WO2024011419A1 - Wireless communication devices and wireless communication methods for interference management in sbfd operation - Google Patents

Wireless communication devices and wireless communication methods for interference management in sbfd operation Download PDF

Info

Publication number
WO2024011419A1
WO2024011419A1 PCT/CN2022/105259 CN2022105259W WO2024011419A1 WO 2024011419 A1 WO2024011419 A1 WO 2024011419A1 CN 2022105259 W CN2022105259 W CN 2022105259W WO 2024011419 A1 WO2024011419 A1 WO 2024011419A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
band
bands
interference
wireless communication
Prior art date
Application number
PCT/CN2022/105259
Other languages
French (fr)
Inventor
Shahid JAN
Original Assignee
Shenzhen Tcl New Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Tcl New Technology Co., Ltd. filed Critical Shenzhen Tcl New Technology Co., Ltd.
Priority to PCT/CN2022/105259 priority Critical patent/WO2024011419A1/en
Publication of WO2024011419A1 publication Critical patent/WO2024011419A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present disclosure relates to the field of wireless communication systems, and more particularly, to wireless communication devices and wireless communication methods for interference management in sub-band full-duplex (SBFD) operation in 5G NR (new radio) communication system. More specifically, the present disclosure analyses the interference created in the 5G system such as gNB and user equipment (UE) due SBFD operation and discusses several schemes/solutions to manage/mitigate the SBFD specific interference.
  • SBFD sub-band full-duplex
  • SBFD operation introduces new interference into the system (such as gNB and UE) and there is no identification of some scenarios which can cause interference in SBFD operation.
  • SBFD interference introduces new interference into the system (such as gNB and UE) and there is no identification of some scenarios which can cause interference in SBFD operation.
  • SBFD interference introduces new interference into the system (such as gNB and UE) and there is no identification of some scenarios which can cause interference in SBFD operation.
  • SBFD interference in 3GPP RAN1#109-e meeting, still there are several SBFD interference scenarios which are not identified, especially in intra sub-band interference case.
  • SBFD interference management no clear scheme or solutions were proposed, which can specifically target the interference mitigation/management caused by SBFD operation.
  • An object of the present disclosure is to propose wireless communication devices and wireless communication methods for interference management in sub-band full-duplex (SBFD) operation, which can solve issues in the prior art, provide an analysis of SBFD operation specific interference, provide an analysis of scenarios which can cause the interference, provide interference management/mitigation solutions, provide a good communication performance, and/or provide high reliability.
  • SBFD sub-band full-duplex
  • a wireless communication method for interference management in sub-band full-duplex (SBFD) operation by a base station includes managing, by the base station, a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/flexible (F) slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
  • DL downlink
  • F flexible
  • RBs edge resource blocks
  • a wireless communication method for interference management in sub-band full duplex (SDFB) operation among the neighbor base stations includes managing, by the neighbor base stations, a co-channel intra sub-band interference, among the neighbor base stations by performing at least one of the followings or all of the followings: keeping a same bandwidth of UL to UL sub-bands and DL to DL sub-bands among the neighbor base stations; assigning alike sub-bands to an UL transmission and a DL transmission among the neighbor base stations; allocating a similar quantity of sub-bands to the DL transmission and the UL transmission among the neighbor base stations; and/or configuring a same configured number of sub-bands among the neighbor base stations.
  • SDFB sub-band full duplex
  • a wireless communication method for interference management in sub-band full duplex (SDFB) operation among the neighbor base stations includes managing, by the neighbor base stations, a co-channel inter sub-band interference, by performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
  • SDFB sub-band full duplex
  • a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to manage a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or the processor is configured to perform a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
  • DL downlink
  • F flexible
  • RBs edge resource blocks
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a block diagram of base stations (e.g., gNBs) of communication in a communication network system according to an embodiment of the present disclosure.
  • base stations e.g., gNBs
  • FIG. 2 is a flowchart illustrating a wireless communication method for interference management in sub-band full-duplex (SBFD) operation, performed by a base station according to an embodiment of the present disclosure.
  • SBFD sub-band full-duplex
  • FIG. 3 is a schematic diagram illustrating an example of gNB self interference according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating an example of gNB self interference reduction by sub-band configuration in lower RBs according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating an example of gNB self interference reduction by sub-band configuration in upper RBs according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an example of gNB self interference reduction by decreasing the number of sub-bands within a TDD band according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an example of assignment of different beams to different sub-bands according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to different bandwidth according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to dissimilar sub-band according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to different sub-bands allocation according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to different number of sub-bands according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band interference management at neighbor gNBs according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram illustrating an example of gNB to gNB inter cell co-channel inter sub-band interference according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram illustrating an example of inter sub-band interference mitigation via beamforming according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram illustrating an example of UE to UE intra cell co-channel inter sub-band interference according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram illustrating an example of UE to UE intra cell interference management mitigation via lower RBs configuration for UL sub-band according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram illustrating an example of UE to UE intra cell interference management solution via upper RBs configuration for UL sub-band according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram illustrating an example of UE to UE intra cell inter sub-band interference management solutions via less number of sub-bands according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram illustrating an example of UE to UE intra cell inter sub-band interference management solution via beam isolation according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to different bandwidth according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to dissimilar sub-bands according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to different amount of sub-bands according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to different number of sub-bands according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference solutions according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic diagram illustrating an example of UE to UE inter cell co-channel inter sub-band interference according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic diagram illustrating an example of beam isolation based solution for UE to UE inter co-channel intra sub-band interference according to an embodiment of the present disclosure.
  • FIG. 27 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • TDD time division duplex
  • the time domain resources are split between the downlink (DL) , uplink (UL) , and flexible symbols, where the flexible symbols can be used as DL, UL or as a guard period for DL-UL switching.
  • Allocation of a limited time duration for uplink in conventional TDD would result in reduced coverage, increased latency, and reduced capacity.
  • 3GPP RAN working group approves a study item in Rel-18, which focus on the feasibility of simultaneous existence of DL and UL, as known an full duplex, or more specifically, sub-band non-overlapping full duplex (SBFD) operation within a conventional TDD band, as given below: Study the subband non-overlapping full duplex and potential enhancements on dynamic/flexible TDD (RAN1, RAN4) .
  • SBFD sub-band non-overlapping full duplex
  • gNB In SBFD operation, gNB is operated in full duplex, i.e., simultaneous DL and UL transmission occurs at gNB side, while the UE operates in conventional half duplex mode. This simultaneous DL and UL transmission at gNB side creates interference into the system (gNB and UE) , which may degrade the SBFD operation performance.
  • SBFD interference In order to reduce the effect of SBFD interference into the system, it is necessary to identify the causes which creates the SBFD specific interference into the system, and to study further its management/mitigation solutions.
  • Rel-18 SID for duplex evolution it is mentioned to study further the SBFD specific interference and identify solutions to manage them as given below. For example, study inter-gNB and inter-UE CLI handling and identify solutions to manage them (RAN1) . For example, consider intra-subband CLI and inter-subband CLI in case of the subband non-overlapping full duplex.
  • Co-channel intra-subband interference The interference is caused by transmission of the aggressor on a set of contiguous RBs in a carrier to reception of the victim on the same set of contiguous RBs in the same carrier.
  • UE-UE co-channel intra-subband CLI CLI caused by UL transmission of the aggressor UE on a set of RBs in one carrier to DL reception of the victim UE on the same set of RBs in the same carrier.
  • UE-UE co-channel inter-subband CLI CLI caused by UL transmission of the aggressor UE on a first set of RBs in a carrier to DL reception of the victim UE on a second set of RBs in the same cell or neighboring cell in the same carrier, where the two RB sets are non-overlapping in frequency.
  • UE-UE adjacent-channel CLI CLI caused by UL transmission of the aggressor UE in a carrier to DL reception of the victim UE in another adjacent carrier.
  • SBFD interference In 3GPP RAN1#109-e meeting, still there are several SBFD interference scenarios which are not identified in the above agreements, especially in intra sub-band interference case. Furthermore, regarding the SBFD interference management, no clear scheme or solutions were proposed, which can specifically target the interference mitigation/management caused by SBFD operation. Therefore, some embodiments of the present disclosure further study a detail analysis of SBFD specific interference, the scenarios which causes this interference, and its management/mitigation solutions.
  • Sub-band non-overlapping full duplex improves the UL coverage, reduces the latency, and increase the capacity.
  • new types of interference create at both gNB and UE side. This interference can be caused by several scenarios and factors at gNB side, which can degrade the performance and system capacity of the SBFD operation at both gNB and UE side as given below.
  • gNB to gNB interference a. gNB self-interference.
  • Co-channel interference i. Intra sub-band interference.
  • Adjacent channel interference i. Intra sub-band interference.
  • UE to UE interference a. Intra cell interference: i. Inter sub-band interference. b. Inter cell interference: i. Intra sub-band interference. ii. Inter sub-band interference.
  • SBFD operation may also cause sever interference to the legacy operation. Therefore, it is necessary to identify those scenarios which creates interference in SBFD operation as well as legacy operation and apply interference management/mitigation solutions to reduce its impact at both gNB and UE side.
  • FIG. 1 illustrates that, in some embodiments, base stations (e.g., gNBs) 10 and 20 for communication in a communication network system 40 according to an embodiment of the present disclosure are provided.
  • the communication network system 40 includes the base stations 10 and 20 (such as a first base station 10 and one or more second base stations 20) .
  • the base station 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 or 21 is configured to manage a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or the processor 11 or 21 is configured to perform a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
