WO2024010105A1 - Pharmaceutical composition for preventing or treating acute renal injury - Google Patents

Pharmaceutical composition for preventing or treating acute renal injury Download PDF

Info

Publication number
WO2024010105A1
WO2024010105A1 PCT/KR2022/009662 KR2022009662W WO2024010105A1 WO 2024010105 A1 WO2024010105 A1 WO 2024010105A1 KR 2022009662 W KR2022009662 W KR 2022009662W WO 2024010105 A1 WO2024010105 A1 WO 2024010105A1
Authority
WO
WIPO (PCT)
Prior art keywords
preventing
pharmaceutical composition
injury
acute renal
iri
Prior art date
Application number
PCT/KR2022/009662
Other languages
French (fr)
Korean (ko)
Inventor
김현정
김진현
Original Assignee
경상국립대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교병원 filed Critical 경상국립대학교병원
Priority to PCT/KR2022/009662 priority Critical patent/WO2024010105A1/en
Publication of WO2024010105A1 publication Critical patent/WO2024010105A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/44Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys

Definitions

  • the present invention relates to a pharmaceutical composition for preventing or treating acute kidney injury.
  • Ischemia Blood plays a role in transporting oxygen and nutrients to each tissue or cell in the body.
  • Ischemia is a condition in which blood vessels supplying blood to body organs, tissues, or parts are narrowed or constricted, or normal blood vessels are not formed sufficiently, resulting in insufficient blood supply resulting in oxygen deficiency. Ischemia irreversibly damages cells and leads to tissue necrosis.
  • ischemia occurs in tissue, a series of processes called the ischemic cascade are triggered, resulting in permanent tissue damage.
  • the return of blood flow after ischemia is called reperfusion.
  • ischemia-reperfusion injury Conventional treatment for ischemia and resulting hypoxia is to restore blood flow and oxygen delivery to normal levels by increasing systemic oxygenation or removing the cause of vascular blockage.
  • blood flow and oxygen delivery are restored, there is a problem that additional cell death or loss of function occurs regardless of the damage caused by ischemia. This is known as ischemia-reperfusion injury.
  • Ischemia-reperfusion injury is the most common cause of acute renal injury and progression to chronic kidney disease.
  • Ischemic acute kidney injury is not only the most common type of acute kidney injury occurring in normal kidneys, but also causes delayed graft function (DGF) in kidney transplant recipients and increases the risk of graft rejection. It is known to reduce the long-term survival rate of transplanted kidneys.
  • DGF delayed graft function
  • the pathophysiology of ischemic acute kidney injury is the result of immune and inflammatory processes involving endothelial and epithelial cell damage.
  • renal inflammation is a major pathophysiology of ischemic acute renal injury.
  • Ischemia-reperfusion injury induces swelling, destroys endothelial cells, and stimulates inflammatory responses.
  • the purpose of the present invention is to provide a pharmaceutical composition for preventing or treating acute kidney injury and a health functional food for preventing or improving acute kidney injury.
  • a pharmaceutical composition for preventing or treating acute kidney injury containing endothelial progenitor cells 1.
  • the pharmaceutical composition of the present invention can significantly reduce renal dysfunction and tissue damage caused by ischemia-reperfusion injury, and can prevent or treat acute renal injury by reducing apoptosis, oxidative stress, expression of inflammatory complexes, fibrosis, etc.
  • the health functional food of the present invention can significantly reduce kidney dysfunction and tissue damage caused by ischemia-reperfusion damage, and can prevent or improve acute kidney injury by reducing apoptosis, oxidative stress, expression of inflammatory complexes, fibrosis, etc. there is.
  • Figure 1 shows micrographs of cell clusters of EPCs differentiated from PBMNC and the vWF staining results of EPCs.
  • Figure 2 shows the effect of EPC on kidney function and morphological changes during IRI through graphs and H&E staining photographs.
  • Figure 3 shows the effect of EPC on IRI-induced apoptosis through TUNEL analysis photos and graphs.
  • Figure 4 shows the effect of EPC on IRI-induced oxidative stress through 8-OhdG staining photographs and graphs.
  • Figure 5 shows immunoblotting results and graphs showing the effect of EPC on the expression pattern of IRI-induced inflammatory regulatory complex.
  • Figure 6 shows the effect of EPC on IRI-induced inflammation by immunomodulation using immunohistochemical staining photographs and graphs.
  • Figure 7 shows immunohistochemical staining photographs and graphs showing the effect of EPC on IRI-induced renal fibrosis.
  • the present invention relates to a pharmaceutical composition for preventing or treating acute kidney injury containing endothelial progenitor cells.
  • Vascular endothelial progenitor cells play an important role in maintaining vascular continuity and repairing endothelial damage, and are cells involved in angiogenesis in various diseases such as ischemic disease, cancer formation, or retinopathy.
  • the vascular endothelial progenitor cells may be derived from adult peripheral blood, bone marrow, or tissue-resident cells. For example, they may be differentiated from peripheral blood mononuclear cells (PBMNC), and specifically, they may be human vascular endothelial progenitor cells differentiated from human peripheral blood mononuclear cells, but are not limited thereto.
  • PBMNC peripheral blood mononuclear cells
  • Acute kidney injury is a condition in which the kidneys' ability to filter metabolic wastes from the blood is drastically reduced (over a period of days to weeks). It commonly appears as a comorbidity in seriously ill patients and is a major cause of death with a high risk of progression to chronic kidney disease.
  • causes of the above-mentioned acute kidney injury include, for example, bleeding, severe vomiting or diarrhea, low blood pressure, heart failure, use of nephrotoxic anti-inflammatory drugs, decreased blood flow to the kidneys, renal vascular abnormalities, malignant hypertension, acute glomerulonephritis, vasculitis, This may be due to damage to the kidney itself due to use of nephrotoxic antibiotics or anticancer drugs that are harmful to the kidney, enlarged prostate, abnormal bladder nerve control, or obstruction of urine discharge from the kidney due to a tumor, etc., but is not limited to this.
  • the acute renal injury may be due to ischemia-reperfusion injury.
  • the ischemia-reperfusion damage is accompanied by additional damage, such as aggravated tissue damage such as decreased vascular endothelial function, during the process of reperfusion to suppress tissue damage caused by ischemia (a condition in which blood supply to the tissue is insufficient). It can be a common cause of acute kidney injury and progression to chronic kidney disease.
  • prevention refers to any action that inhibits or delays acute kidney injury.
  • treatment refers to any action that improves or beneficially changes the symptoms of an individual with suspected or developing acute kidney injury.
  • Vascular endothelial progenitor cells have the effect of preventing or treating acute kidney injury by preventing renal dysfunction or tissue damage by reducing and alleviating apoptosis, oxidative stress, activation of the inflammatory regulatory complex, infiltration of inflammation-related immune cells, and renal fibrosis. It can be expressed.
  • the pharmaceutical composition of the present invention can be formulated and used in the form of oral dosage forms such as powders, granules, capsules, tablets, and aqueous suspensions, external preparations, suppositories, and injections.
  • the pharmaceutical composition of the present invention may contain the active ingredient alone, or may further include one or more pharmaceutically acceptable carriers, excipients, or diluents.
  • the pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers may include binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, colorants, flavorings, etc. for oral administration, and buffers, preservatives, analgesics, etc. for injections.
  • Solubilizers, isotonic agents, stabilizers, etc. can be mixed and used, and for topical administration, bases, excipients, lubricants, preservatives, etc. can be used.
  • the formulation of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier for example, for oral administration, it can be used in tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc. It can be manufactured in the form of an injection, and in the case of an injection, it can be manufactured in the form of unit dosage ampoules or multiple dosage forms.
  • the dosage form of the pharmaceutical composition of the present invention may be prepared as a solution, suspension, tablet, capsule, sustained-release preparation, etc.
  • Carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, It may be microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, filler, anti-coagulant, lubricant, wetting agent, fragrance, emulsifier or preservative.
  • the route of administration of the pharmaceutical composition of the present invention may be oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual or rectal. Not limited.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally, and when administered parenterally, external injection through the skin or intraperitoneal injection, intrarectal injection, subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection may be selected.
  • the dosage of the pharmaceutical composition of the present invention varies depending on the patient's condition and weight, degree of disease, drug form, administration route and period, but can be appropriately selected by a person skilled in the art.
  • the pharmaceutical composition of the present invention can be administered at 0.0001 to 1000 mg/kg or 0.001 to 700 mg/kg, preferably 0.01 to 500 mg/kg per day.
  • the pharmaceutical composition of the present invention can be administered once a day, or may be administered several times.
  • the dosage can be appropriately selected by a person skilled in the art depending on the administration route, number of administrations, degree of disease, patient condition, etc., and the dosage does not limit the scope of the present invention in any way.
  • the pharmaceutical composition of the present invention may be a cell therapy product containing the above cells.
  • the present invention provides a health functional food for preventing or improving acute kidney injury containing vascular endothelial progenitor cells.
  • Vascular endothelial progenitor cells can be derived from adult peripheral blood, bone marrow, or tissue-resident cells. For example, they may be differentiated from peripheral blood mononuclear cells (PBMNC), and specifically, they may be human vascular endothelial progenitor cells differentiated from human peripheral blood mononuclear cells, but are not limited thereto.
  • PBMNC peripheral blood mononuclear cells
  • human vascular endothelial progenitor cells differentiated from human peripheral blood mononuclear cells but are not limited thereto.
  • Acute kidney injury may be within the range described above.
  • the acute kidney injury may be due to ischemia reperfusion injury.
  • the ischemia-reperfusion damage is accompanied by additional damage, such as aggravated tissue damage such as decreased vascular endothelial function, during the process of reperfusion to suppress tissue damage caused by ischemia (a condition in which blood supply to the tissue is insufficient). It can be a common cause of acute kidney injury and progression to chronic kidney disease.
  • the health functional food of the present invention may further include one or more of carriers, diluents, excipients, and additives, and may be used in tablets, capsules, pills, granules, liquids, powders, flakes, pastes, syrups, gels, jellies, bars, films, etc. It can be manufactured and processed in the form of.
  • Health functional foods refer to foods manufactured and processed using raw materials or ingredients with functionality useful to the human body in accordance with Act No. 6727 on Health Functional Foods, and that regulate nutrients for the structure and function of the human body or regulate physiological function. It means ingestion for the purpose of obtaining useful health effects such as medical effects.
  • Health functional foods may contain common food additives, and their suitability as a food additive is determined by the specifications and standards for the item in accordance with the general provisions and general test methods of the food additive code approved by the Food and Drug Administration, unless otherwise specified. It is decided by .
  • Items listed in the Food Additives Code include, for example, chemical compounds such as ketones, glycine, calcium citrate, nicotinic acid, and cinnamic acid; Natural additives such as dark pigment, licorice extract, crystalline cellulose, high-quality pigment, and guar gum; It includes, but is not limited to, mixed preparations such as L-glutamate sodium preparations, noodle added alkaline preparations, preservative preparations, and tar coloring preparations.
  • health functional foods in the form of tablets are made by granulating a mixture of vascular endothelial progenitor cells with excipients, binders, disintegrants, and other additives in a conventional manner, then adding a lubricant, etc., and compression molding the mixture. Can be directly compression molded.
  • the health functional food in the form of tablets may contain flavoring agents, etc., if necessary.
  • hard capsules can be manufactured by filling a regular hard capsule with a mixture of vascular endothelial progenitor cells mixed with excipients and other additives
  • soft capsules can be manufactured by filling vascular endothelial progenitor cells with additives such as excipients. It can be manufactured by filling the mixture with a capsule base such as gelatin.
  • the soft capsule may contain plasticizers such as glycerin or sorbitol, colorants, preservatives, etc., if necessary.
  • Health functional foods in the form of pills can be prepared by molding a mixture of vascular endothelial progenitor cells and excipients, binders, disintegrants, etc. using a known method. If necessary, they can be coated with white sugar or other coating agents. Alternatively, the surface can be coated with substances such as starch or talc.
  • Health functional foods in the form of granules can be manufactured into granules using a mixture of vascular endothelial progenitor cells and excipients, binders, disintegrants, etc., using a known method. If necessary, they can contain flavoring agents, flavoring agents, etc. there is.
  • Additives that can be included in health functional foods include natural carbohydrates, flavors, nutrients, vitamins, minerals (electrolytes), flavors (synthetic flavors, natural flavors, etc.), colorants, fillers (cheese, chocolate, etc.), pectic acid, and At least one ingredient selected from the group consisting of its salts, alginine and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, antioxidants, glycerin, alcohol, carbonating agents and pulp can be used.
  • Natural carbohydrates include monosaccharides, such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, etc.; and polysaccharides, for example, common sugars such as dextrin and cyclodextrin, and sugars such as xylitol, sorbitol, and erythritol.
  • the flavoring agent may be a natural flavoring agent (thaumatin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.)) and a synthetic flavoring agent (saccharin, aspartame, etc.).
  • Health functional foods may include beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gum, candy, ice cream, alcoholic beverages, vitamin complexes, and health supplements.
  • Health functional foods include various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavors, colorants and fillers (cheese, chocolate, etc.), pectic acid and its salts, alginic acid and its salts, organic acids, It may contain protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc.
  • the health functional food of the present invention can be applied orally as a nutritional supplement, and the form of application is not particularly limited.
  • the daily intake is preferably 5000 mg or less, more preferably 3000 mg or less, and most preferably 10 mg to 3000 mg per day.
  • one tablet can be administered once a day with water.
  • Peripheral blood mononuclear cells were isolated by Ficoll density gradient centrifugation (Sigma, St. Louis, MO, USA) at 2300 rpm for 25 minutes and then washed three times in phosphate-buffered saline. Cells were plated on culture dishes coated with human fibronectin (Sigma) and cultured in endothelial cell growth medium (EGM-2; Clontech, Mountain View, CA, USA) containing EGM Single-Quots. After 3 days, non-attached cells were removed and new culture medium was applied. On day 14, cells (1 ⁇ 10 5 ) were stained with von Willebrand factor (vWF). All cell cultures were performed in a humidified atmosphere, 5% CO 2 , and 37°C.
  • PBMNCs Peripheral blood mononuclear cells
  • PBMNCs were cultured in endothelial cell culture conditions and within 3 days, several clusters appeared, typical features of EPCs with spindle-shaped cells at the border (Figure 1A).
  • the morphology of early and late EPCs was observed on days 7 and 14, respectively ( Figure 1B, 1C).
  • EPC differentiation was assessed by the appearance of cobblestone-shaped cells ( Figure 1C), and the vWF-positive population was considered to have typical endothelial function (Figure 1D).
  • mice were anesthetized by intraperitoneal injection of Avertin (2,2,2-tribromoethanol, Sigma). After midline incision, renal pedicles were fixed bilaterally with microaneurysm clamps for 40 minutes. The ischemia time was chosen to obtain a reversible model of ischemic acute kidney injury (AKI) and to avoid death. Endothelial Progenitor Cells (EPCs) (5 ⁇ 10 5 cells, tail vein) were administered 5 minutes before reperfusion. After removing the clamp, blood flow was restored and the kidney was observed to return to its original color. The sham surgery consisted of the same surgical procedure without the use of clamps. Animals were maintained at 29°C in an incubator for the first 24 hours of reperfusion. Animals were sacrificed 72 hours after ischemia, and blood and kidney tissue were harvested. All experiments were performed in triplicate.
  • Avertin 2,2,2-tribromoethanol, Sigma
  • Tissues were fixed with 4% paraformaldehyde in 0.1M phosphate-buffered saline, embedded in paraffin, and cut into 5- ⁇ m sections. Sections were stained with hematoxylin and eosin (H&E). A semi-quantitative score for H&E staining is based on the degree of interstitial damage, assigning points (0-3) for the degree of interstitial fibrosis and renal tubular atrophy (defined as luminal dilatation, loss of brush borders, and flat tubular epithelial cells). did. Tissue damage was scored by grading the percentage of cells affected in the high-power field ( ⁇ 400): 0, 0%; 1, ⁇ 30%; 2, 31-60%; 3, 61-100%. All scores were summed and displayed as average values on the graph, and signals were analyzed using NIS-Elements BR 3.2 (Nikon, Tokyo, Japan).
  • the degree of apoptosis was assessed using TUNEL analysis. DNA fragmentation was detected using a kit from Roche Applied Sciences (Indianapolis, IN, USA). Semi-quantitative analysis was performed by counting the number of TUNEL-positive cells per field in kidney tissue at ⁇ 400 magnification. At least 10 regions were randomly selected from the cortex per slide, and the average number of brown cells in these regions was expressed as the density of TUNEL-positive cells.
  • Kidney samples were obtained for immunoblotting and homogenized in RIPA buffer (Thermo Scientific, Waltham, MA, USA). Protein amount was measured using the BCA assay kit (Pierce, Rockford, IL, USA). Protein samples (50 ⁇ g) were electrophoresed by SDS-polyacrylamide electrophoresis (SDS-PAGE) and transferred to membranes for blotting. Blots were labeled with NLRP-3 (Abcam, Cambridge, UK), c-Casp-1 (Abcam), p-NF- ⁇ B (Santa Cruz Biotechnology, Santa Cruz, CA, USA), or p-p38 (Cell Signaling Technology, Danvers; MA, USA) was treated overnight at 4°C with a monoclonal primary antibody.
  • RNA samples were collected for quantitative real-time PCR.
  • Total RNA was isolated from frozen kidney tissue using TRzol (Invitrogen, Carlsbad, CA, USA). Purified RNA was reverse transcribed into cDNA using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). ViiA7 Real-Time System (Applied Biosystems Inc., Foster City, CA, USA), Power SYBR Green PCR Master Mix (Applied Biosystems) and IL-1 ⁇ , IL-18, CX3CL1, CX3CR1, ROR ⁇ t, IL-17RA, TGF- 1, Quantitative cDNA amplification was performed using gene-specific primers for ⁇ -SMA, Twist, and Snail. GADPH was used as an internal control to confirm that the same amount of RNA was used. The sequences of the primers are shown in Table 1. Relative gene expression levels in each sample were quantified using the 2DDCt method.
  • Serum blood urea nitrogen (BUN) and serum creatinine (Cr) levels were significantly increased in the IR group.
  • IRI mice treated with EPC showed significant attenuation of renal dysfunction associated with IRI ( Figure 2A).
  • Hematoxylin and eosin (H&E) staining was performed to confirm tissue damage caused by IRI with a scale bar of 100 ⁇ m.
  • Analysis of renal pathology in IRI mice showed extensive renal tubular damage characterized by renal tubular atrophy, cast formation, and brush border loss (Figure 2B). These pathological changes were significantly attenuated in EPC-treated IRI mice (Figure 2C).
  • Apoptotic death contributes to the pathogenesis of IRI-induced AKI.
  • the degree of apoptosis was evaluated by TUNEL analysis (scale bar 50 ⁇ m). Cell death due to apoptosis was significantly reduced in tubular epithelial cells of IRI mice treated with EPC ( Figure 3).
  • F4/80 immunohistochemical staining (scale bar 50 ⁇ m), a marker for macrophages, showed that EPC administration significantly reduced macrophage infiltration compared to IRI-only mice ( Fig. 6A ).
  • Intracellular adhesion molecule-1 (ICAM-1) was significantly decreased in IRI mice treated with EPC ( Figure 6B).
  • the mRNA expression levels of C-X3-C motif chemokine ligand 1 (CX3CL1), C-X3-C motif chemokine receptor (CX3XR1), transcription factor RAR-related orphan receptor gamma T (ROR ⁇ T), and IL-17RA were significantly increased in EPC-treated IRI. It was significantly reduced in mice ( Figures 6C,D).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention pertains to: a pharmaceutical composition for preventing or treating acute renal injury, the pharmaceutical composition containing vascular endothelial progenitor cells; and a health functional food for preventing or treating acute renal injury. Vascular endothelial progenitor cells reduce apoptosis, oxidative stress, inflammation regulatory complex activity, inflammation-related immune cell infiltration, and renal fibrosis, thereby improving renal dysfunction and tissue damage, and thus can have the effect of preventing, treating, or improving acute renal injury.

