WO2024011412A1 - 呼吸阻抗测量系统及呼吸阻抗测量方法 - Google Patents

呼吸阻抗测量系统及呼吸阻抗测量方法 Download PDF

Info

Publication number
WO2024011412A1
WO2024011412A1 PCT/CN2022/105222 CN2022105222W WO2024011412A1 WO 2024011412 A1 WO2024011412 A1 WO 2024011412A1 CN 2022105222 W CN2022105222 W CN 2022105222W WO 2024011412 A1 WO2024011412 A1 WO 2024011412A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory
aforementioned
impedance
module
oscillation
Prior art date
Application number
PCT/CN2022/105222
Other languages
English (en)
French (fr)
Inventor
王峤
邓锐
罗逵
Original Assignee
深圳麦科田生物医疗技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦科田生物医疗技术股份有限公司 filed Critical 深圳麦科田生物医疗技术股份有限公司
Priority to PCT/CN2022/105222 priority Critical patent/WO2024011412A1/zh
Publication of WO2024011412A1 publication Critical patent/WO2024011412A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/085Measuring impedance of respiratory organs or lung elasticity

Definitions

  • the present application relates to the technical field of impedance measurement of the human respiratory system, and specifically to a respiratory impedance measurement system and a respiratory impedance measurement method.
  • embodiments of the present application provide a respiratory impedance measurement system and a respiratory impedance measurement method.
  • the respiratory impedance measurement system is used to measure the impedance of a subject's respiratory system, including an oscillation module, a connection module, a detection module and a calculation module, wherein the oscillation module is used to generate Oscillation wave airflow; the connection module is connected to the oscillation module for transmitting the oscillation wave airflow generated by the oscillation module to the subject and receiving the target respiratory airflow exhaled by the subject; the The detection module is used to detect the gas pressure and gas flow of the target respiratory airflow in the connection module to obtain a gas pressure signal and a gas flow signal respectively; the calculation module is connected to the detection module, and is used to obtain a gas pressure signal and a gas flow signal respectively.
  • the gas pressure signal and the gas flow signal calculate the impedance of the subject's respiratory system; the calculation module is also used to save the impedance to a local memory space according to the set result output mode, and/or The impedance is uploaded to the medical data management platform.
  • the respiratory impedance measurement method provided by the embodiment of the present application is applied to a respiratory impedance measurement system, and the respiratory impedance measurement system includes an oscillation module.
  • the method includes: generating oscillating wave airflow through the oscillation module;
  • the oscillation wave airflow generated by the oscillation module is transmitted to the subject and receives the target respiratory airflow exhaled by the subject; the gas pressure and gas flow rate of the target respiratory airflow are detected to obtain a gas pressure signal and a gas flow signal respectively. ;
  • the respiratory impedance measurement system and the respiratory impedance measurement method provided by the embodiments of the present application can not only measure the impedance of the human respiratory system more accurately with a simple structure, but can also save the impedance to a local memory space. And/or uploading the impedance to the medical data management platform makes the retrieval and application management of the impedance more convenient and is conducive to adapting to the development of the big data era.
  • Figure 1 is a schematic diagram of the composition of a respiratory impedance measurement system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the partial structure and composition of the aforementioned respiratory impedance measurement system provided by an embodiment of the present application;
  • Figure 3 is a schematic structural diagram of the vibration element in the oscillation module of the respiratory impedance measurement system provided by an embodiment of the present application;
  • Figure 4 is a schematic diagram of the composition of a respiratory impedance measurement system provided by another embodiment of the present application.
  • Figure 5 is a schematic diagram of the partial components and structure of a respiratory impedance measurement system provided by another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a respiratory impedance measurement system provided by another embodiment of the present application.
  • Figure 7 is a schematic flow chart of a respiratory impedance measurement method provided by an embodiment of the present application.
  • Figure 8 is a schematic sub-flow diagram of step 704 in Figure 7 provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of a respiratory impedance measurement method provided by another embodiment of the present application.
  • respiratory impedance The "respiratory impedance”, “impedance” and “respiratory system impedance” appearing in this article are all understood to mean the impedance of the human respiratory system, which is an important indicator in pulmonary function tests. It should be understood that the expressions “impedance of the respiratory system”, “respiratory impedance”, “impedance” and “impedance of the human respiratory system” appearing in this article all have the same meaning and can be used interchangeably.
  • FIG. 1 is a schematic diagram of a respiratory impedance measurement system provided by an embodiment of the present application.
  • the aforementioned respiratory impedance measurement system 100 includes an oscillation module 1 , a connection module 2 , a detection module 3 and a calculation module 4 .
  • the aforementioned oscillating module 1 is used to generate oscillating wave airflow.
  • the aforementioned connection module 2 is connected to the aforementioned oscillation module 1.
  • the aforementioned connection module 2 is used to transmit the aforementioned oscillation wave airflow generated by the aforementioned oscillation module 1 to the subject 5 and receive the target respiratory airflow exhaled by the subject 5. .
  • the detection module 3 is used to detect the gas pressure and gas flow of the target respiratory air flow in the connection module 2 to obtain a gas pressure signal and a gas flow signal respectively.
  • the aforementioned calculation module 4 is connected to the aforementioned detection module 3.
  • the aforementioned calculation module 4 is used to calculate the impedance of the respiratory system of the subject 5 based on the aforementioned gas pressure signal and the aforementioned gas flow signal; and is used to output the result according to the set mode. , save the aforementioned impedance to the local memory space, and/or upload the aforementioned impedance to the medical data management platform.
  • the embodiment of the present application can generate the corresponding oscillating wave airflow in the respiratory system of the subject 5, thereby enhancing the airflow inhaled by the subject 5.
  • the value related to the aforementioned respiratory impedance in the respiratory air flow exhaled by subject 5 after being subjected to the oscillating wave air flow will also be amplified, so that the gas pressure signal and gas flow signal can be obtained by respectively detecting the gas pressure and gas flow of the current air flow.
  • the strong and powerful detection module 3 is installed in the aforementioned connection module 2 to directly detect the gas pressure and gas flow rate of the current air flow.
  • the aforementioned respiratory impedance measurement system 100 provided by the embodiment of the present application can effectively detect the impedance of the respiratory system of the subject 5 with a simple structure, and after measuring the aforementioned impedance, it will also save the aforementioned impedance to the local memory space.
  • the aforementioned impedance is uploaded to the aforementioned medical data management platform for medical personnel to refer to and use for diagnosis. Therefore, the aforementioned impedance can not only be saved to the local memory space, but also the aforementioned respiratory impedance measurement system 100 and the aforementioned medical data management can be realized.
  • the interaction of the platform makes the management of the aforementioned impedance retrieval and application more convenient, which is conducive to adapting to the development of the big data era.
  • the aforementioned medical data management platform can be a platform located on the server side that summarizes and manages medical data. Medical personnel can use the aforementioned medical data management platform to upload the aforementioned respiratory impedance measurement system 100 or other medical testing equipment located in various places. The medical data is managed, and the patient is diagnosed based on the corresponding medical data, where the aforementioned medical data includes the aforementioned impedance.
  • the aforementioned oscillating wave airflow is an oscillating wave airflow of a single frequency or a composite frequency.
  • the aforementioned oscillating wave airflow is a sine wave airflow.
  • the aforementioned oscillating wave airflow is a composite frequency oscillating wave airflow.
  • the aforementioned oscillating wave airflow is a pulse wave airflow. Regardless of whether the aforementioned oscillating wave airflow has a single frequency or a composite frequency, the frequency range of the aforementioned oscillating wave airflow is from 3 to 50 Hz.
  • the gas pressure signal is a detected gas pressure variation curve of the target respiratory air flow with respect to time
  • the gas flow signal is a detected gas flow rate variation curve of the target respiratory air flow with time.
  • the aforementioned result output method includes simultaneously saving the aforementioned impedance to the local memory space and uploading the aforementioned impedance to the medical data management platform, only saving the aforementioned impedance to the local memory space, and only uploading the aforementioned impedance to the medical data management platform.
  • the aforementioned result output method can be a pre-default setting or a user-selected setting.
  • one end of the aforementioned connection module 2 is connected to the aforementioned oscillation module 1 , and the other end is used to extend into the oral cavity of the subject 5 when measuring the impedance of the respiratory system of the subject 5 .
  • Group 2 is used to transmit the aforementioned oscillation wave airflow generated by the aforementioned oscillation module 1 to the subject 5 when measuring the impedance of the respiratory system of the subject 5 and to receive the subject 5 after the aforementioned oscillation wave airflow is applied.
  • the detection module 3 is disposed in the connection module 2, so that the gas pressure and gas flow rate of the target respiratory air flow transmitted in the connection module 2 can be directly detected to obtain the gas pressure signal and the gas flow rate respectively.
  • the aforementioned gas flow signal can also be disposed outside the connection module 2, for example, at the connection between the detection module 3 and the calculation module 4 or the oscillation module 1, Therefore, the gas pressure and gas flow rate of the target respiratory air flow can also be detected to obtain the gas pressure signal and the gas flow rate signal respectively.
  • the detection module 3 samples and detects the gas pressure and gas flow of the target respiratory air flow through the sampling tube connected to the connection module 2 to obtain the gas pressure signal and the gas flow signal respectively.
