WO2024014106A1 - Lens unit, camera module, imaging system, and moving body - Google Patents

Lens unit, camera module, imaging system, and moving body Download PDF

Info

Publication number
WO2024014106A1
WO2024014106A1 PCT/JP2023/018074 JP2023018074W WO2024014106A1 WO 2024014106 A1 WO2024014106 A1 WO 2024014106A1 JP 2023018074 W JP2023018074 W JP 2023018074W WO 2024014106 A1 WO2024014106 A1 WO 2024014106A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
intermediate wall
image
optical axis
inter
Prior art date
Application number
PCT/JP2023/018074
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 米川
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2024014106A1 publication Critical patent/WO2024014106A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention particularly relates to a lens unit, a camera module, an imaging system, and a moving body equipped with an imaging system, which constitute an on-vehicle camera mounted on a vehicle such as an automobile.
  • a camera module such as such a vehicle-mounted camera generally includes a lens group in which a plurality of lenses are arranged along the optical axis, a lens barrel that accommodates and holds this lens group, and at least one part of the lens group.
  • the lens unit includes a diaphragm member disposed between lenses at one location (for example, see Patent Document 1).
  • the lens unit 1 when the lens unit 1 is configured by inserting a plurality (for example, six lenses) of lenses L1 to L6 into the lens barrel 2 in order from the object side (upper side in the figure).
  • the extension of the lens barrel 2 in the optical axis direction due to temperature changes or hygroscopic expansion may be larger than the extension amount of the entire lens group in the optical axis direction.
  • a gap is created between the lenses, which causes backlash (backlash in the thrust direction) in the lenses.
  • the lens is affected by tilting and the like, resulting in deterioration of optical performance.
  • the inter-plane sensitivity which is the sensitivity of imaging to the distance between lens surfaces, will decrease. It becomes difficult to ensure a predetermined inter-plane sensitivity between lenses where the sensitivity is highest.
  • the present invention has been made in view of the above circumstances, and aims to provide a lens unit, a camera module, an imaging system, and a moving object that can suppress backlash occurring in a lens and ensure a predetermined surface-to-plane sensitivity. .
  • a lens unit of the present invention includes a lens group in which a plurality of lenses are arranged along the optical axis, and a lens barrel that accommodates and holds this lens group.
  • An intermediate wall that is perpendicular to the optical axis and has a light passage hole through which light passes is provided between the object side end and the image side end of the lens barrel, A lens is inserted from the object side end of the lens barrel on the object side of the intermediate wall, and a lens is inserted from the image side end of the lens barrel on the image side of the intermediate wall,
  • the lens It is characterized by positioning in the optical axis direction.
  • interplane sensitivity refers to the sensitivity of how much influence the imaging of the lens group has (sensitivity of imaging to the distance between lens surfaces).
  • “Influence on image formation of lens groups” refers to the degree of out-of-focus (out-of-focus) caused by changes in the distance between lens surfaces. For example, when the length along the optical axis changes due to thermal expansion, etc., a gap is created between the lenses in the lens group in the lens unit, and the lens moves due to the gap, causing the lens to move in the optical axis direction. If the lenses arranged along the line are misaligned, the position of the captured image will shift, resulting in blurred images and decreased resolution.
  • a lens that has a high inter-plane sensitivity in which the inter-plane sensitivity, which is the sensitivity of imaging to the distance between lens surfaces, is higher than the inter-plane sensitivity between other lenses is brought into contact with the intermediate wall.
  • the flange surface of the lens with high surface-to-surface sensitivity is brought into contact with the surface facing the object side and/or the surface facing the image side of the intermediate wall. This includes the fact that the lens, which becomes taller, is held in contact with it.
  • the lens is inserted from the object-side end of the lens barrel on the object side of the intermediate wall provided between the object-side end and the image-side end of the lens barrel, and the lens is inserted from the object-side end of the lens barrel, and
  • the inside of the lens barrel can be divided by the intermediate wall into two storage spaces, the object side and the image side. For this reason, it is possible to suppress the accumulated play between the lenses conventionally inserted into the entire lens barrel to a minimum as the accumulated play between the lenses on the object side and the image side of the intermediate wall between the lenses in each housing space. can. Therefore, the backlash that occurs in the lens can be suppressed compared to the conventional case.
  • the intermediate wall by providing the intermediate wall, the number of lenses is reduced on the object side and image side of the intermediate wall, making it possible to control variations in lens height (height in the optical axis direction) due to tolerances. As a result, the backlash of the lens in the thrust direction due to temperature changes can be reduced.
  • the amount of expansion of the lens barrel portion on the object side from the intermediate wall is The amount of elongation is smaller than the amount of elongation of the entire barrel, and the amount of elongation of the lens housed on the object side of the intermediate wall is also smaller than the amount of elongation of the entire lens group, and the amount of elongation of the lens barrel portion on the image side of the intermediate wall is The amount of elongation is smaller than the amount of elongation of the entire tube, and the amount of elongation of the lens housed on the image side of the intermediate wall is also smaller than the amount of elongation of the entire lens group.Furthermore, a lens with high surface-to-plane sensitivity is placed on the intermediate wall. Since the lens is positioned in the optical axis direction by being in contact
  • an object-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the object side from the intermediate wall is in contact with the object-side surface of the intermediate wall
  • An image-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the image side of the intermediate wall is brought into contact with the image-side surface of the intermediate wall
  • the object-side adjacent lens and the image side The inter-plane sensitivity between the side adjacent lenses may be the high inter-plane sensitivity.
  • an object-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the object side from the intermediate wall is in contact with the object-side surface of the intermediate wall
  • An image-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the image side of the intermediate wall is brought into contact with the image-side surface of the intermediate wall, an intermediate lens is held in contact with the light passage hole of the intermediate wall;
  • the inter-plane sensitivity between the object-side adjacent lens and the intermediate lens and/or the inter-plane sensitivity between the image-side adjacent lens and the intermediate lens may be the high inter-plane sensitivity.
  • inter-plane sensitivity between the object-side adjacent lens and the intermediate lens and/or inter-plane sensitivity between the image-side adjacent lens and the intermediate lens can be ensured.
  • the present invention also provides a camera module having the lens unit, an imaging system having the camera module, and a moving body equipped with the imaging system.
  • a camera module having the lens unit
  • an imaging system having the camera module
  • a moving body equipped with the imaging system.
  • the same effects as those of the lens unit described above can also be obtained by such a camera module, an imaging system, and a moving body.
  • the term "mobile object” refers to any object that can be moved, and includes, for example, a vehicle.
  • the present invention it is possible to suppress backlash that occurs in the lens, and to ensure a predetermined surface-to-plane sensitivity.
  • FIG. 1 is a schematic cross-sectional view showing a lens unit according to an embodiment of the present invention. It is a graph showing the lens spacing sensitivity in the same figure.
  • 1 is a schematic cross-sectional view showing a camera module according to an embodiment of the present invention.
  • 1 is a schematic diagram of a vehicle as a moving object on which an imaging system (in-vehicle system) including a camera module according to an embodiment of the present invention is mounted.
  • 5 is a block diagram showing the configuration of an imaging device that constitutes the imaging system shown in FIG. 4.
  • FIG. FIG. 2 is a schematic cross-sectional view of essential parts of an example of a conventional lens unit.
  • the lens unit of this embodiment described below is particularly for use in camera modules such as in-vehicle cameras, and is, for example, fixedly installed on the outer surface of a car, and the wiring is led into the car to be used as a display. and other devices. Further, in FIGS. 1, 3, and 6, hatching is omitted for a plurality of lenses.
  • FIG. 1 shows a lens unit 11 according to an embodiment.
  • This lens unit 11 is, for example, for an in-vehicle camera, and is installed on the outside of a car with at least the object-side end (upper end in FIG. 1) of the lens unit 11 exposed.
  • the lens unit 11 includes a cylindrical lens barrel 12, a plurality of (for example, five) lenses 13, 14, 15, 16, 17 disposed within the lens barrel 12, and one aperture member 20. There is.
  • the vehicle-mounted camera including the lens unit 11 includes the lens unit 11, a substrate (not shown) having an image sensor, and an installation member (not shown) for installing the substrate in a vehicle such as an automobile.
  • the first lens 13 located closest to the object side and the third lens 15 third from the object side are glass lenses, the second lens 14 second from the object side, and the fourth lens 16 fourth from the object side.
  • the fifth lens 17, which is the fifth lens from the object side, is a resin lens, but is not limited to this (for example, the lenses 13 and 15 may be resin lenses). Further, the surfaces of the lenses 13 to 17 are provided with an anti-reflection film, a hydrophilic film, a water-repellent film, etc., if necessary.
  • a plurality of lenses 13 to 17 fixed and supported by the lens barrel 12 are arranged with their respective optical axes aligned, and the lenses 13 to 17 are arranged along one optical axis O. This state constitutes one lens group L used for imaging. Further, the fourth lens 16 and the fifth lens 17 are bonded together using an adhesive to form a bonded lens 18.
  • the aperture member 20 is arranged between the second lens 14 and an intermediate wall 26, which will be described later.
  • the diaphragm member 20 is an "aperture diaphragm” that limits the amount of transmitted light and determines the F value, which is an index of brightness, or a "shading diaphragm” that blocks light rays that cause ghosts and aberrations.
  • thermosetting adhesives G1 and G2 are provided between the first lens 13 and the lens barrel 12, and the adhesives G1 and G2 cause the object side end of the lens barrel 12 to The section is hermetically sealed.
  • the adhesive G1 is interposed between the upper end of the outer peripheral surface of the flange portion of the first lens 13 (upper end in the optical axis direction) and the inner peripheral surface of the object-side opening on the object side of the lens barrel 12. , these are glued together.
  • the adhesive G2 is interposed between the lower end of the outer circumferential surface of the flange of the first lens 13 and the lower surface of the flange (the surface facing the image side) and the opening at the tip of the lens barrel 12. , these are glued together.
  • the ridgeline between the outer peripheral surface and the lower surface of the flange portion of the first lens 13 is a chamfered C surface 13c.
  • the opening at the tip end of the lens barrel 12 is provided with a proximity surface 12c that faces the object side and is approached by the flange portion of the first lens 13.
  • a groove-shaped adhesive reservoir 12p is formed in an annular shape in the circumferential direction on the proximal surface 12c.
  • the adhesive G2 is filled between the C surface 13c and the inner circumferential surface of the distal end portion of the lens barrel 12 and the proximal surface 12c, and then flows into the adhesive reservoir 12p.
  • the caulking part 23 at the object side end heats the lens barrel 12 radially inward.
  • the first lens 13 located closest to the object side of the lens group L is fixed to the object side end of the lens barrel 12 in the optical axis direction by the caulking portion 23.
  • the means for fixing the first lens 13 to the object side end of the lens barrel 12 in the optical axis direction is not limited to such a caulking portion 23.
  • the lens barrel 12 is particularly made of metal, the first lens 13 is fixed to the object side end of the lens barrel 12 in the optical axis direction by a cap screwed onto the object side end of the lens barrel 12. may be done.
  • an intermediate wall 26 is provided between the object-side end and the image-side end of the lens barrel 12, which is perpendicular to the optical axis O and has a light passage hole 25 through which light passes.
  • the intermediate wall 26 is provided integrally with the lens barrel 12 at approximately the center of the lens barrel 12 in the optical axis direction, and the first housing portion 31 is provided on the object side (upper side in FIG. 1) than the intermediate wall 26.
  • a second accommodating portion 32 is provided on the image side (lower side in FIG. 1) than the intermediate wall 26.
  • the second accommodating portion 32 has a smaller diameter than the first accommodating portion 31, and has an inner diameter surface formed in the shape of a cylindrical surface or a rectangular cylindrical surface coaxial with the optical axis O.
  • the first accommodating portion 31 has an inner diameter surface formed in a cylindrical shape or a rectangular cylindrical shape coaxial with the optical axis O.
  • the intermediate wall 26 has a light passage hole 25 in the center thereof through which light passes.
  • the light passage hole 25 is a circular through hole provided through the intermediate wall 26 in the optical axis direction, and has an inner diameter surface 25a against which the outer peripheral surface of the third lens 15 comes into contact, and an inner diameter surface 25a. It has a contact surface 25b that is continuously provided and supports the third lens 15 by abutting the outer circumferential portion of the lens surface facing the image side of the third lens 15.
  • the inner diameter surface 25a is formed in the shape of a cylindrical surface coaxial with the optical axis O
  • the contact surface 25b is formed in the shape of a conical surface whose diameter decreases toward the image side and is coaxial with the optical axis O.
  • the third lens 15 has its outer circumferential surface press-fitted or in contact with the inner diameter surface 25a and is bonded to the inner diameter surface 25a, and the outer circumferential portion of the lens surface facing the image side is in contact with the abutment surface 25b, so that the intermediate wall 26 It is attached to the light passage hole 25.
  • the first accommodating section 31 includes a first lens accommodating section 31a that is disposed at the object side end of the lens barrel 12 and accommodates the first lens 13, and a first lens accommodating section 31a that is disposed on the image side of the first lens accommodating section 31a. , and a second lens accommodating portion 31b that accommodates the second lens 14.
  • the first lens housing portion 31a is formed to have a larger diameter than the second lens housing portion 31b (the diameter in the direction perpendicular to the optical axis O is larger).
  • the first lens accommodating portion 31a includes the proximal surface 12c to which the flange portion of the first lens 13 is brought close, and the second lens accommodating portion 31b has the lower surface (the surface facing the image side) of the second lens 14.
  • This contact surface 31f is constituted by the upper surface of the intermediate wall 26 (the surface facing the object side).
  • the inner diameter surface of the first lens housing portion 31a and the inner diameter surface of the second lens housing portion 31b are formed into cylindrical surfaces coaxial with the optical axis O, and further coaxial with the inner diameter surface of the second lens housing portion 32. ing.
  • the first lens 13 On the object side (upper side) of the intermediate wall 26, the first lens 13 is housed in the first lens housing part 31a of the first housing part 31, and the second lens 14 is housed in the second lens housing part 31b. .
  • the third lens 15 is housed in the lens barrel 12 before that. That is, after inserting the third lens 15 into the lens barrel 12 from the upper end opening (object side end opening), the third lens 15 is attached to the light passage hole 25 of the intermediate wall 26 .
  • the outer circumferential surface of the third lens 15 is press-fitted or in contact with the inner diameter surface 25a of the light passage hole 25 and is bonded, and the outer circumferential portion of the lens surface facing the image side is brought into contact with the abutment surface 25b.