Description

급성 신손상 예방 또는 치료용 약학 조성물Pharmaceutical composition for preventing or treating acute kidney injury
본 발명은 급성 신손상 예방 또는 치료용 약학 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating acute kidney injury.
혈액은 산소나 영양분을 몸의 각 조직이나 세포로 운반하는 역할을 한다. 신체기관, 조직 또는 부위로 혈액을 공급하는 혈관이 협착 또는 수축하거나, 정상적인 혈관 생성이 충분히 이루어지지 않아 혈액 공급이 부족하여 산소가 결핍된 상태를 허혈(ischemia)이라고 한다. 허혈은 세포를 비가역적으로 손상시키고 조직의 괴사(necrosis)로 이어지게 한다. 조직에 허혈이 발생하면 허혈성 캐스캐이드(ischemic cascade)라고 불리는 일련의 과정들이 촉발되어 조직이 영구적으로 손상된다. 이러한 조직 손상을 막기 위해 허혈이 생긴 후에 혈류가 다시 흐르는 것을 재관류(reperfusion)라고 한다.Blood plays a role in transporting oxygen and nutrients to each tissue or cell in the body. Ischemia is a condition in which blood vessels supplying blood to body organs, tissues, or parts are narrowed or constricted, or normal blood vessels are not formed sufficiently, resulting in insufficient blood supply resulting in oxygen deficiency. Ischemia irreversibly damages cells and leads to tissue necrosis. When ischemia occurs in tissue, a series of processes called the ischemic cascade are triggered, resulting in permanent tissue damage. To prevent tissue damage, the return of blood flow after ischemia is called reperfusion.
허혈 및 이로 인한 저산소증에 대한 통상적인 치료는 전신 산소공급을 증가시키거나 혈관 막힘의 원인을 제거하여 혈류 및 산소 전달을 정상 수준으로 복구시키는 것이다. 그렇지만, 혈류 및 산소 전달이 복구되면서 허혈에 의해 유발되는 손상과 무관하게 추가적으로 세포사 또는 기능 상실이 초래되는 문제가 있다. 이는 허혈 재관류 손상(ischemia-reperfusion injury)으로 알려져 있다.Conventional treatment for ischemia and resulting hypoxia is to restore blood flow and oxygen delivery to normal levels by increasing systemic oxygenation or removing the cause of vascular blockage. However, as blood flow and oxygen delivery are restored, there is a problem that additional cell death or loss of function occurs regardless of the damage caused by ischemia. This is known as ischemia-reperfusion injury.
허혈 재관류 손상은 급성 신손상 및 만성 신장병으로의 진행에 있어 가장 흔한 원인이다. 허혈성 급성 신손상은 정상 신장에서 발생하는 급성 신손상 중에서 가장 흔한 유형일 뿐만 아니라, 신장 이식을 받은 수혜자에서는 이식신 기능 지연(delayed graft function, DGF)을 유발하고 이식신 거부 반응의 발생 위험성을 증가시켜 이식신의 장기 생존율을 저하시키는 것으로 알려져 있다. 허혈성 급성 신손상의 병태생리는 내피 및 상피 세포 손상을 수반하는 면역 및 염증 과정의 결과이다. 특히, 신장 염증은 허혈성 급성 신손상의 주요 병태생리학이다. 허혈 재관류 손상은 붓기를 유도하고 내피 세포를 파괴하며, 염증 반응을 자극한다.Ischemia-reperfusion injury is the most common cause of acute renal injury and progression to chronic kidney disease. Ischemic acute kidney injury is not only the most common type of acute kidney injury occurring in normal kidneys, but also causes delayed graft function (DGF) in kidney transplant recipients and increases the risk of graft rejection. It is known to reduce the long-term survival rate of transplanted kidneys. The pathophysiology of ischemic acute kidney injury is the result of immune and inflammatory processes involving endothelial and epithelial cell damage. In particular, renal inflammation is a major pathophysiology of ischemic acute renal injury. Ischemia-reperfusion injury induces swelling, destroys endothelial cells, and stimulates inflammatory responses.
허혈성 급성 신손상의 발생 기전에 대해 많은 연구가 이루어졌지만, 특이 치료제가 아직 없어서 허혈성 급성 신손상의 치료는 보존적 치료 및 투석 치료에 의존하고 있다. 면역학적 염증 반응이 허혈성 급성 신손상을 발생 및 진행시키는 주요 병태생리임을 고려할 때, 이러한 염증 반응을 원천적으로 차단할 수 있는 치료제 개발이 필요하다.Although much research has been conducted on the mechanism of ischemic acute kidney injury, there is still no specific treatment, so treatment of ischemic acute kidney injury relies on conservative treatment and dialysis treatment. Considering that the immunological inflammatory response is the main pathophysiology that causes and progresses ischemic acute kidney injury, there is a need to develop a treatment that can fundamentally block this inflammatory response.
본 발명은 급성 신손상 예방 또는 치료용 약학 조성물 및 급성 신손상 예방 또는 개선용 건강기능식품을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a pharmaceutical composition for preventing or treating acute kidney injury and a health functional food for preventing or improving acute kidney injury.
1. 혈관내피전구세포(endothelial progenitor cell)를 포함하는 급성 신손상 예방 또는 치료용 약학 조성물.1. A pharmaceutical composition for preventing or treating acute kidney injury containing endothelial progenitor cells.
2. 위 1에 있어서, 상기 급성 신손상은 허혈 재관류 손상으로 인한 것인, 급성 신손상 예방 또는 치료용 약학 조성물.2. The pharmaceutical composition for preventing or treating acute renal injury according to 1 above, wherein the acute renal injury is caused by ischemia-reperfusion injury.
3. 혈관내피전구세포(endothelial progenitor cell)를 포함하는 급성 신손상 예방 또는 개선용 건강기능식품.3. Health functional food for preventing or improving acute kidney injury containing endothelial progenitor cells.
4. 위 3에 있어서, 상기 급성 신손상은 허혈 재관류 손상으로 인한 것인, 급성 신손상 예방 또는 개선용 건강기능식품.4. The health functional food for preventing or improving acute renal injury according to 3 above, wherein the acute renal injury is caused by ischemia-reperfusion injury.
본 발명의 약학 조성물은 허혈 재관류 손상으로 인한 신장 기능 장애 및 조직 손상을 현저히 감소시킬 수 있으며, 세포자연사, 산화 스트레스, 염증조절복합체 발현, 섬유증 등을 감소시켜 급성 신손상을 예방 또는 치료할 수 있다.The pharmaceutical composition of the present invention can significantly reduce renal dysfunction and tissue damage caused by ischemia-reperfusion injury, and can prevent or treat acute renal injury by reducing apoptosis, oxidative stress, expression of inflammatory complexes, fibrosis, etc.
본 발명의 건강기능식품은 허혈 재관류 손상으로 인한 신장 기능 장애 및 조직 손상을 현저히 감소시킬 수 있으며, 세포자연사, 산화 스트레스, 염증조절복합체 발현, 섬유증 등을 감소시켜 급성 신손상을 예방 또는 개선할 수 있다.The health functional food of the present invention can significantly reduce kidney dysfunction and tissue damage caused by ischemia-reperfusion damage, and can prevent or improve acute kidney injury by reducing apoptosis, oxidative stress, expression of inflammatory complexes, fibrosis, etc. there is.
도 1은 PBMNC로부터 분화한 EPC의 세포 클러스터 현미경 사진 및 EPC의 vWF 염색 결과를 나타낸 것이다.Figure 1 shows micrographs of cell clusters of EPCs differentiated from PBMNC and the vWF staining results of EPCs.
도 2는 IRI 중 신장 기능 및 형태학적 변화에 대한 EPC의 효과를 그래프 및 H&E 염색 사진으로 나타낸 것이다.Figure 2 shows the effect of EPC on kidney function and morphological changes during IRI through graphs and H&E staining photographs.
도 3은 IRI 유발 세포자연사에 대한 EPC의 효과를 TUNEL 분석 사진 및 그래프로 나타낸 것이다.Figure 3 shows the effect of EPC on IRI-induced apoptosis through TUNEL analysis photos and graphs.
도 4는 IRI 유발 산화 스트레스에 대한 EPC의 효과를 8-OhdG 염색 사진 및 그래프로 나타낸 것이다.Figure 4 shows the effect of EPC on IRI-induced oxidative stress through 8-OhdG staining photographs and graphs.
도 5는 IRI 유발 염증조절복합체의 발현 패턴에 대한 EPC의 효과를 면역블로팅 결과 및 그래프로 나타낸 것이다.Figure 5 shows immunoblotting results and graphs showing the effect of EPC on the expression pattern of IRI-induced inflammatory regulatory complex.
도 6은 면역 조절에 의한 IRI 유발 염증에 대한 EPC의 효과를 면역조직화학염색 사진 및 그래프로 나타낸 것이다.Figure 6 shows the effect of EPC on IRI-induced inflammation by immunomodulation using immunohistochemical staining photographs and graphs.
도 7은 IRI 유발 신장 섬유증에 대한 EPC의 효과를 면역조직화학염색 사진 및 그래프로 나타낸 것이다.Figure 7 shows immunohistochemical staining photographs and graphs showing the effect of EPC on IRI-induced renal fibrosis.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 혈관내피전구세포(endothelial progenitor cell)를 포함하는 급성 신손상 예방 또는 치료용 약학 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for preventing or treating acute kidney injury containing endothelial progenitor cells.
혈관내피전구세포는 혈관 연속성 유지와 내피 손상의 복구에 중요한 역할을 하며, 허혈성 질환이나 암 형성 또는 망막병증 등 여러 질환에서 혈관형성에 관여하는 세포이다.Vascular endothelial progenitor cells play an important role in maintaining vascular continuity and repairing endothelial damage, and are cells involved in angiogenesis in various diseases such as ischemic disease, cancer formation, or retinopathy.
상기 혈관내피전구세포는 성인의 말초혈액, 골수 또는 조직 거주 세포(tissue-resident cells)로부터 파생될 수 있다. 예를 들면 말초 혈액 단핵 세포(PBMNC)로부터 분화된 것일 수 있고, 구체적으로 인간 말초 혈액 단핵 세포로부터 분화된 인간 혈관내피전구세포일 수 있으나, 이에 제한되는 것은 아니다.The vascular endothelial progenitor cells may be derived from adult peripheral blood, bone marrow, or tissue-resident cells. For example, they may be differentiated from peripheral blood mononuclear cells (PBMNC), and specifically, they may be human vascular endothelial progenitor cells differentiated from human peripheral blood mononuclear cells, but are not limited thereto.
"급성 신손상"은 신장이 혈액에서 대사 노폐물을 걸러내는 능력이 급격히(수일에서 수주) 감소하는 질병이다. 이는 중증 환자에게서 동반 질환으로 흔히 나타나고, 만성 신장병으로의 진행 위험도 높은 사망의 주요 원인이다.“Acute kidney injury” is a condition in which the kidneys' ability to filter metabolic wastes from the blood is drastically reduced (over a period of days to weeks). It commonly appears as a comorbidity in seriously ill patients and is a major cause of death with a high risk of progression to chronic kidney disease.
