WO2024013815A1 - Wireless communication system, wireless communication method, centralized control device, and centralized control program - Google Patents

Wireless communication system, wireless communication method, centralized control device, and centralized control program Download PDF

Info

Publication number
WO2024013815A1
WO2024013815A1 PCT/JP2022/027292 JP2022027292W WO2024013815A1 WO 2024013815 A1 WO2024013815 A1 WO 2024013815A1 JP 2022027292 W JP2022027292 W JP 2022027292W WO 2024013815 A1 WO2024013815 A1 WO 2024013815A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
coefficient
base station
bandwidth
utility function
Prior art date
Application number
PCT/JP2022/027292
Other languages
French (fr)
Japanese (ja)
Inventor
純一 岩谷
ヒランタ アベセカラ
裕介 淺井
朗 岸田
花絵 大谷
信也 大槻
陸 大宮
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/027292 priority Critical patent/WO2024013815A1/en
Publication of WO2024013815A1 publication Critical patent/WO2024013815A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a wireless communication system, a wireless communication method, a centralized control device, and a centralized control program.
  • IEEE802.11 wireless LAN
  • MLD multilink device
  • Multilink transmission includes, for example, an AP MLD equipped with multiple base station (AP: Access Point) functions in one housing, and multiple wireless terminals (STA: Station) installed in one housing. This is wireless communication in which a link is formed between each STA and MLD.
  • AP Access Point
  • STA Station
  • RATOP Resource allocation based on Area Throughput Optimization Policy
  • RATOP Resource allocation based on Area Throughput Optimization Policy
  • a centralized control device grasps the status of each AP and allocates radio resources such as frequency channels and bandwidths that each AP should use.
  • the amount of traffic that can be sent out based on the allocated radio resources is calculated based on the estimated maximum traffic amount (accommodated traffic amount) of each AP.
  • the ratio (utility function) of the estimated amount (traffic amount that can be sent) is defined. Then, the central control device performs control to maximize the total value of the utility functions.
  • the present invention provides a wireless communication system, a wireless communication method, and a wireless communication method capable of centrally controlling the allocation of wireless resources so as to expand communication capacity according to priority for a system including a base station capable of multi-link transmission.
  • the purpose is to provide a centralized control device and a centralized control program.
  • a wireless communication system includes a base station capable of multi-link transmission with a wireless terminal, and includes a plurality of base stations capable of communicating with the wireless terminal for each wireless device accommodated, and the base station.
  • the central control device determines, for each of the wireless devices, the ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the allocated channel and bandwidth.
  • the wireless device is characterized by comprising a change control unit that performs control to change the channel and bandwidth of each of the wireless devices so that the sum of the utility functions after being multiplied by the respective coefficients by the multiplication units is maximized.
  • the wireless communication method includes a base station that is capable of multi-link transmission with a wireless terminal, and each wireless device that accommodates a plurality of base stations that can communicate with the wireless terminal.
  • a multiplication step of multiplying each wireless device by a coefficient having a positive correlation with a predetermined priority and a multiplication step of multiplying each wireless device by a coefficient having a positive correlation with a predetermined priority, and a multiplication step of multiplying the wireless
  • the method is characterized in that it includes a change control step of controlling to change the channel and bandwidth of each device.
  • the centralized control device includes a base station capable of multi-link transmission with wireless terminals, and each wireless device accommodated has a plurality of base stations capable of communicating with the wireless terminal.
  • a utility function calculation unit that calculates, as a utility function, a ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the assigned channel and bandwidth for each of the wireless devices; and the utility function calculation unit a multiplier that multiplies each of the utility functions calculated by a coefficient that has a positive correlation with a predetermined priority for each wireless device; and a multiplier that multiplies each of the utility functions calculated by the coefficients.
  • the present invention is characterized by comprising a change control unit that performs control to change the channel and bandwidth of each of the wireless devices so as to maximize the total.
  • the present invention it is possible to centrally control radio resource allocation for a system including a base station capable of multi-link transmission so as to expand communication capacity according to priority.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment.
  • FIG. 2 is a functional block diagram illustrating functions of the central control device.
  • FIG. 2 is a diagram schematically illustrating a utility function U calculated by the central control device for a plurality of base stations capable of multi-link transmission and a plurality of base stations that do not perform multi-link transmission.
  • 4 is a diagram schematically showing wireless devices of each base station shown in FIG. 3.
  • FIG. 1 is a flowchart illustrating an example of the operation of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a hardware configuration of a central control device according to an embodiment.
  • 1 is a diagram illustrating a configuration example of a wireless communication system that does not include a multilink device.
  • FIG. 3 is a diagram showing a specific example of a RATOP algorithm executed by the central control device.
  • FIG. 7 is a diagram illustrating a configuration example of a wireless communication system 1 that does not include a multilink device.
  • the wireless communication system 1 is, for example, a wireless LAN system that does not include AP MLD and STA MLD, and the above-mentioned RATOP is applied.
  • the wireless communication system 1 includes, for example, a plurality of base stations 2, a central control device 3, and a plurality of wireless terminals 4 connected to a network 100.
  • Each base station 2 accommodates a plurality of wireless terminals 4 by being centrally controlled by a central control device 3 .
  • a base station may be referred to as an AP.
  • AP identifier b Bandwidth c: Channel (primary channel)
  • R Data rate (MCS)
  • the expected throughput of AP (a) depends on the channel usage status of other APs. Further, the accommodated traffic amount (depending on the amount of generated data) is, for example, the estimated maximum traffic value of AP (a) shown in the following equation (2).
  • the centralized control device 3 performs processing to maximize the sum ⁇ U of the utility functions U according to the following algorithm.
  • RATOP algorithm (A): The central control device 3 "tentatively allocates" the channel/bandwidth used by each AP according to predetermined rules. (B): The centralized control device 3 calculates the sum ⁇ U of the utility functions U of each AP in the above case (A). (C): The centralized control device 3 reallocates channels and bandwidths to APs with a low utility function U, and performs control so that ⁇ U does not decrease. Then, the centralized control device 3 repeats the step (C) within a range of predetermined conditions.
  • FIG. 8 is a diagram showing a specific example of the RATOP algorithm executed by the central control device 3. As shown in FIG. 8, the central control device 3 performs phase I (initial calculation) and phase II (optimization) processing.
  • the central control device 3 selects one AP and sets it as AP-a (S100), selects a bandwidth b that can be allocated to AP-a (S102), and selects a bandwidth b that can be allocated to AP-a.
  • Channel c is selected (S104), and utility function U of AP-a is calculated (S106).
  • the centralized control device 3 executes the process of S104 and the process of S106 for all channels c, and repeats the process for all bandwidths b.
  • the centralized control device 3 selects the combination (b, c) that maximizes the utility function U (S108), and repeats the process for all APs.
  • the centralized control device 3 selects, for example, an AP with a small utility function U, and then selects the combination (parameters) of (b, c) in which the utility function U becomes maximum and the sum ⁇ U of the utility functions U does not deteriorate. The process of selecting is repeated (S110).
  • the centralized control device 3 sets the combinations (b, c) selected by each AP as the allocated bandwidth and channel after control.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to an embodiment.
  • the wireless communication system 10 is a wireless LAN system including an AP MLD and a STA MLD, and the above-mentioned RATOP is applied to the MLD.
  • the wireless communication system 10 includes, for example, base stations 20-1, 20-2, and 30 connected to a network 100, a central control device 40, and a plurality of wireless terminals 50 and 52. Note that when one of the plurality of configurations, such as base stations 20-1 and 20-2, is not specified, it is simply abbreviated as base station 20 or the like.
  • Each of the base stations 20-1, 20-2, and 30 accommodates a plurality of wireless terminals 50 and 52 by being centrally controlled by the central control device 40.
  • the base stations 20-1, 20-2, and 30 may be described as APs.
  • the wireless terminals 50 are STA and MLD, respectively.
  • Each of the wireless terminals 52 is a terminal that does not have a multilink function.
  • the base stations 20-1 and 20-2 are each AP MLD, and have an MLD section 200 and wireless devices 202 and 204.
  • the MLD unit 200 transmits and receives signals to and from the central control device 40 and the wireless devices 202 and 204, and performs processing for the base station 20 to function as an AP MLD using the wireless devices 202 and 204.
  • the wireless device 202 has a function as a base station (AP) that performs wireless communication using, for example, a 5 GHz band.
  • the wireless device 204 has a function as a base station (AP) that performs wireless communication using, for example, a 6 GHz band.
  • the base station 30 has one wireless device 300 and does not have a multilink function.
  • the wireless device 300 has a function as a base station (AP) that performs wireless communication using, for example, a 5 GHz band.
  • AP base station