  • the third lens 15 is attached to the 26 light passing holes 25. Thereby, the third lens 15 is positioned in the optical axis direction and the radial direction.
  • the diaphragm member 20 and the second lens 14 are inserted through the upper end opening (object side end opening) of the lens barrel 12, and the second lens 14 is attached to the contact surface 31f via the diaphragm member 20.
  • the second lens 14 is positioned in the optical axis direction and the radial direction.
  • the upper surface (surface facing the object side) 14f of the flange portion of the second lens 14 projects slightly upward (toward the object side) from the proximity surface 12c.
  • the lens surface 14s of the second lens 14 facing the object side protrudes from the upper surface 14f toward the object side, and enters inside the concave lens surface 13s of the first lens 13 facing the image side.
  • the first lens 13 is inserted through the upper end opening (object side end opening) of the lens barrel 12, and the first lens 13 is brought into contact with the upper surface 14f of the flange portion of the second lens 14.
  • the first lens 14 is positioned in the optical axis direction and the radial direction by press-fitting or abutting the first lens 13 on the inner diameter surface of the first lens accommodating portion 31a.
  • the proximal surface 12c and the first lens accommodating section 31a are connected.
  • the corners where the inner diameter surface intersects are filled with the adhesive G2, and the upper part of the inner diameter surface of the first lens accommodating portion 31a is filled with the adhesive G1.
  • the first lens 13 is brought into contact with the upper surface 14f of the flange portion of the second lens 14, and the first lens 13 is press-fitted or brought into contact with the inner diameter surface of the first lens accommodating portion 31a.
  • Adhesives G1 and G2 spread between the lens barrel 12 and the object side end of the lens barrel 12 to be hermetically sealed.
  • the first lens 13 is attached to the object side end of the lens barrel 12 in the optical axis direction. Fix it with. Further, by fixing the first lens 13, the second lens 14 is pressed against the contact surface 31f and fixed.
  • the second accommodating portion 32 is provided on the image side (lower side) of the intermediate wall 26 .
  • the second accommodating portion 32 is formed in a cylindrical shape or a prismatic cylindrical shape coaxial with the optical axis O, and its upper surface (the surface facing the image side) is brought into contact with the flange portion of the fourth lens 15. This is a contact surface 33f.
  • This contact surface 33f is constituted by the lower surface of the intermediate wall 26 facing the image side.
  • the bonded lens 18 is inserted through the lower end opening (image side end opening) of the lens barrel 12 with the fourth lens 16 facing the object side (upper side), and then the flange of the fourth lens 16 is inserted.
  • the bonded lens 18 (the fourth lens 16 and the fifth lens 17) is pressed into contact with the contact surface 33f, and the fifth lens 17 is press-fitted or brought into contact with the inner diameter surface of the second accommodating portion 32 and bonded. Positioning is performed in the optical axis direction and radial direction.
  • a second lens (object lens) adjacent to the intermediate wall 26 in the optical axis direction and located on the object side from the intermediate wall 26 is attached to the object side surface (abutment surface 31f) of the intermediate wall 26.
  • a fourth lens, which is adjacent to the intermediate wall 26 in the optical axis direction and located closer to the image side than the intermediate wall 26, is in contact with the image side surface (contact surface 33f) of the intermediate wall 26.
  • the upper surface (surface facing the object side) of the flange portion of the (image side adjacent lens) 16 is in contact with the lens.
  • the inter-plane sensitivity between the second lens (object side adjacent lens) 14 and the third lens 15 and the inter-plane sensitivity between the third lens 15 and the fourth lens (image side adjacent lens) 16 are different from each other in the other optical axis direction.
  • the inter-plane sensitivity is higher than the inter-plane sensitivity between adjacent lenses (for example, the inter-plane sensitivity between the first lens 13 and the second lens 14).
  • the fourth lens L4 and the fifth lens L5 the inter-plane sensitivity between the second lens L2 and the third lens L3 and the inter-plane sensitivity between the third lens L3 and the fourth lens L4 are The inter-plane sensitivity is higher than the inter-plane sensitivity between the second lens L2 and the inter-plane sensitivity between the fourth lens L4 and the fifth lens L5.
  • the horizontal axis indicates the amount of deviation ( ⁇ m) from the design value of the distance between adjacent lenses in the optical axis direction
  • the vertical axis indicates MTF, which represents the spatial reproduction performance of the contrast of the subject on the image plane. Expressed as a frequency characteristic, it indicates the optical performance of the lens.
  • a value of "0" indicates that the distance (spacing) between the lenses is the design value, the more negative the distance, the closer the distance between the lenses, and the more positive the value, the wider the distance between the lenses. Indicates that the amount of deviation from the design value (interval) increases. Further, on the vertical axis, the maximum value is set as "100%", and the closer it is to 100%, the better the optical performance is. Therefore, the inter-plane sensitivity increases as the MTF (optical performance) on the vertical axis decreases. For example, the inter-plane sensitivity between the third lens L3 and the fourth lens L4 is the same as that between the first lens L1 and the second lens L2.
  • the second lens L2, the third lens L3, and the fourth lens L4, which have high surface-to-plane sensitivity, are brought into contact with the intermediate wall 26.
  • the third lens (intermediate lens) 15 is brought into contact with the contact surface 25b of the intermediate wall 26, but the third lens (intermediate lens) 15 may be omitted.
  • the inter-plane sensitivity between the second lens 14 (object side adjacent lens) and the fourth lens 16 (image side adjacent lens) becomes high inter-plane sensitivity.
  • the lens barrel 12 is constructed as an integral body having the intermediate wall 26, but the lens barrel 12 is formed by dividing the lens barrel 12 into a plurality of substantially cylindrical divided lens barrels in the optical axis direction. It may also be configured by joining. In this case, at least one of the plurality of divided lens barrels of the lens barrel 12 may be provided with an intermediate wall on which a lens with high surface-to-plane sensitivity is brought into contact.
  • the object The amount of elongation of the side (upper) part of the lens barrel 12 (first accommodating portion 31) is smaller than the amount of elongation of the entire lens barrel 12, and the amount of elongation of the first lens 13 and the first lens accommodated in the first accommodating portion 31
  • the amount of elongation of the second lens 14 is also smaller than the amount of elongation of the entire lens group L, and the amount of elongation of the portion of the lens barrel 12 on the image side (lower side) of the intermediate wall 26 (second accommodating portion 32) is smaller than the amount of elongation of the entire lens barrel 12.
  • the amount of expansion of the fourth lens 16 and the fifth lens 17 accommodated in the second housing portion 32 also becomes smaller than the amount of expansion of the entire lens group L.
  • the second lens 14 (object-side adjacent lens) with high surface-to-plane sensitivity is in contact with the contact surface 31f of the intermediate wall 26, and the third lens (intermediate lens) 15 is in contact with the contact surface 25b of the intermediate wall 26.
  • the fourth lens 16 (adjacent lens on the image side) is positioned in the optical axis direction by coming into contact with the contact surface 33f of the intermediate wall 26, so that the second lens 14 and the third lens 15 are and between the third lens 15 and the fourth lens 16, it is possible to suppress the misalignment of the lenses 14, 15, and 16 (misalignment in the optical axis direction) that most affects defocus and resolution degradation, and to maintain a predetermined surface-to-plane sensitivity. Can be secured.
  • the first lens 13 is arranged from the object side end of the lens barrel 12 to the object side of the intermediate wall 26 provided between the object side end and the image side end of the lens barrel 12.
  • the second lens 14 is inserted, and the fourth lens 16 and the fifth lens 17 are inserted from the image side end of the lens barrel 12 on the image side than the intermediate wall 26. It can be divided into two storage spaces (first storage section 31 and second storage section 32) on the object side and the image side. For this reason, the accumulated play between the lenses conventionally inserted into the entire lens barrel can be suppressed to a small level as the accumulated play between the lenses on the object side and the image side of the intermediate wall 26 between the lenses in each housing space. I can do it.
  • the backlash that occurs in the lens can be suppressed compared to the conventional case.
  • the number of lenses is reduced on the object side and the image side of the intermediate wall 26, and variations in lens height (height in the optical axis direction) due to tolerance can be controlled. As a result, the backlash of the lens in the thrust direction due to temperature changes can be reduced.
  • FIG. 3 is a schematic cross-sectional view of a camera module 300 of this embodiment having the lens unit 11 shown in FIG. 1. As illustrated, the camera module 300 includes a lens unit 11.
  • the camera module 300 includes an upper case (camera case) 301 that is an exterior component, and a mount (pedestal) 302 that holds the lens unit 11. Further, the camera module 300 includes a seal member 303 and a package sensor (imaging device; image sensor) 304.
  • the upper case 301 is a member that is engaged with the flange portion 27 provided in the shape of a brim on the outer peripheral surface of the lens barrel 12, and exposes the object-side end of the lens unit 11 and covers other parts.
  • the mount 302 is disposed inside the upper case 301 and has a female thread 302a that screws into the male thread 11a of the lens unit 11.
  • the seal member 303 is a member inserted between the inner surface of the upper case 301 and the outer peripheral surface of the lens barrel 12 of the lens unit 11, and is a member for maintaining airtightness inside the upper case 301.
  • the package sensor 304 is placed inside the mount 302, facing the infrared cut filter 35, and is placed at a position to receive the image of the object formed by the lens unit 11. Moreover, the package sensor 304 includes a CCD, CMOS, etc., and converts the light that is focused and reaches through the lens unit 11 into an electrical signal. The converted electrical signals are converted into analog data and digital data, which are constituent elements of image data taken by the camera.
  • FIG. 4 schematically shows a vehicle 240 as a moving body on which an in-vehicle system (imaging system) including an imaging device 250 including the camera module 300 shown in FIG. 3 is mounted.
  • the imaging device 250 can be mounted on the vehicle 240
  • FIG. 4 is an example of the arrangement of the mounting position of the imaging device 250 in the vehicle 240.
  • the imaging device 250 mounted on the vehicle 240 can also be called an on-vehicle camera, and can be installed at various locations on the vehicle 240.
  • the first imaging device 250a may be disposed at or near the front bumper as a camera that monitors the front when the vehicle 240 is traveling.
  • the second imaging device 250b that monitors the front may be placed near an interior rearview mirror of the vehicle 240.
  • the third imaging device 250c may be disposed on the dashboard, inside the instrument panel, or the like as a camera that monitors the driving status of the driver.
  • the fourth imaging device 250d may be installed at the rear of the vehicle 240 for monitoring the rear of the vehicle 240.
  • the imaging devices 250a, 250b can be called front cameras.
  • the third imaging device 250c can be called an in-camera.
  • the fourth imaging device 250d can be called a rear camera.
  • the imaging device 250 is not limited to these, and includes imaging devices installed at various positions, such as a left side camera that images the left rear side and a right side camera that images the right rear side.
  • the image signal of the image captured by the imaging device 250 may be output to the information processing device 242 and/or the display device 243 in the vehicle 240.
  • These information processing device 242 and display device 243 together with imaging device 250 constitute an in-vehicle system.
  • the information processing device 242 in the vehicle 240 includes a device that processes the image signal acquired by the imaging device 250, recognizes the image, and assists the driver in driving. Further, the information processing device 242 includes, for example, a navigation device, a collision damage mitigation braking device, an inter-vehicle distance control device, a lane departure warning device, etc., but is not limited thereto.
  • the display device 243 displays images processed and output by the information processing device 242, but can also directly receive image signals from the imaging device 250.
  • the display device 243 may employ a liquid crystal display (LCD), an organic EL (electro-luminescence) display, or an inorganic EL display, but is not limited to these.
  • the display device 243 can display to the driver an image signal output from an imaging device 250 that captures an image at a position that is difficult for the driver to see, such as a rear camera (can output information to the occupants). ).
  • FIG. 5 shows the configuration of an imaging device that constitutes the in-vehicle system shown in FIG. 4.
  • the imaging device 250 includes a control section 252, a storage section 254, and the camera module 300 shown in FIG. 3 described above.
  • the control unit 252 controls the camera module 300 and processes electrical signals output from the image sensor 304 of the camera module 300.
  • This control unit 252 may be configured as a processor, for example. Further, the control unit 252 may include one or more processors.
  • the processor may include a general-purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for specific processing.
  • a dedicated processor may include an application-specific integrated circuit (IC). ICs for specific applications are called ASICs (Application Also called Specific Integrated Circuit.
  • the processor may include a programmable logic device.
  • a programmable logic device is also called a PLD (Programmable Logic Device).
  • PLD is an FPGA (Field-Programmable Gate Array).
  • the control unit 252 may be either an SoC (System-on-a-Chip) or an SiP (System In a Package) in which one or more processors cooperate.
  • the storage unit 254 stores various information or parameters related to the operation of the imaging device 250.
  • the storage unit 254 may be composed of, for example, a semiconductor memory.
  • the storage unit 254 may function as a work memory for the control unit 252.
  • the storage unit 254 may store captured images.
  • the storage unit 254 may store various parameters and the like for the control unit 252 to perform detection processing based on the captured image.
  • the storage unit 254 may be included in the control unit 252.
  • the camera module 300 uses the image sensor 304 to capture a subject image formed through the lens unit 11, and outputs the captured image.
  • the image captured by the camera module 300 is also referred to as a captured image.
  • the image sensor 304 is, for example, CMOS (Complementary Metal Oxide). It may be configured with a Semiconductor (Semiconductor) image sensor, a CCD (Charge Coupled Device), or the like.
  • the image sensor 304 has an imaging surface on which a plurality of pixels are lined up. Each pixel outputs a signal specified by current or voltage depending on the amount of incident light. The signal output by each pixel is also referred to as imaging data.
  • the image data may be read out by the camera module 300 for all pixels and taken into the control unit 252 as a captured image.
  • the captured image read out for all pixels is also referred to as the maximum captured image.
  • the image data may be read out by the camera module 300 for some pixels and captured as a captured image. In other words, the imaging data may be read from pixels within a predetermined capture range. Image data read from pixels in a predetermined capture range may be captured as a captured image.
  • the predetermined capture range may be set by the control unit 252.
  • the camera module 300 may acquire a predetermined capture range from the control unit 252.
  • the image sensor 304 may capture an image within a predetermined capture range of the subject image formed through the lens unit 11.
  • the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof.
  • the shapes of lenses, lens barrels, etc. are not limited to the embodiments described above.
  • some or all of the embodiments described above may be combined, or a part of the configuration from one of the embodiments described above may be omitted. .
  • Lens unit 12 Lens barrel 13 to 17 Lens 14 Object side adjacent lens 15 Intermediate lens 16 Image side adjacent lens 25 Light passage hole 26 Intermediate wall 240 Vehicle (moving object) 242 Processing device 243 Display device 250 Imaging device 252 Control unit 300 Camera module 304 Imaging device L Lens group O Optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

