WO2024011515A1 - Power utilization in carrier aggregation for wireless communications - Google Patents

Power utilization in carrier aggregation for wireless communications Download PDF

Info

Publication number
WO2024011515A1
WO2024011515A1 PCT/CN2022/105765 CN2022105765W WO2024011515A1 WO 2024011515 A1 WO2024011515 A1 WO 2024011515A1 CN 2022105765 W CN2022105765 W CN 2022105765W WO 2024011515 A1 WO2024011515 A1 WO 2024011515A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
user device
information
cell
network device
Prior art date
Application number
PCT/CN2022/105765
Other languages
French (fr)
Inventor
Jing Shi
Xianghui HAN
Xing Liu
Junfeng Zhang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2022/105765 priority Critical patent/WO2024011515A1/en
Publication of WO2024011515A1 publication Critical patent/WO2024011515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting

Definitions

  • This document is directed generally to power aggregation in wireless communication.
  • a user device In wireless communication, for uplink (UL) carrier aggregation (CA) , a user device is allowed to set its configured maximum output power P CMAX, c for serving cell c, and its total configured maximum output power P CMAX .
  • the user device When configured for UL CA, the user device may use an aggregated power across different bands. In doing so, however, the user device may be restricted by artificial power limits that prevent optimal power levels from being used, including those for certain band combinations. As such, ways to remove the artificial power limits and allow for optimal output power settings when using power aggregation may be desirable.
  • a method for wireless communication includes: transmitting, by a user device, an information to a network device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and transmitting, by the user device, an uplink transmission on the cell of the plurality of cells.
  • a method for wireless communication includes: receiving, by a network device, an information from a user device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and determining, by the network device, power adjustment information, for an uplink transmission on a cell of the plurality of cells according to the information received from the user device.
  • a method for wireless communication includes: determining, by a user device, a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of the plurality of cells; and reporting, with the user device, the power headroom value to a network device.
  • a device such as a network device.
  • the device may include one or more processors and one or more memories, wherein the one or more processors are configured to read computer code from the one or more memories to implement any of the methods above.
  • a computer program product may include a non-transitory computer-readable program medium with computer code stored thereupon, the computer code, when executed by one or more processors, causing the one or more processors to implement any of the methods above.
  • FIG. 1 shows a block diagram of an example of a wireless communication system.
  • FIG. 2 shows a flow chart of a method for wireless communication.
  • FIG. 3 shows a flow chart of another method for wireless communication.
  • FIG. 4 shows a flow chart of another method for wireless communication.
  • the present description describes various embodiments of systems, apparatuses, devices, and methods for wireless communications involving power aggregation.
  • Fig. 1 shows a diagram of an example wireless communication system 100 including a plurality of communication nodes (or just nodes) that are configured to wirelessly communicate with each other.
  • the communication nodes include at least one user device 102 and at least one network device 104.
  • the example wireless communication system 100 in Fig. 1 is shown as including two user devices 102, including a first user device 102 (1) and a second user device 102 (2) , and one device 104.
  • various other examples of the wireless communication system 100 that include any of various combinations of one or more user devices 102 and/or one or more network devices 104 may be possible.
  • a user device as described herein such as the user device 102, may include a single electronic device or apparatus, or multiple (e.g., a network of) electronic devices or apparatuses, capable of communicating wirelessly over a network.
  • a user device may comprise or otherwise be referred to as a user terminal, a user terminal device, or a user equipment (UE) .
  • UE user equipment
  • a user device may be or include, but not limited to, a mobile device (such as a mobile phone, a smart phone, a smart watch, a tablet, a laptop computer, vehicle or other vessel (human, motor, or engine-powered, such as an automobile, a plane, a train, a ship, or a bicycle as non-limiting examples) or a fixed or stationary device, (such as a desktop computer or other computing device that is not ordinarily moved for long periods of time, such as appliances, other relatively heavy devices including Internet of things (IoT) , or computing devices used in commercial or industrial environments, as non-limiting examples) .
  • a mobile device such as a mobile phone, a smart phone, a smart watch, a tablet, a laptop computer, vehicle or other vessel (human, motor, or engine-powered, such as an automobile, a plane, a train, a ship, or a bicycle as non-limiting examples) or a fixed or stationary device, (such as a desktop computer or other computing device that is not ordinarily moved
  • a user device 102 may include transceiver circuitry 106 coupled to an antenna 108 to effect wireless communication with the network device 104.
  • the transceiver circuitry 106 may also be coupled to a processor 110, which may also be coupled to a memory 112 or other storage device.
  • the memory 112 may store therein instructions or code that, when read and executed by the processor 110, cause the processor 110 to implement various ones of the methods described herein.
  • a network device as described herein such as the network device 104, may include a single electronic device or apparatus, or multiple (e.g., a network of) electronic devices or apparatuses, and may comprise one or more wireless access nodes, base stations, or other wireless network access points capable of communicating wirelessly over a network with one or more user devices and/or with one or more other network devices 104.
  • the network device 104 may comprise a 4G LTE base station, a 5G NR base station, a 5G central-unit base station, a 5G distributed-unit base station, a next generation Node B (gNB) , an enhanced Node B (eNB) , or other similar or next-generation (e.g., 6G) base stations, in various embodiments.
  • a network device 104 may include transceiver circuitry 114 coupled to an antenna 116, which may include an antenna tower 118 in various approaches, to effect wireless communication with the user device 102 or another network device 104.
  • the transceiver circuitry 114 may also be coupled to one or more processors 120, which may also be coupled to a memory 122 or other storage device.
  • the memory 122 may store therein instructions or code that, when read and executed by the processor 120, cause the processor 120 to implement one or more of the methods described herein.
  • two communication nodes in the wireless system 100 such as a user device 102 and a network device 104, two user devices 102 without a network device 104, or two network devices 104 without a user device 102-may be configured to wirelessly communicate with each other in or over a mobile network and/or a wireless access network according to one or more standards and/or specifications.
  • the standards and/or specifications may define the rules or procedures under which the communication nodes can wirelessly communicate, which, in various embodiments, may include those for communicating in millimeter (mm) -Wave bands, and/or with multi-antenna schemes and beamforming functions.
  • the standards and/or specifications are those that define a radio access technology and/or a cellular technology, such as Fourth Generation (4G) Long Term Evolution (LTE) , Fifth Generation (5G) New Radio (NR) , or New Radio Unlicensed (NR-U) , as non-limiting examples.
  • 4G Fourth Generation
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • NR New Radio
  • NR-U New Radio Unlicensed
  • the communication nodes are configured to wirelessly communicate signals between each other.
  • a communication in the wireless system 100 between two communication nodes can be or include a transmission or a reception, and is generally both simultaneously, depending on the perspective of a particular node in the communication.
  • the first node may be referred to as a source or transmitting node or device
  • the second node may be referred to as a destination or receiving node or device
  • the communication may be considered a transmission for the first node and a reception for the second node.
  • a single communication node may be both a transmitting/source node and a receiving/destination node simultaneously or switch between being a source/transmitting node and a destination/receiving node.
  • particular signals can be characterized or defined as either an uplink (UL) signal, a downlink (DL) signal, or a sidelink (SL) signal.
  • An uplink signal is a signal transmitted from a user device 102 to a network device 104.
  • a downlink signal is a signal transmitted from a network device 104 to a user device 102.
  • a sidelink signal is a signal transmitted from a one user device 102 to another user device 102, or a signal transmitted from one network device 104 to a another network device 104.
  • a first/source user device 102 directly transmits a sidelink signal to a second/destination user device 102 without any forwarding of the sidelink signal to a network device 104.
  • signals communicated between communication nodes in the system 100 may be characterized or defined as a data signal or a control signal.
  • a data signal is a signal that includes or carries data, such multimedia data (e.g., voice and/or image data)
  • a control signal is a signal that carries control information that configures the communication nodes in certain ways in order to communicate with each other, or otherwise controls how the communication nodes communicate data signals with each other.
  • certain signals may be defined or characterized by combinations of data/control and uplink/downlink/sidelink, including uplink control signals, uplink data signals, downlink control signals, downlink data signals, sidelink control signals, and sidelink data signals.
  • a physical channel corresponds to a set of time-frequency resources used for transmission of a signal.
  • Different types of physical channels may be used to transmit different types of signals.
  • physical data channels (or just data channels) , also herein called traffic channels, are used to transmit data signals
  • physical control channels (or just control channels) are used to transmit control signals.
  • Example types of traffic channels include, but are not limited to, a physical downlink shared channel (PDSCH) used to communicate downlink data signals, a physical uplink shared channel (PUSCH) used to communicate uplink data signals, and a physical sidelink shared channel (PSSCH) used to communicate sidelink data signals.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PSSCH physical sidelink shared channel
  • example types of physical control channels include, but are not limited to, a physical downlink control channel (PDCCH) used to communicate downlink control signals, a physical uplink control channel (PUCCH) used to communicate uplink control signals, and a physical sidelink control channel (PSCCH) used to communicate sidelink control signals.
  • a particular type of physical channel is also used to refer to a signal that is transmitted on that particular type of physical channel, and/or a transmission on that particular type of transmission.
  • a PDSCH refers to the physical downlink shared channel itself, a downlink data signal transmitted on the PDSCH, or a downlink data transmission.
  • a communication node transmitting or receiving a PDSCH means that the communication node is transmitting or receiving a signal on a PDSCH.
  • a control signal that a communication node transmits may include control information comprising the information necessary to enable transmission of one or more data signals between communication nodes, and/or to schedule one or more data channels (or one or more transmissions on data channels) .
  • control information may include the information necessary for proper reception, decoding, and demodulation of a data signals received on physical data channels during a data transmission, and/or for uplink scheduling grants that inform the user device about the resources and transport format to use for uplink data transmissions.
  • the control information includes downlink control information (DCI) that is transmitted in the downlink direction from a network device 104 to a user device 102.
  • DCI downlink control information
  • control information includes uplink control information (UCI) that is transmitted in the uplink direction from a user device 102 to a network device 104, or sidelink control information (SCI) that is transmitted in the sidelink direction from one user device 102 (1) to another user device 102 (2) .
  • UCI uplink control information
  • SCI sidelink control information
  • the scheduling mechanism used in the wireless communication system 100 allows scheduling single-cell traffic channels (e.g., PUSCH/PDSCH) per one scheduling DCI.
  • PUSCH/PDSCH scheduling single-cell traffic channels
  • SC-DCI single-cell DCI
  • a user device 102 may be allowed to set its configured maximum output power P CMAX, c for serving cell c and its total configured maximum output power P CMAX .
  • the total configured maximum output power P CMAX is set to a power within the following bounds: P CMAX_L ⁇ P CMAX ⁇ P CMAX_H .
  • P CMAX_L and P CMAX_H may depend on P PowerClass, CA . which may restrict the amount of power that can be used in UL CA.
