WO2024011374A1 - Busbar for a switchgear and a switchgear - Google Patents

Busbar for a switchgear and a switchgear Download PDF

Info

Publication number
WO2024011374A1
WO2024011374A1 PCT/CN2022/104990 CN2022104990W WO2024011374A1 WO 2024011374 A1 WO2024011374 A1 WO 2024011374A1 CN 2022104990 W CN2022104990 W CN 2022104990W WO 2024011374 A1 WO2024011374 A1 WO 2024011374A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal base
busbar
terminal
connecting section
section
Prior art date
Application number
PCT/CN2022/104990
Other languages
French (fr)
Inventor
Yanyun Chen
Xuedong QIU
Xiaofei Zhao
Ru WANG
Juan WEN
Michal Skuci
Jan VYHLIDAL
Dalibor Kopp
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2022/104990 priority Critical patent/WO2024011374A1/en
Publication of WO2024011374A1 publication Critical patent/WO2024011374A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/10Cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/12Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal
    • H02B11/167Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal truck type

Definitions

  • Embodiments of the present disclosure generally relate to a field of switchgear, and more particularly to a busbar for a switchgear.
  • a switchgear is widely used in a power distribution system and is used to switch a state of a main power supply circuit, for example, to switch ON/OFF the circuit.
  • the switchgear generally uses conductive bars (such as copper busbars) as electrical conductors to conduct current.
  • the busbars are usually made as flat profiles, e.g. 80mm x 10mm, that are cut to the length needed.
  • One end of the busbar is connected to an outlet terminal of a main switch, such as a circuit breaker, and the other end of the busbar is configured to receive cable terminals which are in turn connected to various load devices so that the power can be supplied to the load devices.
  • a number of cable connection points for connecting cable terminals are arranged on the busbar within narrow space in the switchgear.
  • the busbars generate a large amount of heat.
  • the busbars are mainly cooled through air flowing in a gap formed between different busbars.
  • Conventional busbar arrangement is not satisfactory in terms of heat-dissipation performance which is critical for operation of the switchgear. There is a need to modify a structure of the busbar to improve heat deficiency.
  • Example embodiments of the present disclosure provide a disconnector which can enhance operation performances with simplified structures.
  • a busbar for a switchgear comprises a connecting section at least partially extending in a first direction; and a terminal base extending in a second direction perpendicular to the first direction and electrically connected to the connecting section, the terminal base comprising at least one terminal mounting surface arranged along the first direction, the terminal mounting surface comprising a plurality of connection portions arranged along the second direction and adapted to receive a plurality of cable terminals.
  • the terminal mounting surface comprises a plurality of connection portions arranged along the second direction, the whole terminal mounting surface thus can be used as a heat dissipation area. The heat dissipation area is enlarged.
  • the first direction is corresponding to the horizontal direction and the second direction is corresponding to the vertical direction.
  • the air flow for cooling the busbar can flow vertically without any obstruction. The air convection efficiency can be improved.
  • the terminal base may comprise an integrally formed terminal base section, a side surface of the integrally formed terminal base section forming the terminal mounting surface.
  • the integrally formed terminal base section reduces contact resistance and the terminal mounting surface can be formed easily.
  • the terminal base section may comprise a first end, a second end opposite to the first end, and a bent portion at the second end, the terminal base section being fixed to the connecting section via the bent portion.
  • a cross-sectional area or a thickness of the terminal base section may decrease from the first end toward the second end.
  • the connecting section may comprise a support portion adjacent to the first end and adapted to receive a support insulator supporting the busbar.
  • the terminal base may comprise two terminal base sections integrally formed and extending in the second direction, each of the terminal base sections comprising a side surface forming the terminal mounting surface.
  • the terminal base may further comprise a heat sink disposed between the two terminal base sections to be in thermal contact with the terminal mounting surfaces. With this arrangement, the heat generated by the busbar can be transferred by the heat sink.
  • the heat sink may comprise a body and a plurality of fins extending from the body, a surface area of one of the plurality of fins decreasing from a top side to a bottom side. With this arrangement, the configuration of the fins can improve air convection efficiency.
  • the terminal base may further comprise an extension extending across the two terminal base sections, and the connecting section is attached to the terminal base at the extension.
  • the connection section can be attached to the terminal base easily without comprising dielectric performances and cooling performances.
  • the extension further may comprise at least one through hole penetrating through the extension to circulate air. With this arrangement, the air convection efficiency can be further improved.
  • the connecting section may comprise a hollow tube in air communication with an open spacing between the two terminal base sections which forms a chimney extending from the terminal base.
  • the hollow tube may include a vertically oriented opening to form an outlet of the chimney. With the vertically oriented opening, the heated air flow from the terminal base can be easily discharged via the chimney.
  • the terminal base may further comprise a support portion between the two terminal base sections, the support portion being adapted to receive a support insulator supporting the busbar.
  • an end of the terminal mounting surface is rounded.
  • a switchgear In a second aspect of the present disclosure, it is provided a switchgear.
  • the switchgear comprises a main switch, and a busbar according to any one of a first aspect connected to an outlet terminal of the main switch.
  • Fig. 1 is a schematic perspective view of a switchgear according to one example embodiment of the present disclosure
  • Fig. 2 is a schematic perspective view of a busbar with a plurality of cables fixed theretoaccording to one example embodiment of the present disclosure
  • Fig. 3 is a schematic perspective view of a busbar according to one example embodiment of the present disclosure.
  • Fig. 4 is a schematic perspective view of a terminal base of a busbar according to one example embodiment of the present disclosure
  • Fig. 5 is a schematic perspective view of a heat sink according to one example embodiment of the present disclosure.
  • Fig. 6 is a schematic perspective view of a busbar according to another example embodiment of the present disclosure.
  • Fig. 7 is a schematic perspective view of a terminal base of a busbar according to another example embodiment of the present disclosure.
  • Fig. 8 is a schematic perspective view of a terminal base of a busbar according to a further example embodiment of the present disclosure.
  • Fig. 9 is a schematic perspective view of a busbar according to another example embodiment of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “being operable to” is to mean a function, an action, a motion or a state that can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • Configuration and/or placement of a busbar in conventional switchgear may cause several issues.
  • a mounting surface of a terminal base is arranged perpendicular to extending direction of a connection section for a typical busbar. This may cause the busbar to be generally horizontally-oriented in switchgear.
  • the horizontal orientation is of lower efficiency in terms of air convection, since the flowing air takes heat only from a small area of the busbar.
  • Another disadvantage is related to a skinning effect of a conductor, for example, a busbar. Due to the skinning effect, the current is mostly flowing through edges of the busbar which reduces effective cross section for current flowing, and the horizontal orientation of the busbar thus tends to generate more heat.
  • the horizontal orientation of the busbar reduces an air gap between adjacent phases which increase the impact of the skinning effect.
  • a novel busbar is proposed which can obviate the above disadvantages.