  • This can solve issues in the prior art, provide an analysis of SBFD operation specific interference, provide an analysis of scenarios which can cause the interference, provide interference management/mitigation solutions, provide a good communication performance, and/or provide high reliability.
  • FIG. 2 illustrates a wireless communication method 200 for interference management in sub-band full-duplex (SBFD) operation, performed by a base station according to an embodiment of the present disclosure.
  • the method 500 includes: a block 202, managing, by the base station, a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or a block 204, performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
  • This can solve issues in the prior art, provide an analysis of SBFD operation specific interference, provide an analysis of scenarios which can cause the interference, provide interference management/mitigation solutions, provide a good communication performance,
  • the configured number of UL sub-bands in the DL/F slots/symbols or the configured number of DL sub-bands in the UL/F slots/symbols is two.
  • a first UL sub-band is aligned with a first DL sub-band
  • a second DL sub-band and a third DL sub-band are isolated from the first UL sub-band and assigning the different beams to the different sub-bands comprises assigning a first receive (Rx) beam to the first UL sub-band and assigning the first transmit (Tx) beam and the second Tx beam to the second DL sub-band and the third DL sub-band, respectively.
  • the wireless communication method further comprises indicating, by the base station, Rx beams assigned to the UL sub-bands and Tx beams assigned to the DL sub-bands to a user equipment (UE) in a sub-band configuration.
  • the wireless communication method further comprises managing, by the base stations, a co-channel intra sub-band interference among neighbor base stations by performing at least one of the followings or all of the followings: keeping a same bandwidth of UL to UL sub-bands and DL to DL sub-bands among the neighbor base stations; assigning alike sub-bands to an UL transmission and a DL transmission among the neighbor base stations; allocating a similar quantity of sub-bands to the DL transmission and the UL transmission among the neighbor base stations; and/or configuring a same configured number of sub-bands among the neighbor base stations.
  • an SBFD based assistance information are exchanged between the neighbor base stations through a backhaul signaling using an Xn interface or over the air (OTA) signaling, and the SBFD based assistance information comprises a bandwidth of sub-band, a number of sub-bands, and/or an allocation of sub-band to an UL/DL transmission within a TDD band.
  • the wireless communication method further comprises managing, by the first base station with the second station, a co-channel inter sub-band interference of the first base station to the second base station by assigning different beams to the DL sub-bands and UL sub-bands with an isolation gap between the DL sub-bands and the UL sub-bands.
  • the first Rx beam is assigned to the first UL sub-band
  • the first Tx beam and the second Tx beam are assigned to the second DL sub-band and the third DL sub-band respectively at both the first base station and the second base station.
  • the wireless communication method further comprises managing, by a base station, a UE to UE intra cell inter sub-band interference by configuring the configured number of the UL sub-bands in the DL/F slots/symbols or the configured number of the DL sub-bands in the UL/F slots/symbols in the outer carriers or the edge RBs at a UE, and/or performing the beam isolation of the UL sub-bands and the DL sub-bands at the UE comprising assigning the different beams to the different sub-bands at the UE.
  • the configured number of the UL sub-bands in the DL/F slots/symbols or the configured number of the DL sub-bands in the UL/F slots/symbols at the UE is two.
  • assigning the different beams to the different sub-bands at the UE comprises assigning the first Rx beam to the first UL sub-band at the UE and assigning the first Tx beam and the second Tx beam to the second DL sub-band and the third DL sub-band, respectively at the UE.
  • the wireless communication method further comprises indicating, by a base station, the Rx beams assigned to the UL sub-bands and the Tx beams assigned to the DL sub-bands at the UE to the UE in the sub-band configuration.
  • the wireless communication method further comprises managing, by the base stations, a UE to UE inter cell co-channel intra sub-band interference by performing at least one of followings or all of the followings: keeping the same bandwidth of the UL to UL sub-bands and the DL to DL sub-bands among the neighbor base station’s serving UEs; assigning alike sub-bands to the UL transmission and the DL transmission among the neighbor base station’s serving UEs; allocating the similar quantity of the sub-bands to the DL transmission and the UL transmission among the neighbor base station’s serving UEs; and/or configuring the same configured number of the sub-bands among the neighbor base station’s serving UEs.
  • the wireless communication method further comprises managing, by the base stations, a UE to UE inter cell co-channel inter sub-band interference by assigning the different beams to the DL sub-bands and UL sub-bands with the isolation gap between the DL sub-bands and the UL sub-bands at UEs.
  • the first Rx beam is assigned to the first UL sub-band
  • the first Tx beam and the second Tx beam are assigned to the second DL sub-band and the third DL sub-band respectively at both a first cell and a second cell
  • the Tx and Rx beams assigned to each UE are different from the UEs across cells.
  • Some embodiments of the present disclosure discuss the sources and scenarios which creates interference in SBFD operation and propose interference management/mitigation solutions, to reduce the effect of SBFD specific interference at gNB and UE side. Some embodiments analyze the sources and scenarios of interference caused by SBFD operation and its management/mitigation solutions at gNB side. Some embodiments analyze the sources of interference caused by SBFD operation and its management/mitigation solutions at UE side.
  • gNB self-interference is caused by DL transmission on a set of DL RBs in a carrier to UL reception on a set of UL RBs in the same carrier at the same gNB, where the two RB sets are non-overlapping in frequency as defined in an agreement of 3GPP RAN1#109-e meeting.
  • gNB self-interference caused by DL sub-band transmission to UL sub-band reception in the same gNB.
  • 3GPP RAN1#109-e meeting such as, Tx/Rx isolation, spatial domain isolation, and advance receiver.
  • most of these solutions focus on hardware enhancement which may increase the hardware cost significantly.
  • this embodiment of the present disclosure proposes several cost-effective solutions based on the sub-band carrier or RBs configuration and beam isolations to reduce the effect of gNB self-interference.
  • FIG. 3 shows an example, where an UL sub-band in DL/F slots/symbols configured in such a way that the UL sub-band located in the inner RBs of a TDD band.
  • This configuration will create two sided gNB self-interference, such as the interference of DL sub-band of the upper RBs to UL sub-band of the inner RBs (self-interference 1) , and the interference of DL sub-band of the lower RBs to the UL sub-band of the inner RBs (self-interference 2) as shown in FIG. 3.
  • this configuration will create double fold self-interference at gNB.
  • this embodiment of the present disclosure propose to configure the UL sub-band in DL/F slots/symbols or DL sub-bands in UL/F slots/symbols by utilizing the edge carriers or RBs within a TDD sub-band.
  • the configuration of UL sub-band in DL/F slots/symbols in the lower RBs will create one sided interference (interference 1) as shown in FIG. 4.
  • the configuration of UL sub-band in DL/F slots/symbols in the upper RBs can also be used to reduce the effect of double fold interference, e.g., it will create only single fold interference (self-interference 1) as shown in FIG. 5.
  • decreasing the number of sub-bands within a TDD band may also help in reducing the effect of gNB self-interference. For instance, two sub-band in a TDD band will reduce the double fold interference to single fold self-interference at gNB as shown in FIG. 6. To conclude the above solutions, the configuration of UL sub-bands in DL/F slots/symbols in the outer carriers or the edge RBs and lowering the number of sub-bands will reduce the gNB self-interference.
  • beam isolations of DL and UL sub-bands can be used, e.g., assigning of different beams to different sub-bands.
  • gNB can assign Rx beam n to the UL sub-band#1, and Tx beam n and n+1 to DL sub-bands 2 and 3 respectively as shown in FG. 7.
  • gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration.
  • gNB can isolate the UL and DL beams up to the possible extent in order to isolate the UL and DL transmissions and reduce the gNB self-interference.
  • the advantage of this exemplary method can be more effective in FR2 (frequency range 2) .
  • gNB to gNB co-channel interference is caused by the transmission of aggressor gNB to the reception of the victim gNB in the same carrier simultaneously.
  • this interference is caused by one gNB to another gNB while both gNB are using the same channel within a TDD band.
  • Co-channel gNB-to-gNB intra sub-band interference exists when two neighbor gNBs are configured with the different sub-bands parameters among neighbor gNBs as given below: 1. Different bandwidth of UL to UL and DL to DL sub-bands among neighbor gNBs. 2. Allocation of dissimilar sub-bands to UL and DL transmission among neighbor gNBs. 3. Allocation of dissimilar quantity of sub-bands to UL and DL transmission among neighbor gNBs. 4. Configuration of different numbers of sub-bands among neighbor gNBs.
  • Scenario 1 Different bandwidth of UL to UL and DL to DL sub-bands among neighbor gNBs
  • the bandwidth of UL sub-bands in DL/F slots/symbols among the neighbor gNBs are not the same.
  • the bandwidth of UL sub-band configured at gNB1 is different from the bandwidth of UL sub-band in DL/F slots/symbols configured at gNB2 as shown in FIG. 8.
  • the interference will be caused by the same set of contiguous RBs of DL sub-band transmission of gNB1 to the same set of contiguous RBs of UL sub band reception at gNB2 as shown in FIG. 8.
  • Scenario 2 Allocation of dissimilar sub-band to DL and UL transmission among neighbor gNBs
  • Co-channel gNB-to-gNB intra sub-band interference exists when the neighbor gNBs are configured in a way that UL sub-band in DL/F slots/symbols are allocated in dissimilar sub-band among the two gNBs. For instance, consider two gNBs in which gNB1 allocate the sub-band#1 as UL sub-band in DL/F slots/symbols and gNB2 allocate the sub-band#2 as UL sub-band in DL/F slots/symbols as shown in FIG. 9.
  • the DL sub-band#2 of gNB1 will create intra sub-band interference to the UL sub-band#2 of gNB2, and the DL sub-band#1 of gNB2 will create intra sub-band interference to UL sub-band#1 of gNB1.
  • the gNB1 and gNB2 will act as aggressor and victim of interference to each other at the same time. For instance, consider two gNBs in which gNB1 allocate the sub-band#1 as UL sub-band in DL/F slots/symbols and gNB2 allocate the sub-band#2 as UL sub-band in DL/F slots/symbols as shown in FIG. 9.
  • the DL sub-band#2 of gNB1 will create intra sub-band interference to the UL sub-band#2 of gNB2, and the DL sub-band#1 of gNB2 will create intra sub-band interference to UL sub-band#1 of gNB1.
  • the gNB1 and gNB2 will act as aggressor and victim of interference to each other at the same time.
  • Scenario 3 Allocation of dissimilar quantity of sub-bands to DL and UL transmission among neighbor gNBs
  • Co-channel gNB-to-gNB intra sub-band interference exists when two gNBs are configured with the same number of sub-bands but the neighbor gNBs assigned different quantity of sub-band for UL and DL transmission.
  • gNB1 and gNB2 are configured with 3 sub-band each.
  • gNB1 assigned sub-band#1 as UL sub-band in DL/F slots/symbols
  • gNB2 assigned sub-band#1 and sub-band#2 as UL sub-band in DL/F slots/symbols as shown in FIG. 10.
  • the set of RBs of DL sub-band#2 at gNB1 will create intra sub-band interference to the same set of RBs of UL sub-band#2 at gNB2 as shown in FIG. 10.
  • Scenario 4 Configuration of different numbers of sub-bands among the neighbor gNBs
  • Co-channel gNB-to-gNB intra sub-band interference exists when the neighbor gNBs are configured with different number of sub-bands. For instance, consider two gNBs, in which gNB1 is configured with 3 sub-band and gNB2 is configured with 2 sub-bands, wherein gNB1 and gNB2 assigned sub-band#1 as UL sub-band in DL/F slots/symbols as shown in FIG. 11. Because the number of sub-bands are different, some RBs of DL sub-band#2 at gNB1, will create intra sub-band interference to the same set of RBs of the UL sub-band#1 at gNB2, as shown in FIG. 11.
  • this embodiment of the present disclosure present the following four solutions at gNB side with an example shown in FIG. 12.1.
  • inter gNB coordination among neighbor gNBs is required similar to Rel-16 inter gNB coordination for UL/DL slot format information exchange.
  • the neighbor gNB will exchange its SBFD assistance information among each other through backhaul signaling using Xn interface or OTA signaling, wherein the SBFD based assistance information can include the bandwidth of sub-band, number of sub-bands, allocation of sub-band to UL/DL transmission etc.