  • the power of P PowerClass, CA may depend on the particular power class.
  • the power class with the P PowerClass, CA is Power Class 2 (PC2) or Power Class 3 (PC3) .
  • P PowerClass, CA may be replaced by a power accumulation corresponding to the expression: 10 ⁇ log 10 ⁇ p PowerClass, c , which can be also referred to as the aggregated power in UL CA, where P PowerClass, c is the linear value of the maximum output power of the user device 102 for serving cell c, or ue-PowerClass, without taking into account the tolerance.
  • the user device 102 may perform power headroom reporting where the user device 102 reports or transmits a power headroom (or a power headroom value) to the network device 104.
  • a power headroom is a power value or level that indicates how much transmission power is left or available for a user device 102 to use in addition to the power being used by a current transmission.
  • PHR may be combined with dynamic reporting of a sustainable duty cycle. For example, PHR may report that a higher power may be used in combination with a shorter duty cycle.
  • Fig. 2 is a flow chart of an example method 200 for wireless communication that involves an indication of power aggregation.
  • the user device 102 may transmit an information to a network device, where the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells.
  • the user device 102 may transmit an uplink transmission on the cell of the plurality of cells.
  • Fig. 3 is a flow chart of another example method 300 for wireless communication that involves an indication of power aggregation.
  • the network device 104 may receive an information from the user device 102, where the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells.
  • the network device 104 may determine a power adjustment information for an uplink transmission on the cell of the plurality of cells.
  • the network device 104 may transmit an indication of the power adjustment information to the user device 102.
  • the user device 102 may transmit the uplink transmission on the cell with an output power set according to the power adjustment information.
  • the information communicated from the user device 102 to the network device 104 may include additional information, not just a UE capability report, that the user device 102 can use aggregated power.
  • additional information not just a UE capability report
  • the user device 102 only provides a UE capability report (e.g., HigherPowerLimitCADC)
  • a UE capability report only indicates that the user device 102 supports higher power in CA.
  • the network device 104 may only allocate up to P CMAX, c for a given serving cell c, even if power aggregation could allow for an allocation of power higher than P CMAX, c .
  • the user device 102 indicates to the network device 104 whether the user device 102 can apply a higher power through power aggregation each time the user device 102 has an UL transmission.
  • the user device 102 sends information indicating that the user device 102 can apply power aggregation for a transmission on condition that its UE capability (e.g., HigherPowerLimitCADC) indicates it supports power aggregation.
  • the maximum power used for transmission on one band may be increased, where the maximum power on one band may be equal to P PowerClass, c and not larger or less than P PowerClass, CA , or larger than P PowerClass, c but not larger or less than the expression 10 ⁇ log 10 ⁇ p PowerClass, c .
  • the user device 102 may report certain information, with or without PHR reporting, to enable efficient UL scheduling.
  • the information may indicate whether the user device 102 can apply power aggregation of a plurality of cells for a cell of the plurality of cells.
  • values for P CMAX, c for scheduling cell c and P CMAX may be determined according to a scheme.
  • a value for P CMAX, c for scheduling cell c is determined to be less than P PowerClass, c and P CMAX is not larger than P PowerClass, CA .
  • a value for P CMAX, c for scheduling cell c is determined to be less than P PowerClass, c and P CMAX is not larger than 10 ⁇ log 10 ⁇ p PowerClass, c .
  • such determination of P CMAX, c and P CMAX according to the first scheme and/or the second scheme may be combined or applied with certain information, with or without PHR reporting, to enable efficient UL scheduling.
  • a user device 102 may report a capability to support the aggregated power in UL CA.
  • the user device may report HigherPowerLimitCADC, which is a notification that indicates whether the user device 102 supports power aggregation.
  • the network device 104 may determine P CMAX, f, c (i) per cell, where f denotes a given carrier, and i denotes a given PUSCH transmission occasion.
  • the information indicating whether the user device 102 can apply power aggregation that the user device 102 transmits may include at least one mode.
  • the at least one mode may include a first mode (or mode A) and/or a second mode (or mode B) .
  • the first mode the user device 102 cannot apply power aggregation for a cell on which the user device 102 is to transmit an UL transmission.
  • the second mode the user device 102 can apply power aggregation for a cell on which the user device 102 is to transmit an UL transmission.
  • the information that the user device 102 transmits to the network node 104 includes or indicates at least one of the first mode or the second mode.
  • the network device 104 may allocate power for an uplink transmission without applying power aggregation. For example, if the network device 104 receives a PHR value from the user device 102, the network device 104 may allocate power for an UL transmission according to the PHR value without applying any power aggregation by adjusting one or more power control parameters. Additionally, when the information includes the second mode, the network device 104 may allocate power for an UL transmission with applying power aggregation by adjusting one or more power control parameters.
  • the network device 104 may determine a power value or level based on a combination of a PHR value and applying power aggregation. This may include the network device 104 increasing the power level from where it would be if the network device determined the power level based on the PHR value without applying power aggregation. In addition or alternatively, if the information indicates to apply power aggregation, the network device 104 may adjust a value of at least one parameter of a power headroom equation used to calculate a power headroom value (e.g. ⁇ PUSCH, b, f, c described in further detail below) , which may cause the network device 104 to allocate higher power.
  • a power headroom equation used to calculate a power headroom value
  • different modes may represent different maximum powers. For example, upon receipt of information indicating a first mode, the network device 104 may determine a power level for an UL transmission relative to a first maximum power corresponding to the first mode, and/or upon receipt of information indicating a second mode, the network device 104 may determine a power level for an UL transmission relative to a second maximum power corresponding to the second mode.
  • the user device 102 and/or the network device 104 may determine or calculate a PHR value according to a PHR calculation, as the following equation:
  • P CMAX, f, c (i) is the UE configured maximum output power for carrier f of serving cell c in a PUSCH transmission occasion i
  • f b, f, c (i, l) is related to a closed loop power control parameter. Also, for a PUSCH power control adjustment state f b, f, c (i, l) for an active UL BWP b of carrier f of serving cell c in PUSCH transmission occasion i, where l ⁇ ⁇ 0, 1 ⁇ , the power control adjustment state f b, f, c (i, l) may be determined according to the following mathematical formula:
  • ⁇ PUSCH, b, f, c (i, l) is a transmit power control (TPC) command value included in a DCI format 0_0 or DCI format 0_1 that schedules the PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c.
  • parameter is the bandwidth of the PUSCH resource assignment expressed in number of resource blocks for PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c and ⁇ is a sub-carrier spacing (SCS) configuration, where RB is the number of resource blocks (RB) for PUSCH.
  • ⁇ TF, b, f, c (i) is a parameter that reflects bandwidth impact on transmission (Tx) power, and may be determined according to the following mathematical formula:
  • MCS modulation and coding scheme
  • the user device 102 may determine whether aggregated power can be applied across bands, including for situations where the user device 102 reports its ability to support the capability of power aggregation in UL CA, which in turn, may result in a more efficient utilization of aggregated power of the user device 102 and improve gNB scheduling decisions.
  • P CMAX, f, c (i) may be determined per cell according to the above-described first scheme or second scheme.
  • P CMAX, c of one band is less than the P PowerClass, c and less than P CMAX , where P CMAX is determined by P PowerClass, CA , including where P PowerClass, c is equal to P PowerClass, CA .
  • P PowerClass, CA 26 dBm
  • P CMAX 26 dBm.
  • the network device 104 may allocate a power larger than P CMAX, c of band n78 and no larger than 26 dBm on band n78, e.g. 2Tx are both on n78.
  • the network device 104 may allocate higher power up to 26 dBm, which is larger than P CMAX, c but no larger than P CMAX for a next UL transmission. For example, the network device 104 may adjust a parameter of a formula for calculating PHR, such as the calculation above. For example, the network device 104 may adjust ⁇ PUSCH, b, f, c , as a non-limiting example.
  • P CMAX, c of one band is equal to the P PowerClass, c and less than P CMAX , where P CMAX is determined by 10 ⁇ log 10 ⁇ p PowerClass, c , and P PowerClass, c is less than 10 ⁇ log 10 ⁇ p PowerClass, c .
  • P CMAX is determined by 10 ⁇ log 10 ⁇ p PowerClass, c
  • P PowerClass is less than 10 ⁇ log 10 ⁇ p PowerClass, c .
  • P CMAX, c of band n78 26 dBm
  • P CMAX 27.8 dBm.
  • the network device 104 may allocate a power larger than P CMAX, c of band n78 and no larger than 27.8 dBm on band n78, e.g. 2Tx are both on n78.
  • the network device 104 may use PHR and the information indicating the user device 102 can apply power aggregation, which in turn can scheduling decisions made by the network device 104. For example, if the user device 102 reports mode B to the network device 104, and also reports a PHR value, the network device 104 may allocate a higher power up to 27.8 dBm, which is larger than P CMAX, c but no larger than P CMAX , for a next UL transmission. For example, the network device 104 may adjust a parameter of a formula for calculating PHR, such as the calculation above. For example, the network device 104 may adjust ⁇ PUSCH, b, f, c , as a non-limiting example.
  • the user device 102 when the user device 102 indicates that it can apply power aggregation for UL transmission on one band with up to aggregated power of CA, the user device 102 may do so with the condition that one/each band in a band combination cannot support the maximum power as the aggregated power of CA.
  • the user device 102 transmitting or reporting information indicating whether it can apply power aggregation may or may not be combined with PHR reporting.
  • whether the aggregated power can be used across bands can be dynamically determined by the user device 102, including for situations where the user device 102 reports its ability to support the capability of power aggregation in UL CA, which in turn may allow for more efficient utilization of aggregated power of the user device 102 and improve scheduling decisions made by the network device 104.
  • the user device 102 may report information indicating whether it can apply power aggregation per band combination (BC) , or band pair, or per cell/band.
  • the information may be combined with a PHR medium access control (MAC) control element (CE) or independent with PHR MAC CE.
  • MAC medium access control
  • CE control element
  • the user device 102 may report information whether it can apply power aggregation together with PHR per cell/band, or report the information independent of PHR reporting.
  • the network device 104 may allocate a higher power up to 27.8 dBm, which is larger than P CMAX, c but not larger than P CMAX for a next UL transmission.
  • the network device 104 may adjust a parameter of a formula for calculating PHR, such as the calculation above.
  • the network device 104 may adjust ⁇ PUSCH, b, f, c , as a non-limiting example.
  • the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC.
  • the user device 102 may report information indicating whether it can apply power aggregation per band combination or band pair, e.g. band n41 and n78, which it may report independent of PHR reporting or reported together with PHR.
  • transmission and/or use of the information indicating whether the user device 102 can apply power aggregation may be combined with duty cycle.
  • the information includes a plurality of modes
  • only one mode is applied for power allocation in combination with setting a duty cycle to a lower value.
  • at least one mode or all modes may be used in combination with setting a duty cycle, and/or each mode may correspond to a respective one of a plurality of duty cycles.
  • the duty cycle used with a given mode may be explicity or implicitly derived.
  • the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC.
  • the information about whether the user device 102 can apply power aggregation may be reported explicitly or implicitly together with duty cycle. For example, if the user device 102 reports that it cannot apply power aggregation (e.g., mode A) , the network device 104 may, in response, determine not to lower duty cycle.
  • the network device 104 may, in response, determine to allocate more power in combination with PHR, and may also lower a duty cycle by a predetermined amount or percentage. For example, the network device 104 may set duty cycle to 20%of an initial value, as a non-limiting example.
