WO2024013801A1 - Wireless communication system, wireless communication method, and wireless communication device - Google Patents

Wireless communication system, wireless communication method, and wireless communication device Download PDF

Info

Publication number
WO2024013801A1
WO2024013801A1 PCT/JP2022/027259 JP2022027259W WO2024013801A1 WO 2024013801 A1 WO2024013801 A1 WO 2024013801A1 JP 2022027259 W JP2022027259 W JP 2022027259W WO 2024013801 A1 WO2024013801 A1 WO 2024013801A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
priority
wireless communication
packet
base station
Prior art date
Application number
PCT/JP2022/027259
Other languages
French (fr)
Japanese (ja)
Inventor
花絵 大谷
裕介 淺井
ヒランタ アベセカラ
朗 岸田
純一 岩谷
信也 大槻
陸 大宮
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/027259 priority Critical patent/WO2024013801A1/en
Publication of WO2024013801A1 publication Critical patent/WO2024013801A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to a wireless communication system, a wireless communication method, and a wireless communication device.
  • Wireless LAN base stations and terminals use CSMA/CA to access channels and transmit data.
  • IEEE 802.11be a wireless LAN communication standard
  • a multi-link function that allows multiple frequency bands to be used together.
  • multiple links using multiple frequency bands can be simultaneously formed between a base station and a terminal. This improves throughput and delay characteristics by simultaneously transmitting different data in multiple frequency bands.
  • packets generated in the upper layer are first passed to the Upper MAC (Media Access Controller).
  • the Upper MAC passes packets to the Lower MAC that exists for each link.
  • the Lower MAC acquires the right to transmit a frame, the packet that comes to the forefront in the order of held packets is passed to the physical layer (PHY), and then transmitted.
  • PHY physical layer
  • the Lower MACs of all links used in the multilink function may already have multiple transmission packets.
  • a high-priority packet is generated, which is a transmission packet of an application that requires low delay.
  • This high priority packet cannot be immediately passed to the PHY and transmitted using any link. That is, there was a problem in that queuing delays occurred.
  • the first object of the present disclosure is to provide a wireless communication system that can shorten the queuing delay of high-priority packets.
  • a second objective of the present disclosure is to provide a wireless communication method that can shorten the queuing delay of high-priority packets.
  • a third objective of the present disclosure is to provide a wireless communication device that can shorten the queuing delay of high-priority packets.
  • a first aspect of the present disclosure is a wireless communication system that includes a base station with a multilink function and a terminal with the multilink function, and is configured such that the base station and the terminal communicate via multiple links.
  • the base station includes an Upper MAC that receives packets generated in the upper layer, and a Lower MAC that exists for each link, and connects at least one of the links to the Lower MAC that has a maximum queuing size set. processing to use as a priority link including a priority link, processing to use a link other than the priority link as a candidate for a link to which the packet is to be distributed when the priority of the packet is low and the priority link has reached the maximum queuing size, and a predetermined processing.
  • the wireless communication system is configured to.
  • a second aspect of the present disclosure provides a wireless communication system that includes a base station with a multilink function and a terminal with a multilink function, and is configured such that the base station and the terminal communicate via a plurality of links.
  • a wireless communication method in which a base station includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and sets at least one of the Lower MACs to a maximum queuing size. a step of using the link as a priority link including the set Lower MAC, and a step of using a link other than the priority link as a candidate link to which the packet is to be distributed if the priority of the packet is low and the priority link has reached the maximum queuing size.
  • the wireless communication method includes the step of:
  • a third aspect of the present disclosure includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and at least one of the Lower MACs has a maximum queuing size set.
  • a wireless communication system with a function of determining a link to which a packet is to be distributed, a function of transmitting the packet from the Upper MAC to the Lower MAC of the destination link, and a function of transmitting the packet possessed by the Lower MAC via the link.
  • it is a communication device.
  • the queuing delay of high-priority packets can be reduced.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system without a multilink function.
  • 1 is a diagram illustrating a configuration example of a wireless communication system when there is a multilink function.
  • 3 is a flowchart showing a multi-link setup procedure.
  • FIG. 3 is a diagram illustrating packet categorization processing.
  • 1 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure.
  • 3 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure.
  • 1 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a table showing an example of data held by a priority link management unit according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure.
  • FIG. 7 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 4 of the present disclosure.
  • FIG. 1 is a diagram showing an example of the configuration of a wireless communication system without a multilink function. That is, the wireless communication system 500 transmits multiple types of packets using one link.
  • the wireless communication system 500 includes a base station 2.
  • the base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12.
  • the MAC unit 12 includes a queue 8 .
  • the queue 8 holds received packets in an ordered manner so that they can be transmitted in the order in which they are received.
  • the frame transmission right is acquired, the order of the packets held in the queue 8 is checked, and the packets are transmitted in order starting from the front row.
  • the applied wireless communication system is Wi-Fi (registered trademark)
  • the base station corresponds to an access point.
  • the base station 2 has only one queue 8 because it does not have a multilink function. Therefore, even if a high-priority packet 4 occurs, if the queue 8 already has multiple packets 6, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue 8. I do.
  • the MAC unit 12 transmits the packet to the PHY 10. More specifically, among the packets, the one that comes to the forefront in the order of the packets held by the queue 8 is transmitted to the PHY 10. That is, the high priority packet 4 transmitted to the PHY 10 is transmitted to the terminal 16 after all the packets 6 held in the queue 8 up to that point have been transmitted. Note that since the base station 2 does not have a multilink function, it also includes only one PHY 10.
  • FIG. 2 is a diagram showing a configuration example of a wireless communication system when there is a multilink function.
  • a wireless communication system 600 that forms three links by using a multilink function will be described.
  • the wireless communication system 600 includes a base station 2.
  • the base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12.
  • the MAC unit 12 includes an Upper MAC 18 and Lower MACs 20a, 20b, and 20c that exist for each link.
  • the MAC unit 12 first receives the high priority packet 4 at the Upper MAC 18.
  • the Upper MAC 18 distributes the high priority packet 4 to any one of the Lower MACs 20a, 20b, and 20c. More specifically, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue provided by the assigned Lower MAC. This distribution is performed based on predetermined processing. Here, it is assumed that among the queues 8a, 8b, and 8c provided in each of the Lower MACs 20a, 20b, and 20c, processing is performed to allocate to the queue with the shortest waiting time. Note that the waiting time in this case changes depending on the number or size of packets 6 that each queue has.
  • the MAC unit 12 transmits the packet to the PHY unit 14.
  • This PHY unit 14 includes PHYs 10a, 10b, and 10c. More specifically, among the packets, those that come to the forefront in the order of the packets held by each of the queues 8a, 8b, and 8c are transmitted to each of the PHYs 10a, 10b, and 10c. That is, the high-priority packet 4 is transmitted to the terminal 16 after all the packets 6 held in the sorted queue have been transmitted.
  • the high priority packet 4 is distributed to the queue with the shortest waiting time. Therefore, compared to the wireless communication system 500 that uses only one link, it is possible to increase the possibility that transmission to the PHY will be performed with a shorter waiting time.
  • FIG. 3 is a flowchart showing the multilink setup procedure.
  • Priority link management units 64 and 74 which will be described later, perform the process shown in FIG. 3 to configure settings so that wireless communication can be performed via specific links. This allows the wireless communication system to establish multi-link communication.
  • FIG. 4 is a diagram showing packet categorization processing. Wireless communication systems transmit multiple types of packets. Here, a process is shown in which the plurality of types of packets are identified for each traffic in the STA unit, which will be described later.
  • a packet to which a MAC header is added in the upper layer is input to one of the queues 22, 24, 26, and 28.
  • the input destination queue is determined by the TID (Traffic Indicator) included in the MAC header.
  • TID Traffic Indicator
  • queue 22 is a VO category related to audio
  • queue 24 is a VI category related to video
  • queue 26 is a BE category related to best effort
  • queue 28 is a BK category related to background. can be identified.
  • Each CSMA/CA unit uses unique access parameters to access the channel and perform CSMA/CA.
  • the unique access parameters are, for example, Cwmax, Cwmin, AIFS, and TXOPlimit.
  • CSMA/CA units 32, 34, 36, and 38 process those that have arrived at the front of the queues 22, 24, 26, and 28.
  • the CSMA/CA unit 40 processes low delay data.
  • the internal conflict resolution unit 42 selects and outputs the one with the highest priority.
  • FIG. 5 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure.
  • the wireless communication system according to the first embodiment differs from the conventional example in that the maximum queuing size is set in the Lower MAC of at least one link used in the multilink function.
  • this at least one link will be referred to as a priority link.
  • a wireless communication system 100 that forms three links by using a multilink function will be described.
  • the wireless communication system 100 transmits packets using the same procedure as the wireless communication system 600. However, the wireless communication system 100 differs from the wireless communication system 600 in that it has a priority link and in the method of allocating packets. Note that here, the link including the Lower MAC 20a is set as the priority link.
  • FIG. 6 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure.
  • the Upper MAC 18 receives a packet from an upper layer.
  • step 102 it is checked whether the received packet has a high priority.
  • the determination of priority is performed by the MLD unit 59 of the base station, which will be described later.
  • TID may be used for this determination. For example, a method may be considered in which a packet to which a prespecified TID or a TID indicating a higher priority than the TID is assigned is determined to be a "high priority packet.” If the priority is high, proceed to step 104. If the priority is not high, proceed to step 106.
  • a transmission link is selected for all links used in the wireless communication system.
  • a link to be allocated is selected from all links including each of the Lower MACs 20a, 20b, and 20c. Note that this selection is performed based on predetermined processing.
