WO2024012594A1 - 一种用于近视理疗的红光照射装置以及红光照射方法 - Google Patents

一种用于近视理疗的红光照射装置以及红光照射方法 Download PDF

Info

Publication number
WO2024012594A1
WO2024012594A1 PCT/CN2023/107773 CN2023107773W WO2024012594A1 WO 2024012594 A1 WO2024012594 A1 WO 2024012594A1 CN 2023107773 W CN2023107773 W CN 2023107773W WO 2024012594 A1 WO2024012594 A1 WO 2024012594A1
Authority
WO
WIPO (PCT)
Prior art keywords
red light
light irradiation
component
ocular surface
fundus
Prior art date
Application number
PCT/CN2023/107773
Other languages
English (en)
French (fr)
Inventor
和超
常献刚
卢鹏
李达
任文斌
姜欣
李春
Original Assignee
北京鹰瞳科技发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京鹰瞳科技发展股份有限公司 filed Critical 北京鹰瞳科技发展股份有限公司
Publication of WO2024012594A1 publication Critical patent/WO2024012594A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0642Irradiating part of the body at a certain distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • A61N2005/0663Coloured light

Definitions

  • the present disclosure generally relates to the technical field of myopia physiotherapy. More specifically, the present disclosure relates to a red light irradiation device and a red light irradiation method for myopia physiotherapy.
  • the method generally recognized by the domestic medical community is to delay the progression of myopia by irradiating the fundus with low-intensity red light.
  • the main components of a low-intensity red light irradiation device are two lens barrels, each of which illuminates the pupil of one eye.
  • the movement of the eyeball relative to the red light irradiation lens tube can be in multiple directions. Movement in each direction will cause the intensity and distribution of the light entering the pupil to illuminate the fundus to change, thus deviating from the ideal value.
  • red light irradiation equipment requires users to manually or electrically adjust the relative position between the eyeball and the red light irradiation lens barrel or the interpupillary distance of the eyeball. This makes the traditional red light irradiation equipment low in intelligence and reduces the risk of irradiation. efficiency, but also affects the irradiation effect.
  • the solution of the present disclosure provides a red light irradiation device for myopia physiotherapy.
  • the red light irradiation component can be automatically moved in one or more movement directions to irradiate the fundus with red light.
  • the present disclosure provides solutions in multiple aspects as follows.
  • the present disclosure provides a red light irradiation device for myopia physiotherapy, which includes: a red light irradiation component for irradiating the fundus with red light for myopia physiotherapy; and a positioning component for collecting the ocular surface. image, and determine positioning information based on the ocular surface image; and a mobile component, which includes at least one mobile platform, the mobile platform moves along a movement direction corresponding to it, the mobile component operates to, based on the positioning information, in The red light irradiation component is moved in at least one movement direction, so that the red light irradiation component irradiates the fundus with red light.
  • the positioning component includes: at least two cameras, which are used to collect ocular surface images from different angles; and an image analysis module, which is used to: analyze the ocular surface images from different angles. , to obtain ocular surface characteristics; and determine the positioning information based on the ocular surface characteristics.
  • the ocular surface characteristics include the position, orientation, shape and/or size of the pupil or iris.
  • the image analysis module includes a neural network model.
  • the moving assembly includes a plurality of moving platforms, wherein the plurality of moving platforms are slidingly connected to each other and the plurality of moving platforms operate to move the red light along respective corresponding moving directions.
  • the irradiation component is used to irradiate the fundus of the eye with red light.
  • the plurality of mobile platforms include a first mobile platform, a second mobile platform and a third mobile platform, wherein the red light irradiation component is arranged on the first mobile platform, and the third mobile platform 1.
  • the second and third mobile platforms are slidingly connected, and the first, second and third mobile platforms are operated to move the red light irradiation component along their corresponding moving directions to achieve the fundus of the eye. Red light exposure.
  • the red light irradiation component at least includes a red light source and a lens set, and the red light source is used to provide red light; the lens set is used to irradiate the red light to the fundus of the eye, To illuminate the fundus with red light.
  • the light source power range of the red light irradiation component is 0.1mw to 1.7mw.
  • the spectrum of the red light source is narrow-band red light or infrared light, with a central wavelength between Within the range of 630nm-850nm, the width of the spectrum does not exceed 20nm.
  • the red light irradiation device further includes a control circuit for controlling the moving component to operate to move the red light irradiation component in at least one direction based on the positioning information, so as to make the The red light irradiation component realizes red light irradiation of the fundus.
  • the present disclosure also provides a red light irradiation method for myopia physiotherapy, including: collecting an ocular surface image, and determining positioning information based on the ocular surface image; and based on the positioning information, in at least one Move the red light irradiation component in the direction so that the red light irradiation component can illuminate the fundus with red light.
  • collecting ocular surface images and determining positioning information based on the ocular surface images includes: using at least two cameras to collect ocular surface images from different angles; using an image analysis module to analyze the ocular surface images from different angles. The ocular surface image is analyzed to obtain the ocular surface characteristics; and the positioning information is determined based on the ocular surface characteristics.
  • the red light irradiation component can be automatically moved in at least one movement direction to irradiate the fundus with red light, which greatly improves the irradiation efficiency. Further, embodiments of the present disclosure obtain positioning information in real time through the positioning component, and control the moving component to move the red light irradiation component in at least one moving direction in real time based on the positioning information through the control circuit. Based on this, the red light irradiation component can be adjusted to the ideal position accurately and timely to ensure a good irradiation effect.
  • Figures 1a-1f are exemplary schematic diagrams showing differences in illumination effects corresponding to several different relative positions
  • Figure 2 is an exemplary structural block diagram showing a red light irradiation device for myopia physiotherapy according to an embodiment of the present disclosure
  • FIG. 3 is an exemplary schematic diagram illustrating a red light irradiation assembly according to an embodiment of the present disclosure
  • Figure 4 is an exemplary schematic diagram illustrating a red light irradiation device according to an embodiment of the present disclosure
  • Figure 5 is another exemplary schematic diagram showing a red light irradiation device according to an embodiment of the present disclosure
  • Figure 6 is a schematic structural diagram showing an exemplary red light irradiation device for binocular myopia physiotherapy according to an embodiment of the present disclosure
  • Figure 7 is another exemplary structural block diagram showing a red light irradiation device for myopia physiotherapy according to an embodiment of the present disclosure.
  • FIG. 8 is an exemplary flow chart illustrating a red light irradiation method for myopia physiotherapy according to an embodiment of the present disclosure.
  • the movement of the eyeball relative to the red light irradiation lens barrel can be in multiple directions. Movement in each direction will cause the intensity and distribution of the light entering the pupil to illuminate the fundus to change, thus deviating from the ideal value. , thereby reducing the irradiation effect.
  • doctors usually design the best irradiation effect to control the red light irradiating the fundus.
  • the relative position between the eyeball and the lens of the red light illumination device is fixed. In this scenario, if the aforementioned relative position changes, the illumination effect will be different and degraded. The differences in illumination effects corresponding to several different relative positions will be described below with reference to Figures 1a to 1f.
  • Figures 1a-1f are exemplary schematic diagrams showing differences in illumination effects corresponding to several different relative positions.
  • the relative position, direction and distance between the red light irradiation lens barrel 101 and the eyeball 102 are ideal, that is, the central axis of the red light irradiation lens tube 101 coincides with the central axis of the eye surface (such as the pupil) 105 , the central axis is perpendicular to the tangent plane of the eye surface (such as the pupil) 105, and the distance between the red light irradiation lens barrel 101 and the eye surface (such as the pupil) 105 makes the red light energy falling on the fundus of the eye (that is, the effective use of red light rate) reaches the design expectation threshold.
  • red light is provided by the red light source 103 in the red light irradiation lens barrel 101 and irradiated to the ocular surface (eg pupil) 105 and fundus 106 through the front lens group (eg lens or plane mirror) 104 .
  • the energy and energy distribution of the red light falling into the fundus 106 or ocular surface 105 are ideal. That is, the irradiation effect is the best.
  • the relative direction and distance between the red light irradiation lens barrel 101 and the eyeball 102 shown in Figure 1b remains unchanged, but the relative position deviates, such as the ocular surface (such as the pupil) 105 Move upward a certain distance relative to the central axis of the red light irradiation lens barrel 101 .
  • the energy and energy distribution of the red light falling into 106 or the ocular surface 105 will be less, resulting in a reduced illumination effect.
  • the relative position and direction between the red light irradiating lens barrel 101 and the eyeball 102 shown in Figure 1c remains unchanged, but the relative distance changes.
  • the red light irradiating lens barrel 101 and the eyeball 102 The distance between eyeballs 102 increases.
  • the energy and energy distribution of the red light falling into the fundus 106 or ocular surface 105 will also be less, resulting in a reduction in the illumination effect.
  • the relative position and distance between the red light irradiation lens barrel 101 and the eyeball 102 shown in Figure 1d remains unchanged, but the relative direction changes, such as the ocular surface (such as the pupil 105) Shift upward so that the angle between the central axis of the red light irradiation lens barrel 101 and the tangent plane of the eye surface (eg pupil) 105 is greater than 90°.
  • the energy and energy distribution of the red light falling into the fundus 106 or ocular surface 105 is less, resulting in a reduced illumination effect.
  • Figure 1e shows the relative position of the eyes, such as the interpupillary distance.
  • the energy and energy distribution of the red light falling into the fundus or ocular surface will be less, resulting in a reduction in the illumination effect.
  • the pupil size will also affect the illumination effect, such as shown in Figure 1f.
  • the relative position, direction and distance between the red light irradiation lens barrel 101 and the eyeball 102 shown in Figure 1f remain unchanged, but the pupil 105 is smaller. In this case, the ability of the red light to pass through the pupil and enter the fundus of the eye is reduced, resulting in a reduction in the illumination effect.
  • red light irradiation equipment requires the user to manually or electrically adjust the relative position and distance between the eyeball and the red light irradiation lens barrel, or the interpupillary distance of the eyeball, so that the relative position, distance or interpupillary distance is ideal. value, which greatly reduces the irradiation efficiency.
  • relative position, distance or interpupillary distance are only relatively simple situations in XYZ direction movement, and more complex situations (such as direction changes, pupil size) cannot be achieved by traditional red light irradiation equipment. Based on this, the disclosed solution provides a red light irradiation device to improve the irradiation efficiency and accurately and timely adjust the red light irradiation component to an ideal position to ensure a good irradiation effect.