  • the network device 104 may use PHR and the information indicating mode B, to improve its scheduling decisions by allocating higher power up to 27.8 dBm, which is larger than P CMAX, c but not larger than P CMAX for a next UL transmission and by setting a lower duty cycle.
  • the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC.
  • the user device 102 may report the information indicating whether it can apply power aggregation implicitly together with duty cycle. To illustrate, suppose the information includes any of three modes, including a mode A, a mode B, and a mode C.
  • Mode A indicates that the user device 102 cannot apply power aggregation, and in turn, indicates to the network device 104 to allocate power according to the PHR and not to perform any duty cycle adjustment/lowering.
  • Mode B indicates that the user device 102 can apply partial power aggregation, and in turn indicates to the network device 104 to allocate more power combined with PHR, and to set a lower value of duty cycle according to a first percentage, such as 50%.
  • Mode C indicates that the user device can apply power aggregation, and in turn indicates to the network device 104 to allocate more power combined with PHR, and to set a lower value of duty cycle according to a second percentage, which may be lower than the first percentage, such as 20%for example.
  • duty cycles may be implicitly derived or dynamically changed, in combination with aggregated power being dynamically determined across bands, which may improve scheduling decisions by the network device 104 and more efficiently utilize aggregated power by the user device 102.
  • the information indicating whether the user device 102 can apply power aggregation may be used in combination with maximum power for one band of a band combination or band pair.
  • P CMAX of CA PC x
  • P CMAX, c of a band PC x.
  • Whether the band can use a given PC x may depend on one or more modes.
  • a first mode e.g., mode A
  • a second mode e.g., mode B
  • PC 2 26dBm
  • PC 1.5 29dBm, respectively.
  • the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC.
  • the network device 104 may allocate more power combined with PHR, and may use P CMAX of CA for a band combination or band pair P CMAX, c of a band. Also, for example, if the user device 102 reports mode B with PHR reporting, the network device 104 may allocate a higher power up to 26 dBm, which is larger than P CMAX, c but not larger than P CMAX for a next UL transmission.
  • Fig. 4 shows a flow chart of a method for wireless communication that involves a power headroom value.
  • the user device 102 may determine a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of a plurality of cells.
  • the user device 102 may report the power headroom value to the network device 104.
  • the user device 102 may determine a PHR value to report by adjusting at least one value of at least one parameter used to determine the power headroom value for transmission in a cell of a plurality of.
  • the maximum power on one band can be increased due to the aggregated power across different bands, in which the maximum power may be equal to P PowerClass, c and not larger than P PowerClass, CA (first scheme) , or larger than P PowerClass, c but not larger than 10 ⁇ log 10 ⁇ p PowerClass, c (second scheme)
  • the user device 102 may one or more parameters used to determine a PHR value.
  • the adjustment may reflect dynamic setting of aggregated power, which may be together with the PHR reporting, and/or may enable efficient UL scheduling.
  • the network device 104 may determine P CMAX, c, according to the first scheme, where the value of P CMAX, c of a cell is less than P PowerClass, c and P CMAX is not larger than P PowerClass, CA .
  • the network device 104 may determine P CMAX, c according to the second scheme, where the value of P CMAX, c of a cell is not larger than P PowerClass, c and P CMAX is not larger than 10 ⁇ log 10 ⁇ p PowerClass, c .
  • the user device 102 may adjust at least one value of at least one parameter used to determine a power headroom value, which may reflect dynamic adjustment of aggregated power.
  • the total maximum power is 27.8 dBm for two cells in inter-band CA, such as band n41 with Power Class 3 (PC3) and band n78 with Power Class 2 (PC2) .
  • larger power e.g. more than 26 dBm on band n78 or more than 23 dBm on band n41
  • the user device 102 may determine or calculate a PHR value according to a mathematical formula, such as equation (1) above.
  • a mathematical formula such as equation (1)
  • Such a mathematical formula, such as equation (1) may have one or more parameters, at least one of which the user device 102 may adjust to derive a higher PHR value. For example, if PHR can be higher than an initial value, the user device 102 may adjust one or more parameters to derive a higher PHR value, and report the higher PHR value.
  • the user device 102 may adjust one or more open loop power control parameters. For example, the user device 102 may adjust the one or more parameters by decreasing P O_UE_PUSCH, b, f, c (j) and/or ⁇ b, f, c (j) . In various of these embodiments, the user device 102 may perform the adjustment if these parameters values are not indicated by the network device 102, such as by not being indicated in an indicated source resource indicator (SRI) in DCI format 0_1. Such as decrease may result in a higher PHR, which in turn may reflect dynamic application of aggregated power.
  • SRI source resource indicator
  • RRC radio resource control
  • one band may already achieve maximum power of the P PowerClass, c , e.g. band n78 has already achieved the reported PC2.
  • the network device 104 may not know whether more power can be allocated for the cell on the band because the network device 104 may not be aware whether one band in a band combination could support the aggregated power of CA.
  • the user device 102 may report to the network device 104 that the network device 104 may increase power for the UL transmission in event the power is larger than the maximum power of one band but still less than the aggregated power of CA.
  • the user device 102 may adjust the one or more parameters by decreasing PL b, f, c (q d ) to derive a larger PHR.
  • the user device 102 may adjust the one or more parameters by decreasing ⁇ PUSCH, b, f, c (i, l) to derive a larger PHR.
  • the PUSCH power control adjustment state f b, f, c (i, l) for active UL BWP b of carrier f of serving cell c in PUSCH transmission occasion i, and l ⁇ ⁇ 0, 1 ⁇ if the user device 102 is configured with twoPUSCH-PC-AdjustmentStates and l 0 if the UE is not configured with twoPUSCH-PC-AdjustmentStates, f b, f, c (i, l) may be determined according to equation (2) above, as previously described.
  • ⁇ PUSCH, b, f, c (i, l) a TPC command value included in a DCI format 0_0 or DCI format 0_1 that schedules the PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c, may be indicated as 1 dB in a DCI format 0_0 or DCI format 0_1, and may be decreased by the user device 102 to a value lower than 1 dB, such as a predefined or configured value or level, e.g., -1 dB.
  • the user device 102 may adjust the one or more parameters by adjusting which is the bandwidth of the PUSCH resource assignment expressed in number of resource blocks (RBs) for PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c, and where ⁇ is a SCS configuration, such as defined in [4, TS 38.211] .
  • the resource block (RB) number for PUSCH may reflect bandwidth impact on Tx power.
  • the user device 102 may scale down the number of RBs for a PUSCH to derive a larger PHR.
  • the BPRE function in equation (3) may reflect the MCS impact on Tx power. Accordingly, in various embodiments, the user device 102 may use an actual MCS with an offset to derive a virtual MCS level for a PUSCH in order to derive a larger PHR.
  • the user device 102 may adjust one or more parameters and/or determine a PHR value by adding a parameter ⁇ P_aggregated, f, c (i) to a predefined formula used to determine PHR, such as to equation (1) above.
  • Adjusting one or more parameters in a PHR calculation where the maximum power on one band could be increased due to the aggregated power across different bands may allow the user device 102 to dynamically apply power aggregation across bands, which is then indicated or reflected in PHR reporting. This, in turn, may allow for more efficient utilization of aggregated power by the user device 102 and/or improve scheduling decisions made by the network device 104.
  • terms, such as “a, ” “an, ” or “the, ” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
  • the subject matter of the disclosure may also relate to or include, among others, the following aspects:
  • a first aspect includes a method for wireless communication that includes: transmitting, by a user device, an information to a network device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and transmitting, by the user device, an uplink transmission on the cell of the plurality of cells.
  • a second aspect includes a method of wireless transmission that includes: receiving, by a network device, an information from a user device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and determining, by the network device, power adjustment information, for an uplink transmission on one of the plurality of cells according to the information received from the user device.
  • a third aspect includes any of the first or second aspects, and further includes wherein the information comprises at least one of: a first mode indicating that the user device cannot apply power aggregation for the cell; ora second mode indicating that the user device can apply power aggregation for the cell.
  • a fourth aspect includes the third aspect, and further includes at least one of: allocating, by the network device, power for the uplink transmission on the cell based on the power headroom value without applying power aggregation in response to the information comprising the first mode; or allocating, by the network device, power for the uplink transmission on the cell based on the power headroom value and applying power aggregation in response to the information comprising the second mode.
  • a fifth aspect includes the fourth aspect, and further includes wherein allocating the power based on the second mode comprises: increasing, by the network device, the power for the uplink transmission.
  • a sixth aspect includes the fifth aspect and further includes wherein increasing the power comprises: the power is larger than a maximum power for the cell and less than a total maximum power for the plurality of cells .
  • a seventh aspect includes any of the first through sixth aspects, and further includes wherein the information is transmitted per band combination, per band pair, or per band.
  • An eighth aspect includes any of the first through seventh aspects, and further includes wherein the information is transmitted in combination with a medium access control (MAC) control element (CE) that includes a power headroom value.
  • MAC medium access control
  • CE control element
  • a ninth aspect includes any of the first through eighth aspects, and further includes wherein the information comprises at least one mode of a plurality of modes comprising at least one of the first mode or the second mode, wherein the plurality of modes further comprises a duty cycle information, wherein: only one mode of the plurality of modes indicates a duty cycle with a lower value, wherein the only one mode corresponds to the power aggregation can be used; or at least two modes of the plurality of modes indicate different duty cycles with different lower values, wherein each of the at least two modes correspond to the power aggregation can be used.
  • a tenth aspect includes any of the first through ninth aspects, wherein the information further comprises an indication of a maximum power used for one band of a band combination or band pair.
  • An eleventh aspect includes the tenth aspect, and further includes wherein the maximum power used for the one band is the maximum power class reported for the band, which is same as a power class for carrier aggregation (CA) including the band.
  • CA carrier aggregation
  • a twelfth aspect includes a method for wireless communication, the method comprising: determining, by a user device, a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of the plurality of cells; and reporting, with the user device, the power headroom value to a network device.
  • a thirteenth aspect includes the twelfth aspect, and further includes wherein the at least one parameter comprises an open loop power control parameter.
  • a fourteenth aspect includes any of the twelfth or thirteenth aspects, and further includes wherein the at least one parameter comprises a downlink pathloss estimate.
  • a fifteenth aspect includes any of the twelfth through fourteenth aspects, and further includes wherein the at least one parameter comprises a transmit power control (TPC) command value ⁇ PUSCH .
  • TPC transmit power control
  • a sixteenth aspect includes any of the twelfth through fifteenth aspects, and further includes wherein the at least one parameter comprises a number of Resource Blocks (RB) for the uplink transmission on the cell.
  • RB Resource Blocks
  • a seventeenth aspect includes any of the twelfth through sixteenth aspects, and further includes wherein the at least one parameter comprises a power value indicating dynamic aggregated power.
  • An eighteenth aspect includes any of the twelfth through seventeenth aspects, and further includes: transmitting, by the user device, an indication whether the power for an uplink transmission can be increased or not when the power is equal or larger than the maximum power for the cell and less than a total maximum power for the plurality of cells.
  • a nineteenth aspect includes a wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory to implement a method of any of the first through eighteenth aspects.
  • a twentieth aspect includes a computer program product comprising a computer-readable program medium comprising code stored thereupon, the code, when executed by a processor, causing the processor to implement a method of any of the first through eighteenth aspects.