  • step 106 it is checked whether the queue size of the priority link has reached its upper limit. In the case of the wireless communication system 100, it is checked whether the link including the Lower MAC 20a has reached the maximum queuing size. If the maximum queuing size has not been reached, proceed to step 104. If the maximum queuing size has been reached, proceed to step 108.
  • transmission links are selected for links other than priority links.
  • links including the Lower MAC 20a which is a priority link, are excluded.
  • a link to be allocated is selected from among the links including the Lower MACs 20b and 20c. Note that this selection is performed based on predetermined processing.
  • the predetermined process for selecting a link to which to distribute is a method of distributing to a Lower MAC that has a queue with the shortest waiting time.
  • the priority link has a maximum queuing size set. Therefore, especially when performing large-capacity communication, there is a high possibility that the waiting time will be lower than other links. As a result, the high priority packet 4 is more likely to be distributed to the priority link.
  • the maximum queuing size is set for the priority link, so the queuing delay is shortened to a certain time or less. If the high-priority packet 4 is not distributed to a priority link, this means that the destination link has a shorter waiting time than the priority link, so the queuing delay is still reduced to a certain time or less. That is, in either case, the queuing delay can be reduced to a certain time or less.
  • the maximum queuing size is set for a specific link, and then the process shown in the flowchart of FIG. 6 is performed. That is, generated high-priority packets can be delivered to the PHY within a certain queuing time. This makes it possible to shorten the queuing delay no matter when a high-priority packet occurs.
  • the priority link may be determined based on transmission delay time or PER (Packet Error Rate). For example, the transmission delay time and PER of each link are acquired in advance within the wireless terminal or within a controller attached to the wireless terminal. Then, a method may be considered in which the link with the smallest transmission delay time or PER is selected.
  • PER Packet Error Rate
  • the maximum queuing size may be set to a predetermined maximum number of packets that can be accommodated in the link.
  • the queuing time may be set so as not to exceed a certain queuing time based on statistics regarding communication between the base station and the terminal. Examples of statistics related to communication between a base station and a terminal include statistics related to frame transmission status of the base station or communication with other terminals. A specific example of the frame transmission status of the base station is the value obtained by dividing the frame size transmitted within the own terminal by the MCS value. Specific examples of statistics related to communication with other terminals include the expected value of delay time calculated from the PER of the link or the channel usage rate, or the actually measured transmission throughput and delay time.
  • priority link and maximum queuing size may be updated at regular intervals. For example, you can first select the link with the lowest channel usage rate at regular intervals, or you can calculate the average queuing time of all links at regular intervals and multiply this by a constant to determine the maximum queuing size. etc. are possible.
  • FIG. 7 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure. First, data transmission from the base station 2 to another terminal will be explained.
  • the base station 2 includes an LLC section 58.
  • the LLC unit 58 is a sublayer that performs logical link control. LLC section 58 outputs the input packet to MLD section 59.
  • the MLD section 59 is a link management section and includes a data processing section 60.
  • the data processing unit 60 processes data and outputs the results to the base station measurement unit 62 and priority link management unit 64.
  • the base station measurement unit 62 measures elapsed time, PER of each link, packet transmission delay time, and the like.
  • the priority link management unit 64 selects priority links, manages queuing size, and selects output destination links. Further, the priority link management unit 64 performs the multi-link setup described in FIG. 3. The priority link management section 64 outputs the processed packets to the STA sections 66a, 66b, and 66c.
  • the STA units 66a, 66b, and 66c are transmitting/receiving units, and receive packets input from the priority link management unit 64. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
  • the STA sections 66a, 66b, and 66c output radio frames received from other terminals to the priority link management section 64.
  • the priority link management unit 64 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 60.
  • the data processing section 60 outputs this data to the LLC section 58.
  • FIG. 8 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure. First, data transmission from the terminal 16 to another terminal will be explained.
  • the terminal 16 includes an LLC section 68. LLC section 68 outputs the input packet to MLD section 69 .
  • the MLD section 69 includes a data processing section 70.
  • the data processing unit 70 processes the packet and outputs the results to the terminal measurement unit 72 and the priority link management unit 74.
  • the terminal measurement unit 72 measures the PER etc. of each link as necessary. This measurement result is notified to a base station measurement unit included in a base station within the wireless communication system. Note that the terminal measuring section 72 may have the same functions as the base station measuring section 62.
  • the priority link management unit 74 selects priority links, manages queuing size, and selects output destination links. For example, based on information notified from the priority link management unit 64 of the base station 2, a link to be used in communication with the base station 2 is selected. Alternatively, it may have the same function as the priority link management section 64 of the base station based on the information acquired by the terminal measurement section 72. Furthermore, the priority link management unit 74 outputs the processed packets to the STA units 76a, 76b, and 76c.
  • the STA sections 76a, 76b, and 76c receive packets input from the priority link management section 74. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
  • the STA sections 76a, 76b, and 76c output radio frames received from other terminals to the priority link management section 74.
  • the priority link management unit 74 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 70.
  • the data processing section 70 outputs this data to the LLC section 68.
  • FIG. 9 is a table showing an example of data held by the priority link management unit according to Embodiment 1 of the present disclosure.
  • the priority link management section holds various data for each link in order to select priority links.
  • a data group in a base station including three STA sections is shown.
  • STAs 1, 2, and 3 all support the multilink function. However, only STAs 1 and 2 are used for multilink transmission. Further, since the maximum number of packets is set only for STA2, it can be seen that the link including STA2 is a priority link.
  • the current number of packets in STA2 is 5, which has reached the maximum number of packets.
  • the current number of packets of STA1 is 8, which is greater than that of STA2. Therefore, when using the processing method shown in FIG. 6, if the next generated packet is a high priority packet, it is considered that it will be distributed to STA2.
  • PER The value of PER is also held here. It can be seen that the PERs of STAs 1 and 2 are different values. It is also possible to set a priority link based on this PER value.
  • FIG. 10 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure.
  • the wireless communication system according to the second embodiment differs from the first embodiment in that a plurality of terminals are targets of wireless communication with one base station.
  • the wireless communication system 200 includes a base station 2.
  • Base station 2 performs wireless communication with terminals 16a, 16b, and 16c. With this configuration, it is possible to shorten the queuing delay when a high-priority packet occurs even in wireless communication that targets a wide range and targets multiple terminals.
  • the focus may be on one specific terminal, or on each of a plurality of terminals.
  • FIG. 11 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure.
  • the wireless communication system according to the third embodiment differs from the first embodiment in that a controller that bundles a plurality of base stations is installed.
  • the wireless communication system 300 includes a controller 46. Controller 46 is connected to base stations 2a and 2b.
  • the base station 2a performs wireless communication with the terminal 16a.
  • the base station 2b performs wireless communication with the terminal 16b.
  • the controller 46 may estimate the transmission delay of high-priority frames between channels, or specify the priority link or maximum queuing size of each base station. At this time, it may be performed based on the congestion status or PER of the channels used by the base stations 2a and 2b.
  • FIG. 12 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 4 of the present disclosure.
  • the wireless communication system according to the fourth embodiment differs from the first embodiment in that priority links are synchronized between a specific base station and a specific terminal.
  • the wireless communication system 400 includes a base station 2 and a terminal 16.
  • the base station 2 and the terminal 16 are set so that their priority links are synchronized. That is, the wireless communication system 400 shows the configuration of the wireless communication system 100 when priority links are synchronized.
  • An example of a method for synchronizing priority links is a method in which the base station 2 notifies the terminal 16 of the selected priority link and maximum queuing size.
  • a method may be exemplified in which each of the base station 2 and the terminal 16 changes the link number to be a priority link every time a set time elapses. In this case, it is necessary to match conditions such as link number, priority link selection start time, and priority link setting period between the base station 2 and the terminal 16 in advance.
  • an example of a method is to synchronize priority links using the controller.
  • a method may be considered in which information on priority links and maximum queuing size is notified from the controller to each base station, and from each base station to each terminal.
  • a method may be considered in which the controller notifies both each base station and each terminal of information on the priority link and maximum queuing size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a wireless communication system, a wireless communication method, and a wireless communication device. A wireless communication device according to the present disclosure comprises a base station having a multilink function and a terminal having a multilink function, and is configured such that the base station and the terminal communicate via a plurality of links. The base station comprises an Upper MAC that receives a packet generated in a higher-level layer, and a Lower MAC present in each link, and is configured so as to execute: processing for using at least one out of the links as a priority link including a Lower MAC for which a maximum queuing size is set; processing for, when the priority of the packet is low and the priority link reaches the maximum queuing size, using links other than the priority link as candidates for a packet assignment destination link; processing for determining the packet assignment destination link by predetermined processing; processing for transmitting the packet from the Upper MAC to the Lower MAC of the assignment destination link; and processing for transmitting the packet which the Lower MAC has to the terminal via the link.

