WO2024010212A1 - Method for manufacturing copper microplates, method for manufacturing hybrid microplates containing copper microplates, and hybrid microplates manufactured thereby - Google Patents

Method for manufacturing copper microplates, method for manufacturing hybrid microplates containing copper microplates, and hybrid microplates manufactured thereby Download PDF

Info

Publication number
WO2024010212A1
WO2024010212A1 PCT/KR2023/006776 KR2023006776W WO2024010212A1 WO 2024010212 A1 WO2024010212 A1 WO 2024010212A1 KR 2023006776 W KR2023006776 W KR 2023006776W WO 2024010212 A1 WO2024010212 A1 WO 2024010212A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
microplates
plate
shaped
copper
Prior art date
Application number
PCT/KR2023/006776
Other languages
French (fr)
Korean (ko)
Inventor
김문호
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2024010212A1 publication Critical patent/WO2024010212A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a method for manufacturing copper plate-shaped microparticles and hybrid plate-shaped microparticles containing the same, and to hybrid plate-shaped microparticles manufactured by the above production method that can be used as a catalyst material.
  • Gold (Au) and silver (Ag) nanoparticles have strong localized surface plasmon resonance properties and have been used as catalyst materials, but their high price makes them difficult to use in actual industrial and environmental fields. It's not easy.
  • Copper (Cu) is about 22,000 times more abundant than gold (Au) and 1,000 times more abundant than silver (Ag), and is a material that possesses localized surface plasmon resonance characteristics, but is damaged by oxygen and moisture in the air. Because it is easily oxidized, it was not easy to use it as a catalyst material.
  • two-dimensional metal nanostructures containing nanoplates have great potential as high-performance catalyst materials due to their high specific surface area and high ratio of atoms exposed to the surface, but copper (Cu )
  • Two-dimensional metal nanostructures have not yet been widely used as catalyst materials due to the difficulty of synthesizing two-dimensional metal nanostructures as well as the vulnerability to oxidation of the materials themselves.
  • the technical problem to be solved by the present invention is to develop a novel manufacturing method that can synthesize copper plate-shaped microparticles (Cu microplate), which are promising as a catalyst material, in high yield, and to protect the surface vulnerable to oxidation of the copper plate-shaped microparticles.
  • the present invention provides a method for manufacturing hybrid plate-shaped microparticles by combining plate-shaped microparticles with heterogeneous materials, and hybrid plate-shaped microparticles produced thereby.
  • the present invention includes the steps of (a) preparing a mixed solution containing a copper precursor, acetonitrile, a capping agent, a reducing agent, and a solvent, and (b) preparing the mixed solution.
  • a method for manufacturing copper plate-shaped microparticles which includes the step of producing copper plate-shaped microparticles by heating.
  • the mixed solution prepared in step (a) includes copper (II) chloride (CuCl 2 ), acetonitrile, hexadecylamine (HDA), potassium iodide (KI), and l-ascorbic acid. It is characterized as an aqueous solution containing (l-ascorbic acid, AA).
  • the present invention is a method for producing hybrid plate-shaped microparticles that are a composite of copper plate-shaped microparticles manufactured according to the above method and a heterogeneous material, including (A) manufacturing copper plate-shaped microparticles according to the above-described method.
  • step (B) a core containing copper plate-shaped micro particles and copper sulfide (Cu 2 S) are formed through a sulfidation reaction between the copper plate-shaped micro particles and sodium sulfide (Na 2 S).
  • step (B) copper (Cu) atoms on the surface of the copper plate-shaped micro-particles are replaced with gold (Au) atoms through a galvanic replacement reaction, thereby forming Cu-Au bimetal hybrid plate-shaped particles. Micro particles can be manufactured.
  • the present invention provides hybrid plate-shaped microparticles with a core (Cu)-shell (Cu 2 S) structure that are manufactured according to the method for manufacturing the hybrid plate-shaped microparticles and can be used as a photocatalyst or catalyst material, and Cu- We propose Au bimetal hybrid plate-shaped microparticles.
  • the method for manufacturing copper plate-shaped microparticles according to the present invention is to produce copper (Cu) plate-shaped microparticles with a size of about 6 ⁇ m and an aspect ratio of 65 by 95% by introducing acetonitrile as a ligand. It can be synthesized in high yield.
  • the copper plate-shaped micro particles are used as a seed material to produce Cu@Cu with a core (Cu)-shell (Cu 2 S) structure based on an aqueous solution. It is possible to synthesize hybrid plate-shaped materials based on copper plate-shaped micro particles, such as 2S metal-semiconductor hybrid materials and Cu-Au bimetal hybrid materials, and the hybrid plate-shaped materials can be used as photocatalysts and catalyst materials with high catalytic activity. You can.
  • Figure 1 is a conceptual diagram showing the entire hybridization path from the synthesis of copper plate-shaped microparticles (Cu microplate) to the formation of Cu@Cu 2 S or Cu-Au hybrid plate-shaped microparticles performed in the examples of the present application.
  • Figure 2(a) is an SEM image of Cu nanocrystals synthesized in the absence of KI
  • Figure 2(b) is an SEM image of Cu nanocrystals synthesized in the presence of 1.6 ⁇ M KI
  • Figure 2(c) is the SEM image of the Cu nanocrystals synthesized in the absence of KI
  • Figure 2(b) is the XRD pattern of the Cu microplate
  • Figure 2(d) is the UV-Vis-NIR spectrum of the Cu microplate shown in Figure 2(b) (the inset shows the Cu microplate. Photo of aqueous colloidal dispersion).
  • Figures 3(a) to 3(d) are SEM images, TEM images, XRD patterns, and UV-Vis-NIR spectra, respectively, of Cu microplates grown in the presence of acetonitrile, and the inset of Figure 3(d) shows This is a photograph of an aqueous colloidal dispersion of Cu microplates grown in the presence of .
  • Figures 4(a) to 4(d) show the SEM image , TEM image, XRD pattern, and (d) UV-Vis- NIR spectrum
  • Figure 4(e) is a STEM-EDS elemental mapping image of the Cu@Cu 2 S hybrid microplate
  • the inset of Figure 4(d) is a photograph of the aqueous colloidal dispersion of the Cu@Cu 2 S hybrid microplate. am.
  • Figure 5(a) is a UV-Vis-NIR absorption spectrum showing the photodecomposition behavior of methylene blue (MB) in the presence of a Cu@Cu 2 S hybrid microplate irradiated with sunlight for 120 minutes
  • Figure 5(b) ) and Figure 5(c) are results showing the decomposition behavior of MB over time in the presence of Cu@Cu 2 S hybrid microplate or Cu microplate
  • Figure 5(d) shows Cu@Cu 2 S hybrid microplate as a photocatalyst. This is the result of verifying the recyclability of .
  • Figures 6(a) and 6(b) are SEM images of the Cu-Au hybrid microplate obtained after the galvanic substitution reaction between HAuCl 4 and Cu microplate, and Figures 6(c) and 6(d) are respectively the above This is a UV-Vis-NIR spectrum and a STEM-EDS elemental mapping image of the Cu-Au hybrid microplate, and the inset in Figure 6(c) is a photograph of the aqueous colloidal dispersion of the Cu-Au hybrid microplate.
  • Figure 7(a) is the UV-Vis-NIR absorption spectrum of 4-nitrophenol (4-NP) aqueous solution and 4-NP aqueous solution mixed with NaBH 4
  • Figure 7(b) is the UV-Vis-NIR absorption spectrum of the Cu-Au hybrid microplate with 4- UV-Vis spectra recorded at 50-second intervals after addition to an aqueous solution containing NP and NaBH 4
  • Figure 7(c) shows the catalytic hydrogenation of 4-NP and NaBH 4 in the presence of a Cu-Au hybrid microplate.
  • FIG. 7 A plot of ln(A t /A 0 ) and reaction time t (where A t and A 0 are the absorbance at time t and time 0, respectively), and Figure 7(d) is a plot of Cu-Au for catalytic hydrogenation reaction. This is the result of verifying the recyclability of the hybrid microplate.
  • Embodiments according to the present specification may be modified into various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described in detail below.
  • the embodiments of this specification are provided to more completely explain the present specification to those with average knowledge in the art.
  • a 20 mL scintillation vial was filled with 2 mL of Cu microplate (94.0 mM).
  • AA 5.5 mL, 1 M
  • 2 mL PVP M w ⁇ 10 kDa, 5 wt% in deionized water
  • HAuCl 4 aqueous solution 0.5 mL, 0.025 M was added to the vial at a rate of 10 mL/h using a syringe pump.
  • the solution was aged for an additional 3 minutes at room temperature until its color stabilized.
  • the solution was then centrifuged at 12,500 rpm for 8 min and washed three times with deionized water.
  • Cu microplates were synthesized with PVP and AA acting as a colloidal stabilizer and reducing agent, respectively, and I - , which acts as a capping agent during synthesis, played an important role in the formation of the plate-like structure.
  • I - ions when I - ions were not present, Cu nanocrystals of various shapes such as cubes, double pyramids, and nanowires were obtained.
  • I - ions when I - ions were added at a concentration of 1.6 ⁇ M, Cu microplates were obtained, while quasi-spherical particles were also obtained (Figure 2(b)).
  • the average size of the prepared Cu microplate was calculated to be 4.3 ⁇ 0.6 ⁇ m, and the thickness of the microplate was measured to be ⁇ 133 nm.
  • the XRD pattern of the Cu microplate is shown in Figure 2(c).
  • the characteristic peaks at ⁇ 43.3°, ⁇ 50.5°, and ⁇ 74.1° are attributed to the ⁇ 111 ⁇ , ⁇ 200 ⁇ , and ⁇ 220 ⁇ crystal planes of face-centered cubic (fcc) Cu, respectively, which suggests that the synthesized Cu nanocrystals are free from impurities such as oxides. This shows that it is of high purity without any traces.
  • the peak of ⁇ 111 ⁇ crystal plane is prominent, while the relative intensity of other peaks is low. The intensity ratio between the ⁇ 111 ⁇ and ⁇ 200 ⁇ diffraction peaks in the did.
  • acetonitrile is known to act as a ligand that forms a complex with metal ions. This coordination effect can significantly lower the reduction rate of Cu 2+ ions and consequently reduce the equilibrium concentration of Cu atoms. As a result, the sequential formation of nucleation sites is suppressed and the number of seeds in the nucleation step is reduced. In this way, larger Cu microplates can be formed with high yield by reducing the number of seeds while maintaining a constant Cu precursor concentration.
  • the progress of the reaction can be monitored by observing unique color changes.
  • AA Cu precursor
  • HDA high-density polyethylene
  • KI KI
  • the blue aqueous solution turns white, indicating the reduction of Cu 2+ ions.
  • the reaction mixture was heated at 85°C for 1 hour, it changed from white to light yellow, orange, and reddish brown. The solution then turned brown and dark brown over 7 hours.
  • acetonitrile was added, the color change of the reaction was relatively slow and a reddish brown color appeared after 2 hours.
  • Figures 3(a) and 3(b) show SEM and TEM images of the products obtained under the same conditions in the presence of acetonitrile, respectively.
  • the plate yield (percentage of plate-like structure in the product) increased from 65.4% to 95.1% and the lateral dimensions of the obtained nanoplates also increased to 5.8 ⁇ 1.3 ⁇ m.
  • the average thickness was measured to be ⁇ 92 nm, indicating that the aspect ratio of the microplate was substantially increased.
  • the XRD pattern of the Cu microplate grown in the presence of acetonitrile is shown in Figure 3(c), and the pattern is not significantly different from the pattern shown in Figure 2(c).
  • the intensity ratio between the ⁇ 111 ⁇ and ⁇ 200 ⁇ diffraction peaks increased to ⁇ 4.41, confirming that both the yield of plate-shaped particles and the lateral dimensions of the synthesized microplates increased in the presence of acetonitrile.
  • SAED selected area electron diffraction
  • Figure 3(d) shows the UV-Vis-NIR spectrum of the aqueous colloidal dispersion of Cu microplates synthesized after adding acetonitrile. Although the position of the LSPR band barely changed, the intensity of the peak increased, indicating that the shape uniformity of the reaction product was improved by increasing the yield of plate-shaped particles.
  • Cu@Cu 2 S hybrid nanostructures can be effectively synthesized by exposing pre-obtained Cu nanocrystals to sulfur compounds of various oxidation states and transforming them into sulfides. Meanwhile, even if the sulfidation reaction proceeds through an aqueous solution process, it relies on chemicals such as hydrogen sulfide and ammonium sulfide, which are toxic and highly volatile, making it difficult to precisely control the reaction. Therefore, in this example, a strategy was adopted to synthesize Cu@Cu 2 S hybrid nanostructures in an aqueous solution at room temperature using sodium sulfide (Na 2 S), which is highly soluble in water and relatively less harmful than hydrogen sulfide or ammonium sulfide. Since the sulfurization reaction mainly occurs on the surface of the Cu crystal, after the reaction, Cu 2 S completely coats the surface of the Cu nanocrystal to obtain a core (Cu)/shell (Cu 2 S) structure.
  • Na 2 S sodium sulfide
  • Figures 4(a) and 4(b) are SEM and TEM images of Cu@Cu 2 S hybrid microplates obtained by adding a specific concentration of Na 2 S aqueous solution and aging at room temperature for 5 minutes, showing originally uniform and smooth microplates. It shows that the top and bottom surfaces of the plate have become very rough. Additionally, from the AFM image and height profile of the hybrid microplate, the surface was very rough and the thickness was measured to be ⁇ 131 nm, indicating that the thickness increased due to the sulfidation reaction. According to Figure 4(c) showing the XRD analysis results of the hybrid microplate, it was confirmed that a new peak corresponding to Cu 2 S (JCPDS file no. 84-1770) was generated by sulfidation reaction with Na 2 S. These results show that the Cu microplate was successfully converted into a Cu@Cu 2 S hybrid microplate.
  • the UV-Vis-NIR spectrum of the Cu@Cu 2 S hybrid microplate shown in Figure 4(d) shows broadband absorption in the 300-800 nm wavelength region, and in the inset of Figure 4(d), the Cu@Cu 2
  • the S hybrid microplate aqueous colloidal dispersion appeared dark gray.
  • STEM-EDS energy-dispersive X-ray spectroscopy
  • the optimal concentration of Na 2 S in the aqueous solution used in the sulfurization process in this example was about 0.3 mM.
  • the optimal concentration of Na 2 S in the aqueous solution used in the sulfurization process in this example was about 0.3 mM.
  • the Na 2 S concentration was less than 0.3 mM, little change in the shape of the microplate was observed, and when the Na 2 S concentration was greater than 0.3 mM, the microplate was damaged.
  • Cu@Cu 2 S hybrid nanocrystals have broadband absorption characteristics and excellent chemical stability, making them a more effective photocatalyst than Cu nanocrystals.
  • a photooxidative decomposition experiment of the organic dye methylene blue (MB) was conducted under solar irradiation in the presence of Cu microplate or Cu@Cu 2 S hybrid microplate.
  • Figure 5(a) is a UV-Vis-NIR absorption spectrum showing the decomposition behavior of MB over time in the presence of Cu@Cu 2 S hybrid microplates upon solar irradiation.
  • Figure 5(b) shows the time-dependent decomposition results of MB when irradiated with sunlight in the presence of Cu microplates or Cu@Cu 2 S hybrid microplates.
  • C 0 represents the initial MB concentration
  • C t represents the MB concentration at reaction time t.
  • photocatalytic performance was significantly improved under the same reaction conditions.
  • ln(C 0 /C t ) was expressed as a function of t, it showed a linear relationship as shown in Figure 5(c).
  • Galvanic replacement reactions provide a simple and versatile route to produce bimetallic nanocrystals with porous structures.
  • a metal ion with a higher reduction potential comes into contact with another metal with a lower reduction potential in an electrolyte
  • an electrochemical reaction occurs spontaneously and the metal tends to corrode the lower its reduction potential.
  • a noble metal salt solution is introduced into an aqueous suspension of metal nanocrystals with a low reduction potential, the noble metal ions are reduced and deposited on the surface of the nanocrystals while the metal nanocrystals are spontaneously oxidized.
  • Cu nanostructures serve as sacrificial templates for the fabrication of Cu-Au bimetallic nanostructures.
  • FIGS. 6(a) and 6(b) show SEM images of the Cu-Au hybrid nanostructure prepared after adding HAuCl 4 aqueous solution.
  • the Cu-Au hybrid nanostructure maintained its plate shape and size distribution even after the galvanic substitution reaction. However, multiple nanocavities were created on the surface of individual microplates. Additionally, numerous small nanocrystals were observed on the surface of the Cu microplate after the galvanic substitution reaction, and these nanocrystals are expected to be Au nanocrystals.
  • Figure 6(c) shows that these microparticles exhibit an LSPR extinction peak at 554 nm, indicating that the peak is slightly shifted to blue after the galvanic substitution reaction.
  • the above-described LSPR property change occurred because the alloy structure of Cu microplates and Au nanocrystals was formed through a galvanic substitution reaction.
  • the elemental mapping image of the Cu-Au hybrid microplate is shown in Figure 6(d), where green and blue dots represent Cu and Au, respectively.
  • the Cu-Au hybrid microplate has multiple cavities on the surface, and numerous small Au nanocrystals exist on the surface and edges of the microplate. Because of this unique porous structure and surface roughness, microplates can provide numerous active sites and sites suitable for catalytic reactions. Therefore, microplates can be widely applied in catalysis.
  • the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH 4 was selected as a probe reaction to demonstrate the catalytic performance of the Cu-Au hybrid microplate.
  • 4-NP widely used in pesticides and dyes, is one of the most toxic and hazardous pollutants, so hydrogenation of 4-NP to 4-AP using NaBH 4 removes 4-NP within the aqueous phase.
  • the present inventor used the prepared Cu-Au hybrid microplate as a catalyst in the hydrogenation reaction from 4-NP to 4-AP by NaBH 4 .
  • the absorption peak at 318 nm moves to 400 nm because 4-NP is converted to 4-nitrophenolate ion ( Figure 7(a)).
  • the UV-Vis spectrum recorded at 50 second intervals after adding the Cu-Au hybrid microplate to an aqueous solution containing 4-NP and NaBH 4 is shown in Figure 7(b).
  • reaction rate constant ( k ) can be calculated based on the pseudo-first-order reaction rate equation because NaBH 4 is added in excess and the reaction rate does not depend on the concentration of NaBH 4 .
  • Figure 7(c) is a plot of ln(A t /A 0 ) and reaction time t (where A t and A 0 are the absorbance at time t and time 0, respectively) for the Cu-Au used in this example.
  • the k value of the hybrid microplate was calculated to be 11.6 ⁇ 10 -1 s -1 .
  • the absorption spectrum of the hydrogenation reaction performed using pure Cu microplates as catalyst changed only slightly over 60 min. Therefore, the hydrogenation reaction proceeded very slowly, and pure Cu microplates were found to have poor catalytic activity.
  • the Cu-Au hybrid microplate used in this example has a large particle size of several micrometers, so it can be easily collected from the reaction mixture and reused after the catalytic reaction is completed.
  • the reusability of the catalyst was evaluated in experiments using the same hybrid microplate repeatedly.
  • the catalytic activity according to the conversion rate of 4-NP during five reuse cycles was confirmed to be almost the same, showing that the catalyst exhibited excellent reusability and excellent stability ( Figure 7(d)).
  • the k value was calculated to be 166 s -1 g -1 for the reaction using the hybrid microplate as a catalyst , and the corresponding value was calculated as It was confirmed to be high compared to previously reported values for heterogeneous catalysts.
  • the present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.
  • Hybrid plate-shaped materials based on copper plate-shaped micro particles such as Cu@Cu 2 S metal-semiconductor hybrid material with core (Cu)-shell (Cu 2 S) structure and Cu-Au bimetal hybrid material manufactured according to the present invention. can be used as a photocatalyst and catalyst material with high catalytic activity.