상기 급성 신손상의 원인으로는 예를 들어, 출혈, 심한 구토나 설사, 저혈압, 심부전, 신독성 소염제 사용 등으로 신장으로 가는 혈류가 감소한 상태, 신장혈관 이상, 악성고혈압, 급성사구체신염, 혈관염, 신장에 유해한 신독성 항생제나 항암제 사용 등으로 신장 자체가 손상된 상태, 전립선 비대증, 방광 신경지배 이상, 종양 등으로 신장에서 소변 배출이 막힌 상태 등일 수 있으나, 이에 제한되는 것은 아니다.Causes of the above-mentioned acute kidney injury include, for example, bleeding, severe vomiting or diarrhea, low blood pressure, heart failure, use of nephrotoxic anti-inflammatory drugs, decreased blood flow to the kidneys, renal vascular abnormalities, malignant hypertension, acute glomerulonephritis, vasculitis, This may be due to damage to the kidney itself due to use of nephrotoxic antibiotics or anticancer drugs that are harmful to the kidney, enlarged prostate, abnormal bladder nerve control, or obstruction of urine discharge from the kidney due to a tumor, etc., but is not limited to this.
구체적인 예를 들어, 상기 급성 신손상은 허혈 재관류 손상으로 인한 것일 수 있다. 상기 허혈 재관류 손상은 허혈(조직으로의 혈액 공급이 부족한 상태)에 의한 조직 손상을 억제하기 위해 재관류하는 과정에서 혈관내피세포 기능 저하와 같은 조직 손상이 가중되는 등의 추가적인 손상이 동반되는 것이며, 이는 급성 신손상 및 만성 신장병으로의 진행에 있어 흔한 원인으로 작용할 수 있다.As a specific example, the acute renal injury may be due to ischemia-reperfusion injury. The ischemia-reperfusion damage is accompanied by additional damage, such as aggravated tissue damage such as decreased vascular endothelial function, during the process of reperfusion to suppress tissue damage caused by ischemia (a condition in which blood supply to the tissue is insufficient). It can be a common cause of acute kidney injury and progression to chronic kidney disease.
용어 "예방"은 급성 신손상을 억제시키거나 지연시키는 모든 행위를 의미한다.The term “prevention” refers to any action that inhibits or delays acute kidney injury.
용어 "치료"는 급성 신손상 의심 및 발병 개체의 증상이 호전되거나 이롭게 변경되는 모든 행위를 말한다.The term “treatment” refers to any action that improves or beneficially changes the symptoms of an individual with suspected or developing acute kidney injury.
혈관내피전구세포는 세포자연사, 산화 스트레스, 염증조절복합체 활성화, 염증 관련 면역 세포의 침윤 및 신장 섬유증을 감소 및 완화시켜 신장 기능 장애 또는 조직 손상을 방지함에 따라 급성 신손상을 예방 또는 치료하는 효과를 나타낼 수 있다.Vascular endothelial progenitor cells have the effect of preventing or treating acute kidney injury by preventing renal dysfunction or tissue damage by reducing and alleviating apoptosis, oxidative stress, activation of the inflammatory regulatory complex, infiltration of inflammation-related immune cells, and renal fibrosis. It can be expressed.
본 발명 약학 조성물은 산제, 과립제, 캡슐, 정제, 수성 현탁액 등의 경구형 제형, 외용제, 좌제 및 주사제의 형태로 제형화되어 사용될 수 있다.The pharmaceutical composition of the present invention can be formulated and used in the form of oral dosage forms such as powders, granules, capsules, tablets, and aqueous suspensions, external preparations, suppositories, and injections.
본 발명 약학 조성물은 유효성분을 단독으로 포함하거나, 하나 이상의 약학적으로 허용되는 담체, 부형제 또는 희석제를 더 포함할 수 있다.The pharmaceutical composition of the present invention may contain the active ingredient alone, or may further include one or more pharmaceutically acceptable carriers, excipients, or diluents.
본 발명 약학 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. 약학적으로 허용 가능한 담체는 경구 투여 시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등일 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다.The pharmaceutical composition of the present invention may include a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers may include binders, lubricants, disintegrants, excipients, solubilizers, dispersants, stabilizers, suspending agents, colorants, flavorings, etc. for oral administration, and buffers, preservatives, analgesics, etc. for injections. Solubilizers, isotonic agents, stabilizers, etc. can be mixed and used, and for topical administration, bases, excipients, lubricants, preservatives, etc. can be used.
본 발명 약학 조성물의 제형은 약학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있으며, 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릭서(elixir), 서스펜션, 시럽, 웨이퍼 등의 형태로 제조될 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조될 수 있다. 또한, 본 발명 약학 조성물의 제형은 용액, 현탁액, 정제, 캡슐, 서방형 제제 등으로 제조될 수 있다.The formulation of the pharmaceutical composition of the present invention can be prepared in various ways by mixing with a pharmaceutically acceptable carrier. For example, for oral administration, it can be used in tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc. It can be manufactured in the form of an injection, and in the case of an injection, it can be manufactured in the form of unit dosage ampoules or multiple dosage forms. Additionally, the dosage form of the pharmaceutical composition of the present invention may be prepared as a solution, suspension, tablet, capsule, sustained-release preparation, etc.
제제화를 위한 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말디톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오즈, 메틸 셀룰로오즈, 미정질 셀룰로오즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트, 광물유, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 또는 방부제 등일 수 있다.Carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, It may be microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, filler, anti-coagulant, lubricant, wetting agent, fragrance, emulsifier or preservative.
본 발명 약학 조성물의 투여 경로는 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장일 수 있으며, 이에 제한되지 않는다.The route of administration of the pharmaceutical composition of the present invention may be oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual or rectal. Not limited.
본 발명 약학 조성물은 경구 또는 비경구로 투여될 수 있으며, 비경구 투여 시 피부 외용 또는 복강내 주사, 직장내 주사, 피하 주사, 정맥 주사, 근육내 주사 또는 흉부내 주사 주입방식이 선택될 수 있다.The pharmaceutical composition of the present invention can be administered orally or parenterally, and when administered parenterally, external injection through the skin or intraperitoneal injection, intrarectal injection, subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection may be selected.
본 발명의 약학 조성물의 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여 경로 및 기간에 따라 다르지만, 통상의 기술자에 의해 적절하게 선택될 수 있다.The dosage of the pharmaceutical composition of the present invention varies depending on the patient's condition and weight, degree of disease, drug form, administration route and period, but can be appropriately selected by a person skilled in the art.
예를 들어, 본 발명 약학 조성물은 1일 0.0001 내지 1000 mg/kg 또는 0.001 내지 700 mg/kg, 바람직하게는 0.01 내지 500 mg/kg으로 투여될 수 있다. 본 발명 약학 조성물은 하루에 한 번 투여할 수 있고, 수회 나누어 투여할 수도 있다. 투여 경로, 투여 횟수, 질병의 정도, 환자 상태 등에 따라 투여량은 통상의 기술자에 의해 적절히 선택될 수 있는 것으로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.For example, the pharmaceutical composition of the present invention can be administered at 0.0001 to 1000 mg/kg or 0.001 to 700 mg/kg, preferably 0.01 to 500 mg/kg per day. The pharmaceutical composition of the present invention can be administered once a day, or may be administered several times. The dosage can be appropriately selected by a person skilled in the art depending on the administration route, number of administrations, degree of disease, patient condition, etc., and the dosage does not limit the scope of the present invention in any way.
본 발명의 약학 조성물은 상기 세포를 포함하는 세포치료제일 수 있다.The pharmaceutical composition of the present invention may be a cell therapy product containing the above cells.
본 발명은 혈관내피전구세포를 포함하는 급성 신손상 예방 또는 개선용 건강기능식품을 제공한다.The present invention provides a health functional food for preventing or improving acute kidney injury containing vascular endothelial progenitor cells.
혈관내피전구세포는 성인의 말초혈액, 골수 또는 조직 거주 세포(tissue-resident cells)로부터 파생될 수 있다. 예를 들면 말초 혈액 단핵 세포(PBMNC)로부터 분화된 것일 수 있고, 구체적으로 인간 말초 혈액 단핵 세포로부터 분화된 인간 혈관내피전구세포일 수 있으나, 이에 제한되는 것은 아니다.Vascular endothelial progenitor cells can be derived from adult peripheral blood, bone marrow, or tissue-resident cells. For example, they may be differentiated from peripheral blood mononuclear cells (PBMNC), and specifically, they may be human vascular endothelial progenitor cells differentiated from human peripheral blood mononuclear cells, but are not limited thereto.
급성 신손상은 전술한 범위 내일 수 있다.Acute kidney injury may be within the range described above.