Description

無線通信システム、無線通信方法及び無線通信装置Wireless communication system, wireless communication method, and wireless communication device
 本開示は無線通信システム、無線通信方法及び無線通信装置に関する。 The present disclosure relates to a wireless communication system, a wireless communication method, and a wireless communication device.
 無線LANの基地局及び端末は、CSMA/CAを用いてチャネルにアクセスし、データを送信している。 Wireless LAN base stations and terminals use CSMA/CA to access channels and transmit data.
 無線LAN通信規格であるIEEE 802.11beには、複数の周波数帯を併用できるマルチリンク機能が搭載されている。マルチリンク機能を使用することで、基地局と端末との間で、複数の周波数帯を用いる複数のリンクを同時に形成できる。これにより、異なるデータを複数の周波数帯で同時に伝送することで、スループット及び遅延特性を改善している。 IEEE 802.11be, a wireless LAN communication standard, is equipped with a multi-link function that allows multiple frequency bands to be used together. By using the multilink function, multiple links using multiple frequency bands can be simultaneously formed between a base station and a terminal. This improves throughput and delay characteristics by simultaneously transmitting different data in multiple frequency bands.
 データ送信を行う場合、上位レイヤで発生したパケットは、まずUpper MAC(Media Access Controller)へ受け渡される。Upper MACは、リンクごとに存在するLower MACへパケットを受け渡す。Lower MACがフレーム送信権を獲得すると、保持するパケットの順番で最前列に来たものが、物理層であるPHY(Physical)へ受け渡され、その後送信される。 When transmitting data, packets generated in the upper layer are first passed to the Upper MAC (Media Access Controller). The Upper MAC passes packets to the Lower MAC that exists for each link. When the Lower MAC acquires the right to transmit a frame, the packet that comes to the forefront in the order of held packets is passed to the physical layer (PHY), and then transmitted.
 しかし、大容量通信を行うときなど、マルチリンク機能で使用している全リンクのLower MACが、既に複数の送信パケットを有する場合がある。この場合に、低遅延性が求められるアプリケーションの送信パケットである、高優先パケットが発生したとする。この高優先パケットは、どのリンクを使用しても、即座にPHYへ受け渡して送信することができない。すなわち、キューイング遅延が発生する課題があった。 However, when performing large-capacity communication, the Lower MACs of all links used in the multilink function may already have multiple transmission packets. In this case, it is assumed that a high-priority packet is generated, which is a transmission packet of an application that requires low delay. This high priority packet cannot be immediately passed to the PHY and transmitted using any link. That is, there was a problem in that queuing delays occurred.
 本開示は上述の問題を解決するため、高優先パケットのキューイング遅延を短縮できる無線通信システムを提供することを第一の目的とする。 In order to solve the above-mentioned problems, the first object of the present disclosure is to provide a wireless communication system that can shorten the queuing delay of high-priority packets.
 また、本開示は、高優先パケットのキューイング遅延を短縮できる無線通信方法を提供することを第二の目的とする。 A second objective of the present disclosure is to provide a wireless communication method that can shorten the queuing delay of high-priority packets.
 また、本開示は、高優先パケットのキューイング遅延を短縮できる無線通信装置を提供することを第三の目的とする。 A third objective of the present disclosure is to provide a wireless communication device that can shorten the queuing delay of high-priority packets.
 本開示の第一の態様は、マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、基地局と端末とが複数のリンクを介して通信するように構成された無線通信システムであって、基地局は、上位レイヤで発生したパケットを受信するUpper MACと、リンク毎に存在するLower MACと、を備え、リンクのうち少なくとも一つを、最大キューイングサイズを設定されたLower MACを含む優先リンクとして用いる処理と、パケットの優先度が低く、優先リンクが最大キューイングサイズに達している場合、優先リンク以外をパケットの振り分け先リンクの候補とする処理と、所定の処理により、パケットの振り分け先リンクを決定する処理と、パケットを、Upper MACから、振り分け先リンクのLower MACに送信させる処理と、Lower MACが有するパケットを、リンクを介して端末に送信させる処理と、を実行するように構成された無線通信システムであることが好ましい。 A first aspect of the present disclosure is a wireless communication system that includes a base station with a multilink function and a terminal with the multilink function, and is configured such that the base station and the terminal communicate via multiple links. The base station includes an Upper MAC that receives packets generated in the upper layer, and a Lower MAC that exists for each link, and connects at least one of the links to the Lower MAC that has a maximum queuing size set. processing to use as a priority link including a priority link, processing to use a link other than the priority link as a candidate for a link to which the packet is to be distributed when the priority of the packet is low and the priority link has reached the maximum queuing size, and a predetermined processing. Executes processing to determine the link to which the packet is to be distributed, processing to transmit the packet from the Upper MAC to the Lower MAC of the distribution destination link, and processing to transmit the packet possessed by the Lower MAC to the terminal via the link. Preferably, the wireless communication system is configured to.
 本開示の第二の態様は、マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、基地局と端末とが複数のリンクを介して通信するように構成された無線通信システムが行う無線通信方法であって、基地局は、上位レイヤで発生したパケットを受信するUpper MACと、リンク毎に存在するLower MACと、を備え、Lower MACのうち少なくとも一つを、最大キューイングサイズを設定されたLower MACを含む優先リンクとして用いる工程と、パケットの優先度が低く、優先リンクが最大キューイングサイズに達している場合、優先リンク以外をパケットの振り分け先リンクの候補とする工程と、所定の処理により、パケットの振り分け先リンクを決定する工程と、パケットを、Upper MACから、振り分け先リンクのLower MACに送信させる工程と、Lower MACが有するパケットを、リンクを介して端末に送信させる工程とを備える無線通信方法であることが好ましい。 A second aspect of the present disclosure provides a wireless communication system that includes a base station with a multilink function and a terminal with a multilink function, and is configured such that the base station and the terminal communicate via a plurality of links. A wireless communication method in which a base station includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and sets at least one of the Lower MACs to a maximum queuing size. a step of using the link as a priority link including the set Lower MAC, and a step of using a link other than the priority link as a candidate link to which the packet is to be distributed if the priority of the packet is low and the priority link has reached the maximum queuing size. , a step of determining the link to which the packet is to be distributed by a predetermined process, a step of transmitting the packet from the Upper MAC to the Lower MAC of the destination link, and transmitting the packet possessed by the Lower MAC to the terminal via the link. Preferably, the wireless communication method includes the step of:
 本開示の第三の態様は、上位レイヤで発生したパケットを受信するUpper MACと、リンク毎に存在するLower MACとを備え、Lower MACのうち少なくとも一つを、最大キューイングサイズを設定されたLower MACを含む優先リンクとして用いる機能と、パケットの優先度が低く、優先リンクが最大キューイングサイズに達している場合、優先リンク以外をパケットの振り分け先リンクの候補とする機能と、所定の処理により、パケットの振り分け先リンクを決定する機能と、パケットを、Upper MACから、振り分け先リンクのLower MACに送信させる機能と、Lower MACが有するパケットを、リンクを介して送信させる機能とを備える無線通信装置であることが好ましい。 A third aspect of the present disclosure includes an Upper MAC that receives packets generated in an upper layer and a Lower MAC that exists for each link, and at least one of the Lower MACs has a maximum queuing size set. A function to use as a priority link including Lower MAC, a function to select a link other than the priority link as a candidate link for packet distribution when the priority of the packet is low and the priority link has reached the maximum queuing size, and predetermined processing. , a wireless communication system with a function of determining a link to which a packet is to be distributed, a function of transmitting the packet from the Upper MAC to the Lower MAC of the destination link, and a function of transmitting the packet possessed by the Lower MAC via the link. Preferably, it is a communication device.
 本開示の第一、第二及び第三の態様によれば、高優先パケットのキューイング遅延を短縮することができる。 According to the first, second, and third aspects of the present disclosure, the queuing delay of high-priority packets can be reduced.
マルチリンク機能がない場合の無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system without a multilink function. マルチリンク機能がある場合の無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system when there is a multilink function. マルチリンクのセットアップ手順を示すフローチャートである。3 is a flowchart showing a multi-link setup procedure. パケットのカテゴライズ処理を示す図である。FIG. 3 is a diagram illustrating packet categorization processing. 本開示の実施の形態1に係る無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る、パケットの処理方法を示すフローチャートである。3 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure. 本開示の実施の形態1に係る基地局の装置構成を示すブロック図である。1 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure. FIG. 本開示の実施の形態1に係る端末の装置構成を示すブロック図である。1 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure. FIG. 本開示の実施の形態1に係る、優先リンク管理部が保有するデータ例を示す表である。3 is a table showing an example of data held by a priority link management unit according to Embodiment 1 of the present disclosure. 本開示の実施の形態2に係る無線通信システムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure. 本開示の実施の形態3に係る無線通信システムの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure. 本開示の実施の形態4に係る無線通信システムの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 4 of the present disclosure.
実施の形態1
[従来の無線通信システム]
 実施の形態1の説明に先立ち、従来用いられていたマルチリンクについて述べる。図1は、マルチリンク機能がない場合の無線通信システムの構成例を示す図である。すなわち、無線通信システム500は、複数の種類のパケットを、1本のリンクを用いて送信する。
Embodiment 1
[Conventional wireless communication system]
Prior to describing the first embodiment, a conventionally used multilink will be described. FIG. 1 is a diagram showing an example of the configuration of a wireless communication system without a multilink function. That is, the wireless communication system 500 transmits multiple types of packets using one link.
 無線通信システム500は、基地局2を備える。基地局2は、上位レイヤで発生した高優先パケット4を、MAC部12に送信する。MAC部12は、キュー8を備える。キュー8は、受信したパケットを、受信した順に送信できるよう、順番付けをして保持している。そして、フレーム送信権を獲得した際、キュー8が保持するパケットの順番を確認し、最前列のパケットから順に送信する。なお、適用する無線通信システムがWi-Fi(登録商標)である場合、基地局はアクセスポイントに対応する。 The wireless communication system 500 includes a base station 2. The base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12. The MAC unit 12 includes a queue 8 . The queue 8 holds received packets in an ordered manner so that they can be transmitted in the order in which they are received. When the frame transmission right is acquired, the order of the packets held in the queue 8 is checked, and the packets are transmitted in order starting from the front row. Note that when the applied wireless communication system is Wi-Fi (registered trademark), the base station corresponds to an access point.
