead

Also Published As

Publication number Publication date
JP2024010936A (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US9488390B2 (en) Regenerator, GM type refrigerator and pulse tube refrigerator
US10731914B2 (en) Cryocooler and magnetic shield structure of cryocooler
US20130219923A1 (en) Cryogenic refrigerator
JP2020031160A (en) Superconducting magnet cooling device and superconducting magnet cooling method
US11333409B2 (en) Cryocooler, cryocooler diagnosis device, and cryocooler diagnosis method
US11846458B2 (en) Cryocooler and control method of cryocooler
JP6229207B2 (en) Device for reducing vibration of pulse tube refrigerators used in magnetic resonance diagnostic imaging equipment
WO2024014117A1 (en) Cryogenic system and control method for cryogenic system
JP4259252B2 (en) Cryogenic refrigerator
US20150168028A1 (en) Cryogenic refrigerator
CN111442557B (en) Cryogenic refrigerator and cryogenic system
WO2011089768A1 (en) Cold-storage-type cryocooler and cooling method using same
US11156214B2 (en) Displacer assembly and cryocooler
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JP2022076206A (en) Cryogenic refrigerator and starting method for cryogenic refrigerator
JP6320142B2 (en) Cryogenic refrigerator
US20150233609A1 (en) Cryogenic refrigerator
JP2016118372A (en) Cryogenic temperature refrigerator and operation method of cryogenic temperature refrigerator
EP4350249A2 (en) Method for operating cryocooler and cryocooler
JP6440361B2 (en) Cryogenic refrigerator
WO2023243296A1 (en) Superconducting equipment cooling device and operating method for superconducting equipment cooling device
EP4332460A1 (en) Cryogenic refrigerator and operating method for cryogenic refrigerator
WO2023189805A1 (en) Method for operating cryogenic refrigerator
JP2024047316A (en) Stirling type cryocooler
JP2004140411A (en) Superconductive magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839294

Country of ref document: EP

Kind code of ref document: A1