  • the aforementioned calculation module 4 calculates the impedance of the respiratory system of the subject 5 based on the aforementioned gas pressure signal and the aforementioned gas flow signal, including: the aforementioned calculation module 4 calculates the aforementioned gas pressure signal and the aforementioned gas flow signal respectively. Carry out denoising processing; the aforementioned calculation module 4 calculates the quotient of the Fourier transform of the aforementioned gas pressure signal and the aforementioned gas flow signal after denoising, and obtains the impedance of the respiratory system of the subject 5, wherein the aforementioned impedance includes Respiratory resistance and respiratory reactance.
  • the respiratory impedance measurement system 100 may include a memory (not shown in the figure), and the calculation module 4 saves the impedance to a local memory space, which may mean storing the impedance in the memory.
  • FIG. 2 is a schematic diagram of the partial structure and composition of the respiratory impedance measurement system 100 provided by an embodiment of the present application.
  • the aforementioned oscillation module 1 includes a waveform generator 11 and a vibration element 12.
  • the aforementioned vibration element 12 is connected between the aforementioned connection module 2 and the aforementioned waveform generator 11.
  • the aforementioned waveform generator 11 is used to generate a single frequency or a composite frequency.
  • the vibration element 12 is driven by the oscillation excitation signal to generate the oscillation wave airflow.
  • the oscillation wave airflow generated by the vibration element 12 is transmitted to the subject 5 through the connection module 2 .
  • Figure 3 is a schematic structural diagram of the vibration element 12 in the oscillation module of the respiratory impedance measurement system 100 provided by an embodiment of the present application, wherein (A) in Figure 3 is the vibration element 12 (B) in Figure 3 is a front view of the aforementioned vibrating element 12, (C) in Figure 3 is a bottom view of the aforementioned vibrating element 12, and (D) in Figure 3 is a three-dimensional view of the aforementioned vibrating element 12. Stereo view.
  • the aforementioned vibrating element 12 includes at least one speaker 121 and a box 122 .
  • the aforementioned box 122 has an outer surface and a cavity enclosed by the outer surface.
  • An airflow outlet is provided on the outer surface of the aforementioned box 122 .
  • the at least one speaker 121 is disposed through the outer surface of the box 122, and the sound outlet of the at least one speaker 121 is provided in the cavity of the box 122; the at least one speaker 121 is connected to the waveform generator 11 to The oscillation wave airflow is generated by receiving the oscillation excitation signal generated by the waveform generator 11 .
  • the aforementioned gas output port is connected to the aforementioned connection module 2 . Therefore, the speaker airflow generated in the at least one speaker 121 merges in the cavity, and finally generates the oscillation wave airflow, and outputs the oscillation wave airflow to the connection module 2 through the airflow output port.
  • the airflow output port is provided on a side of the outer surface of the box 122 away from the at least one speaker 121 .
  • the box 122 is a polyhedron, and the number of faces of the box 122 is greater than the number of the at least one loudspeaker 121; each speaker 121 is disposed on a different face of the box 122.
  • the airflow output port is provided on the side of the outer surface of the box 122 where the speaker 121 is not installed.
  • FIG. 3 is a front view using the side of the cabinet 122 without the speaker 121 as the front
  • (A) in FIG. 3 is a side view of the cabinet 122 with the speaker 121 not installed thereon. is a front left view
  • (C) in FIG. 3 is a bottom view using the side of the box 122 where the speaker 121 is not installed as the front.
  • the aforementioned speaker airflow is also an oscillating wave airflow of a single frequency or a composite frequency.
  • This embodiment provides a vibrating element 12.
  • the aforementioned vibrating element 12 can integrate multiple small-sized speakers 121 into one, making multiple The diaphragms in the two speakers 121 vibrate simultaneously to generate a larger sounding airflow, which is finally converged into a stronger oscillating wave airflow in the box 122, which not only helps reduce the size of the equipment, but also helps improve the quality of detection. .
  • each speaker 121 The speaker airflow generated in each speaker 121 is the same, and the frequency of the speaker airflow and the oscillation wave airflow are consistent.
  • the vibration element 12 includes a turbine and a driving motor.
  • the turbine is installed on the connection module 2.
  • the driving motor is connected between the turbine and the waveform generator 11.
  • the drive motor is used to receive the oscillation excitation signal generated by the waveform generator 11 and drive the turbine to rotate to generate the oscillation wave airflow.
  • the turbine generates the oscillation wave airflow with a certain frequency driven by the oscillation excitation signal, and the oscillation wave airflow generated by the turbine is determined by the oscillation excitation signal.
  • the oscillation wave airflow generated by the turbine flows in the connection module 2 and is transmitted to the subject 5 through the connection module 2 .
  • the vibration element 12 includes a gas storage component and a gas valve connected to a gas outlet in the gas storage component.
  • the gas valve alternately opens and closes in response to the oscillation excitation signal. .
  • compressed air is stored in the aforementioned gas storage component.
  • the aforementioned gas storage component includes a compressed gas output port.
  • the aforementioned compressed gas output port is sealingly connected to the aforementioned connection module 2.
  • the aforementioned gas valve is provided at the aforementioned compressed gas output port, and Connected to the waveform generator 11 for receiving the oscillation excitation signal generated by the waveform generator 11, the gas valve alternately opens and closes in response to the oscillation excitation signal, thereby driving the compressed air in the gas storage assembly.
  • the gas intermittently enters the connection module 2 through the opened gas valve to generate the oscillating wave air flow.
  • the aforementioned connection module 2 includes a measurement interface 21 and a gas pipeline 22.
  • the first end a of the aforementioned gas pipeline 22 is connected to the vibration element 12 in the aforementioned oscillation module 1, and the second end b is connected to the aforementioned measurement interface. 21 connections.
  • the aforementioned measurement interface 21 is used to extend into the oral cavity of the subject 5 when measuring the impedance of the respiratory system of the subject 5;
  • the aforementioned gas pipeline 22 is used to provide gas when measuring the impedance of the respiratory system of the subject 5.
  • the oscillation wave airflow generated by the oscillation module 1 is transmitted to the subject 5 and used to receive the target respiratory airflow.
  • the aforementioned gas pipe 22 receiving the aforementioned target respiratory airflow means that the aforementioned target respiratory airflow exhaled by the subject 5 after the aforementioned oscillatory wave airflow is applied finally flows out through the aforementioned gas pipe 22 .
  • the aforementioned gas pipe 22 is a hollow pipe.
  • the vibration element 12 includes the at least one speaker 121 and the box 122 .
  • the air flow output port on the outer surface of the box 122 is connected to the first end a of the gas pipe 22 . Therefore, the speaker airflow generated in the at least one speaker 121 merges in the cavity to finally generate the oscillation wave airflow, and the oscillation wave airflow is output to the gas pipe 22 through the airflow output port.
  • the aforementioned detection module 3 is disposed in the aforementioned gas pipeline 22, so that when the subject 5 is subjected to the aforementioned oscillatory wave airflow, the target respiratory airflow exhaled by the subject 5 When passing through the gas pipeline 22, the detection module 3 can detect the gas pressure and gas flow of the target respiratory air flow to obtain a gas pressure signal and a gas flow signal respectively.
  • the aforementioned connection module 2 also includes a high-frequency isolation component.
  • One end of the aforementioned high-frequency isolation component is connected to the aforementioned gas pipeline 22 and the other end is communicated with the outside air. It is used to realize gas circulation inside and outside the aforementioned gas pipeline 22 and block the aforementioned oscillation wave. Air flow out.
  • the aforementioned high-frequency blocking component includes a pipeline branch 23 and a screen (not shown in the figure).
  • the aforementioned pipeline branch 23 is connected to the aforementioned gas pipeline 22.
  • the aforementioned pipeline branch 23 is used to measure the subject. When the impedance of the respiratory system is 5, the outside air flows into the aforementioned gas pipeline 22 for the subject 5 to breathe; the aforementioned screen (not shown in the figure) is arranged at the connection point c between the aforementioned pipeline branch 23 and the aforementioned gas pipeline 22.
  • the aperture of each mesh in the aforementioned screen (not shown in the figure) is relatively small, for example, it can be in the order of microns to millimeters, and due to the diffraction effect of the oscillating waves, the aforementioned oscillating wave airflow in the aforementioned gas pipeline 22 cannot pass
  • the aforementioned screen (not shown in the figure) flows into the air from the aforementioned pipeline branch 23, but does not affect the air that is a low-frequency air flow and enters the aforementioned gas pipeline 22 through the aforementioned screen (not shown in the figure) for the subject 5 breathe.
  • the function of the aforementioned high-frequency blocking component not only includes allowing outside air to flow into the aforementioned gas pipe 22 for the subject 5 to breathe, but also prevents the aforementioned oscillating wave airflow from flowing out into the air. That is, the aforementioned high-frequency blocking component can realize the aforementioned gas flow.
  • the gas flow inside and outside the pipe 22 blocks the outflow of the aforementioned oscillating wave air flow.
  • the aforementioned high-frequency blocking component includes an elongated curved pipe, the aforementioned elongated curved pipe is connected with the aforementioned gas pipe 22, and the diameter of the aforementioned elongated curved pipe is relatively small, for example, the diameter of the aforementioned elongated curved pipe is The pipe diameter can be on the order of millimeters. Therefore, due to the diffraction effect of the oscillating waves, the oscillating wave airflow in the aforementioned gas pipe 22 cannot flow from the aforementioned pipe branch 23 to the air through the aforementioned slender curved pipe, but this does not affect the low-frequency airflow. The air enters the gas pipe 22 through the elongated curved pipe for the subject 5 to breathe. Therefore, the slender curved pipe in the high-frequency blocking assembly can realize gas circulation inside and outside the gas pipe 22 and block the outflow of the oscillating wave air flow.
  • connection module 2 further includes a filter 24.
  • the filter 24 is installed in the gas pipeline 22 near the second end b, that is, near the measurement interface 21.
  • the net 24 is used to isolate contaminants and prevent cross-infection when the subject 5 is in use.
  • the aforementioned measurement interface 21 is a mouthpiece.
  • FIG. 4 is a schematic diagram of the respiratory impedance measurement system 100 provided by another embodiment of the present application.