Provided are a lens unit in which play that occurs in a lens can be suppressed and a prescribed inter-surface sensitivity can be ensured, a camera module, an imaging system, and a moving body. A middle wall 26 having a light passage hole 25 that is orthogonal to an optical axis and through which light passes is provided between an object-side end of a lens barrel 12 and an image-side end thereof, lenses 13, 14, 15 are inserted from the object-side end of the lens barrel 12 closer to the object side than the middle wall 26, lenses 16, 17 are inserted from the image-side end of the lens barrel 12 closer to the image side than the middle wall 26, the lenses 14, 15, 16 for which an inter-surface sensitivity, which is the sensitivity of image formation with respect to a lens inter-surface distance, becomes a high inter-surface sensitivity higher than the inter-surface sensitivity between the other lenses are contacted by the middle wall 26, and the optical axis direction of the lenses 14, 15, 16 is thereby positioned.

Description

レンズユニット、カメラモジュール、撮像システムおよび移動体Lens units, camera modules, imaging systems and moving objects
 本発明は、特に自動車等の車両に搭載される車載カメラを構成するレンズユニット、カメラモジュール、撮像システムおよび撮像システムを搭載した移動体に関する。 The present invention particularly relates to a lens unit, a camera module, an imaging system, and a moving body equipped with an imaging system, which constitute an on-vehicle camera mounted on a vehicle such as an automobile.
 従来から、自動車に車載カメラを搭載し、駐車をサポートしたり、画像認識により衝突防止を図ったりすることが行なわれており、さらにそれを自動運転に応用する試みもなされている。また、このような車載カメラ等のカメラモジュールは、一般に、複数のレンズが光軸に沿って並べられて成るレンズ群と、このレンズ群を収容保持する鏡筒(バレル)と、レンズ群の少なくとも一個所のレンズ間に配置される絞り部材とを有するレンズユニットを備える(例えば、特許文献1参照)。 In the past, vehicles have been equipped with in-vehicle cameras to support parking and prevent collisions through image recognition, and attempts are also being made to apply this to autonomous driving. In addition, a camera module such as such a vehicle-mounted camera generally includes a lens group in which a plurality of lenses are arranged along the optical axis, a lens barrel that accommodates and holds this lens group, and at least one part of the lens group. The lens unit includes a diaphragm member disposed between lenses at one location (for example, see Patent Document 1).
特開2013-231993号公報JP2013-231993A
 ところで、例えば図6に示すように、鏡筒2に、物体側(図において上側)から順に複数(例えば6枚)のレンズL1~L6が挿入されることでレンズユニット1が構成されている場合、当該レンズユニット1が高温や多湿環境に晒されると、鏡筒2の温度変化や吸湿膨張による光軸方向への伸びがレンズ群全体の光軸方向の伸び量より大きくなる場合がある。この場合、レンズ間に隙間が生じることで、レンズにガタ(スラスト方向のガタ)が生じる。これによって、レンズがチルト等の影響を受け、光学性能の劣化が発生する。
 また、鏡筒2の温度変化や吸湿膨張による光軸方向への伸び量がレンズ群全体の光軸方向の伸び量より大きくなる場合、レンズ面間距離に対する結像の感度である面間感度が最も高くなるレンズ間において、所定の面間感度を確保し難くなる。
By the way, for example, as shown in FIG. 6, when the lens unit 1 is configured by inserting a plurality (for example, six lenses) of lenses L1 to L6 into the lens barrel 2 in order from the object side (upper side in the figure). When the lens unit 1 is exposed to a high temperature or humid environment, the extension of the lens barrel 2 in the optical axis direction due to temperature changes or hygroscopic expansion may be larger than the extension amount of the entire lens group in the optical axis direction. In this case, a gap is created between the lenses, which causes backlash (backlash in the thrust direction) in the lenses. As a result, the lens is affected by tilting and the like, resulting in deterioration of optical performance.
In addition, if the amount of expansion in the optical axis direction due to temperature changes or hygroscopic expansion of the lens barrel 2 is greater than the amount of expansion in the optical axis direction of the entire lens group, the inter-plane sensitivity, which is the sensitivity of imaging to the distance between lens surfaces, will decrease. It becomes difficult to ensure a predetermined inter-plane sensitivity between lenses where the sensitivity is highest.
 本発明は、前記事情に鑑みてなされたものであり、レンズに生じるガタを抑制できるとともに、所定の面間感度を確保できるレンズユニット、カメラモジュール、撮像システムおよび移動体提供することを目的とする。 The present invention has been made in view of the above circumstances, and aims to provide a lens unit, a camera module, an imaging system, and a moving object that can suppress backlash occurring in a lens and ensure a predetermined surface-to-plane sensitivity. .
 前記課題を解決するために、本発明のレンズユニットは、複数のレンズが光軸に沿って並べられたレンズ群と、このレンズ群を収容保持する鏡筒とを有するレンズユニットにおいて、
 前記鏡筒の物体側の端部と像側の端部との間に、光軸と直交し、かつ光を通す光通過孔を有する中間壁が設けられ、
 前記中間壁より物体側において、前記鏡筒の物体側端部からレンズが挿入され、前記中間壁より像側において、前記鏡筒の像側端部からレンズが挿入され、
 前記中間壁に、レンズ面間距離に対する結像の感度である面間感度が、他のレンズ間の面間感度より高くなる高面間感度となるレンズが当接されることで、当該レンズの光軸方向の位置決めがなされていることを特徴とする。
In order to solve the above problems, a lens unit of the present invention includes a lens group in which a plurality of lenses are arranged along the optical axis, and a lens barrel that accommodates and holds this lens group.
An intermediate wall that is perpendicular to the optical axis and has a light passage hole through which light passes is provided between the object side end and the image side end of the lens barrel,
A lens is inserted from the object side end of the lens barrel on the object side of the intermediate wall, and a lens is inserted from the image side end of the lens barrel on the image side of the intermediate wall,
By contacting the intermediate wall with a lens that has a high inter-plane sensitivity in which the inter-plane sensitivity, which is the sensitivity of imaging to the distance between lens surfaces, is higher than the inter-plane sensitivity between other lenses, the lens It is characterized by positioning in the optical axis direction.
 ここで、「面間感度」とは、レンズ群の結像にどの程度影響するかの感度(レンズ面間距離に対する結像の感度)である。「レンズ群の結像に影響」とは、レンズ面間の距離が変動することによるピンボケ(ピントズレ)の度合いである。例えば、熱膨張等により光軸方向に沿った長さに変化が生じた際に、レンズユニット内のレンズ群において、レンズどうしの間に隙間が生じ、その隙間によりレンズが動くことで光軸方向に沿って並べたレンズがずれることで、撮像された映像の位置がずれ、ピンボケが生じたり、解像度が低下する。
 したがって、「前記中間壁に、レンズ面間距離に対する結像の感度である面間感度が、他のレンズ間の面間感度より高くなる高面間感度となるレンズが当接される」とは、ピンボケや解像度低下に最も影響するレンズが中間壁に当接されるという意味である。
 また、「前記中間壁に、レンズ面間距離に対する結像の感度である面間感度が、他のレンズ間の面間感度より高くなる高面間感度となるレンズが当接される」とは、高面間感度となるレンズのフランジ面が中間壁の物体側を向く面および/または像側を向く面に当接されるのを含む他、中間壁の光通過孔に面間感度が最も高くなるレンズが当接保持されるのを含む意味である。
Here, "interplane sensitivity" refers to the sensitivity of how much influence the imaging of the lens group has (sensitivity of imaging to the distance between lens surfaces). "Influence on image formation of lens groups" refers to the degree of out-of-focus (out-of-focus) caused by changes in the distance between lens surfaces. For example, when the length along the optical axis changes due to thermal expansion, etc., a gap is created between the lenses in the lens group in the lens unit, and the lens moves due to the gap, causing the lens to move in the optical axis direction. If the lenses arranged along the line are misaligned, the position of the captured image will shift, resulting in blurred images and decreased resolution.
Therefore, "a lens that has a high inter-plane sensitivity in which the inter-plane sensitivity, which is the sensitivity of imaging to the distance between lens surfaces, is higher than the inter-plane sensitivity between other lenses, is brought into contact with the intermediate wall." , which means that the lens that most affects out-of-focus and resolution degradation is brought into contact with the intermediate wall.
Also, "a lens that has a high inter-plane sensitivity in which the inter-plane sensitivity, which is the sensitivity of imaging to the distance between lens surfaces, is higher than the inter-plane sensitivity between other lenses, is brought into contact with the intermediate wall." In addition, the flange surface of the lens with high surface-to-surface sensitivity is brought into contact with the surface facing the object side and/or the surface facing the image side of the intermediate wall. This includes the fact that the lens, which becomes taller, is held in contact with it.
 本発明においては、鏡筒の物体側の端部と像側の端部との間に設けられた中間壁より物体側において、鏡筒の物体側端部からレンズが挿入され、前記中間壁より像側において、鏡筒の像側端部からレンズが挿入されているので、鏡筒内を中間壁によって物体側と像側との2つの収容空間に分断することができる。このため、従来鏡筒内全体に挿入されたレンズ間の累積されるガタを、各収容空間で、レンズ間の中間壁より物体側と像側とにおいてそれぞれで累積されるガタとして小さく抑えることができる。このため、従来に比してレンズに生じるガタを抑制できる。
 また、中間壁を設けたことによって、中間壁より物体側と像側とにおいて、それぞれレンズの枚数が減り、レンズの高さ(光軸方向の高さ)の公差によるバラツキを制御することができ、結果として温度変化によるレンズのスラスト方向のガタを小さくすることができる。
In the present invention, the lens is inserted from the object-side end of the lens barrel on the object side of the intermediate wall provided between the object-side end and the image-side end of the lens barrel, and the lens is inserted from the object-side end of the lens barrel, and On the image side, since the lens is inserted from the image side end of the lens barrel, the inside of the lens barrel can be divided by the intermediate wall into two storage spaces, the object side and the image side. For this reason, it is possible to suppress the accumulated play between the lenses conventionally inserted into the entire lens barrel to a minimum as the accumulated play between the lenses on the object side and the image side of the intermediate wall between the lenses in each housing space. can. Therefore, the backlash that occurs in the lens can be suppressed compared to the conventional case.
Additionally, by providing the intermediate wall, the number of lenses is reduced on the object side and image side of the intermediate wall, making it possible to control variations in lens height (height in the optical axis direction) due to tolerances. As a result, the backlash of the lens in the thrust direction due to temperature changes can be reduced.
 また、鏡筒の温度変化や吸湿膨張による光軸方向への伸び量がレンズ群全体の光軸方向の伸び量より大きくなる場合でも、中間壁より物体側の鏡筒部分の伸び量は、鏡筒全体の伸び量より小さくなるとともに、中間壁より物体側に収容されているレンズの伸び量もレンズ群全体の伸び量より小さくなり、中間壁より像側の鏡筒部分の伸び量は、鏡筒全体の伸び量より小さくなるとともに、中間壁より像側に収容されているレンズの伸び量もレンズ群全体の伸び量より小さくなり、さらに、中間壁に、高面間感度となるレンズが当接されることで、当該レンズの光軸方向の位置決めがなされているので、ピンボケや解像度低下に最も影響するレンズのズレを抑制でき、所定の面間感度を確保できる。 Furthermore, even if the amount of expansion in the optical axis direction due to temperature changes or hygroscopic expansion of the lens barrel is greater than the amount of expansion in the optical axis direction of the entire lens group, the amount of expansion of the lens barrel portion on the object side from the intermediate wall is The amount of elongation is smaller than the amount of elongation of the entire barrel, and the amount of elongation of the lens housed on the object side of the intermediate wall is also smaller than the amount of elongation of the entire lens group, and the amount of elongation of the lens barrel portion on the image side of the intermediate wall is The amount of elongation is smaller than the amount of elongation of the entire tube, and the amount of elongation of the lens housed on the image side of the intermediate wall is also smaller than the amount of elongation of the entire lens group.Furthermore, a lens with high surface-to-plane sensitivity is placed on the intermediate wall. Since the lens is positioned in the optical axis direction by being in contact with it, it is possible to suppress the lens shift that most affects out-of-focus and resolution reduction, and it is possible to ensure a predetermined surface-to-plane sensitivity.
 また、本発明の前記構成において、前記中間壁の物体側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より物体側に位置する物体側隣接レンズが当接され、前記中間壁の像側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より像側に位置する像側隣接レンズが当接され、前記物体側隣接レンズと、前記像側隣接レンズとの間の面間感度が、前記高面間感度となっていてもよい。 Further, in the configuration of the present invention, an object-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the object side from the intermediate wall is in contact with the object-side surface of the intermediate wall, An image-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the image side of the intermediate wall is brought into contact with the image-side surface of the intermediate wall, and the object-side adjacent lens and the image side The inter-plane sensitivity between the side adjacent lenses may be the high inter-plane sensitivity.
 このような構成によれば、中間壁を光軸方向に挟んで配置されている物体側隣接レンズと像側隣接レンズとの間の面間感度を確実に確保できる。 According to such a configuration, it is possible to reliably ensure inter-plane sensitivity between the object-side adjacent lens and the image-side adjacent lens, which are arranged with the intermediate wall sandwiched in the optical axis direction.
 また、本発明の前記構成において、前記中間壁の物体側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より物体側に位置する物体側隣接レンズが当接され、前記中間壁の像側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より像側に位置する像側隣接レンズが当接され、
 前記中間壁の前記光通過孔に中間レンズが当接保持され、
 前記物体側隣接レンズと前記中間レンズとの間の面間感度および/または前記像側隣接レンズと前記中間レンズとの間の面間感度が、前記高面間感度となっていてもよい。
Further, in the configuration of the present invention, an object-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the object side from the intermediate wall is in contact with the object-side surface of the intermediate wall, An image-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the image side of the intermediate wall is brought into contact with the image-side surface of the intermediate wall,
an intermediate lens is held in contact with the light passage hole of the intermediate wall;
The inter-plane sensitivity between the object-side adjacent lens and the intermediate lens and/or the inter-plane sensitivity between the image-side adjacent lens and the intermediate lens may be the high inter-plane sensitivity.
 このような構成によれば、物体側隣接レンズと中間レンズとの間の面間感度および/または像側隣接レンズと中間レンズとの間の面間感度を確実に確保できる。 According to such a configuration, inter-plane sensitivity between the object-side adjacent lens and the intermediate lens and/or inter-plane sensitivity between the image-side adjacent lens and the intermediate lens can be ensured.