  • the neighbor gNBs can adopt the above mentioned solutions points to avoid the intra sub-band interference.
  • gNB to gNB co-channel inter-subband interference is caused by transmission of the aggressor gNB in a first set of contiguous RBs in a carrier to reception of the victim gNB in a second set of contiguous RBs in the same carrier, where the two contiguous RB sets are non-overlapping in frequency as given in the above agreements.
  • gNB to gNB co-channel inter sub-band interference is caused by a set of contagious RBs of a sub-band at a gNB to a set of RBs in another sub-band at another gNB. For instance, as shown in FIG. 13, DL sub-band#2 at gNB1 create inter sub-band interference to UL sub-band#1 at gNB2. Similarly, DL sub-band#2 at gNB2 create inter sub-band interference to UL sub-band#1 at gNB1.
  • some examples propose beam isolation based solutions for DL and UL sub-bands to reduce the effect of inter sub-band interference.
  • the neighbor gNBs can assign different beams to the DL and UL sub-bands with a possible isolation gap between the DL and UL sub-bands.
  • the two neighbor gNBs can assign Rx beam n to the UL sub-band#1, and Tx beam n and n+1 to DL sub-bands 2 and 3 respectively at both gNB1 and gNB2 as shown in FIG. 14, where the Tx and Rx beam of each gNB can be different from each other’s.
  • gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration.
  • gNB1 and gNB2 can isolate the UL and DL beams up to the possible extent in order to separate the UL and DL transmissions and reduce the interference. The advantage of this exemplary method is more effective in FR2.
  • SBFD operation the simultaneous transmission at gNB side also creates UE to UE interference in the same cell and across the cells.
  • some examples analyze UE to UE inter cell interference and intra cell interference, which is caused by SBFD operation, with the help of some exemplary scenarios, and propose its management/mitigation solutions. It is worthy to note, that SBFD interference management/mitigation solutions proposed at the above embodiments can be used to reduce the effect of UE to UE intra cell and inter cell interference as explained in below embodiments.
  • UE to UE intra cell interference is caused by the UL transmission of the aggressor UE on a first set of RBs in a carrier to DL reception of the victim UE on a second set of RBs in the same cell, where the two RB sets are non-overlapping in frequency.
  • UE to UE intra cell interference can exist in co-channel inter sub-band scenario as explained below.
  • the interference management solutions which are applied at gNB side to avoid or reduce the gNB self-interference can be applied to manage the UE to UE co-channel inter sub-band interference as explained below. For instance, consider an UL sub-band in DL/F slots/symbols configured in such a way that the UL sub-band located in the inner RBs of a TDD band as shown in FIG. 15.
  • This configuration at gNB side will create two sided UE to UE intra cell inter sub-band interference, such as the inner RBs of UL sub-band#2 transmission of UE2 will create interference to the upper RBs of DL sub-band#1 (interference 1) at UE1, and the interference of UL sub-band#2 of UE2 to the lower RBs of UE1 of the DL sub-band#1 (interference 2) as shown in FIG. 15.
  • some embodiments of this disclosure propose to configure the UL sub-band in DL/F slots/symbols by utilizing the edge carriers or RBs within a TDD sub-band. For instance, the configuration of UL sub-band#1 in DL/F slots/symbols in the lower RBs of UE2 will create one sided interference (interference 1) to UE 1 as shown in FIG. 16. In addition, the configuration of UL sub-band#3 in DL/F slots/symbols in the upper RBs of UE3 will create one sided interference to UE1 as shown in FIG. 17.
  • decreasing the number of sub-bands within a TDD band will also reduce the effect of UE to UE intra cell inter sub-band interference. For instance, two sub-band in a TDD band will reduce the double fold interference to single fold self-interference created by UE2 to UE1 as shown in FIG. 18.
  • the beam based isolation of sub-band as discussed in the above embodiments can also reduce the UE to UE intra cell co-channel inter sub-band interference.
  • gNB assigned Rx beam n to the UL sub-band#1 which is used by UE2, and Tx beam n and n+1 to DL sub-bands 2 and 3 respectively which are used by UE1 as shown in FIG. 19.
  • gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration. Because the UL and DL transmission are isolated through beams, therefore it will reduce the effect of intra cell inter sub-band UE to UE interference.
  • UE to UE inter cell interference is caused by the UL transmission of the aggressor UE on a first set of RBs in a carrier to the DL reception of the victim UE on the same set of RBs or a second set of RBs in the neighbor cell.
  • This embodiment of the present disclosure explains UE to UE inter cell interference with the help of exemplary scenarios as given below.
  • UE to UE Co-channel intra-sub band interference is caused by the transmission of the aggressor UE on a set of contiguous RBs in a carrier to the reception of the victim UE on the same set of contiguous RBs in the same carrier as given in the above agreement.
  • UE to UE inter cell co-channel intra sub-band interference exists when UEs in cross cells are configured with the different sub-band configuration e.g., different bandwidth of sub-bands, or different number of sub-bands within a TDD band, or the allocation of dissimilar sub-band for UL or DL transmission at the aggressor and victim UEs across the cell.
  • This embodiment explains the reasons of the UE to UE inter cell co-channel intra sub-band interference with the help of following scenarios and propose its solutions.
  • the interference management solutions applied to gNB can be used to avoid the UE to UE inter cell co-channel intra sub-band interference.
  • Scenario 1 Different bandwidth of UL to UL and DL to DL sub-bands configured to UEs across the cell
  • the bandwidth of DL and UL sub-bands configured by gNB1 to UE1 and UE2 at cell #1 is different from the bandwidth of DL and UL sub-bands configured by gNB2 to UE1 and UE2 at cell#2 as shown in Figure 18.
  • the interference will be caused by the UL sub-band transmission of UE1 at cell#2 to the DL sub-band transmission of UE2 at cell#1.
  • the UL sub-band transmission of UE1 at cell#1 will create interference to the DL sub-band transmission of UE2 at cell#2 as shown in FIG. 20.
  • Scenario 2 Allocation of dissimilar sub-band to DL and UL transmission to UEs across the cell
  • inter cell co-channel UE-to-UE intra sub-band interference exists when the neighbor’s gNBs configured its UEs in a way that UL sub-band in DL/F slots/symbols are allocated in dissimilar sub-band.
  • gNB1 at cell#1 allocates the sub-band#1 as UL sub-band in DL/F slots/symbols to UE2 and sub-band#2, sub-band#3 as DL sub-band to UE1.
  • gNB2 allocates the UL sub-band#2 to UE2 and DL sub-band#1 and sub-band#3 to UE1 as shown in FIG. 21.
  • the UL sub-band#2 of UE2 at cell#2 will create intra sub-band interference to DL sub-band#2 of UE1 at cell#1.
  • the UL sub-band#1 of UE2 at cell#1 will create intra sub-band interference to DL sub-band#1 of UE1 at cell#2 as shown in FIG. 21.
  • Scenario 3 Allocation of dissimilar quantity of sub-bands to DL and UL transmission to UEs across the cell
  • inter cell Co-channel UE-to-UE intra sub-band interference exists when the neighbor gNBs assigned different quantities of sub-bands to its UEs for UL and DL transmission.
  • gNB1 at cell#1 assigned UL sub-band#1 to UE2, and DL sub-band#2, and sub-band#3 to UE1.
  • gNB2 at cell#2 assigned UL sub-band#1 and sub-band#2 to UE2, and DL sub-band#3 to UE1 as shown in FIG. 22.
  • the UL sub-band#2 of UE2 at cell#2 will create intra sub-band interference to the DL sub-band#2 of UE1 at cell#1 as shown in FIG. 22.
  • Scenario 4 Configuration of different numbers of sub-bands to the UEs across the cell
  • gNB1at Cell#1 configured its UEs with 3 sub-band e.g., UE2 with UL sub-band#1, and UE1 with DL sub-band#2 and sub-band#3.
  • gNB2 at cell#2 configured its UEs with two sub-bands e.g., UE#2 with UL sub-band#1 and UE1 with DL sub-band#2 as shown in FIG. 23.
  • some RBs of the sub-band#1 at cell#2, which is UL sub- band will create intra sub-band interference to some RBs of the DL sub-band#2 of UE1 at cell#1, as shown in FIG. 23.
  • SBFD operation interference management solutions at gNB can be used to avoid the UE to UE interference.
  • the same solutions of the above embodiments can be used.
  • the UE to UE intra sub-band interference management solutions can be executed at gNB side.
  • the four point solutions proposed in the above embodiments can be applied by the neighbor gNBs to its serving UEs as given below and its example is shown in FIG. 24.1.
  • the neighbor gNBs shall keep the same bandwidth of UL to UL and DL to DL sub-bands to its serving UEs. 2.
  • the neighbor gNBs shall assign alike sub-bands to the UL and DL transmission of its serving UEs. 3.
  • the neighbor gNBs shall allocate similar quantity of sub-bands to DL and UL transmission to its serving UEs. 4.
  • the neighbor gNBs shall configure similar number of sub-bands to its serving UEs.
  • Co-channel inter-subband interference is caused by the transmission of aggressor UE in a first set of contiguous RBs in a carrier to reception of the victim UEs in a second set of contiguous RBs in the same carrier across the cell, where the two contiguous RB sets are non-overlapping in frequency as given in the above agreements.
  • UE to UE co-channel inter sub-band interference is caused by a set of contagious RBs of an UL sub-band of a UE at a cell to a set of RBs in another DL sub-band across the cell to another UE. For instance, as shown in FIG.
  • UL sub-band#1 of UE2 at cell#1 create inter sub-band interference to DL sub-band#2 of UE1 at cell#2.
  • UL sub-band#1 of UE2 at cell#2 create inter sub-band interference to DL sub-band#2 of UE1 at cell 1.
  • the beam isolation based solution implemented by gNB can be used to reduce the effect of UE to UE inter cell co-channel inter sub-band interference.
  • the two gNBs can assign Rx beam n to the UL sub-band#1, and Tx beam n and n+1 to DL sub-bands 2 and 3 respectively at both cell #1 and cell #2 as shown in FIG. 26, where the Tx and Rx beam assigned to each UE can be different from the UEs across the cell.
  • gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration. In this way the UL transmission and DL reception at the same cells and across cell can be isolated which can reduce the effect of UE to UE intra cell and inter cell inter sub-band interference.
  • some embodiments of the present disclosure propose the interference management solutions, which are caused by SBFD operation, in order to enhance the SBFD operation performance.
  • the proposed solutions to achieve our objectives are summarized as below. 1.
  • Several SBFD operation scenarios (especially in intra sub-band case) has been discussed which causes interference in SBFD operation at both gNB and UE side.
  • Several Interference management solutions has proposed to reduce the impact of interference on SBFD operation at both gNB and UE side.
  • Inter gNB coordination about SBFD operation has proposed, in which gNB exchange its assistance information of SBFD configuration with its neighbor gNB to avoid SBFD specific intra sub-band interference before happening.
  • Beam isolation based interference management/mitigation has proposed to reduce the effect of inter sub-band interference and gNB self-interference.
  • Some embodiments of the present disclosure propose SBFD operation to support the simultaneous transmission of UL/DL at gNB side and have the following advantages. 1.
  • This disclosure identifies several interference scenarios in SBFD operation and its management solutions, to improve the overall system capacity. 2.
  • the proposed solutions focus on cost effective solutions to avoid the impact of SBFD interference at both gNB and UE side before happening, and fully utilize the resources of sub-band full duplex operation. 3.
  • the proposed solutions focus on alternative options of interference management rather than hardware enhancement.
  • FIG. 27 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 27 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication method for interference management in SBFD operation includes a self-interference of a base station, a co-channel intra sub-band interference, and a co-channel inter sub-band interference at base stations and UEs sides. The self-interference of the base station is managed by configuring a configured number of UL sub-bands in DL/flexible slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge RBs within a TDD sub-band, and/or performing a beam isolation of the UL sub-bands and the DL sub-bands including assigning different beams to different sub-bands. The co-channel intra sub-band and inter sub-band interference among the neighbor base stations and UEs are managed by configuring the same number of sub-bands with similar bandwidth, and alike sub-band allocation, and/or performing a beam isolation of the UL sub-bands and the DL sub-bands including assigning different beams to different sub-bands among neighbor base stations.