  • the red light irradiation device of the embodiment of the present disclosure will be described in detail below with reference to FIGS. 2-8 .
  • FIG. 2 is an exemplary structural block diagram illustrating a red light irradiation device 200 for myopia physiotherapy according to an embodiment of the present disclosure.
  • the red light irradiation device 200 may include a red light irradiation component 201 , a positioning component 202 and a moving component 203 .
  • the aforementioned red light irradiation component 201, positioning component 202 and moving component 203 will be described in detail below respectively.
  • the above-mentioned red light irradiation component 201 can be used to irradiate the fundus with red light.
  • the red light illumination component 201 may include but is not limited to a red light source and a lens assembly.
  • the aforementioned red light source can be used to provide red light. Its light source power range is, for example, 0.1mw to 1.7mw.
  • the spectrum is narrow-band red light or infrared light. Its central wavelength is in the range of 630nm-850nm.
  • the width of the spectrum (full width at half maximum) ) does not exceed 20nm to illuminate the surface of the eyeball (i.e. ocular surface) or fundus.
  • the aforementioned lens group may include a front lens group and a rear lens group, and each of the front lens group and the rear lens group may include one or more lenses (such as convex lenses and/or concave lenses) or plane mirrors.
  • the aforementioned front lens group is arranged in front of the red light source, and the rear lens group is arranged behind the red light source to illuminate the fundus with red light, thereby irradiating the fundus with red light.
  • the above-mentioned positioning component 202 can be used to collect ocular surface images and determine positioning information based on the ocular surface images.
  • the positioning component 202 may include at least two cameras and an image analysis module.
  • the aforementioned at least two cameras can be arranged on both sides of the above-mentioned red light irradiation component 201.
  • the specific positions of the two cameras on the red light irradiation component 201 and the angles relative to the red light irradiation component 201 can be determined according to the actual scene. To set, this disclosure does not limit this.
  • the aforementioned at least two cameras can be used to respectively collect ocular surface images from different angles.
  • the ocular surface images from different angles can be analyzed through the aforementioned image analysis module to obtain ocular surface characteristics, and then positioning information is determined based on the ocular surface characteristics.
  • the image analysis module can first detect two ocular surface images from different angles to obtain the ocular surface characteristics. Next, the spatial position of the ocular surface feature is calculated based on the position difference of the same detected ocular surface feature on the two ocular surface images, so as to determine the positioning information based on the spatial position of the ocular surface feature. Based on the determined positioning information, the deviation distance of each direction relative to the ocular surface features can be reflected. Therefore, the red light irradiation component 201 can be moved in one or more moving directions based on the deviation distance of each direction relative to the ocular surface features, so as to adjust the red light irradiation component 201 to the target position to illuminate the fundus of the eye.
  • the above-mentioned image analysis module may include but is not limited to a neural network model, for example, it may also be a computer vision model.
  • the above-mentioned ocular surface characteristics may include, but are not limited to, the position, direction, shape and/or size of the pupil or iris.
  • the above-mentioned mobile component 203 may include at least one mobile platform that moves along a corresponding movement direction, and the mobile component 203 operates to move the red light illumination in at least one movement direction based on the positioning information. component so that the red light irradiation component can irradiate the fundus with red light.
  • the aforementioned mobile component 203 may include multiple mobile platforms, wherein the multiple mobile platforms are slidingly connected and the multiple mobile platforms operate to move the red light irradiation component along their corresponding moving directions to achieve fundus irradiation. Irradiate with red light.
  • the aforementioned plurality of mobile platforms may include, for example, a first mobile platform, a second mobile platform, and a third mobile platform.
  • the first, second and third moving platforms are slidingly connected and the red light irradiation assembly is arranged on the first moving platform.
  • the first, second and third moving platforms are operated to move the red light along respective corresponding moving directions. Illumination component to achieve red light irradiation of the fundus.
  • the above-mentioned first mobile platform may be arranged on the second mobile platform, and move on the second mobile platform via the first transmission mechanism to move the red light irradiation assembly in the first direction.
  • the aforementioned first transmission mechanism may include a first transmission and a first transmission lane, the first transmission lane being arranged on the second moving platform and extending along the first direction.
  • the aforementioned first actuator can be used to drive the first moving platform to move on the first transmission track to move the red light irradiation component in the first direction.
  • the aforementioned first transmission track may be arranged on the second moving platform and extend in the vertical direction of the plane where the second moving platform is located. In this case, the first transmission mechanism drives the first moving platform to move in the vertical direction along the plane where the second moving platform is located, so as to move the red light irradiation component in the first direction (for example, Z direction).
  • the above-mentioned second mobile platform is arranged above the third mobile platform via the second transmission mechanism, and moves above the third mobile platform via the second transmission mechanism to move the red light irradiation assembly in the second direction.
  • the aforementioned second transmission mechanism may include a second transmission and a second transmission track, and the second transmission track extends along the second direction.
  • the aforementioned second actuator can be used to drive the second mobile platform to move on the second transmission path to move the red light irradiation component in the second direction.
  • the aforementioned second transmission channel Can be arranged vertically on the third mobile platform. In this case, the second actuator drives the second moving platform to move vertically above the third moving platform to move the red light irradiation component in the second direction (for example, Y direction).
  • the above-mentioned third moving platform can move on, for example, a base via a third transmission mechanism to move the red light irradiation component in the third direction.
  • the aforementioned third transmission mechanism may include a third transmission and a third transmission lane, the third transmission lane is arranged on the base, and the third transmission lane extends along the third direction.
  • the third actuator can drive the third mobile platform to move on the third transmission lane to move the red light irradiation component in the third direction.
  • the aforementioned third transmission channel may extend along the horizontal direction of the plane where the base is located.
  • the third transmission mechanism drives the third mobile platform to move in the horizontal direction of the plane where the third mobile platform is located, so as to move the red light irradiation component in the third direction (for example, the X direction).
  • the first, second, and third actuators may be, for example, motors or electromagnets
  • the first, second, and third transmission paths may be, for example, slideways, slide rails, or slide rods.
  • the first and second mobile platforms or sliding brackets are driven by the motor (or electromagnetic) to move on the corresponding slideway (or slide rail or slide rod) to realize one or more positions based on the positioning information determined by the positioning component.
  • Move the red light irradiation component independently and automatically in the direction.
  • the red light irradiation device of the embodiment of the present disclosure will be described in detail later with reference to FIGS. 3-8 .
  • the embodiment of the present disclosure can automatically align the red light irradiation source with the ocular surface (such as the pupil, iris), thereby effectively improving the fundus red light irradiation.
  • the utilization rate can significantly improve the effect of myopia physiotherapy.
  • the positioning component collects the ocular surface image to determine the positioning information, and the moving component automatically realizes moving the red light irradiation component in one or more moving directions based on the determined positioning information.
  • the aforementioned mobile component may include at least one mobile platform, such as a first, a second and a third mobile platform.
  • the red light irradiation component By arranging the red light irradiation component on the first moving platform and slidingly connecting the first, second and third moving platforms to move the red light irradiation component along respective corresponding movement directions, red light on the fundus of the eye is achieved. irradiation. Further, the aforementioned at least one mobile platform operates to drive the first mobile platform, the second mobile platform and the third mobile platform via corresponding transmission mechanisms (such as the first, second and third transmission mechanisms) based on the positioning information obtained in real time by the positioning component.
  • the three-movement platform independently and automatically moves the red light irradiation component in one or more directions in the XYZ direction to irradiate the fundus with red light. Based on this, not only can the irradiation efficiency be greatly improved, but the red light irradiation component can also be accurately and timely adjusted to the target position to ensure a good irradiation effect.
  • FIG. 3 is an exemplary schematic diagram illustrating a red light illumination assembly according to an embodiment of the present disclosure.
  • the red light irradiation assembly 201 of the embodiment of the present disclosure may include a red light source 301 and a front lens group 302 .
  • the red light source 301 is used to provide red light. Its light source power range is, for example, 0.1mw to 1.7mw.
  • the spectrum is narrow-band red light or infrared light. Its central wavelength is in the range of 630nm-850nm.
  • the width of the spectrum (full width at half maximum) does not exceed 20 nm to illuminate the surface of the eye (i.e., the ocular surface) or the fundus.
  • the front lens group 302 may include one or more lenses (such as convex lenses and/or concave lenses) or plane mirrors to achieve red light illumination of the fundus.
  • a positioning component is provided around the red light irradiation component 201, and the positioning component may include at least two cameras and an image analysis module (not shown in the figure).
  • the figure exemplarily shows two cameras 303, which are respectively disposed on both sides of the red light irradiation component 201 for collecting ocular surface images from different angles.
  • the aforementioned two cameras 303 can each collect an ocular surface image.
  • the two ocular surface images can be analyzed through the image analysis module to obtain the ocular surface characteristics (such as the position, direction, shape and/or size of the pupil or iris), and then determine based on the ocular surface characteristics.
  • Positioning information The aforementioned two cameras 303 can each collect an ocular surface image.
  • the two ocular surface images can be analyzed through the image analysis module to obtain the ocular surface characteristics (such as the position, direction, shape and/or size of the pupil or iris), and then determine based on the ocular surface characteristics. Positioning information.
  • the red light irradiation component is automatically moved in at least one movement direction based on the determined positioning information via the moving component, so that the red light irradiation component is aligned with the eyeball 102 and is in the target position or ideal state, thereby achieving good results. irradiation effect.