  • the centralized control device 40 centrally controls the base stations 20-1, 20-2, and 30 by, for example, wireless communication.
  • FIG. 2 is a functional block diagram illustrating the functions of the central control device 40.
  • the centralized control device 40 includes, for example, a wireless communication section 41, a collection section 42, a utility function calculation section 43, a multiplication section 44, a change control section 45, and a main control section 46.
  • the wireless communication unit 41 transmits and receives signals to and from the base stations 20-1, 20-2, and 30 by wireless communication, respectively.
  • the collection unit 42 collects information regarding the base stations 20-1, 20-2, and 30 via the wireless communication unit 41, and outputs the information to the utility function calculation unit 43. For example, the collection unit 42 collects information (traffic information, etc.) regarding each of the wireless devices 202, 204, and 300.
  • the utility function calculation unit 43 calculates, as a utility function, the ratio of the amount of traffic that can be sent to the amount of traffic that can be accommodated based on the allocated channel and bandwidth for each of the wireless devices 202, 204, and 300. and outputs the calculated utility function to the multiplier 44.
  • the accommodated traffic amount depends on the traffic distribution ratio to each of the wireless devices 202, 204, and 300. For example, based on the information collected by the collection unit 42, the utility function calculation unit 43 calculates the amount of accommodated traffic so as to distribute it in proportion to the amount of traffic that can be sent, the amount of accommodated traffic, or the bandwidth of each of the wireless devices 202, 204, and 300, for example. Assume quantity.
  • the multiplication unit 44 multiplies each of the utility functions calculated by the utility function calculation unit 43 by a coefficient that has a positive correlation with the priority determined in advance for each of the wireless devices 202, 204, and 300. Then, the multiplication unit 44 outputs the utility functions multiplied by the respective coefficients to the change control unit 45.
  • the coefficient multiplied by the multiplication unit 44 is determined in advance in order to maintain the priorities and fairness of each of the wireless devices 202, 204, and 300. For example, a coefficient having a larger value is determined for a wireless device with a high priority than a wireless device with a low priority.
  • the change control unit 45 performs control to change the channels and bandwidths of each of the wireless devices 202, 204, and 300 so that the sum of the utility functions after multiplication by the coefficients by the multiplication unit 44 is maximized.
  • the change control unit 45 selects the wireless devices in order from the wireless devices with the smallest utility function or the wireless devices of the base station with the smallest sum of the utility functions after the multiplication unit 44 multiplies the wireless devices in the base station by the coefficient. control to change the channels and bandwidth allocated to Furthermore, in order to give priority to the control order of a base station with a high priority, wireless devices within the base station may be multiplied by different small coefficients to compare the magnitude of the utility function between base stations.
  • the change control unit 45 changes the channel and bandwidth allocated to each wireless device in order from the wireless device with the highest priority indicated by the coefficient or the base station with the largest sum of the coefficients of each of the wireless devices it accommodates. Control may also be performed.
  • the main control section 46 controls each section that constitutes the central control device 40.
  • the centralized control device 40 multiplies the utility function calculated for each wireless device by a coefficient corresponding to the priority of each wireless device, and controls the allocation of wireless resources based on the utility function after multiplying by the coefficient. I do.
  • FIG. 3 is a diagram schematically illustrating a utility function U calculated by the central control device 40 for a plurality of base stations capable of multi-link transmission (AP MLD) and a plurality of base stations that do not perform multi-link transmission. be.
  • FIG. 4 is a diagram schematically showing wireless devices of each base station shown in FIG. 3.
  • base stations 20-1 and 20-2 a plurality of base stations capable of multi-link transmission (AP MLD) are referred to as base stations 20-1 and 20-2, and a plurality of base stations that do not perform multi-link transmission (single base station) are referred to as base stations 30-1 and 20-2.
  • the score shall be 30-2.
  • base stations 20-1 and 20-2 each include wireless devices 202 and 204. It is also assumed that the base stations 30-1 and 30-2 are equipped with either a wireless device that uses a 5 GHz band or a 6 GHz band.
  • Ai indicates the amount of accommodated traffic
  • Bi indicates the amount of traffic that can be sent out (i is a variable).
  • the utility function Ui Bi/Ai.
  • ai is a predetermined coefficient.
  • the centralized control device 40 performs control so as to maximize the sum of the utility function U after being multiplied by the coefficient shown in equation (3) below.
  • the centralized control device 40 may determine the wireless device whose parameters are to be controlled based on the utility function U for each of the base stations 20-1, 20-2, 30-1, and 30-2. For example, the centralized control device 40 may first control parameters for wireless devices or base stations with a small utility function U (for example, a1U1+a2U2, etc.) for each base station after multiplication by a coefficient, and then control parameters for each wireless device or base station. Control may be performed to ensure fairness. In addition, in order to prioritize the control order of base stations with high priority, wireless devices within the base station are multiplied by different small coefficients (for example, b1, b2) to compare the magnitude of the utility function between base stations. You can.
  • a small utility function U for example, a1U1+a2U2, etc.
  • the centralized control device 40 may control the parameters in the order of wireless devices with a high priority (wireless devices with a large predetermined coefficient), or in the order based on the value of the utility function U after multiplying by the coefficient. Parameters of the wireless device may also be controlled.
  • FIG. 5 is a flowchart illustrating an example of the operation of the wireless communication system 10 according to an embodiment.
  • each of the base stations 20-1, 20-2, and 30 determines whether or not there is an instruction to collect information from the central control device 40 (S200), and if there is an instruction (S200: Yes), the base stations 20-1, 20-2, and 30 If there is no instruction (S200: No), the process of S200 is repeated.
  • step 202 the base stations 20-1, 20-2, and 30 transmit the traffic status and the like of the wireless devices 202, 204, and 300 that they accommodate to the central control device 40.
  • step 204 the base stations 20-1, 20-2, and 30 issue a control instruction (or It is determined whether there is a control instruction (to update the traffic distribution) from the central control device 40.
  • the base stations 20-1, 20-2, and 30 determine that there is a control instruction (S204: Yes)
  • the process proceeds to S206, and when it is determined that there is no control instruction (S204: No), the process proceeds to S200. Return to processing.
  • step 206 the base stations 20-1, 20-2, and 30 perform change control to change the bandwidth b and channel c (parameters) (or control to update the traffic allocation).
  • the wireless communication system 10 controls the allocation of wireless resources based on the utility function multiplied by a coefficient according to the priority, and therefore includes a base station capable of multi-link transmission.
  • Wireless resource allocation can be centrally controlled for the system so as to expand communication capacity according to priority.
  • each function of the central control device 40 may be partially or entirely configured by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be executed by a processor such as a CPU. It may also be configured as a program.
  • hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array)
  • PLD Processable Logic Device
  • FPGA Field Programmable Gate Array
  • the central control device 40 can be realized using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
  • FIG. 6 is a diagram illustrating the hardware configuration of the central control device 40 according to one embodiment.
  • the centralized control device 40 has an input section 400, an output section 410, a communication section 420, a CPU 430, a memory 440, and an HDD 450 connected to each other via a bus 460, and has a function as a computer.
  • the central control device 40 is also capable of inputting and outputting data to and from a computer-readable storage medium 470.
  • the input unit 400 is, for example, a keyboard and a mouse.
  • the output unit 410 is, for example, a display device such as a display.
  • the communication unit 420 is a communication interface that performs wireless communication using, for example, a wireless LAN.
  • the CPU 430 controls each part of the central control device 40 and performs predetermined processing.
  • the memory 440 and HDD 450 store data and the like.
  • the storage medium 470 is capable of storing programs and the like that execute the functions of the central control device 40. Note that the architecture configuring the centralized control device 40 is not limited to the example shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication system according to one embodiment is characterized by comprising a centralized control device that performs centralized control of a plurality of base stations, including a base station capable of performing multilink transmission with wireless terminals. Said system is also characterized by the centralized control device including: a utility function calculation unit that, for each wireless device, calculates, as a utility function, a ratio of a traffic volume transmittable with an allocated channel and bandwidth to an accommodation traffic volume; a multiplication unit that respectively multiplies each utility function calculated by the utility function calculation unit by a coefficient that positively correlates with a priority level predetermined for each wireless device; and a change control unit that performs control for changing the channel and the bandwidth of each wireless device so as to maximize the total of the utility functions each of which has been multiplied by the coefficient by the multiplication unit.