 また、本発明は、前記レンズユニットを有するカメラモジュール、当該カメラモジュールを有する撮像システム、および、撮像システムを搭載して成る移動体も提供する。このようなカメラモジュール、撮像システムおよび移動体によっても上述したレンズユニットと同様の作用効果を得ることができる。なお、「移動体」とは、移動できる物体の全てを指し、例えば車両等を挙げることができる。 The present invention also provides a camera module having the lens unit, an imaging system having the camera module, and a moving body equipped with the imaging system. The same effects as those of the lens unit described above can also be obtained by such a camera module, an imaging system, and a moving body. Note that the term "mobile object" refers to any object that can be moved, and includes, for example, a vehicle.
 本発明によれば、レンズに生じるガタを抑制できるとともに、所定の面間感度を確保できる。 According to the present invention, it is possible to suppress backlash that occurs in the lens, and to ensure a predetermined surface-to-plane sensitivity.
本発明の実施形態に係るレンズユニットを示すもので、概略断面図である。1 is a schematic cross-sectional view showing a lens unit according to an embodiment of the present invention. 同、レンズ間隔感度を示すグラフである。It is a graph showing the lens spacing sensitivity in the same figure. 本発明の実施形態に係るカメラモジュールを示す概略断面図である。1 is a schematic cross-sectional view showing a camera module according to an embodiment of the present invention. 本発明の実施形態に係るカメラモジュールを備える撮像システム(車載システム)が搭載される移動体としての車両の概略図である。1 is a schematic diagram of a vehicle as a moving object on which an imaging system (in-vehicle system) including a camera module according to an embodiment of the present invention is mounted. 図4に示す撮像システムを構成する撮像装置の構成を示すブロック図である。5 is a block diagram showing the configuration of an imaging device that constitutes the imaging system shown in FIG. 4. FIG. 従来のレンズユニットの一例を示す要部の概略断面図である。FIG. 2 is a schematic cross-sectional view of essential parts of an example of a conventional lens unit.
 以下、図面を参照しながら本発明の実施形態について説明するが、本実施形態は、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9.産業と技術革新の基盤をつくろう」の、「9.1 すべての人々に安価で公平なアクセスに重点を置いた経済発展と人間の福祉を支援するために、地域・越境インフラを含む質の高い、信頼でき、持続可能かつ強靭(レジリエント)なインフラを開発する。」に貢献する。
 なお、以下で説明する本実施形態のレンズユニットは、特に車載カメラ等のカメラモジュール用のものであり、例えば、自動車の外表面側に固定して設置され、配線は自動車内に引き込まれてディスプレイやその他の装置に接続される。また、図1、図3および図6において複数のレンズについてはハッチングを省略している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, but this embodiment is based on "9. Create a foundation for industry and technological innovation" of the Sustainable Development Goals (SDGs) advocated by the United Nations. ``9.1 Providing quality, reliable, sustainable and resilient infrastructure, including regional and cross-border infrastructure, to support economic development and human well-being with a focus on affordable and equitable access for all.'' Contributing to the development of (resilient) infrastructure.
The lens unit of this embodiment described below is particularly for use in camera modules such as in-vehicle cameras, and is, for example, fixedly installed on the outer surface of a car, and the wiring is led into the car to be used as a display. and other devices. Further, in FIGS. 1, 3, and 6, hatching is omitted for a plurality of lenses.
 図1は、実施形態のレンズユニット11を示している。このレンズユニット11は、例えば、車載カメラ用のものであり、自動車の外側に少なくともレンズユニット11の物体側の端部(図1では上端部)を露出して設置される。 FIG. 1 shows a lens unit 11 according to an embodiment. This lens unit 11 is, for example, for an in-vehicle camera, and is installed on the outside of a car with at least the object-side end (upper end in FIG. 1) of the lens unit 11 exposed.
 レンズユニット11は、円筒状の鏡筒12と、鏡筒12内に配置される複数(例えば、5つ)のレンズ13,14,15,16,17と、1つの絞り部材20とを備えている。このレンズユニット11を備える車載カメラは、レンズユニット11と、図示しないイメージセンサを有する基板と、当該基板を自動車等の車両に設置する図示しない設置部材とを備えるものである。
 また、最も物体側に位置する第1レンズ13と物体側から3番目の第3レンズ15はガラスレンズであり、物体側から2番目の第2レンズ14、物体側から4番目の第4レンズ16および物体側から5番目の第5レンズ17は樹脂レンズであるが、これに限定されない(例えば、レンズ13,15が樹脂レンズであっても構わない)。
 また、レンズ13~17の表面には、必要に応じて、反射防止膜、親水膜、撥水膜等が設けられる。
The lens unit 11 includes a cylindrical lens barrel 12, a plurality of (for example, five) lenses 13, 14, 15, 16, 17 disposed within the lens barrel 12, and one aperture member 20. There is. The vehicle-mounted camera including the lens unit 11 includes the lens unit 11, a substrate (not shown) having an image sensor, and an installation member (not shown) for installing the substrate in a vehicle such as an automobile.
The first lens 13 located closest to the object side and the third lens 15 third from the object side are glass lenses, the second lens 14 second from the object side, and the fourth lens 16 fourth from the object side. The fifth lens 17, which is the fifth lens from the object side, is a resin lens, but is not limited to this (for example, the lenses 13 and 15 may be resin lenses).
Further, the surfaces of the lenses 13 to 17 are provided with an anti-reflection film, a hydrophilic film, a water-repellent film, etc., if necessary.
 鏡筒12に固定されて支持されている複数のレンズ13~17は、それぞれの光軸を一致させた状態に配置されており、1つの光軸Оに沿って各レンズ13~17が並べられた状態となって、撮像に用いられる1群のレンズ群Lを構成している。
 また、第4レンズ16と第5レンズ17とは接着剤によって貼合わされた貼合わせレンズ18となっている。
A plurality of lenses 13 to 17 fixed and supported by the lens barrel 12 are arranged with their respective optical axes aligned, and the lenses 13 to 17 are arranged along one optical axis O. This state constitutes one lens group L used for imaging.
Further, the fourth lens 16 and the fifth lens 17 are bonded together using an adhesive to form a bonded lens 18.
 絞り部材20は、第2レンズ14と後述する中間壁26との間に配置されている。絞り部材20は透過光量を制限し、明るさの指標となるF値を決定する「開口絞り」またはゴーストの原因となる光線や収差の原因となる光線を遮光する「遮光絞り」である。 The aperture member 20 is arranged between the second lens 14 and an intermediate wall 26, which will be described later. The diaphragm member 20 is an "aperture diaphragm" that limits the amount of transmitted light and determines the F value, which is an index of brightness, or a "shading diaphragm" that blocks light rays that cause ghosts and aberrations.
 また、本実施形態において、第1レンズ13と鏡筒12との間には、熱硬化性の接着剤G1,G2が設けられており、当該接着剤G1,G2によって鏡筒12の物体側端部が気密封止されている。接着剤G1は、第1レンズ13のフランジ部の外周面の上端部(光軸方向の上端部)と鏡筒12の物体側の物体側開口部の内周面との間に介在しており、これらを接着している。
 また、接着剤G2は、第1レンズ13のフランジ部の外周面の下端部および同フランジ部の下面(像側を向く面)と、鏡筒12の先端部開口との間に介在しており、これらを接着している。第1レンズ13のフランジ部の外周面と下面との稜線部は面取りされたC面13cとなっている。また、鏡筒12の先端部開口には、物体側を向き、かつ第1レンズ13のフランジ部が近接される近接面12cが設けられている。この近接面12cには、溝状の接着剤溜り12pが周方向に円環状に形成されている。そして、接着剤G2は、C面13cと、鏡筒12の先端部内周面および近接面12cとの間に充填されたうえで、前記接着剤溜り12pに流入している。
In addition, in this embodiment, thermosetting adhesives G1 and G2 are provided between the first lens 13 and the lens barrel 12, and the adhesives G1 and G2 cause the object side end of the lens barrel 12 to The section is hermetically sealed. The adhesive G1 is interposed between the upper end of the outer peripheral surface of the flange portion of the first lens 13 (upper end in the optical axis direction) and the inner peripheral surface of the object-side opening on the object side of the lens barrel 12. , these are glued together.
Furthermore, the adhesive G2 is interposed between the lower end of the outer circumferential surface of the flange of the first lens 13 and the lower surface of the flange (the surface facing the image side) and the opening at the tip of the lens barrel 12. , these are glued together. The ridgeline between the outer peripheral surface and the lower surface of the flange portion of the first lens 13 is a chamfered C surface 13c. Further, the opening at the tip end of the lens barrel 12 is provided with a proximity surface 12c that faces the object side and is approached by the flange portion of the first lens 13. A groove-shaped adhesive reservoir 12p is formed in an annular shape in the circumferential direction on the proximal surface 12c. The adhesive G2 is filled between the C surface 13c and the inner circumferential surface of the distal end portion of the lens barrel 12 and the proximal surface 12c, and then flows into the adhesive reservoir 12p.
 また、鏡筒12は、その内側収容空間内にレンズ群Lが組み込まれて収容保持された状態で、その物体側の端部(図1において上端部)のカシメ部23が径方向内側に熱的にカシメられることにより、レンズ群Lの最も物体側に位置する第1レンズ13をこのカシメ部23により鏡筒12の物体側端部に光軸方向で固定する。なお、第1レンズ13を鏡筒12の物体側端部に光軸方向で固定する手段は、このようなカシメ部23に限らない。例えば、鏡筒12が特に金属で形成される場合には、鏡筒12の物体側端部に螺合されるキャップによって第1レンズ13が鏡筒12の物体側端部に光軸方向で固定されてもよい。 Further, in the lens barrel 12, when the lens group L is installed and housed in the inner housing space, the caulking part 23 at the object side end (the upper end in FIG. 1) heats the lens barrel 12 radially inward. By being caulked, the first lens 13 located closest to the object side of the lens group L is fixed to the object side end of the lens barrel 12 in the optical axis direction by the caulking portion 23. Note that the means for fixing the first lens 13 to the object side end of the lens barrel 12 in the optical axis direction is not limited to such a caulking portion 23. For example, when the lens barrel 12 is particularly made of metal, the first lens 13 is fixed to the object side end of the lens barrel 12 in the optical axis direction by a cap screwed onto the object side end of the lens barrel 12. may be done.
 また、鏡筒12の物体側の端部と像側の端部との間には、光軸Оと直交し、かつ光を通す光通過孔25を有する中間壁26が設けられている。中間壁26は、鏡筒12の光軸方向における略中央部に鏡筒12と一体的に設けられており、中間壁26より物体側(図1において上側)に、第1収容部31が設けられ、中間壁26より像側(図1において下側)に第2収容部32が設けられている。第2収容部32は、第1収容部31より小径であり、内径面が光軸Oと同軸の円筒面状または角筒面状に形成されている。
 また、第1収容部31は、内径面が光軸Oと同軸の円筒面形状または角筒面状に形成されている。
Further, an intermediate wall 26 is provided between the object-side end and the image-side end of the lens barrel 12, which is perpendicular to the optical axis O and has a light passage hole 25 through which light passes. The intermediate wall 26 is provided integrally with the lens barrel 12 at approximately the center of the lens barrel 12 in the optical axis direction, and the first housing portion 31 is provided on the object side (upper side in FIG. 1) than the intermediate wall 26. A second accommodating portion 32 is provided on the image side (lower side in FIG. 1) than the intermediate wall 26. The second accommodating portion 32 has a smaller diameter than the first accommodating portion 31, and has an inner diameter surface formed in the shape of a cylindrical surface or a rectangular cylindrical surface coaxial with the optical axis O.
Further, the first accommodating portion 31 has an inner diameter surface formed in a cylindrical shape or a rectangular cylindrical shape coaxial with the optical axis O.
 中間壁26は、その中央部に光を通す光通過孔25を有している。この光通過孔25は光軸方向に中間壁26を貫通して設けられた円形状の貫通孔であり、第3レンズ15の外周面が当接される内径面25aと、この内径面25aに連続して設けられ、第3レンズ15の像側を向くレンズ面の外周部が当接されることで、第3レンズ15を支持する当接面25bとを有している。内径面25aは光軸Oと同軸の円筒面状に形成され、当接面25bは像側に向かうほど縮径し、かつ光軸Оと同軸の円錐面状に形成されている。
 第3レンズ15は、その外周面が内径面25aに圧入または当接されるとともに接着され、像側を向くレンズ面の外周部が当接面25bに当接されることによって、中間壁26の光通過孔25に装着されている。
The intermediate wall 26 has a light passage hole 25 in the center thereof through which light passes. The light passage hole 25 is a circular through hole provided through the intermediate wall 26 in the optical axis direction, and has an inner diameter surface 25a against which the outer peripheral surface of the third lens 15 comes into contact, and an inner diameter surface 25a. It has a contact surface 25b that is continuously provided and supports the third lens 15 by abutting the outer circumferential portion of the lens surface facing the image side of the third lens 15. The inner diameter surface 25a is formed in the shape of a cylindrical surface coaxial with the optical axis O, and the contact surface 25b is formed in the shape of a conical surface whose diameter decreases toward the image side and is coaxial with the optical axis O.
The third lens 15 has its outer circumferential surface press-fitted or in contact with the inner diameter surface 25a and is bonded to the inner diameter surface 25a, and the outer circumferential portion of the lens surface facing the image side is in contact with the abutment surface 25b, so that the intermediate wall 26 It is attached to the light passage hole 25.
 第1収容部31は、鏡筒12の物体側の端部に配置されて、第1レンズ13を収容する第1レンズ収容部31aと、当該第1レンズ収容部31aより像側に配置されて、第2レンズ14を収容する第2レンズ収容部31bとを有している。
 第1レンズ収容部31aは、第2レンズ収容部31bより大径(光軸Oと直交する方向の径が大径)に形成されている。また、第1レンズ収容部31aは、第1レンズ13のフランジ部が近接される前記近接面12cを備え、第2レンズ収容部31bは第2レンズ14の下面(像側を向く面)が当接される当接面31fを備えている。この当接面31fは中間壁26の上面(物体側を向く面)によって構成されている。
 第1レンズ収容部31aの内径面と第2レンズ収容部31bの内径面とは、光軸Oと同軸の円筒面状に形成され、さらに、前記第2収容部32の内径面と同軸となっている。
The first accommodating section 31 includes a first lens accommodating section 31a that is disposed at the object side end of the lens barrel 12 and accommodates the first lens 13, and a first lens accommodating section 31a that is disposed on the image side of the first lens accommodating section 31a. , and a second lens accommodating portion 31b that accommodates the second lens 14.
The first lens housing portion 31a is formed to have a larger diameter than the second lens housing portion 31b (the diameter in the direction perpendicular to the optical axis O is larger). Further, the first lens accommodating portion 31a includes the proximal surface 12c to which the flange portion of the first lens 13 is brought close, and the second lens accommodating portion 31b has the lower surface (the surface facing the image side) of the second lens 14. It is provided with a contact surface 31f that is brought into contact with the contact surface 31f. This contact surface 31f is constituted by the upper surface of the intermediate wall 26 (the surface facing the object side).
The inner diameter surface of the first lens housing portion 31a and the inner diameter surface of the second lens housing portion 31b are formed into cylindrical surfaces coaxial with the optical axis O, and further coaxial with the inner diameter surface of the second lens housing portion 32. ing.
 そして、中間壁26より物体側(上側)において、第1収容部31の第1レンズ収容部31aに第1レンズ13が収容され、第2レンズ収容部31bに第2レンズ14が収容されている。
 第1レンズ13および第2レンズ14を第1収容部31に収容する場合、その前に第3レンズ15を鏡筒12に収容する。すなわち、鏡筒12に上端部開口(物体側端部開口)から第3レンズ15を挿入したうえで、当該第3レンズ15を中間壁26の光通過孔25に装着する。この場合、第3レンズ15の外周面を光通過孔25の内径面25aに圧入または当接するとともに接着し、像側を向くレンズ面の外周部を当接面25bに当接することによって、中間壁26の光通過孔25に第3レンズ15を装着する。これによって、第3レンズ15の光軸方向と径方向の位置決めがなされる。
On the object side (upper side) of the intermediate wall 26, the first lens 13 is housed in the first lens housing part 31a of the first housing part 31, and the second lens 14 is housed in the second lens housing part 31b. .