  • the red light irradiation device may include a mobile component, and the mobile component may include at least one mobile platform.
  • the figure exemplarily shows three mobile platforms, namely a first mobile platform 401 and a second mobile platform. 402 and the third mobile platform 403.
  • the red light irradiation device also includes a red light irradiation component, and the red light irradiation component may include a red light source 301 and a front lens group 302 (that is, the front lens group 104 shown in the above-mentioned Figures 1a-1f) .
  • the aforementioned red light irradiation component can be arranged on the first mobile platform 401, the first mobile platform 401 can be arranged on the second mobile platform 402, and the positioning components 202 are arranged on both sides of the red light irradiation component.
  • the first moving platform 401 can be driven by the first transmission mechanism to move in the vertical direction along the plane where the second moving platform 402 is located, so as to move the red light irradiation assembly in the first direction (eg, Z direction).
  • the above-mentioned second mobile platform 402 can be arranged above the third mobile platform 403 via the second transmission assembly, and drive the second mobile platform 402 to move in a direction perpendicular to the third mobile platform 403 via the second transmission mechanism, to move the red light irradiation component in a second direction (eg, Y direction).
  • the third moving platform 403 can also be driven to move in the horizontal direction along the base through the third transmission mechanism to move the red light irradiation assembly in the third direction (for example, the X direction).
  • the red light irradiation component can be moved in one or more directions, such as the XYZ direction, to irradiate the fundus of the eyeball 102 with red light.
  • Figure 4 shows red light irradiation on the fundus of a single eyeball.
  • the red light irradiation component can be moved in one or more directions to illuminate the fundus of both eyes with red light, for example, as shown in FIG. 5 .
  • FIG. 5 is another exemplary schematic diagram illustrating a red light irradiation device according to an embodiment of the present disclosure.
  • the red light irradiation device according to the embodiment of the present disclosure may include two sets of moving components, two sets of red light irradiation components, and two sets of positioning components 202 .
  • Each of the aforementioned sets of mobile components may include at least one mobile platform.
  • the figure exemplarily shows three mobile platforms, namely the first mobile platform 401, the second mobile platform 402, and the third mobile platform 403.
  • Each of the aforementioned red light irradiation components may include a red light source 301 and a front lens group 302 .
  • each group of the aforementioned red light irradiation components is arranged on the first moving platform 401 in each group of moving components, and the first moving platform 401 is arranged on the second moving platform 402 in each moving component.
  • a set of positioning assemblies 202 are respectively arranged on both sides of each set of red light irradiation assemblies.
  • the second mobile platform 402 is arranged above the third mobile platform 403 in each mobile assembly based on the respective third transmission mechanism (not shown in the figure).
  • two sets of moving components can be jointly arranged on a base (for example, as shown in Figure 6).
  • each group of moving components can move the red light irradiation component in one or more directions in the XYZ direction to illuminate the fundus of both eyes with red light.
  • the positioning of the fundus of both eyes takes into account not only the relative position, distance, direction change and pupil size between the single eyeball and the red light irradiation component, but also the interpupillary distance between the two eyes. To ensure the effect of red light illumination.
  • FIG. 4 For more details about each movement direction, reference may be made to the description of FIG. 4 , which will not be described again in this disclosure.
  • FIG. 6 is a schematic structural diagram showing an exemplary red light irradiation device for binocular myopia physiotherapy according to an embodiment of the present disclosure. It should be understood that the red light irradiation device shown in FIG. 6 is a specific embodiment of the red light irradiation device in FIG. 5 , so the above description about FIG. 5 is also applicable to FIG. 6 .
  • the red light irradiation device of the embodiment of the present disclosure may include two sets of moving components, two sets of red light irradiation components and two sets of positioning modules.
  • Each set of mobile components may include at least one mobile platform.
  • the figure illustrates three mobile platforms, namely the first mobile platform 401, the second mobile platform 402 and the third mobile platform 403, and the red light irradiation component may It includes a red light source 301, a front lens group 302 and a rear lens group 601.
  • the aforementioned positioning modules may each include two cameras 602 (that is, the two cameras 303 shown in FIG. 3 above), which are respectively arranged on both sides of each group of red light irradiation components to collect ocular surface images and determine positioning information. .
  • each group of red light irradiation components can be arranged on the first moving platform 401, and the first moving platform 401 is arranged on the second moving platform 402, and is driven to move on the second moving platform 402 through the first transmission mechanism.
  • the first transmission mechanism may include a first actuator (such as an electromagnetic or motor, not shown in the figure) and a first transmission track (such as a slide track) 603, and the first transmission track 603 is along
  • the second mobile platform 402 extends in the vertical direction of the plane.
  • the first actuator drives the first mobile platform 401 to move on the first transmission channel 603 to move the red light irradiation component in the first direction (such as the Z direction, as shown by arrow A). .
  • the second moving platform 402 of each group of moving assemblies is arranged on the first On the third mobile platform 403.
  • the second transmission mechanism may include a second transmission (such as an electromagnetic or motor, not shown in the figure) and a second transmission path (such as a sliding rod) 604, and the second transmission path 604 is vertical It is arranged on the third moving platform 403, and a top plate 605 can also be provided on the top of the second transmission channel 604.
  • the aforementioned second actuator can drive the second moving platform 402 to move on the second transmission lane 604 to move the red light irradiation component in the second direction (for example, Y direction, as shown by arrow B).
  • the third transmission mechanism can be used to drive the two sets of third mobile platforms 403 to move in the horizontal direction along the plane where the base 606 is located.
  • the third transmission mechanism may include a third transmission (such as an electromagnetic or motor, not shown in the figure) and a third transmission path (such as a slide) 607, and the third transmission path 607 is arranged on the aforementioned base 606 and extending in the horizontal direction of the plane where the base 606 is located.
  • the aforementioned third actuator drives the third mobile platform 403 to move on the third transmission channel 607 to move the red light irradiation component in the third direction (for example, the X direction, as shown by arrow C).
  • first, second and third mobile platforms in FIG. 6 is only exemplary, and the first, second and third mobile platforms are arranged relative to the first, second and third directions.
  • the movement is only illustrative and not limiting. Based on the different arrangements of the first, second and third mobile platforms, the corresponding movement directions will be different.
  • the second mobile platform can also be arranged to move in the third direction, which is not limited to the embodiment of the present disclosure. Move in the second direction.
  • the red light irradiation device in the embodiment of the present disclosure may further include a control circuit, which may be used to control the moving component to operate to move the red light irradiation component in at least one direction based on the positioning information, so that The red light irradiation component is used to irradiate the fundus with red light.
  • a control circuit which may be used to control the moving component to operate to move the red light irradiation component in at least one direction based on the positioning information, so that The red light irradiation component is used to irradiate the fundus with red light.
  • FIG. 7 is another exemplary structural block diagram showing a red light irradiation device for myopia physiotherapy according to an embodiment of the present disclosure.
  • the red light irradiation device 200 of the embodiment of the present disclosure may include a red light irradiation component 201 , a positioning component 202 , a moving component 203 and a control circuit 701 .
  • the aforementioned red light irradiation component 201 may include a front lens group and a red light source;
  • the aforementioned moving component 203 may include a plurality of first, second and third moving platforms;
  • the aforementioned positioning component 202 may include at least two Camera and image analysis module.
  • Each camera can be arranged around or on both sides of the red light irradiation component 201, and each camera is used to collect an ocular surface image. Based on the collected ocular surface image, it can be analyzed by an image analysis module (such as a neural network model) to obtain ocular surface characteristics (such as pupils), and then determine positioning information.
  • an image analysis module such as a neural network model
  • ocular surface characteristics such as pupils
  • the moving component may be controlled to operate to move the red light irradiating component 201 in at least one direction via the control circuit 701 based on the positioning information.
  • the aforementioned control circuit 701 may be, for example, a microcontroller unit ("MCU"), and the control circuit 701 may include one or more groups, for example, for red light irradiation of the fundus of both eyes, Two sets of control circuits can be arranged to control the movement of each group of moving components respectively, or one set of control circuits can be used to control the movement of two groups of moving components. Alternatively, multiple sets of control circuits can also be used to control each rotation structure to control the moving red light irradiation component, and the present disclosure does not limit this.
  • FIG. 8 is an exemplary flow chart illustrating a red light irradiation method for myopia physiotherapy according to an embodiment of the present disclosure.
  • an ocular surface image is collected, and positioning information is determined based on the ocular surface image.
  • the aforementioned image analysis module may be, for example, a neural network model or other computer vision model.
  • the aforementioned ocular surface characteristics may be, for example, the position, orientation, shape and/or size of the pupil or iris.
  • the red light irradiation component is moved in at least one direction based on the positioning information, so that the red light irradiation component can achieve red light irradiation of the fundus.
  • the red light illuminating component can be moved in at least one direction by moving the component.
  • the mobile component may include at least one mobile platform, such as a first, a second and a third mobile platform.
  • the red light irradiation component can be arranged on the aforementioned first moving platform, and the first, second and third moving platforms are slidingly connected to realize moving the red light in one or more directions. Shooting components.
  • the aforementioned moving component can move the red light irradiation component in one or more directions, so that the red light irradiation component can illuminate the fundus with red light. Based on this, the red light irradiation component can be adjusted to the ideal position accurately and timely to ensure a good irradiation effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Vascular Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本公开涉及一种用于近视理疗的红光照射装置以及红光照射方法。所述红光照射装置包括:红光照射组件,其用于对眼底进行红光照射以便进行近视理疗;定位组件,其用于采集眼表图像,并且基于所述眼表图像确定定位信息;以及移动组件,其包括至少一个移动平台,所述移动平台沿着与其对应的移动方向移动,所述移动组件操作于基于所述定位信息,在至少一个移动方向上移动所述红光照射组件,以便令所述红光照射组件对所述眼底进行红光照射。本公开的方案,通过在用于近视理疗的红光照射装置中加入定位组件,可以将红光照射光源与眼表(例如瞳孔、虹膜)自动对齐,从而有效提高眼底红光照射的利用率,显著提升近视理疗效果。图2