Description

無線通信システム、無線通信方法、集中制御装置及び集中制御プログラムWireless communication system, wireless communication method, central control device and central control program
 本発明は、無線通信システム、無線通信方法、集中制御装置及び集中制御プログラムに関する。 The present invention relates to a wireless communication system, a wireless communication method, a centralized control device, and a centralized control program.
 例えば、IEEE802.11(無線LAN)では、1つの装置に異なる複数の無線LANインターフェースを搭載し、複数の伝送路を確立する機能が採用されており、このような装置はマルチリンクデバイス(MLD)と呼ばれる。 For example, in IEEE802.11 (wireless LAN), a single device is equipped with multiple different wireless LAN interfaces and has a function of establishing multiple transmission paths, and such a device is called a multilink device (MLD). It is called.
 マルチリンク伝送(マルチリンク機能)は、例えば1つの筐体に複数の基地局(AP:Access Point)機能を搭載するAP MLDと、1つの筐体に複数の無線端末(STA:Station)を搭載するSTA MLDとの間でそれぞれリンクを形成する無線通信である。 Multilink transmission (multilink function) includes, for example, an AP MLD equipped with multiple base station (AP: Access Point) functions in one housing, and multiple wireless terminals (STA: Station) installed in one housing. This is wireless communication in which a link is formed between each STA and MLD.
 したがって、マルチリンク伝送では、同一のデータを並列伝送してデータ受信の信頼性を向上させたり、異なるデータを伝送して伝送効率を向上させたりすることが可能である。 Therefore, in multi-link transmission, it is possible to improve the reliability of data reception by transmitting the same data in parallel, or to improve the transmission efficiency by transmitting different data.
 また、無線LANのAPが使用する周波数帯域幅及びチャネルを集中制御して、システム全体の実効的なスループットを最大化する方法としてRATOP(Resource allocation based on Area Throughput Optimization Policy)が知られている(例えば、非特許文献1参照)。 Additionally, RATOP (Resource allocation based on Area Throughput Optimization Policy) is known as a method for centrally controlling the frequency bandwidth and channels used by wireless LAN APs to maximize the effective throughput of the entire system. For example, see Non-Patent Document 1).
 RATOPでは、集中制御装置が、各APの状態を把握して、各APが使用すべき周波数チャネル及び帯域幅などの無線リソースを割り当てる。 In RATOP, a centralized control device grasps the status of each AP and allocates radio resources such as frequency channels and bandwidths that each AP should use.
 例えば、RATOPでは、無線リソースの割り当ての評価指標として、各APの最大トラヒック量の推定値(収容トラヒック量)に対し、割り当てられた無線リソース(チャネル・帯域幅)に基づく送出可能なトラヒック量の推定量(送出可能トラヒック量)の割合(効用関数)を規定する。そして、集中制御装置は、効用関数の合計値を最大化するように制御を行う。 For example, in RATOP, as an evaluation index for radio resource allocation, the amount of traffic that can be sent out based on the allocated radio resources (channel/bandwidth) is calculated based on the estimated maximum traffic amount (accommodated traffic amount) of each AP. The ratio (utility function) of the estimated amount (traffic amount that can be sent) is defined. Then, the central control device performs control to maximize the total value of the utility functions.
 本発明は、マルチリンク伝送が可能な基地局を含むシステムに対して、優先度に応じて通信容量を拡大させるように無線リソースの割り当てを集中制御することができる無線通信システム、無線通信方法、集中制御装置及び集中制御プログラムを提供することを目的とする。 The present invention provides a wireless communication system, a wireless communication method, and a wireless communication method capable of centrally controlling the allocation of wireless resources so as to expand communication capacity according to priority for a system including a base station capable of multi-link transmission. The purpose is to provide a centralized control device and a centralized control program.
 本発明の一実施形態にかかる無線通信システムは、無線端末との間でマルチリンク伝送が可能な基地局を含み、収容する無線デバイスごとに無線端末と通信可能な複数の基地局と、前記基地局それぞれを集中制御する集中制御装置とを備える無線通信システムにおいて、前記集中制御装置が、前記無線デバイスそれぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出する効用関数算出部と、前記効用関数算出部が算出した効用関数それぞれに対し、前記無線デバイスごとに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる乗算部と、前記乗算部がそれぞれ前記係数を乗じた後の効用関数の合計を最大にするように、前記無線デバイスそれぞれのチャネルと帯域幅を変更する制御を行う変更制御部とを有することを特徴とする。 A wireless communication system according to an embodiment of the present invention includes a base station capable of multi-link transmission with a wireless terminal, and includes a plurality of base stations capable of communicating with the wireless terminal for each wireless device accommodated, and the base station. In a wireless communication system comprising a central control device that centrally controls each station, the central control device determines, for each of the wireless devices, the ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the allocated channel and bandwidth. a utility function calculation unit that calculates the function as a function; and a multiplication unit that multiplies each of the utility functions calculated by the utility function calculation unit by a coefficient that has a positive correlation with a predetermined priority for each wireless device; The wireless device is characterized by comprising a change control unit that performs control to change the channel and bandwidth of each of the wireless devices so that the sum of the utility functions after being multiplied by the respective coefficients by the multiplication units is maximized.
 また、本発明の一実施形態にかかる無線通信方法は、無線端末との間でマルチリンク伝送が可能な基地局を含み、収容する無線デバイスごとに無線端末と通信可能な複数の基地局それぞれを集中制御する無線通信方法において、前記無線デバイスそれぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出する効用関数算出工程と、算出した効用関数それぞれに対し、前記無線デバイスごとに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる乗算工程と、それぞれ前記係数を乗じた後の効用関数の合計を最大にするように、前記無線デバイスそれぞれのチャネルと帯域幅を変更する制御を行う変更制御工程とを含むことを特徴とする。 Furthermore, the wireless communication method according to an embodiment of the present invention includes a base station that is capable of multi-link transmission with a wireless terminal, and each wireless device that accommodates a plurality of base stations that can communicate with the wireless terminal. In the centrally controlled wireless communication method, a utility function calculating step of calculating, as a utility function, a ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the allocated channel and bandwidth for each of the wireless devices, and each of the calculated utility functions. , a multiplication step of multiplying each wireless device by a coefficient having a positive correlation with a predetermined priority, and a multiplication step of multiplying each wireless device by a coefficient having a positive correlation with a predetermined priority, and a multiplication step of multiplying the wireless The method is characterized in that it includes a change control step of controlling to change the channel and bandwidth of each device.
 また、本発明の一実施形態にかかる集中制御装置は、無線端末との間でマルチリンク伝送が可能な基地局を含み、収容する無線デバイスごとに無線端末と通信可能な複数の基地局それぞれを集中制御する集中制御装置において、前記無線デバイスそれぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出する効用関数算出部と、前記効用関数算出部が算出した効用関数それぞれに対し、前記無線デバイスごとに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる乗算部と、前記乗算部がそれぞれ前記係数を乗じた後の効用関数の合計を最大にするように、前記無線デバイスそれぞれのチャネルと帯域幅を変更する制御を行う変更制御部とを有することを特徴とする。 Further, the centralized control device according to an embodiment of the present invention includes a base station capable of multi-link transmission with wireless terminals, and each wireless device accommodated has a plurality of base stations capable of communicating with the wireless terminal. In the centralized control device that performs centralized control, a utility function calculation unit that calculates, as a utility function, a ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the assigned channel and bandwidth for each of the wireless devices; and the utility function calculation unit a multiplier that multiplies each of the utility functions calculated by a coefficient that has a positive correlation with a predetermined priority for each wireless device; and a multiplier that multiplies each of the utility functions calculated by the coefficients. The present invention is characterized by comprising a change control unit that performs control to change the channel and bandwidth of each of the wireless devices so as to maximize the total.