 基地局2は、マルチリンク機能を有していないため、キュー8を一つしか備えていない。そのため、高優先パケット4が発生した場合でも、キュー8が既に複数のパケット6を有していれば、そのキュー8が保持するパケットの順番の最後尾となるよう、高優先パケット4に順番付けを行う。 The base station 2 has only one queue 8 because it does not have a multilink function. Therefore, even if a high-priority packet 4 occurs, if the queue 8 already has multiple packets 6, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue 8. I do.
 MAC部12は、パケットを、PHY10へ送信する。より具体的には、パケットのうち、キュー8が保持するパケットの順番で最前列に来たものを、PHY10へ送信する。すなわち、PHY10に送信された高優先パケット4は、それまでにキュー8に保持されていたパケット6が全て送信された後に、端末16へ送信される。なお、基地局2は、マルチリンク機能を有していないため、PHY10も一つしか備えていない。 The MAC unit 12 transmits the packet to the PHY 10. More specifically, among the packets, the one that comes to the forefront in the order of the packets held by the queue 8 is transmitted to the PHY 10. That is, the high priority packet 4 transmitted to the PHY 10 is transmitted to the terminal 16 after all the packets 6 held in the queue 8 up to that point have been transmitted. Note that since the base station 2 does not have a multilink function, it also includes only one PHY 10.
 上述の通り、1本のリンクのみを用いる無線通信システム500では、高優先パケット4が発生した場合も、それを優先する処理は行っていない。 As described above, in the wireless communication system 500 that uses only one link, even when the high priority packet 4 occurs, no process is performed to give priority to it.
 図2は、マルチリンク機能がある場合の無線通信システムの構成例を示す図である。ここでは、マルチリンク機能を利用することで、3本のリンクを形成する無線通信システム600について述べる。 FIG. 2 is a diagram showing a configuration example of a wireless communication system when there is a multilink function. Here, a wireless communication system 600 that forms three links by using a multilink function will be described.
 無線通信システム600は、基地局2を備える。基地局2は、上位レイヤで発生した高優先パケット4を、MAC部12に送信する。MAC部12は、Upper MAC18と、リンクごとに存在するLower MAC20a、20b及び20cを備える。 The wireless communication system 600 includes a base station 2. The base station 2 transmits the high priority packet 4 generated in the upper layer to the MAC unit 12. The MAC unit 12 includes an Upper MAC 18 and Lower MACs 20a, 20b, and 20c that exist for each link.
 MAC部12は、高優先パケット4を、まずUpper MAC18で受信する。Upper MAC18は、高優先パケット4を、Lower MAC20a、20b及び20cの何れか一つに振り分ける。より具体的には、高優先パケット4が、振り分けたLower MACが備えるキューの、保持するパケットの順番の最後尾になるよう、順番付けを行う。この振り分けは、所定の処理に基づいて行われる。ここでは、Lower MAC20a、20b及び20cのそれぞれが備えるキュー8a、8b及び8cのうち、最も待ち時間が少なくなるキューに振り分ける処理を行うとする。なお、この場合の待ち時間は、各キューが有するパケット6の数またはサイズにより変化する。 The MAC unit 12 first receives the high priority packet 4 at the Upper MAC 18. The Upper MAC 18 distributes the high priority packet 4 to any one of the Lower MACs 20a, 20b, and 20c. More specifically, the high-priority packet 4 is ordered so that it becomes the last packet held in the queue provided by the assigned Lower MAC. This distribution is performed based on predetermined processing. Here, it is assumed that among the queues 8a, 8b, and 8c provided in each of the Lower MACs 20a, 20b, and 20c, processing is performed to allocate to the queue with the shortest waiting time. Note that the waiting time in this case changes depending on the number or size of packets 6 that each queue has.
 MAC部12は、パケットを、PHY部14へ送信する。このPHY部14は、PHY10a、10b及び10cを備える。より具体的には、パケットのうち、キュー8a、8b及び8cのそれぞれが保持するパケットの順番で最前列に来たものを、PHY10a、10b及び10cのそれぞれへ送信する。すなわち、高優先パケット4は、振り分けられたキューに保持されていたパケット6が全て送信された後に、端末16へ送信される。 The MAC unit 12 transmits the packet to the PHY unit 14. This PHY unit 14 includes PHYs 10a, 10b, and 10c. More specifically, among the packets, those that come to the forefront in the order of the packets held by each of the queues 8a, 8b, and 8c are transmitted to each of the PHYs 10a, 10b, and 10c. That is, the high-priority packet 4 is transmitted to the terminal 16 after all the packets 6 held in the sorted queue have been transmitted.
 前述の通り、高優先パケット4は、最も待ち時間が少なくなるキューへ振り分けられている。そのため、1本のリンクのみを用いる無線通信システム500と比較すれば、より短い待ち時間でPHYへの送信が行われる可能性を高くすることができる。 As mentioned above, the high priority packet 4 is distributed to the queue with the shortest waiting time. Therefore, compared to the wireless communication system 500 that uses only one link, it is possible to increase the possibility that transmission to the PHY will be performed with a shorter waiting time.
 このように、マルチリンク機能を用いて、異なるデータを複数の周波数帯で同時に伝送することで、スループット及び遅延特性を改善できる。しかし、マルチリンク機能で使用している全リンクのLower MACが、既に複数の送信パケットを有する場合がある。この場合発生した高優先パケットは、どのリンクを使用しても、即座にPHYへ受け渡して送信することができない。すなわち、キューイング遅延が発生する課題が生じる。本開示は、この課題を解決する。 In this way, throughput and delay characteristics can be improved by transmitting different data simultaneously in multiple frequency bands using the multilink function. However, the Lower MACs of all links used in the multilink function may already have multiple transmission packets. The high-priority packet generated in this case cannot be immediately delivered to the PHY and transmitted no matter which link is used. That is, a problem arises in which a queuing delay occurs. The present disclosure solves this problem.
 図3は、マルチリンクのセットアップ手順を示すフローチャートである。後述する優先リンク管理部64及び74は、図3の処理を行うことで、特定のリンク同士を介して無線通信ができるよう設定する。これにより、無線通信システムが、マルチリンクの通信を確立することができる。 FIG. 3 is a flowchart showing the multilink setup procedure. Priority link management units 64 and 74, which will be described later, perform the process shown in FIG. 3 to configure settings so that wireless communication can be performed via specific links. This allows the wireless communication system to establish multi-link communication.
 図4は、パケットのカテゴライズ処理を示す図である。無線通信システムは、複数の種類のパケットを送信している。ここでは、その複数の種類のパケットを、後述するSTA部において、トラヒックごとに識別する処理を示す。 FIG. 4 is a diagram showing packet categorization processing. Wireless communication systems transmit multiple types of packets. Here, a process is shown in which the plurality of types of packets are identified for each traffic in the STA unit, which will be described later.
 上位レイヤでMACヘッダを付加されたパケットは、キュー22、24、26及び28のいずれか一つに入力される。入力先のキューは、MACヘッダに含まれるTID(Traffic Indicator)により判定される。例えば、WME(Wireless Multimedia Extensions)が優先順位をつける場合、キュー22は音声に関するVOカテゴリ、キュー24はビデオに関するVIカテゴリ、キュー26はベストエフォートに関わるBEカテゴリ、キュー28はバックグラウンドにかかわるBKカテゴリに識別できる。 A packet to which a MAC header is added in the upper layer is input to one of the queues 22, 24, 26, and 28. The input destination queue is determined by the TID (Traffic Indicator) included in the MAC header. For example, when WME (Wireless Multimedia Extensions) prioritizes, queue 22 is a VO category related to audio, queue 24 is a VI category related to video, queue 26 is a BE category related to best effort, and queue 28 is a BK category related to background. can be identified.
 各キューに入力されたパケットは、CSMA/CA部32、34、36、38及び40に入力される。各CSMA/CA部は、固有のアクセスパラメータを用いてチャネルにアクセスし、CSMA/CAを行う。固有のアクセスパラメータとは、例えば、Cwmax、Cwmin、AIFS、TXOPlimitである。そして各CSMA/CA部は、送信権を得た場合は、各キューからMACフレームを取得し、内部衝突解決部42へ出力する。 The packets input to each queue are input to the CSMA/ CA sections 32, 34, 36, 38, and 40. Each CSMA/CA unit uses unique access parameters to access the channel and perform CSMA/CA. The unique access parameters are, for example, Cwmax, Cwmin, AIFS, and TXOPlimit. When each CSMA/CA unit obtains the transmission right, it acquires a MAC frame from each queue and outputs it to the internal conflict resolution unit 42.
 なお、CSMA/CA部32、34、36及び38は、キュー22、24、26、28の最前列に来たものを処理する。CSMA/CA部40は、低遅延データを処理する。 Note that the CSMA/ CA units 32, 34, 36, and 38 process those that have arrived at the front of the queues 22, 24, 26, and 28. The CSMA/CA unit 40 processes low delay data.
 内部衝突解決部42は、複数のCSMA/CA部が同時に送信権を獲得した場合に、優先度の高いものを選択し、出力する。 When multiple CSMA/CA units acquire transmission rights at the same time, the internal conflict resolution unit 42 selects and outputs the one with the highest priority.
[本開示の無線通信システム]
 図5は、本開示の実施の形態1に係る無線通信システムの構成例を示す図である。実施の形態1に係る無線通信システムは、マルチリンク機能で使用する最低一つのリンクが有するLower MACに、最大キューイングサイズを設定する点が、従来例と異なる。以下では、この最低一つのリンクを優先リンクと称する。ここでは、マルチリンク機能を利用することで、3本のリンクを形成する無線通信システム100について述べる。
[Wireless communication system of the present disclosure]
FIG. 5 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 1 of the present disclosure. The wireless communication system according to the first embodiment differs from the conventional example in that the maximum queuing size is set in the Lower MAC of at least one link used in the multilink function. Hereinafter, this at least one link will be referred to as a priority link. Here, a wireless communication system 100 that forms three links by using a multilink function will be described.
 無線通信システム100は、無線通信システム600と同様の手順でパケットを送信する。しかし、無線通信システム100は、優先リンクを有する点と、パケットの振り分け方法が、無線通信システム600と異なる。なお、ここでは、Lower MAC20aを含むリンクを優先リンクとしている。 The wireless communication system 100 transmits packets using the same procedure as the wireless communication system 600. However, the wireless communication system 100 differs from the wireless communication system 600 in that it has a priority link and in the method of allocating packets. Note that here, the link including the Lower MAC 20a is set as the priority link.
 パケットの振り分け方法について示す。図6は、本開示の実施の形態1に係る、パケットの処理方法を示すフローチャートである。まずステップ100で、Upper MAC18が上位レイヤからパケットを受け取る。 This section describes how to sort packets. FIG. 6 is a flowchart illustrating a packet processing method according to Embodiment 1 of the present disclosure. First, in step 100, the Upper MAC 18 receives a packet from an upper layer.