When the first lens 13 and the second lens 14 are housed in the first housing part 31, the third lens 15 is housed in the lens barrel 12 before that. That is, after inserting the third lens 15 into the lens barrel 12 from the upper end opening (object side end opening), the third lens 15 is attached to the light passage hole 25 of the intermediate wall 26 . In this case, the outer circumferential surface of the third lens 15 is press-fitted or in contact with the inner diameter surface 25a of the light passage hole 25 and is bonded, and the outer circumferential portion of the lens surface facing the image side is brought into contact with the abutment surface 25b. The third lens 15 is attached to the 26 light passing holes 25. Thereby, the third lens 15 is positioned in the optical axis direction and the radial direction.
 次に、鏡筒12の上端部開口(物体側端部開口)から絞り部材20と第2レンズ14を挿入したうえで、当該第2レンズ14を、絞り部材20を介して当接面31fに当接するとともに、第2レンズ14を第2レンズ収容部31bの内径面に圧入または当接することによって、第2レンズ14の光軸方向と径方向の位置決めがなされる。この状態において、第2レンズ14のフランジ部の上面(物体側を向く面)14fは、前記近接面12cより僅かに上側(物体側)に突出している。なお、第2レンズ14の物体側を向くレンズ面14sは、前記上面14fより物体側に突出しており、第1レンズ13の像側を向く凹状のレンズ面13sより内側に入り込んでいる。
 次に、鏡筒12の上端部開口(物体側端部開口)から第1レンズ13を挿入したうえで、当該第1レンズ13を第2レンズ14のフランジ部の上面14fに当接するとともに、第1レンズ13を第1レンズ収容部31aの内径面に圧入または当接することによって、第1レンズ14の光軸方向と径方向の位置決めがなされる。
Next, the diaphragm member 20 and the second lens 14 are inserted through the upper end opening (object side end opening) of the lens barrel 12, and the second lens 14 is attached to the contact surface 31f via the diaphragm member 20. By press-fitting or abutting the second lens 14 on the inner diameter surface of the second lens accommodating portion 31b, the second lens 14 is positioned in the optical axis direction and the radial direction. In this state, the upper surface (surface facing the object side) 14f of the flange portion of the second lens 14 projects slightly upward (toward the object side) from the proximity surface 12c. Note that the lens surface 14s of the second lens 14 facing the object side protrudes from the upper surface 14f toward the object side, and enters inside the concave lens surface 13s of the first lens 13 facing the image side.
Next, the first lens 13 is inserted through the upper end opening (object side end opening) of the lens barrel 12, and the first lens 13 is brought into contact with the upper surface 14f of the flange portion of the second lens 14. The first lens 14 is positioned in the optical axis direction and the radial direction by press-fitting or abutting the first lens 13 on the inner diameter surface of the first lens accommodating portion 31a.
 第1レンズ13を第2レンズ14の上面14fに当接する前に、第1レンズ収容部31aの近接面12cの接着剤溜り12pより径方向外側において、近接面12cと第1レンズ収容部31aの内径面とが交差している角部に接着剤G2を充填するとともに、第1レンズ収容部31aの内径面の上部に接着剤G1を充填しておく。そして、第1レンズ13を第2レンズ14のフランジ部の上面14fに当接するとともに、第1レンズ13を第1レンズ収容部31aの内径面に圧入または当接することによって、第1レンズ13と鏡筒12との間に、接着剤G1,G2が拡がっていき、当該接着剤G1,G2によって鏡筒12の物体側端部が気密封止される。
 次に、鏡筒12の物体側端部のカシメ部23を径方向内側に熱的にカシメることにより、第1レンズ13をこのカシメ部23により鏡筒12の物体側端部に光軸方向で固定する。また、第1レンズ13の固定によって、第2レンズ14は当接面31fに押し付けられて固定される。
Before the first lens 13 is brought into contact with the upper surface 14f of the second lens 14, on the radially outer side of the adhesive reservoir 12p of the proximal surface 12c of the first lens accommodating section 31a, the proximal surface 12c and the first lens accommodating section 31a are connected. The corners where the inner diameter surface intersects are filled with the adhesive G2, and the upper part of the inner diameter surface of the first lens accommodating portion 31a is filled with the adhesive G1. Then, the first lens 13 is brought into contact with the upper surface 14f of the flange portion of the second lens 14, and the first lens 13 is press-fitted or brought into contact with the inner diameter surface of the first lens accommodating portion 31a. Adhesives G1 and G2 spread between the lens barrel 12 and the object side end of the lens barrel 12 to be hermetically sealed.
Next, by thermally caulking the caulking portion 23 at the object side end of the lens barrel 12 radially inward, the first lens 13 is attached to the object side end of the lens barrel 12 in the optical axis direction. Fix it with. Further, by fixing the first lens 13, the second lens 14 is pressed against the contact surface 31f and fixed.
 上述したように、中間壁26より像側(下側)において、第2収容部32が設けられている。第2収容部32は、光軸Oと同軸の円筒面状または角筒面状に形成されており、その上面(像側を向く面)は、第4レンズ15のフランジ部が当接される当接面33fとなっている。この当接面33fは中間壁26の像側を向く下面によって構成されている。
 このような第2収容部32に、第4レンズ16および第5レンズ17を収容する場合、その前に、第4レンズ16と第5レンズ17とを接着剤によって貼合わせて、貼合わせレンズ18としておく。また、第5レンズ17に赤外線カットフィルタ等の光学フィルタ35を接着等によって取り付けておく。
As described above, the second accommodating portion 32 is provided on the image side (lower side) of the intermediate wall 26 . The second accommodating portion 32 is formed in a cylindrical shape or a prismatic cylindrical shape coaxial with the optical axis O, and its upper surface (the surface facing the image side) is brought into contact with the flange portion of the fourth lens 15. This is a contact surface 33f. This contact surface 33f is constituted by the lower surface of the intermediate wall 26 facing the image side.
When storing the fourth lens 16 and the fifth lens 17 in such a second housing part 32, first, the fourth lens 16 and the fifth lens 17 are bonded together with an adhesive, and the bonded lens 18 I'll leave it as that. Further, an optical filter 35 such as an infrared cut filter is attached to the fifth lens 17 by adhesive or the like.
 次に、鏡筒12の下端部開口(像側端部開口)から貼合わせレンズ18を、第4レンズ16を物体側(上側)に向けて挿入したうえで、当該第4レンズ16のフランジ部を当接面33fに当接するとともに、第5レンズ17を第2収容部32の内径面に圧入または当接するとともに接着することによって、貼合わせレンズ18(第4レンズ16および第5レンズ17)の光軸方向と径方向の位置決めがなされる。 Next, the bonded lens 18 is inserted through the lower end opening (image side end opening) of the lens barrel 12 with the fourth lens 16 facing the object side (upper side), and then the flange of the fourth lens 16 is inserted. The bonded lens 18 (the fourth lens 16 and the fifth lens 17) is pressed into contact with the contact surface 33f, and the fifth lens 17 is press-fitted or brought into contact with the inner diameter surface of the second accommodating portion 32 and bonded. Positioning is performed in the optical axis direction and radial direction.
 ここで、本実施形態では、中間壁26の物体側の面(当接面31f)に、中間壁26に光軸方向において隣接し、かつ中間壁26より物体側に位置する第2レンズ(物体側隣接レンズ)14が当接され、中間壁26の像側の面(当接面33f)に、中間壁26に光軸方向において隣接し、かつ中間壁26より像側に位置する第4レンズ(像側隣接レンズ)16のフランジ部の上面(物体側を向く面)が当接されている。
 そして、第2レンズ(物体側隣接レンズ)14と第3レンズ15との面間感度、第3レンズ15と第4レンズ(像側隣接レンズ)16との面間感度が、他の光軸方向に隣り合うレンズどうしの面間感度(例えば、第1レンズ13と第2レンズ14との面間感度)より高い高面間感度となっている。
Here, in this embodiment, a second lens (object lens) adjacent to the intermediate wall 26 in the optical axis direction and located on the object side from the intermediate wall 26 is attached to the object side surface (abutment surface 31f) of the intermediate wall 26. A fourth lens, which is adjacent to the intermediate wall 26 in the optical axis direction and located closer to the image side than the intermediate wall 26, is in contact with the image side surface (contact surface 33f) of the intermediate wall 26. The upper surface (surface facing the object side) of the flange portion of the (image side adjacent lens) 16 is in contact with the lens.
The inter-plane sensitivity between the second lens (object side adjacent lens) 14 and the third lens 15 and the inter-plane sensitivity between the third lens 15 and the fourth lens (image side adjacent lens) 16 are different from each other in the other optical axis direction. The inter-plane sensitivity is higher than the inter-plane sensitivity between adjacent lenses (for example, the inter-plane sensitivity between the first lens 13 and the second lens 14).
 例えば、図2に示すように、第1レンズ13、第2レンズ14、第3レンズ15、第4レンズ16および第5レンズ16を、それぞれ第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4および第5レンズL5とすると、第2レンズL2と第3レンズL3との面間感度および第3レンズL3と第4レンズL4との面間感度は、第1レンズL1と第2レンズL2との面間感度および第4レンズL4と第5レンズL5との面間感度より高くなっている。
 図2において、横軸は光軸方向において隣り合うレンズどうしの間隔の設計値からのズレ量(μm)を示し、縦軸はMTFで、被写体の持つコントラストの像面上での再現性能を空間周波数特性としてあらわしたもので、レンズの光学性能を示している。横軸において、値「0」がレンズ間の距離(間隔)が設計値であることを示し、マイナス側ほどレンズ間の間隔が詰まり、プラス側ほどレンズ間の間隔が拡がって、レンズ間の距離(間隔)の設計値からのズレ量が大きくなることを示す。
 また、縦軸において、最大値を「100%」とし、100%に近いほど光学性能が良いことを示す。
 したがって、面間感度は、縦軸のMTF(光学性能)が低下するほど高くなり、例えば、第3レンズL3と第4レンズL4との面間感度は、第1レンズL1と第2レンズL2との面間感度に比して、高面間感度となり、第3レンズL3と第4レンズL4との設計値からのずれ量が±20μm程度まで大きくなると、MTF(光学性能)は20%程度劣化し、40%以下となってしまう。
 このため、本実施形態では、中間壁26に、高面間感度となる第2レンズL2、第3レンズL3および第4レンズL4が当接されている。
For example, as shown in FIG. , the fourth lens L4 and the fifth lens L5, the inter-plane sensitivity between the second lens L2 and the third lens L3 and the inter-plane sensitivity between the third lens L3 and the fourth lens L4 are The inter-plane sensitivity is higher than the inter-plane sensitivity between the second lens L2 and the inter-plane sensitivity between the fourth lens L4 and the fifth lens L5.
In Figure 2, the horizontal axis indicates the amount of deviation (μm) from the design value of the distance between adjacent lenses in the optical axis direction, and the vertical axis indicates MTF, which represents the spatial reproduction performance of the contrast of the subject on the image plane. Expressed as a frequency characteristic, it indicates the optical performance of the lens. On the horizontal axis, a value of "0" indicates that the distance (spacing) between the lenses is the design value, the more negative the distance, the closer the distance between the lenses, and the more positive the value, the wider the distance between the lenses. Indicates that the amount of deviation from the design value (interval) increases.
Further, on the vertical axis, the maximum value is set as "100%", and the closer it is to 100%, the better the optical performance is.
Therefore, the inter-plane sensitivity increases as the MTF (optical performance) on the vertical axis decreases. For example, the inter-plane sensitivity between the third lens L3 and the fourth lens L4 is the same as that between the first lens L1 and the second lens L2. When the surface-to-surface sensitivity becomes high compared to the surface-to-surface sensitivity of However, it becomes less than 40%.
Therefore, in this embodiment, the second lens L2, the third lens L3, and the fourth lens L4, which have high surface-to-plane sensitivity, are brought into contact with the intermediate wall 26.
 なお、本実施形態では、中間壁26の当接面25bに第3レンズ(中間レンズ)15を当接したが、第3レンズ(中間レンズ)15は省略してもよい。この場合、第2レンズ14(物体側隣接レンズ)と第4レンズ16(像側隣接レンズ)との面間感度が高面間感度となる。
 また、本実施形態では、鏡筒12を、中間壁26を有する一体物として構成したが、鏡筒12を、光軸方向において複数に分割された略筒状の分割鏡筒を光軸方向に接合することによって構成してもよい。この場合、鏡筒12を複数の分割鏡筒の少なくとも1つに、高面間感度となるレンズが当接される中間壁を設ければよい。
Note that in this embodiment, the third lens (intermediate lens) 15 is brought into contact with the contact surface 25b of the intermediate wall 26, but the third lens (intermediate lens) 15 may be omitted. In this case, the inter-plane sensitivity between the second lens 14 (object side adjacent lens) and the fourth lens 16 (image side adjacent lens) becomes high inter-plane sensitivity.
Further, in the present embodiment, the lens barrel 12 is constructed as an integral body having the intermediate wall 26, but the lens barrel 12 is formed by dividing the lens barrel 12 into a plurality of substantially cylindrical divided lens barrels in the optical axis direction. It may also be configured by joining. In this case, at least one of the plurality of divided lens barrels of the lens barrel 12 may be provided with an intermediate wall on which a lens with high surface-to-plane sensitivity is brought into contact.
 以上のように、本実施形態では、鏡筒12の温度変化や吸湿膨張による光軸方向への伸び量がレンズ群L全体の光軸方向の伸び量より大きくなる場合でも、中間壁26より物体側(上側)の鏡筒12の部分(第1収容部31)の伸び量は、鏡筒12全体の伸び量より小さくなるとともに、第1収容部31に収容されている第1レンズ13および第2レンズ14の伸び量もレンズ群L全体の伸び量より小さくなり、中間壁26より像側(下側)の鏡筒12の部分(第2収容部32)の伸び量は、鏡筒12全体の伸び量より小さくなるとともに、第2収容部32に収容されている第4レンズ16および第5レンズ17の伸び量もレンズ群L全体の伸び量より小さくなる。
 高面間感度となる第2レンズ14(物体側隣接レンズ)は中間壁26の当接面31fに当接され、第3レンズ(中間レンズ)15は中間壁26の当接面25bに当接され、第4レンズ16(像側隣接レンズ)は中間壁26の当接面33fに当接されることで、光軸方向の位置決めがなされているので、第2レンズ14と第3レンズ15との間および第3レンズ15と第4レンズ16との間において、ピンボケや解像度低下に最も影響するレンズ14,15,16のズレ(光軸方向のズレ)を抑制でき、所定の面間感度を確保できる。
As described above, in this embodiment, even if the amount of expansion in the optical axis direction due to temperature changes or hygroscopic expansion of the lens barrel 12 is greater than the amount of expansion in the optical axis direction of the entire lens group L, the object The amount of elongation of the side (upper) part of the lens barrel 12 (first accommodating portion 31) is smaller than the amount of elongation of the entire lens barrel 12, and the amount of elongation of the first lens 13 and the first lens accommodated in the first accommodating portion 31 The amount of elongation of the second lens 14 is also smaller than the amount of elongation of the entire lens group L, and the amount of elongation of the portion of the lens barrel 12 on the image side (lower side) of the intermediate wall 26 (second accommodating portion 32) is smaller than the amount of elongation of the entire lens barrel 12. At the same time, the amount of expansion of the fourth lens 16 and the fifth lens 17 accommodated in the second housing portion 32 also becomes smaller than the amount of expansion of the entire lens group L.
The second lens 14 (object-side adjacent lens) with high surface-to-plane sensitivity is in contact with the contact surface 31f of the intermediate wall 26, and the third lens (intermediate lens) 15 is in contact with the contact surface 25b of the intermediate wall 26. The fourth lens 16 (adjacent lens on the image side) is positioned in the optical axis direction by coming into contact with the contact surface 33f of the intermediate wall 26, so that the second lens 14 and the third lens 15 are and between the third lens 15 and the fourth lens 16, it is possible to suppress the misalignment of the lenses 14, 15, and 16 (misalignment in the optical axis direction) that most affects defocus and resolution degradation, and to maintain a predetermined surface-to-plane sensitivity. Can be secured.