 本発明によれば、マルチリンク伝送が可能な基地局を含むシステムに対して、優先度に応じて通信容量を拡大させるように無線リソースの割り当てを集中制御することができる。 According to the present invention, it is possible to centrally control radio resource allocation for a system including a base station capable of multi-link transmission so as to expand communication capacity according to priority.
一実施形態にかかる無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment. 集中制御装置が有する機能を例示する機能ブロック図である。FIG. 2 is a functional block diagram illustrating functions of the central control device. マルチリンク伝送可能な複数の基地局と、マルチリンク伝送を行わない複数の基地局に対して集中制御装置が算出する効用関数Uを模式的に例示する図である。FIG. 2 is a diagram schematically illustrating a utility function U calculated by the central control device for a plurality of base stations capable of multi-link transmission and a plurality of base stations that do not perform multi-link transmission. 図3に示した基地局それぞれの無線デバイスを模式的に示す図である。4 is a diagram schematically showing wireless devices of each base station shown in FIG. 3. FIG. 一実施形態にかかる無線通信システムの動作例を示すフローチャートである。1 is a flowchart illustrating an example of the operation of a wireless communication system according to an embodiment. 一実施形態にかかる集中制御装置が有するハードウェア構成を例示する図である。FIG. 2 is a diagram illustrating a hardware configuration of a central control device according to an embodiment. マルチリンクデバイスを含まない無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system that does not include a multilink device. 集中制御装置が実行するRATOPのアルゴリズムの具体例を示す図である。FIG. 3 is a diagram showing a specific example of a RATOP algorithm executed by the central control device.
 まず、本発明がなされるに至った背景について説明する。図7は、マルチリンクデバイスを含まない無線通信システム1の構成例を示す図である。無線通信システム1は、例えばAP MLD及びSTA MLDを含まない無線LANシステムであり、上述したRATOPが適用されている。 First, the background of the invention will be explained. FIG. 7 is a diagram illustrating a configuration example of a wireless communication system 1 that does not include a multilink device. The wireless communication system 1 is, for example, a wireless LAN system that does not include AP MLD and STA MLD, and the above-mentioned RATOP is applied.
 図7に示すように、無線通信システム1は、例えばネットワーク100に接続された複数の基地局2、集中制御装置3及び複数の無線端末4を有する。基地局2それぞれは、集中制御装置3に集中制御されることにより、複数の無線端末4を収容する。以下、基地局をAPとして記載することがある。 As shown in FIG. 7, the wireless communication system 1 includes, for example, a plurality of base stations 2, a central control device 3, and a plurality of wireless terminals 4 connected to a network 100. Each base station 2 accommodates a plurality of wireless terminals 4 by being centrally controlled by a central control device 3 . Hereinafter, a base station may be referred to as an AP.
 集中制御装置3は、複数の基地局2を対象としてRATOPの制御を行う。このとき、制御の指標は、下式(1)に示した効用関数U(=満足度に相当)であるとする。 The centralized control device 3 performs RATOP control for a plurality of base stations 2. At this time, it is assumed that the control index is the utility function U (=corresponding to satisfaction level) shown in equation (1) below.
Figure JPOXMLDOC01-appb-M000001
        a:APの識別子
        b:帯域幅
        c:チャネル(プライマリチャネル)
        R:データレート(MCS)
Figure JPOXMLDOC01-appb-M000001
a: AP identifier b: Bandwidth c: Channel (primary channel)
R: Data rate (MCS)
 AP(a)の見込みスループットは、他のAPのチャネル使用状況等に依存する。また、収容トラヒック量(発生データ量に依存)は、例えば下式(2)示したAP(a)の最大トラヒック推定値とする。 The expected throughput of AP (a) depends on the channel usage status of other APs. Further, the accommodated traffic amount (depending on the amount of generated data) is, for example, the estimated maximum traffic value of AP (a) shown in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、集中制御装置3は、以下のアルゴリズムに従って効用関数Uの合計ΣUを最大化する処理を行う。 Then, the centralized control device 3 performs processing to maximize the sum ΣU of the utility functions U according to the following algorithm.
 RATOPのアルゴリズム:
(A):集中制御装置3は、各APの使用チャネル・帯域幅を、所定の規則に従って「仮割当」する。
(B):集中制御装置3は、上記(A)の場合の各APの効用関数Uの合計ΣUを計算する。
(C):集中制御装置3は、効用関数Uが低いAPに対して、チャネル・帯域幅を再割り当てし、ΣUが低下しないように制御する。そして、集中制御装置3は、当該(C)を所定条件の範囲で繰り返す。
RATOP algorithm:
(A): The central control device 3 "tentatively allocates" the channel/bandwidth used by each AP according to predetermined rules.
(B): The centralized control device 3 calculates the sum ΣU of the utility functions U of each AP in the above case (A).
(C): The centralized control device 3 reallocates channels and bandwidths to APs with a low utility function U, and performs control so that ΣU does not decrease. Then, the centralized control device 3 repeats the step (C) within a range of predetermined conditions.
 図8は、集中制御装置3が実行するRATOPのアルゴリズムの具体例を示す図である。図8に示すように、集中制御装置3は、フェーズI(初期計算)と、フェーズII(最適化)の処理を行う。 FIG. 8 is a diagram showing a specific example of the RATOP algorithm executed by the central control device 3. As shown in FIG. 8, the central control device 3 performs phase I (initial calculation) and phase II (optimization) processing.
 フェーズIにおいて、集中制御装置3は、APを1台選択してAP-aとし(S100)、AP-aに割当て可能な帯域幅bを選択して(S102)、AP-aに割当て可能なチャネルcを選択し(S104)、AP-aの効用関数Uを算出する(S106)。 In Phase I, the central control device 3 selects one AP and sets it as AP-a (S100), selects a bandwidth b that can be allocated to AP-a (S102), and selects a bandwidth b that can be allocated to AP-a. Channel c is selected (S104), and utility function U of AP-a is calculated (S106).
 そして、集中制御装置3は、全てのチャネルcに対してS104の処理とS106の処理とを実行し、さらに全ての帯域幅bに対して処理を繰り返す。 Then, the centralized control device 3 executes the process of S104 and the process of S106 for all channels c, and repeats the process for all bandwidths b.
 次に、集中制御装置3は、効用関数Uが最大となる(b,c)の組合せを選択し(S108)、全てのAPに対して処理を繰り返す。 Next, the centralized control device 3 selects the combination (b, c) that maximizes the utility function U (S108), and repeats the process for all APs.
 フェーズIIにおいて、集中制御装置3は、例えば効用関数Uが小さいAPを選択した後、効用関数Uが最大となり、かつ、効用関数Uの合計ΣUが劣化しない(b,c)の組合せ(パラメータ)を選択する処理を繰り返す(S110)。 In phase II, the centralized control device 3 selects, for example, an AP with a small utility function U, and then selects the combination (parameters) of (b, c) in which the utility function U becomes maximum and the sum ΣU of the utility functions U does not deteriorate. The process of selecting is repeated (S110).
 そして、集中制御装置3は、各APの選択した(b,c)の組合せをそれぞれ制御後の割当帯域幅及びチャネルとする。 Then, the centralized control device 3 sets the combinations (b, c) selected by each AP as the allocated bandwidth and channel after control.
 次に、一実施形態にかかる無線通信システム10について説明する。図1は、一実施形態にかかる無線通信システム10の構成例を示す図である。無線通信システム10は、AP MLD及びSTA MLDを含む無線LANシステムであり、上述したRATOPがMLDに適用されている。 Next, a wireless communication system 10 according to an embodiment will be described. FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to an embodiment. The wireless communication system 10 is a wireless LAN system including an AP MLD and a STA MLD, and the above-mentioned RATOP is applied to the MLD.
 図1に示すように、無線通信システム10は、例えばネットワーク100に接続された基地局20-1,20-2,30、集中制御装置40及び複数の無線端末50,52を有する。なお、基地局20-1,20-2のように複数ある構成のいずれかを特定しない場合には、単に基地局20などと略記する。 As shown in FIG. 1, the wireless communication system 10 includes, for example, base stations 20-1, 20-2, and 30 connected to a network 100, a central control device 40, and a plurality of wireless terminals 50 and 52. Note that when one of the plurality of configurations, such as base stations 20-1 and 20-2, is not specified, it is simply abbreviated as base station 20 or the like.
 基地局20-1,20-2,30それぞれは、集中制御装置40に集中制御されることにより、複数の無線端末50,52を収容する。以下、基地局20-1,20-2,30をAPとして記載することがある。 Each of the base stations 20-1, 20-2, and 30 accommodates a plurality of wireless terminals 50 and 52 by being centrally controlled by the central control device 40. Hereinafter, the base stations 20-1, 20-2, and 30 may be described as APs.
 無線端末50は、それぞれSTA MLDである。無線端末52は、それぞれマルチリンク機能を備えていない端末である。 The wireless terminals 50 are STA and MLD, respectively. Each of the wireless terminals 52 is a terminal that does not have a multilink function.
 基地局20-1,20-2は、それぞれAP MLDであり、MLD部200、無線デバイス202,204を有する。 The base stations 20-1 and 20-2 are each AP MLD, and have an MLD section 200 and wireless devices 202 and 204.