  • FIG. 5 is a schematic diagram of the respiratory impedance measurement system 100 provided by another embodiment of the present application. Structural diagram of the support module.
  • the aforementioned respiratory impedance measurement system 100 also includes a support module 6.
  • the aforementioned support module 6 is connected to the aforementioned connection module 2 and is used to support the cheek of the subject 5 when measuring the impedance of the respiratory system of the subject 5 .
  • the aforementioned support module 6 includes a V-shaped support member and a driving mechanism.
  • the aforementioned measurement interface 21 is disposed through the tip of the aforementioned V-shaped support member.
  • the aforementioned driving mechanism is connected to the aforementioned V-shaped support member to adjust The angle of the aforementioned V-shaped support is adapted to the cheek of the subject 5, thereby supporting the cheek of the subject 5 when measuring the impedance of the respiratory system of the subject 5.
  • the aforementioned detection module 3 includes a pressure sensor and a flow sensor, wherein the aforementioned pressure sensor and the aforementioned flow sensor are respectively disposed at positions d and e of the aforementioned gas pipeline 22. , and are both connected to the aforementioned calculation module 4.
  • the aforementioned pressure sensor is used to detect the gas pressure in the aforementioned connection module 2 to obtain the aforementioned gas pressure signal.
  • the aforementioned flow sensor is used to detect the gas flow rate in the aforementioned connection module 2 to obtain the aforementioned gas pressure signal.
  • the aforementioned gas flow signal is used to detect the gas flow rate in the aforementioned connection module 2 to obtain the aforementioned gas pressure signal.
  • the aforementioned pressure sensor and the aforementioned flow sensor should be arranged as close to the aforementioned measurement interface 21 in the aforementioned gas pipeline 22 as possible, and the aforementioned pressure sensor should be arranged in the aforementioned gas pipeline 22 as compared to the aforementioned flow sensor.
  • the position is close to the aforementioned measurement interface 21 to detect the accurate gas pressure and gas flow rate of the aforementioned target respiratory air flow.
  • the aforementioned flow sensor is a differential pressure flow meter.
  • the aforementioned calculation module 4 calculates the impedance of the respiratory system of the subject 5 based on the aforementioned gas pressure signal and the aforementioned gas flow signal, including: the aforementioned calculation module 4 calculates the aforementioned gas pressure signal respectively. and perform denoising processing on the aforementioned gas flow signal; the aforementioned calculation module 4 calculates the quotient of the Fourier transform of the aforementioned gas pressure signal and the aforementioned gas flow signal after denoising, and obtains the impedance of the respiratory system of the subject 5, Wherein, the aforementioned impedance includes respiratory resistance and respiratory reactance.
  • the aforementioned denoising process includes: respectively removing the low-frequency spontaneous breathing signal in the aforementioned gas pressure signal and the aforementioned gas flow signal as noise, and extracting the gas pressure signal and the gas flow signal caused by the aforementioned oscillatory wave air flow.
  • FIG. 6 is a schematic structural diagram of the aforementioned respiratory impedance measurement system 100 provided by another embodiment of the present application.
  • the respiratory impedance measurement system 100 further includes a display module 7 , the display module 7 is connected to the calculation module 4 , and the display module 7 is used to perform the calculation according to the calculation module 4 .
  • the aforementioned impedance calculated by 4 shows the frequency impedance curve of subject 5, wherein the aforementioned frequency impedance curve includes a frequency resistance curve and a frequency reactance curve.
  • the aforementioned frequency resistance curve is obtained based on the aforementioned respiratory resistance
  • the aforementioned frequency reactance curve is obtained based on the aforementioned respiratory resistance. Reactance is derived.
  • FIG. 7 is a schematic flow chart of the aforementioned respiratory impedance measurement method provided by an embodiment of the present application.
  • the aforementioned respiratory impedance measurement method is applied to a respiratory impedance measurement system.
  • the aforementioned respiratory impedance measurement system includes an oscillation module.
  • the aforementioned method includes:
  • the oscillation wave airflow is generated through the aforementioned oscillation module.
  • the embodiments of the present application can generate corresponding oscillating wave airflow in the subject's respiratory system, thereby enhancing the intensity of the airflow inhaled by the subject.
  • the value related to the respiratory impedance in the respiratory air flow exhaled by the subject after being exposed to the oscillatory wave air flow will also be amplified, so that the gas pressure signal and gas flow signal obtained by respectively detecting the gas pressure and gas flow of the current air flow will also be stronger.
  • the aforementioned respiratory impedance measurement method can effectively detect the impedance of the subject's respiratory system with a simple structure, and after measuring the aforementioned impedance, it will also save the aforementioned impedance to the local memory space, and/ Or upload the aforementioned impedance to the aforementioned medical data management platform for medical personnel to refer to and use for diagnosis. Therefore, the aforementioned impedance can not only be saved to the local memory space, but also the interaction between the aforementioned respiratory impedance measurement system and the aforementioned medical data management platform can be realized, so that It is more convenient to manage the retrieval and application of the aforementioned impedance, which is conducive to adapting to the development of the big data era.
  • the aforementioned medical data management platform can be a platform located on the server side that summarizes and manages medical data. Medical personnel can use the aforementioned medical data management platform to upload the aforementioned medical data from the aforementioned respiratory impedance measurement system or other medical testing equipment located in various places. The data is managed, and the patient is diagnosed according to the corresponding medical data, where the aforementioned medical data includes the aforementioned impedance.
  • the aforementioned oscillating wave airflow is an oscillating wave airflow of a single frequency or a composite frequency.
  • the aforementioned oscillating wave airflow is a sine wave airflow.
  • the aforementioned oscillating wave airflow is a composite frequency oscillating wave airflow.
  • the aforementioned oscillating wave airflow is a pulse wave airflow. Regardless of whether the aforementioned oscillating wave airflow has a single frequency or a composite frequency, the frequency range of the aforementioned oscillating wave airflow is from 3 to 50 Hz.
  • the gas pressure signal is a detected gas pressure variation curve of the target respiratory air flow with respect to time
  • the gas flow signal is a detected gas flow rate variation curve of the target respiratory air flow with time.
  • the aforementioned result output method includes simultaneously saving the aforementioned impedance to the local memory space and uploading the aforementioned impedance to the medical data management platform, only saving the aforementioned impedance to the local memory space, and only uploading the aforementioned impedance to the medical data management platform.
  • the aforementioned result output method can be a pre-default setting or a user-selected setting.
  • the aforementioned oscillation module includes a waveform generator 11 and a vibration element 12.
  • the aforementioned "generating oscillation wave airflow through the aforementioned oscillation module” includes: the aforementioned waveform generator 11 generates an oscillation excitation signal of a single frequency or a composite frequency, The aforementioned oscillation excitation signal drives the aforementioned vibrating element 12 to generate the aforementioned oscillating wave airflow.
  • the aforementioned vibration element 12 includes a box 122 and at least one speaker 121; the aforementioned box 122 has an outer surface, and a cavity enclosed by the outer surface.
  • An airflow outlet is provided on the outer surface of the body 122; the at least one speaker 121 is disposed through the outer surface of the box 122, and the sound outlet of the at least one speaker 121 is provided in the cavity of the box 122; the at least one speaker 121
  • the speaker 121 is connected to the waveform generator 11 described above.
  • the oscillation excitation signal drives the vibration element 12 to generate the oscillation wave airflow, which includes: the at least one speaker 121 receiving the oscillation excitation signal generated by the waveform generator 11 to generate the oscillation wave airflow.
  • FIG. 3 is a front view using the side of the cabinet 122 without the speaker 121 as the front
  • (A) in FIG. 3 is a side view of the cabinet 122 with the speaker 121 not installed thereon. is a front left view
  • (C) in FIG. 3 is a bottom view using the side of the box 122 where the speaker 121 is not installed as the front.
  • the aforementioned speaker airflow is also an oscillating wave airflow of a single frequency or a composite frequency.
  • This embodiment provides a vibrating element 12.
  • the aforementioned vibrating element 12 can integrate multiple small-sized speakers 121 into one, making multiple The diaphragms in the two speakers 121 vibrate simultaneously to produce a larger sounding airflow, which is finally converged into a stronger oscillating wave airflow in the box 122, which not only helps reduce the size of the equipment, but also helps improve the detection quality. .
  • each speaker 121 The speaker airflow generated in each speaker 121 is the same, and the frequency of the speaker airflow and the oscillation wave airflow are consistent.
  • Figure 8 is a schematic sub-flow diagram of step 704 in Figure 7 provided by an embodiment of the present application.
  • the aforementioned impedance includes respiratory resistance and respiratory reactance.
  • the aforementioned denoising process includes: respectively removing the low-frequency spontaneous breathing signal in the aforementioned gas pressure signal and the aforementioned gas flow signal as noise, and extracting the gas pressure signal and the gas flow signal caused by the aforementioned oscillatory wave air flow.
  • FIG. 9 is a schematic flow chart of the aforementioned respiratory impedance measurement method provided by another embodiment of the present application.
  • steps 901-905 correspond to steps 701-705 respectively, and the related descriptions can be referred to each other.
  • the aforementioned frequency impedance curve includes a frequency resistance curve and a frequency reactance curve.
  • the aforementioned frequency resistance curve is derived based on the aforementioned respiratory resistance
  • the aforementioned frequency reactance curve is derived based on the aforementioned respiratory reactance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸阻抗测量系统(100)及呼吸阻抗测量方法,系统包括振荡模组(1),用于产生振荡波气流;连接模组(2),与振荡模组(1)连接,连接模组(2)用于将振荡模组(1)产生的振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流;检测模组(3),用于检测连接模组(2)中目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号;以及计算模组(4),与检测模组(3)连接,计算模组(4)用于根据气体压力信号和气体流量信号计算受试者的呼吸系统的阻抗;以及根据设置的结果输出方式,将阻抗保存至本地内存空间,和/或上传至医疗数据管理平台。