Description

WIRELESS COMMUNICATION DEVICES AND WIRELESS COMMUNICATION METHODS FOR INTERFERENCE MANAGEMENT IN SBFD OPERATION
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of wireless communication systems, and more particularly, to wireless communication devices and wireless communication methods for interference management in sub-band full-duplex (SBFD) operation in 5G NR (new radio) communication system. More specifically, the present disclosure analyses the interference created in the 5G system such as gNB and user equipment (UE) due SBFD operation and discusses several schemes/solutions to manage/mitigate the SBFD specific interference.
2. Description of the Related Art
In prior art, most of the companies analyzed several types of interference caused by SBFD operation and proposed to RAN1 to further study the application of Rel-16 dynamic time division duplex (TDD) cross link interference (CLI) mitigation solutions to SBFD interference. However, SBFD operation introduces new interference into the system (such as gNB and UE) and there is no identification of some scenarios which can cause interference in SBFD operation. Further, despite of the discussion of SBFD interference in 3GPP RAN1#109-e meeting, still there are several SBFD interference scenarios which are not identified, especially in intra sub-band interference case. Furthermore, regarding the SBFD interference management, no clear scheme or solutions were proposed, which can specifically target the interference mitigation/management caused by SBFD operation.
Therefore, there is a need for wireless communication devices and wireless communication methods for interference management in SBFD operation.
SUMMARY
An object of the present disclosure is to propose wireless communication devices and wireless communication methods for interference management in sub-band full-duplex (SBFD) operation, which can solve issues in the prior art, provide an analysis of SBFD operation specific interference, provide an analysis of scenarios which can cause the interference, provide interference management/mitigation solutions, provide a good communication performance, and/or provide high reliability.
In a first aspect of the present disclosure, a wireless communication method for interference management in sub-band full-duplex (SBFD) operation by a base station includes managing, by the base station, a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/flexible (F) slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
In a second aspect of the present disclosure, a wireless communication method for interference management in sub-band full duplex (SDFB) operation among the neighbor base stations includes managing, by  the neighbor base stations, a co-channel intra sub-band interference, among the neighbor base stations by performing at least one of the followings or all of the followings: keeping a same bandwidth of UL to UL sub-bands and DL to DL sub-bands among the neighbor base stations; assigning alike sub-bands to an UL transmission and a DL transmission among the neighbor base stations; allocating a similar quantity of sub-bands to the DL transmission and the UL transmission among the neighbor base stations; and/or configuring a same configured number of sub-bands among the neighbor base stations.
In a third aspect of the present disclosure, a wireless communication method for interference management in sub-band full duplex (SDFB) operation among the neighbor base stations includes managing, by the neighbor base stations, a co-channel inter sub-band interference, by performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
In a fourth aspect of the present disclosure, a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to manage a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or the processor is configured to perform a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of base stations (e.g., gNBs) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a wireless communication method for interference management in sub-band full-duplex (SBFD) operation, performed by a base station according to an embodiment of the present disclosure.
FIG. 3 is a schematic diagram illustrating an example of gNB self interference according to an embodiment of the present disclosure.
FIG. 4 is a schematic diagram illustrating an example of gNB self interference reduction by sub-band configuration in lower RBs according to an embodiment of the present disclosure.
FIG. 5 is a schematic diagram illustrating an example of gNB self interference reduction by sub-band configuration in upper RBs according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram illustrating an example of gNB self interference reduction by decreasing the number of sub-bands within a TDD band according to an embodiment of the present disclosure.
FIG. 7 is a schematic diagram illustrating an example of assignment of different beams to different sub-bands according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to different bandwidth according to an embodiment of the present disclosure.
FIG. 9 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to dissimilar sub-band according to an embodiment of the present disclosure.
FIG. 10 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to different sub-bands allocation according to an embodiment of the present disclosure.
FIG. 11 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band due to different number of sub-bands according to an embodiment of the present disclosure.
FIG. 12 is a schematic diagram illustrating an example of gNB to gNB co-channel intra sub-band interference management at neighbor gNBs according to an embodiment of the present disclosure.
FIG. 13 is a schematic diagram illustrating an example of gNB to gNB inter cell co-channel inter sub-band interference according to an embodiment of the present disclosure.
FIG. 14 is a schematic diagram illustrating an example of inter sub-band interference mitigation via beamforming according to an embodiment of the present disclosure.
FIG. 15 is a schematic diagram illustrating an example of UE to UE intra cell co-channel inter sub-band interference according to an embodiment of the present disclosure.
FIG. 16 is a schematic diagram illustrating an example of UE to UE intra cell interference management mitigation via lower RBs configuration for UL sub-band according to an embodiment of the present disclosure.
FIG. 17 is a schematic diagram illustrating an example of UE to UE intra cell interference management solution via upper RBs configuration for UL sub-band according to an embodiment of the present disclosure.
FIG. 18 is a schematic diagram illustrating an example of UE to UE intra cell inter sub-band interference management solutions via less number of sub-bands according to an embodiment of the present disclosure.
FIG. 19 is a schematic diagram illustrating an example of UE to UE intra cell inter sub-band interference management solution via beam isolation according to an embodiment of the present disclosure.
FIG. 20 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to different bandwidth according to an embodiment of the present disclosure.
FIG. 21 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to dissimilar sub-bands according to an embodiment of the present disclosure.
FIG. 22 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to different amount of sub-bands according to an embodiment of the present disclosure.
FIG. 23 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference due to different number of sub-bands according to an embodiment of the present disclosure.
FIG. 24 is a schematic diagram illustrating an example of UE to UE inter cell co-channel intra sub-band interference solutions according to an embodiment of the present disclosure.
FIG. 25 is a schematic diagram illustrating an example of UE to UE inter cell co-channel inter sub-band interference according to an embodiment of the present disclosure.
FIG. 26 is a schematic diagram illustrating an example of beam isolation based solution for UE to UE inter co-channel intra sub-band interference according to an embodiment of the present disclosure.
FIG. 27 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
The diversified use cases and exponential growth of number of UEs in the next generation wireless communication system have increased the data traffic explosively which leads to the high requirements of spectral efficiency. In order to accomplish these requirements, time division duplex TDD system is widely adopted in commercial NR deployments. TDD system uses a single spectrum (frequency band) for downlink (DL) and uplink (UL) in different time slots, and utilizes the available spectrum more efficiently as compared to the frequency division duplex (FDD) system.
In conventional TDD system, the time domain resources are split between the downlink (DL) , uplink (UL) , and flexible symbols, where the flexible symbols can be used as DL, UL or as a guard period for DL-UL switching. Allocation of a limited time duration for uplink in conventional TDD would result in reduced coverage, increased latency, and reduced capacity. In order to enhance these limitations, 3GPP RAN working group approves a study item in Rel-18, which focus on the feasibility of simultaneous existence of DL and UL, as known an full duplex, or more specifically, sub-band non-overlapping full duplex (SBFD) operation within a conventional TDD band, as given below: Study the subband non-overlapping full duplex and potential enhancements on dynamic/flexible TDD (RAN1, RAN4) .
In SBFD operation, gNB is operated in full duplex, i.e., simultaneous DL and UL transmission occurs at gNB side, while the UE operates in conventional half duplex mode. This simultaneous DL and UL transmission at gNB side creates interference into the system (gNB and UE) , which may degrade the SBFD operation performance. In order to reduce the effect of SBFD interference into the system, it is necessary to identify the causes which creates the SBFD specific interference into the system, and to study further its  management/mitigation solutions. In addition, in Rel-18 SID for duplex evolution, it is mentioned to study further the SBFD specific interference and identify solutions to manage them as given below. For example, study inter-gNB and inter-UE CLI handling and identify solutions to manage them (RAN1) . For example, consider intra-subband CLI and inter-subband CLI in case of the subband non-overlapping full duplex.
Furthermore, the interference created by SBFD operation to the system (gNB and UE) , will severely affect the performance of gNB and UE. In order to mitigate the effect of SBFD interference, it is necessary to first identify the interference types and its sources as mentioned above. In this regard, there was a considerable discussion in 3GPP RAN1#109-e meeting, which were focused on the identification of the factors which creates interference in SBFD operation. The 3GPP discussion has come to consensus and several types of SBFD interference has been identified and classified in several categories such as gNB self-interference, intra sub-band interference, and inter sub-band interference as explained by the exemplary following agreements. Co-channel intra-subband interference: The interference is caused by transmission of the aggressor on a set of contiguous RBs in a carrier to reception of the victim on the same set of contiguous RBs in the same carrier. (Inter-cell) UE-UE co-channel intra-subband CLI: CLI caused by UL transmission of the aggressor UE on a set of RBs in one carrier to DL reception of the victim UE on the same set of RBs in the same carrier. (Intra-cell/inter-cell) UE-UE co-channel inter-subband CLI: CLI caused by UL transmission of the aggressor UE on a first set of RBs in a carrier to DL reception of the victim UE on a second set of RBs in the same cell or neighboring cell in the same carrier, where the two RB sets are non-overlapping in frequency. UE-UE adjacent-channel CLI: CLI caused by UL transmission of the aggressor UE in a carrier to DL reception of the victim UE in another adjacent carrier.
Despite of the detail analysis of SBFD interference in 3GPP RAN1#109-e meeting, still there are several SBFD interference scenarios which are not identified in the above agreements, especially in intra sub-band interference case. Furthermore, regarding the SBFD interference management, no clear scheme or solutions were proposed, which can specifically target the interference mitigation/management caused by SBFD operation. Therefore, some embodiments of the present disclosure further study a detail analysis of SBFD specific interference, the scenarios which causes this interference, and its management/mitigation solutions.
Sub-band non-overlapping full duplex improves the UL coverage, reduces the latency, and increase the capacity. However, in SBFD operation due to simultaneous transmission of DL and UL in the same time slots, new types of interference create at both gNB and UE side. This interference can be caused by several scenarios and factors at gNB side, which can degrade the performance and system capacity of the SBFD operation at both gNB and UE side as given below.
1. gNB to gNB interference: a. gNB self-interference. b. Co-channel interference: i. Intra sub-band interference. ii. Inter sub-band interference. c. Adjacent channel interference: i. Intra sub-band interference. ii. Inter sub-band interference.
2. UE to UE interference: a. Intra cell interference: i. Inter sub-band interference. b. Inter cell interference: i. Intra sub-band interference. ii. Inter sub-band interference.
In addition, SBFD operation may also cause sever interference to the legacy operation. Therefore, it is necessary to identify those scenarios which creates interference in SBFD operation as well as legacy operation and apply interference management/mitigation solutions to reduce its impact at both gNB and UE side.
FIG. 1 illustrates that, in some embodiments, base stations (e.g., gNBs) 10 and 20 for communication in a communication network system 40 according to an embodiment of the present disclosure are provided. The communication network system 40 includes the base stations 10 and 20 (such as a first base station 10 and one or more second base stations 20) . The base station 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The processor 11or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the  processor  11 or 21 is configured to manage a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or the  processor  11 or 21 is configured to perform a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands. This can solve issues in the prior art, provide an analysis of SBFD operation specific interference, provide an analysis of scenarios which can cause the interference, provide interference management/mitigation solutions, provide a good communication performance, and/or provide high reliability.