Abstract

The present invention relates to a method for manufacturing copper microplates, a method for manufacturing hybrid microplates containing the copper microplates, and hybrid microplates manufactured thereby, wherein the method for manufacturing copper microplates comprises the steps of: (a) preparing a mixture solution containing a copper precursor, acetonitrile, a capping agent, a reducing agent, and a solvent, and (b) heating the mixture solution to produce copper microplates.

Description

구리 판상형 마이크로 입자의 제조방법, 구리 판상형 마이크로 입자를 포함하는 하이브리드 판상형 마이크로 입자의 제조방법, 및 이에 의해 제조된 하이브리드 판상형 마이크로 입자Method for producing copper plate-shaped microparticles, method for producing hybrid plate-shaped microparticles containing copper plate-shaped microparticles, and hybrid plate-shaped microparticles produced thereby
본 발명은 구리 판상형 마이크로 입자 및 이를 포함하는 하이브리드 판상형 마이크로 입자 각각의 제조방법과 상기 제조방법에 의해 제조되며 촉매 소재로서 활용할 수 있는 하이브리드 판상형 마이크로 입자에 대한 것이다. The present invention relates to a method for manufacturing copper plate-shaped microparticles and hybrid plate-shaped microparticles containing the same, and to hybrid plate-shaped microparticles manufactured by the above production method that can be used as a catalyst material.
금(Au)과 은(Ag) 나노입자는 강한 국소표면플라즈몬공명(localized surface plasmon resonance) 특성을 보유하고 있어서 이를 활용한 촉매 소재로 활용되어 왔지만, 높은 가격으로 인해서 실제 산업 및 환경 분야에서 활용이 용이하지 않다. Gold (Au) and silver (Ag) nanoparticles have strong localized surface plasmon resonance properties and have been used as catalyst materials, but their high price makes them difficult to use in actual industrial and environmental fields. It's not easy.
구리(Cu)는 금(Au)보다는 22,000배 정도, 은(Ag)보다는 1,000배 정도 풍부하고 국소표면플라즈몬공명(localized surface plasmon resonance) 특성을 보유하고 있는 소재이지만, 공기 중에 있는 산소와 수분에 의해서 쉽게 산화되기 때문에 촉매 소재 등으로의 활용이 쉽지 않았다. Copper (Cu) is about 22,000 times more abundant than gold (Au) and 1,000 times more abundant than silver (Ag), and is a material that possesses localized surface plasmon resonance characteristics, but is damaged by oxygen and moisture in the air. Because it is easily oxidized, it was not easy to use it as a catalyst material.
특히, 나노판상(nanoplate)을 포함하는 2차원 형상의 금속 나노구조체는 높은 비표면적 (specific surface area)와 표면에 노출된 원자의 비율이 높아 고성능의 촉매 소재로서 잠재성이 크지만, 구리(Cu) 2차원 금속 나노구조체는 전술한 소재 자체의 산화에 대한 취약성 뿐만 아니라, 2차원 금속 나노구조체 합성의 난해함으로 인해서 아직까지는 촉매 소재로 널리 활용되지 못하고 있다. In particular, two-dimensional metal nanostructures containing nanoplates have great potential as high-performance catalyst materials due to their high specific surface area and high ratio of atoms exposed to the surface, but copper (Cu ) Two-dimensional metal nanostructures have not yet been widely used as catalyst materials due to the difficulty of synthesizing two-dimensional metal nanostructures as well as the vulnerability to oxidation of the materials themselves.
본 발명이 해결하고자 하는 기술적 과제는, 촉매 소재로서 유망한 구리 판상형 마이크로 입자(Cu microplate)를 고수율로 합성할 수 있는 신규한 제조방법, 상기 구리 판상형 마이크로 입자의 산화에 취약한 표면을 보호하기 위해 구리 판상형 마이크로 입자와 이종(異種) 소재를 복합화하는 하이브리드 판상형 마이크로 입자의 제조방법, 및 이에 의해 제조된 하이브리드 판상형 마이크로 입자를 제공하는 것이다.The technical problem to be solved by the present invention is to develop a novel manufacturing method that can synthesize copper plate-shaped microparticles (Cu microplate), which are promising as a catalyst material, in high yield, and to protect the surface vulnerable to oxidation of the copper plate-shaped microparticles. The present invention provides a method for manufacturing hybrid plate-shaped microparticles by combining plate-shaped microparticles with heterogeneous materials, and hybrid plate-shaped microparticles produced thereby.
상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 구리 전구체, 아세토니트릴(acetonitrile), 캡핑제(capping agent), 환원제 및 용매를 포함하는 혼합 용액을 준비하는 단계 및 (b) 상기 혼합 용액을 가열해 구리 판상형 마이크로 입자를 제조하는 단계를 포함하는, 구리 판상형 마이크로 입자의 제조방법을 제안한다. In order to achieve the above technical problem, the present invention includes the steps of (a) preparing a mixed solution containing a copper precursor, acetonitrile, a capping agent, a reducing agent, and a solvent, and (b) preparing the mixed solution. We propose a method for manufacturing copper plate-shaped microparticles, which includes the step of producing copper plate-shaped microparticles by heating.
이때, 상기 단계 (a)에서 준비하는 상기 혼합 용액은, 염화구리(II)(CuCl2), 아세토니트릴(acetonitrile), 헥사데실아민(hexadecylamine, HDA), 요오드화칼륨(KI) 및 l-아스코르브산(l-ascorbic acid, AA)을 포함하는 수용액인 것을 특징으로 한다. At this time, the mixed solution prepared in step (a) includes copper (II) chloride (CuCl 2 ), acetonitrile, hexadecylamine (HDA), potassium iodide (KI), and l-ascorbic acid. It is characterized as an aqueous solution containing (l-ascorbic acid, AA).
그리고, 본 발명은 발명의 다른 측면에서, 상기 방법에 따라 제조된 구리 판상형 마이크로 입자와 이종 소재가 복합된 하이브리드 판상형 마이크로 입자의 제조방법으로서, (A) 전술한 방법에 따라 구리 판상형 마이크로 입자를 제조하는 단계 및 (B) 상기 구리 판상형 마이크로 입자의 표면에 이종(異種) 소재를 도입하는 단계;를 포함하는, 구리 판상형 마이크로 입자를 포함하는 하이브리드 판상형 마이크로 입자의 제조방법을 제안한다.In another aspect of the invention, the present invention is a method for producing hybrid plate-shaped microparticles that are a composite of copper plate-shaped microparticles manufactured according to the above method and a heterogeneous material, including (A) manufacturing copper plate-shaped microparticles according to the above-described method. We propose a method for manufacturing hybrid plate-shaped microparticles containing copper plate-shaped microparticles, including the step of (B) introducing a heterogeneous material to the surface of the copper plate-shaped microparticles.
이때, 상기 상기 단계 (B)에서, 상기 구리 판상형 마이크로 입자와 황화나트륨(Na2S) 간의 황화 반응(sulfidation reaction)을 통해, 구리 판상형 마이크로 입자를 포함하는 코어 및 황화구리(Cu2S)를 포함하는 쉘로 구성된 코어-쉘 구조의 하이브리드 판상형 마이크로 입자를 제조할 수 있다. At this time, in step (B), a core containing copper plate-shaped micro particles and copper sulfide (Cu 2 S) are formed through a sulfidation reaction between the copper plate-shaped micro particles and sodium sulfide (Na 2 S). Hybrid plate-shaped microparticles with a core-shell structure composed of a shell containing
또한, 상기 단계 (B)에서, 갈바닉 치환 반응(galvanic replacement reaction)을 통해 상기 구리 판상형 마이크로 입자 표면의 구리(Cu) 원자를 금(Au) 원자로 치환시켜, Cu-Au 이중금속(bimetal) 하이브리드 판상형 마이크로 입자를 제조할 수 있다. In addition, in step (B), copper (Cu) atoms on the surface of the copper plate-shaped micro-particles are replaced with gold (Au) atoms through a galvanic replacement reaction, thereby forming Cu-Au bimetal hybrid plate-shaped particles. Micro particles can be manufactured.
나아가, 본 발명은 발명의 또 다른 측면에서 상기 하이브리드 판상형 마이크로 입자의 제조방법에 따라 제조되며 광촉매 또는 촉매 소재로서 활용 가능한 코어(Cu)-쉘(Cu2S) 구조의 하이브리드 판상형 마이크로 입자와 Cu-Au 이중금속(bimetal) 하이브리드 판상형 마이크로 입자를 제안한다.Furthermore, in another aspect of the invention, the present invention provides hybrid plate-shaped microparticles with a core (Cu)-shell (Cu 2 S) structure that are manufactured according to the method for manufacturing the hybrid plate-shaped microparticles and can be used as a photocatalyst or catalyst material, and Cu- We propose Au bimetal hybrid plate-shaped microparticles.
본 발명에 따른 구리 판상형 마이크로 입자의 제조방법은, 아세토니트릴(acetonitrile)을 리간드를 도입하여, 약 6 μm의 크기를 가지며 종횡비(aspect ratio)가 65에 이르는 구리(Cu) 판상형 마이크로 입자를 95% 이상의 고수율로 합성할 수 있다. The method for manufacturing copper plate-shaped microparticles according to the present invention is to produce copper (Cu) plate-shaped microparticles with a size of about 6 μm and an aspect ratio of 65 by 95% by introducing acetonitrile as a ligand. It can be synthesized in high yield.
또한, 본 발명에 따른 하이브리드 판상형 마이크로 입자의 제조방법에 의하면, 상기 구리 판상형 마이크로 입자를 씨드(seed) 물질로 활용하여, 수용액 기반에서 코어(Cu)-쉘(Cu2S) 구조의 Cu@Cu2S 금속-반도체 하이브리드 소재 및 Cu-Au 이중금속(bimetal) 하이브리드 소재 등의 구리 판상형 마이크로 입자 기반 하이브리드 판상형 소재를 합성할 수 있고, 상기 하이브리드 판상형 소재는 높은 촉매 활성을 가지는 광촉매 및 촉매 소재로 활용할 수 있다. In addition, according to the method for manufacturing hybrid plate-shaped micro particles according to the present invention, the copper plate-shaped micro particles are used as a seed material to produce Cu@Cu with a core (Cu)-shell (Cu 2 S) structure based on an aqueous solution. It is possible to synthesize hybrid plate-shaped materials based on copper plate-shaped micro particles, such as 2S metal-semiconductor hybrid materials and Cu-Au bimetal hybrid materials, and the hybrid plate-shaped materials can be used as photocatalysts and catalyst materials with high catalytic activity. You can.
도 1은 본원 실시예에서 수행한 구리 판상형 마이크로 입자(Cu microplate)의 합성부터 Cu@Cu2S 또는 Cu-Au 하이브리드 판상형 마이크로 입자의 형성에 이르는 전체 하이브리드화 경로를 보여주는 개념도이다. Figure 1 is a conceptual diagram showing the entire hybridization path from the synthesis of copper plate-shaped microparticles (Cu microplate) to the formation of Cu@Cu 2 S or Cu-Au hybrid plate-shaped microparticles performed in the examples of the present application.
도 2(a)는 KI가 없는 상태에서 합성된 Cu 나노결정의 SEM 이미지이고, 도 2(b)는 1.6 μM KI의 존재 하에서 합성된 Cu 나노결정의 SEM 이미지이며, 도 2(c)는 상기 도 2(b)에 도시된 Cu 마이크로플레이트의 XRD 패턴이고, 도 2(d)는 상기 도 2(b)에 도시된 Cu 마이크로플레이트의 UV-Vis-NIR 스펙트럼이다(삽입도는 Cu 마이크로플레이트의 수성 콜로이드 분산액의 사진).Figure 2(a) is an SEM image of Cu nanocrystals synthesized in the absence of KI, Figure 2(b) is an SEM image of Cu nanocrystals synthesized in the presence of 1.6 μM KI, and Figure 2(c) is the SEM image of the Cu nanocrystals synthesized in the absence of KI. Figure 2(b) is the XRD pattern of the Cu microplate, and Figure 2(d) is the UV-Vis-NIR spectrum of the Cu microplate shown in Figure 2(b) (the inset shows the Cu microplate. Photo of aqueous colloidal dispersion).