Description

一种用于近视理疗的红光照射装置以及红光照射方法
相关申请的交叉引用
本申请要求于2022年7月15日申请的,申请号为2022108395193,名称为“一种用于近视理疗的红光照射装置以及红光照射方法”的中国专利申请的优先权。
技术领域
本公开一般地涉及近视理疗技术领域。更具体地,本公开涉及一种用于近视理疗的红光照射装置以及红光照射方法。
背景技术
近些年,随着电子屏幕场景的普及、学生学习压力以及时长的增加,青少年近视问题愈发严重。在近视防控方面,目前国内医学界普遍认可的方法有通过低强度红光照射眼底来延缓近视进展。通常,低强度红光照射设备的主要部件是两个镜筒,每个镜筒分别对着一只眼睛的瞳孔进行照射。其中,眼球相对于红光照射镜筒的移动是可以是在多个方向的,每个方向的移动都会导致进入瞳孔照射到眼底的光线的强度和分布发生变化,从而偏离理想值。然而,传统的红光照射设备需要使用者通过手动或者电动来调节眼球与红光照射镜筒之间的相对位置或者眼球的瞳距,这使得传统的红光照射设备智能程度低,降低了照射效率,而且还会影响照射效果。
发明内容
为了至少部分地解决背景技术中提到的技术问题,本公开的方案提供了一种用于近视理疗的红光照射装置。利用本公开的方案,可以自动地实现在一个或多个移动方向上移动红光照射组件,以对眼底进行红光照射。为此,本公开在如下的多个方面提供解决方案。
在一个方面中,本公开提供一种用于近视理疗的红光照射装置,包括:红光照射组件,其用于对眼底进行红光照射以便进行近视理疗;定位组件,其用于采集眼表图像,并且基于所述眼表图像确定定位信息;以及移动组件,其包括至少一个移动平台,所述移动平台沿着与其对应的移动方向移动,所述移动组件操作于基于所述定位信息,在至少一个移动方向上移动所述红光照射组件,以便令所述红光照射组件对所述眼底进行红光照射。
在一个实施例中,其中所述定位组件包括:至少两个摄像头,其用于从不同角度分别采集眼表图像;以及图像分析模块,其用于:对不同角度的所述眼表图像进行分析,以获取眼表特征;以及基于所述眼表特征确定所述定位信息。
在另一个实施例中,其中所述眼表特征包括瞳孔或虹膜的位置、方向、形状和/或大小。
在又一个实施例中,其中所述图像分析模块包括神经网络模型。
在又一个实施例中,其中所述移动组件包括多个移动平台,其中所述多个移动平台之间滑动连接并且所述多个移动平台操作于沿着各自对应的移动方向移动所述红光照射组件,以实现对所述眼底进行红光照射。
在又一个实施例中,其中所述多个移动平台包括第一移动平台、第二移动平台和第三移动平台,其中所述红光照射组件布置于所述第一移动平台上,所述第一、第二和第三移动平台之间滑动连接并且所述第一、第二和第三移动平台操作于沿着各自对应的移动方向移动所述红光照射组件,以实现对所述眼底进行红光照射。
在又一个实施例中,其中所述红光照射组件至少包括红光光源和镜组,并且所述红光光源用于提供红光;所述镜组用于将所述红光照射至眼底,以对眼底进行红光照射。
在又一个实施例中,其中所述红光照射组件的光源功率范围为0.1mw至1.7mw。
在又一个实施例中,其中所述红光光源的光谱为窄带红光或红外光,其中心波长在 630nm-850nm范围内,光谱的宽度不超过20nm。
在又一个实施例中,所述红光照射装置还包括控制电路,其用于基于所述定位信息来控制所述移动组件操作于在至少一个方向上移动所述红光照射组件,以便令所述红光照射组件实现对眼底进行红光照射。
在另一个方面中,本公开还提供一种用于近视理疗的红光照射方法,包括:采集眼表图像,并且基于所述眼表图像确定定位信息;以及基于所述定位信息,在至少一个方向上移动红光照射组件,以便令所述红光照射组件实现对眼底的红光照射。
在一个实施例中,其中所述采集眼表图像,并且基于所述眼表图像确定定位信息包括:使用至少两个摄像头从不同角度分别采集眼表图像;使用图像分析模块对不同角度的所述眼表图像进行分析,以获取所述眼表特征;以及基于所述眼表特征确定所述定位信息。
通过本公开的方案,通过基于定位组件确定的定位信息,能够自动地在至少一个移动方向上移动红光照射组件,以对眼底进行红光照射,极大提高了照射效率。进一步地,本公开实施例通过定位组件实时获取定位信息,并且通过控制电路基于定位信息实时控制移动组件在至少一个移动方向上移动红光照射组件。基于此,能够准确且及时地将红光照射组件调整至理想位置,以确保达到良好的照射效果。
附图说明
通过参考附图阅读下文的详细描述,本公开示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本公开的若干实施方式,并且相同或对应的标号表示相同或对应的部分其中:
图1a-图1f是示出几种不同相对位置所对应的照射效果差异的示例性示意图;
图2是示出根据本公开实施例的用于近视理疗的红光照射装置的示例性结构框图;
图3是示出根据本公开实施例的红光照射组件的示例性原理图;
图4是示出根据本公开实施例的红光照射装置的示例性原理图;
图5是示出根据本公开实施例的红光照射装置的又一示例性原理图;
图6是示出根据本公开实施例的用于双眼近视理疗的红光照射装置的示例性结构示意图;
图7是示出根据本公开实施例的用于近视理疗的红光照射装置的又一示例性结构框图;以及
图8是示出根据本公开实施例的用于近视理疗的红光照射方法的示例性流程框图。
具体实施方式
下面将结合附图对本公开实施例中的技术方案进行清楚和完整地描述。应当理解的是本说明书所描述的实施例仅是本公开为了便于对方案的清晰理解和符合法律的要求而提供的部分实施例,而并非可以实现本公开的所有实施例。基于本说明书公开的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如上述背景技术中描述,眼球相对红光照射镜筒的移动是可以是多个方向上的,每个方向的移动都会导致进入瞳孔照射到眼底的光线的强度和分布发生变化,从而偏离理想值,进而降低照射效果。可以理解,由于眼底的组织较脆弱,通常会由医生来设计好最佳的照射效果,以控制红光照射眼底。其中,在设计最佳的照射效果时,通常可以假设眼球和红光照射设备镜头之间的相对位置固定。在该场景下,若前述相对位置发生变化,其照射效果会存在差异并且下降。下面将结合图1a-图1f描述几种不同相对位置所对应的照射效果的差异。
图1a-图1f是示出几种不同相对位置所对应的照射效果差异的示例性示意图。如图1a 中所示,假设红光照射镜筒101与眼球102之间的相对位置、方向及距离均为理想状态,即红光照射镜筒101的中轴线与眼表(例如瞳孔)105的中轴线重合,该中轴线与眼表(例如瞳孔)105正切面垂直,且红光照射镜筒101与眼表(例如瞳孔)105之间的距离使得落到眼底的红光能量(即红光的有效利用率)达到设计期望阈值。在进行照射时,通过红光照射镜筒101中的红光光源103提供红光,并经由前镜组(例如透镜或者平面镜)104照射至眼表(例如瞳孔)105和眼底106。在该场景下,落入眼底106或者眼表105的红光的能量和能量分布就为理想状态。也即,照射效果最佳。
相对于上述图1a所示的理想状态,图1b中示出的红光照射镜筒101与眼球102之间的相对方向和距离不变,但相对位置发生偏离,例如眼表(例如瞳孔)105相对于红光照射镜筒101的中轴线向上移动一段距离。在该场景下,由于部分红光会偏离眼表(例如瞳孔)105而导致落入106或者眼表105的红光的能量和能量分布较少,从而导致照射效果降低。
相对于上述图1a所示的理想状态,图1c中示出的红光照射镜筒101与眼球102之间的相对位置和方向不变,但相对距离发生改变,例如红光照射镜筒101与眼球102之间的距离增加。在该场景下,也会导致落入眼底106或者眼表105的红光的能量和能量分布较少,从而导致照射效果降低。
相对于上述图1a所示的理想状态,图1d中示出的红光照射镜筒101与眼球102之间的相对位置和距离不变,但相对方向发生改变,例如眼表(例如瞳孔105)向上偏移,使得红光照射镜筒101的中轴线与眼表(例如瞳孔)105正切面夹角大于90°。在该场景下,导致落入眼底106或者眼表105的红光的能量和能量分布较少,从而导致照射效果降低。
图1e是示出双眼相对位置,例如瞳距。在该场景下,当双眼之间的瞳距发生变化时,会导致落入眼底或者眼表的红光的能量和能量分布较少,从而导致照射效果降低。
除上述相对位置和眼表(例如瞳孔)的方向外,瞳孔大小也会影响照射效果,例如图1f所示。相对于上述图1a所示的理想状态,图1f示出的红光照射镜筒101与眼球102之间的相对位置、方向及距离均不变,但瞳孔105偏小。在该情形下,使得穿过瞳孔进入眼底的红光的能力降低,从而导致照射效果降低。
在实现场景中,传统的红光照射设备需要使用者通过手动或者电动来调节眼球与红光照射镜筒之间的相对位置、距离或者眼球的瞳距,使得相对位置、距离或者瞳距处于理想值,这极大地降低了照射效率。此外,相对位置、距离或者瞳距仅是XYZ方向移动中的较为简单的情形,而对于更为复杂情况(例如方向变化、瞳孔大小),无法通过传统的红光照射设备来实现。基于此,本公开方案提供了一种红光照射装置,以提高照射效率以及准确且及时地将红光照射组件调整至理想位置,以确保达到良好的照射效果。