Abstract

This document generally relates to wireless communication involving a user device that transmits an information to a network device, where the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells. The network device determines power adjustment information for an uplink transmission on the cell according to the information received from the user device. Additionally, the user device transmits an uplink transmission on the cell of the plurality of cells. Also, in some embodiments, a method for wireless communication includes a user device that determines a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of the plurality of cells; and reports the power headroom value to a network device.

Description

POWER UTILIZATION IN CARRIER AGGREGATION FOR WIRELESS COMMUNICATIONS TECHNICAL FIELD
This document is directed generally to power aggregation in wireless communication.
BACKGROUND
In wireless communication, for uplink (UL) carrier aggregation (CA) , a user device is allowed to set its configured maximum output power P CMAX, c for serving cell c, and its total configured maximum output power P CMAX. When configured for UL CA, the user device may use an aggregated power across different bands. In doing so, however, the user device may be restricted by artificial power limits that prevent optimal power levels from being used, including those for certain band combinations. As such, ways to remove the artificial power limits and allow for optimal output power settings when using power aggregation may be desirable.
SUMMARY
This document relates to methods, systems, apparatuses and devices for wireless communication. In some implementations, a method for wireless communication includes: transmitting, by a user device, an information to a network device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and transmitting, by the user device, an uplink transmission on the cell of the plurality of cells.
In some other implementations, a method for wireless communication includes: receiving, by a network device, an information from a user device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and determining, by the network device, power adjustment information, for an uplink transmission on a cell of the plurality of cells according to the information received from the user device.
In some other implementations, a method for wireless communication includes: determining, by a user device, a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of the plurality of cells; and reporting, with the user device, the power headroom value to a network device.
In some other implementations, a device, such as a network device, is disclosed. The device may include one or more processors and one or more memories, wherein the one or more processors are configured to read computer code from the one or more memories to implement any of the methods above.
In yet some other implementations, a computer program product is disclosed. The computer program product may include a non-transitory computer-readable program medium with computer code stored thereupon, the computer code, when executed by one or more processors, causing the one or more processors to implement any of the methods above.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a block diagram of an example of a wireless communication system.
FIG. 2 shows a flow chart of a method for wireless communication.
FIG. 3 shows a flow chart of another method for wireless communication.
FIG. 4 shows a flow chart of another method for wireless communication.
DETAILED DESCRIPTION
The present description describes various embodiments of systems, apparatuses, devices, and methods for wireless communications involving power aggregation.
Fig. 1 shows a diagram of an example wireless communication system 100 including a plurality of communication nodes (or just nodes) that are configured to wirelessly communicate with each other. In general, the communication nodes include at least one user device 102 and at  least one network device 104. The example wireless communication system 100 in Fig. 1 is shown as including two user devices 102, including a first user device 102 (1) and a second user device 102 (2) , and one device 104. However, various other examples of the wireless communication system 100 that include any of various combinations of one or more user devices 102 and/or one or more network devices 104 may be possible.
In general, a user device as described herein, such as the user device 102, may include a single electronic device or apparatus, or multiple (e.g., a network of) electronic devices or apparatuses, capable of communicating wirelessly over a network. A user device may comprise or otherwise be referred to as a user terminal, a user terminal device, or a user equipment (UE) . Additionally, a user device may be or include, but not limited to, a mobile device (such as a mobile phone, a smart phone, a smart watch, a tablet, a laptop computer, vehicle or other vessel (human, motor, or engine-powered, such as an automobile, a plane, a train, a ship, or a bicycle as non-limiting examples) or a fixed or stationary device, (such as a desktop computer or other computing device that is not ordinarily moved for long periods of time, such as appliances, other relatively heavy devices including Internet of things (IoT) , or computing devices used in commercial or industrial environments, as non-limiting examples) . In various embodiments, a user device 102 may include transceiver circuitry 106 coupled to an antenna 108 to effect wireless communication with the network device 104. The transceiver circuitry 106 may also be coupled to a processor 110, which may also be coupled to a memory 112 or other storage device. The memory 112 may store therein instructions or code that, when read and executed by the processor 110, cause the processor 110 to implement various ones of the methods described herein.
Additionally, in general, a network device as described herein, such as the network device 104, may include a single electronic device or apparatus, or multiple (e.g., a network of) electronic devices or apparatuses, and may comprise one or more wireless access nodes, base stations, or other wireless network access points capable of communicating wirelessly over a network with one or more user devices and/or with one or more other network devices 104. For example, the network device 104 may comprise a 4G LTE base station, a 5G NR base station, a 5G central-unit base station, a 5G distributed-unit base station, a next generation Node B (gNB) , an enhanced Node B (eNB) , or other similar or next-generation (e.g., 6G) base stations, in various  embodiments. A network device 104 may include transceiver circuitry 114 coupled to an antenna 116, which may include an antenna tower 118 in various approaches, to effect wireless communication with the user device 102 or another network device 104. The transceiver circuitry 114 may also be coupled to one or more processors 120, which may also be coupled to a memory 122 or other storage device. The memory 122 may store therein instructions or code that, when read and executed by the processor 120, cause the processor 120 to implement one or more of the methods described herein.
In various embodiments, two communication nodes in the wireless system 100-such as a user device 102 and a network device 104, two user devices 102 without a network device 104, or two network devices 104 without a user device 102-may be configured to wirelessly communicate with each other in or over a mobile network and/or a wireless access network according to one or more standards and/or specifications. In general, the standards and/or specifications may define the rules or procedures under which the communication nodes can wirelessly communicate, which, in various embodiments, may include those for communicating in millimeter (mm) -Wave bands, and/or with multi-antenna schemes and beamforming functions. In addition or alternatively, the standards and/or specifications are those that define a radio access technology and/or a cellular technology, such as Fourth Generation (4G) Long Term Evolution (LTE) , Fifth Generation (5G) New Radio (NR) , or New Radio Unlicensed (NR-U) , as non-limiting examples.
Additionally, in the wireless system 100, the communication nodes are configured to wirelessly communicate signals between each other. In general, a communication in the wireless system 100 between two communication nodes can be or include a transmission or a reception, and is generally both simultaneously, depending on the perspective of a particular node in the communication. For example, for a given communication between a first node and a second node where the first node is transmitting a signal to the second node and the second node is receiving the signal from the first node, the first node may be referred to as a source or transmitting node or device, the second node may be referred to as a destination or receiving node or device, and the communication may be considered a transmission for the first node and a reception for the second node. Of course, since communication nodes in a wireless system 100 can both send and receive  signals, a single communication node may be both a transmitting/source node and a receiving/destination node simultaneously or switch between being a source/transmitting node and a destination/receiving node.
Also, particular signals can be characterized or defined as either an uplink (UL) signal, a downlink (DL) signal, or a sidelink (SL) signal. An uplink signal is a signal transmitted from a user device 102 to a network device 104. A downlink signal is a signal transmitted from a network device 104 to a user device 102. A sidelink signal is a signal transmitted from a one user device 102 to another user device 102, or a signal transmitted from one network device 104 to a another network device 104. Also, for sidelink transmissions, a first/source user device 102 directly transmits a sidelink signal to a second/destination user device 102 without any forwarding of the sidelink signal to a network device 104.
Additionally, signals communicated between communication nodes in the system 100 may be characterized or defined as a data signal or a control signal. In general, a data signal is a signal that includes or carries data, such multimedia data (e.g., voice and/or image data) , and a control signal is a signal that carries control information that configures the communication nodes in certain ways in order to communicate with each other, or otherwise controls how the communication nodes communicate data signals with each other. Also, certain signals may be defined or characterized by combinations of data/control and uplink/downlink/sidelink, including uplink control signals, uplink data signals, downlink control signals, downlink data signals, sidelink control signals, and sidelink data signals.
For at least some specifications, such as 5G NR, data and control signals are transmitted and/or carried on physical channels. Generally, a physical channel corresponds to a set of time-frequency resources used for transmission of a signal. Different types of physical channels may be used to transmit different types of signals. For example, physical data channels (or just data channels) , also herein called traffic channels, are used to transmit data signals, and physical control channels (or just control channels) are used to transmit control signals. Example types of traffic channels (or physical data channels) include, but are not limited to, a physical downlink shared channel (PDSCH) used to communicate downlink data signals, a physical uplink shared  channel (PUSCH) used to communicate uplink data signals, and a physical sidelink shared channel (PSSCH) used to communicate sidelink data signals. In addition, example types of physical control channels include, but are not limited to, a physical downlink control channel (PDCCH) used to communicate downlink control signals, a physical uplink control channel (PUCCH) used to communicate uplink control signals, and a physical sidelink control channel (PSCCH) used to communicate sidelink control signals. As used herein for simplicity, unless specified otherwise, a particular type of physical channel is also used to refer to a signal that is transmitted on that particular type of physical channel, and/or a transmission on that particular type of transmission. As an example illustration, a PDSCH refers to the physical downlink shared channel itself, a downlink data signal transmitted on the PDSCH, or a downlink data transmission. Accordingly, a communication node transmitting or receiving a PDSCH means that the communication node is transmitting or receiving a signal on a PDSCH.