도 3(a) 내지 도 3(d)는 각각 아세토니트릴 존재 하에서 성장한 Cu 마이크로플레이트의 SEM 이미지, TEM 이미지, XRD 패턴 및 UV-Vis-NIR 스펙트럼이며, 도 3(d)의 삽입도는 아세토니트릴의 존재 하에서 성장한 Cu 마이크로플레이트 수성 콜로이드 분산액의 사진이다. Figures 3(a) to 3(d) are SEM images, TEM images, XRD patterns, and UV-Vis-NIR spectra, respectively, of Cu microplates grown in the presence of acetonitrile, and the inset of Figure 3(d) shows This is a photograph of an aqueous colloidal dispersion of Cu microplates grown in the presence of .
도 4(a) 내지 도 4(d)는 각각 Cu 마이크로플레이트와 Na2S의 반응에 의해 얻은 Cu@Cu2S 하이브리드 마이크로플레이트의 SEM 이미지, TEM 이미지, XRD 패턴 및 (d) UV-Vis-NIR 스펙트럼이고, 도 4(e)는 Cu@Cu2S 하이브리드 마이크로플레이트의 STEM-EDS 원소 매핑 이미지이며, 도 4(d)의 삽입도는 Cu@Cu2S 하이브리드 마이크로플레이트의 수성 콜로이드 분산액의 사진이다. Figures 4(a) to 4(d) show the SEM image , TEM image, XRD pattern, and (d) UV-Vis- NIR spectrum, Figure 4(e) is a STEM-EDS elemental mapping image of the Cu@Cu 2 S hybrid microplate, and the inset of Figure 4(d) is a photograph of the aqueous colloidal dispersion of the Cu@Cu 2 S hybrid microplate. am.
도 5(a)는 120분 동안 태양광이 조사된 Cu@Cu2S 하이브리드 마이크로플레이트 존재 하에서 메틸렌 블루(methylene blue, MB)의 광분해 거동을 보여주는 UV-Vis-NIR 흡수 스펙트럼이고, 도 5(b) 및 도 5(c)는 Cu@Cu2S 하이브리드 마이크로플레이트 또는 Cu 마이크로플레이트 존재 하에서 MB의 시간에 따른 분해 거동을 나타낸 결과이고, 도 5(d)는 광촉매로서 Cu@Cu2S 하이브리드 마이크로플레이트의 재활용성을 검증한 결과이다. Figure 5(a) is a UV-Vis-NIR absorption spectrum showing the photodecomposition behavior of methylene blue (MB) in the presence of a Cu@Cu 2 S hybrid microplate irradiated with sunlight for 120 minutes, and Figure 5(b) ) and Figure 5(c) are results showing the decomposition behavior of MB over time in the presence of Cu@Cu 2 S hybrid microplate or Cu microplate, and Figure 5(d) shows Cu@Cu 2 S hybrid microplate as a photocatalyst. This is the result of verifying the recyclability of .
도 6(a) 및 도 6(b)는 HAuCl4와 Cu 마이크로플레이트 사이의 갈바닉 치환 반응 후 얻은 Cu-Au 하이브리드 마이크로플레이트의 SEM 이미지이고, 도 6(c) 및 도 6(d)는 각각 상기 Cu-Au 하이브리드 마이크로플레이트의 UV-Vis-NIR 스펙트럼 및 STEM-EDS 원소 매핑 이미지이며, 도 6(c)의 삽입도는 상기 Cu-Au 하이브리드 마이크로 플레이트의 수성 콜로이드 분산액 사진이다. Figures 6(a) and 6(b) are SEM images of the Cu-Au hybrid microplate obtained after the galvanic substitution reaction between HAuCl 4 and Cu microplate, and Figures 6(c) and 6(d) are respectively the above This is a UV-Vis-NIR spectrum and a STEM-EDS elemental mapping image of the Cu-Au hybrid microplate, and the inset in Figure 6(c) is a photograph of the aqueous colloidal dispersion of the Cu-Au hybrid microplate.
도 7(a)는 4-nitrophenol (4-NP) 수용액 및 NaBH4와 혼합된 4-NP 수용액의 UV-Vis-NIR 흡수 스펙트럼이고, 도 7(b)는 Cu-Au 하이브리드 마이크로플레이트를 4-NP와 NaBH4를 포함하는 수용액에 첨가한 후 50초 간격으로 기록된 UV-Vis 스펙트럼이고, 도 7(c)는 Cu-Au 하이브리드 마이크로플레이트의 존재 하에서 4-NP 및 NaBH4의 촉매 수소화에 대한 ln(At/A0) 및 반응 시간 t의 플롯(여기서, At 및 A0는 각각 시간 t 및 시간 0에서의 흡광도임)이고, 도 7(d)는 촉매 수소화 반응을 위한 Cu-Au 하이브리드 마이크로플레이트의 재활용 가능성을 검증한 결과이다.Figure 7(a) is the UV-Vis-NIR absorption spectrum of 4-nitrophenol (4-NP) aqueous solution and 4-NP aqueous solution mixed with NaBH 4 , and Figure 7(b) is the UV-Vis-NIR absorption spectrum of the Cu-Au hybrid microplate with 4- UV-Vis spectra recorded at 50-second intervals after addition to an aqueous solution containing NP and NaBH 4 , and Figure 7(c) shows the catalytic hydrogenation of 4-NP and NaBH 4 in the presence of a Cu-Au hybrid microplate. A plot of ln(A t /A 0 ) and reaction time t (where A t and A 0 are the absorbance at time t and time 0, respectively), and Figure 7(d) is a plot of Cu-Au for catalytic hydrogenation reaction. This is the result of verifying the recyclability of the hybrid microplate.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since embodiments according to the concept of the present invention can make various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “include” or “have” are intended to indicate the existence of a described feature, number, step, operation, component, part, or combination thereof, but are not intended to indicate the presence of one or more other features or numbers. It should be understood that this does not preclude the existence or addition of steps, operations, components, parts, or combinations thereof.
이하, 실시 예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail through examples.
본 명세서에 따른 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시 예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Embodiments according to the present specification may be modified into various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described in detail below. The embodiments of this specification are provided to more completely explain the present specification to those with average knowledge in the art.
<실시예><Example>
구리(Cu) 마이크로 플레이트의 합성Synthesis of copper (Cu) microplates
Cu 마이크로플레이트(MP)를 합성하기 위해 42 mg의 CuCl2·2H2O를 자기 교반 하에 탈이온수(15 mL)에 첨가했다. 이어서, 0.179g 헥사데실아민(HDA), 25μL KI (1 M) 및 1 mL의 아세토니트릴을 용액에 도입하였다. 다음으로, 용액을 약 10초 동안 와동시켜 응집된 덩어리를 제거했다. 용액을 9000 rpm으로 밤새 교반한 후, 용액에 0.132 g의 l-아스코르브산(AA)을 첨가하고 생성된 혼합물이 청색에서 백색으로 완전히 바뀔 때까지 교반하였다. 용액을 오일 배스로 옮기고 교반하면서 85℃에서 7시간 동안 가열하였다. 얻어진 생성물을 5000 rpm에서 30분간 원심분리하고 AA 수용액으로 반복하여 세척하였다. Cu MP는 0.8 mg/mL의 최종 농도로 수성 AA 용액에 분산되었다. To synthesize Cu microplates (MPs), 42 mg of CuCl 2 ·2H 2 O was added to deionized water (15 mL) under magnetic stirring. Then, 0.179 g hexadecylamine (HDA), 25 μL KI (1 M) and 1 mL of acetonitrile were introduced into the solution. Next, the solution was vortexed for approximately 10 seconds to remove any agglomerated clumps. After stirring the solution at 9000 rpm overnight, 0.132 g of l-ascorbic acid (AA) was added to the solution and stirred until the resulting mixture completely changed from blue to white. The solution was transferred to an oil bath and heated at 85° C. for 7 hours with stirring. The obtained product was centrifuged at 5000 rpm for 30 minutes and washed repeatedly with AA aqueous solution. Cu MP was dispersed in aqueous AA solution at a final concentration of 0.8 mg/mL.
Cu@CuCu@Cu 22 S 하이브리드 마이크로플레이트의 합성Synthesis of S hybrid microplates
합성된 Cu 마이크로플레이트(23.5mM) 500 μL를 0.1 g/mL 농도의 5mL PVP 수용액(Mw ≒ 55 kDa)과 함께 유리 바이알에 첨가했다. 이어서, Na2S·9H2O 용액(1 mL, 20 mM)을 넣고 용액은 빠르게 암갈색으로 변하였다. 5분 동안의 반응 후에 생성물을 12,500 rpm로 8분 동안 원심분리하고 탈이온수로 3회 세척하여 Cu@Cu2S 하이브리드 마이크로플레이트를 얻었다.500 μL of the synthesized Cu microplate (23.5mM) was added to a glass vial along with 5mL PVP aqueous solution (M w ≈ 55 kDa) with a concentration of 0.1 g/mL. Next, Na 2 S·9H 2 O solution (1 mL, 20 mM) was added, and the solution quickly turned dark brown. After reaction for 5 minutes, the product was centrifuged at 12,500 rpm for 8 minutes and washed three times with deionized water to obtain Cu@Cu 2 S hybrid microplates.
Cu-Au 하이브리드 마이크로 플레이트의 합성Synthesis of Cu-Au hybrid microplates
20mL 섬광 바이알(scintillation vial)을 2 mL의 Cu 마이크로플레이트(94.0 mM)로 채웠다. AA(5.5 mL, 1 M) 및 2 mL PVP(M w ≒ 10 kDa, 탈이온수 중 5 wt%)를 바이알에 첨가하고, 반응 혼합물을 실온에서 3분 동안 빠르게 교반하였다. Cu-Au 마이크로플레이트를 생성하기 위해 HAuCl4 수용액(0.5 mL, 0.025 M)을 주사기 펌프를 사용하여 10 mL/h의 속도로 바이알에 첨가했다. 용액의 색상이 안정화될 때까지 용액을 실온에서 추가로 3분 동안 에이징(aging)시켰다. 그리고나서, 용액을 12,500 rpm에서 8분 동안 원심분리하고 탈이온수로 3회 세척했다. A 20 mL scintillation vial was filled with 2 mL of Cu microplate (94.0 mM). AA (5.5 mL, 1 M) and 2 mL PVP ( M w ≈ 10 kDa, 5 wt% in deionized water) were added to the vial, and the reaction mixture was stirred rapidly for 3 min at room temperature. To create Cu-Au microplates, HAuCl 4 aqueous solution (0.5 mL, 0.025 M) was added to the vial at a rate of 10 mL/h using a syringe pump. The solution was aged for an additional 3 minutes at room temperature until its color stabilized. The solution was then centrifuged at 12,500 rpm for 8 min and washed three times with deionized water.
<실험예><Experimental example>
Cu 마이크로플레이트는 PVP와 AA가 각각 콜로이드 안정제와 환원제로 작용해 합성되었고, 합성시 캡핑제 역할을 하는 I-는 판상 구조의 형성에 중요한 역할을 하였다. 도 2(a)에서와 같이 I- 이온이 존재하지 않을 때 큐브, 이중 피라미드, 나노와이어 등 다양한 형태의 Cu 나노결정이 얻어졌다. 그러나, 동일한 실험 조건에서 I- 이온을 1.6 μM 농도로 첨가했을 때 Cu 마이크로플레이트가 얻어지는 한편 준구형(quasi-spherical) 입자도 얻어졌다(도 2(b)). I- 이온의 농도가 1.6 μM까지 증가함에 따라 판형 입자의 수율이 증가하지만, 이보다 큰 농도에서는 판형 입자의 수율이 감소했다. 제조된 Cu 마이크로플레이트의 평균 크기는 4.3 ± 0.6 μm로 계산되었고, 마이크로플레이트의 두께는 ~133nm로 측정되었다. Cu microplates were synthesized with PVP and AA acting as a colloidal stabilizer and reducing agent, respectively, and I - , which acts as a capping agent during synthesis, played an important role in the formation of the plate-like structure. As shown in Figure 2(a), when I - ions were not present, Cu nanocrystals of various shapes such as cubes, double pyramids, and nanowires were obtained. However, under the same experimental conditions, when I - ions were added at a concentration of 1.6 μM, Cu microplates were obtained, while quasi-spherical particles were also obtained (Figure 2(b)). As the concentration of I - ions increased up to 1.6 μM, the yield of plate-shaped particles increased, but at higher concentrations, the yield of plate-shaped particles decreased. The average size of the prepared Cu microplate was calculated to be 4.3 ± 0.6 μm, and the thickness of the microplate was measured to be ~133 nm.