예를 들어, 상기 급성 신손상은 허혈 재관류 손상으로 인한 것일 수 있다. 상기 허혈 재관류 손상은 허혈(조직으로의 혈액 공급이 부족한 상태)에 의한 조직 손상을 억제하기 위해 재관류하는 과정에서 혈관내피세포 기능 저하와 같은 조직 손상이 가중되는 등의 추가적인 손상이 동반되는 것이며, 이는 급성 신손상 및 만성 신장병으로의 진행에 있어 흔한 원인으로 작용할 수 있다.For example, the acute kidney injury may be due to ischemia reperfusion injury. The ischemia-reperfusion damage is accompanied by additional damage, such as aggravated tissue damage such as decreased vascular endothelial function, during the process of reperfusion to suppress tissue damage caused by ischemia (a condition in which blood supply to the tissue is insufficient). It can be a common cause of acute kidney injury and progression to chronic kidney disease.
본 발명의 건강기능식품은 담체, 희석제, 부형제 및 첨가제 중 하나 이상을 더 포함할 수 있고, 정제, 캡슐, 환, 과립, 액상, 분말, 편상, 페이스트, 시럽, 겔, 젤리, 바, 필름 등의 형태로 제조 및 가공될 수 있다.The health functional food of the present invention may further include one or more of carriers, diluents, excipients, and additives, and may be used in tablets, capsules, pills, granules, liquids, powders, flakes, pastes, syrups, gels, jellies, bars, films, etc. It can be manufactured and processed in the form of.
건강기능식품이라 함은, 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 말하며, 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건 용도에 유용한 효과를 얻을 목적으로 섭취하는 것을 의미한다.Health functional foods refer to foods manufactured and processed using raw materials or ingredients with functionality useful to the human body in accordance with Act No. 6727 on Health Functional Foods, and that regulate nutrients for the structure and function of the human body or regulate physiological function. It means ingestion for the purpose of obtaining useful health effects such as medical effects.
건강기능식품은 통상의 식품 첨가물을 포함할 수 있으며, 식품 첨가물로서의 적합 여부는 다른 규정이 없는 한, 식품의약품안전청에 승인된 식품 첨가물 공전의 총칙 및 일반 시험법 등에 따라 해당 품목에 관한 규격 및 기준에 의하여 판정한다.Health functional foods may contain common food additives, and their suitability as a food additive is determined by the specifications and standards for the item in accordance with the general provisions and general test methods of the food additive code approved by the Food and Drug Administration, unless otherwise specified. It is decided by .
식품 첨가물 공전에 수재된 품목으로는 예를 들어, 케톤류, 글리신, 구연산칼슘, 니코틴산, 계피산 등의 화학적 합성물; 감색소, 감초추출물, 결정셀룰로오스, 고량색소, 구아검 등의 천연첨가물; L-글루타민산나트륨 제제, 면류 첨가알칼리제, 보존료제제, 타르색소제제 등의 혼합제제류 등을 포함하나, 이에 제한되지 않는다.Items listed in the Food Additives Code include, for example, chemical compounds such as ketones, glycine, calcium citrate, nicotinic acid, and cinnamic acid; Natural additives such as dark pigment, licorice extract, crystalline cellulose, high-quality pigment, and guar gum; It includes, but is not limited to, mixed preparations such as L-glutamate sodium preparations, noodle added alkaline preparations, preservative preparations, and tar coloring preparations.
예를 들어, 정제 형태의 건강기능식품은 혈관내피전구세포를 부형제, 결합제, 붕해제 및 다른 첨가제와 혼합한 혼합물을 통상의 방법으로 과립화한 다음, 활택제 등을 넣어 압축성형하거나, 상기 혼합물을 직접 압축 성형할 수 있다. 또한 상기 정제 형태의 건강기능식품은 필요에 따라 교미제 등을 함유할 수도 있다.For example, health functional foods in the form of tablets are made by granulating a mixture of vascular endothelial progenitor cells with excipients, binders, disintegrants, and other additives in a conventional manner, then adding a lubricant, etc., and compression molding the mixture. Can be directly compression molded. In addition, the health functional food in the form of tablets may contain flavoring agents, etc., if necessary.
캡슐 형태의 건강기능식품 중 경질 캡슐제는 통상의 경질 캡슐에 혈관내피전구세포를 부형제 등의 첨가제와 혼합한 혼합물을 충진하여 제조할 수 있으며, 연질 캡슐제는 혈관내피전구세포를 부형제 등의 첨가제와 혼합한 혼합물을 젤라틴과 같은 캡슐기제에 충진하여 제조할 수 있다. 상기 연질 캡슐제는 필요에 따라 글리세린 또는 소르비톨 등의 가소제, 착색제, 보존제 등을 함유할 수 있다.Among health functional foods in capsule form, hard capsules can be manufactured by filling a regular hard capsule with a mixture of vascular endothelial progenitor cells mixed with excipients and other additives, while soft capsules can be manufactured by filling vascular endothelial progenitor cells with additives such as excipients. It can be manufactured by filling the mixture with a capsule base such as gelatin. The soft capsule may contain plasticizers such as glycerin or sorbitol, colorants, preservatives, etc., if necessary.
환 형태의 건강기능식품은 혈관내피전구세포와 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 성형하여 조제할 수 있으며, 필요에 따라 백당이나 다른 제피제로 제피할 수 있으며, 또는 전분, 탈크와 같은 물질로 표면을 코팅할 수도 있다.Health functional foods in the form of pills can be prepared by molding a mixture of vascular endothelial progenitor cells and excipients, binders, disintegrants, etc. using a known method. If necessary, they can be coated with white sugar or other coating agents. Alternatively, the surface can be coated with substances such as starch or talc.
과립 형태의 건강기능식품은 혈관내피전구세포와 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 입상으로 제조할 수 있으며, 필요에 따라 착향제, 교미제 등을 함유할 수 있다.Health functional foods in the form of granules can be manufactured into granules using a mixture of vascular endothelial progenitor cells and excipients, binders, disintegrants, etc., using a known method. If necessary, they can contain flavoring agents, flavoring agents, etc. there is.
건강기능식품에 포함될 수 있는 첨가제는 천연 탄수화물, 향미제, 영양제, 비타민, 광물(전해질), 풍미제(합성 풍미제, 천연 풍미제 등), 착색제, 충진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴신 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 산화 방지제, 글리세린, 알코올, 탄산화제 및 과육으로 이루어진 군으로부터 선택된 적어도 하나의 성분을 사용할 수 있다. 천연 탄수화물은 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어, 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어, 덱스트린 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당일 수 있다. 향미제는 천연 향미제(타우마틴, 스테비아 추출물(예를 들어, 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제(사카린, 아스파르탐 등)일 수 있다.Additives that can be included in health functional foods include natural carbohydrates, flavors, nutrients, vitamins, minerals (electrolytes), flavors (synthetic flavors, natural flavors, etc.), colorants, fillers (cheese, chocolate, etc.), pectic acid, and At least one ingredient selected from the group consisting of its salts, alginine and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, antioxidants, glycerin, alcohol, carbonating agents and pulp can be used. Natural carbohydrates include monosaccharides, such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, etc.; and polysaccharides, for example, common sugars such as dextrin and cyclodextrin, and sugars such as xylitol, sorbitol, and erythritol. The flavoring agent may be a natural flavoring agent (thaumatin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.)) and a synthetic flavoring agent (saccharin, aspartame, etc.).
건강기능식품은 음료류, 육류, 초콜릿, 식품류, 과자류, 피자, 라면, 기타 면류, 껌류, 사탕류, 아이스크림류, 알코올 음료류, 비타민 복합제 및 건강보조식품류 등일 수 있다.Health functional foods may include beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gum, candy, ice cream, alcoholic beverages, vitamin complexes, and health supplements.
건강기능식품은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 충진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있다.Health functional foods include various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavors, colorants and fillers (cheese, chocolate, etc.), pectic acid and its salts, alginic acid and its salts, organic acids, It may contain protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc.
본 발명의 건강기능식품은 영양제의 용도로 경구 적용될 수 있으며, 적용 형태는 특별히 제한되지 않는다. 예를 들어 경구 투여되는 경우, 하루 섭취량은 5000mg 이하인 것이 바람직하고, 하루 섭취량이 3000mg 이하인 것이 보다 바람직하며, 하루 섭취량이 10mg 내지 3000mg인 것이 가장 바람직하다. 캡슐 또는 정제로 제제화하는 경우, 1일 1회 1정을 물과 함께 투여할 수 있다.The health functional food of the present invention can be applied orally as a nutritional supplement, and the form of application is not particularly limited. For example, when administered orally, the daily intake is preferably 5000 mg or less, more preferably 3000 mg or less, and most preferably 10 mg to 3000 mg per day. When formulated as a capsule or tablet, one tablet can be administered once a day with water.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하도록 한다.Hereinafter, the present invention will be described in detail with reference to examples.
실시예.Example.
1. 실험재료 및 방법1. Experimental materials and methods
(1) 인간 PBMNCs로부터 EPCs 분리 및 배양(1) Isolation and culture of EPCs from human PBMNCs