Description

呼吸阻抗测量系统及呼吸阻抗测量方法 技术领域
本申请涉及一种人体呼吸系统的阻抗测量技术领域,具体涉及一种呼吸阻抗测量系统及呼吸阻抗测量方法。
背景技术
目前,为了检查人的肺功能是否存在病变,需要测量人的呼吸阻抗。然而,目前已有的人体呼吸系统的阻抗测量设备、系统及方法中,结构往往很复杂,且仅能够测量出人体呼吸系统的阻抗,功能比较单一,无法满足当今大数据时代的发展。
发明内容
针对目前的人体呼吸系统的阻抗测量设备、系统及方法中结构复杂、难以适应大数据时代发展等问题,本申请实施例提供一种呼吸阻抗测量系统及呼吸阻抗测量方法。
本申请实施例提供的呼吸阻抗测量系统,用于测量受试者的呼吸系统的阻抗,包括振荡模组、连接模组、检测模组及计算模组,其中,所述振荡模组用于产生振荡波气流;所述连接模组与所述振荡模组连接,用于将所述振荡模组产生的所述振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流;所述检测模组用于检测所述连接模组中所述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号;所述计算模组与所述检测模组连接,用于根据所述气体压力信号和所述气体流量信号计算受试者的呼吸系统的阻抗;所述计算模组还用于根据设置的结果输出方式,将所述阻抗保存至本地内存空间,和/或将所述阻抗上传至医疗数据管理平台。
本申请实施例提供的呼吸阻抗测量方法,应用于一种呼吸阻抗测量系统中,且所述呼吸阻抗测量系统包括振荡模组,所述方法包括:通过所述振荡模组产生振荡波气流;将所述振荡模组产生的所述振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流;检测所述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号;根据所述气体压力信号和所述气体流量信号计算受试者的呼吸系统的阻抗;根据设置的结果输出方式,将所述阻抗保存至本地内存空间,和/或将所述阻抗上传至医疗数据管理平台。
本申请实施例提供的所述呼吸阻抗测量系统及所述呼吸阻抗测量方法,除了能够以简单的结构较准确地测量出人体呼吸系统的阻抗外,还能将所述阻抗保存至本地内存空间,和/或将所述阻抗上传至所述医疗数据管理平台,使得对于所述阻抗的调取和应用等管理更加便捷,有利于适应大数据时代的发展。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请一实施例提供的呼吸阻抗测量系统的组成示意图;
图2为本申请一实施例提供的前述呼吸阻抗测量系统的部分结构及组成示意图;
图3为本申请一实施例提供的呼吸阻抗测量系统的振荡模组中的振动元件的结构示意图;
图4为本申请另一实施例提供的呼吸阻抗测量系统的组成示意图;
图5为本申请另一实施例提供的呼吸阻抗测量系统的部分组成及结构示意图;
图6为本申请另一实施例提供的呼吸阻抗测量系统的结构示意图;
图7为本申请一实施例提供的呼吸阻抗测量方法的流程示意图;
图8为本申请一实施例提供的图7中步骤704的子流程示意图;
图9为本申请另一实施例提供的呼吸阻抗测量方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本文出现的“呼吸阻抗”、“阻抗”、“呼吸系统的阻抗”,均理解为人体呼吸系统的阻抗,是肺功能检查中一项重要的指标。应当理解的是,本文中出现的“呼吸系统的阻抗”、“呼吸阻抗”、“阻抗”、“人体呼吸系统的阻抗”表达意思均一致,且可相互通用。
请参阅图1,图1为本申请一实施例提供的呼吸阻抗测量系统的组成示意图。
前述呼吸阻抗测量系统100包括振荡模组1、连接模组2、检测模组3及计算模组4。
前述振荡模组1用于产生振荡波气流。
前述连接模组2,与前述振荡模组1连接,前述连接模组2用于将前述振荡模组1产生的前述振荡波气流传输至受试者5以及接收受试者5呼出的目标呼吸气流。
前述检测模组3用于检测前述连接模组2中前述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号。
前述计算模组4与前述检测模组3连接,前述计算模组4用于根据前述气体压力信号和前述气体流量信号计算受试者5的呼吸系统的阻抗;以及用于根据设置的结果输出方式,将前述阻抗保存至本地内存空间,和/或将前述阻抗上传至医疗数据管理平台。
本申请实施例通过产生前述振荡波气流并施加在受试者5的自主呼吸气流上,能够在受试者5的呼吸系统中产生对应的振荡波气流,而加强受试者5吸入的气流的强度,受试者5受到振荡波气流后呼出的呼吸气流中与前述呼吸阻抗相关的值也将会放大,从而通过分别检测当前的气流的气体压力和气体流量得到气体压力信号和气体流量信号也将较强,且检测模组3设置于前述连接模组2内,能够直接检测当前的气流的气体压力和气体流量。因此,本申请实施例提供的前述呼吸阻抗测量系统100,能够以简单的结构有效检测受试者5的呼吸系统的阻抗,并在测量出前述阻抗后,还将关于前述阻抗保存至本地内存空间,同时和/或将 前述阻抗上传至前述医疗数据管理平台以供医疗人员参考并用于诊断,因而不仅能将前述阻抗保存至本地内存空间,还可实现前述呼吸阻抗测量系统100与前述医疗数据管理平台的互动,使得对于前述阻抗的调取和应用等管理更加便捷,有利于适应大数据时代的发展。
其中,前述医疗数据管理平台可为位于服务器端的对医疗数据进行汇总和管理的平台,医疗人员可通过前述医疗数据管理平台对位于各个地方的前述呼吸阻抗测量系统100或其他医疗检测设备上传的前述医疗数据进行管理,且根据相应的医疗数据进行患者的诊断,其中,前述医疗数据包括前述阻抗。
前述振荡波气流为单一频率或者复合频率的振荡波气流,当前述振荡波气流为单一频率的振荡波气流时,前述振荡波气流为正弦波气流,当前述振荡波气流为复合频率的振荡波气流时,前述振荡波气流为脉冲波气流。不管前述振荡波气流为单一频率还是为复合频率,前述振荡波气流的频率范围在3~50Hz。
前述气体压力信号为检测得到的前述目标呼吸气流的气体压力关于时间的变化曲线,前述气体流量信号为检测得到的前述目标呼吸气流的气体流量关于时间的变化曲线。
前述结果输出方式包括同时将前述阻抗保存至本地内存空间和将前述阻抗上传至医疗数据管理平台、只将前述阻抗保存至本地内存空间、只将前述阻抗上传至医疗数据管理平台。其中,前述结果输出方式可为预先的默认设置,也可为用户选择设置。
在一些实施例中,前述连接模组2的一端与前述振荡模组1连接,另一端用于在测量受试者5的呼吸系统的阻抗时,伸入受试者5的口腔,前述连接模组2用于在测量受试者5的呼吸系统的阻抗时,使前述振荡模组1产生的前述振荡波气流传输至受试者5以及用于接收受试者5被施加前述振荡波气流后呼出的前述目标呼吸气流。
在一些实施例中,前述检测模组3设置于前述连接模组2内,从而可以直接检测在前述连接模组2内传输的目标呼吸气流的气体压力和气体流量而分别得到前述气体压力信号和前述气体流量信号。在另一些实施例中,前述检测模组3也可设置于前述连接模组2的外部,例如,设置于前述检测模组3与前述计算模组4或者与前述振荡模组1的连接处,从而,同样可以检测前述目标呼吸气流的气体压力和气体流量而分别得到前述气体压力信号和前述气体流量信号。前述检测模组3通过连接到前述连接模组2的采样管进行采样检测前述目标呼吸气流的气体压力和气体流量而分别得到前述气体压力信号和前述气体流量信号。
在一些实施例中,前述计算模组4根据前述气体压力信号和前述气体流量信号计算受试者5的呼吸系统的阻抗,包括:前述计算模组4分别对前述气体压力信号和前述气体流量信号进行去噪处理;前述计算模组4计算经过去噪处理后的前述气体压力信号和前述气体流量信号的傅里叶变换的商,得到受试者5的呼吸系统的阻抗,其中,前述阻抗包括呼吸阻力和呼吸电抗。
在一些实施例中,前述呼吸阻抗测量系统100可包括存储器(图中未示),前述计算模组4将前述阻抗保存至本地内存空间,可指的是将前述阻抗存储在前述存储器中。
请参阅图2,图2为本申请一实施例提供的前述呼吸阻抗测量系统100的部分结构及组成示意图。