Cu 마이크로플레이트의 XRD 패턴은 도 2(c)에 도시했다. ~43.3°, ~50.5° 및 ~74.1°에서의 특성 피크는 각각 면심 입방체(fcc) Cu의 {111}, {200} 및 {220} 결정면에 기인하며, 이는 합성된 Cu 나노결정은 산화물 등 불순물이 전혀 없이 고순도임을 보여준다. XRD 패턴에서 {111} 결정면의 피크가 두드러지는 반면 다른 피크의 상대적 강도는 낮다. 도 2(a)에 도시된 Cu 나노결정의 XRD 패턴에서 {111} 및 {200} 회절 피크 사이의 강도 비율은 ~0.85인 것으로 나타났으나, Cu 마이크로플레이트의 패턴에서 강도비는 ~2.79로 증가했다. 이는 Cu 마이크로플레이트가 {111} 면이 지배적이고 {111} 면이 우선적으로 지지 기판의 표면에 평행하게 배향되는 경향이 있음을 나타낸다. Cu 마이크로플레이트의 수성 콜로이드 분산액의 UV-Vis-NIR 스펙트럼은 도 2(d)에 도시되어 있다. 597 nm에서의 국소 표면 플라스몬 공명(localized surface plasmon resonance, LSPR) 특성 밴드는 강하고 좁으며, Cu 나노결정의 높은 순도를 확인시켜준다. 도 2(d)의 삽입도는 합성된 Cu 마이크로플레이트 수용액을 보여주며, Cu 나노결정의 전형인 암갈색을 나타낸다. The XRD pattern of the Cu microplate is shown in Figure 2(c). The characteristic peaks at ~43.3°, ~50.5°, and ~74.1° are attributed to the {111}, {200}, and {220} crystal planes of face-centered cubic (fcc) Cu, respectively, which suggests that the synthesized Cu nanocrystals are free from impurities such as oxides. This shows that it is of high purity without any traces. In the XRD pattern, the peak of {111} crystal plane is prominent, while the relative intensity of other peaks is low. The intensity ratio between the {111} and {200} diffraction peaks in the did. This indicates that the Cu microplate is dominated by the {111} plane and the {111} plane tends to be preferentially oriented parallel to the surface of the support substrate. The UV-Vis-NIR spectrum of the aqueous colloidal dispersion of Cu microplates is shown in Figure 2(d). The localized surface plasmon resonance (LSPR) characteristic band at 597 nm is strong and narrow, confirming the high purity of Cu nanocrystals. The inset of Figure 2(d) shows the synthesized Cu microplate aqueous solution, which has a dark brown color typical of Cu nanocrystals.
본 실시예에서는 최종 생성물에서 마이크로플레이트의 수율을 증가시키기 위해 소량의 아세토니트릴(acetonitrile)을 반응 매질(물)에 첨가하였다. 아세토니트릴은 금속 이온과 착물을 형성하는 리간드로 작용하는 것으로 알려져 있다. 이러한 배위 효과는 Cu2+ 이온의 환원 속도를 상당히 낮추고 결과적으로 Cu 원자의 평형 농도를 감소시킬 수 있다. 그 결과, 핵생성 자리의 연속적인 형성이 억제되고 핵생성 단계에서 시드의 수가 감소된다. 이와 같이 일정한 Cu 전구체 농도를 유지하면서 시드의 갯수만을 감소시킴으로써 더 큰 Cu 마이크로플레이트를 높은 수율로 형성할 수 있다. In this example, a small amount of acetonitrile was added to the reaction medium (water) to increase the yield of microplates in the final product. Acetonitrile is known to act as a ligand that forms a complex with metal ions. This coordination effect can significantly lower the reduction rate of Cu 2+ ions and consequently reduce the equilibrium concentration of Cu atoms. As a result, the sequential formation of nucleation sites is suppressed and the number of seeds in the nucleation step is reduced. In this way, larger Cu microplates can be formed with high yield by reducing the number of seeds while maintaining a constant Cu precursor concentration.
Cu 나노 결정의 합성시 독특한 색상 변화를 관찰하여 반응의 진행 상황을 모니터링할 수 있다. Cu 전구체(CuCl2·2H2O), HDA 및 KI를 포함하는 반응 혼합물에 AA를 주입한 후 파란색 수용액이 흰색으로 변하며 이는 Cu2+ 이온의 환원을 나타낸다. 반응 혼합물을 85℃에서 1시간 동안 가열하면 백색에서 밝은 황색, 주황색, 적갈색으로 변하였다. 그런 다음, 용액은 7시간 동안 갈색과 암갈색으로 변했다. 그러나, 아세토니트릴을 첨가하면 반응의 색 변화가 비교적 느리고 2시간 후에 적갈색이 나타났다. 이러한 결과는 아세토니트릴이 존재할 때 반응이 더 느렸음을 나타낸다. When synthesizing Cu nanocrystals, the progress of the reaction can be monitored by observing unique color changes. After the injection of AA into the reaction mixture containing Cu precursor (CuCl 2 ·2H 2 O), HDA, and KI, the blue aqueous solution turns white, indicating the reduction of Cu 2+ ions. When the reaction mixture was heated at 85°C for 1 hour, it changed from white to light yellow, orange, and reddish brown. The solution then turned brown and dark brown over 7 hours. However, when acetonitrile was added, the color change of the reaction was relatively slow and a reddish brown color appeared after 2 hours. These results indicate that the reaction was slower when acetonitrile was present.
도 3(a) 및 도 3(b)는 아세토니트릴이 존재하는 동일한 조건에서 얻은 생성물의 SEM 및 TEM 이미지를 각각 보여준다. 아세토니트릴이 도입되었을 때 플레이트의 수율(생성물에서 판상 구조의 백분율)은 65.4%에서 95.1%로 증가했으며 얻어진 나노플레이트의 측면 치수도 5.8 ± 1.3 ㎛로 증가했다. 평균 두께는 ~92 nm로 측정되었으며, 이는 마이크로플레이트의 종횡비가 실질적으로 증가되었음을 나타낸다. 이러한 결과는 Cu 마이크로플레이트의 성장 경로가 아세토니트릴에 의해 극적으로 영향을 받았고 측면 성장이 촉진되었음을 나타내며, 이는 예상과 일치한다. 한편, 본 실시예에서 최적의 아세토니트릴과 물의 비율은 ~0.07인 것으로 나타났다. 실험 결과에 따르면 물에 대한 아세토니트릴의 비율이 0.07로 증가함에 따라, 얻어진 전체 입자 중 판형 입자의 수율이 증가했다. 그러나, 상기 비율을 0.07보다 크게 증가시키면 마이크로플레이트가 붕괴되면서 얻어지는 마이크로플레이트의 입자 크기가 작아진다. Figures 3(a) and 3(b) show SEM and TEM images of the products obtained under the same conditions in the presence of acetonitrile, respectively. When acetonitrile was introduced, the plate yield (percentage of plate-like structure in the product) increased from 65.4% to 95.1% and the lateral dimensions of the obtained nanoplates also increased to 5.8 ± 1.3 μm. The average thickness was measured to be ~92 nm, indicating that the aspect ratio of the microplate was substantially increased. These results indicate that the growth path of Cu microplates was dramatically affected by acetonitrile and lateral growth was promoted, which is consistent with expectations. Meanwhile, in this example, the optimal ratio of acetonitrile to water was found to be ~0.07. According to the experimental results, as the ratio of acetonitrile to water increased to 0.07, the yield of plate-shaped particles among the total particles obtained increased. However, if the ratio is increased greater than 0.07, the microplate collapses and the particle size of the resulting microplate becomes smaller.
아세토니트릴이 있는 상태에서 성장한 Cu 마이크로플레이트의 XRD 패턴은 도 3(c)에 도시되어 있는데, 해당 패턴은 도 2(c)에 표시된 패턴과 크게 다르지 않다. 그러나, {111} 및 {200} 회절 피크 사이의 강도 비율은 ~4.41로 증가했으며, 이는 플레이트 모양 입자의 수율과 합성된 마이크로플레이트의 측면 치수가 모두 아세토니트릴이 존재할 때 증가했음을 확인시켜준다. Cu 마이크로플레이트의 SAED(selected area electron diffraction) 패턴에 의하면, 6중 회전 대칭을 갖는 6개의 회절점은 마이크로플레이트가 XRD 분석 결과와 일치하는 {111} 결정면을 주 평면으로 하는 단결정 구조를 갖고 있음을 확인시켜준다. 도 3(d)는 아세토니트릴을 첨가한 후 합성된 Cu 마이크로플레이트의 수성 콜로이드 분산액의 UV-Vis-NIR 스펙트럼을 보여준다. LSPR 밴드의 위치는 거의 변하지 않았으나 피크의 세기가 증가하여 판상 입자의 수율 증가에 의해 반응 생성물의 형상 균일성이 향상되었음을 알 수 있다. The XRD pattern of the Cu microplate grown in the presence of acetonitrile is shown in Figure 3(c), and the pattern is not significantly different from the pattern shown in Figure 2(c). However, the intensity ratio between the {111} and {200} diffraction peaks increased to ∼4.41, confirming that both the yield of plate-shaped particles and the lateral dimensions of the synthesized microplates increased in the presence of acetonitrile. According to the selected area electron diffraction (SAED) pattern of the Cu microplate, six diffraction points with six-fold rotational symmetry indicate that the microplate has a single crystal structure with the {111} crystal plane as the main plane, which is consistent with the XRD analysis results. Confirms. Figure 3(d) shows the UV-Vis-NIR spectrum of the aqueous colloidal dispersion of Cu microplates synthesized after adding acetonitrile. Although the position of the LSPR band barely changed, the intensity of the peak increased, indicating that the shape uniformity of the reaction product was improved by increasing the yield of plate-shaped particles.
아세토니트릴의 첨가에 따른 판상 입자의 수율 및 입도의 증가는 다음과 같이 설명할 수 있다. 금속 나노결정의 형상 제어 합성을 위해서는 Cu(II) 이온의 환원 동역학(reduction kinetics)을 정밀하게 제어하는 것이 중요하다. 상대적으로 큰 표면적과 결함으로 인한 격자 변형 에너지로 인해 판형 입자의 총 자유 에너지가 높다. 결과적으로 판상 입자의 형성은 열역학적으로 선호되지 않으며 완전히 동역학적으로 제어된 조건 하에서 반응을 유도해야만 형성될 수 있다. 아세토니트릴이 도입되면 Cu(II) 이온은 아세토니트릴과 반응하여 중간 종(intermediate species)을 형성할 수 있으며, 이는 용액에서 Cu(II) 이온의 과포화를 억제하는 저장소(reservoir) 역할을 할 수 있다. 따라서, 환원 반응은 실질적으로 느려지고 나노 결정의 형성은 반응 열역학이 아닌 반응 동역학에 의해 결정적인 영향을 받아 판상 입자를 효율적으로 형성할 수 있다. 또한, Cu(II) 이온의 느린 환원 속도는 연속적인 핵 형성을 억제하여 형성되는 핵의 수를 감소시킨다. Gibbs-Thomson 방정식에 기초하여 느린 환원 속도는 기존 시드에 새로 형성된 Cu 원자의 성장을 선호하는 반면 빠른 반응 속도는 자가 핵생성(self-nucleation)을 선호한다. 따라서, 아세토니트릴이 반응 시스템에 도입되면 이미 형성된 판형 입자에 더 많은 Cu 원자가 첨가되기 때문에 큰 마이크로플레이트가 형성될 수 있다.The increase in yield and particle size of plate-shaped particles due to the addition of acetonitrile can be explained as follows. For shape-controlled synthesis of metal nanocrystals, it is important to precisely control the reduction kinetics of Cu(II) ions. The total free energy of plate-like particles is high due to the relatively large surface area and lattice strain energy due to defects. As a result, the formation of plate-shaped particles is thermodynamically unfavorable and can only be formed by inducing the reaction under fully kinetically controlled conditions. When acetonitrile is introduced, Cu(II) ions can react with acetonitrile to form intermediate species, which can act as a reservoir to suppress supersaturation of Cu(II) ions in solution. . Therefore, the reduction reaction is substantially slowed down and the formation of nanocrystals is critically influenced by reaction kinetics rather than reaction thermodynamics, allowing efficient formation of plate-shaped particles. Additionally, the slow reduction rate of Cu(II) ions inhibits successive nucleation formation, reducing the number of nuclei formed. Based on the Gibbs-Thomson equation, a slow reduction rate favors the growth of newly formed Cu atoms on existing seeds, while a fast reaction rate favors self-nucleation. Therefore, when acetonitrile is introduced into the reaction system, large microplates can be formed because more Cu atoms are added to the already formed plate-shaped particles.