모든 혈액 샘플은 채혈 후 2시간 이내에 처리되었다. 말초 혈액 단핵세포(peripheral blood mononuclear cells, PBMNCs)는 2300rpm에서 25분 동안 Ficoll 밀도 구배 원심분리(Sigma, St. Louis, MO, USA)에 의해 분리된 후, 인산염 완충 식염수에서 3회 세척되었다. 세포를 인간 피브로넥틴(Sigma)으로 코팅된 배양 접시에 플레이팅한 후, EGM Single-Quots를 포함하는 내피 세포 성장 배지(EGM-2; Clontech, Mountain View, CA, USA)에서 배양하였다. 3일 후, 부착되지 않은 세포를 제거하고 새로운 배양액을 적용하였다. 14일째에 세포(1Х105)를 vWF(von Willebrand factor)로 염색하였다. 모든 세포 배양은 가습된 대기, 5% CO2, 37℃ 조건에서 수행되었다.All blood samples were processed within 2 hours of blood collection. Peripheral blood mononuclear cells (PBMNCs) were isolated by Ficoll density gradient centrifugation (Sigma, St. Louis, MO, USA) at 2300 rpm for 25 minutes and then washed three times in phosphate-buffered saline. Cells were plated on culture dishes coated with human fibronectin (Sigma) and cultured in endothelial cell growth medium (EGM-2; Clontech, Mountain View, CA, USA) containing EGM Single-Quots. After 3 days, non-attached cells were removed and new culture medium was applied. On day 14, cells (1Х10 5 ) were stained with von Willebrand factor (vWF). All cell cultures were performed in a humidified atmosphere, 5% CO 2 , and 37°C.
PBMNCs를 내피 세포 배양 조건에서 배양시키고 3일 이내에 경계에 방추형(spindle-shaped) 세포가 있는 EPCs의 전형적인 특징인 여러 클러스터가 나타났다(도 1A). 초기 및 후기 EPCs의 형태를 각각 7일 및 14일에 관찰하였다(도 1B, 1C). 조약돌 형태 세포 출현으로 EPC 분화를 평가하였고(도 1C), vWF-양성 집단은 전형적인 내피 기능으로 간주되었다(도 1D).PBMNCs were cultured in endothelial cell culture conditions and within 3 days, several clusters appeared, typical features of EPCs with spindle-shaped cells at the border (Figure 1A). The morphology of early and late EPCs was observed on days 7 and 14, respectively (Figure 1B, 1C). EPC differentiation was assessed by the appearance of cobblestone-shaped cells (Figure 1C), and the vWF-positive population was considered to have typical endothelial function (Figure 1D).
(2) 허혈 재관류 손상으로 유도된 급성 신장 손상(2) acute kidney injury induced by ischemia-reperfusion injury;
10주된 수컷 C57BL/6 마우스를 온도 및 습도 조절 시설에서 12시간/12시간 명암 주기로 유지하였다. 표준 마우스에게는 음식과 물을 자유롭게 제공하였다. 마우스를 샴 그룹(Sham), EPC 그룹, IRI만 있는 그룹(IR) 및 EPC를 처리한 IRI 그룹(IR + EPC)으로 나누었다(그룹당 n=10).Ten-week-old male C57BL/6 mice were maintained on a 12-hour/12-hour light/dark cycle in a temperature and humidity controlled facility. Standard mice were provided with food and water ad libitum. Mice were divided into Sham group (Sham), EPC group, IRI only group (IR), and IRI group treated with EPC (IR + EPC) (n=10 per group).
Avertin(2,2,2-tribromoethanol, Sigma)을 복강내 주사하여 마우스를 마취시켰다. 정중선 절개 후 신혈관(renal pedicles)을 미세동맥류 클램프로 40분 동안 양측으로 고정하였다. 상기 허혈 시간은 허혈성 급성 신손상(acute kidney injury, AKI)의 가역적 모델을 얻고 사망을 피하기 위해 선택되었다. EPCs(Endothelial Progenitor Cells)(5Х105개 세포, 꼬리 정맥)를 재관류 5분 전에 투여하였다. 클램프 제거 후, 혈류가 회복되고 원래 색으로 돌아가는 신장을 관찰하였다. 샴 수술은 클램프 사용 없이 동일한 수술 절차로 구성되었다. 재관류의 처음 24시간 동안 동물을 인큐베이터에서 29℃로 유지시켰다. 동물은 허혈 72시간 후에 희생되었고, 혈액 및 신장 조직을 수확하였다. 모든 실험은 3회 수행되었다.Mice were anesthetized by intraperitoneal injection of Avertin (2,2,2-tribromoethanol, Sigma). After midline incision, renal pedicles were fixed bilaterally with microaneurysm clamps for 40 minutes. The ischemia time was chosen to obtain a reversible model of ischemic acute kidney injury (AKI) and to avoid death. Endothelial Progenitor Cells (EPCs) (5Х10 5 cells, tail vein) were administered 5 minutes before reperfusion. After removing the clamp, blood flow was restored and the kidney was observed to return to its original color. The sham surgery consisted of the same surgical procedure without the use of clamps. Animals were maintained at 29°C in an incubator for the first 24 hours of reperfusion. Animals were sacrificed 72 hours after ischemia, and blood and kidney tissue were harvested. All experiments were performed in triplicate.
(3) 조직병리학(3) Histopathology
조직을 0.1M 인산염 완충 식염수에서 4% 파라포름알데히드로 고정하고, 파라핀에 포매하고 5μm 단면으로 절단하였다. 섹션을 헤마톡실린과 에오신(H&E)으로 염색하였다. H&E 염색에 대한 반-정량적 점수는 간질 섬유증 및 신세뇨관 위축(내강 확장, 브러시 경계 손실 및 편평한 세관 상피 세포로 정의됨)의 정도에 대해 포인트(0-3)를 할당한 간질 손상 정도를 기반으로 하였다. 조직 손상은 고출력 영역(Х400)에서 영향을 받은 세포의 백분율을 등급화하여 점수를 매겼다: 0, 0%; 1, <30%; 2, 31-60%; 3, 61-100%. 모든 점수는 합산되어 그래프에 평균값으로 표시하였고, 신호는 NIS-Elements BR 3.2(Nikon, Tokyo, Japan)를 사용하여 분석하였다.Tissues were fixed with 4% paraformaldehyde in 0.1M phosphate-buffered saline, embedded in paraffin, and cut into 5-μm sections. Sections were stained with hematoxylin and eosin (H&E). A semi-quantitative score for H&E staining is based on the degree of interstitial damage, assigning points (0-3) for the degree of interstitial fibrosis and renal tubular atrophy (defined as luminal dilatation, loss of brush borders, and flat tubular epithelial cells). did. Tissue damage was scored by grading the percentage of cells affected in the high-power field (Х400): 0, 0%; 1, <30%; 2, 31-60%; 3, 61-100%. All scores were summed and displayed as average values on the graph, and signals were analyzed using NIS-Elements BR 3.2 (Nikon, Tokyo, Japan).
(4) TUNEL 분석(4) TUNEL analysis
TUNEL 분석을 사용하여 세포자연사의 정도를 평가하였다. Roche Applied Sciences(Indianapolis, IN, USA)의 키트를 사용하여 DNA 단편화를 감지하였다. 신장 조직에서 Х400 배율로 필드 당 TUNEL-양성 세포의 수를 세어 반-정량적 분석을 수행하였다. 슬라이드 당 피질에서 최소 10개 영역이 무작위로 선택되었으며, 이 영역에서 갈색 세포의 평균 수는 TUNEL-양성 세포의 밀도로 표현되었다.The degree of apoptosis was assessed using TUNEL analysis. DNA fragmentation was detected using a kit from Roche Applied Sciences (Indianapolis, IN, USA). Semi-quantitative analysis was performed by counting the number of TUNEL-positive cells per field in kidney tissue at Х400 magnification. At least 10 regions were randomly selected from the cortex per slide, and the average number of brown cells in these regions was expressed as the density of TUNEL-positive cells.
(5) 면역 블로팅(Immunoblotting)(5) Immunoblotting
면역블로팅을 위해 신장 샘플을 얻고, 이를 RIPA 완충액(Thermo Scientific, Waltham, MA, USA)에서 균질화하였다. 단백질 양은 BCA 분석 키트(Pierce, Rockford, IL, USA)를 사용하여 측정하였다. 단백질 샘플(50μg)을 SDS-PAGE(SDS-폴리아크릴아마이드 전기 영동법)으로 전기 영동하고 블로팅을 위해 멤브레인으로 옮겼다. 블롯은 NLRP-3(Abcam, Cambridge, UK), c-Casp-1 (Abcam), p-NF-κB (Santa Cruz Biotechnology, Santa Cruz, CA, USA) 또는 p-p38 (Cell Signaling Technology, Danvers, MA, USA) 에 대한 단일클론 1차 항체로 4℃에서 밤새 처리하였다. 1차 항체 결합은 2차 항체 및 ECL 키트(Amersham Pharmacia Biotech, Piscataway, NJ, USA) 로 시각화하였고, β-액틴 항체(Sigma)를 대조군으로 사용하였다. 데이터의 정량 분석을 위해 밀도 측정 분석이 수행되었다.Kidney samples were obtained for immunoblotting and homogenized in RIPA buffer (Thermo Scientific, Waltham, MA, USA). Protein amount was measured using the BCA assay kit (Pierce, Rockford, IL, USA). Protein samples (50 μg) were electrophoresed by SDS-polyacrylamide electrophoresis (SDS-PAGE) and transferred to membranes for blotting. Blots were labeled with NLRP-3 (Abcam, Cambridge, UK), c-Casp-1 (Abcam), p-NF-κB (Santa Cruz Biotechnology, Santa Cruz, CA, USA), or p-p38 (Cell Signaling Technology, Danvers; MA, USA) was treated overnight at 4°C with a monoclonal primary antibody. Primary antibody binding was visualized with a secondary antibody and ECL kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA), and β-actin antibody (Sigma) was used as a control. Densitometric analysis was performed for quantitative analysis of the data.
(6) 면역조직화학(6) Immunohistochemistry
탈파라핀화 후, 섹션을 ICAM-1(BD Bioscience, Franklin Lakes, NJ, USA) 또는 α-SMA(Sigma)에 대한 단일클론 항체 또는 F4/80(Santa Cruz Biotechnology) 또는 8-OHdG(Abcam)에 대한 다클론 항체로 인큐베이트한 후, 비오틴-결합 이차 IgG(1:200으로 희석됨; Vector Laboratories, Burlingame, CA, USA), 아비딘-비오틴-과산화효소 복합체(ABC Elite Kit; Vector Laboratories) 및 DAB와 함께 인큐베이트하였다. 다음으로, 광학 현미경으로 섹션을 시각화하였고, NIS-Elements BR 3.2를 사용하여 디지털 이미지를 캡쳐하고 분석하였다. 신장 조직에서 Х400 배율로 필드 당 면역 조직 화학적으로 염색된 양성 세포의 수를 세어 반-정량적 분석을 수행하였다.After deparaffinization, sections were incubated with monoclonal antibodies against ICAM-1 (BD Bioscience, Franklin Lakes, NJ, USA) or α-SMA (Sigma) or F4/80 (Santa Cruz Biotechnology) or 8-OHdG (Abcam). After incubation with polyclonal antibodies against biotin-conjugated secondary IgG (diluted 1:200; Vector Laboratories, Burlingame, CA, USA), avidin-biotin-peroxidase complex (ABC Elite Kit; Vector Laboratories), and DAB. was incubated with. Next, sections were visualized under a light microscope, and digital images were captured and analyzed using NIS-Elements BR 3.2. Semi-quantitative analysis was performed by counting the number of immunohistochemically stained positive cells per field in kidney tissue at Х400 magnification.
(7) 정량적 실시간 중합효소 연쇄 반응(PCR)(7) Quantitative real-time polymerase chain reaction (PCR)