FIG. 2 illustrates a wireless communication method 200 for interference management in sub-band full-duplex (SBFD) operation, performed by a base station according to an embodiment of the present disclosure. In some embodiments, the method 500 includes: a block 202, managing, by the base station, a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or a block 204, performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands. This  can solve issues in the prior art, provide an analysis of SBFD operation specific interference, provide an analysis of scenarios which can cause the interference, provide interference management/mitigation solutions, provide a good communication performance, and/or provide high reliability.
In some embodiments, the configured number of UL sub-bands in the DL/F slots/symbols or the configured number of DL sub-bands in the UL/F slots/symbols is two. In some embodiments, a first UL sub-band is aligned with a first DL sub-band, a second DL sub-band and a third DL sub-band are isolated from the first UL sub-band and assigning the different beams to the different sub-bands comprises assigning a first receive (Rx) beam to the first UL sub-band and assigning the first transmit (Tx) beam and the second Tx beam to the second DL sub-band and the third DL sub-band, respectively. In some embodiments, the wireless communication method further comprises indicating, by the base station, Rx beams assigned to the UL sub-bands and Tx beams assigned to the DL sub-bands to a user equipment (UE) in a sub-band configuration. In some embodiments, the wireless communication method further comprises managing, by the base stations, a co-channel intra sub-band interference among neighbor base stations by performing at least one of the followings or all of the followings: keeping a same bandwidth of UL to UL sub-bands and DL to DL sub-bands among the neighbor base stations; assigning alike sub-bands to an UL transmission and a DL transmission among the neighbor base stations; allocating a similar quantity of sub-bands to the DL transmission and the UL transmission among the neighbor base stations; and/or configuring a same configured number of sub-bands among the neighbor base stations.
In some embodiments, an SBFD based assistance information are exchanged between the neighbor base stations through a backhaul signaling using an Xn interface or over the air (OTA) signaling, and the SBFD based assistance information comprises a bandwidth of sub-band, a number of sub-bands, and/or an allocation of sub-band to an UL/DL transmission within a TDD band. In some embodiments, the wireless communication method further comprises managing, by the first base station with the second station, a co-channel inter sub-band interference of the first base station to the second base station by assigning different beams to the DL sub-bands and UL sub-bands with an isolation gap between the DL sub-bands and the UL sub-bands. In some embodiments, the first Rx beam is assigned to the first UL sub-band, and the first Tx beam and the second Tx beam are assigned to the second DL sub-band and the third DL sub-band respectively at both the first base station and the second base station.
In some embodiments, the wireless communication method further comprises managing, by a base station, a UE to UE intra cell inter sub-band interference by configuring the configured number of the UL sub-bands in the DL/F slots/symbols or the configured number of the DL sub-bands in the UL/F slots/symbols in the outer carriers or the edge RBs at a UE, and/or performing the beam isolation of the UL sub-bands and the DL sub-bands at the UE comprising assigning the different beams to the different sub-bands at the UE. In some embodiments, the configured number of the UL sub-bands in the DL/F slots/symbols or the configured number of the DL sub-bands in the UL/F slots/symbols at the UE is two. In some embodiments, assigning the different beams to the different sub-bands at the UE comprises assigning the first Rx beam to the first UL sub-band at the UE and assigning the first Tx beam and the second Tx beam to the second DL sub-band and the third DL sub-band, respectively at the UE. In some embodiments, the wireless communication method further comprises  indicating, by a base station, the Rx beams assigned to the UL sub-bands and the Tx beams assigned to the DL sub-bands at the UE to the UE in the sub-band configuration.
In some embodiments, the wireless communication method further comprises managing, by the base stations, a UE to UE inter cell co-channel intra sub-band interference by performing at least one of followings or all of the followings: keeping the same bandwidth of the UL to UL sub-bands and the DL to DL sub-bands among the neighbor base station’s serving UEs; assigning alike sub-bands to the UL transmission and the DL transmission among the neighbor base station’s serving UEs; allocating the similar quantity of the sub-bands to the DL transmission and the UL transmission among the neighbor base station’s serving UEs; and/or configuring the same configured number of the sub-bands among the neighbor base station’s serving UEs. In some embodiments, the wireless communication method further comprises managing, by the base stations, a UE to UE inter cell co-channel inter sub-band interference by assigning the different beams to the DL sub-bands and UL sub-bands with the isolation gap between the DL sub-bands and the UL sub-bands at UEs. In some embodiments, the first Rx beam is assigned to the first UL sub-band, and the first Tx beam and the second Tx beam are assigned to the second DL sub-band and the third DL sub-band respectively at both a first cell and a second cell, and the Tx and Rx beams assigned to each UE are different from the UEs across cells.
Some embodiments of the present disclosure discuss the sources and scenarios which creates interference in SBFD operation and propose interference management/mitigation solutions, to reduce the effect of SBFD specific interference at gNB and UE side. Some embodiments analyze the sources and scenarios of interference caused by SBFD operation and its management/mitigation solutions at gNB side. Some embodiments analyze the sources of interference caused by SBFD operation and its management/mitigation solutions at UE side.
SBFD Interference analysis and Interference management solutions at gNB side:
gNB self-interference:
In SBFD operation, gNB self-interference (SI) is caused by DL transmission on a set of DL RBs in a carrier to UL reception on a set of UL RBs in the same carrier at the same gNB, where the two RB sets are non-overlapping in frequency as defined in an agreement of 3GPP RAN1#109-e meeting. In other words, gNB self-interference caused by DL sub-band transmission to UL sub-band reception in the same gNB. Several possible existing solutions of gNB SI mitigation were presented in 3GPP RAN1#109-e meeting such as, Tx/Rx isolation, spatial domain isolation, and advance receiver. However, most of these solutions focus on hardware enhancement which may increase the hardware cost significantly.
Therefore, this embodiment of the present disclosure, proposes several cost-effective solutions based on the sub-band carrier or RBs configuration and beam isolations to reduce the effect of gNB self-interference.
FIG. 3 shows an example, where an UL sub-band in DL/F slots/symbols configured in such a way that the UL sub-band located in the inner RBs of a TDD band. This configuration will create two sided gNB self-interference, such as the interference of DL sub-band of the upper RBs to UL sub-band of the inner RBs (self-interference 1) , and the interference of DL sub-band of the lower RBs to the UL sub-band of the inner RBs (self-interference 2) as shown in FIG. 3. In other words, this configuration will create double fold self-interference at gNB.
In order to reduce the effect of the double fold interference, this embodiment of the present disclosure propose to configure the UL sub-band in DL/F slots/symbols or DL sub-bands in UL/F slots/symbols by utilizing the edge carriers or RBs within a TDD sub-band. For instance, the configuration of UL sub-band in DL/F slots/symbols in the lower RBs will create one sided interference (interference 1) as shown in FIG. 4. In addition, the configuration of UL sub-band in DL/F slots/symbols in the upper RBs can also be used to reduce the effect of double fold interference, e.g., it will create only single fold interference (self-interference 1) as shown in FIG. 5. Furthermore, decreasing the number of sub-bands within a TDD band may also help in reducing the effect of gNB self-interference. For instance, two sub-band in a TDD band will reduce the double fold interference to single fold self-interference at gNB as shown in FIG. 6. To conclude the above solutions, the configuration of UL sub-bands in DL/F slots/symbols in the outer carriers or the edge RBs and lowering the number of sub-bands will reduce the gNB self-interference.
In another embodiment, to further reduce the effect of gNB self-interference, beam isolations of DL and UL sub-bands can be used, e.g., assigning of different beams to different sub-bands. For instance, gNB can assign Rx beam n to the UL sub-band#1, and Tx beam n and n+1 to  DL sub-bands  2 and 3 respectively as shown in FG. 7. In addition, gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration. Furthermore, gNB can isolate the UL and DL beams up to the possible extent in order to isolate the UL and DL transmissions and reduce the gNB self-interference. The advantage of this exemplary method can be more effective in FR2 (frequency range 2) .
gNB to gNB co-channel interference:
gNB to gNB co-channel interference is caused by the transmission of aggressor gNB to the reception of the victim gNB in the same carrier simultaneously. In other words, this interference is caused by one gNB to another gNB while both gNB are using the same channel within a TDD band. Some embodiments of the present disclosure analyze co-channel intra sub-band and inter sub-band interference, with the help of some exemplary scenarios and propose solutions of its management/mitigation.
gNB to gNB co-channel intra sub-band interference:
gNB to gNB co-channel intra-sub band interference is caused by the transmission of the aggressor gNB on a set of contiguous RBs in a carrier to reception of the victim gNB on the same set of contiguous RBs in the same carrier. Co-channel gNB-to-gNB intra sub-band interference exists when two neighbor gNBs are configured with the different sub-bands parameters among neighbor gNBs as given below: 1. Different bandwidth of UL to UL and DL to DL sub-bands among neighbor gNBs. 2. Allocation of dissimilar sub-bands to UL and DL transmission among neighbor gNBs. 3. Allocation of dissimilar quantity of sub-bands to UL and DL transmission among neighbor gNBs. 4. Configuration of different numbers of sub-bands among neighbor gNBs.
This embodiment explains the above mentioned reasons of the gNB to gNB co-channel intra sub-band as given below.
Scenario 1: Different bandwidth of UL to UL and DL to DL sub-bands among neighbor gNBs
In this case, when two neighbor’s gNBs are configured in a way that the bandwidth of UL sub-bands in DL/F slots/symbols among the neighbor gNBs are not the same. For instance, consider two gNBs, in which  the bandwidth of UL sub-band configured at gNB1 is different from the bandwidth of UL sub-band in DL/F slots/symbols configured at gNB2 as shown in FIG. 8. Here the interference will be caused by the same set of contiguous RBs of DL sub-band transmission of gNB1 to the same set of contiguous RBs of UL sub band reception at gNB2 as shown in FIG. 8.
Scenario 2: Allocation of dissimilar sub-band to DL and UL transmission among neighbor gNBs
In this case, Co-channel gNB-to-gNB intra sub-band interference exists when the neighbor gNBs are configured in a way that UL sub-band in DL/F slots/symbols are allocated in dissimilar sub-band among the two gNBs. For instance, consider two gNBs in which gNB1 allocate the sub-band#1 as UL sub-band in DL/F slots/symbols and gNB2 allocate the sub-band#2 as UL sub-band in DL/F slots/symbols as shown in FIG. 9. In this case, the DL sub-band#2 of gNB1 will create intra sub-band interference to the UL sub-band#2 of gNB2, and the DL sub-band#1 of gNB2 will create intra sub-band interference to UL sub-band#1 of gNB1. Thus, in this case, the gNB1 and gNB2 will act as aggressor and victim of interference to each other at the same time. For instance, consider two gNBs in which gNB1 allocate the sub-band#1 as UL sub-band in DL/F slots/symbols and gNB2 allocate the sub-band#2 as UL sub-band in DL/F slots/symbols as shown in FIG. 9. In this case, the DL sub-band#2 of gNB1 will create intra sub-band interference to the UL sub-band#2 of gNB2, and the DL sub-band#1 of gNB2 will create intra sub-band interference to UL sub-band#1 of gNB1. Thus, in this case, the gNB1 and gNB2 will act as aggressor and victim of interference to each other at the same time.
Scenario 3: Allocation of dissimilar quantity of sub-bands to DL and UL transmission among neighbor gNBs
In this case, Co-channel gNB-to-gNB intra sub-band interference exists when two gNBs are configured with the same number of sub-bands but the neighbor gNBs assigned different quantity of sub-band for UL and DL transmission. For instance, consider two gNBs, in which gNB1 and gNB2 are configured with 3 sub-band each. gNB1 assigned sub-band#1 as UL sub-band in DL/F slots/symbols, while gNB2 assigned sub-band#1 and sub-band#2 as UL sub-band in DL/F slots/symbols as shown in FIG. 10. In this case, the set of RBs of DL sub-band#2 at gNB1, will create intra sub-band interference to the same set of RBs of UL sub-band#2 at gNB2 as shown in FIG. 10.
Scenario 4: Configuration of different numbers of sub-bands among the neighbor gNBs
In this case, Co-channel gNB-to-gNB intra sub-band interference exists when the neighbor gNBs are configured with different number of sub-bands. For instance, consider two gNBs, in which gNB1 is configured with 3 sub-band and gNB2 is configured with 2 sub-bands, wherein gNB1 and gNB2 assigned sub-band#1 as UL sub-band in DL/F slots/symbols as shown in FIG. 11. Because the number of sub-bands are different, some RBs of DL sub-band#2 at gNB1, will create intra sub-band interference to the same set of RBs of the UL sub-band#1 at gNB2, as shown in FIG. 11.
gNB to gNB Intra sub-band management solutions:
In order to manage/mitigate the gNB to gNB co-channel intra sub-band interference, this embodiment of the present disclosure present the following four solutions at gNB side with an example shown in FIG. 12.1. Keep the same bandwidth of UL to UL and DL to DL sub-bands among the neighbor gNBs. 2. Assign alike sub-bands to UL and DL transmission among the neighbor gNBs. 3. Allocate similar quantity of sub-bands to DL  and UL transmission among the neighbor gNBs. 4. Configure similar numbers of sub-bands among the neighbor gNBs.