Cu@Cu2S 하이브리드 나노구조는 미리 얻어진 Cu 나노결정을 다양한 산화 상태의 황 화합물에 노출시켜 황화물로 변형시킴으로써 효과적으로 합성될 수 있다. 한편, 상기 황화 반응(sulfidation reaction)이 수용액 공정으로 진행되더라도 황의 공급원으로 황화수소 및 황화암모늄과 같은 독성을 가지며 휘발성이 높아 반응을 정밀하게 제어하기 어려운 화학물질에 의존한다. 이에, 본 실시예에서는 물에 잘 용해되고 황화수소나 황화암모늄에 비해 상대적으로 덜 유해한 황화나트륨(Na2S)을 이용하여 상온의 수용액에서 Cu@Cu2S 하이브리드 나노구조체 합성하는 전략을 채택했다. 황화 반응은 주로 Cu 결정의 표면에서 일어나기 때문에 반응 후에 Cu2S가 Cu 나노결정 표면을 완전히 코팅시켜 코어(Cu)/쉘(Cu2S) 구조를 얻을 수 있다. Cu@Cu 2 S hybrid nanostructures can be effectively synthesized by exposing pre-obtained Cu nanocrystals to sulfur compounds of various oxidation states and transforming them into sulfides. Meanwhile, even if the sulfidation reaction proceeds through an aqueous solution process, it relies on chemicals such as hydrogen sulfide and ammonium sulfide, which are toxic and highly volatile, making it difficult to precisely control the reaction. Therefore, in this example, a strategy was adopted to synthesize Cu@Cu 2 S hybrid nanostructures in an aqueous solution at room temperature using sodium sulfide (Na 2 S), which is highly soluble in water and relatively less harmful than hydrogen sulfide or ammonium sulfide. Since the sulfurization reaction mainly occurs on the surface of the Cu crystal, after the reaction, Cu 2 S completely coats the surface of the Cu nanocrystal to obtain a core (Cu)/shell (Cu 2 S) structure.
도 4(a) 및 도 4(b)는 특정 농도의 Na2S 수용액을 첨가하고 실온에서 5분간 에이징시켜 얻은 Cu@Cu2S 하이브리드 마이크로플레이트의 SEM 및 TEM 이미지로서, 원래 균일하고 매끄럽던 마이크로플레이트의 상부 및 하부 표면이 매우 거칠어졌음을 보여준다. 또한, 해당 하이브리드 마이크로플레이트의 AFM 이미지와 높이 프로파일로부터 표면이 매우 거칠고 두께는 ~131 nm로 측정되어 황화 반응에 의해 두께가 증가했음을 알 수 있다. 해당 하이브리드 마이크로플레이트의 XRD 분석 결과를 보여주는 도 4(c)에 따르면 Na2S와 함께 황화 반응에 의해 Cu2S (JCPDS file no. 84-1770)에 대응하는 새로운 피크가 생성되었음이 확인되었다. 이러한 결과는 Cu 마이크로플레이트가 Cu@Cu2S 하이브리드 마이크로플레이트로 성공적으로 변환되었음을 보여준다. Figures 4(a) and 4(b) are SEM and TEM images of Cu@Cu 2 S hybrid microplates obtained by adding a specific concentration of Na 2 S aqueous solution and aging at room temperature for 5 minutes, showing originally uniform and smooth microplates. It shows that the top and bottom surfaces of the plate have become very rough. Additionally, from the AFM image and height profile of the hybrid microplate, the surface was very rough and the thickness was measured to be ~131 nm, indicating that the thickness increased due to the sulfidation reaction. According to Figure 4(c) showing the XRD analysis results of the hybrid microplate, it was confirmed that a new peak corresponding to Cu 2 S (JCPDS file no. 84-1770) was generated by sulfidation reaction with Na 2 S. These results show that the Cu microplate was successfully converted into a Cu@Cu 2 S hybrid microplate.
도 4(d)에 도시한 Cu@Cu2S 하이브리드 마이크로플레이트의 UV-Vis-NIR 스펙트럼은 300-800 nm 파장 영역에서 광대역 흡수를 보여주며, 도 4(d)의 삽입도에서 Cu@Cu2S 하이브리드 마이크로플레이트 수성 콜로이드 분산액은 짙은 회색으로 나타났다. 도 4(e)의 에너지 분산 X선 분광법(STEM-EDS) 매핑 이미지로부터 하이브리드 마이크로플레이트 내에 Cu와 S가 균일하게 분포함을 확인할 수 있었다. 상기 결과들을 종합하면, 상온의 수용액 내에서 Na2S를 이용해 Cu 마이크로플레이트의 표면을 Cu2S로 화학적으로 전환시켜 짧은 시간 내에 Cu@Cu2S 하이브리드 마이크로플레이트를 얻을 수 있음을 확인하였다. 본 실시예에서 황화 공정에 사용된 수용액에서 Na2S의 최적 농도는 약 0.3 mM이었다. Na2S 농도가 0.3 mM 미만인 경우 마이크로플레이트의 형태변화가 거의 관찰되지 않았고, 0.3 mM보다 크면 마이크로플레이트가 파손되었다. The UV-Vis-NIR spectrum of the Cu@Cu 2 S hybrid microplate shown in Figure 4(d) shows broadband absorption in the 300-800 nm wavelength region, and in the inset of Figure 4(d), the Cu@Cu 2 The S hybrid microplate aqueous colloidal dispersion appeared dark gray. From the energy-dispersive X-ray spectroscopy (STEM-EDS) mapping image in Figure 4(e), it was confirmed that Cu and S were uniformly distributed within the hybrid microplate. Summarizing the above results, it was confirmed that a Cu@Cu 2 S hybrid microplate could be obtained in a short time by chemically converting the surface of the Cu microplate to Cu 2 S using Na 2 S in an aqueous solution at room temperature. The optimal concentration of Na 2 S in the aqueous solution used in the sulfurization process in this example was about 0.3 mM. When the Na 2 S concentration was less than 0.3 mM, little change in the shape of the microplate was observed, and when the Na 2 S concentration was greater than 0.3 mM, the microplate was damaged.
최근 일련의 연구에 따르면 금속-반도체 하이브리드 나노결정은 고성능의 효율적인 광촉매로 사용될 수 있다. Cu@Cu2S 하이브리드 나노결정은 광대역 흡수 특성과 우수한 화학적 안정성을 가져 Cu 나노결정에 비해 보다 효과적인 광촉매가 될 수 있다. 하이브리드 마이크로플레이트의 광촉매 활성을 조사하기 위해, Cu 마이크로플레이트 또는 Cu@Cu2S 하이브리드 마이크로플레이트의 존재 하에서 태양광 조사시 유기 염료 메틸렌 블루(methylene blue, MB)의 광산화 분해 실험을 실시하였다. 도 5(a)는 태양광 조사시 Cu@Cu2S 하이브리드 마이크로플레이트가 있는 경우 시간에 따른 MB 분해 거동을 보여주는 UV-Vis-NIR 흡수 스펙트럼으로서, 120분의 반응 후 MB의 거의 85%가 분해되어 순수한 Cu 마이크로플레이트와 비교하여 상당한 개선된 결과를 나타냈다. 도 5(b)는 Cu 마이크로플레이트 또는 Cu@Cu2S 하이브리드 마이크로플레이트가 있는 상태에서 태양광을 조사할 때 MB의 시간에 따른 분해 결과를 보여준다. 이때, C0는 초기 MB 농도를 나타내고 Ct는 반응 시간 t에서의 MB 농도를 나타낸다. 황화 반응을 통해 Cu와 Cu2S를 결합한 후 동일한 반응 조건에서 광촉매 성능이 크게 향상되었다. 정량적 비교를 위해 ln(C0/Ct)를 t의 함수로 표시하면 도 5(c)에서와 같이 선형 관계를 보여줬다. 이러한 결과는 MB의 광촉매 분해가 유사 1차 반응속도식(pseudo-first-order kinetic equation) ln(C0/Ct) = Kappt (여기서, Kapp은 겉보기 속도 상수(apparent rate constant)을 따른다는 것을 나타낸다. Cu@Cu2S 하이브리드 마이크로플레이트에 대한 Kapp는 0.0162 min-1으로 결정되었으며, 이는 순수한 Cu 마이크로플레이트(0.0006 min-1)보다 훨씬 크다. A series of recent studies have shown that metal-semiconductor hybrid nanocrystals can be used as high-performance and efficient photocatalysts. Cu@Cu 2 S hybrid nanocrystals have broadband absorption characteristics and excellent chemical stability, making them a more effective photocatalyst than Cu nanocrystals. To investigate the photocatalytic activity of the hybrid microplate, a photooxidative decomposition experiment of the organic dye methylene blue (MB) was conducted under solar irradiation in the presence of Cu microplate or Cu@Cu 2 S hybrid microplate. Figure 5(a) is a UV-Vis-NIR absorption spectrum showing the decomposition behavior of MB over time in the presence of Cu@Cu 2 S hybrid microplates upon solar irradiation. Almost 85% of MB was decomposed after 120 minutes of reaction. showed significantly improved results compared to pure Cu microplates. Figure 5(b) shows the time-dependent decomposition results of MB when irradiated with sunlight in the presence of Cu microplates or Cu@Cu 2 S hybrid microplates. At this time, C 0 represents the initial MB concentration and C t represents the MB concentration at reaction time t. After combining Cu and Cu 2 S through sulfidation reaction, photocatalytic performance was significantly improved under the same reaction conditions. For quantitative comparison, when ln(C 0 /C t ) was expressed as a function of t, it showed a linear relationship as shown in Figure 5(c). These results show that the photocatalytic decomposition of MB follows the pseudo-first-order kinetic equation ln(C 0 /C t ) = K app t (where K app is the apparent rate constant). K app for the Cu@Cu 2 S hybrid microplate was determined to be 0.0162 min -1 , which is much larger than that of the pure Cu microplate (0.0006 min -1 ).
촉매의 실질적인 효용성을 평가할 때 촉매의 회수와 재사용은 가장 중요한 고려사항 중 하나이다. Cu@Cu2S 하이브리드 마이크로플레이트는 크기가 수 마이크로미터에 달하기 때문에 광촉매 반응 후 원심분리에 의해 반응 용액에서 쉽게 분리되었다. 하이브리드 마이크로플레이트는 광촉매로서의 재사용 가능성을 조사하기 위해 다수의 반응 사이클에 사용되었다. 도 5(d)의 결과는 하이브리드 마이크로플레이트의 촉매 활성이 3회의 추가 사이클 후에도 여전히 높다는 것을 확인시켜준다. 3회의 추가 MB 광분해 사이클 후에도 Cu@Cu2S 하이브리드 마이크로플레이트의 구조가 손상되지 않고 그대로 유지되어 Cu@Cu2S 하이브리드 나노플레이트의 우수한 광촉매 안정성을 보여줬다. When evaluating the practical utility of a catalyst, recovery and reuse of the catalyst are one of the most important considerations. Because the Cu@Cu 2 S hybrid microplate was several micrometers in size, it was easily separated from the reaction solution by centrifugation after the photocatalytic reaction. The hybrid microplate was used in multiple reaction cycles to investigate its reusability as a photocatalyst. The results in Figure 5(d) confirm that the catalytic activity of the hybrid microplate is still high even after three additional cycles. Even after three additional MB photolysis cycles, the structure of the Cu@Cu 2 S hybrid microplate remained intact, demonstrating the excellent photocatalytic stability of the Cu@Cu 2 S hybrid nanoplate.
갈바닉 치환 반응(galvanic replacement reaction)은 다공성 구조를 가진 바이메탈(bimetal) 나노결정을 생산하기 위한 간단하고 다양한 경로를 제공한다. 더 높은 환원 전위를 가진 금속 이온이 전해질에서 더 낮은 환원 전위를 가진 다른 금속과 접촉할 때, 전기화학 반응이 자발적으로 일어나고 금속은 환원전위가 낮을수록 부식되는 경향이 있다. 구체적으로, 환원 전위가 낮은 금속 나노결정의 수성 현탁액에 귀금속염 용액을 도입하면 금속 나노결정이 자발적으로 산화되는 동안 귀금속 이온이 환원되어 나노결정의 표면에 침착된다. Cu 나노구조는 Cu-Au 바이메탈 나노구조 제조를 위한 희생 템플릿 역할을 한다. AuCl4 -/Au 쌍의 표준 환원 전위(1.00 V vs. 표준 수소 전극, SHE)가 Cu2+/Cu 쌍의 표준 환원 전위(0.34 V vs. SHE)보다 훨씬 높으므로, 치환 반응 (3Cu0 + 2AuCl4 - → 3Cu2+ + 2Au0 + 8Cl-)이 자발적으로 일어났다. 해당 반응은 3개의 Cu 원자를 2개의 Au 원자로 화학양론적으로 치환하는 것을 포함하기 때문에 반응 후 Cu 나노결정 표면에 공동이 형성되어 다공성 구조를 갖는 Cu-Au 바이메탈 나노구조가 형성될 수 있다.Galvanic replacement reactions provide a simple and versatile route to produce bimetallic nanocrystals with porous structures. When a metal ion with a higher reduction potential comes into contact with another metal with a lower reduction potential in an electrolyte, an electrochemical reaction occurs spontaneously and the metal tends to corrode the lower its reduction potential. Specifically, when a noble metal salt solution is introduced into an aqueous suspension of metal nanocrystals with a low reduction potential, the noble metal ions are reduced and deposited on the surface of the nanocrystals while the metal nanocrystals are spontaneously oxidized. Cu nanostructures serve as sacrificial templates for the fabrication of Cu-Au bimetallic nanostructures. Since the standard reduction potential of the AuCl 4 - /Au pair (1.00 V vs. standard hydrogen electrode, SHE) is much higher than that of the Cu 2+ /Cu pair (0.34 V vs. SHE), the substitution reaction (3Cu 0 + 2AuCl 4 - → 3Cu 2+ + 2Au 0 + 8Cl - ) occurred spontaneously. Since the reaction involves stoichiometric substitution of three Cu atoms with two Au atoms, cavities are formed on the surface of the Cu nanocrystal after the reaction, resulting in the formation of a Cu-Au bimetallic nanostructure with a porous structure.