 次にステップ102で、受け取ったパケットの優先度が高いかを確認する。優先度の判定は、後述する基地局のMLD部59で行われる。この判定には、TIDを用いても良い。例えば、予め指定しておいたTID、あるいはそのTID以上に高い優先度を示すTIDが付与されたパケットについて、「優先度が高いパケット」と判定する方法が考えられる。優先度が高い場合、ステップ104に進む。優先度が高くない場合、ステップ106に進む。 Next, in step 102, it is checked whether the received packet has a high priority. The determination of priority is performed by the MLD unit 59 of the base station, which will be described later. TID may be used for this determination. For example, a method may be considered in which a packet to which a prespecified TID or a TID indicating a higher priority than the TID is assigned is determined to be a "high priority packet." If the priority is high, proceed to step 104. If the priority is not high, proceed to step 106.
 ステップ104では、無線通信システムで使用する全リンクを対象に、送信リンクの選択を行う。無線通信システム100の場合、Lower MAC20a、20b及び20cのそれぞれを含む全てのリンクの中から、振り分け先のリンクを選択する。なお、この選択は、所定の処理に基づいて行われる。 In step 104, a transmission link is selected for all links used in the wireless communication system. In the case of the wireless communication system 100, a link to be allocated is selected from all links including each of the Lower MACs 20a, 20b, and 20c. Note that this selection is performed based on predetermined processing.
 ステップ106では、優先リンクのキューサイズが上限に達しているかを確認する。無線通信システム100の場合、Lower MAC20aを含むリンクが、最大キューイングサイズに達しているかを確認する。最大キューイングサイズに達していない場合、ステップ104に進む。最大キューイングサイズに達している場合、ステップ108に進む。 In step 106, it is checked whether the queue size of the priority link has reached its upper limit. In the case of the wireless communication system 100, it is checked whether the link including the Lower MAC 20a has reached the maximum queuing size. If the maximum queuing size has not been reached, proceed to step 104. If the maximum queuing size has been reached, proceed to step 108.
 ステップ108では、優先リンクを除いたリンクを対象に、送信リンクの選択を行う。無線通信システム100の場合、優先リンクであるLower MAC20aを含むリンクを除外する。すなわち、Lower MAC20b及び20cを含むリンクの中から、振り分け先のリンクを選択する。なお、この選択は、所定の処理に基づいて行われる。 In step 108, transmission links are selected for links other than priority links. In the case of the wireless communication system 100, links including the Lower MAC 20a, which is a priority link, are excluded. In other words, a link to be allocated is selected from among the links including the Lower MACs 20b and 20c. Note that this selection is performed based on predetermined processing.
 ここで、振り分け先のリンクの選択に関する所定の処理が、最も待ち時間が少ないキューを備えるLower MACに振り分ける方法であったとする。優先リンクは、最大キューイングサイズを設定されている。このため、特に大容量通信を行っている場合、他のリンクよりも待ち時間が少ない可能性が高い。その結果、高優先パケット4は、優先リンクに振り分けられる可能性が高くなる。 Here, it is assumed that the predetermined process for selecting a link to which to distribute is a method of distributing to a Lower MAC that has a queue with the shortest waiting time. The priority link has a maximum queuing size set. Therefore, especially when performing large-capacity communication, there is a high possibility that the waiting time will be lower than other links. As a result, the high priority packet 4 is more likely to be distributed to the priority link.
 高優先パケット4が優先リンクに振り分けられた場合、優先リンクに最大キューイングサイズが設定されていることから、キューイング遅延を一定時間以下に短縮される。高優先パケット4が優先リンクに振り分けられなかった場合、振り分け先のリンクは優先リンクよりも待ち時間が少ないことを意味するため、やはりキューイング遅延を一定時間以下に短縮される。すなわち、いずれの場合もキューイング遅延を一定時間以下に短縮できる。 When the high-priority packet 4 is distributed to the priority link, the maximum queuing size is set for the priority link, so the queuing delay is shortened to a certain time or less. If the high-priority packet 4 is not distributed to a priority link, this means that the destination link has a shorter waiting time than the priority link, so the queuing delay is still reduced to a certain time or less. That is, in either case, the queuing delay can be reduced to a certain time or less.
 上述の通り、実施の形態1では、特定リンクに最大キューイングサイズを設定した上で、図6のフローチャートが示す処理を行う。すなわち、発生した高優先パケットを、一定のキューイング時間以内にPHYへ受け渡すことができる。これにより、高優先パケットがいつ発生したとしても、そのキューイング遅延を短縮できる。 As described above, in the first embodiment, the maximum queuing size is set for a specific link, and then the process shown in the flowchart of FIG. 6 is performed. That is, generated high-priority packets can be delivered to the PHY within a certain queuing time. This makes it possible to shorten the queuing delay no matter when a high-priority packet occurs.
[本開示の優先リンクの詳細な設定]
 優先リンクは、送信遅延時間またはPER(Packet Error Rate)に基づいて決定しても良い。例えば、無線端末内あるいは無線端末に付随するコントローラ内で、各リンクの送信遅延時間やPERを、予め取得しておく。そして、最も送信遅延時間またはPERが小さいリンクを選択する方法が考えられる。
[Details of preferred link settings for this disclosure]
The priority link may be determined based on transmission delay time or PER (Packet Error Rate). For example, the transmission delay time and PER of each link are acquired in advance within the wireless terminal or within a controller attached to the wireless terminal. Then, a method may be considered in which the link with the smallest transmission delay time or PER is selected.
 また、最大キューイングサイズは、リンクに収容できる既定の最大パケット数を設定しても良い。あるいは、基地局と端末との通信に関する統計量に基づき、一定のキューイング時間を超えないように設定しても良い。基地局と端末との通信に関する統計量としては、基地局のフレーム送信状況または他端末との通信に関する統計量が例示できる。基地局のフレーム送信状況の具体例としては、自端末内の送信するフレームサイズをMCS値で除算した値が挙げられる。他端末との通信に関する統計量の具体例としては、当該リンクのPERまたはチャネル使用割合から算出される遅延時間の期待値、または実際に測定した送信スループット及び遅延時間が挙げられる。 Additionally, the maximum queuing size may be set to a predetermined maximum number of packets that can be accommodated in the link. Alternatively, the queuing time may be set so as not to exceed a certain queuing time based on statistics regarding communication between the base station and the terminal. Examples of statistics related to communication between a base station and a terminal include statistics related to frame transmission status of the base station or communication with other terminals. A specific example of the frame transmission status of the base station is the value obtained by dividing the frame size transmitted within the own terminal by the MCS value. Specific examples of statistics related to communication with other terminals include the expected value of delay time calculated from the PER of the link or the channel usage rate, or the actually measured transmission throughput and delay time.
 なお、上述の優先リンク及び最大キューイングサイズは、一定時間ごとに更新されても良い。例えば、まず一定時間ごとにチャネル使用割合が最も低いリンクを選択する方法、または一定時間ごとに全リンクの平均キューイング時間を求め、これにある定数を乗算した値を最大キューイングサイズとする方法などが考えられる。 Note that the above-mentioned priority link and maximum queuing size may be updated at regular intervals. For example, you can first select the link with the lowest channel usage rate at regular intervals, or you can calculate the average queuing time of all links at regular intervals and multiply this by a constant to determine the maximum queuing size. etc. are possible.
 優先リンクを一定時間毎に変更することで、リンク毎に割り当てる負荷トラヒックの偏りを回避できる。また、その時遅延時間の小さいリンクに高優先パケットを割り当てられる確率の上昇を見込むことができる。 By changing the priority link at regular intervals, it is possible to avoid uneven load traffic allocated to each link. Furthermore, it is possible to expect an increase in the probability that a high-priority packet can be assigned to a link with a small delay time.
[本開示の無線通信システムが備える装置の構成]
 図7は、本開示の実施の形態1に係る基地局の装置構成を示すブロック図である。まず、基地局2から他の端末へのデータ伝送について説明する。
[Configuration of device included in wireless communication system of the present disclosure]
FIG. 7 is a block diagram showing the device configuration of a base station according to Embodiment 1 of the present disclosure. First, data transmission from the base station 2 to another terminal will be explained.
 基地局2は、LLC部58を備える。LLC部58は、論理リンク制御(Logical Link Control)を行う副層である。LLC部58は、入力されたパケットを、MLD部59に出力する。 The base station 2 includes an LLC section 58. The LLC unit 58 is a sublayer that performs logical link control. LLC section 58 outputs the input packet to MLD section 59.
 MLD部59は、リンクマネジメント部であり、データ処理部60を備える。データ処理部60は、データの処理を行い、基地局測定部62及び優先リンク管理部64にその結果を出力する。基地局測定部62は、経過時間、各リンクのPER及びパケット送信遅延時間等を測定する。 The MLD section 59 is a link management section and includes a data processing section 60. The data processing unit 60 processes data and outputs the results to the base station measurement unit 62 and priority link management unit 64. The base station measurement unit 62 measures elapsed time, PER of each link, packet transmission delay time, and the like.
 優先リンク管理部64は、優先リンクの選択、キューイングサイズの管理及び出力先のリンク選択を行う。また、優先リンク管理部64は、図3で述べたマルチリンクセットアップを行う。優先リンク管理部64は、処理されたパケットをSTA部66a、66b及び66cに出力する。 The priority link management unit 64 selects priority links, manages queuing size, and selects output destination links. Further, the priority link management unit 64 performs the multi-link setup described in FIG. 3. The priority link management section 64 outputs the processed packets to the STA sections 66a, 66b, and 66c.
 STA部66a、66b及び66cは、送受信部であり、優先リンク管理部64から入力されたパケットを受信する。そして、パケットに含まれるMACフレームを、無線フレームとして他の端末に送信する。なお、他の端末とのデータ送受信は、アンテナを介して行う。 The STA units 66a, 66b, and 66c are transmitting/receiving units, and receive packets input from the priority link management unit 64. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
 次に、他の端末から基地局2へのデータ伝送について説明する。STA部66a、66b及び66cは、他の端末から受信した無線フレームを、優先リンク管理部64に出力する。 Next, data transmission from another terminal to the base station 2 will be explained. The STA sections 66a, 66b, and 66c output radio frames received from other terminals to the priority link management section 64.
 優先リンク管理部64は、入力された無線フレームが含むMACフレームからヘッダ等の処理を行い、得られたデータをデータ処理部60へ出力する。データ処理部60は、このデータをLLC部58へ出力する。 The priority link management unit 64 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 60. The data processing section 60 outputs this data to the LLC section 58.
 図8は、本開示の実施の形態1に係る端末の装置構成を示すブロック図である。まず、端末16から他の端末へのデータ伝送について説明する。 FIG. 8 is a block diagram showing the device configuration of a terminal according to Embodiment 1 of the present disclosure. First, data transmission from the terminal 16 to another terminal will be explained.
 端末16は、LLC部68を備える。LLC部68は、入力されたパケットを、MLD部69に出力する。 The terminal 16 includes an LLC section 68. LLC section 68 outputs the input packet to MLD section 69 .