 また、本実施形態では、鏡筒12の物体側の端部と像側の端部との間に設けられた中間壁26より物体側において、鏡筒12の物体側端部から第1レンズ13および第2レンズ14が挿入され、中間壁26より像側において、鏡筒12の像側端部から第4レンズ16および第5レンズ17が挿入されているので、鏡筒内を中間壁26によって物体側と像側との2つの収容空間(第1収容部31と第2収容部32)に分断することができる。このため、従来鏡筒内全体に挿入されたレンズ間の累積されるガタを、各収容空間で、レンズ間の中間壁26より物体側と像側とにおいてそれぞれで累積されるガタとして小さく抑えることができる。このため、従来に比してレンズに生じるガタを抑制できる。
 また、中間壁26を設けたことによって、中間壁26より物体側と像側とにおいて、それぞれレンズの枚数が減り、レンズの高さ(光軸方向の高さ)の公差によるバラツキを制御することができ、結果として温度変化によるレンズのスラスト方向のガタを小さくすることができる。
In the present embodiment, the first lens 13 is arranged from the object side end of the lens barrel 12 to the object side of the intermediate wall 26 provided between the object side end and the image side end of the lens barrel 12. The second lens 14 is inserted, and the fourth lens 16 and the fifth lens 17 are inserted from the image side end of the lens barrel 12 on the image side than the intermediate wall 26. It can be divided into two storage spaces (first storage section 31 and second storage section 32) on the object side and the image side. For this reason, the accumulated play between the lenses conventionally inserted into the entire lens barrel can be suppressed to a small level as the accumulated play between the lenses on the object side and the image side of the intermediate wall 26 between the lenses in each housing space. I can do it. Therefore, the backlash that occurs in the lens can be suppressed compared to the conventional case.
Further, by providing the intermediate wall 26, the number of lenses is reduced on the object side and the image side of the intermediate wall 26, and variations in lens height (height in the optical axis direction) due to tolerance can be controlled. As a result, the backlash of the lens in the thrust direction due to temperature changes can be reduced.
 図3は、図1に示すレンズユニット11を有する本実施形態のカメラモジュール300の概略断面図である。図示のように、カメラモジュール300は、レンズユニット11を含んで構成されている。 FIG. 3 is a schematic cross-sectional view of a camera module 300 of this embodiment having the lens unit 11 shown in FIG. 1. As illustrated, the camera module 300 includes a lens unit 11.
 カメラモジュール300は、外装部品である上ケース(カメラケース)301と、レンズユニット11を保持するマウント(台座)302とを備えている。また、カメラモジュール300は、シール部材303およびパッケージセンサ(撮像素子;イメージセンサ)304を備えている。 The camera module 300 includes an upper case (camera case) 301 that is an exterior component, and a mount (pedestal) 302 that holds the lens unit 11. Further, the camera module 300 includes a seal member 303 and a package sensor (imaging device; image sensor) 304.
 上ケース301は、鏡筒12の外周面に鍔状に設けられるフランジ部27に係合されるとともに、レンズユニット11の物体側の端部を露出させて他の部分を覆う部材である。マウント302は、上ケース301の内部に配置されており、レンズユニット11の雄ねじ11aと螺合する雌ねじ302aを有する。シール部材303は、上ケース301の内面とレンズユニット11の鏡筒12の外周面との間に介挿された部材であり、上ケース301の内部の気密性を保持するための部材である。 The upper case 301 is a member that is engaged with the flange portion 27 provided in the shape of a brim on the outer peripheral surface of the lens barrel 12, and exposes the object-side end of the lens unit 11 and covers other parts. The mount 302 is disposed inside the upper case 301 and has a female thread 302a that screws into the male thread 11a of the lens unit 11. The seal member 303 is a member inserted between the inner surface of the upper case 301 and the outer peripheral surface of the lens barrel 12 of the lens unit 11, and is a member for maintaining airtightness inside the upper case 301.
 パッケージセンサ304は、赤外線カットフィルタ35と対向してマウント302の内部に配置されており、かつ、レンズユニット11により形成される物体の像を受光する位置に配置されている。また、パッケージセンサ304は、CCDやCMOS等を備えており、レンズユニット11を通じて集光されて到達する光を電気信号に変換する。変換された電気信号は、カメラにより撮影された画像データの構成要素であるアナログデータやデジタルデータに変換される。 The package sensor 304 is placed inside the mount 302, facing the infrared cut filter 35, and is placed at a position to receive the image of the object formed by the lens unit 11. Moreover, the package sensor 304 includes a CCD, CMOS, etc., and converts the light that is focused and reaches through the lens unit 11 into an electrical signal. The converted electrical signals are converted into analog data and digital data, which are constituent elements of image data taken by the camera.
 図4には、図3に示すカメラモジュール300を含む撮像装置250を備える車載システム(撮像システム)が搭載される移動体としての車両240が概略的に示されている。図示のように、撮像装置250は車両240に搭載することができ、図4は、車両240における撮像装置250の搭載位置を例示する配置例である。車両240に搭載される撮像装置250は、車載カメラと呼ぶこともでき、車両240の種々の場所に設置することができる。例えば、第1の撮像装置250aは、車両240が走行する際の前方を監視するカメラとして、フロントバンパーまたはその近傍に配置されてもよい。また、前方を監視する第2の撮像装置250bは、車両240の車室内のルームミラー(Inner Rearview Mirror)の近傍に配置されてもよい。第3の撮像装置250cは、運転者の運転状況を監視するカメラとしてダッシュボード上またはインスツルメントパネル内等に配置されてもよい。第4の撮像装置250dは、車両240の後方モニター用に車両240の後部に設置されてもよい。撮像装置250a、250bはフロントカメラと呼ぶことができる。第3の撮像装置250cは、インカメラと呼ぶことができる。第4の撮像装置250dはリアカメラと呼ぶことができる。撮像装置250は、これらに限られず、左後ろ側方を撮像する左サイドカメラおよび右後ろ側方を撮像する右サイドカメラ等、種々の位置に設置される撮像装置を含む。 FIG. 4 schematically shows a vehicle 240 as a moving body on which an in-vehicle system (imaging system) including an imaging device 250 including the camera module 300 shown in FIG. 3 is mounted. As illustrated, the imaging device 250 can be mounted on the vehicle 240, and FIG. 4 is an example of the arrangement of the mounting position of the imaging device 250 in the vehicle 240. The imaging device 250 mounted on the vehicle 240 can also be called an on-vehicle camera, and can be installed at various locations on the vehicle 240. For example, the first imaging device 250a may be disposed at or near the front bumper as a camera that monitors the front when the vehicle 240 is traveling. Further, the second imaging device 250b that monitors the front may be placed near an interior rearview mirror of the vehicle 240. The third imaging device 250c may be disposed on the dashboard, inside the instrument panel, or the like as a camera that monitors the driving status of the driver. The fourth imaging device 250d may be installed at the rear of the vehicle 240 for monitoring the rear of the vehicle 240. The imaging devices 250a, 250b can be called front cameras. The third imaging device 250c can be called an in-camera. The fourth imaging device 250d can be called a rear camera. The imaging device 250 is not limited to these, and includes imaging devices installed at various positions, such as a left side camera that images the left rear side and a right side camera that images the right rear side.
 撮像装置250により撮像された画像の画像信号は、車両240内の情報処理装置242および/または表示装置243等に出力され得る。これらの情報処理装置242および表示装置243は、撮像装置250と共に車載システムを構成する。車両240内の情報処理装置242は、撮像装置250により取得される画像信号を処理し、画像を認識して運転者の運転を支援する装置を含む。また、情報処理装置242は、例えば、ナビゲーション装置、衝突被害軽減ブレーキ装置、車間距離制御装置、および、車線逸脱警報装置等を含むが、これらに限定されない。表示装置243は、情報処理装置242により処理されて出力される画像を表示するが、撮像装置250から直接に画像信号を受信することもできる。また、表示装置243は、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機EL(Electro-Luminescence)ディスプレイ、および、無機ELディスプレイを採用し得るが、これらに限定されない。表示装置243は、リアカメラ等の運転者から視認しづらい位置の画像を撮像する撮像装置250から出力された画像信号を、運転者に対して表示することができる(乗員への情報を出力できる)。 The image signal of the image captured by the imaging device 250 may be output to the information processing device 242 and/or the display device 243 in the vehicle 240. These information processing device 242 and display device 243 together with imaging device 250 constitute an in-vehicle system. The information processing device 242 in the vehicle 240 includes a device that processes the image signal acquired by the imaging device 250, recognizes the image, and assists the driver in driving. Further, the information processing device 242 includes, for example, a navigation device, a collision damage mitigation braking device, an inter-vehicle distance control device, a lane departure warning device, etc., but is not limited thereto. The display device 243 displays images processed and output by the information processing device 242, but can also directly receive image signals from the imaging device 250. Further, the display device 243 may employ a liquid crystal display (LCD), an organic EL (electro-luminescence) display, or an inorganic EL display, but is not limited to these. The display device 243 can display to the driver an image signal output from an imaging device 250 that captures an image at a position that is difficult for the driver to see, such as a rear camera (can output information to the occupants). ).
 図5には、図4に示す車載システムを構成する撮像装置の構成が示される。図示のように、実施形態に係る撮像装置250は、制御部252と、記憶部254と、前述した図3に示すカメラモジュール300を備える。 FIG. 5 shows the configuration of an imaging device that constitutes the in-vehicle system shown in FIG. 4. As illustrated, the imaging device 250 according to the embodiment includes a control section 252, a storage section 254, and the camera module 300 shown in FIG. 3 described above.
 制御部252は、カメラモジュール300を制御するとともに、カメラモジュール300の撮像素子304から出力される電気信号を処理する。この制御部252は例えばプロセッサとして構成されてもよい。また、制御部252は1つ以上のプロセッサを含んでもよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および、特定の処理に特化した専用のプロセッサを含んでもよい。専用のプロセッサは、特定用途向けIC(Integrated Circuit)を含んでもよい。特定用途向けICは、ASIC(Application
Specific Integrated Circuit)とも称される。プロセッサは、プログラマブルロジックデバイスを含んでもよい。プログラマブルロジックデバイスは、PLD(Programmable Logic Device)とも称される。PLDは、FPGA(Field-Programmable
Gate Array)を含んでもよい。制御部252は、1つ以上のプロセッサが協働するSoC(System-on-a-Chip)、および、SiP(System In a Package)のいずれかであってもよい。
The control unit 252 controls the camera module 300 and processes electrical signals output from the image sensor 304 of the camera module 300. This control unit 252 may be configured as a processor, for example. Further, the control unit 252 may include one or more processors. The processor may include a general-purpose processor that loads a specific program to execute a specific function, and a dedicated processor specialized for specific processing. A dedicated processor may include an application-specific integrated circuit (IC). ICs for specific applications are called ASICs (Application
Also called Specific Integrated Circuit. The processor may include a programmable logic device. A programmable logic device is also called a PLD (Programmable Logic Device). PLD is an FPGA (Field-Programmable
Gate Array). The control unit 252 may be either an SoC (System-on-a-Chip) or an SiP (System In a Package) in which one or more processors cooperate.
 記憶部254は、撮像装置250の動作に係る各種情報またはパラメータを記憶する。記憶部254は、例えば半導体メモリ等で構成されてもよい。記憶部254は、制御部252のワークメモリとして機能してもよい。記憶部254は、撮像画像を記憶してもよい。記憶部254は、制御部252が撮像画像に基づく検出処理を行なうための各種パラメータ等を記憶してもよい。記憶部254は制御部252に含まれてもよい。 The storage unit 254 stores various information or parameters related to the operation of the imaging device 250. The storage unit 254 may be composed of, for example, a semiconductor memory. The storage unit 254 may function as a work memory for the control unit 252. The storage unit 254 may store captured images. The storage unit 254 may store various parameters and the like for the control unit 252 to perform detection processing based on the captured image. The storage unit 254 may be included in the control unit 252.
 前述したように、カメラモジュール300は、レンズユニット11を介して結像する被写体像を撮像素子304で撮像し、撮像した画像を出力する。カメラモジュール300で撮像された画像は、撮像画像とも称される。 As described above, the camera module 300 uses the image sensor 304 to capture a subject image formed through the lens unit 11, and outputs the captured image. The image captured by the camera module 300 is also referred to as a captured image.
 撮像素子304は、例えば、CMOS(Complementary Metal Oxide
Semiconductor)イメージセンサまたはCCD(Charge Coupled Device)等で構成されてよい。撮像素子304は、複数の画素が並ぶ撮像面を有する。各画素は、入射した光量に応じて電流または電圧で特定される信号を出力する。各画素が出力する信号は、撮像データとも称される。
The image sensor 304 is, for example, CMOS (Complementary Metal Oxide).
It may be configured with a Semiconductor (Semiconductor) image sensor, a CCD (Charge Coupled Device), or the like. The image sensor 304 has an imaging surface on which a plurality of pixels are lined up. Each pixel outputs a signal specified by current or voltage depending on the amount of incident light. The signal output by each pixel is also referred to as imaging data.
 撮像データは、全ての画素についてカメラモジュール300で読み出され、撮像画像として制御部252に取り込まれてもよい。全ての画素について読み出された撮像画像は、最大撮像画像とも称される。撮像データは、一部の画素についてカメラモジュール300で読み出され、撮像画像として取り込まれてもよい。言い換えれば、撮像データは、所定の取り込み範囲の画素から読み出されてもよい。所定の取り込み範囲の画素から読み出された撮像データは、撮像画像として取り込まれてもよい。所定の取り込み範囲は、制御部252によって設定されてもよい。カメラモジュール300は、制御部252から所定の取り込み範囲を取得してもよい。撮像素子304は、レンズユニット11を介して結像する被写体像のうち所定の取り込み範囲の画像を撮像してもよい。 The image data may be read out by the camera module 300 for all pixels and taken into the control unit 252 as a captured image. The captured image read out for all pixels is also referred to as the maximum captured image. The image data may be read out by the camera module 300 for some pixels and captured as a captured image. In other words, the imaging data may be read from pixels within a predetermined capture range. Image data read from pixels in a predetermined capture range may be captured as a captured image. The predetermined capture range may be set by the control unit 252. The camera module 300 may acquire a predetermined capture range from the control unit 252. The image sensor 304 may capture an image within a predetermined capture range of the subject image formed through the lens unit 11.
 なお、本発明は、上述した実施形態に限定されず、その要旨を逸脱しない範囲で種々変形して実施できる。例えば、本発明において、レンズ、鏡筒などの形状等は、上述した実施形態に限定されない。また、本発明の要旨を逸脱しない範囲内において、上述した実施形態の一部または全部を組み合わせてもよく、あるいは、上述した実施形態のうちの1つから構成の一部が省かれてもよい。 Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof. For example, in the present invention, the shapes of lenses, lens barrels, etc. are not limited to the embodiments described above. Further, without departing from the gist of the present invention, some or all of the embodiments described above may be combined, or a part of the configuration from one of the embodiments described above may be omitted. .
 11 レンズユニット
 12 鏡筒
 13~17 レンズ
 14 物体側隣接レンズ
 15 中間レンズ
 16 像側隣接レンズ
 25 光通過孔
 26 中間壁
 240 車両(移動体)
 242 処理装置
 243 表示装置
 250 撮像装置
 252 制御部
 300 カメラモジュール
 304 撮像素子
 L レンズ群
 O 光軸
11 Lens unit 12 Lens barrel 13 to 17 Lens 14 Object side adjacent lens 15 Intermediate lens 16 Image side adjacent lens 25 Light passage hole 26 Intermediate wall 240 Vehicle (moving object)
242 Processing device 243 Display device 250 Imaging device 252 Control unit 300 Camera module 304 Imaging device L Lens group O Optical axis