아세토니트릴(acetonitrile) 존재 하에서 합성된 Cu 마이크로플레이트의 수분산액에 HAuCl4 수용액을 첨가하면 그 즉시 갈바닉 치환 반응이 반응이 일어나 수분산액이 갈색에서 청회색으로 변했다. 도 6(a) 및 도 6(b)는 HAuCl4 수용액을 첨가한 후 제조된 Cu-Au 하이브리드 나노구조체의 SEM 이미지를 보여준다. Cu-Au 하이브리드 나노구조는 갈바닉 치환 반응 후에도 판상과 크기 분포를 유지했다. 그러나, 개별 마이크로플레이트의 표면에 나노 공동(nanocavity)이 여럿 생성되었다. 또한, 갈바닉 치환 반응 후 Cu 마이크로플레이트의 표면에서 수많은 작은 나노 결정이 관찰되었는데, 이들 나노결정은 Au 나노결정일 것으로 예상된다. When HAuCl 4 aqueous solution was added to the aqueous dispersion of Cu microplates synthesized in the presence of acetonitrile, a galvanic substitution reaction immediately occurred and the aqueous dispersion changed from brown to blue-gray. Figures 6(a) and 6(b) show SEM images of the Cu-Au hybrid nanostructure prepared after adding HAuCl 4 aqueous solution. The Cu-Au hybrid nanostructure maintained its plate shape and size distribution even after the galvanic substitution reaction. However, multiple nanocavities were created on the surface of individual microplates. Additionally, numerous small nanocrystals were observed on the surface of the Cu microplate after the galvanic substitution reaction, and these nanocrystals are expected to be Au nanocrystals.
AuCl4 - 이온이 Cu 마이크로플레이트의 표면에서 금속성 Au로 환원된 후, Cu (0.3615 nm)와 Au (0.4079 nm) 사이의 큰 격자 불일치(12.7%)와 낮은 온도에서 Cu-Au 이원계의 불량한 혼화성(miscibility)으로 인해 균일한 합금 나노구조의 형성이 이루어지지 않았고, 그에 따라 HAuCl4와 Ag 나노결정 사이의 갈바닉 치환 반응과 달리 Cu 마이크로플레이트의 표면에서 Au 나노결정이 에피택셜하게 성장했다. EDX 측정 결과에 따르면 하이브리드 마이크로플레이트는 59% Cu와 30% Au의 조성을 나타냈다. 도 6(c)는 이들 마이크로 입자가 554 nm에서 LSPR 소멸 피크를 나타내며, 이는 갈바닉 치환 반응 후에 피크가 약간 청색으로 이동되었음을 나타낸다. 작은 Au 나노 입자에 대한 표면 플라즈몬 공명이 500 nm 근처의 파장에서 나타난다는 점을 고려할 때, Cu 마이크로플레이트와 Au 나노 결정의 합금 구조가 갈바닉 치환 반응을 통해 형성되기 때문에 상기한 LSPR 특성 변화가 발생한 것이다. Cu-Au 하이브리드 마이크로플레이트의 원소 매핑 이미지가 도 6(d)에 도시되어 있으며 녹색 및 파란색 점은 각각 Cu 및 Au를 나타낸다. 이러한 결과는 하이브리드 마이크로플레이트가 주로 마이크로플레이트 표면을 장식하는 Cu 및 Au 나노결정으로 구성되어 있음을 보여주며, 이는 SEM 및 LSPR 분석 결과와 일치한다. After AuCl 4 - ions are reduced to metallic Au on the surface of Cu microplates, there is a large lattice mismatch (12.7%) between Cu (0.3615 nm) and Au (0.4079 nm) and poor miscibility of the Cu-Au binary system at low temperatures. Due to this miscibility, the formation of a uniform alloy nanostructure was not achieved, and as a result, unlike the galvanic substitution reaction between HAuCl 4 and Ag nanocrystals, Au nanocrystals grew epitaxially on the surface of the Cu microplate. According to EDX measurement results, the hybrid microplate showed a composition of 59% Cu and 30% Au. Figure 6(c) shows that these microparticles exhibit an LSPR extinction peak at 554 nm, indicating that the peak is slightly shifted to blue after the galvanic substitution reaction. Considering that the surface plasmon resonance for small Au nanoparticles appears at a wavelength near 500 nm, the above-described LSPR property change occurred because the alloy structure of Cu microplates and Au nanocrystals was formed through a galvanic substitution reaction. . The elemental mapping image of the Cu-Au hybrid microplate is shown in Figure 6(d), where green and blue dots represent Cu and Au, respectively. These results show that the hybrid microplate is mainly composed of Cu and Au nanocrystals decorating the microplate surface, which is consistent with the SEM and LSPR analysis results.
Cu-Au 하이브리드 마이크로플레이트는 표면에 여러 개의 공동이 있으며 마이크로플레이트의 표면과 가장자리에는 수많은 작은 Au 나노 결정이 존재한다. 이러한 독특한 다공성 구조와 표면 거칠기 때문에 마이크로플레이트는 수많은 활성 자리와 촉매 반응에 적합한 자리를 제공할 수 있다. 따라서, 마이크로플레이트는 촉매 작용에 널리 적용될 수 있다. 본 실시예에서는 Cu-Au 하이브리드 마이크로플레이트의 촉매 성능을 입증하기 위한 프로브 반응으로 NaBH4에 의한 4-nitrophenol (4-NP)의 4-aminophenol (4-AP)로의 환원반응을 선택했다. 농약 및 염료에 널리 사용되는 4-NP는 가장 유독하고 위험한 오염 물질 중 하나이므로, NaBH4를 사용하여 4-NP를 4-AP로 수소화하는 것은 수계상(aqueous phase) 내에서 4-NP를 제거하는 환경친화적이고 효과적인 방법으로서 잠재적인 중요성을 가진다. 한편, NaBH4에 의한 4-NP에서 4-AP로의 수소화 반응은 며칠이 소요되므로, 반응 시간을 획기적으로 줄이기 위해서는 안정적이고 효율적인 촉매가 필요하다. 이에, 본 발명자는 준비된 Cu-Au 하이브리드 마이크로플레이트를 NaBH4에 의한 4-NP에서 4-AP로의 수소화 반응에서 촉매로 사용했다. 먼저, 4-NP 수용액에 NaBH4를 첨가하면 4-NP가 4-니트로페놀레이트(4-nitrophenolate) 이온으로 변환되기 때문에 318 nm에서의 흡수 피크가 400 nm로 이동하였다(도 7(a)). Cu-Au 하이브리드 마이크로플레이트를 4-NP와 NaBH4를 포함하는 수용액에 첨가한 후 50초 간격으로 기록된 UV-Vis 스펙트럼은 도 7(b)에 도시되어 있다. 400 nm에서 흡수 피크의 강도는 시간이 지남에 따라 점차 감소하여 300초 후에 거의 0에 도달했다. 동시에 301 nm에서 흡수 피크가 나타나 시간이 지남에 따라 강도가 증가하여 수소화 반응이 성공적으로 이루어졌음을 보여줬다. 이 실험에서 반응 속도 상수(k)는 NaBH4가 과량으로 첨가되어 반응 속도가 NaBH4의 농도에 의존하지 않기 때문에 유사 1차 반응속도식에 기초하여 계산할 수 있다. 도 7(c)는 ln(At/A0) 및 반응 시간 t의 플롯(여기서, At 및 A0는 각각 시간 t 및 시간 0에서의 흡광도임)으로서 본 실시예에서 사용된 Cu-Au 하이브리드 마이크로플레이트의 k 값은 11.6 × 10-1 s-1 로 계산되었다. 반면, 순수한 Cu 마이크로플레이트를 촉매로 사용하여 수행된 수소화 반응의 흡수 스펙트럼은 60분 동안 약간만 변화했다. 따라서, 수소화 반응은 매우 느리게 진행되어 순수한 Cu 마이크로플레이트가 촉매 활성이 좋지 않은 것으로 드러났다. The Cu-Au hybrid microplate has multiple cavities on the surface, and numerous small Au nanocrystals exist on the surface and edges of the microplate. Because of this unique porous structure and surface roughness, microplates can provide numerous active sites and sites suitable for catalytic reactions. Therefore, microplates can be widely applied in catalysis. In this example, the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH 4 was selected as a probe reaction to demonstrate the catalytic performance of the Cu-Au hybrid microplate. 4-NP, widely used in pesticides and dyes, is one of the most toxic and hazardous pollutants, so hydrogenation of 4-NP to 4-AP using NaBH 4 removes 4-NP within the aqueous phase. It has potential importance as an environmentally friendly and effective way to Meanwhile, the hydrogenation reaction from 4-NP to 4-AP by NaBH 4 takes several days, so a stable and efficient catalyst is needed to dramatically reduce the reaction time. Accordingly, the present inventor used the prepared Cu-Au hybrid microplate as a catalyst in the hydrogenation reaction from 4-NP to 4-AP by NaBH 4 . First, when NaBH 4 is added to the 4-NP aqueous solution, the absorption peak at 318 nm moves to 400 nm because 4-NP is converted to 4-nitrophenolate ion (Figure 7(a)). . The UV-Vis spectrum recorded at 50 second intervals after adding the Cu-Au hybrid microplate to an aqueous solution containing 4-NP and NaBH 4 is shown in Figure 7(b). The intensity of the absorption peak at 400 nm gradually decreased over time, reaching almost zero after 300 s. At the same time, an absorption peak appeared at 301 nm and its intensity increased over time, showing that the hydrogenation reaction was successful. In this experiment, the reaction rate constant ( k ) can be calculated based on the pseudo-first-order reaction rate equation because NaBH 4 is added in excess and the reaction rate does not depend on the concentration of NaBH 4 . Figure 7(c) is a plot of ln(A t /A 0 ) and reaction time t (where A t and A 0 are the absorbance at time t and time 0, respectively) for the Cu-Au used in this example. The k value of the hybrid microplate was calculated to be 11.6 × 10 -1 s -1 . On the other hand, the absorption spectrum of the hydrogenation reaction performed using pure Cu microplates as catalyst changed only slightly over 60 min. Therefore, the hydrogenation reaction proceeded very slowly, and pure Cu microplates were found to have poor catalytic activity.
본 실시예에서 사용된 Cu-Au 하이브리드 마이크로플레이트는 수 마이크로미터의 큰 입자 크기를 가지므로 반응 혼합물에서 쉽게 수집하여 촉매 반응이 완료된 후 재사용할 수 있다. 촉매의 재사용성은 동일한 하이브리드 마이크로플레이트를 반복적으로 사용하는 실험에서 평가되었다. 5회의 재사용 사이클 동안 4-NP의 전환율에 따른 촉매 활성은 거의 동일한 것으로 확인되어 촉매가 우수한 재사용성과 우수한 안정성을 나타냄을 보여주었다(도 7(d)). Cu-Au 하이브리드 마이크로플레이트의 촉매 활성을 보고된 다른 촉매의 촉매 활성과 정량적으로 비교하기 위해 활성 매개변수 k (= k/m) (m은 반응에 추가된 촉매의 총 질량이고 k는 수소화 반응에 대한 속도 상수임)를 계산했다. 하이브리드 마이크로플레이트를 촉매로 사용한 반응에서 k 값은 166 s-1g-1로 계산되었으며, 해당 값은 NaBH4에 의한 4-NP의 4-AP로의 수소화에 사용되는 금속 나노구조를 기반으로 하는 이종 촉매(heterogeneous catalyst)에 대해 기존에 보고된 값과 비교하여 높은 것으로 확인되었다. The Cu-Au hybrid microplate used in this example has a large particle size of several micrometers, so it can be easily collected from the reaction mixture and reused after the catalytic reaction is completed. The reusability of the catalyst was evaluated in experiments using the same hybrid microplate repeatedly. The catalytic activity according to the conversion rate of 4-NP during five reuse cycles was confirmed to be almost the same, showing that the catalyst exhibited excellent reusability and excellent stability (Figure 7(d)). To quantitatively compare the catalytic activity of Cu-Au hybrid microplates with that of other reported catalysts, the activity parameter k (= k/m ) ( m is the total mass of catalyst added to the reaction and k is the mass of catalyst added to the hydrogenation reaction) (is the rate constant for) was calculated. The k value was calculated to be 166 s -1 g -1 for the reaction using the hybrid microplate as a catalyst , and the corresponding value was calculated as It was confirmed to be high compared to previously reported values for heterogeneous catalysts.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.
본 발명에 따라 제조된 코어(Cu)-쉘(Cu2S) 구조의 Cu@Cu2S 금속-반도체 하이브리드 소재 및 Cu-Au 이중금속(bimetal) 하이브리드 소재 등의 구리 판상형 마이크로 입자 기반 하이브리드 판상형 소재는 높은 촉매 활성을 가지는 광촉매 및 촉매 소재로 활용할 수 있다. Hybrid plate-shaped materials based on copper plate-shaped micro particles, such as Cu@Cu 2 S metal-semiconductor hybrid material with core (Cu)-shell (Cu 2 S) structure and Cu-Au bimetal hybrid material manufactured according to the present invention. can be used as a photocatalyst and catalyst material with high catalytic activity.