정량적 실시간 PCR을 위해 신장 샘플을 채취했다. TRzol (Invitrogen, Carlsbad, CA, USA)을 사용하여 동결된 신장 조직에서 총 RNA를 분리하였다. iScript cDNA 합성 키트(Bio-Rad Laboratories, Hercules, CA, USA)를 사용하여 정제된 RNA를 cDNA로 역전사하였다. ViiA7 Real-Time System(Applied Biosystems Inc., Foster City, CA, USA), Power SYBR Green PCR Master Mix(Applied Biosystems) 및 IL-1β, IL-18, CX3CL1, CX3CR1, RORγt, IL-17RA, TGF-1, α-SMA, Twist 및 Snail에 대한 유전자 특이적 프라이머를 사용하여 정량적 cDNA 증폭을 수행하였다. GADPH는 같은 양의 RNA를 사용하였다는 것을 확인하기 위한 내부 대조군으로 사용되었다. 상기 프라이머의 서열은 표 1과 같다. 각 샘플의 상대적인 유전자 발현 수준은 2DDCt 방법을 사용하여 정량화되었다.Kidney samples were collected for quantitative real-time PCR. Total RNA was isolated from frozen kidney tissue using TRzol (Invitrogen, Carlsbad, CA, USA). Purified RNA was reverse transcribed into cDNA using the iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA). ViiA7 Real-Time System (Applied Biosystems Inc., Foster City, CA, USA), Power SYBR Green PCR Master Mix (Applied Biosystems) and IL-1β, IL-18, CX3CL1, CX3CR1, RORγt, IL-17RA, TGF- 1, Quantitative cDNA amplification was performed using gene-specific primers for α-SMA, Twist, and Snail. GADPH was used as an internal control to confirm that the same amount of RNA was used. The sequences of the primers are shown in Table 1. Relative gene expression levels in each sample were quantified using the 2DDCt method.
GeneGene ForwardForward ReverseReverse
IL-1βIL-1β CTTCAGGCAGGCAGTATCACTCAT(서열번호 1)CTTCAGGCAGGCAGTATCACTCAT (SEQ ID NO: 1) TCTAATGGGAACGTCACACACCAG
(서열번호 2)
TCTAATGGGAACGTCACACACCAG
(SEQ ID NO: 2)
IL-18IL-18 GCTGTGACCCTCTCTGTGAA(서열번호 3)GCTTGACCCTCTCTGTGAA (SEQ ID NO: 3) GGCAAGCAAGAAAGTGTCCT
(서열번호 4)
GGCAAGCAAGAAAGTGTCCT
(SEQ ID NO: 4)
CX3CL1CX3CL1 ATTGGAAGACCTTGCTTTGG(서열번호 5)ATTGGAAGACCTTGCTTTGG (SEQ ID NO: 5) GCCTCGGAAGTTGAGAGAGA
(서열번호 6)
GCTCGGAAGTTTGAGAGAGA
(SEQ ID NO: 6)
CX3CR1CX3CR1 CACCATTAGTCTGGGCGTCT(서열번호 7)CACCATTAGTCTGGCGTCT (SEQ ID NO: 7) GATGCGGAAGTAGCAAAAGC
(서열번호 8)
GATGCGGAAGTAGCAAAAGC
(SEQ ID NO: 8)
RORγtRORγt AGCTTTGTGCAGATCTAAGG(서열번호 9)AGCTTTGTGCAGATCTAAGG (SEQ ID NO: 9) TGTCCTCCTCAGTAGGGTAG
(서열번호 10)
TGTCCTCCTCAGTAGGGTAG
(SEQ ID NO: 10)
TGF-1TGF-1 TGCGCTTGCAGAGATTAAAA(서열번호 11)TGCGCTTGCAGAGATTAAAA (SEQ ID NO: 11) CGTCAAAAGACAGCCACTCA
(서열번호 12)
CGTCAAAAGACAGCCACTCA
(SEQ ID NO: 12)
TwistTwist CTCGGACAAGCTGAGCAAG(서열번호 13)CTCGGACAAGCTGAGCAAG (SEQ ID NO: 13) CAGCTTGCCATCTTGGAGTC
(서열번호 14)
CAGCTTGCCATCTTGGAGTC
(SEQ ID NO: 14)
SnailSnail CTTGTGTCTGCACGACCTGT(서열번호 15)CTTGTGTCTGCACGACCTGT (SEQ ID NO: 15) CTTCACATCCGAGTGGGTTT
(서열번호 16)
CTTCACATCCGAGTGGGTTT
(SEQ ID NO: 16)
GADPHGADPH ACTCCACTCACGGCAAATTC(서열번호 17)ACTCCACTCACGGCAAATTC (SEQ ID NO: 17) TCTCCATGGTGGTGAAGACA
(서열번호 18)
TCTCCATGGTTGGTGAAGACA
(SEQ ID NO: 18)
IL-17RAIL-17RA Taqman, Mm.00434214Taqman, Mm.00434214
α-SMAα-SMA Taqman, Mm.00725412Taqman, Mm.00725412
(8) 통계 분석(8) Statistical analysis
GraphPad Prism 소프트웨어(버전 8.0; GraphPad Sofrware Inc., La Jolla, CA, USA)를 사용하여 통계 분석을 수행하였다. 일원 분산 분석과 Turkey의 다중 비교 테스트(모든 그룹 비교를 위해)를 사용하여 데이터를 평가하였다. p 값이 0.05 미만인 경우에 통계적으로 유의한 것으로 간주하였다.Statistical analyzes were performed using GraphPad Prism software (version 8.0; GraphPad Sofrware Inc., La Jolla, CA, USA). Data were evaluated using one-way analysis of variance and Turkey's multiple comparison test (for all group comparisons). A p value of less than 0.05 was considered statistically significant.
2. 실험 결과2. Experimental results
(1) EPCs의 IRI로 인한 신장 기능 장애 및 조직 손상 개선 효과 확인(1) Confirmation of the effect of EPCs on improving kidney dysfunction and tissue damage caused by IRI
혈청 혈액요소질소(BUN)와 혈청 크레아티닌(Cr) 수치는 IR 그룹에서 유의하게 증가하였다. EPC가 처리된 IRI 마우스는 IRI와 관련된 신장 기능 장애의 상당한 감쇠를 나타냈다(도 2A). 헤마톡실린 및 에오신(H&E) 염색을 수행하여 스케일바 100μm로 하여 IRI로 인한 조직 손상을 확인하였다. IRI 마우스에서의 신장 병리학 분석은 신세뇨관 위축, 캐스트 형성 및 브러시 경계 손실을 특징으로 하는 광범위한 신세뇨관 손상을 보였다(도 2B). 이러한 병리학적 변화는 EPC가 처리된 IRI 마우스에서는 유의하게 약화되었다(도 2C).Serum blood urea nitrogen (BUN) and serum creatinine (Cr) levels were significantly increased in the IR group. IRI mice treated with EPC showed significant attenuation of renal dysfunction associated with IRI (Figure 2A). Hematoxylin and eosin (H&E) staining was performed to confirm tissue damage caused by IRI with a scale bar of 100 μm. Analysis of renal pathology in IRI mice showed extensive renal tubular damage characterized by renal tubular atrophy, cast formation, and brush border loss (Figure 2B). These pathological changes were significantly attenuated in EPC-treated IRI mice (Figure 2C).
(2) EPCs에 의한 IRI로 인한 세포 자살 감소(2) Reduced IRI-induced apoptosis by EPCs
세포자연사는 IRI로 인한 AKI의 발병 과정에 기여한다. TUNEL 분석으로 세포자연사의 정도를 평가하였다(스케일바 50μm). 세포자연사로 인한 세포 사멸은 EPC가 처리된 IRI 마우스의 관상 상피 세포에서 유의하게 감소하였다(도 3).Apoptotic death contributes to the pathogenesis of IRI-induced AKI. The degree of apoptosis was evaluated by TUNEL analysis (scale bar 50 μm). Cell death due to apoptosis was significantly reduced in tubular epithelial cells of IRI mice treated with EPC (Figure 3).
(3) EPCs에 의한 IRI로 인한 산화 스트레스 약화(3) Attenuation of oxidative stress caused by IRI by EPCs
IRI로 인한 산화 스트레스에 대한 EPC의 영향을 조사하기 위해 신장 조직에 8-OHdG로 면역조직화학적 염색을 수행하였다(스케일바 50μm). IRI 그룹의 관상 상피 세포 핵에서 8-OhdG-양성 반응이 검출되었다(도 4의 화살표). 이러한 반응은 EPC가 처리된 IRI 마우스에서 상당히 감소하였다(도 4).To investigate the effect of EPC on IRI-induced oxidative stress, immunohistochemical staining with 8-OHdG was performed on kidney tissue (scale bar 50 μm). 8-OhdG-positive reactions were detected in the nuclei of tubular epithelial cells in the IRI group (arrows in Figure 4). This response was significantly reduced in EPC-treated IRI mice (Figure 4).
(4) EPCs에 의한 염증조절복합체(inflammasome) 활성화 감소(4) Reduced inflammation control complex (inflammasome) activation by EPCs
염증조절복합체 관련 인자의 발현 양상을 조사하였다. IRI 마우스의 신장에서 NLRP-3 발현이 유의하게 증가한 것이 관찰되었고, 이러한 증가는 EPC가 처리된 IRI 마우스에서 상당히 감소되었다. 절단된 카스파제-1(c-Casp-1), 인산화된 핵 인자 카파 B(p-NF-κB) 및 인산화된 p38(p-p38) 또한 EPC가 처리된 IRI 마우스에서 발현이 감소되었다(도 5A).The expression patterns of factors related to the inflammatory regulatory complex were investigated. A significant increase in NLRP-3 expression was observed in the kidneys of IRI mice, and this increase was significantly reduced in IRI mice treated with EPC. Cleaved caspase-1 (c-Casp-1), phosphorylated nuclear factor kappa B (p-NF-κB), and phosphorylated p38 (p-p38) expression were also reduced in EPC-treated IRI mice (Figure 5A).
IRI 마우스에서 EPC가 염증조절복합체 비활성화에 미치는 영향을 확인하기 위해, NLRP3 염증조절복합체와 관련된 전염증성 사이토카인인 IL-1β 및 IL-18의 mRNA 발현 수준을 조사하였다. IL-1β 및 IL-18의 mRNA 발현 수준은 IRI 마우스에서 증가하고 EPC 처리된 IRI 마우스에서 감소하였다(도 5B).To determine the effect of EPC on inactivation of the inflammasome in IRI mice, the mRNA expression levels of IL-1β and IL-18, proinflammatory cytokines associated with the NLRP3 inflammasome, were examined. The mRNA expression levels of IL-1β and IL-18 were increased in IRI mice and decreased in EPC-treated IRI mice (Figure 5B).
(5) EPCs에 의한 염증 관련 면역 세포 침윤 감소(5) Reduced inflammation-related immune cell infiltration by EPCs
대식세포의 마커인 F4/80 면역조직화학염색(스케일바 50μm)은 EPC 투여가 IRI 단독 마우스와 비교하여 대식 세포의 침윤을 유의하게 감소시키는 것으로 나타났다(도 6A). 세포내 접착 분자-1(ICAM-1)은 EPC가 처리된 IRI 마우스에서 유의하게 감소하였다(도 6B). C-X3-C 모티프 케모카인 리간드 1(CX3CL1), C-X3-C 모티프 케모카인 수용체(CX3XR1), 전사인자 RAR 관련 고아 수용체 감마 T(RORγT) 및 IL-17RA의 mRNA 발현 수준은 EPC가 처리된 IRI 마우스에서 유의하게 감소하였다(도 6C,D).F4/80 immunohistochemical staining (scale bar 50 μm), a marker for macrophages, showed that EPC administration significantly reduced macrophage infiltration compared to IRI-only mice ( Fig. 6A ). Intracellular adhesion molecule-1 (ICAM-1) was significantly decreased in IRI mice treated with EPC (Figure 6B). The mRNA expression levels of C-X3-C motif chemokine ligand 1 (CX3CL1), C-X3-C motif chemokine receptor (CX3XR1), transcription factor RAR-related orphan receptor gamma T (RORγT), and IL-17RA were significantly increased in EPC-treated IRI. It was significantly reduced in mice (Figures 6C,D).
(6) EMT 경로를 통한 EPCs의 IRI 유발 신장 섬유증 감소 효과(6) The effect of EPCs on reducing IRI-induced renal fibrosis through the EMT pathway
섬유증을 확인하기 위해 근섬유아세포 마커 α-SMA의 면역조직화학 염색(스케일바 50 μm )을 수행하였다. α-SMA-양성 반응은 IRI를 겪고 있는 신장의 세뇨관 간질 부위에서 발견되었고, 이러한 양성 반응의 수 및 α-SMA의 mRNA 발현 수준이 EPC가 처리된 IRI 마우스에서 크게 감소하였다(도 7A,B). 형질전환 성장 인자(TGF)-β1, Twist 및 Snail mRNA(즉, 상피-중간엽 전이[EMT]-특이적 바이오마커들)의 발현 수준은 EPC가 처리된 IRI 마우스에서 유의하게 감소하였다(도 7B).Immunohistochemical staining of the myofibroblast marker α-SMA was performed to confirm fibrosis (scale bar 50 μm). α-SMA-positive reactions were found in the tubulointerstitial region of kidneys undergoing IRI, and the number of these positive reactions and the mRNA expression level of α-SMA were significantly reduced in EPC-treated IRI mice (Figures 7A,B). . Expression levels of transforming growth factor (TGF)-β1, Twist, and Snail mRNA (i.e., epithelial-mesenchymal transition [EMT]-specific biomarkers) were significantly reduced in EPC-treated IRI mice (Figure 7B ).