Additionally, for at least some specifications, such as 5G NR, and/or for at least some types of control signals, a control signal that a communication node transmits may include control information comprising the information necessary to enable transmission of one or more data signals between communication nodes, and/or to schedule one or more data channels (or one or more transmissions on data channels) . For example, such control information may include the information necessary for proper reception, decoding, and demodulation of a data signals received on physical data channels during a data transmission, and/or for uplink scheduling grants that inform the user device about the resources and transport format to use for uplink data transmissions. In some embodiments, the control information includes downlink control information (DCI) that is transmitted in the downlink direction from a network device 104 to a user device 102. In other embodiments, the control information includes uplink control information (UCI) that is transmitted in the uplink direction from a user device 102 to a network device 104, or sidelink control information (SCI) that is transmitted in the sidelink direction from one user device 102 (1) to another user device 102 (2) .
In addition, for at least some configurations, including some using 4G and 5G, for carrier aggregation (CA) , the scheduling mechanism used in the wireless communication system 100, such as by the user device 102 and the network device 104, allows scheduling single-cell  traffic channels (e.g., PUSCH/PDSCH) per one scheduling DCI. Such a single DCI configured to schedule only one cell is referred to as a single-cell DCI (SC-DCI) .
Additionally, in the wireless communication system 100, for uplink (UL) carrier aggregation (CA) , a user device 102 may be allowed to set its configured maximum output power P CMAX, c for serving cell c and its total configured maximum output power P CMAX. For some embodiments, the total configured maximum output power P CMAX is set to a power within the following bounds: P CMAX_L ≤ P CMAX ≤ P CMAX_H. Also, P CMAX_L and P CMAX_H may depend on P PowerClass, CA. which may restrict the amount of power that can be used in UL CA. Also, the power of P PowerClass, CA may depend on the particular power class. For at least some of these embodiments, the power class with the P PowerClass, CA is Power Class 2 (PC2) or Power Class 3 (PC3) . In other embodiments, P PowerClass, CA may be replaced by a power accumulation corresponding to the expression: 10×log 10 ∑ p PowerClass, c, which can be also referred to as the aggregated power in UL CA, where P PowerClass, c is the linear value of the maximum output power of the user device 102 for serving cell c, or ue-PowerClass, without taking into account the tolerance.
Also, in various embodiments, the user device 102 may perform power headroom reporting where the user device 102 reports or transmits a power headroom (or a power headroom value) to the network device 104. In general, a power headroom (PHR) is a power value or level that indicates how much transmission power is left or available for a user device 102 to use in addition to the power being used by a current transmission. In some embodiments, PHR may be combined with dynamic reporting of a sustainable duty cycle. For example, PHR may report that a higher power may be used in combination with a shorter duty cycle.
Fig. 2 is a flow chart of an example method 200 for wireless communication that involves an indication of power aggregation. At block 202, the user device 102 may transmit an information to a network device, where the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells. At block 204, the user device 102 may transmit an uplink transmission on the cell of the plurality of cells.
Fig. 3 is a flow chart of another example method 300 for wireless communication that involves an indication of power aggregation. At block 302, the network device 104 may receive  an information from the user device 102, where the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells. At block 304, the network device 104 may determine a power adjustment information for an uplink transmission on the cell of the plurality of cells. Also, in some embodiments, at block 304, the network device 104 may transmit an indication of the power adjustment information to the user device 102. For at least some of these embodiments, and/or for some embodiments at block 204, the user device 102 may transmit the uplink transmission on the cell with an output power set according to the power adjustment information.
Accordingly, in the  example methods  200 and 300, the information communicated from the user device 102 to the network device 104 may include additional information, not just a UE capability report, that the user device 102 can use aggregated power. For implementations where the user device 102 only provides a UE capability report (e.g., HigherPowerLimitCADC) , such a UE capability report only indicates that the user device 102 supports higher power in CA. For such implementations, the network device 104 may only allocate up to P CMAX, c for a given serving cell c, even if power aggregation could allow for an allocation of power higher than P CMAX, c. In contrast, by the user device 102 providing the network device 104 with the additional information, the user device 102 indicates to the network device 104 whether the user device 102 can apply a higher power through power aggregation each time the user device 102 has an UL transmission. For at least some embodiments, the user device 102 sends information indicating that the user device 102 can apply power aggregation for a transmission on condition that its UE capability (e.g., HigherPowerLimitCADC) indicates it supports power aggregation.
For at least some embodiments, due to aggregated power across different bands, the maximum power used for transmission on one band may be increased, where the maximum power on one band may be equal to P PowerClass, c and not larger or less than P PowerClass, CA, or larger than P PowerClass, c but not larger or less than the expression 10×log 10 ∑ p PowerClass, c. Moreover, the user device 102 may report certain information, with or without PHR reporting, to enable efficient UL scheduling. For at least some embodiments, the information may indicate whether the user device 102 can apply power aggregation of a plurality of cells for a cell of the plurality of cells.
Additionally, in various embodiments, values for P CMAX, c for scheduling cell c and P CMAX may be determined according to a scheme. In a first scheme, a value for P CMAX, c for scheduling cell c is determined to be less than P PowerClass, c and P CMAX is not larger than P PowerClass, CA. In a second scheme, a value for P CMAX, c for scheduling cell c is determined to be less than P PowerClass, c and P CMAX is not larger than 10×log 10 ∑ p PowerClass, c. In the various embodiments described herein, such determination of P CMAX, c and P CMAX according to the first scheme and/or the second scheme may be combined or applied with certain information, with or without PHR reporting, to enable efficient UL scheduling.
Additionally, in some embodiments, a user device 102 may report a capability to support the aggregated power in UL CA. For example, the user device may report HigherPowerLimitCADC, which is a notification that indicates whether the user device 102 supports power aggregation. Also, for PHR reporting, the network device 104 may determine P CMAX, f, c (i) per cell, where f denotes a given carrier, and i denotes a given PUSCH transmission occasion.
Also, for some embodiments, the information indicating whether the user device 102 can apply power aggregation that the user device 102 transmits may include at least one mode. In particular of these embodiments, the at least one mode may include a first mode (or mode A) and/or a second mode (or mode B) . In the first mode, the user device 102 cannot apply power aggregation for a cell on which the user device 102 is to transmit an UL transmission. In the second mode, the user device 102 can apply power aggregation for a cell on which the user device 102 is to transmit an UL transmission. Accordingly, in some embodiments, the information that the user device 102 transmits to the network node 104 includes or indicates at least one of the first mode or the second mode.
Additionally, for at least some embodiments where the user device 102 transmits at least one mode to the network device 104, when the information includes the first mode, the network device 104 may allocate power for an uplink transmission without applying power aggregation. For example, if the network device 104 receives a PHR value from the user device 102, the network device 104 may allocate power for an UL transmission according to the PHR value  without applying any power aggregation by adjusting one or more power control parameters. Additionally, when the information includes the second mode, the network device 104 may allocate power for an UL transmission with applying power aggregation by adjusting one or more power control parameters. For some of these embodiments, the network device 104 may determine a power value or level based on a combination of a PHR value and applying power aggregation. This may include the network device 104 increasing the power level from where it would be if the network device determined the power level based on the PHR value without applying power aggregation. In addition or alternatively, if the information indicates to apply power aggregation, the network device 104 may adjust a value of at least one parameter of a power headroom equation used to calculate a power headroom value (e.g. δ PUSCH, b, f, c described in further detail below) , which may cause the network device 104 to allocate higher power.
In addition or alternatively, different modes may represent different maximum powers. For example, upon receipt of information indicating a first mode, the network device 104 may determine a power level for an UL transmission relative to a first maximum power corresponding to the first mode, and/or upon receipt of information indicating a second mode, the network device 104 may determine a power level for an UL transmission relative to a second maximum power corresponding to the second mode.
In addition or alternatively, the user device 102 and/or the network device 104 may determine or calculate a PHR value according to a PHR calculation, as the following equation:
Figure PCTCN2022105765-appb-000001
where P CMAX, f, c (i) is the UE configured maximum output power for carrier f of serving cell c in a PUSCH transmission occasion i, {P O_PUSCH, b, f, c (j) + α b, f, c (j) *PL b, f, c (q d) } are related to open loop power control parameters, where P O_PUSCH, b, f, c (j) = P O_NOMINAL, PUSCH, f, c (j) (cell-specific) + P O_UE_PUSCH, b, f, c (j) (UE-specific) , {P O_UE_PUSCH, b, f, c (j) , α b, f, c (j) } is determined by P0-PUSCH-AlphaSet and source resource indicator (SRI) indication, PL b, f, c (q d) is a downlink pathloss estimate in dB calculated by the user device using reference signal (RS) index q d for the  active DL BWP of carrier f of serving cell c. Additionally, f b, f, c (i, l) is related to a closed loop power control parameter. Also, for a PUSCH power control adjustment state f b, f, c (i, l) for an active UL BWP b of carrier f of serving cell c in PUSCH transmission occasion i, where l∈ {0, 1} , the power control adjustment state f b, f, c (i, l) may be determined according to the following mathematical formula:
Figure PCTCN2022105765-appb-000002
where δ PUSCH, b, f, c (i, l) is a transmit power control (TPC) command value included in a DCI format 0_0 or DCI format 0_1 that schedules the PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c. Further, parameter
Figure PCTCN2022105765-appb-000003
is the bandwidth of the PUSCH resource assignment expressed in number of resource blocks for PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c and μ is a sub-carrier spacing (SCS) configuration, where RB is the number of resource blocks (RB) for PUSCH. Also, Δ TF, b, f, c (i) is a parameter that reflects bandwidth impact on transmission (Tx) power, and may be determined according to the following mathematical formula:
Figure PCTCN2022105765-appb-000004
and where Δ TF, b, f, c (i) = 0 for K S=0, where K S is provided by deltaMCS for each UL BWP b of each carrier f and serving cell c, where BPRE is a function that reflects modulation and coding scheme (MCS) impact on Tx power.
By having the user device 102 dynamically transmit or report information, such as different modes, indicating whether the user device 102 can apply power aggregation, with or without PHR reporting, the user device 102 may determine whether aggregated power can be applied across bands, including for situations where the user device 102 reports its ability to support the capability of power aggregation in UL CA, which in turn, may result in a more efficient utilization of aggregated power of the user device 102 and improve gNB scheduling decisions.
In addition or alternatively, for PHR reporting, P CMAX, f, c (i) may be determined per cell  according to the above-described first scheme or second scheme. According to the first scheme, P CMAX, c of one band is less than the P PowerClass, c and less than P CMAX, where P CMAX is determined by P PowerClass, CA, including where P PowerClass, c is equal to P PowerClass, CA. To illustrate the first scheme, consider band combination n41 and n78 with P PowerClass, CA=26 dBm, P CMAX, c of band n78 < 26 dBm, and P CMAX = 26 dBm. Further suppose the user device 102 transmits information indicating it can apply power aggregation (e.g., it transmits information indicating the second mode (mode B is reported) . In turn, the network device 104 may allocate a power larger than P CMAX, c of band n78 and no larger than 26 dBm on band n78, e.g. 2Tx are both on n78.