  • a mounting surface of a terminal base is set in parallel to extending direction of a connection section for a typical busbar.
  • the connection section extends in a first direction (also referred to as a vertical direction hereinafter)
  • a terminal base comprising at least one mounting surface extends in a second direction perpendicular to the first direction.
  • the terminal mounting surface comprises a plurality of connection portions which are arranged along the second direction and are configured to receive a plurality of cable terminals.
  • Fig. 1 is a schematic perspective view of a switchgear 10 according to one example embodiment of the present disclosure.
  • the switchgear 10 comprises a main switch 12, such as a circuit breaker.
  • the main switch 12 is connected to a power supply (not shown) via an inlet busbar 14.
  • the main switch 12 is also connected to loads (not shown) via an outlet busbar 100 (also briefly referred as busbar) .
  • the load can be selectively connected to the power by switching ON/OFF the main switch 12.
  • Fig. 2 shows a closed up view of the busbar 100 for the switchgear.
  • the outlet busbar 100 may comprise a number of connection portions 114 configured to receive a plurality of cable terminals of the cables 150.
  • six cables 150 are fixed to the busbar 100.
  • the six cables 150 can be connected to the respective loads.
  • the busbar 100 thus can supply power to six loads by a single main switch 12. It is to be understood that this is merely illustrative rather than limited, and the busbar 100 may include any other number of connection portions, for example, 2, 4, 5, 8, 10, 12 or more connection portions.
  • a sensing device 17 such as a current transformer, is arranged adjacent to the busbar 100 and is configured to detect electrical parameters in the respective busbar. These electrical parameters, such as current value, can be used to control operations of the main switch 12.
  • the busbar 100 comprises a connecting section 120 and a terminal base 110.
  • the connecting section 120 at least partially extends in a first direction.
  • the first direction is corresponding to a vertical direction, i.e., the gravity direction.
  • the connecting section 120 is configured to connecting the terminal base 110 to different positions of the switchgear, for example, to the outlet terminal of the main switch 12.
  • the terminal base 110 is configured to receive a plurality of cables 150.
  • the terminal base 110 comprises at least one terminal mounting surface 112 which is arranged in a second direction perpendicular to the first direction. During use of the switchgear, the second direction is corresponding to the vertical direction. This means that the terminal mounting surface is vertically oriented.
  • a plurality of connection portions 114 are provided on the terminal mounting surface 112 in sequence and are configured to receive a plurality of cable terminals of the cables 150.
  • the terminal mounting surface 112 for receiving the cable being vertically oriented, the following technical advantages can be achieved.
  • the terminal mounting surface 112 is configured to receive a plurality of connection portions 114. Due to the skinning effects, the currents tend to flow along the surface of the terminal mounting surface 112. The generated heat thus can be distributed along the whole terminal mounting surface, which is beneficial in terms of heat-dissipation. Since the whole terminal mounting surface thus can be used as a heat dissipation area, the heat dissipation area is enlarged compared to the horizontal arrangement of a terminal base. Also, due to the fact that the terminal mounting surface 112 for receiving the cable are vertically oriented, the air flow for cooling the busbar can flow vertically without any obstruction. Thus, the air convection efficiency can be greatly improved.
  • the busbar 100 comprises a connecting section 120 and a terminal base 110.
  • the connecting section 120 comprises a vertical section 124 and a horizontal section 126.
  • the vertical section 124 extends vertically from the terminal base 110, and the horizontal section 126 is configured to connect to the outlet terminal of the main switch (also referring to Fig. 1) .
  • the horizontal section 126 may be omitted, or the connecting section 120 can be connected to the main switch with any other proper means.
  • the transition portion between the connecting section 120 and the horizontal section 126 is rounded. This is advantageous in terms of reducing an electromagnetic strength. Good dielectric field and good dielectric performance thus can be achieved.
  • the connecting section 120 may be solid. In this case, the heated generated by the terminal base can be transferred away by the heat conduction.
  • the connecting section 120 is in form of a hollow tube.
  • the connecting section 120 is in air communication with a bottom side of the terminal base 110. With the connecting section 120 being a hollow tube, the connecting section 120 forms a chimney extending from the terminal base.
  • the heated generated by the terminal base can also be transferred away by the air convection.
  • the heat dissipation performances of the connecting section 120 can be greatly improved.
  • the connecting section 120 is in a shape of a hollow cylindrical tube. Due to the cylindrical shape, this is advantageous in terms of reducing an electromagnetic strength. Dielectric field and dielectric performance thus can be further improved. It is to be understood this is merely illustrative rather than limited.
  • the connecting section 120 may be of any other proper shapes.
  • the hollow tube includes a vertically oriented opening 122.
  • the vertically oriented opening 122 is configured to form an outlet of the chimney. With the vertically oriented opening 122, the chimney effect formed by the connecting section 120 can be further improved. The heat dissipation performance can thus be further improved.
  • the terminal base 110 may comprise two terminal base sections which are integrally formed and define a vertically oriented terminal mounting surface 112 respectively.
  • a vertically oriented side surface of the terminal base section forms the terminal mounting surface 112.
  • a vertically oriented side surface of each of the terminal base sections forms the terminal mounting surface.
  • the number of cables to be connected to the terminal base 110 can be increased.
  • the two terminal base sections are integrally formed. In this way, contact resistance can be reduced.
  • an open spacing may be formed between the two terminal base sections. The open spacing is vertically-oriented and can used as air flow path for air convection.
  • each of the terminal base section comprises three connection portions 114.
  • the connection portions 114 are in form of holes.
  • a cable terminal 152 of a cable 150 can be fixed to the connection portions 114, for example via screws.
  • the number of the connection portions is illustrative rather than limited.
  • the connection portion is shown as a hole, this is merely illustrative rather than limited and the connection portion may be of any other proper means.
  • the connecting section 120 may be fixed to the terminal base 110 by various methods.
  • the terminal base 110 further comprises an integrally formed extension 118 and the connecting section 120 is attached to the terminal base at the extension 118.
  • the extension 118 is a horizontal extension and extends across the two terminal base sections. It is to be understood this is merely illustrative rather than limited, the extension 118 may be arranged at any other proper positions and may be of any other proper shapes as long as the connecting section 120 can be fixed to the terminal base 110 via the extension while it is ensured that the connecting section, the extension and the terminal base section are integrally formed.
  • a hole 117 is provided in the terminal base 110 and is configured to receive an end of the hollow cylindrical tube.
  • the connecting section 120 may be fixed to the terminal base 110 by the hole 117, if necessary, in combination of fixtures such as screws, bolts and the like.
  • the extension 118 may further comprises at least one through hole 115 which penetrates through the extension 118. During operation of the switchgear, the through hole 115 may be used for air circulation. In this way, the heat dissipation performances of the terminal base are further improved.
  • the terminal base 110 further comprises an integrally formed support portion 119.
  • the support portion 119 is configured to receive a support insulator 130 for supporting the busbar. Due to the fact that the cables are generally very heavy and the terminal base 110 itself is also very heavy, the terminal base 110 is subject to a large gravity force.