下面将结合图2-图8详细描述本公开实施例的红光照射装置。
图2是示出根据本公开实施例的用于近视理疗的红光照射装置200的示例性结构框图。如图2中所示,该红光照射装置200可以包括红光照射组件201、定位组件202和移动组件203。下面将分别对前述红光照射组件201、定位组件202和移动组件203进行详细描述。
在一个实施例中,上述红光照射组件201可以用于对眼底进行红光照射。在一个实现场景中,该红光照射组件201可以包括但不仅限于红光光源和镜组。其中,前述红光光源可以用于提供红光,其光源功率范围例如为0.1mw至1.7mw,光谱为窄带红光或红外光,其中心波长在630nm-850nm范围内,光谱的宽度(半高全宽)不超过20nm,以照射眼球表面(即眼表)或者眼底。前述镜组可以包括前镜组和后镜组,并且该前镜组和后镜组中均可以包括一个或者多个透镜(例如凸透镜和/或凹透镜)或者平面镜。在实施场景中,前述前镜组设置于红光光源前方,后镜组设置于红光光源后方,以用于将红光照射至眼底,从而对眼底进行红光照射。
在一个实施例中,上述定位组件202可以用于采集眼表图像,并且基于眼表图像确定定位信息。其中,该定位组件202可以包括至少两个摄像头和图像分析模块。在实现场景中,前述至少两个摄像头可以布置于上述红光照射组件201的两侧,该两个摄像头位于红光照射组件201的具体位置以及相对于红光照射组件201的角度可以根据实际场景来设定,本公开对此不作限制。基于前述布置,前述至少两个摄像头可以用于从不同角度分别采集眼表图像。进一步地,可以经由前述图像分析模块对不同角度的所述眼表图像进行分析,以获取眼表特征,进而基于眼表特征确定定位信息。
例如,首先可以通过图像分析模块检测对不同角度的两张眼表图像进行检测,以获取眼表特征。接着,通过检测到的同一眼表特征在两张眼表图像上的位置区别来计算眼表特征的空间位置,以根据眼表特征的空间位置确定定位信息。基于确定的定位信息,能够反映各个方向相对于眼表特征所偏离的距离。由此可以基于各个方向相对于眼表特征所偏离的距离在一个或多个移动方向移动红光照射组件201,以将红光照射组件201调整至目标位置对眼底进行照射。
在一些实施例中,还可以基于目标位置来判断上述红光照射组件是否已经移动到理想位置,若未处于理想位置,则继续采集眼表图片以确定眼表特征的空间位置;若处于理想位置,还可以判断瞳孔大小、形状是否处于理想状态,若处于则对眼底进行红光照射。与之相反地,当瞳孔大小、形状是否未处于理想状态(例如瞳孔较小),可以通过提醒使用者调整眼底状态,例如提醒使用者“睁大眼睛”、“目视前方”等,进而再采集眼表图片,并且重复前述操作,直至满足理想状态或者理想位置。基于此,能够实时地获取定位信息,并且能够准确且及时地调整红光照射组件,以确保达到良好的照射效果。
在一些实施例中,上述图像分析模块可以包括但不仅限于是神经网络模型,例如还可以是计算机视觉模型。上述眼表特征可以包括但不仅限于是瞳孔或虹膜的位置、方向、形状和/或大小。
在一个实施例中,上述移动组件203可以包括至少一个移动平台,该移动平台沿着与其对应的移动方向移动,并且该移动组件203操作于基于定位信息,在至少一个移动方向上移动红光照射组件,以便令红光照射组件对眼底进行红光照射。在一个实施场景中,前述移动组件203可以包括多个移动平台,其中多个移动平台之间滑动连接并且多个移动平台操作于沿着各自对应的移动方向移动红光照射组件,以实现对眼底进行红光照射。作为示例,前述多个移动平台可以包括例如第一移动平台、第二移动平台和第三移动平台。该第一、第二和第三移动平台之间滑动连接并且红光照射组件布置于第一移动平台上,第一、第二和第三移动平台操作于沿着各自对应的移动方向移动红光照射组件,以实现对眼底进行红光照射。
在一个示例性场景中,上述第一移动平台可以布置于第二移动平台上,并且经由第一传动机构在第二移动平台上进行移动,以在第一方向上移动红光照射组件。在一个实施例中,前述第一传动机构可以包括第一传动器和第一传动道,该第一传动道布置于第二移动平台上,并且沿第一方向延伸。其中,前述第一传动器可以用于带动第一移动平台在该第一传动道上进行移动,以在第一方向上移动红光照射组件。具体地,前述第一传动道可以布置于第二移动平台上,并且沿第二移动平台所在平面的竖直方向上延伸。在该情形下,第一传动机构带动第一移动平台在沿第二移动平台所在平面的竖直方向上移动,以在第一方向(例如Z方向)上移动红光照射组件。
在一个实施例中,上述第二移动平台经由第二传动机构布置于第三移动平台上方,并且经由第二传动机构在第三移动平台上方进行移动,以在第二方向上移动红光照射组件。在一个实现场景中,前述第二传动机构可以包括第二传动器和第二传动道,并且第二传动道沿所述第二方向延伸。其中,前述第二传动器可以用于带动第二移动平台在第二传动道上进行移动,以在第二方向上移动红光照射组件。在一个示例性场景中,前述第二传动道 可以垂直布置于第三移动平台上。在该情形下,第二传动器带动第二移动平台在垂直于第三移动平台的上方移动,以在第二方向(例如Y方向)上移动红光照射组件。
在一个实施例中,上述第三移动平台可以经由第三传动机构在例如底座上进行移动,以在第三方向上移动红光照射组件。在一个实现场景中,前述第三传动机构可以包括第三传动器和第三传动道,该第三传动道布置于底座上,并且该第三传动道沿第三方向延伸。其中,该第三传动器可以带动第三移动平台在第三传动道上进行移动,以在第三方向上移动红光照射组件。在一个示例性场景中,前述第三传动道可以沿底座所在平面的水平方向上延伸。在该情形下,第三传动机构带动第三移动平台沿第三移动平台所在平面的水平方向上移动,以在第三方向(例如X方向)上移动红光照射组件。
在一些实施例中,上述第一、第二、第三传动器可以例如是电机或者电磁等,上述第一、第二、第三传动道可以例如是滑道、滑轨或者滑杆等。由此,通过电机(或者电磁)带动第一、第二移动平台或者滑动支架在相应滑道(或者滑轨、滑杆)上移动,以基于定位组件确定的定位信息,实现在一个或者多个方向上独立、自动地移动红光照射组件。稍后将结合图3-图8详细描述本公开实施例的红光照射装置。
结合上述描述可知,本公开实施例通过在用于近视理疗的红光照射装置中加入定位组件,可以将红光照射光源与眼表(例如瞳孔、虹膜)自动对齐,从而有效提高眼底红光照射的利用率,显著提升近视理疗效果。具体地,通过定位组件采集眼表图像确定定位信息,并且经由移动组件基于确定的定位信息自动地实现在一个或者放个移动方向上移动红光照射组件。其中,前述移动组件可以包括至少一个移动平台,例如第一、第二和第三移动平台。通过将红光照射组件布置于第一移动平台上以及第一、第二和第三移动平台之间滑动连接,以沿着各自对应的移动方向移动红光照射组件,以实现对眼底进行红光照射。进一步地,前述至少一个移动平台操作于基于定位组件实时获取的定位信息,经由相应传动机构(例如第一、第二和第三传动机构)相应地带动第一移动平台、第二移动平台以及第三移动平台在XYZ方向中的一个或者多个方向上独立、自动地移动红光照射组件,以对眼底进行红光照射。基于此,不仅能够极大地提升照射效率,还可以准确且及时地将红光照射组件调整至目标位置,以确保达到良好的照射效果。
图3是示出根据本公开实施例的红光照射组件的示例性原理图。如图3中所示,本公开实施例的红光照射组件201可以包括红光光源301和前镜组302。如前所述,该红光光源301用于提供红光,其光源功率范围例如为0.1mw至1.7mw,光谱为窄带红光或红外光,其中心波长在630nm-850nm范围内,光谱的宽度(半高全宽)不超过20nm以照射眼球表面(即眼表)或者眼底,前镜组302可以包括一个或者多个透镜(例如凸透镜和/或凹透镜)或者平面镜,以实现对眼底的红光照射。进一步地,在该红光照射组件201的周边设置有定位组件,并且该定位组件可以包括至少两个摄像头和图像分析模块(图中未示出)。例如图中示例性示出两个摄像头303,其分别设置于红光照射组件201的两侧,以用于从不同角度分别采集眼表图像。在实现场景中,前述两个摄像头303可以各采集一张眼表图像。基于采集的两张眼表图像,可以经由图像分析模块对两张眼表图像进行分析,获取眼表特征(例如瞳孔或虹膜的位置、方向、形状和/或大小),进而根据眼表特征确定定位信息。前述两个摄像头303可以各采集一张眼表图像。基于采集的两张眼表图像,可以经由图像分析模块对两张眼表图像进行分析,获取眼表特征(例如瞳孔或虹膜的位置、方向、形状和/或大小),进而根据眼表特征确定定位信息。在本公开实施例中,经由移动组件基于确定的定位信息自动地实现在至少一个移动方向上移动红光照射组件,以便红光照射组件对准眼球102并且处于目标位置或者理想状态,从而达到良好的照射效果。