 MLD部69は、データ処理部70を備える。データ処理部70は、パケットの処理を行い、端末測定部72及び優先リンク管理部74にその結果を出力する。端末測定部72は、必要に応じて各リンクのPER等を測定する。この測定結果は、無線通信システム内の基地局が有する基地局測定部に通知される。なお、端末測定部72は、基地局測定部62と同様の機能を備えていても良い。 The MLD section 69 includes a data processing section 70. The data processing unit 70 processes the packet and outputs the results to the terminal measurement unit 72 and the priority link management unit 74. The terminal measurement unit 72 measures the PER etc. of each link as necessary. This measurement result is notified to a base station measurement unit included in a base station within the wireless communication system. Note that the terminal measuring section 72 may have the same functions as the base station measuring section 62.
 優先リンク管理部74は、優先リンクの選択、キューイングサイズの管理及び出力先のリンク選択を行う。例えば、基地局2の優先リンク管理部64から通知された情報に基づき、基地局2との通信で用いるリンクを選択する。あるいは、端末測定部72で取得した情報に基づき、基地局の優先リンク管理部64と同様の機能を備えていても良い。また、優先リンク管理部74は、処理されたパケットをSTA部76a、76b及び76cに出力する。 The priority link management unit 74 selects priority links, manages queuing size, and selects output destination links. For example, based on information notified from the priority link management unit 64 of the base station 2, a link to be used in communication with the base station 2 is selected. Alternatively, it may have the same function as the priority link management section 64 of the base station based on the information acquired by the terminal measurement section 72. Furthermore, the priority link management unit 74 outputs the processed packets to the STA units 76a, 76b, and 76c.
 STA部76a、76b及び76cは、優先リンク管理部74から入力されたパケットを受信する。そして、パケットに含まれるMACフレームを、無線フレームとして他の端末に送信する。なお、他の端末とのデータ送受信は、アンテナを介して行う。 The STA sections 76a, 76b, and 76c receive packets input from the priority link management section 74. Then, the MAC frame included in the packet is transmitted to another terminal as a wireless frame. Note that data transmission and reception with other terminals is performed via an antenna.
 次に、他の端末から端末16へのデータ伝送について説明する。STA部76a、76b及び76cは、他の端末から受信した無線フレームを、優先リンク管理部74に出力する。 Next, data transmission from another terminal to the terminal 16 will be explained. The STA sections 76a, 76b, and 76c output radio frames received from other terminals to the priority link management section 74.
 優先リンク管理部74は、入力された無線フレームが含むMACフレームからヘッダ等の処理を行い、得られたデータをデータ処理部70へ出力する。データ処理部70は、このデータをLLC部68へ出力する。 The priority link management unit 74 processes the header and the like from the MAC frame included in the input wireless frame, and outputs the obtained data to the data processing unit 70. The data processing section 70 outputs this data to the LLC section 68.
 図9は、本開示の実施の形態1に係る、優先リンク管理部が保有するデータ例を示す表である。優先リンク管理部は、優先リンクを選択するため、リンク毎に様々なデータを保有している。ここでは一例として、STA部を3つ備える基地局におけるデータ群を示す。 FIG. 9 is a table showing an example of data held by the priority link management unit according to Embodiment 1 of the present disclosure. The priority link management section holds various data for each link in order to select priority links. Here, as an example, a data group in a base station including three STA sections is shown.
 この例では、STA1、2及び3の全てマルチリンク機能に対応している。しかし、STA1及び2のみが、マルチリンク伝送に使用されている。また、STA2のみに最大パケット数が設定されていることから、STA2を含むリンクが優先リンクであることが分かる。 In this example, STAs 1, 2, and 3 all support the multilink function. However, only STAs 1 and 2 are used for multilink transmission. Further, since the maximum number of packets is set only for STA2, it can be seen that the link including STA2 is a priority link.
 STA2の現在のパケット数は5であり、最大パケット数に達している。STA1の現在のパケット数が8であり、STA2よりも多い。そのため、図6で示した処理方法を用いる場合、次に発生したパケットが高優先パケットであれば、STA2に振り分けられると考えられる。 The current number of packets in STA2 is 5, which has reached the maximum number of packets. The current number of packets of STA1 is 8, which is greater than that of STA2. Therefore, when using the processing method shown in FIG. 6, if the next generated packet is a high priority packet, it is considered that it will be distributed to STA2.
 また、ここではPERの値も保持されている。STA1と2のPERは異なる値であることが分かる。このPERの値に基づいて、優先リンクを設定することも可能である。 The value of PER is also held here. It can be seen that the PERs of STAs 1 and 2 are different values. It is also possible to set a priority link based on this PER value.
実施の形態2
 図10は、本開示の実施の形態2に係る無線通信システムの構成例を示す図である。実施の形態2に係る無線通信システムは、一つの基地局に対して複数の端末が無線通信の対象となっている点が、実施の形態1と異なる。
Embodiment 2
FIG. 10 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 2 of the present disclosure. The wireless communication system according to the second embodiment differs from the first embodiment in that a plurality of terminals are targets of wireless communication with one base station.
 無線通信システム200は、基地局2を備える。基地局2は、端末16a、16b及び16cと無線通信を行う。この構成により、複数の端末が対象となるような、広範囲を対象とした無線通信においても、高優先パケットが発生した場合のキューイング遅延を短縮できる。 The wireless communication system 200 includes a base station 2. Base station 2 performs wireless communication with terminals 16a, 16b, and 16c. With this configuration, it is possible to shorten the queuing delay when a high-priority packet occurs even in wireless communication that targets a wide range and targets multiple terminals.
 優先リンクの選択またはキューイングサイズの決定を行う際に、MCS値、高優先フレームの割合またはPER値を参照する場合について考える。この場合、特定の一台の端末に着目しても良いし、複数の端末それぞれに着目しても良い。 Consider the case where the MCS value, the proportion of high priority frames, or the PER value is referred to when selecting a priority link or determining the queuing size. In this case, the focus may be on one specific terminal, or on each of a plurality of terminals.
実施の形態3
 図11は、本開示の実施の形態3に係る無線通信システムの構成例を示す図である。実施の形態3に係る無線通信システムは、複数の基地局を束ねるコントローラを設置している点が、実施の形態1と異なる。
Embodiment 3
FIG. 11 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 3 of the present disclosure. The wireless communication system according to the third embodiment differs from the first embodiment in that a controller that bundles a plurality of base stations is installed.
 無線通信システム300は、コントローラ46を備える。コントローラ46は、基地局2a及び2bに接続されている。基地局2aは、端末16aと無線通信を行う。基地局2bは、端末16bと無線通信を行う。この構成により、複数の基地局が対象となるような、広範囲を対象とした無線通信においても、高優先パケットが発生した場合のキューイング遅延を短縮できる。 The wireless communication system 300 includes a controller 46. Controller 46 is connected to base stations 2a and 2b. The base station 2a performs wireless communication with the terminal 16a. The base station 2b performs wireless communication with the terminal 16b. With this configuration, it is possible to shorten the queuing delay when a high-priority packet occurs even in wireless communication that targets a wide area and includes multiple base stations.
 なお、コントローラ46は、チャネル間における高優先フレームの送信遅延を見積もったり、各基地局の優先リンクまたは最大キューイングサイズを指定したりしても良い。その際、基地局2a及び2bが使用するチャネルの、混雑状況またはPER等に基づいて実行しても良い。 Note that the controller 46 may estimate the transmission delay of high-priority frames between channels, or specify the priority link or maximum queuing size of each base station. At this time, it may be performed based on the congestion status or PER of the channels used by the base stations 2a and 2b.
実施の形態4
 図12は、本開示の実施の形態4に係る無線通信システムの構成例を示す図である。実施の形態4に係る無線通信システムは、特定の基地局と特定の端末の間で優先リンクを同期させている点が、実施の形態1と異なる。
Embodiment 4
FIG. 12 is a diagram illustrating a configuration example of a wireless communication system according to Embodiment 4 of the present disclosure. The wireless communication system according to the fourth embodiment differs from the first embodiment in that priority links are synchronized between a specific base station and a specific terminal.
 無線通信システム400は、基地局2及び端末16を備える。基地局2と端末16は、優先リンクが同期するように設定されている。すなわち、無線通信システム400は、無線通信システム100について、優先リンクを同期させた場合の構成を示している。 The wireless communication system 400 includes a base station 2 and a terminal 16. The base station 2 and the terminal 16 are set so that their priority links are synchronized. That is, the wireless communication system 400 shows the configuration of the wireless communication system 100 when priority links are synchronized.
 優先リンクを同期させる方法として、基地局2が、選択した優先リンク及び最大キューイングサイズを、端末16に通知する方法を例示できる。また、設定時間が経過するごとに、基地局2及び端末16のそれぞれが、優先リンクとなるリンク番号を変更する方法を例示することもできる。この場合、基地局2と端末16の間で、リンク番号、優先リンク選択開始時間及び優先リンク設定期間といった条件を、事前に一致させておく必要がある。 An example of a method for synchronizing priority links is a method in which the base station 2 notifies the terminal 16 of the selected priority link and maximum queuing size. Alternatively, a method may be exemplified in which each of the base station 2 and the terminal 16 changes the link number to be a priority link every time a set time elapses. In this case, it is necessary to match conditions such as link number, priority link selection start time, and priority link setting period between the base station 2 and the terminal 16 in advance.
 また、複数の基地局あるいはUpper MACを束ねるコントローラを用いる構成の無線通信システムであれば、コントローラを用いて優先リンクを同期させる方法が例示できる。この場合、優先リンク及び最大キューイングサイズの情報を、コントローラから各基地局、各基地局から各端末に通知する方法が考えられる。また、優先リンク及び最大キューイングサイズの情報を、コントローラから、各基地局及び各端末の両方に通知する方法も考えられる。 Further, in the case of a wireless communication system configured to use a controller that bundles a plurality of base stations or Upper MACs, an example of a method is to synchronize priority links using the controller. In this case, a method may be considered in which information on priority links and maximum queuing size is notified from the controller to each base station, and from each base station to each terminal. Alternatively, a method may be considered in which the controller notifies both each base station and each terminal of information on the priority link and maximum queuing size.
 2、2a、2b 基地局
 6 パケット
 8、8a、8b、8c キュー
 16、16a、16b、16c 端末
 46 コントローラ
 100、200、300、400、500、600 無線通信システム
2, 2a, 2b base station 6 packet 8, 8a, 8b, 8c queue 16, 16a, 16b, 16c terminal 46 controller 100, 200, 300, 400, 500, 600 wireless communication system