Claims (7)

  1. (a) 구리 전구체, 아세토니트릴(acetonitrile), 캡핑제(capping agent), 환원제 및 용매를 포함하는 혼합 용액을 준비하는 단계; 및 (a) preparing a mixed solution containing a copper precursor, acetonitrile, a capping agent, a reducing agent, and a solvent; and
    (b) 상기 혼합 용액을 가열해 구리 판상형 마이크로 입자를 제조하는 단계;를 포함하는, (b) heating the mixed solution to produce copper plate-shaped micro particles; including,
    구리 판상형 마이크로 입자의 제조방법.Method for manufacturing copper plate-shaped micro particles.
  2. 제1항에 있어서, According to paragraph 1,
    상기 단계 (a)에서, In step (a),
    상기 혼합 용액은, 염화구리(II)(CuCl2), 아세토니트릴(acetonitrile), 헥사데실아민(hexadecylamine, HDA), 요오드화칼륨(KI) 및 l-아스코르브산(l-ascorbic acid, AA)을 포함하는 수용액인 것을 특징으로 하는, The mixed solution contains copper (II) chloride (CuCl 2 ), acetonitrile, hexadecylamine (HDA), potassium iodide (KI), and l-ascorbic acid (AA). Characterized in that it is an aqueous solution that
    구리 판상형 마이크로 입자의 제조방법.Method for manufacturing copper plate-shaped micro particles.
  3. (A) 제1항 또는 제2항에 기재된 방법에 따라 구리 판상형 마이크로 입자를 제조하는 단계; 및 (A) manufacturing copper plate-shaped micro particles according to the method according to claim 1 or 2; and
    (B) 상기 구리 판상형 마이크로 입자의 표면에 이종(異種) 소재를 도입하는 단계;를 포함하는, (B) introducing a heterogeneous material to the surface of the copper plate-shaped micro particles; comprising,
    구리 판상형 마이크로 입자를 포함하는 하이브리드 판상형 마이크로 입자의 제조방법.Method for producing hybrid plate-shaped microparticles containing copper plate-shaped microparticles.
  4. 제3항에 있어서, According to paragraph 3,
    상기 단계 (B)에서, In step (B),
    상기 구리 판상형 마이크로 입자와 황화나트륨(Na2S) 간의 황화 반응(sulfidation reaction)을 통해, 구리 판상형 마이크로 입자를 포함하는 코어 및 황화구리(Cu2S)를 포함하는 쉘로 구성된 코어-쉘 구조의 하이브리드 판상형 마이크로 입자를 제조하는 것을 특징으로 하는, A hybrid of the core-shell structure consisting of a core containing copper plate-shaped micro particles and a shell containing copper sulfide (Cu 2 S) through a sulfidation reaction between the copper plate-shaped micro particles and sodium sulfide (Na 2 S). Characterized in producing plate-shaped micro particles,
    구리 판상형 마이크로 입자를 포함하는 하이브리드 판상형 마이크로 입자의 제조방법.Method for producing hybrid plate-shaped microparticles containing copper plate-shaped microparticles.
  5. 제3항에 있어서, According to paragraph 3,
    상기 단계 (B)에서, In step (B),
    갈바닉 치환 반응(galvanic replacement reaction)을 통해 상기 구리 판상형 마이크로 입자 표면의 구리(Cu) 원자를 금(Au) 원자로 치환시켜, Cu-Au 이중금속(bimetal) 하이브리드 판상형 마이크로 입자를 제조하는 것을 특징으로 하는, Characterized in producing Cu-Au bimetal hybrid plate-shaped microparticles by replacing copper (Cu) atoms on the surface of the copper plate-shaped microparticles with gold (Au) atoms through a galvanic replacement reaction. ,
    구리 판상형 마이크로 입자를 포함하는 하이브리드 판상형 마이크로 입자의 제조방법.Method for producing hybrid plate-shaped microparticles containing copper plate-shaped microparticles.
  6. 제4항에 기재된 방법에 따라 제조된, 구리 판상형 마이크로 입자를 포함하는 코어 및 황화구리(Cu2S)를 포함하는 쉘로 구성된 코어-쉘 구조의 하이브리드 판상형 마이크로 입자.Hybrid plate-shaped micro-particles having a core-shell structure consisting of a core containing copper plate-shaped micro particles and a shell containing copper sulfide (Cu 2 S), manufactured according to the method according to claim 4.
  7. 제5항에 기재된 방법에 따라 제조된 Cu-Au 이중금속(bimetal) 하이브리드 판상형 마이크로 입자.Cu-Au bimetal hybrid plate-shaped microparticles prepared according to the method described in claim 5.
PCT/KR2023/006776 2022-07-07 2023-05-18 Method for manufacturing copper microplates, method for manufacturing hybrid microplates containing copper microplates, and hybrid microplates manufactured thereby WO2024010212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220083739A KR20240006894A (en) 2022-07-07 2022-07-07 Manufacturing method of copper microplate, manufacturing method of hybrid microplate containing copper microplate, and hybrid microplate manufactured thereby
KR10-2022-0083739 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024010212A1 true WO2024010212A1 (en) 2024-01-11