图4是示出根据本公开实施例的红光照射装置的示例性原理图。如图4中所示,该红光照射装置可以包括移动组件,该移动组件可以包括至少一个移动平台,例如图中示例性示出三个移动平台,即第一移动平台401、第二移动平台402以及第三移动平台403。进 一步地,该红光照射装置还包括红光照射组件,并且该红光照射组件可以包括红光光源301和前镜组302(也即上述图1a-1f中所示出的前镜组104)。如前所述,前述红光照射组件可以布置于第一移动平台401上,第一移动平台401可以布置于第二移动平台402上,并且在红光照射组件的两侧布置有定位组件202。作为示例,第一移动平台401可以经由第一传动机构带动在沿第二移动平台402所在平面的竖直方向上移动,以在第一方向(例如Z方向)上移动红光照射组件。进一步地,上述第二移动平台402可以经由第二传动组件布置于第三移动平台403的上方,并且经由第二传动机构带动第二移动平台402在垂直于第三移动平台403的方向上移动,以在第二方向(例如Y方向)上移动红光照射组件。另外,还可以经由第三传动机构带动第三移动平台403在沿底座的水平方向上移动,以在第三方向(例如X方向)上移动红光照射组件。
基于上述描述可知,通过基于定位组件202确定的定位信息,可以在例如XYZ方向中的一个或者多个方向上移动红光照射组件,以对眼球102的眼底进行红光照射。可以理解,图4是示出对单眼球眼底的红光照射。在一些实施例中,可以基于双眼的定位信息,在一个或者多个方向上移动红光照射组件,以对双眼球眼底进行红光照射,例如图5所示。
图5是示出根据本公开实施例的红光照射装置的又一示例性原理图。如图5中示出对双眼球眼底的照射,在该场景下,本公开实施例的红光照射装置可以包括两组移动组件、两组红光照射组件以及两组定位组件202。其中,前述每组移动组件可以包括至少一个移动平台,例如图中示例性示出三个移动平台,即第一移动平台401、第二移动平台402以及第三移动平台403。前述每组红光照射组件可以包括红光光源301和前镜组302。与上述单眼球眼底的照射类似,前述每组红光照射组件对应布置于每组移动组件中的第一移动平台401上,第一移动平台401布置于各移动组件中第二移动平台402上,并且在每组红光照射组件的两侧分别布置有一组定位组件202。进一步地,第二移动平台402基于各自的第三传动机构(图中未示出)布置于各移动组件中的第三移动平台403的上方。在一些实施例中,两组移动组件可以共同布置于一个底座上(例如图6所示)。
在实现场景中,基于各组定位组件202确定的定位信息,各组移动组件可以分别在XYZ方向中的一个或者多个方向上移动红光照射组件,以对双眼球眼底进行红光照射。其中,相对于单眼球眼底的照射,双眼球眼底的定位除了考虑了单眼球和红光照射组件之间的相对位置、距离、方向变化和瞳孔大小,还考虑了双眼球之间的瞳距,以确保红光照射效果。关于各个移动方向的更多细节,可以参考上述图4的描述,本公开在此不再赘述。
图6是示出根据本公开实施例的用于双眼近视理疗的红光照射装置的示例性结构示意图。需要理解的是,图6所示的红光照射装置是上述图5中的红光照射装置的一个具体实施例,因此上述关于图5所作的描述同样适用于图6。
如图6中所示,本公开实施例的红光照射装置可以包括两组移动组件、两组红光照射组件和两组定位模块。其中,每组移动组件可以包括至少一个移动平台,例如图中示例性示出三个移动平台,即第一移动平台401、第二移动平台402以及第三移动平台403,而红光照射组件可以包括红光光源301、前镜组302和后镜组601。前述定位模块可以各自包括两个摄像头602(也即上述图3中所示出的两个摄像头303),其分别布置于各组红光照射组件的两侧,以采集眼表图像并且确定定位信息。如前所述,每组红光照射组件可以布置于第一移动平台401,第一移动平台401布置于第二移动平台402上,并且经由第一传动机构带动在第二移动平台402上移动。在一个实施例中,该第一传动机构可以包括第一传动器(例如电磁或者电机等,图中未示出)和第一传动道(例如滑道)603,并且该第一传动道603沿第二移动平台402所在平面的竖直方向上延伸。在实现场景中,前述第一传动器带动第一移动平台401在该第一传动道603上进行移动,以在第一方向(例如Z方向,如箭头A所示方向)上移动红光照射组件。
如图6中进一步示出,每组移动组件的第二移动平台402经由第二传动机构布置于第 三移动平台403上。在一个实施例中,该第二传动机构可以包括第二传动器(例如电磁或者电机等,图中未示出)和第二传动道(例如滑杆)604,并且该第二传动道604垂直布置于第三移动平台403上,并且在该第二传动道604的顶部还可以设置顶板605。在该场景下,前述第二传动器可以带动第二移动平台402在第二传动道604上移动,以在第二方向(例如Y方向,如箭头B所示方向)上移动红光照射组件。
进一步地,可以经由第三传动机构带动两组第三移动平台403在沿底座606所在平面的水平方向上移动。在一个实施例中,该第三传动机构可以包括第三传动器(例如电磁或者电机等,图中未示出)和第三传动道(例如滑道)607,并且该第三传动道607布置于前述底座606上,并且沿底座606所在平面的水平方向上延伸。在实现场景中,前述第三传动器带动第三移动平台403在第三传动道607上移动,以在第三方向(例如X方向,如箭头C所示方向)上移动红光照射组件。
需要理解的是,上述图6中第一、第二以及第三移动平台的布置方式仅仅是示例性的,并且第一、第二以及第三移动平台相对于第一、第二以及第三方向上的移动也仅仅是示例性而非限制的。基于第一、第二以及第三移动平台的不同布置方式,其对应移动的方向会有所不同,例如第二移动平台也可以布置成沿第三方向移动,而不局限于本公开实施例的沿第二方向移动。
在一个实施例中,本公开实施例中的的红光照射装置还可以包括控制电路,该控制电路可以用于基于定位信息来控制移动组件操作于在至少一个方向上移动红光照射组件,以便令红光照射组件实现对眼底进行红光照射。
图7是示出根据本公开实施例的用于近视理疗的红光照射装置的又一示例性结构框图。如图7中所示,本公开实施例的红光照射装置200可以包括红光照射组件201、定位组件202、移动组件203和控制电路701。根据前文知,前述红光照射组件201可以包括前镜组和红光光源,前述移动组件203可以包括第一、第二和第三移动平台多个移动平台;前述定位组件202可以包括至少两个摄像头和图像分析模块。其中,每个摄像头可以布置于红光照射组件201周边或者两侧,并且每个摄像头分别用于采集一张眼表图像。基于采集的眼表图像,可以由图像分析模块(例如神经网络模型)对其进行分析,获取眼表特征(例如瞳孔),进而确定定位信息。需要理解的是,前述摄像头位于红光照射组件201的具体位置以及相对于红光照射组件201的角度可以根据实际场景来设定,本公开对此不作限制。
基于上述确定的定位信息,可以经由控制电路701来基于定位信息来控制移动组件操作于在至少一个方向上移动红光照射组件201。在一个实现场景中,前述控制电路701可以例如是微控制单元(Microcontroller Unit,“MCU”),并且该控制电路701可以包括一组或者多组,例如对于双眼球眼底的红光照射而言,可以布置两组控制电路分别控制移动各组移动组件,也可以通过一组控制电路控制移动两组移动组件。或者,还可以通过多组控制电路分别控制各个转动结构,以控制移动红光照射组件,本公开对此不作限制。
图8是示出根据本公开实施例的用于近视理疗的红光照射方法的示例性流程框图。如图8中所示,在步骤S802处,采集眼表图像,并且基于眼表图像确定定位信息。例如在一个实施场景中,可以通过使用至少两个摄像头从不同角度分别采集眼表图像,接着使用图像分析模块对不同角度的所述眼表图像进行分析,以获取所述眼表特征,以基于眼表特征确定定位信息。在一个实施例中,前述图像分析模块可以例如是神经网络模型或者其他计算机视觉模型。前述眼表特征可以例如是瞳孔或虹膜的位置、方向、形状和/或大小。基于获得的定位信息,在步骤S804处,基于定位信息,在至少一个方向上移动红光照射组件,以便令红光照射组件实现对眼底的红光照射。在一个实施例中,可以通过移动组件来在至少一个方向上移动红光照射组件。其中,该移动组件可以包括至少一个移动平台,例如第一、第二以及第三移动平台。其中,红光照射组件可以布置于前述第一移动平台上,并且第一、第二以及第三移动平台之间滑动连接,以实现在一个或多个方向上移动红光照 射组件。由此,基于前述定位信息,前述移动组件可以在一个或多个方向上移动红光照射组件,以便令红光照射组件实现对眼底的红光照射。基于此,能够准确且及时地将红光照射组件调整至理想位置,以确保达到良好的照射效果。关于前述各个移动平台布置的更多细节,可以参考上述图2-图7所描述的内容,本公开在此不再赘述。
应当理解,当本公开的权利要求、当说明书及附图中使用到术语“第一”、“第二”、“第三”和“第四”等时,其仅用于区别不同对象,而不是用于描述特定顺序。本公开的说明书和权利要求书中使用的术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的,而并不意在限定本公开。如在本公开说明书和权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。还应当进一步理解,在本公开说明书和权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
虽然本公开的实施方式如上,但所述内容只是为便于理解本公开而采用的实施例,并非用以限定本公开的范围和应用场景。任何本公开所述技术领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (12)