  • the support portion 119 can be used to arrange a support insulator 130 for supporting the busbar. In this way, the strength of the terminal base can be improved.
  • the support portion 119 is integrally formed with the terminal base 110 and may connect the two terminal base sections together. Due to this arrangement, there is no power loss caused by connection points. In the shown example, the support portion 119 is horizontally arranged. It is to be understood that this is merely illustrative rather than limited, the support portion 119 for example may be laterally arranged.
  • the terminal base 110 is substantially open except the structural features, such as the horizontal extension 118 and the support portion 119. This open configuration is helpful for facilitate air convection.
  • the terminal base section comprises rounded portions 113.
  • the rounded portions 113 are provided at the edge of the terminal base section. With these rounded portions 113, dielectric field and dielectric performance can be further improved.
  • the terminal base 110 may further comprise a heat sink 140.
  • the terminal base 110 includes two terminal base sections and the cables 150 carried by the terminal base 110 is increased, it is advantageous to provide a heat sink 140.
  • the heat sink 140 is disposed between the two terminal base sections and is configured to be in thermal contact with the terminal mounting surfaces 112. In this case, the heat generated by the terminal base 110 can be absorbed by the heat sink 140 so as to decrease the temperature of the terminal base 110.
  • the heat sink 140 may take various forms.
  • the heat sink 140 comprises a body 142 and a plurality of fins 144 extending from the body.
  • a shape of the fin 144 is in a shape of facilitating air circulation in a vertical direction.
  • a surface area of fin decreases from a top side to a bottom side.
  • the air flow path formed by two adjacent fins is widened from the bottom side to the top side. In this way, the heat absorbed by the heat sink 140 can be easily transferred away by air convection.
  • an edge of the fin 144 is rounded. This is advantageous in terms of reducing an electromagnetic strength. Dielectric field and dielectric performance thus can be further improved.
  • the heat sink 140 may be made of good thermal conductive material such as aluminum.
  • Fig. 6 is a schematic perspective view of a busbar 200 for the switchgear according to another example embodiment of the present disclosure.
  • the busbar 200 comprises a connecting section 220 and a terminal base 210.
  • the connecting section 220 substantially extends in a vertical direction and is connected to other components of the switchgear, for example, to an intermediate element which is further connected to an outlet terminal of the main switch (not shown) .
  • the terminal base 210 is configured to receive a plurality of cables (not shown) .
  • the terminal base 110 comprises one vertically oriented terminal mounting surface 212.
  • a plurality of connection portions 214 are provided on the terminal mounting surface 212 and are configured to receive a plurality of cable terminals.
  • the connection portions 214 are in form of holes for receiving a fastener, such as a screw, a bolt or the like. It is to be understood that this is merely illustrative rather than limited, and the connection portions 214 may be any other proper forms as long as the cables can be fixed to the connection portions 214.
  • the terminal mounting surface 212 increases the air gap between phases which further decreases the effect of the skinning effect. Also, due to the skinning effect, the current flows mainly along the terminal mounting surface 212, and this means a larger area is used for heat dissipation. The current density is lower and less heat is generated.
  • connection portions 214 is a countersink and a countersink bolt can be used. In this way, a relatively “smooth” surface from the outside can be formed resulting in good dielectric field and good dielectric performance.
  • the terminal base 210 comprises an integrally formed terminal base section and a vertical side surface of the integrally formed terminal base section forms the terminal mounting surface. Since the terminal base section is integrally formed, the contact resistance of the terminal base 210 is reduced.
  • the terminal base section comprises a first end 215, a second end 217 opposite to the first end 215, and a bent portion 218 at the second end 217.
  • the terminal base section may be fixed to the connecting section 220 via the bent portion 218.
  • the bent portion 218 is merely illustrative rather than limited, and the bent portion 218 may be any other proper forms as long as the terminal base section can be fixed to the connecting section 220.
  • the connecting section 220 comprises a support portion 219.
  • the support portion 219 is configured to receive a support insulator 230 for supporting the busbar.
  • the support insulator 230 may be fixed on a frame 25 of the switchgear. In this way, the structural strength of the busbar can be improved.
  • the support portion 219 is arranged adjacent to the second end 217. It is to be understood that this is merely illustrative rather than limited, and the support portion 219 may be located any other proper positions.
  • Figs. 7 and 8 show schematic perspective views of terminal bases 210’, 210” of a busbar for the switchgear.
  • a cross-sectional area of the terminal base section 210’, 210” decreases from the first end 215’, 215” toward the second end 217’, 217”.
  • the terminal base 210’ in Fig. 7 is analogous to the terminal base 210” in Fig. 8.
  • the cross-sectional area of the terminal base section 210’ gradually decreases while in Fig. 8 the cross-sectional area of the terminal base section 210’ decreases stepwise. Due to the improved heat dissipation performances, the terminal base 210’, 210” can be cooled efficiently.
  • the cross-sectional area of the terminal base section 210’, 210” decreases from a proximal end to the power supply to a distal end to the power supply.
  • the terminal base section may be formed by laminated conductors. In this case, a thickness of the terminal base section may decrease from a proximal end to the power supply to a distal end to the power supply. In this way, cost for producing the busbar can be reduced without compromising the performances of the busbar.
  • Fig. 9 shows a schematic perspective view of a busbar 300 for the switchgear according to another example embodiment of the present disclosure.
  • the busbar 300 in Fig. 9 is analogous to the busbar 200 in Fig. 6.
  • the components denoted by like signs are substantially the same and the following description will focus on their differences.
  • the busbar 300 comprises a connecting section 320 and a terminal base 310.
  • the connecting section 320 substantially extends in a vertical direction and is connected to other components of the switchgear, for example, to an outlet terminal of the main switch (not shown) .
  • the terminal base 310 comprises two vertically oriented terminal mounting surfaces 312.
  • a plurality of connection portions 314 are provided on the terminal mounting surface 312 and are configured to receive a plurality of cable terminals.
  • the terminal base 210 comprises two terminal base sections which are arranged side by side. A vertical side surface of each terminal base section forms a respective terminal mounting surface.
  • the terminal base section comprises a first end 315, a second end 317 opposite to the first end 315, and a bent portion 318 at the second end 317.
  • the terminal base sections may be fixed to the connecting section 320 via the bent portion 318.
  • the connecting section 320 comprises a support portion 319.
  • the support portion 319 is configured to receive a support insulator 230 for supporting the busbar.
  • the support insulator 230 may be fixed on a frame 25 of the switchgear.
  • the terminal base 310 may further comprise a heat sink 340.
  • the terminal base 310 includes two terminal base sections for carrying the cables. It is advantageous to provide a heat sink 340.
  • the heat sink 340 is disposed between the two terminal base sections and is configured to be in thermal contact with the terminal mounting surfaces 312. In this case, the heat generated by the terminal base 310 can be absorbed by the heat sink 340 so as to lower the temperature of the terminal base 310.
  • the heat sink 340 comprises a plurality of fins. It is to be understood that this is merely illustrative rather than limited and the heat sink may be in any proper forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Patch Boards (AREA)