Family

ID=89453673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006776 WO2024010212A1 (en) 2022-07-07 2023-05-18 Method for manufacturing copper microplates, method for manufacturing hybrid microplates containing copper microplates, and hybrid microplates manufactured thereby

Country Status (2)

Country Link
KR (1) KR20240006894A (en)
WO (1) WO2024010212A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406129A (en) * 2013-05-22 2013-11-27 山东大学 Preparation method of wire mesh monolithic catalyst based on surface porous structure
JP2015129336A (en) * 2014-01-08 2015-07-16 住友金属鉱山株式会社 Copper sulfide-coated copper powder, conductive paste and production methods of them
KR20220088097A (en) * 2020-12-18 2022-06-27 국민대학교산학협력단 Manufacturing method of transition metal sulfide substrate and transition metal sulfide substrate prepared by the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210103661A (en) 2020-02-14 2021-08-24 전북대학교산학협력단 Nanoplate having core-shell structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406129A (en) * 2013-05-22 2013-11-27 山东大学 Preparation method of wire mesh monolithic catalyst based on surface porous structure
JP2015129336A (en) * 2014-01-08 2015-07-16 住友金属鉱山株式会社 Copper sulfide-coated copper powder, conductive paste and production methods of them
KR20220088097A (en) * 2020-12-18 2022-06-27 국민대학교산학협력단 Manufacturing method of transition metal sulfide substrate and transition metal sulfide substrate prepared by the method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM MYUNG JUN, CRUZ MUTYA A., CHEN ZIHAO, XU HENG, BROWN MICAH, FICHTHORN KRISTEN A., WILEY BENJAMIN J.: "Isotropic Iodide Adsorption Causes Anisotropic Growth of Copper Microplates", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 33, no. 3, 9 February 2021 (2021-02-09), US , pages 881 - 891, XP093064849, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.0c03596 *
WIJAYA YOSIA NICO, KIM JINWOO, CHOI WON MOOK, PARK SUNG HWAN, KIM MUN HO: "A systematic study of triangular silver nanoplates: one-pot green synthesis, chemical stability, and sensing application", NANOSCALE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 9, no. 32, 1 January 2017 (2017-01-01), United Kingdom , pages 11705 - 11712, XP093125306, ISSN: 2040-3364, DOI: 10.1039/C7NR03077K *
ZULKIFLI DEVI PERMATASARI, KIM MUN HO: "High-yield synthesis and hybridizations of Cu microplates for catalytic applications", CRYSTENGCOMM, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 24, no. 24, 20 June 2022 (2022-06-20), GB , pages 4454 - 4464, XP093125310, ISSN: 1466-8033, DOI: 10.1039/D2CE00450J *

Also Published As

Publication number Publication date
KR20240006894A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
Rashid et al. Templateless synthesis of polygonal gold nanoparticles: an unsupported and reusable catalyst with superior activity
EP3041607B1 (en) Tethered transition metals promoted photocatalytic system for efficient hydrogen evolutions
Sun et al. Roughness-controlled copper nanowires and Cu nanowires–Ag heterostructures: synthesis and their enhanced catalysis
Putri et al. Tuning the photocatalytic activity of nanocomposite ZnO nanorods by shape-controlling the bimetallic AuAg nanoparticles
KR101090431B1 (en) Method for preparing metal nanoparticles using matal seed and metal nanoparticles comprising metal seed
Hong et al. In situ synthesized Au–Ag nanocages on graphene oxide nanosheets: a highly active and recyclable catalyst for the reduction of 4-nitrophenol
Chen et al. Synthesis of Au@ TiO 2 core–shell nanoparticles with tunable structures for plasmon-enhanced photocatalysis
Chang et al. Synthesis of Cu/ZnO core/shell nanocomposites and their use as efficient photocatalysts
Pradyasti et al. Ag–Ag2S hybrid nanoplates with unique heterostructures: Facile synthesis and photocatalytic application
CA3103706A1 (en) Method of producing stable cu-based core-shell nanoparticles
Sun et al. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process
Lu et al. MOF-derived strategy for monodisperse Cd0. 5Zn0. 5S nanospheres with enhanced photocatalytic activity for hydrogen evolution
Yang et al. Synthesis of metal sulfides via ionic liquid-mediated assembly strategy and their photocatalytic degradation of dyes in water
Naaz et al. Unraveling the chemoselective catalytic, photocatalytic and electrocatalytic applications of copper supported WO3 nanosheets
Pradyasti et al. Synthesis of porous Ag–Ag2S@ Ag–Au hybrid nanostructures with broadband absorption properties and their photothermal conversion application
Pradyasti et al. Synthesis and applications of porous triangular Au-Ag-Ag2S bimetal-semiconductor hybrid nanostructures
WO2024010212A1 (en) Method for manufacturing copper microplates, method for manufacturing hybrid microplates containing copper microplates, and hybrid microplates manufactured thereby
Devi et al. Room temperature synthesis of colloidal platinum nanoparticles
Zhang et al. Water splitting, pollutant degradation and environmental impact using low-index faceted metal-based nanocrystals. A review
Feng et al. Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster
Zulkifli et al. High-yield synthesis and hybridizations of Cu microplates for catalytic applications
Hu et al. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates
Ni et al. Metal nanoparticle-decorated germanane for selective photocatalytic aerobic oxidation of benzyl alcohol
KR101268280B1 (en) Gold cluster-TiO2 nanocomposites with photocatalytic activity, their preparation and method of decomposing organic dye using the same
Khantamat et al. Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835681

Country of ref document: EP

Kind code of ref document: A1