gNB information exchange:
In order to adopt the above-mentioned solutions and avoid the intra sub-band interference, inter gNB coordination among neighbor gNBs is required similar to Rel-16 inter gNB coordination for UL/DL slot format information exchange. In this method, the neighbor gNB will exchange its SBFD assistance information among each other through backhaul signaling using Xn interface or OTA signaling, wherein the SBFD based assistance information can include the bandwidth of sub-band, number of sub-bands, allocation of sub-band to UL/DL transmission etc. Based on the information exchange, the neighbor gNBs can adopt the above mentioned solutions points to avoid the intra sub-band interference.
gNB to gNB co-channel inter-sub band interference:
gNB to gNB co-channel inter-subband interference is caused by transmission of the aggressor gNB in a first set of contiguous RBs in a carrier to reception of the victim gNB in a second set of contiguous RBs in the same carrier, where the two contiguous RB sets are non-overlapping in frequency as given in the above agreements. In other words, gNB to gNB co-channel inter sub-band interference is caused by a set of contagious RBs of a sub-band at a gNB to a set of RBs in another sub-band at another gNB. For instance, as shown in FIG. 13, DL sub-band#2 at gNB1 create inter sub-band interference to UL sub-band#1 at gNB2. Similarly, DL sub-band#2 at gNB2 create inter sub-band interference to UL sub-band#1 at gNB1.
In order to reduce the effect of inter sub-band interference, many solutions have been proposed in the prior art such as Tx/Rx isolation, spatial domain isolation, guard bands etc. However, these solutions focus on hardware enhancement, and it will increase the hardware cost.
Therefore, in this embodiment of the present disclosure, some examples propose beam isolation based solutions for DL and UL sub-bands to reduce the effect of inter sub-band interference. In these solutions, the neighbor gNBs can assign different beams to the DL and UL sub-bands with a possible isolation gap between the DL and UL sub-bands. For instance, the two neighbor gNBs can assign Rx beam n to the UL sub-band#1, and Tx beam n and n+1 to  DL sub-bands  2 and 3 respectively at both gNB1 and gNB2 as shown in FIG. 14, where the Tx and Rx beam of each gNB can be different from each other’s. In addition, gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration. Furthermore, gNB1 and gNB2, can isolate the UL and DL beams up to the possible extent in order to separate the UL and DL transmissions and reduce the interference. The advantage of this exemplary method is more effective in FR2.
SBFD interference analysis and interference management solutions at UE side:
In SBFD operation, the simultaneous transmission at gNB side also creates UE to UE interference in the same cell and across the cells. In this embodiment of the present disclosure, some examples analyze UE to UE inter cell interference and intra cell interference, which is caused by SBFD operation, with the help of some exemplary scenarios, and propose its management/mitigation solutions. It is worthy to note, that SBFD interference management/mitigation solutions proposed at the above embodiments can be used to reduce the effect of UE to UE intra cell and inter cell interference as explained in below embodiments.
UE to UE intra cell interference:
UE to UE intra cell interference is caused by the UL transmission of the aggressor UE on a first set of RBs in a carrier to DL reception of the victim UE on a second set of RBs in the same cell, where the two RB sets are non-overlapping in frequency. In SBFD operation, UE to UE intra cell interference can exist in co-channel inter sub-band scenario as explained below.
UE to UE Intra cell Co-Channel Inter sub-band:
UE to UE Co-channel inter-sub band interference is caused by the UL transmission of the aggressor UE on a set of contiguous RBs in a carrier to DL reception of the victim UE on the second set of contiguous RBs in the same carrier as shown in FIG. 15. In this embodiment, the interference management solutions which are applied at gNB side to avoid or reduce the gNB self-interference can be applied to manage the UE to UE co-channel inter sub-band interference as explained below. For instance, consider an UL sub-band in DL/F slots/symbols configured in such a way that the UL sub-band located in the inner RBs of a TDD band as shown in FIG. 15. This configuration at gNB side will create two sided UE to UE intra cell inter sub-band interference, such as the inner RBs of UL sub-band#2 transmission of UE2 will create interference to the upper RBs of DL sub-band#1 (interference 1) at UE1, and the interference of UL sub-band#2 of UE2 to the lower RBs of UE1 of the DL sub-band#1 (interference 2) as shown in FIG. 15.
In order to reduce the effect of these two sided interferences, some embodiments of this disclosure propose to configure the UL sub-band in DL/F slots/symbols by utilizing the edge carriers or RBs within a TDD sub-band. For instance, the configuration of UL sub-band#1 in DL/F slots/symbols in the lower RBs of UE2 will create one sided interference (interference 1) to UE 1 as shown in FIG. 16. In addition, the configuration of UL sub-band#3 in DL/F slots/symbols in the upper RBs of UE3 will create one sided interference to UE1 as shown in FIG. 17. Furthermore, decreasing the number of sub-bands within a TDD band will also reduce the effect of UE to UE intra cell inter sub-band interference. For instance, two sub-band in a TDD band will reduce the double fold interference to single fold self-interference created by UE2 to UE1 as shown in FIG. 18.
Similarly, the beam based isolation of sub-band as discussed in the above embodiments can also reduce the UE to UE intra cell co-channel inter sub-band interference. For instance, gNB assigned Rx beam n to the UL sub-band#1 which is used by UE2, and Tx beam n and n+1 to  DL sub-bands  2 and 3 respectively which are used by UE1 as shown in FIG. 19. In addition, gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration. Because the UL and DL transmission are isolated through beams, therefore it will reduce the effect of intra cell inter sub-band UE to UE interference.
UE to UE inter cell interference:
UE to UE inter cell interference is caused by the UL transmission of the aggressor UE on a first set of RBs in a carrier to the DL reception of the victim UE on the same set of RBs or a second set of RBs in the neighbor cell. This embodiment of the present disclosure explains UE to UE inter cell interference with the help of exemplary scenarios as given below.
UE to UE inter cell co-channel intra sub-band interference:
UE to UE Co-channel intra-sub band interference is caused by the transmission of the aggressor UE on a set of contiguous RBs in a carrier to the reception of the victim UE on the same set of contiguous RBs in the same carrier as given in the above agreement. UE to UE inter cell co-channel intra sub-band interference  exists when UEs in cross cells are configured with the different sub-band configuration e.g., different bandwidth of sub-bands, or different number of sub-bands within a TDD band, or the allocation of dissimilar sub-band for UL or DL transmission at the aggressor and victim UEs across the cell. This embodiment explains the reasons of the UE to UE inter cell co-channel intra sub-band interference with the help of following scenarios and propose its solutions. The interference management solutions applied to gNB can be used to avoid the UE to UE inter cell co-channel intra sub-band interference.
Scenario 1: Different bandwidth of UL to UL and DL to DL sub-bands configured to UEs across the cell
In this case, when two neighbor’s gNBs configured its UEs in a way that the bandwidth of UL sub-bands in DL/F slots/symbols across the Cells are different from each other. For instance, the bandwidth of DL and UL sub-bands configured by gNB1 to UE1 and UE2 at cell #1 is different from the bandwidth of DL and UL sub-bands configured by gNB2 to UE1 and UE2 at cell#2 as shown in Figure 18. Here the interference will be caused by the UL sub-band transmission of UE1 at cell#2 to the DL sub-band transmission of UE2 at cell#1. Similarly, the UL sub-band transmission of UE1 at cell#1 will create interference to the DL sub-band transmission of UE2 at cell#2 as shown in FIG. 20.
Scenario 2: Allocation of dissimilar sub-band to DL and UL transmission to UEs across the cell
In this case, inter cell co-channel UE-to-UE intra sub-band interference exists when the neighbor’s gNBs configured its UEs in a way that UL sub-band in DL/F slots/symbols are allocated in dissimilar sub-band. For instance, gNB1 at cell#1 allocates the sub-band#1 as UL sub-band in DL/F slots/symbols to UE2 and sub-band#2, sub-band#3 as DL sub-band to UE1. On the other hand, at cell#2, gNB2 allocates the UL sub-band#2 to UE2 and DL sub-band#1 and sub-band#3 to UE1 as shown in FIG. 21. In this case, the UL sub-band#2 of UE2 at cell#2 will create intra sub-band interference to DL sub-band#2 of UE1 at cell#1. Similarly, the UL sub-band#1 of UE2 at cell#1 will create intra sub-band interference to DL sub-band#1 of UE1 at cell#2 as shown in FIG. 21.
Scenario 3: Allocation of dissimilar quantity of sub-bands to DL and UL transmission to UEs across the cell
In this case, inter cell Co-channel UE-to-UE intra sub-band interference exists when the neighbor gNBs assigned different quantities of sub-bands to its UEs for UL and DL transmission. For instance, gNB1 at cell#1 assigned UL sub-band#1 to UE2, and DL sub-band#2, and sub-band#3 to UE1. On the other hand, gNB2 at cell#2 assigned UL sub-band#1 and sub-band#2 to UE2, and DL sub-band#3 to UE1 as shown in FIG. 22. In this case, the UL sub-band#2 of UE2 at cell#2 will create intra sub-band interference to the DL sub-band#2 of UE1 at cell#1 as shown in FIG. 22.
Scenario 4: Configuration of different numbers of sub-bands to the UEs across the cell
In this case, UE to UE inter cell Co-channel intra sub-band interference exists when the neighbor’s gNBs configured its UEs with different numbers of sub-bands. For instance, gNB1at Cell#1 configured its UEs with 3 sub-band e.g., UE2 with UL sub-band#1, and UE1 with DL sub-band#2 and sub-band#3. On the other hand, gNB2 at cell#2 configured its UEs with two sub-bands e.g., UE#2 with UL sub-band#1 and UE1 with DL sub-band#2 as shown in FIG. 23. In this case, some RBs of the sub-band#1 at cell#2, which is UL sub- band, will create intra sub-band interference to some RBs of the DL sub-band#2 of UE1 at cell#1, as shown in FIG. 23.
UE to UE inter cell intra sub-band management solutions:
As mentioned in the above sections that SBFD operation interference management solutions at gNB can be used to avoid the UE to UE interference. For the inter cell intra sub-band interference management on the UE sides the same solutions of the above embodiments can be used. However, the UE to UE intra sub-band interference management solutions can be executed at gNB side. In other words, the four point solutions proposed in the above embodiments can be applied by the neighbor gNBs to its serving UEs as given below and its example is shown in FIG. 24.1. The neighbor gNBs shall keep the same bandwidth of UL to UL and DL to DL sub-bands to its serving UEs. 2. The neighbor gNBs shall assign alike sub-bands to the UL and DL transmission of its serving UEs. 3. The neighbor gNBs shall allocate similar quantity of sub-bands to DL and UL transmission to its serving UEs. 4. The neighbor gNBs shall configure similar number of sub-bands to its serving UEs.
UE to UE inter cell co-channel inter sub-band:
UE to UE inter cell Co-channel inter-subband interference is caused by the transmission of aggressor UE in a first set of contiguous RBs in a carrier to reception of the victim UEs in a second set of contiguous RBs in the same carrier across the cell, where the two contiguous RB sets are non-overlapping in frequency as given in the above agreements. In other words, UE to UE co-channel inter sub-band interference is caused by a set of contagious RBs of an UL sub-band of a UE at a cell to a set of RBs in another DL sub-band across the cell to another UE. For instance, as shown in FIG. 25, UL sub-band#1 of UE2 at cell#1 create inter sub-band interference to DL sub-band#2 of UE1 at cell#2. Similarly, UL sub-band#1 of UE2 at cell#2 create inter sub-band interference to DL sub-band#2 of UE1 at cell 1.
In order to reduce the effect of inter sub-band Interference at UE side, the beam isolation based solution implemented by gNB can be used to reduce the effect of UE to UE inter cell co-channel inter sub-band interference. In this solution, the two gNBs can assign Rx beam n to the UL sub-band#1, and Tx beam n and n+1 to  DL sub-bands  2 and 3 respectively at both cell #1 and cell #2 as shown in FIG. 26, where the Tx and Rx beam assigned to each UE can be different from the UEs across the cell. In addition, gNB can indicate the Tx and Rx beams assigned to the UL and DL sub-bands to the UE in sub-band configuration. In this way the UL transmission and DL reception at the same cells and across cell can be isolated which can reduce the effect of UE to UE intra cell and inter cell inter sub-band interference.
In summary, some embodiments of the present disclosure propose the interference management solutions, which are caused by SBFD operation, in order to enhance the SBFD operation performance. The proposed solutions to achieve our objectives are summarized as below. 1. Several SBFD operation scenarios (especially in intra sub-band case) has been discussed which causes interference in SBFD operation at both gNB and UE side. 2. Several Interference management solutions has proposed to reduce the impact of interference on SBFD operation at both gNB and UE side. 3. Inter gNB coordination about SBFD operation has proposed, in which gNB exchange its assistance information of SBFD configuration with its neighbor gNB to avoid SBFD specific intra sub-band interference before happening. 4. Beam isolation based interference  management/mitigation has proposed to reduce the effect of inter sub-band interference and gNB self-interference. Some embodiments of the present disclosure propose SBFD operation to support the simultaneous transmission of UL/DL at gNB side and have the following advantages. 1. This disclosure identifies several interference scenarios in SBFD operation and its management solutions, to improve the overall system capacity. 2. The proposed solutions focus on cost effective solutions to avoid the impact of SBFD interference at both gNB and UE side before happening, and fully utilize the resources of sub-band full duplex operation. 3. The proposed solutions focus on alternative options of interference management rather than hardware enhancement.
FIG. 27 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 27 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (21)