前述振荡模组1包括波形发生器11和振动元件12,前述振动元件12连接于前述连接模组2与前述波形发生器11之间连接,前述波形发生器11用于产生单一频率或者复合频率的振荡激励信号,前述振动元件12用于在前述振荡激励信号的驱动下产生前述振荡波气流。
进而,前述振动元件12产生的前述振荡波气流通过前述连接模组2传输至受试者5。
请参阅图3,图3为本申请一实施例提供的前述呼吸阻抗测量系统100的前述振荡模组 中的前述振动元件12的结构示意图,其中,图3中的(A)为前述振动元件12的左视图,图3中的(B)为前述振动元件12的正视图,图3中的(C)为前述振动元件12的仰视图,图3中的(D)为前述振动元件12的三维立体图。
前述振动元件12包括至少一个扬声器121、箱体122。
前述箱体122具有外表面,以及由外表面围合形成的腔体,前述箱体122的外表面开设有一气流输出口。
前述至少一个扬声器121贯穿设置于前述箱体122的外表面,且前述至少一个扬声器121的出声口设于前述箱体122的腔体内;前述至少一个扬声器121与前述波形发生器11连接,以接收前述波形发生器11产生的前述振荡激励信号而产生前述振荡波气流。
其中,前述气体输出口与前述连接模组2连接。从而,前述至少一个扬声器121中产生的前述扬声气流在前述腔体中汇合,而最终产生前述振荡波气流,并通过前述气流输出口输出前述振荡波气流至前述连接模组2。
在一些实施例中,所述气流输出口设于所述箱体122外表面中远离所述至少一个扬声器121的一侧。
在另一些实施例中,所述箱体122为多面体,所述箱体122的面数量大于所述至少一个扬声器121的数量;每一扬声器121分别穿设于所述箱体122的不同面中,所述气流输出口设于所述箱体122外表面中未设置所述扬声器121的一面。
其中,图3中的(B)为以前述箱体122中未设置前述扬声器121的一面为正面的正视图,图3中的(A)为以前述箱体122中未设置前述扬声器121的一面为正面的左视图,图3中的(C)为以前述箱体122中未设置前述扬声器121的一面为正面的仰视图。
前述扬声气流也为单一频率或者复合频率的振荡波气流,本实施例提供一种振动元件12,通过设置箱体122,前述振动元件12可以集多个小尺寸的扬声器121为一体,使多个扬声器121中的振膜同时振动而产生更大的扬声气流,最终在前述箱体122中汇聚成具有更强的前述振荡波气流,不仅有利于减小设备尺寸,而且有利于提升检测质量。
其中,每一扬声器121中产生的扬声气流相同,前述扬声气流与前述振荡波气流的频率一致。连接前述波形发生器11的前述扬声器121的数量越多,由前述扬声气流在前述箱体122中汇集而成的前述振荡波气流的强度越强。
请继续参阅图2,在另一些实施例中,前述振动元件12包括涡轮、驱动电机,前述涡轮安装于前述连接模组2,前述驱动电机连接于前述涡轮及前述波形发生器11之间,前述驱动电机用于接收前述波形发生器11产生的前述振荡激励信号,并驱动前述涡轮旋转,以产生前述振荡波气流。其中,前述涡轮在前述振荡激励信号的驱动下产生具有一定频率的前述振荡波气流,且前述涡轮产生的前述振荡波气流由前述振荡激励信号决定。前述涡轮产生的前述振荡波气流在前述连接模组2中流动,并通过前述连接模组2传输至受试者5。
请继续参阅图2,在又一些实施例中,前述振动元件12包括储气组件以及与前述储气组件中的气体出口连接的气体阀门,前述气体阀门响应前述振荡激励信号而交替地打开和关闭。
具体的,前述储气组件中存储有压缩空气,前述储气组件包括压缩气体输出口,前述压缩气体输出口与前述连接模组2密封连接,前述气体阀门设置于前述压缩气体输出口处,并与前述波形发生器11连接,用于接收前述波形发生器11产生的前述振荡激励信号,前述气体阀门并响应前述振荡激励信号而交替地打开和关闭,进而驱使前述储气组件中的前述压缩空气间断性地通过打开的前述气体阀门进入前述连接模组2,产生前述振荡波气流。
请继续参阅图2,前述连接模组2包括测量接口21及气体管道22,前述气体管道22的 第一端a与前述振荡模组1中的振动元件12连接,第二端b与前述测量接口21连接。其中,前述测量接口21用于在测量受试者5的呼吸系统的阻抗时,伸入受试者5的口腔;前述气体管道22用于在测量受试者5的呼吸系统的阻抗时,供前述振荡模组1产生的前述振荡波气流传输至受试者5以及用于接收前述目标呼吸气流。其中,前述气体管道22接收前述目标呼吸气流指的是,受试者5被施加前述振荡波气流后呼出的前述目标呼吸气流通过前述气体管道22最终向外流出。其中,前述气体管道22为中空管道。
在一些实施例中,如前所述,前述振动元件12包括前述至少一个扬声器121及前述箱体122。前述箱体122的外表面上的前述气流输出口与前述气体管道22的前述第一端a连接。从而,前述至少一个扬声器121中产生的前述扬声气流在前述腔体中汇合,而最终产生前述振荡波气流,并通过前述气流输出口输出前述振荡波气流至前述气体管道22。
如前所述以及如图2所示,在一些实施例中,前述检测模组3设置于前述气体管道22内,从而,当受试者5被施加前述振荡波气流后呼出的目标呼吸气流流过前述气体管道22时,前述检测模组3即可检测前述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号。
前述连接模组2还包括高频阻隔组件,前述高频阻隔组件的一端与前述气体管道22连通,另一端与外界空气相通,用于实现前述气体管道22内外的气体流通,并阻隔前述振荡波气流流出。
在一些实施例中,前述高频阻隔组件包括管道支路23及筛网(图中未示),前述管道支路23与前述气体管道22连通,前述管道支路23用于在测量受试者5的呼吸系统的阻抗时,使外界空气流入前述气体管道22,以供受试者5呼吸;前述筛网(图中未示)设置于前述管道支路23与前述气体管道22的连接处c,前述筛网(图中未示)中每一网孔的孔径都比较小,例如,可为微米至毫米级别,又由于振荡波的衍射作用,前述气体管道22中的前述振荡波气流无法通过前述筛网(图中未示)从前述管道支路23中流到空气中,但不影响为低频气流的空气通过前述筛网(图中未示)进入前述气体管道22中以供受试者5呼吸。因此,前述高频阻隔组件的作用不仅包括使外界空气流入前述气体管道22以供受试者5呼吸,而且可以防止前述振荡波气流外流到空气中,即,前述高频阻隔组件可以实现前述气体管道22内外的气体流通,阻隔前述振荡波气流流出。
在另一些实施例中,前述高频阻隔组件包括一细长弯曲管道,前述细长弯曲管道与前述气体管道22连通,且前述细长弯曲管道的管径比较小,例如前述细长弯曲管道的管径可为毫米级别,因而由于振荡波的衍射作用,前述气体管道22中的前述振荡波气流无法通过前述细长弯曲管道从前述管道支路23中流到空气中,但不影响为低频气流的空气通过前述细长弯曲管道进入前述气体管道22中以供受试者5呼吸。因此,前述高频阻隔组件中的细长弯曲管道可以实现前述气体管道22内外的气体流通,阻隔前述振荡波气流流出。
在一些实施例中,前述连接模组2还包括过滤网24,前述过滤网24安装于前述气体管道22中靠近前述第二端b的位置,也即,靠近前述测量接口21的位置,前述过滤网24用于隔离污染物,防止受试者5在使用时交叉感染。
在一些实施例中,前述测量接口21为咬嘴。
请一并参阅图4及图5,图4为本申请另一实施例提供的前述呼吸阻抗测量系统100的组成示意图,图5为本申请另一实施例提供的前述呼吸阻抗测量系统100的前述支撑模组的结构示意图。
前述呼吸阻抗测量系统100除了包括前述振荡模组1、前述连接模组2、前述检测模组3 及前述计算模组4之外(参见图1),还包括支撑模组6,前述支撑模组6与前述连接模组2连接,用于在测量受试者5的呼吸系统的阻抗时,支撑受试者5的脸颊。
其中,如图5所示,前述支撑模组6包括V形支撑件及驱动机构,前述测量接口21贯穿设置于前述V形支撑件的尖端,前述驱动机构与前述V形支撑件连接,以调节前述V形支撑件的夹角至与受试者5的脸颊适配,从而在测量受试者5的呼吸系统的阻抗时,支撑受试者5的脸颊。