Abstract

Embodiments of present disclosure relates to a busbar (100, 200, 300) for a switchgear and a switchgear (10). The busbar comprises: a connecting section (120, 220, 320) extending in a first direction; and a terminal base (110, 210, 310) extending in a second direction perpendicular to the first direction and electrically connected to the connecting section, the terminal base (110, 210, 310) comprising at least one terminal mounting surface (112, 212, 312) arranged along the first direction, the terminal mounting surface comprising a plurality of connection portions (114, 214, 314) arranged along the second direction and adapted to receive a plurality of cable terminals (152). With the busbar of the present disclosure, the heat dissipation area of the terminal base can be enlarged and the air convection efficiency can be improved.

Description

BUSBAR FOR A SWITCHGEAR AND A SWITCHGEAR FIELD
Embodiments of the present disclosure generally relate to a field of switchgear, and more particularly to a busbar for a switchgear.
BACKGROUND
A switchgear is widely used in a power distribution system and is used to switch a state of a main power supply circuit, for example, to switch ON/OFF the circuit. The switchgear generally uses conductive bars (such as copper busbars) as electrical conductors to conduct current. The busbars are usually made as flat profiles, e.g. 80mm x 10mm, that are cut to the length needed. One end of the busbar is connected to an outlet terminal of a main switch, such as a circuit breaker, and the other end of the busbar is configured to receive cable terminals which are in turn connected to various load devices so that the power can be supplied to the load devices.
Typically, for each phase, a number of cable connection points for connecting cable terminals are arranged on the busbar within narrow space in the switchgear. During operation of the switchgear, the busbars generate a large amount of heat. For a switchgear, such as an air insulated switchgear, the busbars are mainly cooled through air flowing in a gap formed between different busbars. Conventional busbar arrangement is not satisfactory in terms of heat-dissipation performance which is critical for operation of the switchgear. There is a need to modify a structure of the busbar to improve heat deficiency.
SUMMARY
Example embodiments of the present disclosure provide a disconnector which can enhance operation performances with simplified structures.
In a first aspect of the present disclosure, it is provided a busbar for a switchgear. The busbar comprises a connecting section at least partially extending in a first direction; and a terminal base extending in a second direction perpendicular to  the first direction and electrically connected to the connecting section, the terminal base comprising at least one terminal mounting surface arranged along the first direction, the terminal mounting surface comprising a plurality of connection portions arranged along the second direction and adapted to receive a plurality of cable terminals. In accordance with the present disclosure, the terminal mounting surface comprises a plurality of connection portions arranged along the second direction, the whole terminal mounting surface thus can be used as a heat dissipation area. The heat dissipation area is enlarged. During operation of the switchgear, the first direction is corresponding to the horizontal direction and the second direction is corresponding to the vertical direction. When the terminal mounting surface for receiving the cable are vertically oriented, the air flow for cooling the busbar can flow vertically without any obstruction. The air convection efficiency can be improved.
In some embodiments, the terminal base may comprise an integrally formed terminal base section, a side surface of the integrally formed terminal base section forming the terminal mounting surface. With this arrangement, the integrally formed terminal base section reduces contact resistance and the terminal mounting surface can be formed easily.
In some embodiments, the terminal base section may comprise a first end, a second end opposite to the first end, and a bent portion at the second end, the terminal base section being fixed to the connecting section via the bent portion. With this arrangement, the terminal base section is of a simplified structure and can be manufactured in a cost-effective manner.
In some embodiments, a cross-sectional area or a thickness of the terminal base section may decrease from the first end toward the second end. With this arrangement, the material used for the busbar can be reduced without compromising the performances of the busbar.
In some embodiments, the connecting section may comprise a support portion adjacent to the first end and adapted to receive a support insulator supporting the busbar. With this arrangement, a strength of the connecting section can be improved and the cables can be fixed in a robust manner.
In some embodiments, the terminal base may comprise two terminal base sections integrally formed and extending in the second direction, each of the terminal  base sections comprising a side surface forming the terminal mounting surface. With this arrangement, the number of the cables to be fixed can be increased with a simplified structure.
In some embodiments, the terminal base may further comprise a heat sink disposed between the two terminal base sections to be in thermal contact with the terminal mounting surfaces. With this arrangement, the heat generated by the busbar can be transferred by the heat sink.
In some embodiments, the heat sink may comprise a body and a plurality of fins extending from the body, a surface area of one of the plurality of fins decreasing from a top side to a bottom side. With this arrangement, the configuration of the fins can improve air convection efficiency.
In some embodiments, the terminal base may further comprise an extension extending across the two terminal base sections, and the connecting section is attached to the terminal base at the extension. With this arrangement, the connection section can be attached to the terminal base easily without comprising dielectric performances and cooling performances.
In some embodiments, the extension further may comprise at least one through hole penetrating through the extension to circulate air. With this arrangement, the air convection efficiency can be further improved.
In some embodiments, the connecting section may comprise a hollow tube in air communication with an open spacing between the two terminal base sections which forms a chimney extending from the terminal base. With this arrangement, the cooling effects of the terminal base can be improved by chimney effects.
In some embodiments, the hollow tube may include a vertically oriented opening to form an outlet of the chimney. With the vertically oriented opening, the heated air flow from the terminal base can be easily discharged via the chimney.
In some embodiments, the terminal base may further comprise a support portion between the two terminal base sections, the support portion being adapted to receive a support insulator supporting the busbar. With this arrangement, a strength of the connecting section can be improved and the cables can be supported in a robust manner.
In some embodiments, an end of the terminal mounting surface is rounded. With this arrangement, dielectric field and dielectric performance thus can be further improved.
In a second aspect of the present disclosure, it is provided a switchgear. The switchgear comprises a main switch, and a busbar according to any one of a first aspect connected to an outlet terminal of the main switch.
DESCRIPTION OF DRAWINGS
Through the following detailed descriptions with reference to the accompanying drawings, the above and other objectives, features and advantages of the example embodiments disclosed herein will become more comprehensible. In the drawings, several example embodiments disclosed herein will be illustrated in an example and in a non-limiting manner, wherein:
Fig. 1 is a schematic perspective view of a switchgear according to one example embodiment of the present disclosure;
Fig. 2 is a schematic perspective view of a busbar with a plurality of cables fixed theretoaccording to one example embodiment of the present disclosure;
Fig. 3 is a schematic perspective view of a busbar according to one example embodiment of the present disclosure;
Fig. 4 is a schematic perspective view of a terminal base of a busbar according to one example embodiment of the present disclosure;
Fig. 5 is a schematic perspective view of a heat sink according to one example embodiment of the present disclosure;
Fig. 6 is a schematic perspective view of a busbar according to another example embodiment of the present disclosure;
Fig. 7 is a schematic perspective view of a terminal base of a busbar according to another example embodiment of the present disclosure;
Fig. 8 is a schematic perspective view of a terminal base of a busbar according to a further example embodiment of the present disclosure; and
Fig. 9 is a schematic perspective view of a busbar according to another  example embodiment of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
Principles of the present disclosure will now be described with reference to several example embodiments shown in the drawings. Though example embodiments of the present disclosure are illustrated in the drawings, it is to be understood that the embodiments are described only to facilitate those skilled in the art in better understanding and thereby achieving the present disclosure, rather than to limit the scope of the disclosure in any manner.
The term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “being operable to” is to mean a function, an action, a motion or a state that can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
Configuration and/or placement of a busbar in conventional switchgear may cause several issues. For example, a mounting surface of a terminal base is arranged perpendicular to extending direction of a connection section for a typical busbar. This may cause the busbar to be generally horizontally-oriented in switchgear. The horizontal orientation is of lower efficiency in terms of air convection, since the flowing air takes heat only from a small area of the busbar. Another disadvantage is related to a skinning effect of a conductor, for example, a busbar. Due to the skinning effect, the current is mostly flowing through edges of the busbar which reduces effective cross section for current flowing, and the horizontal orientation of the busbar thus tends to generate more heat. Furthermore, the horizontal orientation of the busbar  reduces an air gap between adjacent phases which increase the impact of the skinning effect.
According to the present disclosure, a novel busbar is proposed which can obviate the above disadvantages. In an example embodiment, a mounting surface of a terminal base is set in parallel to extending direction of a connection section for a typical busbar. For example, the connection section extends in a first direction (also referred to as a vertical direction hereinafter) , and a terminal base comprising at least one mounting surface extends in a second direction perpendicular to the first direction. The terminal mounting surface comprises a plurality of connection portions which are arranged along the second direction and are configured to receive a plurality of cable terminals. With the configuration, it may improve efficiency of the terminal base in terms of air convection, since the flowing air takes heat only from a large area of the busbar.
Through the following detailed descriptions with reference to the accompanying drawings, the above features and advantages of the example embodiments disclosed herein will become more comprehensible.
Fig. 1 is a schematic perspective view of a switchgear 10 according to one example embodiment of the present disclosure. As shown in Fig. 1, the switchgear 10 comprises a main switch 12, such as a circuit breaker. The main switch 12 is connected to a power supply (not shown) via an inlet busbar 14. The main switch 12 is also connected to loads (not shown) via an outlet busbar 100 (also briefly referred as busbar) . With the switchgear 10, the load can be selectively connected to the power by switching ON/OFF the main switch 12. In the shown example, there are three phases for the power supply. It is to be understood that this is merely illustrative rather than limited, the switchgear may comprise two phases or four phases.
Fig. 2 shows a closed up view of the busbar 100 for the switchgear. As shown in Fig. 2, the outlet busbar 100 may comprise a number of connection portions 114 configured to receive a plurality of cable terminals of the cables 150. In the shown example, for each phase, six cables 150 are fixed to the busbar 100. The six cables 150 can be connected to the respective loads. The busbar 100 thus can supply power to six loads by a single main switch 12. It is to be understood that this is merely illustrative rather than limited, and the busbar 100 may include any other number of  connection portions, for example, 2, 4, 5, 8, 10, 12 or more connection portions. In some embodiments, as shown in Fig. 1, for each phase, a sensing device 17, such as a current transformer, is arranged adjacent to the busbar 100 and is configured to detect electrical parameters in the respective busbar. These electrical parameters, such as current value, can be used to control operations of the main switch 12.
In some embodiments, as shown in Figs. 2, the busbar 100 comprises a connecting section 120 and a terminal base 110. The connecting section 120 at least partially extends in a first direction. When the busbar is arranged in the switchgear and during use of the switchgear, the first direction is corresponding to a vertical direction, i.e., the gravity direction. The connecting section 120 is configured to connecting the terminal base 110 to different positions of the switchgear, for example, to the outlet terminal of the main switch 12. The terminal base 110 is configured to receive a plurality of cables 150. The terminal base 110 comprises at least one terminal mounting surface 112 which is arranged in a second direction perpendicular to the first direction. During use of the switchgear, the second direction is corresponding to the vertical direction. This means that the terminal mounting surface is vertically oriented. A plurality of connection portions 114 are provided on the terminal mounting surface 112 in sequence and are configured to receive a plurality of cable terminals of the cables 150.
With the terminal mounting surface 112 for receiving the cable being vertically oriented, the following technical advantages can be achieved. The terminal mounting surface 112 is configured to receive a plurality of connection portions 114. Due to the skinning effects, the currents tend to flow along the surface of the terminal mounting surface 112. The generated heat thus can be distributed along the whole terminal mounting surface, which is beneficial in terms of heat-dissipation. Since the whole terminal mounting surface thus can be used as a heat dissipation area, the heat dissipation area is enlarged compared to the horizontal arrangement of a terminal base. Also, due to the fact that the terminal mounting surface 112 for receiving the cable are vertically oriented, the air flow for cooling the busbar can flow vertically without any obstruction. Thus, the air convection efficiency can be greatly improved.
The structural details of the busbar 100 will be further illustrated with reference to the Figs. 2-5. In some embodiments, as shown in Figs. 2-4, the busbar 100 comprises a connecting section 120 and a terminal base 110. The connecting  section 120 comprises a vertical section 124 and a horizontal section 126. The vertical section 124 extends vertically from the terminal base 110, and the horizontal section 126 is configured to connect to the outlet terminal of the main switch (also referring to Fig. 1) . It is to be understood that this is merely illustrative rather than limited. In some embodiments, the horizontal section 126 may be omitted, or the connecting section 120 can be connected to the main switch with any other proper means. In some embodiments, the transition portion between the connecting section 120 and the horizontal section 126 is rounded. This is advantageous in terms of reducing an electromagnetic strength. Good dielectric field and good dielectric performance thus can be achieved.