To further illustrate, suppose that the user device 102 reports its capability to support the aggregated power in UL CA, such as by report HigherPowerLimitCADC. In doing so, the user device 102 indicates that it supports power aggregation. For PHR reporting, the user device 102 may determine P CMAX, f, c (i) determined per cell based on the first scheme, e.g P CMAX, c of band n78 < P PowerClass, c = 26 dBm. Further, suppose that the user device 102 transits information whether it can apply power aggregation to the network device, and reports PHR to the network device. If the user device 102 transmits that it can apply power aggregation (e.g., it reports mode B) , in response, the network device 104 may allocate higher power up to 26 dBm, which is larger than P CMAX, c but no larger than P CMAX for a next UL transmission. For example, the network device 104 may adjust a parameter of a formula for calculating PHR, such as the calculation above. For example, the network device 104 may adjust δ PUSCH, b, f, c, as a non-limiting example.
As another example, according to the second scheme suppose P CMAX, c of one band is equal to the P PowerClass, c and less than P CMAX, where P CMAX is determined by 10×log 10 ∑ p PowerClass, c, and P PowerClass, c is less than 10×log 10 ∑ p PowerClass, c. Further, consider example band combination n41 and n78, with 10×log 10 ∑ p PowerClass, c = 27.8 dBm, P CMAX, c of band n78 = 26 dBm, and P CMAX =27.8 dBm. If the user device 102 transmits that it can apply power aggregation (e.g., it reports mode B) , the network device 104 may allocate a power larger than P CMAX, c of band n78 and no larger than 27.8 dBm on band n78, e.g. 2Tx are both on n78.
To further illustrate, suppose that the user device 102 reports its capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC, which indicates that  the user device 102 supports power aggregation. For PHR reporting, the network device 104 determines P CMAX, f, c (i) per cell according to the second scheme, e.g., P CMAX, c of band n78 = 26 dBm. If the user device 102 reports information that it can apply power aggregation (e.g., reports mode B) , in response, the network device 104 may allocate more power combined with PHR. Accordingly, the network device 104 may use PHR and the information indicating the user device 102 can apply power aggregation, which in turn can scheduling decisions made by the network device 104. For example, if the user device 102 reports mode B to the network device 104, and also reports a PHR value, the network device 104 may allocate a higher power up to 27.8 dBm, which is larger than P CMAX, c but no larger than P CMAX, for a next UL transmission. For example, the network device 104 may adjust a parameter of a formula for calculating PHR, such as the calculation above. For example, the network device 104 may adjust δ PUSCH, b, f, c, as a non-limiting example.
In addition, in various embodiments, when the user device 102 indicates that it can apply power aggregation for UL transmission on one band with up to aggregated power of CA, the user device 102 may do so with the condition that one/each band in a band combination cannot support the maximum power as the aggregated power of CA.
Accordingly, the user device 102 transmitting or reporting information (e.g., different modes) indicating whether it can apply power aggregation may or may not be combined with PHR reporting. In turn, whether the aggregated power can be used across bands can be dynamically determined by the user device 102, including for situations where the user device 102 reports its ability to support the capability of power aggregation in UL CA, which in turn may allow for more efficient utilization of aggregated power of the user device 102 and improve scheduling decisions made by the network device 104.
In addition or alternatively, the user device 102 may report information indicating whether it can apply power aggregation per band combination (BC) , or band pair, or per cell/band. In addition or alternatively, the information may be combined with a PHR medium access control (MAC) control element (CE) or independent with PHR MAC CE.
To illustrate with the second scheme as an example, suppose the use device 102 reports a capability to support the aggregated power in UL CA, such as by report HigherPowerLimitCADC.  That is power aggregation is supported by the user device 102. For PHR reporting, the network device 104 may determine P CMAX, f, c (i) per cell based on the second scheme, e.g P CMAX, c of band n78 = 26 dBm using the example above. The user device 102 may report information whether it can apply power aggregation together with PHR per cell/band, or report the information independent of PHR reporting. For example, if the user device 102 reports mode B and also report PHR, in turn, the network device 104 may allocate a higher power up to 27.8 dBm, which is larger than P CMAX, c but not larger than P CMAX for a next UL transmission. For example, the network device 104 may adjust a parameter of a formula for calculating PHR, such as the calculation above. For example, the network device 104 may adjust δ PUSCH, b, f, c, as a non-limiting example.
To further illustrate in accordance with the second scheme, the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC. For PHR reporting, the network device 104 may determine P CMAX, f, c (i) per cell based on the second scheme, e.g P CMAX, c of band n78 = 26 dBm. Further, the user device 102 may report information indicating whether it can apply power aggregation per band combination or band pair, e.g. band n41 and n78, which it may report independent of PHR reporting or reported together with PHR.
In addition or alternatively, transmission and/or use of the information indicating whether the user device 102 can apply power aggregation may be combined with duty cycle. For example, where the information includes a plurality of modes, only one mode is applied for power allocation in combination with setting a duty cycle to a lower value. As another example, at least one mode or all modes may be used in combination with setting a duty cycle, and/or each mode may correspond to a respective one of a plurality of duty cycles. In various embodiments, the duty cycle used with a given mode may be explicity or implicitly derived.
To illustrate using the second scheme as an example, the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC. For PHR reporting, the network device 104 may determine P CMAX, f, c (i) per cell, which based on the the second scheme, e.g., P CMAX, c of band n78 = 26 dBm. In addition,  the information about whether the user device 102 can apply power aggregation may be reported explicitly or implicitly together with duty cycle. For example, if the user device 102 reports that it cannot apply power aggregation (e.g., mode A) , the network device 104 may, in response, determine not to lower duty cycle. In addition, if the user device 102 reports that it can apply power aggregation (e.g., mode B) , the network device 104 may, in response, determine to allocate more power in combination with PHR, and may also lower a duty cycle by a predetermined amount or percentage. For example, the network device 104 may set duty cycle to 20%of an initial value, as a non-limiting example. Moreover, in various embodiments, if mode B is reported, then the network device 104 may use PHR and the information indicating mode B, to improve its scheduling decisions by allocating higher power up to 27.8 dBm, which is larger than P CMAX, c but not larger than P CMAX for a next UL transmission and by setting a lower duty cycle.
To further illustrate according to the second scheme, the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC. For PHR reporting, the network device 104 may determine P CMAX, f, c (i) per cell according to the second scheme, e.g., P CMAX, c of band n78 = 26 dBm. In addition, the user device 102 may report the information indicating whether it can apply power aggregation implicitly together with duty cycle. To illustrate, suppose the information includes any of three modes, including a mode A, a mode B, and a mode C. Mode A indicates that the user device 102 cannot apply power aggregation, and in turn, indicates to the network device 104 to allocate power according to the PHR and not to perform any duty cycle adjustment/lowering. Mode B indicates that the user device 102 can apply partial power aggregation, and in turn indicates to the network device 104 to allocate more power combined with PHR, and to set a lower value of duty cycle according to a first percentage, such as 50%. Mode C indicates that the user device can apply power aggregation, and in turn indicates to the network device 104 to allocate more power combined with PHR, and to set a lower value of duty cycle according to a second percentage, which may be lower than the first percentage, such as 20%for example. Through communication of the information indicating whether the user device 102 can perform power aggregation, duty cycles may be implicitly derived or dynamically changed, in combination with aggregated power being dynamically determined across bands, which may improve scheduling decisions by the  network device 104 and more efficiently utilize aggregated power by the user device 102.
In addition or alternatively, the information indicating whether the user device 102 can apply power aggregation may be used in combination with maximum power for one band of a band combination or band pair. To illustrate, suppose P CMAX of CA = PC x, P CMAX, c of a band = PC x. Whether the band can use a given PC x may depend on one or more modes. For example, a first mode (e.g., mode A) may indicate that P CMAX, c of the band cannot be set to the maximum power of CA, and a second mode (e.g., mode B) indicates that P CMAX, c of the band can be set to the maximum power of CA. In some embodiments, the maximum power of CA for x = 3, 2, and 1.5 is PC 3 = 23 dBm, PC 2 = 26dBm, and PC 1.5 = 29dBm, respectively.
To illustrate using the first scheme as an example, the user device 102 may report a capability to support the aggregated power in UL CA, such as by reporting HigherPowerLimitCADC. For PHR reporting, the network device 104 may determine P CMAX, f, c (i) per cell according to the first scheme, e.g., P CMAX, c of band n78 < P PowerClass, c = 26 dBm, and P CMAX = P PowerClass, CA = 26 dBm. If the user device 102 reports mode A, the network device 104, in response, may allocate the power according to the PHR and the P CMAX, c of band n78 is still less than the P PowerClass, c = 26 dBm. Additionally, if the user device 102 reports mode B, the network device 104, in response, may allocate more power combined with PHR, and may use P CMAX of CA for a band combination or band pair P CMAX, c of a band. Also, for example, if the user device 102 reports mode B with PHR reporting, the network device 104 may allocate a higher power up to 26 dBm, which is larger than P CMAX, c but not larger than P CMAX for a next UL transmission.
Fig. 4 shows a flow chart of a method for wireless communication that involves a power headroom value. At block 402, the user device 102 may determine a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of a plurality of cells. At block 404, the user device 102 may report the power headroom value to the network device 104.
Additionally, in some embodiments of the example method 400, the user device 102 may determine a PHR value to report by adjusting at least one value of at least one parameter used to determine the power headroom value for transmission in a cell of a plurality of. For some of  these embodiments, where the maximum power on one band can be increased due to the aggregated power across different bands, in which the maximum power may be equal to P PowerClass, c and not larger than P PowerClass, CA (first scheme) , or larger than P PowerClass, c but not larger than 10×log 10 ∑ p PowerClass, c (second scheme) , the user device 102 may one or more parameters used to determine a PHR value. The adjustment may reflect dynamic setting of aggregated power, which may be together with the PHR reporting, and/or may enable efficient UL scheduling.
For example, the network device 104 may determine P CMAX, c, according to the first scheme, where the value of P CMAX, c of a cell is less than P PowerClass, c and P CMAX is not larger than P PowerClass, CA. Alternatively, the network device 104 may determine P CMAX, c according to the second scheme, where the value of P CMAX, c of a cell is not larger than P PowerClass, c and P CMAX is not larger than 10×log 10 ∑ p PowerClass, c. For either the first scheme or the second scheme, the user device 102 may adjust at least one value of at least one parameter used to determine a power headroom value, which may reflect dynamic adjustment of aggregated power. For example, suppose that the total maximum power is 27.8 dBm for two cells in inter-band CA, such as band n41 with Power Class 3 (PC3) and band n78 with Power Class 2 (PC2) . But for one cell, larger power (e.g. more than 26 dBm on band n78 or more than 23 dBm on band n41) may be used if there is remaining power on the other cell.