 MLD部200は、集中制御装置40及び無線デバイス202,204それぞれとの間で信号を送受信し、基地局20が無線デバイス202及び無線デバイス204を用いてAP MLDとして機能するための処理を行う。 The MLD unit 200 transmits and receives signals to and from the central control device 40 and the wireless devices 202 and 204, and performs processing for the base station 20 to function as an AP MLD using the wireless devices 202 and 204.
 無線デバイス202は、例えば5GHz帯を用いて無線通信を行う基地局(AP)としての機能を有する。無線デバイス204は、例えば6GHz帯を用いて無線通信を行う基地局(AP)としての機能を有する。 The wireless device 202 has a function as a base station (AP) that performs wireless communication using, for example, a 5 GHz band. The wireless device 204 has a function as a base station (AP) that performs wireless communication using, for example, a 6 GHz band.
 基地局30は、1つの無線デバイス300を有し、マルチリンク機能を備えていない。無線デバイス300は、例えば5GHz帯を用いて無線通信を行う基地局(AP)としての機能を有する。 The base station 30 has one wireless device 300 and does not have a multilink function. The wireless device 300 has a function as a base station (AP) that performs wireless communication using, for example, a 5 GHz band.
 集中制御装置40は、例えば無線通信によって基地局20-1,20-2,30を集中制御する。 The centralized control device 40 centrally controls the base stations 20-1, 20-2, and 30 by, for example, wireless communication.
 図2は、集中制御装置40が有する機能を例示する機能ブロック図である。図2に示すように、集中制御装置40は、例えば無線通信部41、収集部42、効用関数算出部43、乗算部44、変更制御部45及び主制御部46を有する。 FIG. 2 is a functional block diagram illustrating the functions of the central control device 40. As shown in FIG. 2, the centralized control device 40 includes, for example, a wireless communication section 41, a collection section 42, a utility function calculation section 43, a multiplication section 44, a change control section 45, and a main control section 46.
 無線通信部41は、基地局20-1,20-2,30との間でそれぞれ無線通信により信号を送受信する。 The wireless communication unit 41 transmits and receives signals to and from the base stations 20-1, 20-2, and 30 by wireless communication, respectively.
 収集部42は、無線通信部41を介して、基地局20-1,20-2,30に関する情報を収集し、効用関数算出部43に対して出力する。例えば、収集部42は、無線デバイス202,204,300それぞれに関する情報(トラヒック情報など)を収集する。 The collection unit 42 collects information regarding the base stations 20-1, 20-2, and 30 via the wireless communication unit 41, and outputs the information to the utility function calculation unit 43. For example, the collection unit 42 collects information (traffic information, etc.) regarding each of the wireless devices 202, 204, and 300.
 効用関数算出部43は、収集部42が収集した情報に基づいて、無線デバイス202,204,300それぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出し、算出した効用関数を乗算部44に対して出力する。 Based on the information collected by the collection unit 42, the utility function calculation unit 43 calculates, as a utility function, the ratio of the amount of traffic that can be sent to the amount of traffic that can be accommodated based on the allocated channel and bandwidth for each of the wireless devices 202, 204, and 300. and outputs the calculated utility function to the multiplier 44.
 収容トラヒック量(データ発生量)は、無線デバイス202,204,300それぞれに対するトラヒックの配分比率に依存する。例えば、効用関数算出部43は、収集部42が収集した情報に基づいて、例えば無線デバイス202,204,300それぞれの送出可能トラヒック量、収容トラヒック量、又は帯域幅に比例配分するように収容トラヒック量を仮定する。 The accommodated traffic amount (data generation amount) depends on the traffic distribution ratio to each of the wireless devices 202, 204, and 300. For example, based on the information collected by the collection unit 42, the utility function calculation unit 43 calculates the amount of accommodated traffic so as to distribute it in proportion to the amount of traffic that can be sent, the amount of accommodated traffic, or the bandwidth of each of the wireless devices 202, 204, and 300, for example. Assume quantity.
 乗算部44は、効用関数算出部43が算出した効用関数それぞれに対し、無線デバイス202,204,300それぞれに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる。そして、乗算部44は、係数をそれぞれ乗じた効用関数を変更制御部45に対して出力する。 The multiplication unit 44 multiplies each of the utility functions calculated by the utility function calculation unit 43 by a coefficient that has a positive correlation with the priority determined in advance for each of the wireless devices 202, 204, and 300. Then, the multiplication unit 44 outputs the utility functions multiplied by the respective coefficients to the change control unit 45.
 なお、乗算部44が乗じる係数は、無線デバイス202,204,300それぞれの優先度や、公平性を保つために予め定められている。例えば、優先度が高い無線デバイスに対しては、優先度が低い無線デバイスよりも値が大きい係数が定められる。 Note that the coefficient multiplied by the multiplication unit 44 is determined in advance in order to maintain the priorities and fairness of each of the wireless devices 202, 204, and 300. For example, a coefficient having a larger value is determined for a wireless device with a high priority than a wireless device with a low priority.
 変更制御部45は、乗算部44がそれぞれ係数を乗じた後の効用関数の合計を最大にするように、無線デバイス202,204,300それぞれのチャネルと帯域幅を変更する制御を行う。 The change control unit 45 performs control to change the channels and bandwidths of each of the wireless devices 202, 204, and 300 so that the sum of the utility functions after multiplication by the coefficients by the multiplication unit 44 is maximized.
 また、変更制御部45は、効用関数が小さい無線デバイス、又は、基地局内の無線デバイスについて乗算部44が係数を乗じた後の効用関数の合計が小さい基地局の無線デバイスから順に、当該無線デバイスに割当てるチャネルと帯域幅を変更するように制御を行う。また、優先度が高い基地局の制御の順序を優先させるため、当該基地局内の無線デバイスに対し、異なる小さい係数を乗じて、基地局間の効用関数の大小を比較させてもよい。 In addition, the change control unit 45 selects the wireless devices in order from the wireless devices with the smallest utility function or the wireless devices of the base station with the smallest sum of the utility functions after the multiplication unit 44 multiplies the wireless devices in the base station by the coefficient. control to change the channels and bandwidth allocated to Furthermore, in order to give priority to the control order of a base station with a high priority, wireless devices within the base station may be multiplied by different small coefficients to compare the magnitude of the utility function between base stations.
 また、変更制御部45は、係数が示す優先度が高い無線デバイス、又は、収容する無線デバイスそれぞれの係数の合計が大きい基地局から順に、無線デバイスそれぞれに割当てるチャネルと帯域幅を変更するように制御を行ってもよい。 Further, the change control unit 45 changes the channel and bandwidth allocated to each wireless device in order from the wireless device with the highest priority indicated by the coefficient or the base station with the largest sum of the coefficients of each of the wireless devices it accommodates. Control may also be performed.
 主制御部46は、集中制御装置40を構成する各部を制御する。 The main control section 46 controls each section that constitutes the central control device 40.
 つまり、集中制御装置40は、無線デバイスごとに算出した効用関数に対して、無線デバイスそれぞれの優先度に応じた係数を乗算し、係数を乗じた後の効用関数に基づいて無線リソースを割り当てる制御を行う。 In other words, the centralized control device 40 multiplies the utility function calculated for each wireless device by a coefficient corresponding to the priority of each wireless device, and controls the allocation of wireless resources based on the utility function after multiplying by the coefficient. I do.
 図3は、マルチリンク伝送可能な複数の基地局(AP MLD)と、マルチリンク伝送を行わない複数の基地局に対して集中制御装置40が算出する効用関数Uを模式的に例示する図である。また、図4は、図3に示した基地局それぞれの無線デバイスを模式的に示す図である。 FIG. 3 is a diagram schematically illustrating a utility function U calculated by the central control device 40 for a plurality of base stations capable of multi-link transmission (AP MLD) and a plurality of base stations that do not perform multi-link transmission. be. Further, FIG. 4 is a diagram schematically showing wireless devices of each base station shown in FIG. 3.
 ここでは、マルチリンク伝送可能な複数の基地局(AP MLD)を基地局20-1,20-2とし、マルチリンク伝送を行わない複数の基地局(単体基地局)を基地局30-1,30-2とする。また、基地局20-1,20-2は、それぞれ無線デバイス202,204を備えている。また、基地局30-1,30-2は、5GHz帯又は6GHz帯を用いる無線デバイスのいずれかを備えているとする。 Here, a plurality of base stations capable of multi-link transmission (AP MLD) are referred to as base stations 20-1 and 20-2, and a plurality of base stations that do not perform multi-link transmission (single base station) are referred to as base stations 30-1 and 20-2. The score shall be 30-2. Furthermore, base stations 20-1 and 20-2 each include wireless devices 202 and 204. It is also assumed that the base stations 30-1 and 30-2 are equipped with either a wireless device that uses a 5 GHz band or a 6 GHz band.