Claims (10)

  1.  マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、前記基地局と前記端末とが複数のリンクを介して通信するように構成された無線通信システムであって、
     前記基地局は、
     上位レイヤで発生したパケットを受信するUpper MACと、
     前記リンク毎に存在するLower MACと、を備え、
     前記リンクのうち少なくとも一つを、最大キューイングサイズを設定された前記Lower MACを含む優先リンクとして用いる処理と、
     前記パケットの優先度が低く、前記優先リンクが最大キューイングサイズに達している場合、前記優先リンク以外を該パケットの振り分け先リンクの候補とする処理と、
     所定の処理により、該パケットの振り分け先リンクを決定する処理と、
     該パケットを、前記Upper MACから、前記振り分け先リンクのLower MACに送信させる処理と、
     該Lower MACが有するパケットを、前記リンクを介して前記端末に送信させる処理と、
     を実行するように構成された無線通信システム。
    A wireless communication system comprising a base station having a multi-link function and a terminal having a multi-link function, the base station and the terminal communicating through a plurality of links,
    The base station is
    an Upper MAC that receives packets generated in the upper layer;
    Lower MAC that exists for each link,
    a process of using at least one of the links as a priority link including the Lower MAC to which a maximum queuing size is set;
    If the priority of the packet is low and the priority link has reached a maximum queuing size, a process of setting a link other than the priority link as a candidate link to which the packet is to be distributed;
    A process of determining a link to which the packet is to be distributed by a predetermined process;
    a process of transmitting the packet from the Upper MAC to the Lower MAC of the distribution destination link;
    a process of transmitting a packet possessed by the Lower MAC to the terminal via the link;
    A wireless communications system configured to perform.
  2.  前記所定の処理が、
     前記振り分け先リンクの候補から、最も待ち時間が少ないリンクを選択する処理である
     請求項1に記載の無線通信システム。
    The predetermined process is
    The wireless communication system according to claim 1, wherein the process selects a link with the shortest waiting time from the candidates for the allocation destination link.
  3.  前記優先リンクが、送信遅延時間またはPERに基づいて決定される、請求項1に記載の無線通信システム。 The wireless communication system according to claim 1, wherein the priority link is determined based on transmission delay time or PER.
  4.  前記最大キューイングサイズが、
     前記優先リンクに収容できる既定の最大パケット数または前記基地局と前記端末との通信に関する統計量に基づいて決定される、
     請求項1に記載の無線通信システム。
    The maximum queuing size is
    determined based on a predetermined maximum number of packets that can be accommodated in the priority link or statistics regarding communication between the base station and the terminal;
    The wireless communication system according to claim 1.
  5.  前記優先リンク及び前記最大キューイングサイズが、一定時間ごとに更新される
     請求項1に記載の無線通信システム。
    The wireless communication system according to claim 1, wherein the priority link and the maximum queuing size are updated at regular intervals.
  6.  前記端末が、複数の端末を含み、
     前記基地局が、前記複数の端末と無線通信を行う
     請求項1に記載の無線通信システム。
    the terminal includes a plurality of terminals,
    The wireless communication system according to claim 1, wherein the base station performs wireless communication with the plurality of terminals.
  7.  前記基地局が、複数の基地局を含み、
     前記複数の基地局を制御するコントローラを備え、
     前記コントローラが、前記優先リンクまたは前記最大キューイングサイズを指定する
     請求項1に記載の無線通信システム。
    the base station includes a plurality of base stations,
    comprising a controller that controls the plurality of base stations,
    The wireless communication system of claim 1, wherein the controller specifies the priority link or the maximum queuing size.
  8.  前記端末が備える優先リンクが、前記基地局と同期する
     請求項1に記載の無線通信システム。
    The wireless communication system according to claim 1, wherein a priority link included in the terminal is synchronized with the base station.
  9.  マルチリンク機能を有する基地局とマルチリンク機能を有する端末とを備え、前記基地局と前記端末とが複数のリンクを介して通信するように構成された無線通信システムが行う無線通信方法であって、
     前記基地局は、
     上位レイヤで発生したパケットを受信するUpper MACと、
     前記リンク毎に存在するLower MACと、を備え、、
     前記Lower MACのうち少なくとも一つを、最大キューイングサイズを設定された前記Lower MACを含む優先リンクとして用いる工程と、
     前記パケットの優先度が低く、前記優先リンクが最大キューイングサイズに達している場合、前記優先リンク以外を該パケットの振り分け先リンクの候補とする工程と、
     所定の処理により、該パケットの振り分け先リンクを決定する工程と、
     該パケットを、前記Upper MACから、前記振り分け先リンクのLower MACに送信させる工程と、
     該Lower MACが有するパケットを、前記リンクを介して前記端末に送信させる工程と
     を備える無線通信方法。
    A wireless communication method carried out by a wireless communication system comprising a base station having a multi-link function and a terminal having a multi-link function, the base station and the terminal communicating through a plurality of links, ,
    The base station is
    an Upper MAC that receives packets generated in the upper layer;
    a Lower MAC that exists for each link;
    using at least one of the Lower MACs as a priority link including the Lower MAC set with a maximum queuing size;
    If the priority of the packet is low and the priority link has reached a maximum queuing size, selecting a link other than the priority link as a candidate link to which the packet is to be distributed;
    determining a link to which the packet is to be distributed by a predetermined process;
    transmitting the packet from the Upper MAC to the Lower MAC of the distribution destination link;
    A wireless communication method comprising: transmitting a packet possessed by the Lower MAC to the terminal via the link.
  10.  上位レイヤで発生したパケットを受信するUpper MACと、
     リンク毎に存在するLower MACと
     を備え、
     前記Lower MACのうち少なくとも一つを、最大キューイングサイズを設定された前記Lower MACを含む優先リンクとして用いる機能と、
     前記パケットの優先度が低く、前記優先リンクが最大キューイングサイズに達している場合、前記優先リンク以外を該パケットの振り分け先リンクの候補とする機能と、
     所定の処理により、該パケットの振り分け先リンクを決定する機能と、
     該パケットを、前記Upper MACから、前記振り分け先リンクのLower MACに送信させる機能と、
     前記Lower MACが有するパケットを、前記リンクを介して送信させる機能と
     を備える無線通信装置。
    an Upper MAC that receives packets generated in the upper layer;
    Equipped with a Lower MAC that exists for each link,
    a function of using at least one of the Lower MACs as a priority link including the Lower MAC to which a maximum queuing size is set;
    If the priority of the packet is low and the priority link has reached a maximum queuing size, a function that selects a link other than the priority link as a candidate link to which the packet is to be distributed;
    a function that determines a link to which the packet is to be distributed through predetermined processing;
    a function of transmitting the packet from the Upper MAC to the Lower MAC of the distribution destination link;
    A wireless communication device comprising: a function of transmitting a packet possessed by the Lower MAC via the link.
PCT/JP2022/027259 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device WO2024013801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027259 WO2024013801A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027259 WO2024013801A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device