  1. A wireless communication method for interference management in sub-band full-duplex (SBFD) operation by a base station, comprising:
    managing, by the base station, a self-interference of the base station by configuring a configured number of uplink (UL) sub-bands in downlink (DL) /flexible (F) slots/symbols or a configured number of DL sub-bands in UL/F slots/symbols in outer carriers or edge resource blocks (RBs) within a time division duplex (TDD) sub-band, and/or performing a beam isolation of the UL sub-bands and the DL sub-bands comprising assigning different beams to different sub-bands.
  2. The wireless communication method according to claim 1, wherein the configured number of UL sub-bands in the DL/F slots/symbols or the configured number of DL sub-bands in the UL/F slots/symbols is two.
  3. The wireless communication method according to claim 1 or 2, wherein a first UL sub-band is aligned with a first DL sub-band, a second DL sub-band and a third DL sub-band are isolated from the first UL sub-band, and assigning the different beams to the different sub-bands comprises assigning a first receive (Rx) beam to the first UL sub-band and assigning the first transmit (Tx) beam and the second Tx beam to the second DL sub-band and the third DL sub-band, respectively.
  4. The wireless communication method according to any one of claims 1 to 3, further comprising indicating, by the base station, Rx beams assigned to the UL sub-bands and Tx beams assigned to the DL sub-bands to a user equipment (UE) in a sub-band configuration.
  5. The wireless communication method according to any one of claims 1 to 4, further comprising managing, by the base stations, a co-channel intra sub-band interference among neighbor base stations by performing at least one of the followings or all of the followings:
    keeping a same bandwidth of UL to UL sub-bands and DL to DL sub-bands among the neighbor base stations;
    assigning alike sub-bands to an UL transmission and a DL transmission among the neighbor base stations;
    allocating a similar quantity of sub-bands to the DL transmission and the UL transmission among the neighbor base stations; and/or
    configuring a same configured number of sub-bands among the neighbor base stations.
  6. The wireless communication method according to claim 5, wherein an SBFD based assistance information are exchanged between the neighbor base stations through a backhaul signaling using an Xn interface or over the air (OTA) signaling, and the SBFD based assistance information comprises a bandwidth of sub-band, a number of sub-bands, and/or an allocation of sub-band to an UL/DL transmission within a TDD band.
  7. The wireless communication method according to any one of claims 3 to 6, further comprising managing, by the first base station with the second station, a co-channel inter sub-band interference of the first base station to the second base station by assigning different beams to the DL sub-bands and UL sub-bands with an isolation gap between the DL sub-bands and the UL sub-bands.
  8. The wireless communication method according to claim 7, wherein the first Rx beam is assigned to the first UL sub-band, and the first Tx beam and the second Tx beam are assigned to the second DL sub-band and the third DL sub-band respectively at both the first base station and the second base station.
  9. The wireless communication method according to any one of claims 1 to 8, further comprising:
    managing, by a base station, a UE to UE intra cell inter sub-band interference by configuring the configured  number of the UL sub-bands in the DL/F slots/symbols or the configured number of the DL sub-bands in the UL/F slots/symbols in the outer carriers or the edge RBs at a UE, and/or performing the beam isolation of the UL sub-bands and the DL sub-bands at the UE comprising assigning the different beams to the different sub-bands at the UE.
  10. The wireless communication method according to claim 9, wherein the configured number of the UL sub-bands in the DL/F slots/symbols or the configured number of the DL sub-bands in the UL/F slots/symbols at the UE is two.
  11. The wireless communication method according to claim 9 or 10, wherein assigning the different beams to the different sub-bands at the UE comprises assigning the first Rx beam to the first UL sub-band at the UE and assigning the first Tx beam and the second Tx beam to the second DL sub-band and the third DL sub-band, respectively at the UE.
  12. The wireless communication method according to any one of claims 9 to 11, further comprising indicating, by a base station, the Rx beams assigned to the UL sub-bands and the Tx beams assigned to the DL sub-bands at the UE to the UE in the sub-band configuration.
  13. The wireless communication method according to any one of claims 9 to 12, further comprising managing, by the base stations, a UE to UE inter cell co-channel intra sub-band interference by performing at least one of followings or all of the followings:
    keeping the same bandwidth of the UL to UL sub-bands and the DL to DL sub-bands among the neighbor base station’s serving UEs;
    assigning alike sub-bands to the UL transmission and the DL transmission among the neighbor base station’s serving UEs;
    allocating the similar quantity of the sub-bands to the DL transmission and the UL transmission among the neighbor base station’s serving UEs; and/or
    configuring the same configured number of the sub-bands among the neighbor base station’s serving UEs.
  14. The wireless communication method according to any one of claims 9 to 13, further comprising managing, by the base stations, a UE to UE inter cell co-channel inter sub-band interference by assigning the different beams to the DL sub-bands and UL sub-bands with the isolation gap between the DL sub-bands and the UL sub-bands at UEs.
  15. The wireless communication method according to claim 14, wherein the first Rx beam is assigned to the first UL sub-band, and the first Tx beam and the second Tx beam are assigned to the second DL sub-band and the third DL sub-band respectively at both a first cell and a second cell, and the Tx and Rx beams assigned to each UE are different from the UEs across cells.
  16. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 1 to 15.
  17. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 15.
  18. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 15.
  19. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 15.
  20. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 15.
  21. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 15.
PCT/CN2022/105259 2022-07-12 2022-07-12 Wireless communication devices and wireless communication methods for interference management in sbfd operation WO2024011419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105259 WO2024011419A1 (en) 2022-07-12 2022-07-12 Wireless communication devices and wireless communication methods for interference management in sbfd operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105259 WO2024011419A1 (en) 2022-07-12 2022-07-12 Wireless communication devices and wireless communication methods for interference management in sbfd operation