 図3において、Aiは収容トラヒック量を示し、Biは送出可能トラヒック量を示す(iは変数)。つまり、効用関数Ui=Bi/Aiとなる。また、aiは、予め定められた係数である。 In FIG. 3, Ai indicates the amount of accommodated traffic, and Bi indicates the amount of traffic that can be sent out (i is a variable). In other words, the utility function Ui=Bi/Ai. Moreover, ai is a predetermined coefficient.
 そして、集中制御装置40は、下式(3)に示した係数を乗じた後の効用関数Uの総和を最大化させるように制御を行う。 Then, the centralized control device 40 performs control so as to maximize the sum of the utility function U after being multiplied by the coefficient shown in equation (3) below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、集中制御装置40は、基地局20-1,20-2、30-1,30-2それぞれを単位とする効用関数Uに基づいて、パラメータを制御する無線デバイスを決定してもよい。例えば、集中制御装置40は、係数を乗じた後の基地局ごとの効用関数U(例えばa1U1+a2U2など)が小さい無線デバイス又は基地局に対して先にパラメータを制御して、無線デバイス又は基地局それぞれの公平性を確保するように制御を行ってもよい。また、優先度が高い基地局の制御の順序を優先させるため、当該基地局内の無線デバイスに対し、異なる小さい係数(例えばb1、b2)を乗じて、基地局間の効用関数の大小を比較させてもよい。 Further, the centralized control device 40 may determine the wireless device whose parameters are to be controlled based on the utility function U for each of the base stations 20-1, 20-2, 30-1, and 30-2. For example, the centralized control device 40 may first control parameters for wireless devices or base stations with a small utility function U (for example, a1U1+a2U2, etc.) for each base station after multiplication by a coefficient, and then control parameters for each wireless device or base station. Control may be performed to ensure fairness. In addition, in order to prioritize the control order of base stations with high priority, wireless devices within the base station are multiplied by different small coefficients (for example, b1, b2) to compare the magnitude of the utility function between base stations. You can.
 さらに、集中制御装置40は、優先度が高い無線デバイス(定められた係数が大きい無線デバイス)から順にパラメータを制御してもよいし、係数を乗じた後の効用関数Uの値に基づく順序で無線デバイスのパラメータを制御してもよい。 Furthermore, the centralized control device 40 may control the parameters in the order of wireless devices with a high priority (wireless devices with a large predetermined coefficient), or in the order based on the value of the utility function U after multiplying by the coefficient. Parameters of the wireless device may also be controlled.
 次に、無線通信システム10の全体動作例について説明する。図5は、一実施形態にかかる無線通信システム10の動作例を示すフローチャートである。 Next, an example of the overall operation of the wireless communication system 10 will be described. FIG. 5 is a flowchart illustrating an example of the operation of the wireless communication system 10 according to an embodiment.
 まず、基地局20-1,20-2,30それぞれは、集中制御装置40からの情報収集の指示があるか否かを判定し(S200)、指示がある場合(S200:Yes)にはS202の処理に進み、指示がない場合(S200:No)にはS200の処理を繰り返す。 First, each of the base stations 20-1, 20-2, and 30 determines whether or not there is an instruction to collect information from the central control device 40 (S200), and if there is an instruction (S200: Yes), the base stations 20-1, 20-2, and 30 If there is no instruction (S200: No), the process of S200 is repeated.
 ステップ202(S202)において、基地局20-1,20-2,30は、それぞれが収容している無線デバイス202,204,300のトラヒック状態等を集中制御装置40へ送信する。 In step 202 (S202), the base stations 20-1, 20-2, and 30 transmit the traffic status and the like of the wireless devices 202, 204, and 300 that they accommodate to the central control device 40.
 ステップ204(S204)において、基地局20-1,20-2,30は、それぞれが収容している無線デバイス202,204,300の帯域幅b・チャネルc(パラメータ)を更新する制御指示(又はトラヒックの配分を更新する制御指示)が集中制御装置40からあったか否かを判定する。基地局20-1,20-2,30は、制御指示があったと判定した場合(S204:Yes)にはS206の処理に進み、制御指示がなかったと判定した場合(S204:No)にはS200の処理に戻る。 In step 204 (S204), the base stations 20-1, 20-2, and 30 issue a control instruction (or It is determined whether there is a control instruction (to update the traffic distribution) from the central control device 40. When the base stations 20-1, 20-2, and 30 determine that there is a control instruction (S204: Yes), the process proceeds to S206, and when it is determined that there is no control instruction (S204: No), the process proceeds to S200. Return to processing.
 ステップ206(S206)において、基地局20-1,20-2,30は、帯域幅b・チャネルc(パラメータ)を変更する変更制御(又はトラヒックの配分を更新する制御)を行う。 In step 206 (S206), the base stations 20-1, 20-2, and 30 perform change control to change the bandwidth b and channel c (parameters) (or control to update the traffic allocation).
 このように、一実施形態にかかる無線通信システム10は、優先度に応じた係数を乗じた後の効用関数に基づいて無線リソースを割り当てる制御を行うので、マルチリンク伝送が可能な基地局を含むシステムに対して、優先度に応じて通信容量を拡大させるように無線リソースの割り当てを集中制御することができる。 In this way, the wireless communication system 10 according to one embodiment controls the allocation of wireless resources based on the utility function multiplied by a coefficient according to the priority, and therefore includes a base station capable of multi-link transmission. Wireless resource allocation can be centrally controlled for the system so as to expand communication capacity according to priority.
 なお、集中制御装置40が有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 Note that each function of the central control device 40 may be partially or entirely configured by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be executed by a processor such as a CPU. It may also be configured as a program.
 例えば、集中制御装置40は、コンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。 For example, the central control device 40 can be realized using a computer and a program, and the program can be recorded on a storage medium or provided through a network.
 図6は、一実施形態にかかる集中制御装置40が有するハードウェア構成を例示する図である。図6に示すように、集中制御装置40は、入力部400、出力部410、通信部420、CPU430、メモリ440及びHDD450がバス460を介して接続され、コンピュータとしての機能を備える。また、集中制御装置40は、コンピュータ読み取り可能な記憶媒体470との間でデータを入出力することができるようにされている。 FIG. 6 is a diagram illustrating the hardware configuration of the central control device 40 according to one embodiment. As shown in FIG. 6, the centralized control device 40 has an input section 400, an output section 410, a communication section 420, a CPU 430, a memory 440, and an HDD 450 connected to each other via a bus 460, and has a function as a computer. The central control device 40 is also capable of inputting and outputting data to and from a computer-readable storage medium 470.
 入力部400は、例えばキーボード及びマウス等である。出力部410は、例えばディスプレイなどの表示装置である。 The input unit 400 is, for example, a keyboard and a mouse. The output unit 410 is, for example, a display device such as a display.
 通信部420は、例えば無線LANなどによる無線通信を行う通信インターフェースである。 The communication unit 420 is a communication interface that performs wireless communication using, for example, a wireless LAN.
 CPU430は、集中制御装置40を構成する各部を制御し、所定の処理等を行う。メモリ440及びHDD450は、データ等を記憶する。 The CPU 430 controls each part of the central control device 40 and performs predetermined processing. The memory 440 and HDD 450 store data and the like.
 記憶媒体470は、集中制御装置40が有する機能を実行させるプログラム等を記憶可能にされている。なお、集中制御装置40を構成するアーキテクチャは図6に示した例に限定されない。 The storage medium 470 is capable of storing programs and the like that execute the functions of the central control device 40. Note that the architecture configuring the centralized control device 40 is not limited to the example shown in FIG.
 10・・・無線通信システム、20-1,20-2,30・・・基地局、40・・・集中制御装置、41・・・無線通信部、42・・・収集部、43・・・効用関数算出部、44・・・乗算部、45・・・変更制御部、46・・・主制御部、50,52・・・無線端末、100・・・ネットワーク、200・・・MLD部、202,204,300・・・無線デバイス、400・・・入力部、410・・・出力部、420・・・通信部、430・・・CPU、440・・・メモリ、450・・・HDD、460・・・バス、470・・・記憶媒体 DESCRIPTION OF SYMBOLS 10... Wireless communication system, 20-1, 20-2, 30... Base station, 40... Central control device, 41... Wireless communication unit, 42... Collection unit, 43... Utility function calculation unit, 44... Multiplication unit, 45... Change control unit, 46... Main control unit, 50, 52... Wireless terminal, 100... Network, 200... MLD unit, 202, 204, 300... Wireless device, 400... Input unit, 410... Output unit, 420... Communication unit, 430... CPU, 440... Memory, 450... HDD, 460...Bus, 470...Storage medium