请继续参阅图2或图5,在一些实施例中,前述检测模组3包括压力传感器和流量传感器,其中,前述压力传感器和前述流量传感器分别设置于前述气体管道22的d处和e处中,并均与前述计算模组4连接,前述压力传感器用于检测前述连接模组2中的气体压力而得到前述气体压力信号,前述流量传感器用于检测前述连接模组2中的气体流量而得到前述气体流量信号。
其中,应当理解的是,前述压力传感器和前述流量传感器应尽量设置在前述气体管道22中靠近前述测量接口21的位置,且前述压力传感器应设置在前述气体管道22中相较于前述流量传感器更靠近前述测量接口21的位置,以检测到准确的前述目标呼吸气流的气体压力和气体流量。
在一些实施例中,前述流量传感器为压差流量计。
如前所述,在一些实施例中,前述计算模组4根据前述气体压力信号和前述气体流量信号计算受试者5的呼吸系统的阻抗,包括:前述计算模组4分别对前述气体压力信号和前述气体流量信号进行去噪处理;前述计算模组4计算经过去噪处理后的前述气体压力信号和前述气体流量信号的傅里叶变换的商,得到受试者5的呼吸系统的阻抗,其中,前述阻抗包括呼吸阻力和呼吸电抗。
其中,前述去噪处理包括:分别将前述气体压力信号和前述气体流量信号中为低频的自主呼吸信号作为噪声去除,提取出由前述振荡波气流引起的气体压力信号及气体流量信号。
前述“计算经过去噪处理后的前述气体压力信号和前述气体流量信号的傅里叶变换的商,得到受试者5的呼吸系统的阻抗”的计算公式为:Z(f)=P(f)/F(f)=R(f)+jX(f),其中,Z(f)表示前述阻抗,P(f)表示经过去噪处理后的前述气体压力信号的傅里叶变换函数,F(f)表示经过去噪处理后的前述气体流量信号的傅里叶变换函数,R(f)表示前述呼吸阻力,用于反映中心气道阻力的大小,X(f)表示前述呼吸电抗,用于反映外周肺组织和胸廓的顺应性。
请参阅图6,图6为本申请另一实施例提供的前述呼吸阻抗测量系统100的结构示意图。
在一些实施例中,如图6所示,前述呼吸阻抗测量系统100还包括显示模组7,前述显示模组7与前述计算模组4连接,前述显示模组7用于根据前述计算模组4计算得到的前述阻抗,显示受试者5的频率阻抗曲线,其中,前述频率阻抗曲线包括频率阻力曲线和频率电抗曲线,前述频率阻力曲线根据前述呼吸阻力得出,前述频率电抗曲线根据前述呼吸电抗得出。
本申请实施例还提供一种呼吸阻抗测量方法,请参阅图7,图7为本申请一实施例提供的前述呼吸阻抗测量方法的流程示意图。
前述呼吸阻抗测量方法应用于一种呼吸阻抗测量系统中,前述呼吸阻抗测量系统包括振荡模组,前述方法包括:
701、通过前述振荡模组产生振荡波气流。
702、将前述振荡模组产生的前述振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流。
703、检测前述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号。
704、根据前述气体压力信号和前述气体流量信号计算受试者的呼吸系统的阻抗。
705、根据设置的结果输出方式,将前述阻抗保存至本地内存空间,和/或将前述阻抗上传至医疗数据管理平台。
本申请实施例通过产生前述振荡波气流并施加在受试者的自主呼吸气流上,能够在受试者的呼吸系统中产生对应的振荡波气流,而加强受试者吸入的气流的强度,受试者受到振荡波气流后呼出的呼吸气流中与呼吸阻抗相关的值也将会放大,从而通过分别检测当前的气流的气体压力和气体流量得到气体压力信号和气体流量信号也将较强。因此,本申请实施例提供的前述呼吸阻抗测量方法,能够以简单的结构有效检测受试者的呼吸系统的阻抗,并测量出前述阻抗后,还将关于前述阻抗保存至本地内存空间,和/或将前述阻抗上传至前述医疗数据管理平台以供医疗人员参考并用于诊断,因而不仅能将前述阻抗保存至本地内存空间,还可实现前述呼吸阻抗测量系统与前述医疗数据管理平台的互动,使得对于前述阻抗的调取和应用等管理更加便捷,有利于适应大数据时代的发展。
其中,前述医疗数据管理平台可为位于服务器端的对医疗数据进行汇总和管理的平台,医疗人员可通过前述医疗数据管理平台对位于各个地方的前述呼吸阻抗测量系统或其他医疗检测设备上传的前述医疗数据进行管理,且根据相应的医疗数据进行患者的诊断,其中,前述医疗数据包括前述阻抗。
前述振荡波气流为单一频率或者复合频率的振荡波气流,当前述振荡波气流为单一频率的振荡波气流时,前述振荡波气流为正弦波气流,当前述振荡波气流为复合频率的振荡波气流时,前述振荡波气流为脉冲波气流。不管前述振荡波气流为单一频率还是为复合频率,前述振荡波气流的频率范围在3~50Hz。
前述气体压力信号为检测得到的前述目标呼吸气流的气体压力关于时间的变化曲线,前述气体流量信号为检测得到的前述目标呼吸气流的气体流量关于时间的变化曲线。
前述结果输出方式包括同时将前述阻抗保存至本地内存空间和将前述阻抗上传至医疗数据管理平台、只将前述阻抗保存至本地内存空间、只将前述阻抗上传至医疗数据管理平台。其中,前述结果输出方式可为预先的默认设置,也可为用户选择设置。
在一些实施例中,前述振荡模组包括波形发生器11和振动元件12,前述“通过前述振荡模组产生振荡波气流”包括:前述波形发生器11产生单一频率或者复合频率的振荡激励信号,前述振荡激励信号驱动前述振动元件12产生前述振荡波气流。
进一步的,在一些实施例中,如图4所示,前述振动元件12包括箱体122和至少一个扬声器121;前述箱体122具有外表面,以及由外表面围合形成的腔体,前述箱体122的外表面开设有一气流输出口;前述至少一个扬声器121贯穿设置于前述箱体122的外表面,且前述至少一个扬声器121的出声口设于前述箱体122的腔体内;前述至少一个扬声器121与前述波形发生器11连接。
前述振荡激励信号驱动前述振动元件12产生前述振荡波气流,包括:前述至少一个扬声器121接收前述波形发生器11产生的前述振荡激励信号而产生前述振荡波气流。
其中,图3中的(B)为以前述箱体122中未设置前述扬声器121的一面为正面的正视图,图3中的(A)为以前述箱体122中未设置前述扬声器121的一面为正面的左视图,图3中的(C)为以前述箱体122中未设置前述扬声器121的一面为正面的仰视图。
前述扬声气流也为单一频率或者复合频率的振荡波气流,本实施例提供一种振动元件12, 通过设置箱体122,前述振动元件12可以集多个小尺寸的扬声器121为一体,使多个扬声器121中的振膜同时振动而产生更大的扬声气流,最终在前述箱体122中汇聚成具有更强的前述振荡波气流,不仅有利于减小设备尺寸,而且有利于提升检测质量。
其中,每一扬声器121中产生的扬声气流相同,前述扬声气流与前述振荡波气流的频率一致。连接前述波形发生器11的前述扬声器121的数量越多,由前述扬声气流在前述箱体122中汇集而成的前述振荡波气流的强度越强。
请参阅图8,图8为本申请一实施例提供的图7中步骤704的子流程示意图。
801、对前述气体压力信号和前述气体流量信号进行去噪处理。
802、计算经过去噪处理后的前述气体压力信号和前述气体流量信号的傅里叶变换的商,得到受试者的呼吸系统的阻抗。其中,前述阻抗包括呼吸阻力和呼吸电抗。
其中,前述去噪处理包括:分别将前述气体压力信号和前述气体流量信号中为低频的自主呼吸信号作为噪声去除,提取出由前述振荡波气流引起的气体压力信号及气体流量信号。
前述“计算经过去噪处理后的前述气体压力信号和前述气体流量信号的傅里叶变换的商,得到受试者的呼吸系统的阻抗”的计算公式为:Z(f)=P(f)/F(f)=R(f)+jX(f),其中,Z(f)表示前述阻抗,P(f)表示经过去噪处理后的前述气体压力信号的傅里叶变换函数,F(f)表示经过去噪处理后的前述气体流量信号的傅里叶变换函数,R(f)表示前述呼吸阻力,用于反映中心气道阻力的大小,X(f)表示前述呼吸电抗,用于反映外周肺组织和胸廓的顺应性。
请参阅图9,图9为本申请另一实施例提供的前述呼吸阻抗测量方法的流程示意图。
901、通过前述振荡模组产生振荡波气流。
902、将前述振荡模组产生的前述振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流。
903、检测前述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号。