Additionally, in various embodiments, the user device 102 may determine or calculate a PHR value according to a mathematical formula, such as equation (1) above. Such a mathematical formula, such as equation (1) , may have one or more parameters, at least one of which the user device 102 may adjust to derive a higher PHR value. For example, if PHR can be higher than an initial value, the user device 102 may adjust one or more parameters to derive a higher PHR value, and report the higher PHR value.
In some embodiments, the user device 102 may adjust one or more open loop power control parameters. For example, the user device 102 may adjust the one or more parameters by decreasing P O_UE_PUSCH, b, f, c (j) and/or α b, f, c (j) . In various of these embodiments, the user device 102 may perform the adjustment if these parameters values are not indicated by the network device 102, such as by not being indicated in an indicated source resource indicator (SRI) in DCI  format 0_1. Such as decrease may result in a higher PHR, which in turn may reflect dynamic application of aggregated power. To illustrate further, suppose P0 [-16: 15] = 2 in P0-PUSCH-AlphaSetId =5 within one SRI-PUSCH-PowerControl with ID=3 of sri-PUSCH-MappingToAddModList, and SRI in DCI format 0_1 = 3. If the user device 102 can use aggregated power for a PUSCH transmission, then, when calculating PHR, the user device 102 may decrease P O_UE_PUSCH, b, f, c (j) , (for example, using P0 = P0 -X in the PHR calculation) to derive a larger PHR, where X may be a predefined value or configured by radio resource control (RRC) signaling.
Also, in some situations, one band may already achieve maximum power of the P PowerClass, c, e.g. band n78 has already achieved the reported PC2. For such situations, the network device 104 may not know whether more power can be allocated for the cell on the band because the network device 104 may not be aware whether one band in a band combination could support the aggregated power of CA. To remedy such a deficiency and provide the network device 104 with such knowledge, the user device 102 may report to the network device 104 that the network device 104 may increase power for the UL transmission in event the power is larger than the maximum power of one band but still less than the aggregated power of CA.
In addition or alternatively, the user device 102 may adjust the one or more parameters by decreasing PL b, f, c (q d) to derive a larger PHR.
In addition or alternatively, for closed loop power control parameters, the user device 102 may adjust the one or more parameters by decreasing δ PUSCH, b, f, c (i, l) to derive a larger PHR. To further illustrate, for the PUSCH power control adjustment state f b, f, c (i, l) for active UL BWP b of carrier f of serving cell c in PUSCH transmission occasion i, and l∈ {0, 1} if the user device 102 is configured with twoPUSCH-PC-AdjustmentStates and l=0 if the UE is not configured with twoPUSCH-PC-AdjustmentStates, f b, f, c (i, l) may be determined according to equation (2) above, as previously described. Additionally, δ PUSCH, b, f, c (i, l) , a TPC command value included in a DCI format 0_0 or DCI format 0_1 that schedules the PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c, may be indicated as 1 dB in a DCI format 0_0 or DCI format  0_1, and may be decreased by the user device 102 to a value lower than 1 dB, such as a predefined or configured value or level, e.g., -1 dB.
In addition or alternatively, the user device 102 may adjust the one or more parameters by adjusting
Figure PCTCN2022105765-appb-000005
which is the bandwidth of the PUSCH resource assignment expressed in number of resource blocks (RBs) for PUSCH transmission occasion i on active UL BWP b of carrier f of serving cell c, and where μ is a SCS configuration, such as defined in [4, TS 38.211] . Additionally, the resource block (RB) number for PUSCH may reflect bandwidth impact on Tx power.
In addition or alternatively, the user device 102 may scale down the number of RBs for a PUSCH to derive a larger PHR. For example, the actual number of RBs for a PUSCH is X RBs, which may be scaled down to α×X RBs, wherein a scaling factor α is predefined or configured by RRC. In one example, α = 0.5, although other scaling factor values may be possible.
In addition or alternatively, as previously described, the BPRE function in equation (3) may reflect the MCS impact on Tx power. Accordingly, in various embodiments, the user device 102 may use an actual MCS with an offset to derive a virtual MCS level for a PUSCH in order to derive a larger PHR.
In addition or alternatively, the user device 102 may adjust one or more parameters and/or determine a PHR value by adding a parameter δ P_aggregated, f, c (i) to a predefined formula used to determine PHR, such as to equation (1) above. In various embodiments, the user device 102 may be configured to select from one of a plurality of predetermined values, such as δ P_aggregated, f, c (i) = { [-1] , 0, 1, 2, [3] } dB, the selection of which may reflect dynamic aggregated power.
Adjusting one or more parameters in a PHR calculation where the maximum power on one band could be increased due to the aggregated power across different bands may allow the user device 102 to dynamically apply power aggregation across bands, which is then indicated or reflected in PHR reporting. This, in turn, may allow for more efficient utilization of aggregated power by the user device 102 and/or improve scheduling decisions made by the network device  104.
The description and accompanying drawings above provide specific example embodiments and implementations. The described subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein. A reasonably broad scope for claimed or covered subject matter is intended. Among other things, for example, subject matter may be embodied as methods, devices, components, systems, or non-transitory computer-readable media for storing computer codes. Accordingly, embodiments may, for example, take the form of hardware, software, firmware, storage media or any combination thereof. For example, the method embodiments described above may be implemented by components, devices, or systems including memory and processors by executing computer codes stored in the memory.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment/implementation” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment/implementation” as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter includes combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and” , “or” , or “and/or, ” as used herein may include a variety of meanings that may depend at least in part on the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily  intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present solution should be or are included in any single implementation thereof. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present solution. Thus, discussions of the features and advantages, and similar language, throughout the specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages and characteristics of the present solution may be combined in any suitable manner in one or more embodiments. One of ordinary skill in the relevant art will recognize, in light of the description herein, that the present solution can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the present solution.
The subject matter of the disclosure may also relate to or include, among others, the following aspects:
A first aspect includes a method for wireless communication that includes: transmitting, by a user device, an information to a network device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and transmitting, by the user device, an uplink transmission on the cell of the plurality of cells.
A second aspect includes a method of wireless transmission that includes: receiving, by a network device, an information from a user device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and determining, by the network device, power adjustment information, for an uplink transmission on one of the plurality of cells according to the information received from the user device.
A third aspect includes any of the first or second aspects, and further includes wherein the information comprises at least one of: a first mode indicating that the user device cannot apply  power aggregation for the cell; ora second mode indicating that the user device can apply power aggregation for the cell.
A fourth aspect includes the third aspect, and further includes at least one of: allocating, by the network device, power for the uplink transmission on the cell based on the power headroom value without applying power aggregation in response to the information comprising the first mode; or allocating, by the network device, power for the uplink transmission on the cell based on the power headroom value and applying power aggregation in response to the information comprising the second mode.
A fifth aspect includes the fourth aspect, and further includes wherein allocating the power based on the second mode comprises: increasing, by the network device, the power for the uplink transmission.
A sixth aspect includes the fifth aspect and further includes wherein increasing the power comprises: the power is larger than a maximum power for the cell and less than a total maximum power for the plurality of cells .
A seventh aspect includes any of the first through sixth aspects, and further includes wherein the information is transmitted per band combination, per band pair, or per band.
An eighth aspect includes any of the first through seventh aspects, and further includes wherein the information is transmitted in combination with a medium access control (MAC) control element (CE) that includes a power headroom value.
A ninth aspect includes any of the first through eighth aspects, and further includes wherein the information comprises at least one mode of a plurality of modes comprising at least one of the first mode or the second mode, wherein the plurality of modes further comprises a duty cycle information, wherein: only one mode of the plurality of modes indicates a duty cycle with a lower value, wherein the only one mode corresponds to the power aggregation can be used; or at least two modes of the plurality of modes indicate different duty cycles with different lower values, wherein each of the at least two modes correspond to the power aggregation can be used.
A tenth aspect includes any of the first through ninth aspects, wherein the information further comprises an indication of a maximum power used for one band of a band combination or band pair.
An eleventh aspect includes the tenth aspect, and further includes wherein the maximum power used for the one band is the maximum power class reported for the band, which is same as a power class for carrier aggregation (CA) including the band.
A twelfth aspect includes a method for wireless communication, the method comprising: determining, by a user device, a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of the plurality of cells; and reporting, with the user device, the power headroom value to a network device.
A thirteenth aspect includes the twelfth aspect, and further includes wherein the at least one parameter comprises an open loop power control parameter.
A fourteenth aspect includes any of the twelfth or thirteenth aspects, and further includes wherein the at least one parameter comprises a downlink pathloss estimate.
A fifteenth aspect includes any of the twelfth through fourteenth aspects, and further includes wherein the at least one parameter comprises a transmit power control (TPC) command value δ PUSCH.
A sixteenth aspect includes any of the twelfth through fifteenth aspects, and further includes wherein the at least one parameter comprises a number of Resource Blocks (RB) for the uplink transmission on the cell.
A seventeenth aspect includes any of the twelfth through sixteenth aspects, and further includes wherein the at least one parameter comprises a power value indicating dynamic aggregated power.
An eighteenth aspect includes any of the twelfth through seventeenth aspects, and further includes: transmitting, by the user device, an indication whether the power for an uplink transmission can be increased or not when the power is equal or larger than the maximum power for the cell and less than a total maximum power for the plurality of cells.
A nineteenth aspect includes a wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory to implement a method of any of the first through eighteenth aspects.
A twentieth aspect includes a computer program product comprising a computer-readable program medium comprising code stored thereupon, the code, when executed by a processor, causing the processor to implement a method of any of the first through eighteenth aspects.
In addition to the features mentioned in each of the independent aspects enumerated above, some examples may show, alone or in combination, the optional features mentioned in the dependent aspects and/or as disclosed in the description above and shown in the figures.