Publications (1)

Publication Number Publication Date
WO2024013801A1 true WO2024013801A1 (en) 2024-01-18

Family

ID=89536271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027259 WO2024013801A1 (en) 2022-07-11 2022-07-11 Wireless communication system, wireless communication method, and wireless communication device

Country Status (1)

Country Link
WO (1) WO2024013801A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295270A (en) * 2005-04-06 2006-10-26 Sharp Corp Data transmitter-receiver and method of controlling buffer queue
JP2019054381A (en) * 2017-09-14 2019-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting device and transmitting method
US20190150214A1 (en) * 2017-01-19 2019-05-16 Qualcomm Incorporated Packet based link aggregation architectures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295270A (en) * 2005-04-06 2006-10-26 Sharp Corp Data transmitter-receiver and method of controlling buffer queue
US20190150214A1 (en) * 2017-01-19 2019-05-16 Qualcomm Incorporated Packet based link aggregation architectures
JP2019054381A (en) * 2017-09-14 2019-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting device and transmitting method

Similar Documents

Publication Publication Date Title
US8477689B2 (en) System and methods for distributed medium access control and QOS scheduling in mobile ad-hoc networks
CN109561513B (en) Distributed conflict-free ad hoc network multiple access protocol
KR100630192B1 (en) MAC protocol layer module of mobile terminal in MANET and method for transmitting/receiving frame thereof
US10932281B2 (en) Dynamic scheduling method for guaranteeing quality of service depending on network transmission traffic in large-scale IOT environment and system using the same
CN100581290C (en) Voice packet scheduling method for wireless local area network
US7512089B2 (en) MAC layer protocol for a wireless DSL network
WO2016136725A1 (en) Wireless communication system, wireless communication method, wireless lan base station device, and wireless lan terminal device
EP1947897B1 (en) Wireless base station apparatus capable of effectively using wireless resources according to sorts of data
JP2008541565A (en) Resource allocation in wireless networks with multiple access points
CN109618375B (en) UAV ad hoc network time slot scheduling method based on service priority and channel interruption probability
US10986629B2 (en) Apparatus and method for scheduling communications in a wireless communication system
JP2000253017A (en) Radio packet control station
WO2013170785A1 (en) Systems and methods to provision quality of service sensitive devices in wireless local area networks
US7477630B2 (en) Transmission controller used in media access control processing apparatus and transmission controlling method thereof
CN101577938A (en) Method and system for wireless mesh network congestion control and base stations
JP4335219B2 (en) Wireless LAN traffic priority control method and apparatus
EP4231745A1 (en) Base station and terminal
KR100783043B1 (en) Data transmission method, system, base station, subscriber station, data processing unit, computer program distribution medium and baseband module
EP4231552A1 (en) Transmission station and reception station
WO2006050664A1 (en) System and method for controlling access to a wireless medium
WO2024013801A1 (en) Wireless communication system, wireless communication method, and wireless communication device
WO2024013804A1 (en) Wireless communication system, wireless communication method, and wireless communication device
WO2024013810A1 (en) Wireless communication system, wireless communication method, and wireless communication device
US20230269804A1 (en) Base station and terminal apparatus
WO2024038550A1 (en) Wireless communication system, wireless communication method, and wireless communication control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951021

Country of ref document: EP

Kind code of ref document: A1