Claims (6)

  1.  複数のレンズが光軸に沿って並べられたレンズ群と、このレンズ群を収容保持する鏡筒とを有するレンズユニットにおいて、
     前記鏡筒の物体側の端部と像側の端部との間に、光軸と直交し、かつ光を通す光通過孔を有する中間壁が設けられ、
     前記中間壁より物体側において、前記鏡筒の物体側端部からレンズが挿入され、前記中間壁より像側において、前記鏡筒の像側端部からレンズが挿入され、
     前記中間壁に、レンズ面間距離に対する結像の感度である面間感度が、他のレンズ間の面間感度より高くなる高面間感度となるレンズが当接されることで、当該レンズの光軸方向の位置決めがなされていることを特徴とするレンズユニット。
    A lens unit having a lens group in which a plurality of lenses are arranged along an optical axis, and a lens barrel that accommodates and holds this lens group,
    An intermediate wall that is perpendicular to the optical axis and has a light passage hole through which light passes is provided between the object side end and the image side end of the lens barrel,
    A lens is inserted from the object side end of the lens barrel on the object side of the intermediate wall, and a lens is inserted from the image side end of the lens barrel on the image side of the intermediate wall,
    By contacting the intermediate wall with a lens that has a high inter-plane sensitivity in which the inter-plane sensitivity, which is the sensitivity of imaging to the distance between lens surfaces, is higher than the inter-plane sensitivity between other lenses, the lens A lens unit characterized by being positioned in the optical axis direction.
  2.  前記中間壁の物体側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より物体側に位置する物体側隣接レンズが当接され、前記中間壁の像側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より像側に位置する像側隣接レンズが当接され、前記物体側隣接レンズと、前記像側隣接レンズとの間の面間感度が、前記高面間感度となっていることを特徴とする請求項1に記載のレンズユニット。 An object-side adjacent lens adjacent to the intermediate wall in the optical axis direction and located on the object side from the intermediate wall is in contact with the object-side surface of the intermediate wall, and the object-side adjacent lens is in contact with the image-side surface of the intermediate wall. , an image-side adjacent lens adjacent to the intermediate wall in the optical axis direction and located on the image side of the intermediate wall is brought into contact with the intermediate wall, and an inter-plane distance between the object-side adjacent lens and the image-side adjacent lens is The lens unit according to claim 1, wherein the sensitivity is the high surface-to-surface sensitivity.
  3.  前記中間壁の物体側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より物体側に位置する物体側隣接レンズが当接され、前記中間壁の像側の面に、前記中間壁に前記光軸方向において隣接し、かつ前記中間壁より像側に位置する像側隣接レンズが当接され、
     前記中間壁の前記光通過孔に中間レンズが当接保持され、
     前記物体側隣接レンズと前記中間レンズとの間の面間感度および/または前記像側隣接レンズと前記中間レンズとの間の面間感度が、前記高面間感度となっていることを特徴とする請求項1に記載のレンズユニット。
    An object-side adjacent lens adjacent to the intermediate wall in the optical axis direction and located on the object side from the intermediate wall is in contact with the object-side surface of the intermediate wall, and the object-side adjacent lens is in contact with the image-side surface of the intermediate wall. , an image-side adjacent lens that is adjacent to the intermediate wall in the optical axis direction and located on the image side of the intermediate wall is in contact with the intermediate wall;
    an intermediate lens is held in contact with the light passage hole of the intermediate wall;
    The inter-plane sensitivity between the object-side adjacent lens and the intermediate lens and/or the inter-plane sensitivity between the image-side adjacent lens and the intermediate lens is the high inter-plane sensitivity. The lens unit according to claim 1.
  4.  請求項1~3のいずれか1項に記載のレンズユニットと、前記レンズユニットの前記レンズ群を通じて集光される光を電気信号に変換する撮像素子とを備えることを特徴とするカメラモジュール。 A camera module comprising the lens unit according to any one of claims 1 to 3 and an image sensor that converts light collected through the lens group of the lens unit into an electrical signal.
  5.  請求項4に記載のカメラモジュールと、前記カメラモジュールを制御するとともに前記カメラモジュールの撮像素子から出力される電気信号を処理する制御部とを有する撮像装置と、
     前記撮像装置により取得される画像信号を処理する処理装置と、
     前記処理装置により処理されて出力される画像を表示する表示装置と、
     を有することを特徴とする撮像システム。
    An imaging device comprising: the camera module according to claim 4; and a control unit that controls the camera module and processes electrical signals output from an image sensor of the camera module;
    a processing device that processes an image signal acquired by the imaging device;
    a display device that displays an image processed and output by the processing device;
    An imaging system comprising:
  6.  請求項5に記載の撮像システムを搭載し、前記表示装置により乗員への情報を出力することを特徴とする移動体。 A mobile object equipped with the imaging system according to claim 5 and outputting information to a passenger using the display device.
PCT/JP2023/018074 2022-07-14 2023-05-15 Lens unit, camera module, imaging system, and moving body WO2024014106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112904 2022-07-14
JP2022112904A JP2024011141A (en) 2022-07-14 2022-07-14 Lens unit, camera module, imaging system, and moving body