Claims (8)

  1.  無線端末との間でマルチリンク伝送が可能な基地局を含み、収容する無線デバイスごとに無線端末と通信可能な複数の基地局と、前記基地局それぞれを集中制御する集中制御装置とを備える無線通信システムにおいて、
     前記集中制御装置は、
     前記無線デバイスそれぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出する効用関数算出部と、
     前記効用関数算出部が算出した効用関数それぞれに対し、前記無線デバイスごとに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる乗算部と、
     前記乗算部がそれぞれ前記係数を乗じた後の効用関数の合計を最大にするように、前記無線デバイスそれぞれのチャネルと帯域幅を変更する制御を行う変更制御部と
     を有することを特徴とする無線通信システム。
    A wireless device including a base station capable of multi-link transmission with a wireless terminal, a plurality of base stations capable of communicating with the wireless terminal for each wireless device accommodated, and a central control device that centrally controls each of the base stations. In communication systems,
    The central control device includes:
    a utility function calculation unit that calculates, as a utility function, a ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the allocated channel and bandwidth for each of the wireless devices;
    a multiplication unit that multiplies each of the utility functions calculated by the utility function calculation unit by a coefficient that has a positive correlation with a predetermined priority for each wireless device;
    a change control unit that performs control to change the channel and bandwidth of each of the wireless devices so as to maximize the sum of the utility functions after each of the multiplication units multiplies the coefficients. Communications system.
  2.  前記変更制御部は、
     前記乗算部が前記係数を乗じた後の効用関数が小さい前記無線デバイス、又は、前記乗算部が前記係数を乗じた後の効用関数の合計が小さい前記基地局から順に、当該無線デバイスに割当てるチャネルと帯域幅を変更するように制御を行うこと
     を特徴とする請求項1に記載の無線通信システム。
    The change control unit includes:
    Channels to be assigned to the wireless devices in order from the wireless device having a smaller utility function after being multiplied by the coefficient by the multiplier, or the base station having a smaller total utility function after being multiplied by the coefficient by the multiplier. The wireless communication system according to claim 1, wherein control is performed to change the bandwidth and the bandwidth.
  3.  前記変更制御部は、
     優先度が高い前記基地局内の前記無線デバイスに前記係数とは異なる小さい係数を乗じた後の効用関数の合計が小さい前記基地局、前記係数が示す優先度が高い前記無線デバイス、又は、収容する前記無線デバイスそれぞれの前記係数の合計が大きい前記基地局から順に、前記無線デバイスそれぞれに割当てるチャネルと帯域幅を変更するように制御を行うこと
     を特徴とする請求項1に記載の無線通信システム。
    The change control unit includes:
    The base station has a small sum of utility functions after multiplying the wireless device in the base station with a high priority by a small coefficient different from the coefficient, the wireless device with a high priority indicated by the coefficient, or accommodates The wireless communication system according to claim 1, wherein control is performed to change the channel and bandwidth allocated to each of the wireless devices in order from the base station having a larger sum of the coefficients of each of the wireless devices.
  4.  無線端末との間でマルチリンク伝送が可能な基地局を含み、収容する無線デバイスごとに無線端末と通信可能な複数の基地局それぞれを集中制御する無線通信方法において、
     前記無線デバイスそれぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出する効用関数算出工程と、
     算出した効用関数それぞれに対し、前記無線デバイスごとに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる乗算工程と、
     それぞれ前記係数を乗じた後の効用関数の合計を最大にするように、前記無線デバイスそれぞれのチャネルと帯域幅を変更する制御を行う変更制御工程と
     を含むことを特徴とする無線通信方法。
    In a wireless communication method that includes a base station capable of multi-link transmission with a wireless terminal and centrally controls each of a plurality of base stations capable of communicating with the wireless terminal for each wireless device accommodated,
    a utility function calculation step of calculating, as a utility function, a ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the allocated channel and bandwidth for each of the wireless devices;
    a multiplication step of multiplying each of the calculated utility functions by a coefficient that has a positive correlation with a predetermined priority for each wireless device;
    a change control step of controlling to change the channel and bandwidth of each of the wireless devices so as to maximize the sum of the utility functions after being multiplied by the respective coefficients.
  5.  無線端末との間でマルチリンク伝送が可能な基地局を含み、収容する無線デバイスごとに無線端末と通信可能な複数の基地局それぞれを集中制御する集中制御装置において、
     前記無線デバイスそれぞれに対し、割当てられたチャネルと帯域幅による送出可能トラヒック量の収容トラヒック量に対する割合を効用関数として算出する効用関数算出部と、
     前記効用関数算出部が算出した効用関数それぞれに対し、前記無線デバイスごとに予め定められた優先度と正の相関関係にある係数をそれぞれ乗じる乗算部と、
     前記乗算部がそれぞれ前記係数を乗じた後の効用関数の合計を最大にするように、前記無線デバイスそれぞれのチャネルと帯域幅を変更する制御を行う変更制御部と
     を有することを特徴とする集中制御装置。
    In a centralized control device that includes a base station capable of multi-link transmission with a wireless terminal and centrally controls each of a plurality of base stations that can communicate with the wireless terminal for each wireless device it accommodates,
    a utility function calculation unit that calculates, as a utility function, a ratio of the amount of traffic that can be transmitted to the amount of traffic that can be accommodated based on the allocated channel and bandwidth for each of the wireless devices;
    a multiplication unit that multiplies each of the utility functions calculated by the utility function calculation unit by a coefficient that has a positive correlation with a predetermined priority for each wireless device;
    and a change control unit that performs control to change the channel and bandwidth of each of the wireless devices so as to maximize the sum of the utility functions after each of the multiplication units multiplies the coefficients. Control device.
  6.  前記変更制御部は、
     優先度が高い前記基地局内の前記無線デバイスに前記係数とは異なる小さい係数を乗じた後の効用関数の合計が小さい前記基地局、効用関数が小さい前記無線デバイス、又は、前記乗算部が前記係数を乗じた後の効用関数の合計が小さい前記基地局から順に、当該無線デバイスに割当てるチャネルと帯域幅を変更するように制御を行うこと
     を特徴とする請求項5に記載の集中制御装置。
    The change control unit includes:
    The wireless device in the base station with a high priority is multiplied by a small coefficient different from the coefficient, and then the base station has a small sum of utility functions, the wireless device has a small utility function, or the multiplication unit multiplies the coefficient The centralized control device according to claim 5, wherein control is performed to change the channel and bandwidth allocated to the wireless device in order from the base station with the smallest sum of utility functions after multiplication by .
  7.  前記変更制御部は、
     前記係数が示す優先度が高い前記無線デバイス、又は、収容する前記無線デバイスそれぞれの前記係数の合計が大きい前記基地局から順に、前記無線デバイスそれぞれに割当てるチャネルと帯域幅を変更するように制御を行うこと
     を特徴とする請求項5に記載の集中制御装置。
    The change control unit includes:
    Control is performed to change the channel and bandwidth allocated to each of the wireless devices in order from the wireless device having a higher priority indicated by the coefficient or the base station having a larger sum of the coefficients of each of the wireless devices accommodated. The centralized control device according to claim 5, characterized in that:
  8.  請求項5~7のいずれか1項に記載の集中制御装置の各部としてコンピュータを機能させるための集中制御プログラム。 A central control program for causing a computer to function as each part of the central control device according to any one of claims 5 to 7.
PCT/JP2022/027292 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, centralized control device, and centralized control program WO2024013815A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027292 WO2024013815A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, centralized control device, and centralized control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027292 WO2024013815A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, centralized control device, and centralized control program