  1. 一种用于近视理疗的红光照射装置,其特征在于,包括:
    红光照射组件,其用于对眼底进行红光照射以便进行近视理疗;
    定位组件,其用于采集眼表图像,并且基于所述眼表图像确定定位信息;以及
    移动组件,其包括至少一个移动平台,所述移动平台沿着与其对应的移动方向移动,所述移动组件操作于基于所述定位信息,在至少一个移动方向上移动所述红光照射组件,以便令所述红光照射组件对所述眼底进行红光照射。
  2. 根据权利要求1所述的红光照射装置,其特征在于,所述定位组件包括:
    至少两个摄像头,其用于从不同角度分别采集眼表图像;以及
    图像分析模块,其用于:
    对不同角度的所述眼表图像进行分析,以获取眼表特征;以及
    基于所述眼表特征确定所述定位信息。
  3. 根据权利要求2所述的红光照射装置,其特征在于,所述眼表特征包括瞳孔或虹膜的位置、方向、形状和/或大小。
  4. 根据权利要求3所述的红光照射装置,其特征在于,所述图像分析模块包括神经网络模型。
  5. 根据权利要求1-4中任一所述的红光照射装置,其特征在于,所述移动组件包括多个移动平台,其中所述多个移动平台之间滑动连接并且所述多个移动平台操作于沿着各自对应的移动方向移动所述红光照射组件,以实现对所述眼底进行红光照射。
  6. 根据权利要求5所述的红光照射装置,其特征在于,所述多个移动平台包括第一移动平台、第二移动平台和第三移动平台,其中所述红光照射组件布置于所述第一移动平台上,所述第一、第二和第三移动平台之间滑动连接并且所述第一、第二和第三移动平台操作于沿着各自对应的移动方向移动所述红光照射组件,以实现对所述眼底进行红光照射。
  7. 根据权利要求1-4中任一所述的红光照射装置,其特征在于,所述红光照射组件至少包括红光光源和镜组,并且所述红光光源用于提供红光;所述镜组用于将所述红光照射至眼底,以对眼底进行红光照射。
  8. 根据权利要求7所述的红光照射装置,其特征在于,所述红光照射组件的光源功率范围为0.1mw至1.7mw。
  9. 根据权利要求7所述的红光照射装置,其特征在于,所述红光光源的光谱为窄带红光或红外光,其中心波长在630nm-850nm范围内,光谱的宽度不超过20nm。
  10. 根据权利要求1-4中任一所述的红光照射装置,其特征在于,还包括:
    控制电路,其用于基于所述定位信息来控制所述移动组件操作于在至少一个方向上移动所述红光照射组件,以便令所述红光照射组件实现对眼底进行红光照射。
  11. 一种用于近视理疗的红光照射方法,其特征在于,包括:
    采集眼表图像,并且基于所述眼表图像确定定位信息;以及
    基于所述定位信息,在至少一个方向上移动红光照射组件,以便令所述红光照射组件实现对眼底的红光照射。
  12. 根据权利要求9所述的红光照射方法,其特征在于,所述采集眼表图像,并且基于所述眼表图像确定定位信息包括:
    使用至少两个摄像头从不同角度分别采集眼表图像;
    使用图像分析模块对不同角度的所述眼表图像进行分析,以获取所述眼表特征;以及基于所述眼表特征确定所述定位信息。
PCT/CN2023/107773 2022-07-15 2023-07-17 一种用于近视理疗的红光照射装置以及红光照射方法 WO2024012594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210839519.3 2022-07-15
CN202210839519.3A CN115245630A (zh) 2022-07-15 2022-07-15 一种用于近视理疗的红光照射装置以及红光照射方法