Claims (4)

  1. 혈관내피전구세포(endothelial progenitor cell)를 포함하는 급성 신손상 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating acute kidney injury containing endothelial progenitor cells.
  2. 청구항 1에 있어서, 상기 급성 신손상은 허혈 재관류 손상으로 인한 것인, 급성 신손상 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating acute renal injury according to claim 1, wherein the acute renal injury is caused by ischemia-reperfusion injury.
  3. 혈관내피전구세포(endothelial progenitor cell)를 포함하는 급성 신손상 예방 또는 개선용 건강기능식품.A health functional food for preventing or improving acute kidney injury containing endothelial progenitor cells.
  4. 청구항 3에 있어서, 상기 급성 신손상은 허혈 재관류 손상으로 인한 것인, 급성 신손상 예방 또는 개선용 건강기능식품.The health functional food for preventing or improving acute renal injury according to claim 3, wherein the acute renal injury is caused by ischemia-reperfusion injury.
PCT/KR2022/009662 2022-07-05 2022-07-05 Pharmaceutical composition for preventing or treating acute renal injury WO2024010105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/009662 WO2024010105A1 (en) 2022-07-05 2022-07-05 Pharmaceutical composition for preventing or treating acute renal injury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/009662 WO2024010105A1 (en) 2022-07-05 2022-07-05 Pharmaceutical composition for preventing or treating acute renal injury