Claims (20)

  1. A method for wireless communication, the method comprising:
    transmitting, by a user device, an information to a network device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and
    transmitting, by the user device, an uplink transmission on the cell of the plurality of cells.
  2. A method for wireless communication, the method comprising:
    receiving, by a network device, an information from a user device, wherein the information indicates whether the user device can apply power aggregation of a plurality of cells for a cell of the plurality of cells; and
    determining, by the network device, power adjustment information, for an uplink transmission on a cell of the plurality of cells according to the information received from the user device.
  3. The method of any of claims 1 or 2, wherein the information comprises at least one of:
    a first mode indicating that the user device cannot apply power aggregation for the cell; or
    a second mode indicating that the user device can apply power aggregation for the cell.
  4. The method of claim 3, further comprising at least one of:
    allocating, by the network device, power for the uplink transmission on the cell based on the power headroom value without applying power aggregation in response to the information comprising the first mode; or
    allocating, by the network device, power for the uplink transmission on the cell based on the power headroom value and applying power aggregation in response to the information comprising the second mode.
  5. The method of claim of claim 4, wherein allocating the power based on the second mode comprises:
    increasing, by the network device, the power for the uplink transmission.
  6. The method of claim 5, wherein increasing the power comprises:
    the power is larger than a maximum power for the cell and less than a total maximum power for the plurality of cells.
  7. The method of any of the claims 1-3, wherein the information is transmitted per band combination, per band pair, or per band.
  8. The method of any of claims 1-3, wherein the information is transmitted in combination with a medium access control (MAC) control element (CE) that includes a power headroom value.
  9. The method of any of claim 1-3, wherein the information comprises at least one mode of a plurality of modes comprising at least one of the first mode or the second mode, wherein the plurality of modes further comprises a duty cycle information, wherein:
    only one mode of the plurality of modes indicates a duty cycle with a lower value, wherein the only one mode corresponds to the power aggregation can be used; or
    at least two modes of the plurality of modes indicate different duty cycles with different lower values, wherein each of the at least two modes correspond to the power aggregation can be used.
  10. The method of any of claims 1-3, wherein the information further comprises an indication of a maximum power used for one band of a band combination or band pair.
  11. The method of claim 10, wherein the maximum power used for the one band is the maximum power class reported for the band, which is same as a power class for carrier aggregation (CA) including the band.
  12. A method for wireless communication, the method comprising:
    determining, by a user device, a power headroom value by adjusting at least one value of at least one parameter used to determine the power headroom value for an uplink transmission on a cell of the plurality of cells; and
    reporting, with the user device, the power headroom value to a network device.
  13. The method of claim 12, wherein the at least one parameter comprises an open loop power control parameter.
  14. The method of claim 12, wherein the at least one parameter comprises a downlink pathloss estimate.
  15. The method of claim 12, wherein the at least one parameter comprises a transmit power control (TPC) command value δ PUSCH.
  16. The method of claim 12, wherein the at least one parameter comprises a number of Resource Block (RB) for the uplink transmission on the cell.
  17. The method of any of claims 12, wherein the at least one parameter comprises a power value indicating dynamic aggregated power.
  18. The method of claim 12, further comprising:
    transmitting, by the user device, an indication whether the power for an uplink transmission can be increased or not when the power is equal or larger than the maximum power for the cell and less than a total maximum power for the plurality of cells.
  19. A wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory to implement a method of any of claims 1 to 18.
  20. A computer program product comprising a computer-readable program medium comprising code stored thereupon, the code, when executed by a processor, causing the processor to implement a method of any of claims 1 to 18.
PCT/CN2022/105765 2022-07-14 2022-07-14 Power utilization in carrier aggregation for wireless communications WO2024011515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105765 WO2024011515A1 (en) 2022-07-14 2022-07-14 Power utilization in carrier aggregation for wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105765 WO2024011515A1 (en) 2022-07-14 2022-07-14 Power utilization in carrier aggregation for wireless communications

Publications (1)

Publication Number Publication Date
WO2024011515A1 true WO2024011515A1 (en) 2024-01-18

Family

ID=89535106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105765 WO2024011515A1 (en) 2022-07-14 2022-07-14 Power utilization in carrier aggregation for wireless communications

Country Status (1)

Country Link
WO (1) WO2024011515A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242128A1 (en) * 2013-09-27 2016-08-18 Panasonic Intellectual Property Corporation Of America Power control and power headroom reporting for dual connectivity
US20190104476A1 (en) * 2017-10-02 2019-04-04 Lg Electronics Inc. Method for determining transmission power for uplink signal and a user equipment performing the method
US20190159135A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control for multiple uplink transmissions
US20220104149A1 (en) * 2019-01-10 2022-03-31 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242128A1 (en) * 2013-09-27 2016-08-18 Panasonic Intellectual Property Corporation Of America Power control and power headroom reporting for dual connectivity
US20190104476A1 (en) * 2017-10-02 2019-04-04 Lg Electronics Inc. Method for determining transmission power for uplink signal and a user equipment performing the method
US20190159135A1 (en) * 2017-11-17 2019-05-23 Lenovo (Singapore) Pte. Ltd. Power control for multiple uplink transmissions
US20220104149A1 (en) * 2019-01-10 2022-03-31 Ntt Docomo, Inc. User terminal and radio communication method

Similar Documents

Publication Publication Date Title
US11375457B2 (en) User equipment and a method for power control of uplink transmissions
US11743839B2 (en) Method and apparatus for transmitting power headroom information in a communication system
US11115936B2 (en) Apparatus and methods for communication resource allocation
US10980046B2 (en) Method and apparatus for power headroom reporting procedure for different serving cells
US9749970B2 (en) Power control and power headroom for component carrier
US9282523B2 (en) Maximum output power configuration with UE preference in carrier aggregation
KR102353168B1 (en) Mehotd and apparatus for transmitting power headroom information in a communication system
US8711722B2 (en) Method for processing power headroom and terminal thereof
US11304155B2 (en) Method and device for transmitting power headroom information in communication system
CN113055992A (en) Method and apparatus for power control processing
CN107889206B (en) Method and device for processing uplink signal transmission power, base station and terminal
CN111510935B (en) Uplink signal sending method, receiving method, device and system
CN109246810B (en) Uplink scheduling correction method and system based on LTE system
WO2024011515A1 (en) Power utilization in carrier aggregation for wireless communications
CN114747260B (en) Uplink transmitting power control method and device
CN104080157A (en) Uplink power control method for trunking terminal
US20230269675A1 (en) Dynamic adjustable power offsets in power control of uplink carrier aggregation
WO2023212834A1 (en) Power control and indication for wireless communications
WO2023139519A1 (en) Medium access control (mac) control element (ce) design for multiple power management maximum power reduction (p-mpr) reporting
CN115707108A (en) Communication method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950639

Country of ref document: EP

Kind code of ref document: A1