904、根据前述气体压力信号和前述气体流量信号计算受试者的呼吸系统的阻抗。
905、根据设置的结果输出方式,将前述阻抗保存至本地内存空间,和/或将前述阻抗上传至医疗数据管理平台。
906、显示受试者的频率阻抗曲线。
其中,步骤901-905与步骤701-705分别对应,相关的描述可互相参照。
其中,前述频率阻抗曲线包括频率阻力曲线和频率电抗曲线,前述频率阻力曲线根据前述呼吸阻力得出,前述频率电抗曲线根据前述呼吸电抗得出。
其中,本申请的图7-图9所示的方法步骤,与前述的系统的功能相互对应,更具体的内容可参见前述系统的相关描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种呼吸阻抗测量系统,用于测量受试者的呼吸系统的阻抗,其特征在于,所述呼吸阻抗测量系统包括:
    振荡模组,用于产生振荡波气流;
    连接模组,与所述振荡模组连接,所述连接模组用于将所述振荡模组产生的所述振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流;
    检测模组,用于检测所述连接模组中所述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号;以及
    计算模组,与所述检测模组连接,所述计算模组用于根据所述气体压力信号和所述气体流量信号计算受试者的呼吸系统的阻抗;以及用于根据设置的结果输出方式,将所述阻抗保存至本地内存空间,和/或将所述阻抗上传至医疗数据管理平台。
  2. 根据权利要求1所述的呼吸阻抗测量系统,其特征在于,所述振荡模组包括波形发生器和振动元件,所述振动元件连接于所述连接模组与所述波形发生器之间连接,所述波形发生器用于产生单一频率或者复合频率的振荡激励信号,所述振动元件用于在所述振荡激励信号的驱动下产生所述振荡波气流。
  3. 根据权利要求2所述的呼吸阻抗测量系统,其特征在于,所述振动元件包括箱体和至少一个扬声器;
    所述箱体具有外表面,以及由外表面围合形成的腔体,所述箱体的外表面开设有一气流输出口;
    所述至少一个扬声器贯穿设置于所述箱体的外表面,且所述至少一个扬声器的出声口设于所述箱体的腔体内;所述至少一个扬声器与所述波形发生器连接,以接收所述波形发生器产生的所述振荡激励信号而产生所述振荡波气流。
  4. 根据权利要求3所述的呼吸阻抗测量系统,其特征在于,所述气流输出口设于所述箱体外表面中远离所述至少一个扬声器的一侧。
  5. 根据权利要求3所述的呼吸阻抗测量系统,其特征在于,所述箱体为多面体,所述箱体的面数量大于所述至少一个扬声器的数量;每一扬声器分别穿设于所述箱体的不同面中,所述气流输出口设于所述箱体外表面中未设置所述扬声器的一面。
  6. 根据权利要求2所述的呼吸阻抗测量系统,其特征在于,所述振动元件包括涡轮、驱动电机,所述涡轮安装于所述气体管道的所述第一端,所述驱动电机连接于所述涡轮及所述波形发生器之间,所述驱动电机用于接收所述波形发生器产生的所述振荡激励信号,并驱动所述涡轮旋转,以产生所述振荡波气流。
  7. 根据权利要求2所述的呼吸阻抗测量系统,其特征在于,所述振动元件包括储气组件以及与所述储气组件中的气体出口连接的气体阀门,所述气体阀门响应所述振荡激励信号而交替地打开和关闭。
  8. 根据权利要求2所述的呼吸阻抗测量系统,其特征在于,所述连接模组包括测量接口及气体管道,所述气体管道的第一端与所述振荡模组中的所述振动元件连接,第二端与所述测量接口连接。
  9. 根据权利要求8所述的呼吸阻抗测量系统,其特征在于,所述连接模组还包括高频阻隔组件,所述高频阻隔组件的一端与所述气体管道连通,另一端与外界空气相通,用于实现所述气体管道内外的气体流通,并阻隔所述振荡波气流流出。
  10. 根据权利要求8所述的呼吸阻抗测量系统,其特征在于,所述呼吸阻抗测量系统还包括支撑模组,所述支撑模组与所述连接模组连接,用于在测量受试者的呼吸系统的阻抗时,支撑受试者的脸颊。
  11. 根据权利要求10所述的呼吸阻抗测量系统,其特征在于,所述支撑模组包括V形支撑件及驱动机构,其中,所述测量接口贯穿设置于所述V形支撑件的尖端,所述驱动机构与所述V形支撑件连接,以调节所述V形支撑件的夹角至与受试者的脸颊适配。
  12. 根据权利要求8所述的呼吸阻抗测量系统,其特征在于,所述检测模组包括压力传感器和流量传感器,其中,所述压力传感器和所述流量传感器均设置于所述气体管道中,并均与所述计算模组连接,所述压力传感器用于检测所述连接模组中的气体压力而得到所述气体压力信号,所述流量传感器用于检测所述连接模组中的气体流量而得到所述气体流量信号。
  13. 根据权利要求1所述的呼吸阻抗测量系统,其特征在于,所述计算模组根据所述气体压力信号和所述气体流量信号计算受试者的呼吸系统的阻抗,包括:
    所述计算模组分别对所述气体压力信号和所述气体流量信号进行去噪处理;
    所述计算模组计算经过去噪处理后的所述气体压力信号和所述气体流量信号的傅里叶变换的商,得到受试者的呼吸系统的阻抗,其中,所述阻抗包括呼吸阻力和呼吸电抗。
  14. 一种呼吸阻抗测量方法,应用于一种呼吸阻抗测量系统中,其特征在于,所述呼吸阻抗测量系统包括振荡模组,所述方法包括:
    通过所述振荡模组产生振荡波气流;
    将所述振荡模组产生的所述振荡波气流传输至受试者以及接收受试者呼出的目标呼吸气流;
    检测所述目标呼吸气流的气体压力和气体流量而分别得到气体压力信号和气体流量信号;
    根据所述气体压力信号和所述气体流量信号计算受试者的呼吸系统的阻抗;以及
    根据设置的结果输出方式,将所述阻抗保存至本地内存空间,和/或将所述阻抗上传至医疗数据管理平台。
  15. 根据权利要求14所述的呼吸阻抗测量方法,其特征在于,所述振荡模组包括波形发生器和振动元件,所述“通过所述振荡模组产生振荡波气流”包括:
    所述波形发生器产生单一频率或者复合频率的振荡激励信号,所述振荡激励信号驱动所 述振动元件产生所述振荡波气流。
  16. 根据权利要求15所述的呼吸阻抗测量方法,其特征在于,所述振动元件包括箱体和至少一个扬声器;所述箱体具有外表面,以及由外表面围合形成的腔体,所述箱体的外表面开设有一气流输出口;所述至少一个扬声器贯穿设置于所述箱体的外表面,且所述至少一个扬声器的出声口设于所述箱体的腔体内;所述至少一个扬声器与所述波形发生器连接;
    所述振荡激励信号驱动所述振动元件产生所述振荡波气流,包括:
    所述至少一个扬声器接收所述波形发生器产生的所述振荡激励信号而产生所述振荡波气流。
  17. 根据权利要求14所述的呼吸阻抗测量方法,其特征在于,所述“根据所述气体压力信号和所述气体流量信号计算受试者的呼吸系统的阻抗”包括:
    对所述气体压力信号和所述气体流量信号进行去噪处理;
    计算经过去噪处理后的所述气体压力信号和所述气体流量信号的傅里叶变换的商,得到受试者的呼吸系统的阻抗,其中,所述阻抗包括呼吸阻力和呼吸电抗。
  18. 根据权利要求17所述的呼吸阻抗测量方法,其特征在于,所述方法还包括:
    显示受试者的频率阻抗曲线,其中,所述频率阻抗曲线包括频率阻力曲线和频率电抗曲线,所述频率阻力曲线根据所述呼吸阻力得出,所述频率电抗曲线根据所述呼吸电抗得出。
PCT/CN2022/105222 2022-07-12 2022-07-12 呼吸阻抗测量系统及呼吸阻抗测量方法 WO2024011412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105222 WO2024011412A1 (zh) 2022-07-12 2022-07-12 呼吸阻抗测量系统及呼吸阻抗测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105222 WO2024011412A1 (zh) 2022-07-12 2022-07-12 呼吸阻抗测量系统及呼吸阻抗测量方法