In some embodiments, the connecting section 120 may be solid. In this case, the heated generated by the terminal base can be transferred away by the heat conduction. In some other embodiments, as shown in Figs. 2 and 3, the connecting section 120 is in form of a hollow tube. The connecting section 120 is in air communication with a bottom side of the terminal base 110. With the connecting section 120 being a hollow tube, the connecting section 120 forms a chimney extending from the terminal base. In this case, in addition to the heat conduction, the heated generated by the terminal base can also be transferred away by the air convection. In particular, due to the chimney effect of the air flow, the heat dissipation performances of the connecting section 120 can be greatly improved.
In some embodiments, as shown in Figs. 2-4, the connecting section 120 is in a shape of a hollow cylindrical tube. Due to the cylindrical shape, this is advantageous in terms of reducing an electromagnetic strength. Dielectric field and dielectric performance thus can be further improved. It is to be understood this is merely illustrative rather than limited. The connecting section 120 may be of any other proper shapes. In some embodiments, as shown in Fig. 3 (also referring to Fig. 1) , the hollow tube includes a vertically oriented opening 122. The vertically oriented opening 122 is configured to form an outlet of the chimney. With the vertically oriented opening 122, the chimney effect formed by the connecting section 120 can be further improved. The heat dissipation performance can thus be further improved.
In some embodiments, as shown in Figs. 2-4, the terminal base 110 may comprise two terminal base sections which are integrally formed and define a vertically oriented terminal mounting surface 112 respectively. In the shown example,  a vertically oriented side surface of the terminal base section forms the terminal mounting surface 112. In the shown example, there are two terminal base sections which extend side by side along the horizontal direction. A vertically oriented side surface of each of the terminal base sections forms the terminal mounting surface. In this case, the number of cables to be connected to the terminal base 110 can be increased. In some embodiments, the two terminal base sections are integrally formed. In this way, contact resistance can be reduced. With the two terminal base sections extending side by side along the horizontal direction, an open spacing may be formed between the two terminal base sections. The open spacing is vertically-oriented and can used as air flow path for air convection.
In the shown example, each of the terminal base section comprises three connection portions 114. In the shown example, the connection portions 114 are in form of holes. As shown in Fig. 2, a cable terminal 152 of a cable 150 can be fixed to the connection portions 114, for example via screws. It is to be understood that the number of the connection portions is illustrative rather than limited. It is also to be understood that the connection portion is shown as a hole, this is merely illustrative rather than limited and the connection portion may be of any other proper means.
The connecting section 120 may be fixed to the terminal base 110 by various methods. In some embodiments, as shown in Figs. 2-4, the terminal base 110 further comprises an integrally formed extension 118 and the connecting section 120 is attached to the terminal base at the extension 118. In the shown example, the extension 118 is a horizontal extension and extends across the two terminal base sections. It is to be understood this is merely illustrative rather than limited, the extension 118 may be arranged at any other proper positions and may be of any other proper shapes as long as the connecting section 120 can be fixed to the terminal base 110 via the extension while it is ensured that the connecting section, the extension and the terminal base section are integrally formed.
In some embodiments, as shown in Fig. 4, a hole 117 is provided in the terminal base 110 and is configured to receive an end of the hollow cylindrical tube. For example, the connecting section 120 may be fixed to the terminal base 110 by the hole 117, if necessary, in combination of fixtures such as screws, bolts and the like. In some embodiments, the extension 118 may further comprises at least one through hole 115 which penetrates through the extension 118. During operation of the switchgear,  the through hole 115 may be used for air circulation. In this way, the heat dissipation performances of the terminal base are further improved.
In some embodiments, as shown in Fig. 4, the terminal base 110 further comprises an integrally formed support portion 119. The support portion 119 is configured to receive a support insulator 130 for supporting the busbar. Due to the fact that the cables are generally very heavy and the terminal base 110 itself is also very heavy, the terminal base 110 is subject to a large gravity force. The support portion 119 can be used to arrange a support insulator 130 for supporting the busbar. In this way, the strength of the terminal base can be improved. The support portion 119 is integrally formed with the terminal base 110 and may connect the two terminal base sections together. Due to this arrangement, there is no power loss caused by connection points. In the shown example, the support portion 119 is horizontally arranged. It is to be understood that this is merely illustrative rather than limited, the support portion 119 for example may be laterally arranged.
In some embodiments, as shown in Figs. 2-4, the terminal base 110 is substantially open except the structural features, such as the horizontal extension 118 and the support portion 119. This open configuration is helpful for facilitate air convection. In some embodiments, the terminal base section comprises rounded portions 113. For example, the rounded portions 113 are provided at the edge of the terminal base section. With these rounded portions 113, dielectric field and dielectric performance can be further improved.
In some embodiments, as shown in Fig. 4, the terminal base 110 may further comprise a heat sink 140. When the terminal base 110 includes two terminal base sections and the cables 150 carried by the terminal base 110 is increased, it is advantageous to provide a heat sink 140. In the shown example, the heat sink 140 is disposed between the two terminal base sections and is configured to be in thermal contact with the terminal mounting surfaces 112. In this case, the heat generated by the terminal base 110 can be absorbed by the heat sink 140 so as to decrease the temperature of the terminal base 110.
The heat sink 140 may take various forms. In some embodiments, as shown in Fig. 5, the heat sink 140 comprises a body 142 and a plurality of fins 144 extending from the body. A shape of the fin 144 is in a shape of facilitating air circulation in a  vertical direction. As shown in Fig. 5, as viewed along a direction perpendicular to the terminal mounting surface 112, a surface area of fin decreases from a top side to a bottom side. The air flow path formed by two adjacent fins is widened from the bottom side to the top side. In this way, the heat absorbed by the heat sink 140 can be easily transferred away by air convection. In some embodiments, as shown in Fig. 5, an edge of the fin 144 is rounded. This is advantageous in terms of reducing an electromagnetic strength. Dielectric field and dielectric performance thus can be further improved. In some embodiments, the heat sink 140 may be made of good thermal conductive material such as aluminum.