Publications (1)

Publication Number Publication Date
WO2024012594A1 true WO2024012594A1 (zh) 2024-01-18

Family

ID=83700353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107773 WO2024012594A1 (zh) 2022-07-15 2023-07-17 一种用于近视理疗的红光照射装置以及红光照射方法

Country Status (2)

Country Link
CN (1) CN115245630A (zh)
WO (1) WO2024012594A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115245630A (zh) * 2022-07-15 2022-10-28 北京鹰瞳科技发展股份有限公司 一种用于近视理疗的红光照射装置以及红光照射方法
CN116570843B (zh) * 2023-07-12 2023-09-29 北京市眼科研究所 一种近视治疗装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834381A (zh) * 2015-05-15 2015-08-12 中国科学院深圳先进技术研究院 用于视线焦点定位的可穿戴设备及视线焦点定位方法
CN107463893A (zh) * 2017-07-28 2017-12-12 广东欧珀移动通信有限公司 虹膜识别方法和移动终端
CN111449620A (zh) * 2020-04-30 2020-07-28 上海美沃精密仪器股份有限公司 一种全自动眼底相机及其自动照相方法
CN113244045A (zh) * 2021-07-15 2021-08-13 中山大学中山眼科中心 一种高效视力恢复方法及其设备
CN113974957A (zh) * 2021-11-02 2022-01-28 北京鹰瞳科技发展股份有限公司 用于眼底按摩装置的镜筒和眼底按摩装置
CN216703194U (zh) * 2021-12-31 2022-06-10 无锡博慧斯生物医药科技有限公司 一种增加眼底照射面积的红光治疗装置
CN114887232A (zh) * 2022-07-15 2022-08-12 北京鹰瞳科技发展股份有限公司 用于对眼底的红光照射进行控制的方法及其相关产品
CN115245630A (zh) * 2022-07-15 2022-10-28 北京鹰瞳科技发展股份有限公司 一种用于近视理疗的红光照射装置以及红光照射方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834381A (zh) * 2015-05-15 2015-08-12 中国科学院深圳先进技术研究院 用于视线焦点定位的可穿戴设备及视线焦点定位方法
CN107463893A (zh) * 2017-07-28 2017-12-12 广东欧珀移动通信有限公司 虹膜识别方法和移动终端
CN111449620A (zh) * 2020-04-30 2020-07-28 上海美沃精密仪器股份有限公司 一种全自动眼底相机及其自动照相方法
CN113244045A (zh) * 2021-07-15 2021-08-13 中山大学中山眼科中心 一种高效视力恢复方法及其设备
CN113974957A (zh) * 2021-11-02 2022-01-28 北京鹰瞳科技发展股份有限公司 用于眼底按摩装置的镜筒和眼底按摩装置
CN216703194U (zh) * 2021-12-31 2022-06-10 无锡博慧斯生物医药科技有限公司 一种增加眼底照射面积的红光治疗装置
CN114887232A (zh) * 2022-07-15 2022-08-12 北京鹰瞳科技发展股份有限公司 用于对眼底的红光照射进行控制的方法及其相关产品
CN115245630A (zh) * 2022-07-15 2022-10-28 北京鹰瞳科技发展股份有限公司 一种用于近视理疗的红光照射装置以及红光照射方法

Also Published As

Publication number Publication date
CN115245630A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2024012594A1 (zh) 一种用于近视理疗的红光照射装置以及红光照射方法
US20120154536A1 (en) Method and apparatus for automatically acquiring facial, ocular, and iris images from moving subjects at long-range
CN102657516B (zh) 视网膜自动成像系统
CN104992141B (zh) 基于双虹膜、立体人脸和声纹识别的智能生物特征监控总成及监控方法
RU2623795C2 (ru) Системы и способы для захвата безартефактных изображений
CN106303242A (zh) 多光谱显微成像的快速主动对焦系统及方法
CN109714519A (zh) 一种自动调整图像画面的方法和系统
CN1279774A (zh) 眼睛跟踪装置
CN104123779B (zh) 硬币隐形图案检测方法及其检测装置
CN106873142B (zh) 一种结核杆菌检测仪的高质量图像获取装置及方法
CN207037682U (zh) 一种交替打光的虹膜图像采集装置
CN114099985B (zh) 通过识别图像特征调节光源模块的装置
WO2021204211A1 (zh) 人脸和虹膜图像采集方法、装置、可读存储介质及设备
Karakaya et al. Limbus impact on off-angle iris degradation
CN102657515B (zh) 应用于视网膜成像系统的对准光路装置
Hyder et al. Real-time non-intrusive eye-gaze tracking based wheelchair control for the physically challenged
CN105867047A (zh) 闪光灯的调整方法及拍摄装置
CN103688218B (zh) 获取生物统计特征的设备和方法
CN115245311A (zh) 一种用于眼部的多功能装置
WO2017004945A1 (zh) 一种拍摄终端和拍摄方法
CN209803458U (zh) 一种头戴式可变焦距的智能显示设备
Binaee et al. Pupil tracking under direct sunlight
CN211406101U (zh) 一种提高识别准确性的人脸识别摄像机
CN114972462B (zh) 对眼底相机的工作距离对齐效果进行优化的方法及其相关产品
CN201298140Y (zh) 单镜头立体图像光信号获取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839080

Country of ref document: EP

Kind code of ref document: A1