Publications (1)

Publication Number Publication Date
WO2024011412A1 true WO2024011412A1 (zh) 2024-01-18

Family

ID=89535207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105222 WO2024011412A1 (zh) 2022-07-12 2022-07-12 呼吸阻抗测量系统及呼吸阻抗测量方法

Country Status (1)

Country Link
WO (1) WO2024011412A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959455A (zh) * 2008-03-10 2011-01-26 捷斯特公司 呼吸阻抗测量装置及其测量方法、呼吸阻抗显示方法
CN104473647A (zh) * 2014-12-12 2015-04-01 温州医科大学 一种无线强迫振荡肺阻抗测试仪及其测试方法
CN108652632A (zh) * 2017-03-31 2018-10-16 张政波 强迫振荡肺功能测试装置及方法
US20190046074A1 (en) * 2016-02-03 2019-02-14 Cognita Labs, LLC Forced oscillation technique based lung function testing
CN114403852A (zh) * 2021-12-31 2022-04-29 深圳麦科田生物医疗技术股份有限公司 一种支撑装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959455A (zh) * 2008-03-10 2011-01-26 捷斯特公司 呼吸阻抗测量装置及其测量方法、呼吸阻抗显示方法
CN104473647A (zh) * 2014-12-12 2015-04-01 温州医科大学 一种无线强迫振荡肺阻抗测试仪及其测试方法
US20190046074A1 (en) * 2016-02-03 2019-02-14 Cognita Labs, LLC Forced oscillation technique based lung function testing
CN108652632A (zh) * 2017-03-31 2018-10-16 张政波 强迫振荡肺功能测试装置及方法
CN114403852A (zh) * 2021-12-31 2022-04-29 深圳麦科田生物医疗技术股份有限公司 一种支撑装置

Similar Documents

Publication Publication Date Title
EP0571568B1 (en) Airway geometry imaging
US11357421B2 (en) Forced oscillation technique based lung function testing
JP2003530940A (ja) 生体組織の状態を決定するための方法及び装置
WO2003105657A2 (en) Acoustic diagnosis of sinusitis
US20060070623A1 (en) Method and apparatus for determining a bodily characteristic or condition
US4333476A (en) Comprehensive pulmonary measurement technique
US20110092840A1 (en) Intelligent air flow sensors
US10598539B2 (en) Method and apparatus for intelligent airflow sensors
CN104254283A (zh) 在肺振动时用经胸肺多普勒超声诊断肺疾病
US20210068707A1 (en) Method and apparatus for intelligent flow sensors
CN101766474B (zh) 一种咽鼓管功能测定装置及其测定方法
WO2024011412A1 (zh) 呼吸阻抗测量系统及呼吸阻抗测量方法
JP7474758B2 (ja) 動的較正を用いるモジュール式振動測定デバイス
CN218978907U (zh) 呼吸阻抗测量系统
US20230273057A1 (en) Ultrasonic Gas Flow Calibration Device
Cao et al. Portable forced oscillation device for point-of-care pulmonary function testing
US20050154301A1 (en) Acoustic diagnosis of sinusitis
Desager et al. Forced oscillation technique
WO2007144626A1 (en) Breathing monitor apparatus
CN116831558B (zh) 一种基于强迫振荡的呼吸阻抗计算方法及计算装置
JP2014057688A (ja) 肺機能検査方法および装置
Habib et al. Total respiratory input impedance with the upper airway wall shunt minimized
CN116831557A (zh) 一种基于强迫振荡的呼吸阻抗测试装置
Mullingan et al. Monitoring Lung Disease Using Electronic Stethoscope Arrays
AU2004222800A1 (en) Method and apparatus for determining conditions of biological tissues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950543

Country of ref document: EP

Kind code of ref document: A1