Fig. 6 is a schematic perspective view of a busbar 200 for the switchgear according to another example embodiment of the present disclosure. As shown in Fig. 6, the busbar 200 comprises a connecting section 220 and a terminal base 210. The connecting section 220 substantially extends in a vertical direction and is connected to other components of the switchgear, for example, to an intermediate element which is further connected to an outlet terminal of the main switch (not shown) . The terminal base 210 is configured to receive a plurality of cables (not shown) .
As shown in Fig. 6, the terminal base 110 comprises one vertically oriented terminal mounting surface 212. A plurality of connection portions 214 are provided on the terminal mounting surface 212 and are configured to receive a plurality of cable terminals. In the shown example, the connection portions 214 are in form of holes for receiving a fastener, such as a screw, a bolt or the like. It is to be understood that this is merely illustrative rather than limited, and the connection portions 214 may be any other proper forms as long as the cables can be fixed to the connection portions 214.
Vertical arrangement of the terminal mounting surface 212 increases the air gap between phases which further decreases the effect of the skinning effect. Also, due to the skinning effect, the current flows mainly along the terminal mounting surface 212, and this means a larger area is used for heat dissipation. The current density is lower and less heat is generated.
In some embodiments, as shown in Fig. 6, the connection portions 214 is a countersink and a countersink bolt can be used. In this way, a relatively “smooth” surface from the outside can be formed resulting in good dielectric field and good  dielectric performance.
In some embodiments, as shown in Fig. 6, the terminal base 210 comprises an integrally formed terminal base section and a vertical side surface of the integrally formed terminal base section forms the terminal mounting surface. Since the terminal base section is integrally formed, the contact resistance of the terminal base 210 is reduced.
In some embodiments, as shown in Fig. 6, the terminal base section comprises a first end 215, a second end 217 opposite to the first end 215, and a bent portion 218 at the second end 217. The terminal base section may be fixed to the connecting section 220 via the bent portion 218. It is to be understood that the bent portion 218 is merely illustrative rather than limited, and the bent portion 218 may be any other proper forms as long as the terminal base section can be fixed to the connecting section 220.
In some embodiments, as shown in Fig. 6, the connecting section 220 comprises a support portion 219. The support portion 219 is configured to receive a support insulator 230 for supporting the busbar. The support insulator 230 may be fixed on a frame 25 of the switchgear. In this way, the structural strength of the busbar can be improved. In the shown exmaple, the support portion 219 is arranged adjacent to the second end 217. It is to be understood that this is merely illustrative rather than limited, and the support portion 219 may be located any other proper positions.
Figs. 7 and 8 show schematic perspective views of terminal bases 210’, 210” of a busbar for the switchgear. In the shown example, a cross-sectional area of the terminal base section 210’, 210” decreases from the first end 215’, 215” toward the second end 217’, 217”. The terminal base 210’ in Fig. 7 is analogous to the terminal base 210” in Fig. 8. In Fig. 7, the cross-sectional area of the terminal base section 210’ gradually decreases while in Fig. 8 the cross-sectional area of the terminal base section 210’ decreases stepwise. Due to the improved heat dissipation performances, the terminal base 210’, 210” can be cooled efficiently. This makes it possible to further reduce the material for the terminal base 210’, 210”. In the shown example, the cross-sectional area of the terminal base section 210’, 210” decreases from a proximal end to the power supply to a distal end to the power supply. In some embodiments (not shown) , the terminal base section may be formed by laminated  conductors. In this case, a thickness of the terminal base section may decrease from a proximal end to the power supply to a distal end to the power supply. In this way, cost for producing the busbar can be reduced without compromising the performances of the busbar.
Fig. 9 shows a schematic perspective view of a busbar 300 for the switchgear according to another example embodiment of the present disclosure. The busbar 300 in Fig. 9 is analogous to the busbar 200 in Fig. 6. The components denoted by like signs are substantially the same and the following description will focus on their differences.
As shown in Fig. 9, the busbar 300 comprises a connecting section 320 and a terminal base 310. The connecting section 320 substantially extends in a vertical direction and is connected to other components of the switchgear, for example, to an outlet terminal of the main switch (not shown) . The terminal base 310 comprises two vertically oriented terminal mounting surfaces 312. A plurality of connection portions 314 are provided on the terminal mounting surface 312 and are configured to receive a plurality of cable terminals.
The terminal base 210 comprises two terminal base sections which are arranged side by side. A vertical side surface of each terminal base section forms a respective terminal mounting surface. In some embodiments, as shown in Fig. 9, the terminal base section comprises a first end 315, a second end 317 opposite to the first end 315, and a bent portion 318 at the second end 317. The terminal base sections may be fixed to the connecting section 320 via the bent portion 318.
In some embodiments, as shown in Fig. 9, the connecting section 320 comprises a support portion 319. The support portion 319 is configured to receive a support insulator 230 for supporting the busbar. The support insulator 230 may be fixed on a frame 25 of the switchgear.
In some embodiments, as shown in Fig. 9, the terminal base 310 may further comprise a heat sink 340. When the terminal base 310 includes two terminal base sections for carrying the cables. It is advantageous to provide a heat sink 340. In the shown example, the heat sink 340 is disposed between the two terminal base sections and is configured to be in thermal contact with the terminal mounting surfaces 312. In this case, the heat generated by the terminal base 310 can be absorbed  by the heat sink 340 so as to lower the temperature of the terminal base 310. In the shown example, the heat sink 340 comprises a plurality of fins. It is to be understood that this is merely illustrative rather than limited and the heat sink may be in any proper forms.
Through the teachings provided herein in the above description and relevant drawings, many modifications and other embodiments of the disclosure given herein will be appreciated by those skilled in the art to which the disclosure pertains. Therefore, it is understood that the embodiments of the disclosure are not limited to the specific embodiments of the disclosure, and the modifications and other embodiments are intended to fall within the scope of the disclosure. In addition, while exemplary embodiments have been described in the above description and relevant drawings in the context of some illustrative combinations of components and/or functions, it should be realized that different combinations of components and/or functions can be provided in alternative embodiments without departing from the scope of the disclosure. In this regard, for example, it is anticipated that other combinations of components and/or functions that are different from the above definitely described will also fall within the scope of the disclosure. While specific terms are used herein, they are only used in a general and descriptive sense rather than limiting.