Publications (1)

Publication Number Publication Date
WO2024011419A1 true WO2024011419A1 (en) 2024-01-18

Family

ID=89535196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105259 WO2024011419A1 (en) 2022-07-12 2022-07-12 Wireless communication devices and wireless communication methods for interference management in sbfd operation

Country Status (1)

Country Link
WO (1) WO2024011419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072319A1 (en) * 2022-09-30 2024-04-04 Panasonic Intellectual Property Corporation Of America Coordination for cross-link interference handling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323210A1 (en) * 2015-07-13 2018-05-23 Qualcomm Incorporated Air-to-ground (atg) uplink subband beamformer with combinable subbands
US20210051676A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated Interference measurement per subband per tx beam for combination of fdm and mu-mimo
US20210135833A1 (en) * 2019-11-02 2021-05-06 Qualcomm Incorporated Sub-band-full-duplex adaptive base station transceiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323210A1 (en) * 2015-07-13 2018-05-23 Qualcomm Incorporated Air-to-ground (atg) uplink subband beamformer with combinable subbands
US20210051676A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated Interference measurement per subband per tx beam for combination of fdm and mu-mimo
US20210135833A1 (en) * 2019-11-02 2021-05-06 Qualcomm Incorporated Sub-band-full-duplex adaptive base station transceiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "DL Signals and Channels for NR-U Operation", 3GPP TSG RAN WG1 #98BIS, R1-1911050, 8 October 2019 (2019-10-08), XP051789830 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072319A1 (en) * 2022-09-30 2024-04-04 Panasonic Intellectual Property Corporation Of America Coordination for cross-link interference handling

Similar Documents

Publication Publication Date Title
US10728215B2 (en) Wireless communication utilizing a unified air interface
US9801207B2 (en) Evolved node-B and methods for supporting co-existence with Wi-Fi networks in an unlicensed frequency band
CA2750957C (en) Method for allocating backhaul link resources in relay communication system, and method & apparatus for transmitting & receiving data using same
US10291342B2 (en) TDD data transmission on multiple carriers with sub frames reserved for predetermined transmission directions
EP2717607B1 (en) Wireless resource allocation method, wireless resource allocation device, and communication system
KR101738656B1 (en) Communications system and method, and device
EP3157298B1 (en) Carrier aggregation using different frame structures
EP3157273B1 (en) Base-station device, terminal device, and communication method
EP2847893A1 (en) Method, system and apparatus of time-division-duplex (tdd) uplink-downlink (ul-dl) configuration management
US20230224933A1 (en) Wireless communication method, terminal device and network device
KR20160036649A (en) Method and apparatus for communication of terminal in wireless communication system supporting carrier aggregation
WO2024011419A1 (en) Wireless communication devices and wireless communication methods for interference management in sbfd operation
US11063806B2 (en) Synchronization method and apparatus
CN103959881B (en) Method and apparatus for the interference coordination in wireless communication system
CA2789137C (en) System and method for extending communication coverage in a wireless network
EP2398292B1 (en) Coexistence method and device of multiple operating entity systems
US11659582B2 (en) Method and apparatus for 5G migration in frequency interference combination band
CN107295668B (en) Data transmission method and device
CN113891471B (en) Uplink carrier configuration method, device, equipment and storage medium
WO2018137444A1 (en) Method and device for eliminating interference, and storage medium
US11882081B2 (en) Intelligent interference mitigation for time division duplexing broadband networks
WO2024065393A1 (en) Wireless communication devices and wireless communication methods for coordinated scheduling of dynamic/flexible tdd and/or sbfd operation
JP2023525546A (en) Sidelink physical layer procedure
WO2023197135A1 (en) Wireless communication devices and wireless communication methods for cli management in dynamic tdd
Jung et al. Throughput enhancement with carrier selection for LTE in unlicensed band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950550

Country of ref document: EP

Kind code of ref document: A1