Publications (1)

Publication Number Publication Date
WO2024010105A1 true WO2024010105A1 (en) 2024-01-11

Family

ID=89453589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009662 WO2024010105A1 (en) 2022-07-05 2022-07-05 Pharmaceutical composition for preventing or treating acute renal injury

Country Status (1)

Country Link
WO (1) WO2024010105A1 (en)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BECHERUCCI FRANCESCA, MAZZINGHI BENEDETTA, RONCONI ELISA, PEIRED ANNA, LAZZERI ELENA, SAGRINATI COSTANZA, ROMAGNANI PAOLA, LASAGNI: "The role of endothelial progenitor cells in acute kidney injury", BLOOD PURIFICATION., KARGER, BASEL., CH, vol. 27, no. 3, 1 January 2009 (2009-01-01), CH , pages 261 - 270, XP009551617, ISSN: 0253-5068, DOI: 10.1159/000202005 *
CHEON, IL-SEOK; CHOI, JIN-HO; KIM, KOUNG-LI; KIM, SUNGHEA; BAEK, KYUNGKEE; JANG, SHIN-YI; SUNG, JIDONG; SUH, WONHEE; BYUN, JONGHOE: "Decreased Number and Impaired Angiogenic Function of Endothelial Progenitor Cells in Patients with Chronic Renal Failure", KOREAN CIRCULATION JOURNAL, KOREAN SOCIETY OF CIRCULATION, vol. 34, no. 11, 1 November 2004 (2004-11-01), KR , pages 1033 - 1042, XP009552131, ISSN: 1738-5520, DOI: 10.4070/kcj.2004.34.11.1033 *
JANG HA NEE, KIM JIN HYUN, JUNG MYEONG HEE, TAK TAEKIL, JUNG JUNG HWA, LEE SEUNGHYE, JUNG SEHYUN, CHANG SE-HO, KIM HYUN-JUNG: "Human Endothelial Progenitor Cells Protect the Kidney against Ischemia-Reperfusion Injury via the NLRP3 Inflammasome in Mice", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (MDPI), BASEL, CH, vol. 23, no. 3, Basel, CH , pages 1546, XP093124517, ISSN: 1422-0067, DOI: 10.3390/ijms23031546 *
OZKOK ABDULLAH, YILDIZ ALAATTIN: "Endothelial Progenitor Cells and Kidney Diseases", KIDNEY AND BLOOD PRESSURE RESEARCH, BASEL, CH, vol. 43, no. 3, 26 January 2024 (2024-01-26), CH , pages 701 - 718, XP093124518, ISSN: 1420-4096, DOI: 10.1159/000489745 *
PARK, HYEONG CHEON: "Mechanism of endothelial cell injury in ischemic acute kidney injury and possible treatment strategy using microparticles derived from mesenchymal stem cell", GOVERNMENT PROJECT FINAL REPORT, YONSEI UNIVERSITY, KOREA, 1 January 2011 (2011-01-01), Korea, pages 1 - 29, XP009552385 *
RATLIFF BRIAN B., GOLIGORSKY MICHAEL S.: "Delivery of EPC embedded in HA-hydrogels for treatment of acute kidney injury", BIOMATTER, vol. 3, no. 1, 1 January 2013 (2013-01-01), pages e23284, XP093124519, ISSN: 2159-2535, DOI: 10.4161/biom.23284 *
SANGIDORJ, ODONGUA; KIM, NAKKYUNG; YANG, SEUNG-HEE; KIM, SUHNGGWON; KIM, YON-SU: "Role of Bone Marrow Derived Endothelial Progenitor Cell Infusion for the Prevention of Progression of Chronic Renal Failure", ABSTRACTS OF THE KOREAN SOCIETY OF NEPHROLOGY SPRING CONFERENCE (KSN), vol. 28, no. 1, 1 January 2008 (2008-01-01), pages S238, XP009552130 *

Similar Documents

Publication Publication Date Title
WO2018004143A1 (en) Angiogenesis-promoting composition containing adult stem cell-derived exosome-mimetic nanovesicle
JP5020227B2 (en) Benzamidine derivatives for the treatment and prevention of cancer therapeutic mucositis
WO2016137037A1 (en) Composition for preventing or treating valve calcification, containing dpp-4 inhibitor
KR20190008967A (en) Oral spray containing Ixeris dentata extract for preventing or treating xerostomia caused by diabete
KR101957632B1 (en) Composition for preventing, improving or treating of fibrosis
KR102174191B1 (en) Bisamide derivatives of dicarboxylic acids as agents for stimulating tissue regeneration and restoration of reduced tissue function
KR101727506B1 (en) Pharmaceutical composition for the prevention or treatment of fat liver comprising GDF15 protein or polynucleotide encoding GDF15 as an effective ingredient
WO2024010105A1 (en) Pharmaceutical composition for preventing or treating acute renal injury
KR102176069B1 (en) Pharmaceutical composition for preventing or treating diabetes mellitus containing zinc salt, cyclo-hispro and antidiabetic drug
WO2012112007A2 (en) Composition containing inducer of sirt1 expression for preventing or treating sepsis or septic shock
WO2022030660A1 (en) Pharmaceutical composition for preventing or treating acute kidney injury due to ischemia-reperfusion
JP2005179235A (en) Composition for preventing, treating or ameliorating disorder of feeling comprising specific molecular weight fraction obtained from water-soluble fraction of royal jelly or treated royal jelly as active ingredient
WO2020017921A1 (en) Pharmaceutical composition, for preventing or treating sarcopenia, containing salicornia europaea extract
KR102460275B1 (en) Composition for preventing, alleviating, or treating Sarcopenia comprising D-ribo-2-hexulose as active ingredient
KR102594908B1 (en) A composition for preventing, alleviating or treating a sepsis or septic shock
CN114569595B (en) Application of hericium erinaceus-derived aromatic compound in preparation of anti-inflammatory drugs
WO2022045673A1 (en) Composition comprising novel compound as active ingredient for prevention or treatment of cardiac failure following myocardial infarction and use thereof
WO2021187942A1 (en) Use of cyclo-hispro (chp) for lowering blood pressure
KR20200000956A (en) Compositions for Treatment or Prevention of Intestinal Diseases Comprising Propionibacterium freudenreichii, it culture broth or heat killed Propionibacterium freudenreichii as an active ingredient
WO2024010394A1 (en) Composition for ameliorating or treating cancer cachexia containing calcium lactate as active ingredient
CN116925186B (en) Mesenchymal stem cell treatment method for neonatal pulmonary dysplasia
WO2024080420A1 (en) Composition for preventing and treating liver cancer containing ginsenoside rh2 and ginsenoside rg5 as active ingredients
WO2023022473A1 (en) Composition comprising stem cell-derived extracellular vesicle as active ingredient
US20240139122A1 (en) Composition for preventing, alleviating or treating sarcopenia, containing d-ribo-2-hexulose as active ingredient
KR102600598B1 (en) A composition comprising ginseng for preventing, improving or treating chronic obstructive pulmonary disease by fine dust

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950331

Country of ref document: EP

Kind code of ref document: A1