Publications (1)

Publication Number Publication Date
WO2024013815A1 true WO2024013815A1 (en) 2024-01-18

Family

ID=89536307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027292 WO2024013815A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, centralized control device, and centralized control program

Country Status (1)

Country Link
WO (1) WO2024013815A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521482A (en) * 2013-03-28 2016-07-21 ホアウェイ・テクノロジーズ・カンパニー・リミテッド System and method for sparse beamforming design
JP2017500762A (en) * 2013-12-10 2017-01-05 株式会社Nttドコモ Method and apparatus for scheduling, load balancing, and pilot allocation in MIMO cellular deployment based on interdependencies
JP2017192033A (en) * 2016-04-13 2017-10-19 日本電信電話株式会社 Wireless communication system, wireless communication method and centralized control station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521482A (en) * 2013-03-28 2016-07-21 ホアウェイ・テクノロジーズ・カンパニー・リミテッド System and method for sparse beamforming design
JP2017500762A (en) * 2013-12-10 2017-01-05 株式会社Nttドコモ Method and apparatus for scheduling, load balancing, and pilot allocation in MIMO cellular deployment based on interdependencies
JP2017192033A (en) * 2016-04-13 2017-10-19 日本電信電話株式会社 Wireless communication system, wireless communication method and centralized control station

Similar Documents

Publication Publication Date Title
JP5895846B2 (en) Communication terminal, channel selection method and program
US7920991B2 (en) Characterizing the capacity region in multi-channel, multi-radio mesh networks
CN102355670A (en) Multichannel wireless mesh network channel distribution method
WO2021020414A1 (en) Control device, control method, and program
CN113079577B (en) Resource allocation method based on coexistence scene of EMBB and URLLC
Li et al. Joint mode selection and resource allocation for D2D communications via vertex coloring
Nabil et al. Adaptive channel bonding in wireless LANs under demand uncertainty
Goyal et al. On the packet allocation of multi-band aggregation wireless networks
Zhou et al. Knowledge transfer based radio and computation resource allocation for 5G RAN slicing
CN102752757A (en) Method for optimizing frequency spectrum allocation according to minimal waste criterion in frequency spectrum aggregation process
CN113330767B (en) Spectrum management device, electronic device, wireless communication method, and storage medium
Andrabi et al. The model of conjoint servicing of real time traffic of surveillance cameras and elastic traffic devices with access control
WO2024013815A1 (en) Wireless communication system, wireless communication method, centralized control device, and centralized control program
CN107852708A (en) System and method for carrying out radio resources allocation across multiple resource dimensions
Yang et al. Demand-aware load balancing in wireless lans using association control
KR20120041899A (en) Apparatus and method for scheduling in wireless communication system
WO2024013818A1 (en) Radio communication system, radio communication method, centralized control device, and centralized control program
WO2024013817A1 (en) Radio communication system, radio communication method, centralized control device, and centralized control program
Tumuluru et al. An opportunistic spectrum scheduling scheme for multi-channel cognitive radio networks
WO2024013816A1 (en) Radio communication system, radio communication method, centralized control device, and centralized control program
JP7388634B2 (en) Optimization method for wireless communication system, wireless communication system and program for wireless communication system
WO2024127499A1 (en) Wireless communication system, centralized control device, centralized control method, and centralized control program
CN107454602B (en) Channel allocation method based on service type in heterogeneous cognitive wireless network
CN104581965A (en) Spectrum allocation method based on user allocation and time delay
Buhler et al. An optimization framework for heterogeneous access management