Claims (15)

  1. A busbar (100, 200, 300) for a switchgear comprising:
    a connecting section (120, 220, 320) at least partially extending in a first direction; and
    a terminal base (110, 210, 310) extending in a second direction perpendicular to the first direction and electrically connected to the connecting section, the terminal base (110, 210, 310) comprising at least one terminal mounting surface (112, 212, 312) arranged along the first direction, the terminal mounting surface comprising a plurality of connection portions (114, 214, 314) arranged along the second direction and adapted to receive a plurality of cable terminals (152) .
  2. The busbar of claim 1, wherein the terminal base (110, 210, 310) comprises an integrally formed terminal base section, a side surface of the integrally formed terminal base section forming the terminal mounting surface.
  3. The busbar of claim 2, wherein the terminal base section comprises a first end (215) , a second end (217) opposite to the first end, and a bent portion (218) at the second end, the terminal base section being fixed to the connecting section (220) via the bent portion.
  4. The busbar of claim 3, wherein a cross-sectional area or a thickness of the terminal base section (210) decreases from the first end (215) toward the second end (217) .
  5. The busbar of claim 3 or 4, wherein the connecting section (220) comprises a support portion (219) adjacent to the first end (215) and adapted to receive a support insulator (230) supporting the busbar.
  6. The busbar of claim 1, wherein the terminal base comprises two terminal base sections integrally formed and extending in the second direction, each of the terminal base sections comprising a side surface forming the terminal mounting surface.
  7. The busbar of claim 6, wherein the terminal base further comprises a heat sink (140, 340) disposed between the two terminal base sections to be in thermal contact with the terminal mounting surfaces.
  8. The busbar of claim 7, wherein the heat sink (140) comprises a body (142) and a plurality of fins (144) extending from the body, a surface area of one of the plurality of fins decreasing from a top side to a bottom side.
  9. The busbar of claim 6, wherein the terminal base further comprises an extension (118) extending across the two terminal base sections, and the connecting section (120) is attached to the terminal base at the extension (118) .
  10. The busbar of claim 9, wherein the extension (118) further comprises at least one through hole (115) penetrating through the extension to circulate air.
  11. The busbar of claim 10, wherein the connecting section (120) comprises a hollow tube in air communication with an open spacing between the two terminal base sections which forms a chimney extending from the terminal base.
  12. The busbar of claim 11, wherein the hollow tube includes a vertically oriented opening (122) to form an outlet of the chimney.
  13. The busbar of any one of claims 6-12, wherein the terminal base further comprises a support portion (119) between the two terminal base sections, the support portion being adapted to receive a support insulator (130) supporting the busbar.
  14. The busbar of any one of claims 1-4 and 6-12, wherein an end of the terminal mounting surface is rounded.
  15. A switchgear (10) comprising:
    a main switch (12) , and
    a busbar (100, 200, 300) according to any one of claims 1-14 connected to an outlet terminal of the main switch (12) .
PCT/CN2022/104990 2022-07-11 2022-07-11 Busbar for a switchgear and a switchgear WO2024011374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104990 WO2024011374A1 (en) 2022-07-11 2022-07-11 Busbar for a switchgear and a switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104990 WO2024011374A1 (en) 2022-07-11 2022-07-11 Busbar for a switchgear and a switchgear

Publications (1)

Publication Number Publication Date
WO2024011374A1 true WO2024011374A1 (en) 2024-01-18

Family

ID=89535185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104990 WO2024011374A1 (en) 2022-07-11 2022-07-11 Busbar for a switchgear and a switchgear

Country Status (1)

Country Link
WO (1) WO2024011374A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147566A (en) * 2011-01-12 2012-08-02 Mitsubishi Electric Corp Metal-enclosed switch gear
US20160329691A1 (en) * 2014-08-28 2016-11-10 Eaton Corporation Bus bar apparatus usable in high-temperature cable termination applications
CN106463920A (en) * 2014-05-27 2017-02-22 三菱电机株式会社 Switch gear
CN207069092U (en) * 2017-08-24 2018-03-02 协成科技股份有限公司 A kind of longitudinal withdraw-type middle-placed switch cabinet cable terminal
CN111244809A (en) * 2020-02-28 2020-06-05 正泰电气股份有限公司 Switching device with overhead contact box

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147566A (en) * 2011-01-12 2012-08-02 Mitsubishi Electric Corp Metal-enclosed switch gear
CN106463920A (en) * 2014-05-27 2017-02-22 三菱电机株式会社 Switch gear
US20160329691A1 (en) * 2014-08-28 2016-11-10 Eaton Corporation Bus bar apparatus usable in high-temperature cable termination applications
CN207069092U (en) * 2017-08-24 2018-03-02 协成科技股份有限公司 A kind of longitudinal withdraw-type middle-placed switch cabinet cable terminal
CN111244809A (en) * 2020-02-28 2020-06-05 正泰电气股份有限公司 Switching device with overhead contact box

Similar Documents

Publication Publication Date Title
US7852617B2 (en) Main circuit terminal assembly for vacuum circuit breaker
CN111129407B (en) Electrical unit
EP3158570B1 (en) Electrical switching apparatus, and jumper and associated method therefor
US8339772B2 (en) Heat dissipation means for increasing power density in enclosed equipment
WO2022000752A1 (en) Wiring device for circuit breaker, and circuit breaker having same
KR200481213Y1 (en) Common Busbar for DC Modlede Case Circuit Breaker
US10008837B2 (en) Bus bar apparatus usable in high-temperature cable termination applications
BRPI0520390B1 (en) high ampere electrical switches
WO2024011374A1 (en) Busbar for a switchgear and a switchgear
US9418805B2 (en) Terminal structure of main circuit part of vacuum circuit breaker
EP2653022B1 (en) Electrical system and matrix assembly therefor
EP2306482B1 (en) Main circuit terminal assembly for vacuum circuit breaker
CN107872165A (en) Converter
RU2564397C2 (en) Connector element of switchgear and appropriate assembly and switchgear containing such connector element
KR20180040814A (en) Tunnel type bus bar and distribution panel mounting the same
CN215496535U (en) Supporting assembly for circuit breaker and circuit breaker comprising same
CN115136258A (en) Sine tubular conductive bus
KR20120007502A (en) Electric conductor with improved cooling and electric appliance in a sealed housing comprising at least one such conductor
EP3951820A1 (en) Medium or high voltage circuit breaker
CN210430429U (en) Electrical equipment
CN220121702U (en) Semiconductor mounting structure
CN220324924U (en) High-current low-voltage cabinet bus assembly
CN204559406U (en) Converter assembly
KR20160086200A (en) A radiation device and a device using the same
JP2939402B2 (en) Semiconductor stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950505

Country of ref document: EP

Kind code of ref document: A1