Publications (1)

Publication Number Publication Date
WO2024014106A1 true WO2024014106A1 (en) 2024-01-18

Family

ID=89536389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018074 WO2024014106A1 (en) 2022-07-14 2023-05-15 Lens unit, camera module, imaging system, and moving body

Country Status (2)

Country Link
JP (1) JP2024011141A (en)
WO (1) WO2024014106A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057795A (en) * 2005-08-24 2007-03-08 Tamron Co Ltd Lens-fixing device and lens barrel using the same
JP2010074626A (en) * 2008-09-19 2010-04-02 Ricoh Co Ltd Device for adjusting inclination of light-receiving portion device for adjusting image sensor inclination, optical device, camera module and car navigation device
JP2018141827A (en) * 2017-02-27 2018-09-13 オリンパス株式会社 Lens barrel
CN111830660A (en) * 2019-04-22 2020-10-27 北京小米移动软件有限公司 Lens, lens processing method, camera module and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057795A (en) * 2005-08-24 2007-03-08 Tamron Co Ltd Lens-fixing device and lens barrel using the same
JP2010074626A (en) * 2008-09-19 2010-04-02 Ricoh Co Ltd Device for adjusting inclination of light-receiving portion device for adjusting image sensor inclination, optical device, camera module and car navigation device
JP2018141827A (en) * 2017-02-27 2018-09-13 オリンパス株式会社 Lens barrel
CN111830660A (en) * 2019-04-22 2020-10-27 北京小米移动软件有限公司 Lens, lens processing method, camera module and electronic equipment

Also Published As

Publication number Publication date
JP2024011141A (en) 2024-01-25

Similar Documents

Publication Publication Date Title
JP2013037189A (en) Image pickup apparatus and on-vehicle camera
CN110949270A (en) Camera device module
WO2024014106A1 (en) Lens unit, camera module, imaging system, and moving body
US20190179215A1 (en) Camera for a motor vehicle, comprising an integrally formed housing top part and a lens carrier, as well as motor vehicle and method for manufacturing a camera for a motor vehicle
WO2021066118A1 (en) Imaging device, moving body, and imaging device manufacturing method
JP2019113753A (en) Lens barrel, lens unit, and camera module
JP2024011142A (en) Lens unit, camera module, imaging system, and moving body
JP2023025370A (en) Camera module, imaging system, and mobile body
WO2023171399A1 (en) Lens unit, camera module, imaging system, and moving body
JP2023132510A (en) Lens unit, camera module, image capturing system, and mobile vehicle
JP2023132538A (en) Lens unit, camera module, image capturing system, and mobile vehicle
JP2024011143A (en) Lens unit, camera module, on-vehicle system, and mobile body
JP2022139615A (en) Lens unit, camera module, imaging system, and mobile body
JP2011237672A (en) Imaging apparatus
JP2023025372A (en) Cemented lens, lens unit, camera module, image capturing system, and mobile vehicle
JP2023039478A (en) Lens unit, method for manufacturing lens unit, camera module, imaging system, and moving body
JP2022182405A (en) Lens unit, camera module, on-vehicle system, and vehicle
JP2023103852A (en) Lens unit, camera module, on-vehicle system, and mobile body
JP2023091353A (en) Lens unit, camera module, onboard system, and vehicle
JP2020139971A (en) Lens unit and camera module
JP2022131077A (en) Lens unit, camera module, imaging system, and mobile body
JP2023025373A (en) Lens unit, camera module, imaging system, and mobile body
JP2022183606A (en) Lens unit, camera module, onboard system and vehicle
JP2023128223A (en) Lens unit, camera module, on-vehicle system, and moving body
WO2023140143A1 (en) Imaging lens system, camera module, vehicle-mounted system, and mobile object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839284

Country of ref document: EP

Kind code of ref document: A1